WO2022094871A1 - 一种超级电容器用复合电极材料及其制备方法和超级电容器 - Google Patents
一种超级电容器用复合电极材料及其制备方法和超级电容器 Download PDFInfo
- Publication number
- WO2022094871A1 WO2022094871A1 PCT/CN2020/126778 CN2020126778W WO2022094871A1 WO 2022094871 A1 WO2022094871 A1 WO 2022094871A1 CN 2020126778 W CN2020126778 W CN 2020126778W WO 2022094871 A1 WO2022094871 A1 WO 2022094871A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- preparation
- nio
- nickel
- electrode material
- aqueous solution
- Prior art date
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 61
- 239000007772 electrode material Substances 0.000 title claims abstract description 36
- 239000003990 capacitor Substances 0.000 title abstract description 12
- 238000004519 manufacturing process Methods 0.000 title abstract 4
- 239000002135 nanosheet Substances 0.000 claims abstract description 46
- 238000000034 method Methods 0.000 claims abstract description 23
- 238000005234 chemical deposition Methods 0.000 claims abstract description 11
- 238000010438 heat treatment Methods 0.000 claims abstract description 11
- 239000007864 aqueous solution Substances 0.000 claims description 46
- 229910020599 Co 3 O 4 Inorganic materials 0.000 claims description 36
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 36
- 238000002360 preparation method Methods 0.000 claims description 34
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 30
- LXBGSDVWAMZHDD-UHFFFAOYSA-N 2-methyl-1h-imidazole Chemical compound CC1=NC=CN1 LXBGSDVWAMZHDD-UHFFFAOYSA-N 0.000 claims description 25
- 239000000463 material Substances 0.000 claims description 25
- 239000000243 solution Substances 0.000 claims description 23
- UFMZWBIQTDUYBN-UHFFFAOYSA-N cobalt dinitrate Chemical compound [Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O UFMZWBIQTDUYBN-UHFFFAOYSA-N 0.000 claims description 18
- 229910001981 cobalt nitrate Inorganic materials 0.000 claims description 18
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 10
- 238000000137 annealing Methods 0.000 claims description 9
- 239000011259 mixed solution Substances 0.000 claims description 9
- 239000000203 mixture Substances 0.000 claims description 9
- 229910018661 Ni(OH) Inorganic materials 0.000 claims description 8
- 238000007654 immersion Methods 0.000 claims description 8
- 150000002816 nickel compounds Chemical class 0.000 claims description 6
- 229910052759 nickel Inorganic materials 0.000 claims description 5
- 150000001875 compounds Chemical class 0.000 claims description 4
- 238000002791 soaking Methods 0.000 claims description 3
- 229910021586 Nickel(II) chloride Inorganic materials 0.000 claims description 2
- QMMRZOWCJAIUJA-UHFFFAOYSA-L nickel dichloride Chemical compound Cl[Ni]Cl QMMRZOWCJAIUJA-UHFFFAOYSA-L 0.000 claims description 2
- LGQLOGILCSXPEA-UHFFFAOYSA-L nickel sulfate Chemical compound [Ni+2].[O-]S([O-])(=O)=O LGQLOGILCSXPEA-UHFFFAOYSA-L 0.000 claims description 2
- 229910000363 nickel(II) sulfate Inorganic materials 0.000 claims description 2
- KBJMLQFLOWQJNF-UHFFFAOYSA-N nickel(ii) nitrate Chemical compound [Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O KBJMLQFLOWQJNF-UHFFFAOYSA-N 0.000 claims description 2
- UBEWDCMIDFGDOO-UHFFFAOYSA-N cobalt(II,III) oxide Inorganic materials [O-2].[O-2].[O-2].[O-2].[Co+2].[Co+3].[Co+3] UBEWDCMIDFGDOO-UHFFFAOYSA-N 0.000 abstract description 14
- 238000006479 redox reaction Methods 0.000 abstract description 3
- 238000013329 compounding Methods 0.000 abstract description 2
- 230000003993 interaction Effects 0.000 abstract description 2
- 239000012621 metal-organic framework Substances 0.000 abstract description 2
- 230000003647 oxidation Effects 0.000 abstract description 2
- 238000007254 oxidation reaction Methods 0.000 abstract description 2
- 238000012546 transfer Methods 0.000 abstract description 2
- 238000005470 impregnation Methods 0.000 abstract 1
- 229910021508 nickel(II) hydroxide Inorganic materials 0.000 abstract 1
- 239000008367 deionised water Substances 0.000 description 19
- 229910021641 deionized water Inorganic materials 0.000 description 19
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 18
- 230000000052 comparative effect Effects 0.000 description 16
- AHBDJJPEQJQYMC-UHFFFAOYSA-N ethanol nickel(2+) dinitrate Chemical compound C(C)O.[N+](=O)([O-])[O-].[Ni+2].[N+](=O)([O-])[O-] AHBDJJPEQJQYMC-UHFFFAOYSA-N 0.000 description 15
- 239000010453 quartz Substances 0.000 description 14
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 14
- ONDPHDOFVYQSGI-UHFFFAOYSA-N zinc nitrate Chemical compound [Zn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ONDPHDOFVYQSGI-UHFFFAOYSA-N 0.000 description 12
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 10
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 10
- 239000002073 nanorod Substances 0.000 description 10
- PAWQVTBBRAZDMG-UHFFFAOYSA-N 2-(3-bromo-2-fluorophenyl)acetic acid Chemical compound OC(=O)CC1=CC=CC(Br)=C1F PAWQVTBBRAZDMG-UHFFFAOYSA-N 0.000 description 8
- 238000003491 array Methods 0.000 description 8
- QGUAJWGNOXCYJF-UHFFFAOYSA-N cobalt dinitrate hexahydrate Chemical compound O.O.O.O.O.O.[Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O QGUAJWGNOXCYJF-UHFFFAOYSA-N 0.000 description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- 229910000480 nickel oxide Inorganic materials 0.000 description 5
- AOPCKOPZYFFEDA-UHFFFAOYSA-N nickel(2+);dinitrate;hexahydrate Chemical compound O.O.O.O.O.O.[Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O AOPCKOPZYFFEDA-UHFFFAOYSA-N 0.000 description 5
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 5
- 238000001878 scanning electron micrograph Methods 0.000 description 5
- 238000004070 electrodeposition Methods 0.000 description 4
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 230000037427 ion transport Effects 0.000 description 3
- XIOUDVJTOYVRTB-UHFFFAOYSA-N 1-(1-adamantyl)-3-aminothiourea Chemical compound C1C(C2)CC3CC2CC1(NC(=S)NN)C3 XIOUDVJTOYVRTB-UHFFFAOYSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000002484 cyclic voltammetry Methods 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 238000011056 performance test Methods 0.000 description 2
- 230000007123 defense Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 229910000474 mercury oxide Inorganic materials 0.000 description 1
- UKWHYYKOEPRTIC-UHFFFAOYSA-N mercury(ii) oxide Chemical compound [Hg]=O UKWHYYKOEPRTIC-UHFFFAOYSA-N 0.000 description 1
- AIBQNUOBCRIENU-UHFFFAOYSA-N nickel;dihydrate Chemical compound O.O.[Ni] AIBQNUOBCRIENU-UHFFFAOYSA-N 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 229910000314 transition metal oxide Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/24—Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
- H01G11/46—Metal oxides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/84—Processes for the manufacture of hybrid or EDL capacitors, or components thereof
- H01G11/86—Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Definitions
- the invention belongs to the field of supercapacitor electrode materials, relates to a composite electrode material for supercapacitors, a preparation method thereof, and a supercapacitor, in particular to a Co3O4 / NiO nanosheet array composite material, a preparation method thereof, and a supercapacitor . Application in supercapacitor electrode materials.
- supercapacitors As an efficient energy storage platform, supercapacitors have received extensive attention in recent decades. It has high energy density, long cycle life, can achieve rapid charge and discharge, is environmentally friendly and safe, and can be used in electronic equipment, defense technology and energy fields. Supercapacitors can be divided into electric double layer capacitors and pseudocapacitors. The specific capacitance and energy density of pseudocapacitance are higher than that of electric double layer capacitance. Therefore, the research on pseudocapacitance is more extensive.
- Transition metal oxides have abundant valence states and variable electronic structures, can rapidly undergo redox reactions, and are a class of promising capacitor materials, such as RuO 2 , Mn 3 O 4 , MnO 2 and so on.
- Co3O4 as an ideal capacitor material, has high theoretical capacitance, is cheap, and is abundant and easy to obtain on earth.
- Due to the poor conductivity, small specific surface area, and low electron and ion transport efficiency of bulk Co3O4 it is difficult to achieve its theoretical capacitance, which greatly limits its large - scale application.
- the purpose of the present invention is to provide a Co3O4 /NiO nanosheet array composite material for supercapacitors and a preparation method thereof.
- the O 4 /NiO nanosheet array composite is a Co-ZIF nanosheet array synthesized on nickel foam (NF), supported by nickel hydroxide (Ni(OH) 2 ) and then thermally treated to obtain Co 3 O 4 /NiO nanosheet array .
- the material can accelerate the electron and ion transport efficiency, greatly improve the specific surface area, and greatly improve the specific capacitance of the Co 3 O 4 /NiO nanosheet array.
- the technical scheme adopted in the present invention is: a composite electrode material for a super capacitor, a preparation method thereof, and a super capacitor.
- a composite electrode material for a super capacitor of the present invention is a Co 3 O 4 /NiO nanosheet array composite material composed of Co 3 O 4 and NiO.
- Co-ZIF nanosheet arrays were grown on NF by chemical deposition method, and then Ni(OH) 2 was supported on the obtained material by immersion method, and then Co 3 O 4 /NiO composite material was obtained by heat treatment, forming a highly Ordered nanosheet array composite structure.
- the preparation method of the composite electrode material for supercapacitor of the present invention comprises the following steps:
- step (2) Loading Ni(OH) 2 by immersion method: the ethanol solution containing nickel compound is placed in a constant temperature water bath at a constant temperature of 30°C, and then the material in step (1) is immersed in the ethanol solution containing nickel compound, and the temperature is kept constant. Take out after treatment, wash and dry to obtain step (2) material;
- Step (3) Preparation of Co 3 O 4 /NiO nanosheet array composite material by heat treatment method: placing the material in step (2) in a tube furnace and annealing in air to obtain Co 3 O 4 /NiO nanosheet composite array material, That is, the composite electrode material for supercapacitor of the present invention.
- the concentration of the cobalt nitrate aqueous solution in step (1) is 0.04-0.08 mol/L respectively, and the concentration of the 2-methylimidazole aqueous solution is 0.4-0.8 mol/L.
- the soaking time in step (1) is 6-18 hours; more preferably, it is about 12 hours.
- the volume of ethanol in the ethanol solution containing the nickel compound in step (2) is 8-25 mL, and the content of the nickel-containing compound is 0.03-0.09 g.
- the time of constant temperature treatment in step (2) is 0.5-2 hours.
- the nickel-containing compound in step (2) includes, but is not limited to, one or more of nickel nitrate, nickel chloride, and nickel sulfate.
- the annealing temperature in step (3) is 300°C-500°C; more preferably, it is about 350°C.
- the time of the annealing treatment in step (3) is 1-3 hours.
- the time of the annealing treatment in step (3) is about 1 hour.
- a supercapacitor of the present invention includes the above-mentioned composite electrode material for a supercapacitor.
- the present invention utilizes the characteristics of large specific surface area and porosity of the metal-organic framework, and can prepare a Co 3 O 4 nanosheet array with good dispersion, so that it has a high specific surface area, which can promote ion transport and improve its specific capacitance.
- the Co 3 O 4 /NiO nanosheet array composite material of the present invention has good capacitance characteristics, and can be used as an ideal supercapacitor electrode material.
- FIG. 1 is a SEM image of the Co 3 O 4 /NiO nanosheet array composite material synthesized in Example 1.
- FIG. 1 is a SEM image of the Co 3 O 4 /NiO nanosheet array composite material synthesized in Example 1.
- FIG. 2 is a SEM image of the Co 3 O 4 /NiO nanosheet array composite material synthesized in Example 2.
- FIG. 2 is a SEM image of the Co 3 O 4 /NiO nanosheet array composite material synthesized in Example 2.
- FIG. 3 is a SEM image of the Co 3 O 4 /NiO nanosheet array composite material synthesized in Example 3.
- FIG. 3 is a SEM image of the Co 3 O 4 /NiO nanosheet array composite material synthesized in Example 3.
- FIG. 4 is a SEM image of the Co 3 O 4 /NiO nanosheet array composite synthesized in Example 4.
- FIG. 4 is a SEM image of the Co 3 O 4 /NiO nanosheet array composite synthesized in Example 4.
- FIG. 5 is a SEM image of the Co 3 O 4 nanosheet array material synthesized in Comparative Example 1.
- FIG. 6 is the cyclic voltammetry curves of the Co 3 O 4 /NiO nanosheet array composites synthesized in Example 3 at different scan rates.
- a preparation method of a composite electrode material for a supercapacitor comprising the following steps:
- Ni(OH) 2 loaded by immersion method firstly, 0.03 g of nickel nitrate hexahydrate was dissolved in 15 mL of ethanol to obtain a 6.88 mmol/L nickel nitrate ethanol solution; then the nickel nitrate ethanol solution was placed in a constant temperature water bath at a constant temperature After reaching 30° C., the nanorod array prepared in (1) was immersed in a nickel nitrate ethanol solution, soaked at a constant temperature for 1 hour, taken out, washed and dried.
- a preparation method of a composite electrode material for a supercapacitor comprising the following steps:
- Ni(OH) 2 loaded by immersion method firstly, 0.03 g of nickel nitrate hexahydrate was dissolved in 15 mL of ethanol to obtain a 6.88 mmol/L nickel nitrate ethanol solution; then the nickel nitrate ethanol solution was placed in a constant temperature water bath at a constant temperature After reaching 30°C, the nanorod array prepared in (1) was immersed in a nickel nitrate ethanol solution, soaked at a constant temperature for 2 hours, taken out, washed and dried.
- a preparation method of a composite electrode material for a supercapacitor comprising the following steps:
- Ni(OH) 2 loaded by immersion method firstly, 0.06g of nickel nitrate hexahydrate was dissolved in 15mL of ethanol to obtain a 13.76mmol/L nickel nitrate ethanol solution; then the nickel nitrate ethanol solution was placed in a constant temperature water bath at a constant temperature After reaching 30° C., the nanorod array prepared in (1) was immersed in a nickel nitrate ethanol solution, soaked at a constant temperature for 1 hour, taken out, washed and dried.
- a preparation method of a composite electrode material for a supercapacitor comprising the following steps:
- Ni(OH) 2 loaded by immersion method firstly, 0.06g of nickel nitrate hexahydrate was dissolved in 15mL of ethanol to obtain a 13.76mmol/L nickel nitrate ethanol solution; then the nickel nitrate ethanol solution was placed in a constant temperature water bath at a constant temperature After reaching 30°C, the nanorod array prepared in (1) was immersed in a nickel nitrate ethanol solution, soaked at a constant temperature for 2 hours, taken out, washed and dried.
- a preparation method of a composite electrode material for a supercapacitor comprising the following steps:
- a preparation method of a composite electrode material for a supercapacitor comprising the following steps:
- Co-ZIF supported by chemical deposition method First, 1.16g of cobalt nitrate hexahydrate and 3.28g of 2-methylimidazole were dissolved in 100 mL of deionized water to prepare an aqueous solution of cobalt nitrate with a concentration of 0.04 mol/L and a concentration of 0.4 mol/L, respectively. mol/L of 2-methylimidazole aqueous solution; take 20 mL of cobalt nitrate aqueous solution and mix with 20 mL of 2-methylimidazole aqueous solution, put the material obtained in (1) into the above mixed solution and soak it for 12 hours. Wash with water and dry.
- Co 3 O 4 /ZnO composite material by heat treatment method: placing the material prepared in (2) in a quartz boat, placing the quartz boat in a tube furnace, and annealing in air at 350° C. for 1 hour to obtain
- the Co 3 O 4 /ZnO composite material is the composite electrode material for the supercapacitor of this comparative example.
- a preparation method of a composite electrode material for a supercapacitor comprising the following steps:
- Co-ZIF supported by chemical deposition method First, 1.16g of cobalt nitrate hexahydrate and 3.28g of 2-methylimidazole were dissolved in 100 mL of deionized water to prepare an aqueous solution of cobalt nitrate with a concentration of 0.04 mol/L and a concentration of 0.4 mol/L, respectively. mol/L of 2-methylimidazole aqueous solution; take 20 mL of cobalt nitrate aqueous solution and mix with 20 mL of 2-methylimidazole aqueous solution, put the material obtained in (1) into the above mixed solution and soak it for 12 hours. Wash with water and dry.
- Ni(OH) 2 loaded by immersion method firstly, 0.06g of nickel nitrate hexahydrate was dissolved in 15mL of ethanol to obtain a 13.76mmol/L nickel nitrate ethanol solution; then the nickel nitrate ethanol solution was placed in a constant temperature water bath at a constant temperature After reaching 30° C., the nanorod array prepared in (2) was immersed in a nickel nitrate ethanol solution, soaked at a constant temperature for 2 hours, taken out, washed and dried.
- Electrochemical performance test method The prepared electrode material, mercury/mercury oxide electrode and carbon rod are used as the working electrode respectively, the reference electrode and the counter electrode form a three-electrode system, and the electrolyte is an aqueous solution of potassium hydroxide with a molar concentration of 6 mol/L.
- CHI760E electrochemical workstation was used to calculate the specific capacitance with the cyclic voltammetry curve obtained at a scan rate of 0.04 V/s.
- Table 1 Calculated specific capacitance of the electrode materials obtained in Examples 1-4 and Comparative Examples 1-3 at a scan rate of 0.04 V/s.
- Example 1 Example 2 Example 3
- Example 4 Specific capacitance (F/g) 480.74 496.78 515.35 536.52 Comparative Example 1 Comparative Example 2 Comparative Example 3 Specific capacitance (F/g) 236.32 53.05 88.65
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
Abstract
Description
实施例1 | 实施例2 | 实施例3 | 实施例4 | |
比电容(F/g) | 480.74 | 496.78 | 515.35 | 536.52 |
对比例1 | 对比例2 | 对比例3 | ||
比电容(F/g) | 236.32 | 53.05 | 88.65 |
Claims (13)
- 一种超级电容器用复合电极材料,其特征在于,所述复合电极材料是由Co 3O 4和NiO组成的Co 3O 4/NiO纳米片阵列复合材料。
- 权利要求1所述的超级电容器用复合电极材料的制备方法,其特征在于,包括以下步骤:(1)化学沉积法生长Co-ZIF纳米片阵列:将硝酸钴水溶液与2-甲基咪唑水溶液混合;然后将处理干净的NF浸入所述的混合溶液中,浸泡数小时后取出,用去离子水洗涤干净,得到步骤(1)材料,备用;(2)浸泡法负载Ni(OH) 2:将含镍化合物的乙醇溶液置于恒温水浴锅中恒温到30℃,然后将步骤(1)材料浸入所述的含镍化合物的乙醇溶液中,恒温处理后取出,洗涤并干燥,得到步骤(2)材料;(3)热处理法制备Co 3O 4/NiO纳米片阵列复合材料:将步骤(2)材料置于管式炉中,在空气中退火处理,得到超级电容器用复合电极材料。
- 根据权利要求2所述的制备方法,其特征在于,步骤(1)中硝酸钴水溶液的浓度为0.04-0.08mol/L,2-甲基咪唑水溶液的浓度为0.4-0.8mol/L。
- 根据权利要求2所述的制备方法,其特征在于,步骤(1)中浸泡的时间为6-18小时。
- 根据权利要求4所述的制备方法,其特征在于,步骤(1)中浸泡的时间为约12小时。
- 根据权利要求2所述的制备方法,其特征在于,步骤(2)中含镍化合物的乙醇溶液中乙醇的体积为8-25mL,含镍化合物含量为0.03-0.09g。
- 根据权利要求2所述的制备方法,其特征在于,步骤(2)中恒温处理的时间为0.5-2小时。
- 根据权利要求2所述的制备方法,其特征在于,步骤(2)中含镍化合物包括硝酸镍、氯化镍和硫酸镍中的一种或多种。
- 根据权利要求2所述的制备方法,其特征在于,步骤(3)中退火处理的温度为300℃-500℃。
- 根据权利要求9所述的制备方法,其特征在于,步骤(3)中退火处理的温度为约350℃。
- 根据权利要求2所述的制备方法,其特征在于,步骤(3)中退火处理的时间为1-3小时。
- 根据权利要求2所述的制备方法,其特征在于,步骤(3)中退火处理的时间为约1小时。
- 一种超级电容器,包括权利要求1所述的超级电容器用复合电极材料。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2020/126778 WO2022094871A1 (zh) | 2020-11-05 | 2020-11-05 | 一种超级电容器用复合电极材料及其制备方法和超级电容器 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2020/126778 WO2022094871A1 (zh) | 2020-11-05 | 2020-11-05 | 一种超级电容器用复合电极材料及其制备方法和超级电容器 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022094871A1 true WO2022094871A1 (zh) | 2022-05-12 |
Family
ID=81458424
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/126778 WO2022094871A1 (zh) | 2020-11-05 | 2020-11-05 | 一种超级电容器用复合电极材料及其制备方法和超级电容器 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2022094871A1 (zh) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114284079A (zh) * | 2021-12-12 | 2022-04-05 | 浙江大学 | 一种基于过渡金属化合物的叉指微型超级电容器制备方法 |
CN115064391A (zh) * | 2022-05-25 | 2022-09-16 | 电子科技大学长三角研究院(湖州) | 一种应用于不对称超级电容器的电极材料的制备方法 |
CN115116762A (zh) * | 2022-06-15 | 2022-09-27 | 江西科技师范大学 | 交织网状聚(5-硝基吲哚)/Ce掺杂Co3O4复合物电极的制备方法和应用 |
CN115295317A (zh) * | 2022-06-28 | 2022-11-04 | 电子科技大学长三角研究院(湖州) | 一种原位生长电极材料的制备方法及其应用 |
CN115346806A (zh) * | 2022-08-08 | 2022-11-15 | 天津理工大学 | 基于钴铁锰化合物超级电容器电极材料的制备方法 |
CN115432744A (zh) * | 2022-08-23 | 2022-12-06 | 合肥国轩高科动力能源有限公司 | 一种中空纳米笼双金属氢氧化物材料的制备方法及应用 |
CN115536112A (zh) * | 2022-11-03 | 2022-12-30 | 西安建筑科技大学 | 选择性去除饮用水中铅离子的电容去离子电极的制备方法 |
CN115954215A (zh) * | 2022-12-02 | 2023-04-11 | 陕西科技大学 | 三维网络结构NiCo-LDH/AgNWs/棉纤维柔性电极材料的制备方法 |
CN118173394A (zh) * | 2024-05-14 | 2024-06-11 | 山东海化集团有限公司 | 一种钴镍锌三金属氧化物多孔碳材料的制备方法及应用 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014125367A (ja) * | 2012-12-25 | 2014-07-07 | Tohoku Univ | 導電性金属が添加された酸化物 |
CN104525203A (zh) * | 2014-12-17 | 2015-04-22 | 华东师范大学 | 一种Co3O4/NiO复合介孔纳米粒子的制备方法及应用 |
CN110289178A (zh) * | 2019-05-13 | 2019-09-27 | 江苏大学 | 两步法制备氧化镍/四氧化三钴/氮掺杂碳点超薄纳米片电极材料及其应用 |
CN110415991A (zh) * | 2019-08-08 | 2019-11-05 | 桂林电子科技大学 | 一种基于珊瑚状钴镍氧化物/氧化石墨烯复合材料及其制备方法和应用 |
CN110571067A (zh) * | 2019-09-27 | 2019-12-13 | 四川大学 | 一种超级电容器电极材料及其制备方法 |
-
2020
- 2020-11-05 WO PCT/CN2020/126778 patent/WO2022094871A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014125367A (ja) * | 2012-12-25 | 2014-07-07 | Tohoku Univ | 導電性金属が添加された酸化物 |
CN104525203A (zh) * | 2014-12-17 | 2015-04-22 | 华东师范大学 | 一种Co3O4/NiO复合介孔纳米粒子的制备方法及应用 |
CN110289178A (zh) * | 2019-05-13 | 2019-09-27 | 江苏大学 | 两步法制备氧化镍/四氧化三钴/氮掺杂碳点超薄纳米片电极材料及其应用 |
CN110415991A (zh) * | 2019-08-08 | 2019-11-05 | 桂林电子科技大学 | 一种基于珊瑚状钴镍氧化物/氧化石墨烯复合材料及其制备方法和应用 |
CN110571067A (zh) * | 2019-09-27 | 2019-12-13 | 四川大学 | 一种超级电容器电极材料及其制备方法 |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114284079B (zh) * | 2021-12-12 | 2022-12-27 | 浙江大学 | 一种基于过渡金属化合物的叉指微型超级电容器制备方法 |
CN114284079A (zh) * | 2021-12-12 | 2022-04-05 | 浙江大学 | 一种基于过渡金属化合物的叉指微型超级电容器制备方法 |
CN115064391A (zh) * | 2022-05-25 | 2022-09-16 | 电子科技大学长三角研究院(湖州) | 一种应用于不对称超级电容器的电极材料的制备方法 |
CN115064391B (zh) * | 2022-05-25 | 2023-08-29 | 电子科技大学长三角研究院(湖州) | 一种应用于不对称超级电容器的电极材料的制备方法 |
CN115116762B (zh) * | 2022-06-15 | 2023-04-25 | 江西科技师范大学 | 交织网状聚(5-硝基吲哚)/Ce掺杂Co3O4复合物电极的制备方法和应用 |
CN115116762A (zh) * | 2022-06-15 | 2022-09-27 | 江西科技师范大学 | 交织网状聚(5-硝基吲哚)/Ce掺杂Co3O4复合物电极的制备方法和应用 |
CN115295317A (zh) * | 2022-06-28 | 2022-11-04 | 电子科技大学长三角研究院(湖州) | 一种原位生长电极材料的制备方法及其应用 |
CN115295317B (zh) * | 2022-06-28 | 2023-07-07 | 电子科技大学长三角研究院(湖州) | 一种原位生长电极材料的制备方法 |
CN115346806A (zh) * | 2022-08-08 | 2022-11-15 | 天津理工大学 | 基于钴铁锰化合物超级电容器电极材料的制备方法 |
CN115346806B (zh) * | 2022-08-08 | 2023-09-26 | 天津理工大学 | 基于钴铁锰化合物超级电容器电极材料的制备方法 |
CN115432744A (zh) * | 2022-08-23 | 2022-12-06 | 合肥国轩高科动力能源有限公司 | 一种中空纳米笼双金属氢氧化物材料的制备方法及应用 |
CN115536112A (zh) * | 2022-11-03 | 2022-12-30 | 西安建筑科技大学 | 选择性去除饮用水中铅离子的电容去离子电极的制备方法 |
CN115536112B (zh) * | 2022-11-03 | 2024-04-26 | 西安建筑科技大学 | 选择性去除饮用水中铅离子的电容去离子电极的制备方法 |
CN115954215A (zh) * | 2022-12-02 | 2023-04-11 | 陕西科技大学 | 三维网络结构NiCo-LDH/AgNWs/棉纤维柔性电极材料的制备方法 |
CN118173394A (zh) * | 2024-05-14 | 2024-06-11 | 山东海化集团有限公司 | 一种钴镍锌三金属氧化物多孔碳材料的制备方法及应用 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022094871A1 (zh) | 一种超级电容器用复合电极材料及其制备方法和超级电容器 | |
CN108796535B (zh) | 一种具备三金属铜-钴-钼/泡沫镍多孔电极材料及其制备方法与应用 | |
CN111199835B (zh) | 分级结构镍钴硒/镍钴双氢氧化物复合电极材料制备方法 | |
CN105140531B (zh) | 用于电解水制氢的三维阳极材料及制备方法 | |
CN102719811B (zh) | 直接在钛基底上生长氧化镍、氧化钴及其复合物储能材料的方法 | |
CN110518261A (zh) | 氮磷共掺杂碳纳米管包覆钴铁双金属合金原位电极的制备方法 | |
WO2023143578A1 (zh) | 多孔镍钼钴析氢电极及其制备方法和应用 | |
CN110350184B (zh) | 一种用于电池正极材料的高容量NiMoO4储能材料的制备方法 | |
CN109904418B (zh) | 一种锂离子电池负极材料及其制备方法 | |
CN113054194A (zh) | 一种氮-碳纳米管材料及其制备方法和在制备柔性锌锰电池中的应用 | |
CN110993362A (zh) | 一种新型三维电极材料及其制备方法和在超级电容器中的应用 | |
CN112382514A (zh) | 一种全固态柔性超级电容器用NiCo2O4@Ni-Co LDH复合电极的制备方法 | |
CN107170589A (zh) | 一种MnO2系三元复合超级电容器电极材料的制备方法 | |
CN116621156B (zh) | 一种氮掺杂多孔碳材料及其制备方法与应用 | |
CN111048325A (zh) | 一种作为超级电容器的形貌可控的镍锰硫化物/石墨烯复合材料及其制备方法 | |
CN109786126A (zh) | 一种水系高电压电极材料的制备方法及应用 | |
CN108598448A (zh) | 一种三维结构碳包覆钴酸锰纳米线材料及制备方法和应用 | |
CN114855205B (zh) | 一种多级结构的三元金属硫化物三维电极的制备方法 | |
CN110473713A (zh) | 增韧的超级电容器电极复合材料及制备方法及不对称全固态超级电容器的制备方法 | |
CN108538623A (zh) | 一种二氧化锰/碳纳米管复合电极材料的制备方法 | |
CN113106482A (zh) | 木质基析氢电极及其制备方法 | |
CN108133834A (zh) | 一种泡沫镍为基底的MOFs-Mn2O3超级电容器电极材料的制备方法 | |
CN105047884B (zh) | 三维析氧电极阳极材料及其制备方法和应用 | |
CN111899981A (zh) | 三维石墨烯泡沫为基底的钼酸钴纳米片阵列电极材料及其制备方法和应用 | |
CN114457349B (zh) | 一种碳包覆的镍钼钴析氢电极及其制备方法和应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20960332 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20960332 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20960332 Country of ref document: EP Kind code of ref document: A1 |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 23/01/2024) |