WO2022095501A1 - 一种生活垃圾渗滤液的厌氧处理工艺异常识别及调整方法 - Google Patents
一种生活垃圾渗滤液的厌氧处理工艺异常识别及调整方法 Download PDFInfo
- Publication number
- WO2022095501A1 WO2022095501A1 PCT/CN2021/106137 CN2021106137W WO2022095501A1 WO 2022095501 A1 WO2022095501 A1 WO 2022095501A1 CN 2021106137 W CN2021106137 W CN 2021106137W WO 2022095501 A1 WO2022095501 A1 WO 2022095501A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- anaerobic
- load
- indicators
- vfa
- influent
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 24
- 230000005856 abnormality Effects 0.000 title claims abstract description 11
- 239000010791 domestic waste Substances 0.000 title abstract description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 68
- 238000005070 sampling Methods 0.000 claims abstract description 27
- 239000007789 gas Substances 0.000 claims abstract description 16
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 claims abstract description 13
- 229910000037 hydrogen sulfide Inorganic materials 0.000 claims abstract description 13
- 150000007524 organic acids Chemical class 0.000 claims abstract description 11
- 239000000126 substance Substances 0.000 claims abstract description 9
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 4
- 239000001301 oxygen Substances 0.000 claims abstract description 4
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 4
- 239000010802 sludge Substances 0.000 claims description 55
- 238000013461 design Methods 0.000 claims description 27
- 239000007788 liquid Substances 0.000 claims description 27
- 230000020477 pH reduction Effects 0.000 claims description 27
- 238000012360 testing method Methods 0.000 claims description 27
- 239000013589 supplement Substances 0.000 claims description 9
- 230000003247 decreasing effect Effects 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 6
- 230000002159 abnormal effect Effects 0.000 claims description 5
- 238000012544 monitoring process Methods 0.000 claims description 4
- 239000000243 solution Substances 0.000 claims description 4
- 229910021578 Iron(III) chloride Inorganic materials 0.000 claims description 3
- 230000007423 decrease Effects 0.000 claims description 3
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 claims description 3
- 229910021645 metal ion Inorganic materials 0.000 claims description 3
- 239000011259 mixed solution Substances 0.000 claims description 3
- 235000005985 organic acids Nutrition 0.000 claims description 3
- 238000011084 recovery Methods 0.000 claims description 3
- 238000003745 diagnosis Methods 0.000 abstract description 6
- 239000000149 chemical water pollutant Substances 0.000 description 6
- 230000000813 microbial effect Effects 0.000 description 6
- 239000002351 wastewater Substances 0.000 description 6
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 241000894006 Bacteria Species 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 230000001932 seasonal effect Effects 0.000 description 2
- 229920002261 Corn starch Polymers 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- XKMRRTOUMJRJIA-UHFFFAOYSA-N ammonia nh3 Chemical compound N.N XKMRRTOUMJRJIA-UHFFFAOYSA-N 0.000 description 1
- 235000013405 beer Nutrition 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 239000008120 corn starch Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/006—Regulation methods for biological treatment
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/28—Anaerobic digestion processes
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/06—Contaminated groundwater or leachate
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/30—Fuel from waste, e.g. synthetic alcohol or diesel
Definitions
- the invention relates to the technical field of domestic garbage leachate treatment, in particular to a method for identifying and adjusting abnormality of an anaerobic treatment process for domestic garbage leachate.
- the anaerobic process is commonly used in the landfill leachate treatment process, and the theory and experience of the food and wastewater industry are still generally used for the abnormal identification and operation adjustment methods of the anaerobic process of the domestic landfill leachate.
- Such as corn starch wastewater, citric acid wastewater, beer wastewater, etc. the organic matter content is relatively high, and the biodegradability is very high.
- the anaerobic biological activity was judged by the yield, and the pollutant removal efficiency was determined by the COD index of the anaerobic final effluent.
- the optimum pH of acid-producing bacteria and methanogens in the three-stage theory of anaerobic reaction was 6.5-7.5 as a reference. Adjust the working conditions of the device.
- the unit biogas yield, sludge organic load and COD removal efficiency are used as diagnostic references, for the leachate containing relatively high concentrations of heavy metal ions and ammonia-nitrogen microbial toxicity factors, the actual operating index is very different from the theoretical value;
- the most suitable pH value of common beneficial bacteria as the evaluation of the acid-base balance system, for the landfill leachate with extremely high organic acid concentration, the hysteresis is high, and it cannot directly reflect the acid-base balance in the anaerobic reactor. system situation. Therefore, for leachate operation practitioners, they often misjudge the actual operation of the anaerobic reactor, and the adjustment is improper or untimely, resulting in reduced efficiency and even the collapse of the microbial system. For a long-term anaerobic process, once the above abnormality occurs, it will cause a serious production reduction or shutdown accident in the leachate station, thereby affecting economic benefits and equipment safety.
- the present invention provides a method for identifying and adjusting the abnormality of the anaerobic treatment process of domestic landfill leachate, including a first identification step and a subsequent adjustment step.
- a first identification step e.g., a first identification step
- a subsequent adjustment step e.g., a subsequent adjustment step.
- water is drawn at a specific sampling point designated in the anaerobic reactor.
- the anaerobic reactor operating conditions are quickly identified and diagnosed by analyzing the five characteristic physical and chemical indicators of the anaerobic reactor mixed liquid water samples and anaerobic biogas gas samples sampled at fixed points.
- an adjustment method that is suitable for it, aiming to quickly identify the direct cause of the abnormality of the leachate anaerobic reactor, predict in advance and make precise adjustments, so that the microbial system in the anaerobic reactor can be adjusted. Quickly return to the normal reaction rate, and always keep running under the best working conditions, completely solve the problem that the working conditions of the leachate anaerobic reactor are difficult to accurately grasp, and avoid the production reduction and shutdown accidents caused by the seasonal water impact of the leachate system happened.
- the present invention provides a method for identifying and adjusting abnormality of an anaerobic treatment process of domestic landfill leachate, including a first identifying step and a subsequent adjusting step,
- the identifying step includes the following steps:
- the first step, sampling step take the anaerobic tank mixture (i.e. water sample) at the outlet of the circulating pump; at the same time, take the anaerobic biogas (i.e. gas sample) from the discharge valve of the biogas parent pipe, and the sampling frequency is 2 times/week (interval). time to be balanced);
- the second step is the testing step.
- the anaerobic tank mixture water sample
- 4 characteristic physical and chemical properties such as volatile organic acid concentration (VFA), total alkalinity (TALK), chemical oxygen demand (COD) and pH value. Index test; at the same time, do hydrogen sulfide concentration (H 2 S) test on anaerobic biogas gas (gas sample);
- the third step, the discrimination step, according to the test results, refer to the following table to test the test samples and then discriminate their working conditions;
- Step 1 Reduce the influent load by 10% of the current anaerobic influent load
- Step 2 The next day (sampling interval is not less than 16h), check again: pH value, VFA, TALK, COD four indicators, if the above four indicators tend to improve, that is, pH is on the rise, VFA is on the decline, If TALK shows an upward trend and COD shows a downward trend, the anaerobic influent load will continue to remain unchanged, and daily monitoring will be done until the water quality index meets any three values of the optimal index conditions in Table 1 "Diagnostic Data Limits".
- the anaerobic influent load can be gradually increased until it returns to normal operation, and the daily increase rate of the load shall not exceed 5% of the design influent load (that is, 5% of the design influent load per day); if the above four indicators are all If the trend is worsening, that is, pH is decreasing, VFA is increasing, TALK is decreasing, and COD is increasing, then step 3 of this working condition needs to be performed;
- Step 3 If the VFA concentration is below 2800mg/L, reduce the anaerobic influent load by 10% on the basis of step 1 of this working condition; if VFA exceeds 2800 mg/L, reduce the anaerobic load on the basis of step 1 of this working condition The influent load is 20%, and step 2 of this working condition is repeated until the anaerobic influent load is restored; if the VFA has exceeded 3000mg/L, moderate acidification measures are prepared;
- the sampling frequency is changed to 2 times/day, (the minimum interval sampling time is not less than 8h), and the main focus is on mixed water samples: pH value, VFA, TALK, COD four indicators, any three of which If the index meets the moderate acidification limit, the following steps should be taken:
- Step 1 Reduce the influent load by 30% of the current anaerobic influent load
- Step 2 Supplement the alkalinity, turn on the anaerobic sludge return pump, and adjust the return flow to 80% of the actual anaerobic influent flow;
- Step 3 Dilute and neutralize the volatile organic acid and replenish the sludge, turn on the biochemical sludge return pump, return the mixed solution of the biochemical tank to the anaerobic water inlet pipe, and adjust the return flow to 80% of the actual anaerobic water inflow;
- Step 4 After 8 hours of adjustment in step 1, sample again and test: pH value, VFA, TALK, COD four indicators, when the above four indicators tend to improve obviously, that is, pH rises above 7.5, VFA drops below 2500mg/L, TALK ⁇ 8500mg/L, COD index ⁇ 10000mg/L, keep the anaerobic influent load unchanged, stop step 2 and step 3 of this working condition, and monitor twice a day until the water quality index meets Table 1 "Diagnosis".
- Step 5 Sludge replenishment, turn on the biochemical sludge return pump, return the mixed liquid of the biochemical tank to the anaerobic water inlet pipe, and adjust the return flow to 100% of the actual anaerobic water inflow.
- stop sludge replenishment When the sludge concentration of the mixed liquid reaches 8000 mg/L or more , stop sludge replenishment;
- Step 6 8 hours after the sludge replenishment is stopped, take another sample for testing: pH value, VFA, TALK, COD four indicators, when the above four indicators tend to improve obviously, that is, pH rises above 7.5, VFA drops below 2500mg/L , TALK ⁇ 8500mg/L, and COD index ⁇ 10000mg/L, keep the anaerobic influent load unchanged, and monitor twice a day until the water quality index meets the optimal index conditions of Table 1 "Diagnostic Data Limits" Any 3 values, the anaerobic influent load can be gradually increased until it returns to normal operation, and the daily increase rate of the load shall not exceed 8% of the design influent load (that is, 8%/day of the design influent load); In the stage of increasing the load, if the above four indicators show a worsening trend, the increase of the influent load should be stopped and the status quo should be maintained until the mixed liquid index shows a trend of improvement, and then the load should be increased again;
- Step 1 Adjust the influent load: stop anaerobic inflow
- Step 2 Dilute and neutralize volatile organic acids and replenish sludge, turn on the biochemical sludge return pump, return the mixed liquid of the biochemical tank to the anaerobic water inlet pipe, and adjust the return flow to 120% of the anaerobic design water inflow;
- Step 3 Supplement the alkalinity, turn on the anaerobic sludge return pump, and adjust the return flow to 95% of the biochemical sludge return flow in "Step 2" to ensure that
- Step 4 Dosing metal ions, adding FeCl3 solution with a concentration of 30% into the anaerobic water inlet pipe, and the dosing amount is 0.1-0.2% of the designed treatment capacity of the anaerobic reactor, and quickly removes free hydrogen sulfide in the reactor;
- Step 5 After completing the adjustment of steps 1-4 for 8 hours, take water samples again for testing: pH value, VFA, TALK, COD four indicators, when the above four indicators tend to improve obviously, that is, pH rises to above 7.5, VFA drops to Below 2500mg/L, TALK ⁇ 8500mg/L, COD index ⁇ 10000mg/L, start the anaerobic influent, control the influent load to run at 10% of the design load, and stop steps 2 and 3 of this working condition, do It is best to monitor twice a day until the water quality index meets any three values of the optimal index condition of the "Diagnostic Data Limit", and then the anaerobic influent load can be gradually restored, and the load recovery speed is less than or equal to 8% of the designed influent load/ days; if the above four indicators tend to deteriorate during the load increasing stage, steps 6, 7 and 8 of this working condition should also be performed;
- Step 6 Sludge replenishment, turn on the biochemical sludge return pump, return the mixed liquid of the biochemical tank to the anaerobic water inlet pipe, adjust the return flow to 100% of the actual anaerobic current inflow, and when the sludge concentration of the mixed liquid reaches 8000 mg/L or more when the sludge replenishment is stopped;
- Step 7 Supplement the alkalinity, turn on the anaerobic sludge return pump, and adjust the return flow to 100% of the actual anaerobic influent flow. This step can continue to run until the load rate reaches 100%, and all water quality indicators meet After the data limit "best index condition", stop;
- Step 8 stop the increase of the influent load, restore the influent load of the previous day, and maintain the current operation until the mixed liquid index shows a trend of improvement, and then carry out the load increase again;
- Step 9 When the anaerobic influent load is restored to 80% of the design load, and the water quality index meets any 3 items of the "Diagnostic Data Limits", then step 4 of this working condition can be stopped;
- the present invention proposes a method for identifying and adjusting abnormality of an anaerobic treatment process for domestic landfill leachate, including a first identification step and a subsequent adjustment step.
- the anaerobic reactor operating conditions are quickly identified and diagnosed by analyzing the five characteristic physical and chemical indicators of the anaerobic reactor mixed liquid water samples and anaerobic biogas gas samples sampled at fixed points.
- an adjustment method that is suitable for it, aiming to quickly identify the direct cause of the abnormality of the leachate anaerobic reactor, predict in advance and make precise adjustments, so that the microbial system in the anaerobic reactor can be adjusted. Quickly return to the normal reaction rate, and always keep running under the best working conditions, completely solve the problem that the working conditions of the leachate anaerobic reactor are difficult to accurately grasp, and avoid the production reduction and shutdown accidents caused by the seasonal water impact of the leachate system happened.
- the first step, sampling step take the anaerobic tank mixture (i.e. water sample) at the outlet of the circulating pump; at the same time, take the anaerobic biogas (i.e. gas sample) from the discharge valve of the biogas parent pipe, and the sampling frequency is 2 times/week (interval). time to be balanced);
- the second step is the testing step.
- the anaerobic tank mixture water sample
- 4 characteristic physical and chemical properties such as volatile organic acid concentration (VFA), total alkalinity (TALK), chemical oxygen demand (COD) and pH value. Index test; at the same time, do hydrogen sulfide concentration (H 2 S) test on anaerobic biogas gas (gas sample);
- the third step, the discrimination step, according to the test results, refer to the following table to test the test samples and then discriminate their working conditions;
- the fourth step is the adjustment step.
- the following steps are performed accordingly, including:
- Step 1 Reduce the influent load by 10% of the current anaerobic influent load
- Step 2 The next day (sampling interval is not less than 16h), check again: pH value, VFA, TALK, COD four indicators, if the above four indicators tend to improve, that is, pH is on the rise, VFA is on the decline, If TALK shows an upward trend and COD shows a downward trend, the anaerobic influent load will continue to remain unchanged, and daily monitoring will be done until the water quality index meets any three values of the optimal index conditions in Table 1 "Diagnostic Data Limits".
- the anaerobic influent load can be gradually increased until it returns to normal operation, and the daily increase rate of the load shall not exceed 5% of the design influent load (that is, 5% of the design influent load per day); if the above four indicators are all If the deterioration trend, that is, pH is decreasing, VFA is increasing, TALK is decreasing, and COD is increasing, then step 3 of this working condition needs to be performed.
- Step 3 If the VFA concentration is below 2800mg/L, reduce the anaerobic influent load by 10% on the basis of step 1; if VFA exceeds 2800mg/L, reduce the anaerobic influent load on the basis of step 1 of this working condition 20%, and repeat step 2 of this working condition until the anaerobic influent load is restored; if the VFA has exceeded 3000mg/L, prepare to take "moderate acidification" measures;
- the sampling frequency is changed to 2 times/day, (the minimum interval sampling time is not less than 8h), and the main focus is on mixed water samples: pH value, VFA, TALK, COD four indicators, any three of which If the index meets the moderate acidification limit, the following steps should be taken:
- Step 1 Reduce the influent load by 30% of the current anaerobic influent load
- Step 2 Supplement the alkalinity, turn on the anaerobic sludge return pump, and adjust the return flow to 80% of the actual anaerobic influent flow;
- Step 3 Dilute and neutralize the volatile organic acid and replenish the sludge, turn on the biochemical sludge return pump, return the mixed solution of the biochemical tank to the anaerobic water inlet pipe, and adjust the return flow to 80% of the actual anaerobic water inflow;
- Step 4 After 8 hours of adjustment in step 1, sample again and test: pH value, VFA, TALK, COD four indicators, when the above four indicators tend to improve obviously, that is, pH rises above 7.5, VFA drops below 2500mg/L, TALK ⁇ 8500mg/L, COD index ⁇ 10000mg/L, keep the anaerobic influent load unchanged, stop the operation of step 2 and step 3 of this working condition, and monitor twice a day until the water quality index meets Table 1 " Diagnosis Data Limits "Best index conditions" any 3 values, the anaerobic influent load can be gradually increased until it returns to normal operation, and the daily increase rate of the load shall not exceed 8% of the design influent load (that is, the design influent 8%/day of the load); if the above four indicators do not improve after step 3, or after the operation of step 2 and step 3 of this working condition is stopped after the improvement, the above four indicators show a worsening trend again, it is necessary to carry out Step 5 and Step 6 in this working condition;
- Step 5 Sludge replenishment, turn on the biochemical sludge return pump, return the mixed liquid of the biochemical tank to the anaerobic water inlet pipe, and adjust the return flow to 100% of the actual anaerobic water inflow.
- stop sludge replenishment When the sludge concentration of the mixed liquid reaches 8000 mg/L or more , stop sludge replenishment;
- Step 6 8 hours after the sludge replenishment is stopped, take another sample for testing: pH value, VFA, TALK, COD four indicators, when the above four indicators tend to improve obviously, that is, pH rises above 7.5, VFA drops below 2500mg/L , TALK ⁇ 8500mg/L, and COD index ⁇ 10000mg/L, keep the anaerobic influent load unchanged, and monitor twice a day until the water quality index meets the optimal index conditions of Table 1 "Diagnostic Data Limits" Any 3 values, the anaerobic influent load can be gradually increased until it returns to normal operation, and the daily increase rate of the load shall not exceed 8% of the design influent load (that is, 8%/day of the design influent load); In the stage of increasing the load, if the above four indicators show a worsening trend, the increase of the influent load should be stopped and the status quo should be maintained until the mixed liquid index shows a trend of improvement, and then the load should be increased again;
- Step 1 Adjust the influent load: stop anaerobic inflow
- Step 2 Dilute and neutralize volatile organic acids and replenish sludge, turn on the biochemical sludge return pump, return the mixed liquid of the biochemical tank to the anaerobic water inlet pipe, and adjust the return flow to 120% of the anaerobic design water inflow;
- Step 3 Supplement the alkalinity, turn on the anaerobic sludge return pump, and adjust the return flow to 95% of the biochemical sludge return flow in "Step 2" to ensure that
- Step 4 Dosing metal ions, adding FeCl3 solution with a concentration of 30% into the anaerobic water inlet pipe, and the dosing amount is 0.1-0.2% of the designed treatment capacity of the anaerobic reactor, and quickly removes free hydrogen sulfide in the reactor;
- Step 5 After completing the adjustment of steps 1-4 for 8 hours, take water samples again for testing: pH value, VFA, TALK, COD four indicators, when the above four indicators tend to improve obviously, that is, pH rises to above 7.5, VFA drops to Below 2500mg/L, TALK ⁇ 8500mg/L, COD index ⁇ 10000mg/L, then start the anaerobic influent, control the influent load to run at 10% of the design load, and stop the operation of steps 2 and 3 of this working condition, Perform monitoring twice a day until the water quality index meets any three values of the optimal index condition in the "Diagnostic Data Limits", then the anaerobic influent load can be gradually restored, and the load recovery speed is less than or equal to 8% of the designed influent load / day; if the above four indicators tend to deteriorate during the load-up stage, the following steps should be performed: Step 6, Step 7, and Step 8;
- Step 6 Sludge replenishment, turn on the biochemical sludge return pump, return the mixed liquid of the biochemical tank to the anaerobic water inlet pipe, and adjust the return flow to 100% of the actual anaerobic current inflow.
- the sludge concentration of the mixed liquid reaches 8000 mg/L or more when the sludge replenishment is stopped;
- Step 7 Supplement the alkalinity, turn on the anaerobic sludge return pump, and adjust the return flow to 100% of the actual anaerobic influent flow. This step can continue to run until the load rate reaches 100%, and all water quality indicators meet After the data limit "best index condition", stop;
- Step 8 stop the increase of the influent load, restore the influent load of the previous day, and maintain the current operation until the mixed liquid index shows a trend of improvement, and then carry out the load increase again;
- Step 9 When the anaerobic influent load is restored to 80% of the design load, and the water quality index meets any 3 items of the "Diagnostic Data Limits", the operation of step 4 in this working condition can be stopped.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Microbiology (AREA)
- Biodiversity & Conservation Biology (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
Abstract
一种生活垃圾渗滤液的厌氧处理工艺异常识别及调整方法,包括首先的识别步骤和随后的调整步骤,首先在厌氧反应器指定取样点取水样,并在沼气母管放散阀取气样,通过分析水样的挥发性有机酸浓度、总碱度、化学需氧量和pH值,以及气样的硫化氢浓度,进行厌氧反应器工况快速识别诊断,并基于识别诊断结果,选择与之相适应的调整方法,旨在识别渗滤液厌氧反应器发生异常的直接原因,提前预判并作出调控。
Description
本发明涉及生活垃圾渗滤液处理技术领域,尤其涉及一种生活垃圾渗滤液的厌氧处理工艺异常识别及调整方法。
目前,垃圾渗滤液处理工艺中普遍使用的厌氧工艺,而对于生活垃圾渗滤液的厌氧工艺异常识别及运行调整方法,仍然普遍沿用食品废水行业的理论及经验。如玉米淀粉废水、柠檬酸废水、啤酒废水等,有机质含量占比较高、可生化性极好的中低浓度有机废水处理异常识别调整方式,采用污泥有机负荷指标调整处理量,以吨水沼气产量判断厌氧生物活性,以厌氧最终出水COD指标确定污染物去除效率,以厌氧反应三段理论中的产酸菌和甲烷菌最适宜pH6.5-7.5为参考依据,对厌氧反应器工况进行调整。
然而,对于生活垃圾渗滤液这种含盐量极高,成分复杂的超高浓度有机废水而言,其可生化性远不及食品废水,对微生物的种群驯化周期长,微生物抗逆性选择要求高,如仍使用上述异常指标识别及调整控制方法,已不能适用渗滤液水质。如利用单位沼气产率、污泥有机负荷及COD去除效率作为诊断参考,对含有较浓度的重金属离子及氨氮类微生物致毒性因子的渗滤液而言,实际运行指标与理论值相差极大;若使用通用的有益菌种最适宜pH值作为酸碱平衡体系的评价,则对于有机酸浓度极高的垃圾渗滤液而言,滞后性高,且不能直接的反映厌氧反应器内的酸碱平衡体系情况。因此对于渗滤液运行从业者,经常会对厌氧反应器的真实运行情况造成误判,调整不当或调整不及时,导致效率降低,甚至微生物体系崩溃,对于渗滤液厌氧生物种群驯化培养周期较长的厌氧工艺而言,一旦出现上述异常,则会造成渗滤液站严重减产或停产事故,从而影响经济效益和设备安全。
发明内容
为了解决现有技术问题,本发明提供一种生活垃圾渗滤液的厌氧处理工艺异常识别及调整方法,包括首先的识别步骤和随后的调整步骤,首先在厌氧反应器指定特定取样点取水样、并在沼气母管放散阀取气样,通过分析定点取样的厌氧反应器混合液水样、厌氧沼气气样的5项特征性理化指标,进行厌氧反应器工况快速识别诊断,并基于所述识别诊断结果,选择与之相适应的调整方法,旨在快速识别渗滤液厌氧反应器发生异常的直接原因,提前预判并作出精准调控,使厌氧反应器内微生物体系快速恢复到正常反应速率,并始终保持在最佳工况下运行,彻底解决渗滤液厌氧反应器工况难以精准把握的问题,避免了渗滤液系统因季节性水量冲击造成的减产、停产事故的发生。
本发明解决技术问题采用的技术方案是,本发明提供一种生活垃圾渗滤液的厌氧处理工艺异常识别及调整方法,包括识首先的识别步骤和随后的调整步骤,
所述识别步骤包括以下步骤:
第一步,取样步骤,在循环泵出口取厌氧罐混合液(即水样);同时,在沼气母管放散阀取厌氧沼气 (即气样),取样频率为2次/周(间隔时间要均衡);
第二步,测试步骤,对厌氧罐混合液(水样)做挥发性有机酸浓度(VFA)、总碱度(TALK)、化学需氧量(COD)及pH值等4项特征性理化指标测试;同时,对厌氧沼气气体(气样)做硫化氢浓度(H
2S)测试;
第三步,判别步骤,根据测试结果,参照下列表格对测试样品进行测试然后对其工况进行判别;
表1《诊断数据限值》
项目名称 | pH | VFA | TALK | COD | 硫化氢浓度 |
单位 | 无量纲 | mg/L | mg/L | mg/L | ppm |
最佳指标 | >7.5 | ≤1500 | ≥9500 | ≤7000 | ≤6000 |
轻度酸化 | 7.4-7.5 | 1500-3000 | 9000-9500 | 7000-10000 | 6000-8000 |
中度酸化 | 7.2-7.4 | 3000-4000 | 8500-9000 | 10000-13000 | 8000-12000 |
重度酸化 | <7.2 | >4000 | <8500 | >13000 | >12000 |
所述调整步骤,针对出现的不同异常工况,相应地进行以下步骤,包括:
当出现轻度酸化时,取样频率改为1次/日,主要关注混合液水样:pH值、VFA、TALK、COD四项指标,其中任意三项指标符合轻度酸化限值,则应采取如下操作步骤:
步骤1:降低进水负荷,降低当前厌氧进水负荷的10%;
步骤2:次日(取样间隔时间不低于16h)再次检测:pH值、VFA、TALK、COD四项指标,如上述四项指标均趋于好转,即pH呈上升趋势、VFA呈下降趋势、TALK呈上升趋势、COD呈下降趋势,则继续保持该厌氧进水负荷不变,做好每日监测,直至水质指标满足表1《诊断数据限值》最佳指标工况任意3项数值,即可逐步增加厌氧进水负荷直至恢复至正常运行状态,负荷每天增加的速度不得超过设计进水负荷的5%(即设计进水负荷的5%/天);若上述四项指标均有恶化趋势,即pH呈下降趋势、VFA呈上升趋势、TALK呈下降趋势、COD呈上升趋势,则还需进行本工况步骤3;
步骤3:如VFA浓度2800mg/L以下,则在本工况步骤1的基础上再降低厌氧进水负荷10%,如VFA超过2800mg/L则在本工况步骤1的基础上降低厌氧进水负荷20%,并重复本工况步骤2直至恢复厌氧进水负荷;若VFA已超过3000mg/L,则准备采取中度酸化措施;
当出现中度酸化时,取样频率改为2次/日,(最小间隔取样时间不低于8h),主要关注混合液水样:pH值、VFA、TALK、COD四项指标,其中任意三项指标符合中度酸化限值,则应采取如下操作步骤:
步骤1:降低进水负荷,降低当前厌氧进水负荷的30%;
步骤2:碱度补充,开启厌氧污泥回流泵,回流流量调整至厌氧实际进水流量的80%;
步骤3:挥发性有机酸稀释中和及污泥补充,开启生化污泥回流泵,将生化池混合液回流至厌氧进水管,回流流量调整至厌氧实际进水量的80%;
步骤4:步骤1调整8h后,再次取样检测:pH值、VFA、TALK、COD四项指标,当上述四项指标明显趋于好转,即pH上升至7.5以上、VFA下降至2500mg/L以下,TALK≥8500mg/L,COD指标≤10000mg/L,则保持该厌氧进水负荷不变,停止本工况步骤2及步骤3,做好每日2次监测,直至水质指标满足表1《诊断数据限值》最佳指标工况任意3项数值,即可逐步增加厌氧进水负荷直至恢复至正常运行状态,负荷每天增加的速度不得超过设计进水负荷的8%(即设计进水负荷的8%/天);若经过步骤3之后上述四项指标然没有好转,或在好转之后停止本工况步骤2、步骤3之后,上述四项指标再次出现恶化趋势,则还需进行本工况步骤5、步骤6;
步骤5:污泥补充,开启生化污泥回流泵,将生化池混合液回流至厌氧进水管,回流流量调整至厌氧实际进水量100%,当混合液污泥浓度达到8000mg/L以上时,停止污泥补充;
步骤6:停止污泥补充后8h,再次取样检测:pH值、VFA、TALK、COD四项指标,当上述四项指标明显趋于好转,即pH上升至7.5以上、VFA下降至2500mg/L以下,TALK≥8500mg/L,COD指标≤10000mg/L,则保持该厌氧进水负荷不变,做好每日2次监测,直至水质指标满足表1《诊断数据限值》最佳指标工况任意3项数值,即可逐步增加厌氧进水负荷直至恢复至正常运行状态,负荷每天增加的速度不得超过设计进水负荷的8%(即设计进水负荷的8%/天);若在增加负荷阶段,上述四项指标出现恶化趋势,则应停止进水负荷提升,维持现状,直至混合液指标出现好转趋势后,再次进行负荷提升;
当出现重度酸化时,取样识别频次2次/日(最小间隔取样时间不低于8h),参照附表《诊断数据限值》,主要关注混合液水样:pH值、VFA、TALK、COD、硫化氢气体浓度五项指标,其中任意三项指标符合重度酸化限值,则应采取如下操作步骤:
步骤1:调整进水负荷:停止厌氧进水;
步骤2:挥发性有机酸稀释中和及污泥补充,开启生化污泥回流泵,将生化池混合液回流至厌氧进水管,回流流量调整至厌氧设计进水量的120%;
步骤3:碱度补充,开启厌氧污泥回流泵,回流流量调整至“步骤2”生化污泥回流量流量的95%,确
保厌氧污泥回流不断流;
步骤4:投加金属离子,向厌氧进水管内投加浓度为30%的FeCl3溶液,投加量为厌氧反应器设计处理量的0.1-0.2%,快速去除反应器内游离态硫化氢;
步骤5:完成步骤1-4调整8h后,再次取水样检测:pH值、VFA、TALK、COD四项指标,当上述四项指标明显趋于好转,即pH上升至7.5以上、VFA下降至2500mg/L以下,TALK≥8500mg/L,COD指标≤10000mg/L,则将厌氧进水启动,进水负荷控制在设计负荷的10%运行,并停止本工况步骤2及步骤3,做好每日2次监测,直至水质指标满足《诊断数据限值》最佳指标工况任意3项数值,即可逐步恢复厌氧进水负荷,负荷恢复速度小于等于设计进水负荷的8%/天;若升负荷阶段出现上述四项指标趋于恶化,则还应进行本工况步骤6、步骤7、步骤8;
步骤6:污泥补充,开启生化污泥回流泵,将生化池混合液回流至厌氧进水管,回流流量调整至厌氧当前实际进水量100%,当混合液污泥浓度达到8000mg/L以上时,停止污泥补充;
步骤7:碱度补充,开启厌氧污泥回流泵,回流流量调整至厌氧当前实际进水流量的100%,该步骤可持续运行至负荷率达到100%,且所有水质指标均满足《诊断数据限值》最佳指标工况后,再行停止;
步骤8,停止进水负荷提升,并恢复前一日进水负荷,维持现状运行,直至混合液指标出现好转趋势后,再次进行负荷提升;
步骤9:当厌氧进水负荷恢复至设计负荷的80%,同时水质指标满足《诊断数据限值》任意3项,则可停止本工况步骤4;
本发明的有益效果:本发明提出一种生活垃圾渗滤液的厌氧处理工艺异常识别及调整方法,包括识首先的识别步骤和随后的调整步骤,首先在厌氧反应器指定特定取样点取水样、并在沼气母管放散阀取气样,通过分析定点取样的厌氧反应器混合液水样、厌氧沼气气样的5项特征性理化指标,进行厌氧反应器工况快速识别诊断,并基于所述识别诊断结果,选择与之相适应的调整方法,旨在快速识别渗滤液厌氧反应器发生异常的直接原因,提前预判并作出精准调控,使厌氧反应器内微生物体系快速恢复到正常反应速率,并始终保持在最佳工况下运行,彻底解决渗滤液厌氧反应器工况难以精准把握的问题,避免了渗滤液系统因季节性水量冲击造成的减产、停产事故的发生。
第一步,取样步骤,在循环泵出口取厌氧罐混合液(即水样);同时,在沼气母管放散阀取厌氧沼气(即气样),取样频率为2次/周(间隔时间要均衡);
第二步,测试步骤,对厌氧罐混合液(水样)做挥发性有机酸浓度(VFA)、总碱度(TALK)、化学需氧量(COD)及pH值等4项特征性理化指标测试;同时,对厌氧沼气气体(气样)做硫化氢浓度(H
2S)测试;
第三步,判别步骤,根据测试结果,参照下列表格对测试样品进行测试然后对其工况进行判别;
表1《诊断数据限值》
项目名称 | pH | VFA | TALK | COD | 硫化氢浓度 |
单位 | 无量纲 | mg/L | mg/L | mg/L | ppm |
最佳指标 | >7.5 | ≤1500 | ≥9500 | ≤7000 | ≤6000 |
轻度酸化 | 7.4-7.5 | 1500-3000 | 9000-9500 | 7000-10000 | 6000-8000 |
中度酸化 | 7.2-7.4 | 3000-4000 | 8500-9000 | 10000-13000 | 8000-12000 |
重度酸化 | <7.2 | >4000 | <8500 | >13000 | >12000 |
第四步,调整步骤,针对不同的异常工况,相应地进行以下步骤,包括:
当出现轻度酸化时,取样频率改为1次/日,主要关注混合液水样:pH值、VFA、TALK、COD四项指标,其中任意三项指标符合轻度酸化限值,则应采取如下操作步骤:
步骤1:降低进水负荷,降低当前厌氧进水负荷的10%;
步骤2:次日(取样间隔时间不低于16h)再次检测:pH值、VFA、TALK、COD四项指标,如上述四项指标均趋于好转,即pH呈上升趋势、VFA呈下降趋势、TALK呈上升趋势、COD呈下降趋势,则继续保持该厌氧进水负荷不变,做好每日监测,直至水质指标满足表1《诊断数据限值》最佳指标工况任意3项数值,即可逐步增加厌氧进水负荷直至恢复至正常运行状态,负荷每天增加的速度不得超过设计进水负荷的5%(即设计进水负荷的5%/天);若上述四项指标均有恶化趋势,即pH呈下降趋势、VFA呈上升趋势、TALK呈下降趋势、COD呈上升趋势,则还需进行本工况步骤3。
步骤3:如VFA浓度2800mg/L以下,则在步骤1的基础上再降低厌氧进水负荷10%,如VFA超过2800mg/L则在本工况步骤1的基础上降低厌氧进水负荷20%,并重复本工况步骤2直至恢复厌氧进水负荷;若VFA已超过3000mg/L,则准备采取“中度酸化”措施;
当出现中度酸化时,取样频率改为2次/日,(最小间隔取样时间不低于8h),主要关注混合液水样:pH值、VFA、TALK、COD四项指标,其中任意三项指标符合中度酸化限值,则应采取如下操作步骤:
步骤1:降低进水负荷,降低当前厌氧进水负荷的30%;
步骤2:碱度补充,开启厌氧污泥回流泵,回流流量调整至厌氧实际进水流量的80%;
步骤3:挥发性有机酸稀释中和及污泥补充,开启生化污泥回流泵,将生化池混合液回流至厌氧进水管,回流流量调整至厌氧实际进水量的80%;
步骤4:步骤1调整8h后,再次取样检测:pH值、VFA、TALK、COD四项指标,当上述四项指标明显趋于好转,即pH上升至7.5以上、VFA下降至2500mg/L以下,TALK≥8500mg/L,COD指标≤10000mg/L,则保持该厌氧进水负荷不变,停止本工况步骤2及步骤3操作,做好每日2次监测,直至水质指标满足表1《诊断数据限值》最佳指标工况任意3项数值,即可逐步增加厌氧进水负荷直至恢复至正常运行状态,负荷每天增加的速度不得超过设计进水负荷的8%(即设计进水负荷的8%/天);叵经过步骤3之后上述四项指标然没有好转,或在好转之后停止本工况步骤2及步骤3操作后,上述四项指标再次出现恶化趋势,则还需进行本工况步骤5、步骤6;
步骤5:污泥补充,开启生化污泥回流泵,将生化池混合液回流至厌氧进水管,回流流量调整至厌氧实际进水量100%,当混合液污泥浓度达到8000mg/L以上时,停止污泥补充;
步骤6:停止污泥补充后8h,再次取样检测:pH值、VFA、TALK、COD四项指标,当上述四项指标明显趋于好转,即pH上升至7.5以上、VFA下降至2500mg/L以下,TALK≥8500mg/L,COD指标≤10000mg/L,则保持该厌氧进水负荷不变,做好每日2次监测,直至水质指标满足表1《诊断数据限值》最佳指标工况任意3项数值,即可逐步增加厌氧进水负荷直至恢复至正常运行状态,负荷每天增加的速度不得超过设计 进水负荷的8%(即设计进水负荷的8%/天);若在增加负荷阶段,上述四项指标出现恶化趋势,则应停止进水负荷提升,维持现状,直至混合液指标出现好转趋势后,再次进行负荷提升;
当出现重度酸化时,取样识别频次2次/日(最小间隔取样时间不低于8h),参照附表《诊断数据限值》,主要关注混合液水样:pH值、VFA、TALK、COD、硫化氢气体浓度五项指标,其中任意三项指标符合重度酸化限值,则应采取如下操作步骤:
步骤1:调整进水负荷:停止厌氧进水;
步骤2:挥发性有机酸稀释中和及污泥补充,开启生化污泥回流泵,将生化池混合液回流至厌氧进水管,回流流量调整至厌氧设计进水量的120%;
步骤3:碱度补充,开启厌氧污泥回流泵,回流流量调整至“步骤2”生化污泥回流量流量的95%,确
保厌氧污泥回流不断流;
步骤4:投加金属离子,向厌氧进水管内投加浓度为30%的FeCl3溶液,投加量为厌氧反应器设计处理量的0.1-0.2%,快速去除反应器内游离态硫化氢;
步骤5:完成步骤1-4调整8h后,再次取水样检测:pH值、VFA、TALK、COD四项指标,当上述四项指标明显趋于好转,即pH上升至7.5以上、VFA下降至2500mg/L以下,TALK≥8500mg/L,COD指标≤10000mg/L,则将厌氧进水启动,进水负荷控制在设计负荷的10%运行,并停止本工况步骤2及步骤3操作,做好每日2次监测,直至水质指标满足《诊断数据限值》最佳指标工况任意3项数值,即可逐步恢复厌氧进水负荷,负荷恢复速度小于等于设计进水负荷的8%/天;若升负荷阶段出现上述四项指标趋于恶化,则还应进行:步骤6、步骤7、步骤8;
步骤6:污泥补充,开启生化污泥回流泵,将生化池混合液回流至厌氧进水管,回流流量调整至厌氧当前实际进水量100%,当混合液污泥浓度达到8000mg/L以上时,停止污泥补充;
步骤7:碱度补充,开启厌氧污泥回流泵,回流流量调整至厌氧当前实际进水流量的100%,该步骤可持续运行至负荷率达到100%,且所有水质指标均满足《诊断数据限值》最佳指标工况后,再行停止;
步骤8,停止进水负荷提升,并恢复前一日进水负荷,维持现状运行,直至混合液指标出现好转趋势后,再次进行负荷提升;
步骤9:当厌氧进水负荷恢复至设计负荷的80%,同时水质指标满足《诊断数据限值》任意3项,则可停止本工况步骤4操作。
Claims (1)
- 一种生活垃圾渗滤液的厌氧处理工艺异常识别及调整方法,包括识首先的识别步骤和随后的调整步骤,所述识别步骤包括以下步骤:第一步,取样步骤,在循环泵出口取厌氧罐混合液(即水样);同时,在沼气母管放散阀取厌氧沼气(即气样),取样频率为2次/周(间隔时间要均衡);第二步,测试步骤,对厌氧罐混合液(水样)做挥发性有机酸浓度(VFA)、总碱度(TALK)、化学需氧量(COD)及pH值等4项特征性理化指标测试;同时,对厌氧沼气气体(气样)做硫化氢浓度(H 2S)测试;第三步,判别步骤,根据测试结果,参照下列表格对测试样品进行测试然后对其工况进行判别;表1《诊断数据限值》
项目名称 pH VFA TALK COD 硫化氢浓度 单位 无量纲 mg/L mg/L mg/L ppm 最佳指标 >7.5 ≤1500 ≥9500 ≤7000 ≤6000 轻度酸化 7.4-7.5 1500-3000 9000-9500 7000-10000 6000-8000 中度酸化 7.2-7.4 3000-4000 8500-9000 10000-13000 8000-12000 重度酸化 <7.2 >4000 <8500 >13000 >12000 所述调整步骤,针对出现的不同异常工况,相应地进行以下步骤,包括:当出现轻度酸化时,取样频率改为1次/日,主要关注混合液水样:pH值、VFA、TALK、COD四项指标,其中任意三项指标符合轻度酸化限值,则应采取如下操作步骤:步骤1:降低进水负荷,降低当前厌氧进水负荷的10%;步骤2:次日(取样间隔时间不低于16h)再次检测:pH值、VFA、TALK、COD四项指标,如上述四项指标均趋于好转,即pH呈上升趋势、VFA呈下降趋势、TALK呈上升趋势、COD呈下降趋势,则继续保持该厌氧进水负荷不变,做好每日监测,直至水质指标满足表1《诊断数据限值》最佳指标工况任意3项数值,即可逐步增加厌氧进水负荷直至恢复至正常运行状态,负荷每天增加的速度不得超过设计进水负荷的5%(即设计进水负荷的5%/天);若上述四项指标均有恶化趋势,即pH呈下降趋势、VFA呈上升趋势、TALK呈下降趋势、COD呈上升趋势,则还需进行本工况步骤3;步骤3:如VFA浓度2800mg/L以下,则在本工况步骤1的基础上再降低厌氧进水负荷10%,如VFA超过2800mg/L则在本工况步骤1的基础上降低厌氧进水负荷20%,并重复本工况步骤2直至恢复厌氧进水负荷;若VFA已超过3000mg/L,则准备采取中度酸化措施;当出现中度酸化时,取样频率改为2次/日,(最小间隔取样时间不低于8h),主要关注混合液水样:pH值、VFA、TALK、COD四项指标,其中任意三项指标符合:中度酸化限值,则应采取如下 操作步骤:步骤1:降低进水负荷,降低当前厌氧进水负荷的30%;步骤2:碱度补充,开启厌氧污泥回流泵,回流流量调整至厌氧实际进水流量的80%;步骤3:挥发性有机酸稀释中和及污泥补充,开启生化污泥回流泵,将生化池混合液回流至厌氧进水管,回流流量调整至厌氧实际进水量的80%;步骤4:步骤1调整8h后,再次取样检测:pH值、VFA、TALK、COD四项指标,当上述四项指标明显趋于好转,即pH上升至7.5以上、VFA下降至2500mg/L以下,TALK≥8500mg/L,COD指标≤10000mg/L,则保持该厌氧进水负荷不变,停止本工况步骤2及步骤3,做好每日2次监测,直至水质指标满足表1最佳指标工况任意3项数值,即可逐步增加厌氧进水负荷直至恢复至正常运行状态,负荷每天增加的速度不得超过设计进水负荷的8%(即设计进水负荷的8%/天);若经过步骤3之后上述四项指标然没有好转,或在好转之后停止本工况步骤2及步骤3之后,上述四项指标再次出现恶化趋势,则还需进行本工况步骤5及步骤6;步骤5:污泥补充,开启生化污泥回流泵,将生化池混合液回流至厌氧进水管,回流流量调整至厌氧实际进水量100%,当混合液污泥浓度达到8000mg/L以上时,停止污泥补充;步骤6:停止污泥补充后8h,再次取样检测:pH值、VFA、TALK、COD四项指标,当上述四项指标明显趋于好转,即pH上升至7.5以上、VFA下降至2500mg/L以下,TALK≥8500mg/L,COD指标≤10000mg/L,则保持该厌氧进水负荷不变,做好每日2次监测,直至水质指标满足表1《诊断数据限值》最佳指标工况任意3项数值,即可逐步增加厌氧进水负荷直至恢复至正常运行状态,负荷每天增加的速度不得超过设计进水负荷的8%(即设计进水负荷的8%/天);若在增加负荷阶段,上述四项指标出现恶化趋势,则应停止进水负荷提升,维持现状,直至混合液指标出现好转趋势后,再次进行负荷提升;当出现重度酸化时,取样识别频次2次/日(最小间隔取样时间不低于8h),参照附表1《诊断数据限值》,主要关注混合液水样:pH值、VFA、TALK、COD、硫化氢气体浓度五项指标,其中任意三项指标符合:重度酸化限值,则应采取如下操作步骤:步骤1:调整进水负荷,停止厌氧进水;步骤2:挥发性有机酸稀释中和及污泥补充,开启生化污泥回流泵,将生化池混合液回流至厌氧进水管,回流流量调整至厌氧设计进水量的120%;步骤3:碱度补充,开启厌氧污泥回流泵,回流流量调整至“步骤2”生化污泥回流量流量的95%,确保厌氧污泥回流不断流;步骤4:投加金属离子,向厌氧进水管内投加浓度为30%的FeCl3溶液,投加量为厌氧反应器设计处理量的0.1-0.2%,快速去除反应器内游离态硫化氢;步骤5:完成步骤1-4调整8h后,再次取水样检测:pH值、VFA、TALK、COD四项指标,当上述四项指标明显趋于好转,即pH上升至7.5以上、VFA下降至2500mg/L以下,TALK≥8500mg/L,COD指标≤10000mg/L,则将厌氧进水启动,进水负荷控制在设计负荷的10%运行,并停止本工况步骤2及步骤3,做好每日2次监测,直至水质指标满足《诊断数据限值》最佳指标工况任意3项数值,即可逐步恢复厌氧进水负荷,负荷恢复速度小于等于设计进水负荷的8%天;若升负荷阶段出现上述四项指标趋于恶化,则还应进行本工况步骤6、步骤7、步骤8;步骤6:污泥补充,开启生化污泥回流泵,将生化池混合液回流至厌氧进水管,回流流量调整至厌氧当前实际进水量100%,当混合液污泥浓度达到8000mg/L以上时,停止污泥补充;步骤7:碱度补充,开启厌氧污泥回流泵,回流流量调整至厌氧当前实际进水流量的100%,该步骤可持续运行至负荷率100%,且所有水质指标均满足《诊断数据限值》最佳指标工况后,再行停止;步骤8,停止进水负荷提升,并恢复前一日进水负荷,维持现状运行,直至混合液指标出现好转趋势后,再次进行负荷提升;步骤9:当厌氧进水负荷恢复至设计负荷的80%,同时水质指标满足表1《诊断数据限值》任意3项,则可停止本工况步骤4。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011230254.4A CN112479360B (zh) | 2020-11-06 | 2020-11-06 | 一种生活垃圾渗滤液的厌氧处理工艺异常识别及调整方法 |
CN202011230254.4 | 2020-11-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022095501A1 true WO2022095501A1 (zh) | 2022-05-12 |
Family
ID=74928522
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/106137 WO2022095501A1 (zh) | 2020-11-06 | 2021-07-14 | 一种生活垃圾渗滤液的厌氧处理工艺异常识别及调整方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN112479360B (zh) |
WO (1) | WO2022095501A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116577128A (zh) * | 2023-07-14 | 2023-08-11 | 合肥工业大学 | 一种可生物降解塑料废水处理数据智能采集分析方法 |
CN117332358A (zh) * | 2023-11-29 | 2024-01-02 | 山东鸿安食品科技有限公司 | 一种玉米浸泡水处理方法及系统 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112479360B (zh) * | 2020-11-06 | 2022-07-12 | 深圳市深能环保东部有限公司 | 一种生活垃圾渗滤液的厌氧处理工艺异常识别及调整方法 |
CN113860491A (zh) * | 2021-11-08 | 2021-12-31 | 苏州美淼环保科技有限公司 | 一种厌氧反应器智能控制系统及控制方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0422876A1 (en) * | 1989-10-09 | 1991-04-17 | Shimizu Construction Co., Ltd. | Method of and apparatus for controlling waste water treatment by anaerobic fermentation |
CN104884604A (zh) * | 2012-11-01 | 2015-09-02 | 碧普(瑞典)有限公司 | 用于监测和/或控制发酵过程的系统设置 |
CN106054990A (zh) * | 2016-07-04 | 2016-10-26 | 清华大学 | 垃圾渗滤液处理专家控制系统及方法 |
CN108319150A (zh) * | 2018-04-25 | 2018-07-24 | 山东交通学院 | 沼气系统全运行状态信息感知与最优控制系统及方法 |
KR20190121101A (ko) * | 2018-04-17 | 2019-10-25 | (주)케이드 | 혐기성 소화공정의 실시간 모니터링 시스템 |
CN111675325A (zh) * | 2020-07-22 | 2020-09-18 | 苏州科特环保股份有限公司 | 智能型厌氧反应器系统及废水处理检测方法 |
CN112479360A (zh) * | 2020-11-06 | 2021-03-12 | 深圳市深能环保东部有限公司 | 一种生活垃圾渗滤液的厌氧处理工艺异常识别及调整方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102190409A (zh) * | 2011-04-18 | 2011-09-21 | 深圳市能源环保有限公司 | 一种垃圾沥滤液处理系统 |
CN103509826B (zh) * | 2013-09-24 | 2015-04-15 | 中国科学院成都生物研究所 | 一种沼气发酵过程的调控方法 |
WO2017184073A1 (en) * | 2016-04-18 | 2017-10-26 | Sembcorp Industries Ltd | System and method for wastewater treatment process control |
CN107475304B (zh) * | 2017-09-15 | 2021-01-15 | 西安建筑科技大学 | 一种缓解厌氧发酵系统有机酸抑制促进vfa降解的方法 |
CN110482694A (zh) * | 2019-07-22 | 2019-11-22 | 四川工商职业技术学院 | 一种高速厌氧反应器外循环系统及外循环工艺 |
-
2020
- 2020-11-06 CN CN202011230254.4A patent/CN112479360B/zh active Active
-
2021
- 2021-07-14 WO PCT/CN2021/106137 patent/WO2022095501A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0422876A1 (en) * | 1989-10-09 | 1991-04-17 | Shimizu Construction Co., Ltd. | Method of and apparatus for controlling waste water treatment by anaerobic fermentation |
CN104884604A (zh) * | 2012-11-01 | 2015-09-02 | 碧普(瑞典)有限公司 | 用于监测和/或控制发酵过程的系统设置 |
CN106054990A (zh) * | 2016-07-04 | 2016-10-26 | 清华大学 | 垃圾渗滤液处理专家控制系统及方法 |
KR20190121101A (ko) * | 2018-04-17 | 2019-10-25 | (주)케이드 | 혐기성 소화공정의 실시간 모니터링 시스템 |
CN108319150A (zh) * | 2018-04-25 | 2018-07-24 | 山东交通学院 | 沼气系统全运行状态信息感知与最优控制系统及方法 |
CN111675325A (zh) * | 2020-07-22 | 2020-09-18 | 苏州科特环保股份有限公司 | 智能型厌氧反应器系统及废水处理检测方法 |
CN112479360A (zh) * | 2020-11-06 | 2021-03-12 | 深圳市深能环保东部有限公司 | 一种生活垃圾渗滤液的厌氧处理工艺异常识别及调整方法 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116577128A (zh) * | 2023-07-14 | 2023-08-11 | 合肥工业大学 | 一种可生物降解塑料废水处理数据智能采集分析方法 |
CN116577128B (zh) * | 2023-07-14 | 2023-09-15 | 合肥工业大学 | 一种可生物降解塑料废水处理数据智能采集分析方法 |
CN117332358A (zh) * | 2023-11-29 | 2024-01-02 | 山东鸿安食品科技有限公司 | 一种玉米浸泡水处理方法及系统 |
CN117332358B (zh) * | 2023-11-29 | 2024-02-23 | 山东鸿安食品科技有限公司 | 一种玉米浸泡水处理方法及系统 |
Also Published As
Publication number | Publication date |
---|---|
CN112479360A (zh) | 2021-03-12 |
CN112479360B (zh) | 2022-07-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022095501A1 (zh) | 一种生活垃圾渗滤液的厌氧处理工艺异常识别及调整方法 | |
CN110188946B (zh) | 一种污水参数的预测方法及污水预测系统 | |
KR101134496B1 (ko) | 탈질 방법, 시스템 및 이러한 방법를 수행하기 위한 명령을 수록한 저장매체 | |
CN110186505B (zh) | 一种基于支持向量机的农村生活污水处理设施出水达标情况的预测方法 | |
CN101088923A (zh) | 水处理设施的管理系统 | |
CN111675325A (zh) | 智能型厌氧反应器系统及废水处理检测方法 | |
CN117342689B (zh) | 一种污水厂智能脱氮方法及系统 | |
CN110188945B (zh) | 一种生产中的污水预测系统及污水预测方法 | |
JP2013215698A (ja) | 水処理プラントの状態診断方法及び装置 | |
Arias-Navarro et al. | The use of respirometry as a tool for the diagnosis of waste water treatment plants. A real case study in Southern Spain | |
CN110146122B (zh) | 一种农村生活污水处理设施运行有效性的预测方法 | |
CN116354540A (zh) | 污水厂进水水质监控及预警自动化装置 | |
CN107315076A (zh) | 一种在线毒性分析系统及其测定方法 | |
CN112487603B (zh) | 基于大数据的鼓风曝气系统充氧能力变化判定方法和系统 | |
CN111410314B (zh) | 一种改良氧化沟工艺脱氮除磷预控方法及其装置 | |
Devisscher et al. | Feasibility of automatic chemicals dosage control–a full-scale evaluation | |
CN117776336A (zh) | 水预处理方法及厌氧氨氧化水处理工艺 | |
CN117003381A (zh) | 一种污泥回流控制优化控制方法及系统 | |
CN212864271U (zh) | 智能型厌氧反应器系统 | |
CN112047467B (zh) | 一种智能高效曝气生化系统 | |
CN115220408A (zh) | A2/o工艺系统的故障诊断方法、系统、设备及存储介质 | |
CN116022924B (zh) | 一种原位精确生物脱氮污水处理控制方法 | |
CN103991954A (zh) | 一种污水处理厂节能降耗方法 | |
CN115902133B (zh) | 用于判别有毒废水的生化缓冲应急方法和系统 | |
Kapoun et al. | Suspended solids removal from the effluent of a fixed-film anaerobic reactor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21888203 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21888203 Country of ref document: EP Kind code of ref document: A1 |