WO2022092014A1 - 生体吸収性繊維状医療材料 - Google Patents
生体吸収性繊維状医療材料 Download PDFInfo
- Publication number
- WO2022092014A1 WO2022092014A1 PCT/JP2021/039270 JP2021039270W WO2022092014A1 WO 2022092014 A1 WO2022092014 A1 WO 2022092014A1 JP 2021039270 W JP2021039270 W JP 2021039270W WO 2022092014 A1 WO2022092014 A1 WO 2022092014A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- suture
- less
- knot
- mpa
- medical material
- Prior art date
Links
- 239000012567 medical material Substances 0.000 title claims abstract description 48
- 229920000642 polymer Polymers 0.000 claims abstract description 69
- 125000001931 aliphatic group Chemical group 0.000 claims abstract description 27
- 238000009987 spinning Methods 0.000 claims abstract description 17
- 239000000835 fiber Substances 0.000 claims description 76
- 229920000903 polyhydroxyalkanoate Polymers 0.000 claims description 75
- 239000005014 poly(hydroxyalkanoate) Substances 0.000 claims description 73
- 239000011148 porous material Substances 0.000 claims description 22
- 239000011800 void material Substances 0.000 claims description 8
- 229920003232 aliphatic polyester Polymers 0.000 claims description 5
- 239000002657 fibrous material Substances 0.000 claims description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims 1
- SJZRECIVHVDYJC-UHFFFAOYSA-M 4-hydroxybutyrate Chemical compound OCCCC([O-])=O SJZRECIVHVDYJC-UHFFFAOYSA-M 0.000 description 40
- 238000000034 method Methods 0.000 description 40
- 230000000052 comparative effect Effects 0.000 description 36
- 210000001519 tissue Anatomy 0.000 description 34
- 208000037534 Progressive hemifacial atrophy Diseases 0.000 description 27
- 238000012017 passive hemagglutination assay Methods 0.000 description 27
- YWXYYJSYQOXTPL-SLPGGIOYSA-N isosorbide mononitrate Chemical compound [O-][N+](=O)O[C@@H]1CO[C@@H]2[C@@H](O)CO[C@@H]21 YWXYYJSYQOXTPL-SLPGGIOYSA-N 0.000 description 24
- 238000012360 testing method Methods 0.000 description 22
- 229920001577 copolymer Polymers 0.000 description 19
- 238000011084 recovery Methods 0.000 description 19
- 238000009864 tensile test Methods 0.000 description 17
- 230000008602 contraction Effects 0.000 description 15
- WHBMMWSBFZVSSR-UHFFFAOYSA-M 3-hydroxybutyrate Chemical compound CC(O)CC([O-])=O WHBMMWSBFZVSSR-UHFFFAOYSA-M 0.000 description 13
- 239000013078 crystal Substances 0.000 description 13
- WHBMMWSBFZVSSR-UHFFFAOYSA-N R3HBA Natural products CC(O)CC(O)=O WHBMMWSBFZVSSR-UHFFFAOYSA-N 0.000 description 12
- 230000002093 peripheral effect Effects 0.000 description 12
- -1 polyethylene Polymers 0.000 description 12
- RKDVKSZUMVYZHH-UHFFFAOYSA-N 1,4-dioxane-2,5-dione Chemical compound O=C1COC(=O)CO1 RKDVKSZUMVYZHH-UHFFFAOYSA-N 0.000 description 11
- 238000002425 crystallisation Methods 0.000 description 11
- 230000008025 crystallization Effects 0.000 description 11
- 238000011156 evaluation Methods 0.000 description 11
- 238000000465 moulding Methods 0.000 description 11
- 206010061218 Inflammation Diseases 0.000 description 10
- 230000004054 inflammatory process Effects 0.000 description 10
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- 229910001868 water Inorganic materials 0.000 description 10
- PAPBSGBWRJIAAV-UHFFFAOYSA-N ε-Caprolactone Chemical compound O=C1CCCCCO1 PAPBSGBWRJIAAV-UHFFFAOYSA-N 0.000 description 10
- SJZRECIVHVDYJC-UHFFFAOYSA-N 4-hydroxybutyric acid Chemical group OCCCC(O)=O SJZRECIVHVDYJC-UHFFFAOYSA-N 0.000 description 9
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical compound OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 9
- 238000006073 displacement reaction Methods 0.000 description 9
- 239000007789 gas Substances 0.000 description 9
- 238000002844 melting Methods 0.000 description 9
- 230000008018 melting Effects 0.000 description 9
- 239000000203 mixture Substances 0.000 description 9
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 8
- 238000005227 gel permeation chromatography Methods 0.000 description 8
- 238000002074 melt spinning Methods 0.000 description 8
- 229920002463 poly(p-dioxanone) polymer Polymers 0.000 description 8
- 238000006116 polymerization reaction Methods 0.000 description 8
- 239000004677 Nylon Substances 0.000 description 7
- 230000002745 absorbent Effects 0.000 description 7
- 239000002250 absorbent Substances 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 7
- 238000005259 measurement Methods 0.000 description 7
- 239000000178 monomer Substances 0.000 description 7
- 230000017074 necrotic cell death Effects 0.000 description 7
- 239000000622 polydioxanone Substances 0.000 description 7
- 238000003786 synthesis reaction Methods 0.000 description 7
- 230000008719 thickening Effects 0.000 description 7
- 239000003054 catalyst Substances 0.000 description 6
- 238000000354 decomposition reaction Methods 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 238000001125 extrusion Methods 0.000 description 6
- 238000000855 fermentation Methods 0.000 description 6
- 230000004151 fermentation Effects 0.000 description 6
- 238000001727 in vivo Methods 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 229920001778 nylon Polymers 0.000 description 6
- 238000001308 synthesis method Methods 0.000 description 6
- YFHICDDUDORKJB-UHFFFAOYSA-N trimethylene carbonate Chemical compound O=C1OCCCO1 YFHICDDUDORKJB-UHFFFAOYSA-N 0.000 description 6
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 5
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 5
- 241000446313 Lamella Species 0.000 description 5
- 239000004793 Polystyrene Substances 0.000 description 5
- 210000003815 abdominal wall Anatomy 0.000 description 5
- 238000010035 extrusion spinning Methods 0.000 description 5
- 239000003063 flame retardant Substances 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 239000004310 lactic acid Substances 0.000 description 5
- 235000014655 lactic acid Nutrition 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 229920000117 poly(dioxanone) Polymers 0.000 description 5
- 229920002223 polystyrene Polymers 0.000 description 5
- 238000001356 surgical procedure Methods 0.000 description 5
- VPVXHAANQNHFSF-UHFFFAOYSA-N 1,4-dioxan-2-one Chemical compound O=C1COCCO1 VPVXHAANQNHFSF-UHFFFAOYSA-N 0.000 description 4
- REKYPYSUBKSCAT-UHFFFAOYSA-N 3-hydroxypentanoic acid Chemical compound CCC(O)CC(O)=O REKYPYSUBKSCAT-UHFFFAOYSA-N 0.000 description 4
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000029142 excretion Effects 0.000 description 4
- 238000007490 hematoxylin and eosin (H&E) staining Methods 0.000 description 4
- 238000007654 immersion Methods 0.000 description 4
- 208000015181 infectious disease Diseases 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 239000013081 microcrystal Substances 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 238000000879 optical micrograph Methods 0.000 description 4
- 229910052698 phosphorus Inorganic materials 0.000 description 4
- 229920000728 polyester Polymers 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- LCSKNASZPVZHEG-UHFFFAOYSA-N 3,6-dimethyl-1,4-dioxane-2,5-dione;1,4-dioxane-2,5-dione Chemical group O=C1COC(=O)CO1.CC1OC(=O)C(C)OC1=O LCSKNASZPVZHEG-UHFFFAOYSA-N 0.000 description 3
- IWHLYPDWHHPVAA-UHFFFAOYSA-N 6-hydroxyhexanoic acid Chemical compound OCCCCCC(O)=O IWHLYPDWHHPVAA-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 3
- 229920000954 Polyglycolide Polymers 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 239000000872 buffer Substances 0.000 description 3
- 239000007853 buffer solution Substances 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 230000008034 disappearance Effects 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 125000004356 hydroxy functional group Chemical group O* 0.000 description 3
- 238000010191 image analysis Methods 0.000 description 3
- 238000002513 implantation Methods 0.000 description 3
- 238000000338 in vitro Methods 0.000 description 3
- 230000036512 infertility Effects 0.000 description 3
- JJTUDXZGHPGLLC-UHFFFAOYSA-N lactide Chemical compound CC1OC(=O)C(C)OC1=O JJTUDXZGHPGLLC-UHFFFAOYSA-N 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- UQGPCEVQKLOLLM-UHFFFAOYSA-N pentaneperoxoic acid Chemical compound CCCCC(=O)OO UQGPCEVQKLOLLM-UHFFFAOYSA-N 0.000 description 3
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 3
- 229920002791 poly-4-hydroxybutyrate Polymers 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 238000007151 ring opening polymerisation reaction Methods 0.000 description 3
- 230000008961 swelling Effects 0.000 description 3
- GSCLMSFRWBPUSK-GSVOUGTGSA-N (4r)-4-methyloxetan-2-one Chemical compound C[C@@H]1CC(=O)O1 GSCLMSFRWBPUSK-GSVOUGTGSA-N 0.000 description 2
- ZMKVBUOZONDYBW-UHFFFAOYSA-N 1,6-dioxecane-2,5-dione Chemical compound O=C1CCC(=O)OCCCCO1 ZMKVBUOZONDYBW-UHFFFAOYSA-N 0.000 description 2
- ALRHLSYJTWAHJZ-UHFFFAOYSA-M 3-hydroxypropionate Chemical compound OCCC([O-])=O ALRHLSYJTWAHJZ-UHFFFAOYSA-M 0.000 description 2
- 229940006015 4-hydroxybutyric acid Drugs 0.000 description 2
- JJTUDXZGHPGLLC-IMJSIDKUSA-N 4511-42-6 Chemical compound C[C@@H]1OC(=O)[C@H](C)OC1=O JJTUDXZGHPGLLC-IMJSIDKUSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- AEMRFAOFKBGASW-UHFFFAOYSA-M Glycolate Chemical compound OCC([O-])=O AEMRFAOFKBGASW-UHFFFAOYSA-M 0.000 description 2
- WZUVPPKBWHMQCE-UHFFFAOYSA-N Haematoxylin Chemical compound C12=CC(O)=C(O)C=C2CC2(O)C1C1=CC=C(O)C(O)=C1OC2 WZUVPPKBWHMQCE-UHFFFAOYSA-N 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-M Lactate Chemical compound CC(O)C([O-])=O JVTAAEKCZFNVCJ-UHFFFAOYSA-M 0.000 description 2
- 241000209094 Oryza Species 0.000 description 2
- 235000007164 Oryza sativa Nutrition 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 241000282898 Sus scrofa Species 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000000748 compression moulding Methods 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- 238000000113 differential scanning calorimetry Methods 0.000 description 2
- GHLKSLMMWAKNBM-UHFFFAOYSA-N dodecane-1,12-diol Chemical compound OCCCCCCCCCCCCO GHLKSLMMWAKNBM-UHFFFAOYSA-N 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000006911 enzymatic reaction Methods 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- JBFHTYHTHYHCDJ-UHFFFAOYSA-N gamma-caprolactone Chemical compound CCC1CCC(=O)O1 JBFHTYHTHYHCDJ-UHFFFAOYSA-N 0.000 description 2
- 230000009477 glass transition Effects 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 229920001519 homopolymer Polymers 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 230000009545 invasion Effects 0.000 description 2
- 230000033001 locomotion Effects 0.000 description 2
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- WWZKQHOCKIZLMA-UHFFFAOYSA-N octanoic acid Chemical compound CCCCCCCC(O)=O WWZKQHOCKIZLMA-UHFFFAOYSA-N 0.000 description 2
- 229910052762 osmium Inorganic materials 0.000 description 2
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 description 2
- 239000005022 packaging material Substances 0.000 description 2
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 2
- 229920000747 poly(lactic acid) Polymers 0.000 description 2
- 229920001610 polycaprolactone Polymers 0.000 description 2
- 239000004633 polyglycolic acid Substances 0.000 description 2
- 229920000098 polyolefin Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- GHMLBKRAJCXXBS-UHFFFAOYSA-N resorcinol Chemical compound OC1=CC=CC(O)=C1 GHMLBKRAJCXXBS-UHFFFAOYSA-N 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 235000009566 rice Nutrition 0.000 description 2
- 210000004872 soft tissue Anatomy 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 230000002194 synthesizing effect Effects 0.000 description 2
- 230000017423 tissue regeneration Effects 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- 150000005208 1,4-dihydroxybenzenes Chemical class 0.000 description 1
- MFRCZYUUKMFJQJ-UHFFFAOYSA-N 1,4-dioxane-2,5-dione;1,3-dioxan-2-one Chemical compound O=C1OCCCO1.O=C1COC(=O)CO1 MFRCZYUUKMFJQJ-UHFFFAOYSA-N 0.000 description 1
- NYHNVHGFPZAZGA-UHFFFAOYSA-N 2-hydroxyhexanoic acid Chemical compound CCCCC(O)C(O)=O NYHNVHGFPZAZGA-UHFFFAOYSA-N 0.000 description 1
- HPMGFDVTYHWBAG-UHFFFAOYSA-N 3-hydroxyhexanoic acid Chemical compound CCCC(O)CC(O)=O HPMGFDVTYHWBAG-UHFFFAOYSA-N 0.000 description 1
- 239000011165 3D composite Substances 0.000 description 1
- GRHQDJDRGZFIPO-UHFFFAOYSA-N 4-bromobutanoic acid Chemical compound OC(=O)CCCBr GRHQDJDRGZFIPO-UHFFFAOYSA-N 0.000 description 1
- IPLKGJHGWCVSOG-UHFFFAOYSA-N 4-chlorobutanoic acid Chemical compound OC(=O)CCCCl IPLKGJHGWCVSOG-UHFFFAOYSA-N 0.000 description 1
- FMHKPLXYWVCLME-UHFFFAOYSA-N 4-hydroxy-valeric acid Chemical compound CC(O)CCC(O)=O FMHKPLXYWVCLME-UHFFFAOYSA-N 0.000 description 1
- YDCRNMJQROAWFT-UHFFFAOYSA-N 5-hydroxyhexanoic acid Chemical compound CC(O)CCCC(O)=O YDCRNMJQROAWFT-UHFFFAOYSA-N 0.000 description 1
- 229920002126 Acrylic acid copolymer Polymers 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 102000008186 Collagen Human genes 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- 229920000219 Ethylene vinyl alcohol Polymers 0.000 description 1
- 206010019909 Hernia Diseases 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 229920001054 Poly(ethylene‐co‐vinyl acetate) Polymers 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 229920000331 Polyhydroxybutyrate Polymers 0.000 description 1
- 229920001710 Polyorthoester Polymers 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 235000010724 Wisteria floribunda Nutrition 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 229920003231 aliphatic polyamide Polymers 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229920000229 biodegradable polyester Polymers 0.000 description 1
- 239000004622 biodegradable polyester Substances 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- 230000003570 biosynthesizing effect Effects 0.000 description 1
- 238000000071 blow moulding Methods 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 150000004648 butanoic acid derivatives Chemical class 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- UBAZGMLMVVQSCD-UHFFFAOYSA-N carbon dioxide;molecular oxygen Chemical compound O=O.O=C=O UBAZGMLMVVQSCD-UHFFFAOYSA-N 0.000 description 1
- 210000000845 cartilage Anatomy 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004581 coalescence Methods 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- FOTKYAAJKYLFFN-UHFFFAOYSA-N decane-1,10-diol Chemical compound OCCCCCCCCCCO FOTKYAAJKYLFFN-UHFFFAOYSA-N 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000023753 dehiscence Effects 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 239000002158 endotoxin Substances 0.000 description 1
- 238000012407 engineering method Methods 0.000 description 1
- YQGOJNYOYNNSMM-UHFFFAOYSA-N eosin Chemical compound [Na+].OC(=O)C1=CC=CC=C1C1=C2C=C(Br)C(=O)C(Br)=C2OC2=C(Br)C(O)=C(Br)C=C21 YQGOJNYOYNNSMM-UHFFFAOYSA-N 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 229920005680 ethylene-methyl methacrylate copolymer Polymers 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 210000003754 fetus Anatomy 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 239000004088 foaming agent Substances 0.000 description 1
- 229920000578 graft copolymer Polymers 0.000 description 1
- 150000008282 halocarbons Chemical class 0.000 description 1
- 239000012760 heat stabilizer Substances 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- TVZISJTYELEYPI-UHFFFAOYSA-N hypodiphosphoric acid Chemical class OP(O)(=O)P(O)(O)=O TVZISJTYELEYPI-UHFFFAOYSA-N 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 229920000554 ionomer Polymers 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000007794 irritation Effects 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 150000002596 lactones Chemical class 0.000 description 1
- 210000003041 ligament Anatomy 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 244000309715 mini pig Species 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 229910052754 neon Inorganic materials 0.000 description 1
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- LYRFLYHAGKPMFH-UHFFFAOYSA-N octadecanamide Chemical class CCCCCCCCCCCCCCCCCC(N)=O LYRFLYHAGKPMFH-UHFFFAOYSA-N 0.000 description 1
- OEIJHBUUFURJLI-UHFFFAOYSA-N octane-1,8-diol Chemical compound OCCCCCCCCO OEIJHBUUFURJLI-UHFFFAOYSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 150000002905 orthoesters Chemical class 0.000 description 1
- 238000007500 overflow downdraw method Methods 0.000 description 1
- 206010033675 panniculitis Diseases 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- AQSJGOWTSHOLKH-UHFFFAOYSA-N phosphite(3-) Chemical class [O-]P([O-])[O-] AQSJGOWTSHOLKH-UHFFFAOYSA-N 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 239000002504 physiological saline solution Substances 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920001432 poly(L-lactide) Polymers 0.000 description 1
- 229920005670 poly(ethylene-vinyl chloride) Polymers 0.000 description 1
- 239000005015 poly(hydroxybutyrate) Substances 0.000 description 1
- 229920000218 poly(hydroxyvalerate) Polymers 0.000 description 1
- 239000002745 poly(ortho ester) Substances 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920002338 polyhydroxyethylmethacrylate Polymers 0.000 description 1
- 229920002792 polyhydroxyhexanoate Polymers 0.000 description 1
- 239000004626 polylactic acid Substances 0.000 description 1
- 229920005594 polymer fiber Polymers 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 229920000193 polymethacrylate Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- YGSDEFSMJLZEOE-UHFFFAOYSA-M salicylate Chemical compound OC1=CC=CC=C1C([O-])=O YGSDEFSMJLZEOE-UHFFFAOYSA-M 0.000 description 1
- 229960001860 salicylate Drugs 0.000 description 1
- 231100000241 scar Toxicity 0.000 description 1
- 230000037390 scarring Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 210000003491 skin Anatomy 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 239000007779 soft material Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 230000005477 standard model Effects 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 210000004304 subcutaneous tissue Anatomy 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000003356 suture material Substances 0.000 description 1
- 229920006027 ternary co-polymer Polymers 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 230000000451 tissue damage Effects 0.000 description 1
- 231100000827 tissue damage Toxicity 0.000 description 1
- 125000003258 trimethylene group Chemical group [H]C([H])([*:2])C([H])([H])C([H])([H])[*:1] 0.000 description 1
- 210000001835 viscera Anatomy 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 238000009941 weaving Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L17/00—Materials for surgical sutures or for ligaturing blood vessels ; Materials for prostheses or catheters
- A61L17/06—At least partially resorbable materials
- A61L17/10—At least partially resorbable materials containing macromolecular materials
- A61L17/105—Polyesters not covered by A61L17/12
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L17/00—Materials for surgical sutures or for ligaturing blood vessels ; Materials for prostheses or catheters
- A61L17/06—At least partially resorbable materials
- A61L17/10—At least partially resorbable materials containing macromolecular materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L17/00—Materials for surgical sutures or for ligaturing blood vessels ; Materials for prostheses or catheters
- A61L17/06—At least partially resorbable materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L17/00—Materials for surgical sutures or for ligaturing blood vessels ; Materials for prostheses or catheters
- A61L17/06—At least partially resorbable materials
- A61L17/10—At least partially resorbable materials containing macromolecular materials
- A61L17/12—Homopolymers or copolymers of glycolic acid or lactic acid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L17/00—Materials for surgical sutures or for ligaturing blood vessels ; Materials for prostheses or catheters
- A61L17/14—Post-treatment to improve physical properties
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F6/00—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
- D01F6/58—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
- D01F6/62—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyesters
- D01F6/625—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyesters derived from hydroxy-carboxylic acids, e.g. lactones
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F6/00—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
- D01F6/78—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products
- D01F6/84—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products from copolyesters
Definitions
- the present invention relates to a fibrous medical material using an aliphatic polymer fiber that is elastic and bioabsorbable, which makes it easy to form a knot, has a small knot, and is capable of ligation that is difficult to unravel.
- the suture includes a monofilament suture made of a single fiber and a multifilament suture made of a plurality of fibers.
- a non-absorbable polymer or an absorbent polymer is used as the material of the suture.
- the non-absorbent polymer include polyethylene, polypropylene, nylon, silicone, Teflon, silk and the like.
- the absorbent polymer include homopolymers or copolymers obtained by polymerizing glycolic acid, lactic acid, ⁇ -caprolactone, dioxanone and the like.
- sutures containing glycolic acid and lactic acid tend to have a strong inflammatory reaction during the absorption process, which may cause a problem in terms of biocompatibility.
- Conventional bioabsorbable sutures are those used as multifilaments due to their rigid polymers such as polyglycolic acid (PGA) and poly (glycolide / L-lactide) copolymers, and poly (glycolide / trimethylene).
- rigid polymers such as polyglycolic acid (PGA) and poly (glycolide / L-lactide) copolymers, and poly (glycolide / trimethylene).
- Patent Document 1 describes a surgical suture made of a monofilament thread made of a copolymer of lactic acid and ⁇ -caprolactone.
- Patent Document 2 describes a suture obtained by melt-spinning a glycolide / ⁇ -caprolactone copolymer.
- Patent Document 3 describes a first polymer and a second polymer synthesized from one or more monomers selected from the group consisting of glycolide, glycolic acid, lactide, lactic acid, caprolactone, dioxanone, trimethylene carbonate and ethylene glycol.
- a monofilament suture that is a compositely spun monofilament suture and has a young ratio of the first polymer and the second polymer of 3.0 GPa or less is described.
- Patent Document 4 describes a synthetic composite containing collagen, at least one organic polymer (polyglycolide, polylactide, copolymer of glycolide and lactide, polylactone, polyhydroxyalkanoic acid, etc.) and at least one active ingredient. Biomaterials are listed.
- Patent Document 5 comprises 3-hydroxybutyrate (sometimes referred to as 3HB) units and 4-hydroxybutyrate (sometimes referred to as 4HB) units, and contains 4-hydroxybutyrate units.
- a polyester molded article containing a biodegradable polyester copolymer having an amount of more than 60 mol% and 95 mol% or less is described.
- Patent Document 6 and Patent Document 7 describe a medical device including a suture made of biocompatible polyhydroxyalkanoate.
- Patent Document 8 describes a fiber containing a poly-4-hydroxybutyrate polymer and having a tensile strength higher than 126 MPa.
- Patent Documents 9 and 10 describe polymer products obtained by stretching a composition characterized by a biodegradable polyhydroxyalkanoate copolymer containing at least two random repeating monomer units.
- the 3-hydroxybutyrate unit is 97 to 40 mol% and the 4-hydroxybutyrate unit is 3 to 60 mol%, and [ ⁇ ] measured in chloroform at 30 ° C. is 0.4 to 10.0 dl.
- Polyester copolymers in the range of / g are described, and it is described that they are highly flexible and have good moldability, and that the obtained molded products such as fibers and films are supple and tough.
- a monofilament suture made of a homopolymer of 4-hydroxybutyric acid (also referred to as P (4HB)) has been developed (Patent Documents 12 and Non-Patent Documents 1 and 2).
- This MonoMax suture has been reported to have an elasticity of 485 MPa (Non-Patent Document 2), 1370 MPa of PDSII made of poly-p-dioxanone, and 725 MPa of Monocryl made of a poly (glycolide / ⁇ -caprolactone) copolymer. It is said to be a soft suture with a lower elasticity than the above, but when actually used by a doctor, the suture is rigid and the knot tends to loosen, so it is necessary to increase the number of knots.
- Japanese Unexamined Patent Publication No. 2001-149462 Japanese Unexamined Patent Publication No. 2011-6996 Japanese Patent No. 4071661 Japanese Patent Publication No. 2019-505338 Japanese Unexamined Patent Publication No. 06-336523 U.S. Pat. No. 6,862,247 Japanese Patent No. 5031144 Japanese Patent Publication No. 2007-525601 Special Table 2003-513130 Gazette Special Table 2003-513131 Gazette Japanese Unexamined Patent Publication No. 1-48821 International Publication WO2004 / 101002
- Multifilament sutures are made by weaving fine fibers and have a non-smooth surface. Therefore, it has the advantage that the knot is difficult to untie and it is highly flexible. However, when the thread is passed through the tissue, the tissue is heavily invaded and the knot lubrication tends to be poor, that is, the friction coefficient is high and the knot tends to be difficult to slip. In addition, there is a problem that the risk of infection is higher than that of monofilament suture because a minute gap (capillary) is generated. In that respect, the monofilament suture has a smooth surface, has little invasion to tissues and is resistant to infection, but has the disadvantages of lacking flexibility and easy loosening of knots.
- the monofilament suture can compensate for the ease of loosening by increasing the number of knots, but as a result, the knot becomes large and there is a concern about the effect on the tissue.
- traditional monofilament sutures are rigid, impliable, and incompliant, so doctors often use strong knots to form tight, tight knots. Tends to narrow down. Therefore, when the thread is tightened with a strong force to form a knot, the sutured tissue may be subjected to an excessive force, which may cause unintended damage to the tissue.
- the suture while suppressing the invasion of the tissue, the suture has high extensibility so that the appropriate tension is uniformly maintained until the tissue self-repairs, the thread itself is pliable, and the knot is difficult to untie.
- the suture is bioabsorbable, easy to form a knot, has a small knot, and is difficult to unravel, there is no need for suture removal or re-incision, and the embedded knot is around in subcutaneous sutures and sutures inside the body.
- the present invention is an object to be solved to provide a bioabsorbable fibrous medical material in which a knot is small and a ligature that is difficult to unravel can be formed even with a weak force. It is also a part of the task to provide a bioabsorbable fibrous medical material having elasticity that can follow the movement of tissue.
- the present inventors have used a bioabsorbable aliphatic polymer as a raw material, and the elongation at break of a molded product obtained by spinning and stretching the bioabsorbable aliphatic polymer is 75%.
- the intermediate tensile elastic modulus is set to a value lower than the initial tensile elastic modulus, the intermediate tensile elastic modulus is set to 400 MPa or less, and the residual strain rate after 100% deformation is set to 70% or less, so that knots are easily formed.
- the intermediate tensile elastic modulus between 0.25% and 10% of strain is lower than the rate, the intermediate tensile elastic modulus is 400 MPa or less, and the residual strain rate after 100% deformation is 70% or less.
- ⁇ 3> The fibrous medical material according to ⁇ 1> or ⁇ 2>, wherein the initial tensile elastic modulus is 480 MPa or less.
- ⁇ 4> The fibrous medical material according to any one of ⁇ 1> to ⁇ 3>, wherein the intermediate tensile elastic modulus is 300 MPa or less.
- ⁇ 5> The fibrous medical material according to any one of ⁇ 1> to ⁇ 4>, wherein the residual strain rate after 100% deformation is 50% or less.
- ⁇ 6> The fibrous medical material according to any one of ⁇ 1> to ⁇ 5>, which has a porosity of 0% to 55%.
- the diameter of the maximum pores (pores, pores, voids, voids, or hollows) measured by microscopic observation of a cross section orthogonal to the fiber axis direction is 100 ⁇ m or less, from ⁇ 1> to ⁇ 6>.
- ⁇ 9> The fibrous medical material according to any one of ⁇ 1> to ⁇ 8>, wherein the bioabsorbable aliphatic polymer is an aliphatic polyester.
- the bioabsorbable aliphatic polymer is polyhydroxyalkanoate.
- the polyhydroxy alkanoate is a polyhydroxy alkanoate composed of two or more types of hydroxy alkanoate units.
- the bioabsorbable fibrous medical material of the present invention has good operability, a knot can be formed with a small force, the knot is small, and ligation that is difficult to unravel is possible.
- FIG. 1 shows a surgical knot.
- FIG. 2 shows one single nodule in the surgical knot.
- FIG. 3 shows a surface SEM photograph of P (3HB-co-4HB) suture 2.5-0.
- P (3HB-co-4HB) means a copolymer of 3-hydroxybutyric acid and 4-hydroxybutyric acid.
- FIG. 4 shows a surgical knot SEM photograph of P (3HB-co-4HB) suture 3-0.
- FIG. 5 shows a surgical knot stereomicrograph of cloudy P (3HB-co-4HB) suture 3-0 size.
- FIG. 6 shows a surgical knot stereomicrograph of colorless P (3HB-co-4HB) suture 3-0 size.
- FIG. 7 shows a surgical knot stereomicrograph of a colorless P (3HB-co-4HB) suture 1 size.
- FIG. 8 shows a surgical knot stereomicrograph of white P (3HB-co-4HB) suture 2.5-0 size.
- FIG. 9 shows a surface SEM photograph of P (4HB) MonoMax® suture 2-0.
- FIG. 10 shows a surgical knot SEM photograph of P (4HB) MonoMax® suture 2-0.
- FIG. 11 shows a surgical knot stereomicrograph of P (4HB) MonoMax® suture 2-0.
- FIG. 12 shows a surgical knot stereomicrograph of PDSII suture 3-0.
- FIG. 13 shows a surgical knot stereomicrograph of PDSII suture 4-0.
- FIG. 14 shows the buffer immersion period of the P (3HB-co-4HB) suture and the state of tensile fracture strength and fracture elongation.
- FIG. 14 shows the buffer immersion period of the P (3HB-co-4HB) suture and the state of tensile fracture strength and fracture elongation.
- FIG. 15 shows the state of the buffer immersion period of the P (3HB-co-4HB) suture and the decrease in the weight average molecular weight Mw.
- FIG. 16 shows the period of implantation of P (3HB-co-4HB) suture in a rat and the state of tensile fracture strength and fracture elongation.
- FIG. 17 shows how the P (3HB-co-4HB) suture was implanted in the rat body and the weight average molecular weight Mw decreased.
- FIG. 18 shows the state of the sutured portion 7 weeks after suturing with a bioabsorbable suture to a micromini pig.
- FIG. 19 shows HE staining of P (3HB-co-4HB) suture suture tissue.
- FIG. 20 shows HE staining of polyglyconate (PGA) suture suture tissue.
- FIG. 21 shows HE staining of the P (4HB) suture suture tissue.
- FIG. 22 shows an example of the stress-strain curve of the tensile test until the fiber of Example 1 breaks (measured at a chuck distance of 1 cm).
- FIG. 23 shows an example of the stress-strain curve of the tensile test until the fiber of Example 2 breaks.
- FIG. 24 shows an example of the stress-strain curve of the tensile test up to the breakage of the fiber of Example 3.
- FIG. 25 shows an example of the stress-strain curve of the tensile test until the fiber of Example 4 breaks.
- FIG. 26 shows a stress-strain curve in a cycle test up to 100% strain of P (3HB-co-4HB) suture 3 cm of Example 1.
- FIG. 27 shows a stress-strain curve in a cycle test up to 100% strain of P (3HB-co-4HB) suture 3 cm of Example 2.
- FIG. 28 shows a stress-strain curve in a cycle test up to 100% strain of P (3HB-co-4HB) suture 3 cm of Example 3.
- FIG. 29 shows a stress-strain curve in a cycle test up to 100% strain of P (3HB-co-4HB) suture 3 cm of Example 4.
- FIG. 30 shows a stress-strain curve in a cycle test up to 50% strain of P (3HB-co-4HB) suture 12 cm of Example 4.
- FIG. 31 shows an example of a cross-sectional view of the thread of the first embodiment.
- FIG. 32 shows an example of a cross-sectional view of the thread of the first embodiment.
- FIG. 33 shows an example of a cross-sectional view of the thread of the second embodiment.
- FIG. 34 shows an example of a cross-sectional view of the thread of Example 3.
- FIG. 35 shows a surface SEM photograph of the P (3HB-co-4HB) suture of Example 4.
- FIG. 36 shows a cross-sectional SEM photograph of the P (3HB-co-4HB) suture of Example 4.
- FIG. 37 shows a surgical knot SEM photograph of the P (3HB-co-4HB) suture of Example 4.
- the bioabsorbable fibrous medical material of the present invention comprises a molded product obtained by spinning and stretching a bioabsorbable aliphatic polymer.
- Bioabsorbency is a property that, after being placed inside or outside the living body, is naturally decomposed by a hydrolysis reaction or an enzymatic reaction, and disappears by metabolism or excretion of the decomposed product.
- bioabsorbability means having local disappearance and extracorporeal excretion.
- Locally disappearing means that it is decomposed within a predetermined number of days (for example, 360 days, 240 days, 120 days, 60 days, or 30 days) and disappears from the application local area under a physiological environment.
- a sample corresponding to at least 1% by mass polymer concentration is placed in a physiological saline solution (pH 4 to 8) at 37 ° C., mixed with a rotor mixer, and when visually observed, the shape of the sample becomes visible within a predetermined number of days.
- the sample has local disappearance, or if the sample is implanted in the body and the sample decomposes and disappears within a predetermined number of days, the sample has local disappearance.
- the in vitro excretion property means that, after the material disappears from the application site, the material can be excreted from the living body without being excessively accumulated in an organ such as a kidney or a liver, for example. If the sample is decomposed to a molecular weight of 70,000 or less, and in some cases 40,000 or less, the sample can be determined to have extracorporeal excretion, or after the material disappears from the application site, a partial decomposition product or a small molecule. It may become a compound and be further metabolized to water or carbon dioxide for use in the body or excreted to the outside.
- aliphatic polymer examples include polyamides such as aliphatic polyester and nylon, polyolefins such as polystyrene, polyvinyl alcohol, poly (ethylene-co-vinyl acetate) and poly (hydroxyethyl methacrylate), and acid-modified polyolefin (maleic anhydride graft).
- polyamides such as aliphatic polyester and nylon
- polyolefins such as polystyrene, polyvinyl alcohol, poly (ethylene-co-vinyl acetate) and poly (hydroxyethyl methacrylate)
- acid-modified polyolefin maleic anhydride graft
- ethylene-vinyl compound copolymer ethylene-vinyl acetate copolymer, ethylene-vinyl alcohol copolymer, ethylene-vinyl chloride copolymer, ethylene- (meth) acrylic acid co-polymer
- examples thereof include polymers and ion-crosslinked products thereof (ionomers), ethylene-methyl methacrylate copolymers, etc.), polyvinyl compounds (methyl polyacrylate, methyl polymethacrylate, etc.), polycarbonates, polyethers (polyethylene oxide, etc.), and the like.
- aliphatic polyester is preferable in view of bioabsorbability.
- bioabsorbable aliphatic polyesters include polyglycolic acid, polylactic acid (D, L, DL form), poly ⁇ -caprolactone, polyhydroxybutyrate, polyhydroxyvalerate, polyorthoester, polyhydroxyhexanoate, and poly.
- the monomer unit in the copolymer includes glycolic acid, lactic acid (D, L, DL form), ⁇ -caprolactone, hydroxybutyrate, hydroxyvalerate, orthoester, hydroxyhexanoate, butylene succinate, and hydroxy other than the above.
- examples thereof include alkanoate, 1,3-dioxane-2-one (trimethylene carbonate), p-dioxanone, and the like, but the present invention is not particularly limited.
- the bioabsorbable aliphatic polymer polyhydroxyalkanoate is particularly preferable.
- the polyhydroxyalkanoate used in the present invention is biodegradable and bioabsorbable, and can have repetitive elasticity (property to repeatedly expand and contract).
- the polymerization unit preferably contains a 3-hydroxybutyrate unit.
- the polymerization unit preferably contains 4-hydroxybutyrate (sometimes referred to as 4HB) units in addition to 3-hydroxybutyrate (sometimes referred to as 3HB) units.
- the weight average molecular weight of polyhydroxyalkanoate measured by polystyrene conversion gel permeation chromatography is preferably 100,000 or more, more preferably 200,000 or more, and further may be 300,000 or more, 400,000 or more, or 500,000 or more.
- the weight average molecular weight measured by polystyrene conversion gel permeation chromatography is 600,000 or more, 700,000 or more, 800,000 or more, 900,000 or more, 1 million or more, 1.1 million or more, 1.2 million or more, 1.3 million or more, 1.4 million or more, 150. It may be 10,000 or more, 2 million or more, 3 million or more, or 4 million or more.
- the upper limit of the weight average molecular weight measured by polystyrene conversion gel permeation chromatography is not particularly limited, but is generally 20 million or less, 10 million or less, 8 million or less, 7 million or less, 6 million or less, 5 million or less, It may be 4 million or less, or 3 million or less.
- the weight average molecular weight measured by polystyrene-equivalent gel permeation chromatography is 400,000 or more and 2.5 million or less, considering that the molecular weight decreases due to thermal decomposition and the viscosity at the time of melting does not become too high. It is more preferably 500,000 or more and 2.2 million or less, and further preferably 600,000 or more and 2 million or less.
- the polyhydroxyalkanoate used in the present invention preferably contains 3-hydroxybutyrate (3HB) units as the polymerization unit, and more preferably 3-hydroxybutyrate (3HB) units and 4-hydroxybutyrate (4HB). Including units.
- the polymerization unit may contain other polymerization units other than 3HB units and 4HB units.
- Other polymerization units described above include lactate (LA), glycolate (GA), 3-hydroxypropionate (3HP), 3-hydroxyvalerate (3HV), 4-hydroxyvalerate (4HV), 5-.
- Hydroxyvalerate (5HV), 4-hydroxyhexanoate (4HH), 5-hydroxyhexanoate (5HH), 6-hydroxyhexanoate (6HH), or 3-hydroxyhexanoate (3HH), or carbon Hydroxy alkanoates of several 7 or more can be mentioned.
- a ternary copolymer or a multiplex copolymer containing the above-mentioned polymerization unit can be used instead of the binary copolymer.
- the above-mentioned copolymer composition can be mixed (blended) at an arbitrary ratio and used.
- 3-hydroxybutyrate unit and the 4-hydroxybutyrate unit are represented by the following equations, respectively.
- 4-Hydroxybutyrate unit: -OCH 2 CH 2 CH 2 C ( O)-
- the ratio of 4-hydroxybutyrate units to all monomer units is preferably 5 mol% to 40 mol%, more preferably 10 mol%. It is about 40 mol%, more preferably 10 mol% to 30 mol%.
- the ratio of 4-hydroxybutyrate units to all monomer units is 5 mol% or more, 6 mol% or more, 7 mol% or more, 8 mol% or more, 9 mol% or more, 10 mol% or more, 11 mol% or more, 12 It may be mol% or more, 13 mol% or more, 14 mol% or more, 15 mol% or more, or 16 mol% or more, and may be 17 mol% or more, 18 mol% or more, 19 mol% or more, 20 mol% or more.
- the ratio of 4-hydroxybutyrate units to all monomer units is 40 mol% or less, 39 mol% or less, 38 mol% or less, 37 mol% or less, 36 mol% or less, 35 mol% or less, 34 mol% or less, 33.
- the polyhydroxyalkanoate of the present invention may be any of a random polymer, a block polymer, an alternating polymer, or a graft polymer, but is preferably a random polymer.
- a fermentation synthesis method (biosynthesis method) and a chemical synthesis method.
- the method for producing the polyhydroxy alkanoate used in the present invention may be a fermentation synthesis method (biosynthesis method) or a chemical synthesis method, but in order to obtain a polyhydroxy alkanoate having a large molecular weight, a fermentation synthesis method (biosynthesis method) may be used. Is preferable.
- the chemical synthesis method is a method for chemically synthesizing polyhydroxyalkanoates according to a normal organic synthesis method.
- a chemical synthesis method specifically, P (3HB-co-6HHx) is synthesized by ring-opening polymerization of fatty acid lactones such as (R) - ⁇ -butyrolactone and ⁇ -caprolactone under a catalyst. (Abe et al., Macromolecules, 28, 7630 (1995)), P (3HB-co-4HB) by ring-opening polymerization of fatty acid lactones such as (R) - ⁇ -butyrolactone and ⁇ -butyrolactone under a catalyst. ) Etc.
- Fermentation synthesis method is a method for biosynthesizing PHAs according to the usual culture engineering method.
- the 4HB-containing polyhydroxyalkanoate used in the present invention uses a microorganism capable of producing P (3HB) as a carbon source and ⁇ -caprolactone (also known as 6-hexanoate). Lactone), or a saponified product thereof, 6-hydroxyhexanoate or a salt thereof, ⁇ -butyrolactone, or a saponified product thereof, 4-hydroxybutyrate or a salt thereof, 4-chlorobutyrate, 4-bromobutyrate, etc.
- P (3HB-co-4HB) copolymers having various 4HB ratios can be produced by appropriately changing the type of carbon source used and the supply ratio.
- the PHAs thus obtained by the enzymatic reaction of the organism do not contain a metal catalyst such as tin octylate, which is advantageous in this sense.
- a genetically modified bacterium may be used, or a non-genetically modified bacterium may be used.
- a method for extracting polyhydroxyalkanoate from cells is a solvent extraction method in which extraction is performed using a halogenated hydrocarbon solvent such as chloroform, and the mixture is precipitated with a poor solvent such as hexane or methanol.
- a water-based extraction method may be used as described in Japanese Patent Publication No. 04-061638, Japanese Patent Laid-Open No. 07-177894, WO2004029266.
- Ates may be depyrogenized with peroxides as described in US6245537.
- the molecular weight of polyhydroxy alkanoate can be measured by the gel permeation chromatography method as follows. Chloroform is added so that the polyhydroxyalkanoate is about 0.5 mg / ml, and the mixture is dissolved at 60 ° C. for 2 to 4 hours, returned to room temperature, and filtered through a PTFE filter having a pore size of 0.2 ⁇ m to remove insoluble matters. , As a measurement sample.
- the GPC conditions are as follows.
- the method for producing a molded product (stretchable suture, etc.) from a bioabsorbable aliphatic polymer such as polyhydroxyalkanoate is that the bioabsorbable aliphatic polymer such as polyhydroxyalkanoate, which has a slow crystallization rate after melting, is amorphous. It is in a state where solidification or crystallization has progressed from the state to the extent that it can be stretched, and is not particularly limited except that a stretching operation is performed in a state where fine microcrystals are present to give elasticity, for example.
- Japanese Patent Application No. 2019-90739, Japanese Patent Application No. 2020-096144, Japanese Patent Application No. 2020-096145 can be used to manufacture a molded product (stretchable suture, etc.).
- microcrystals are formed by taking an appropriate waiting time at room temperature or a temperature at which crystallization progresses in order to proceed with crystallization.
- the stretchable suture can be produced by stretching in a state or by melt-molding in a partially melted state and stretching in a state in which microcrystals remain.
- an additive may be further added as long as the effect of the present invention is not impaired.
- Additives include antioxidants, heat stabilizers (eg, hindered phenols, hydroquinones, phosphites and their substitutions, etc.), UV absorbers (eg, resorcinol, salicylate), anticoloring agents (phosphoric acid).
- antioxidants eg, heat stabilizers (eg, hindered phenols, hydroquinones, phosphites and their substitutions, etc.)
- UV absorbers eg, resorcinol, salicylate
- anticoloring agents phosphoric acid
- the method of blending the additive with the bioabsorbable aliphatic polymer such as polyhydroxy alkanoate is not particularly limited, and the chemistry of the bioabsorbable aliphatic polymer such as dry blend, solution blending, and polyhydroxy alkanoate is not particularly limited. Addition at the time of polymerization and the like can be mentioned.
- Bioabsorbable aliphatic polymers such as polyhydroxy alkanoates are known melt moldings such as injection molding, injection compression molding, compression molding, extrusion molding (melt extrusion molding), blow molding, press molding and spinning (melt extrusion spinning). It can be performed. It is preferably spinning (melt extrusion spinning, partially melt extrusion spinning), and is preferably accompanied by a stretching operation that imparts elasticity.
- melt extrusion spinning a small laboratory-level plunger-type melt extruder can be used, but large equipment such as industrially used uniaxial screw type spinning equipment and biaxial screw type spinning equipment is used. You can also do it.
- the number of times of melt molding is not particularly limited, but preferably it can be performed only once.
- a heat treatment mediated by a gas, liquid or solid may be performed. It does not have to be (Japanese Patent Application No. 2020-96145).
- the step of solidifying after melting can be performed in a molding die, in air, or in a liquid (for example, in water). That is, the bioabsorbable aliphatic polymer such as molten polyhydroxyalkanoate can be solidified by cooling in a molding die, in air, or in water. Preferably, the bioabsorbable aliphatic polymer such as molten polyhydroxyalkanoate can be cooled in a molding die or in the air. When cooling in air, the temperature and humidity of the air can be controlled, but cooling at room temperature without special temperature control may be used.
- a gas in which the composition of components in the air nitrogen, oxygen, carbon dioxide, water concentration, etc.
- a rare gas helium, neon, argon, etc.
- the temperature and components water, alcohols, glycerol, etc.
- Bioabsorbable aliphatic polymers such as polyhydroxyalkanoates in a molten and amorphous state are in the form of a solution at a temperature above the glass transition point and have a slow crystallization rate. Although it will be cut, if crystallization is partially advanced and stretching is performed in a solidified state, the polymer chains can be oriented and stretched.
- Examples of the molded product of the bioabsorbable aliphatic polymer such as polyhydroxyalkanoate produced by the method of the present invention include various fibers such as drawn yarn and super drawn yarn, and one example is suture.
- the suture may be either a monofilament suture made of a single fiber or a multifilament suture made of a plurality of fibers.
- the thread diameter of the suture is not particularly limited, but is generally 1 mm or less, 0.8 mm or less, 0.6 mm or less, 0.5 mm or less, 0.4 mm or less, or 0. It may be 0.3 mm or less, and the lower limit of the thread diameter is generally 0.001 mm or more.
- the obtained fibers may be woven and knitted and processed into a mesh shape, or may be woven into a three-dimensional structure. Furthermore, composite fibers and three-dimensional composites can be created by combining with other fibers and materials.
- the fiber extruded by a method such as melt spinning or partial melt spinning is stretched, and the ⁇ crystal forming the lamella crystal in the fiber is along the fiber direction. It is desirable that the lamella consisting of ⁇ crystals is laminated in the direction perpendicular to the fiber axis, and the amorphous layer and tie molecules between the lamella and the lamella are deformed by tension, and ⁇ is a stretch-cut plane zigzag structure.
- the obtained fiber then exhibits elasticity without heat treatment (annealing treatment) at a temperature equal to or higher than the glass transition point and at a temperature at which the fiber does not melt, but heat treatment may be performed.
- the elongation at break of the fibrous medical material of the present invention is 75% or more, preferably 100% or more, more preferably 150% or more, still more preferably 180% or more, and particularly preferably 200% or more. Is.
- the upper limit of elongation at break is not particularly limited, but is generally 1000% or less.
- the elongation at break of the fibrous medical material is not particularly limited, but can be measured by, for example, the following method. Using a fibrous medical material with a length of 3 cm and a fiber diameter of about 0.1 to 0.4 mm and a tensile tester AGS-50NX (manufactured by Shimadzu Corporation), the temperature is 23 ° C and the test speed is 10 mm / The elongation at break can be measured by performing a tensile test until the fiber breaks under the condition of an initial length (distance between chucks) of 10 mm. When a sample of sufficient length can be used, it is preferable to secure a distance between chucks of 10 cm for the test.
- the fibrous medical material of the present invention may or may not have voids.
- the fibrous medical material of the present invention has voids.
- the range of porosity is not particularly limited, but is preferably 5 to 55%, more preferably 10 to 50%, and even more preferably 20 to 20. It is 45%.
- the method for measuring the void ratio is not particularly limited, but for example, the void ratio can be measured by observing a cross section of a fibrous medical material with a scanning electron microscope and performing image analysis of the cross section.
- Software such as ImageJ (an image processing program developed by the National Institutes of Health) may be used for image analysis of cross-sectional views, and the present invention is not limited to this.
- the initial tensile modulus of the fibrous medical material of the present invention is preferably 1000 MPa or less, more preferably 600 MPa or less. Yes, it is even more preferably 480 MPa or less, further preferably 400 MPa or less, even more preferably 300 MPa or less, and particularly preferably 200 MPa or less.
- the lower limit of the initial tensile elastic modulus is not particularly limited, but is generally 5 MPa or more, and may be 10 MPa or more.
- the intermediate tensile elastic modulus is set to a value lower than the initial tensile elastic modulus.
- the intermediate tensile elastic modulus of the fibrous medical material of the present invention is preferably 400 MPa or less, more preferably 300 MPa or less, still more preferably 250 MPa or less, still more preferably 200 MPa or less, and particularly preferably 150 MPa or less. It is as follows.
- the lower limit of the intermediate tensile elastic modulus is not particularly limited, but is generally 5 MPa or more, and may be 10 MPa or more.
- the elastic modulus can be measured using, for example, a tensile tester.
- the distance between the chucks of the tensile tester shall be 1 to 10 cm, and it shall be fixed to the fixing device using 1 cm above and below.
- the tensile speed is 10 mm / min.
- the initial modulus of tensile modulus can be calculated from the slope of the stress-strain curve between 0.05% and 0.25% strain, and the intermediate modulus of tensile modulus is, for example, between 0.25% and 10% strain. It can be calculated from the slope of the stress-strain curve.
- the strain section used for the intermediate tensile modulus is a strain section larger than the strain section used for calculating the initial tensile modulus and is close to the strain used for calculating the initial tensile modulus.
- the tensile modulus at a strain of 0.25% to 10% is defined as the intermediate tensile modulus.
- the residual strain rate after 100% deformation of the fibrous medical material of the present invention is 70% or less, preferably 60% or less, and more preferably 50% or less.
- the lower limit of the residual strain rate after 100% deformation is not particularly limited, but is generally 5% or more, and may be 10% or more, 20% or more, or 30% or more.
- the residual strain rate after 50% deformation of the fibrous medical material of the present invention is preferably 40% or less, more preferably 30% or less, still more preferably 20% or less.
- the lower limit of the residual strain rate after 50% deformation is not particularly limited, but is generally 5% or more, and may be 10% or more, 20% or more, or 30% or more.
- a fiber with a length of 3 cm was cycle-tested using a tensile tester under the conditions of a temperature of 23 ° C. and an initial length of 10 mm, and a strain of 100% (initial length) at a tensile speed of 20 mm / min.
- a 12 cm long fiber is cycle tested using a tensile tester at a temperature of 23 ° C. and an initial length of 100 mm, and a strain of 50% (1 of the initial length) at a tensile speed of 100 mm / min. .
- the second time when the operation of extending to 150 mm, which is 5 times the length, that is, the displacement length of 50 mm), then moving the gripper to the original length at the same speed, and contracting the fibers is repeated.
- the chuck distance is Y
- the initial strain is a%
- the displacement length at the first time point of the second extension is X a .
- the diameter of the maximum pores (pores, pores, pores, voids, voids, or hollows) measured by microscopic observation of a cross section orthogonal to the fiber axis direction is preferably 100 ⁇ m. It is less than or equal to, more preferably 75 ⁇ m or less, still more preferably 50 ⁇ m or less.
- the lower limit of the diameter of the maximum pore (pore, pore, pore, void, void, or hollow) is not particularly limited, but is generally 0.1 ⁇ m or more, and may be 0.2 ⁇ m or more or 1 ⁇ m or more. ..
- the number of holes per cross section is not limited, and may be one or a plurality of holes, and each hole may be independent or connected.
- the diameter of the maximum pores of the fibrous medical material can be measured, for example, by the following method.
- An image in which the pores inside the fiber can be identified was taken using a scanning electron microscope or the like, and the image was analyzed by ImageJ (an image processing program developed by the National Institutes of Health) to calculate the diameter of the pores. ..
- the cross-sectional shape of the fibrous medical material of the present invention does not necessarily have to be circular, and examples thereof include an ellipse, a polygon, a free curve, and a combination thereof. If it is circular, the thread width may be measured for the thread diameter, but if it is elliptical, for example, the ratio of the major axis length to the minor axis length (major axis length / minor axis length) is 1.0 or more. However, it may be 1.1 or more, or 1.2 or more.
- the upper limit of the ratio of the major axis length to the minor axis length (major axis length / minor axis length) is not particularly limited, but is generally 3.0 or less, and may be 2.0 or less.
- the ratio of the minor axis length to the major axis length (major axis length / minor axis length) in the cross section of the fibrous medical material in the width direction can be measured by the following method.
- the minor axis length and the major axis length were measured using a dial thickness gauge (Teklock Co., Ltd., SM-1201L type, scale 0.001 mm). Measurements were made at three points (1/4, 1/2, 3/4 of the total length) of the thread to be measured in the direction of the fiber having the thinnest thickness, and the average value was taken as the minor axis length.
- the length of the major axis is lightly deformed into a U shape so that the fibers do not have creases, and the major axis is measured so that it is perpendicular to the gauges.
- the major axis length was measured at 1/4, 1/2, 3/4), and the average value was taken as the major axis length.
- the knot of the suture and the side surface or cross section of the suture were observed with an electron microscope.
- a suture cut out with a razor to an appropriate size was placed on a sample table and coated with a thin film of osmium using an osmium plasma coater, NL-OPC80NS (Nippon Laser Electronics Co., Ltd.).
- Observation was performed using a field emission scanning electron microscope JSM-7610F (JEOL Ltd.) under the condition of an acceleration voltage of 5.0 kV.
- the suture cut out with a razor to an appropriate size is placed on the sample table, and platinum (Pt) is vapor-deposited using ion sputtering and E1045 (Hitachi High-Technologies Corporation). bottom. Then, it was observed under the condition of an acceleration voltage of 5.0 kV using a thermoelectron gun type low vacuum scanning electron microscope TM4000plus (Hitachi High-Technologies Corporation).
- Example 1 Using a plunger-type melt extrusion spinning device IMC-19F8 (Imoto Seisakusho Co., Ltd.) using P (3HB-co-14.8 mol% 4HB) with a weight average molecular weight Mw of 970,000, about 5 g to the cylinder. PHA is put in, a die with a die diameter of 1 mm is used, melt-extruded by heating at 170 ° C. for 5 minutes (extrusion speed 1 mm / sec), and the threads do not overlap at a speed of 5 rpm on a bobbin with a diameter of 114 mm. I wound it up like this.
- a whitened elastic monofilament yarn was produced.
- the cross section of the P (3HB-co-4HB) yarn is not necessarily circular but elliptical or flat, the minor axis length and major axis length are measured, and the cross-sectional area is calculated as an ellipse for the tensile test. Used for evaluation.
- the cross section of the yarn of Example 1 in the present specification is a shape in which a molten polymer in an amorphous state is wound up and is not circular but crushed by hot pin stretching, and the yarn diameter in Table 1 is a short axis length. The average length of the thread and the length of the long axis is displayed as the thread diameter.
- the thermal pin stretching is a method of stretching while pressing a fiber against a heated metal pin.
- a knot is tied with a surgical knot on an artificial skin sheet made of a soft elastomer, and the knot is knotted with a force gauge (Standard Model Digital Force Gauge: ZTS-100N, IMADA CO., LTD) with a force of about 5N. Tightened.
- the knot was photographed with a camera (DP26, OLYMPUS.CO., LTD) attached to a stereomicroscope (SZX7, OLYMPUS.CO., LTD), and the knot was taken with image analysis software (cellSens, OLYMPUS.CO., LTD).
- the size peripheral length of the knot, area surrounded by the peripheral length was analyzed (Fig. 5).
- the average value of the short-direction thread diameter of the slightly flat suture made of P (3HB-co-14.8 mol% 4HB) of Example 1 was 0.205 mm, and the long-direction thread diameter was 0.352 mm.
- the average yarn diameter in the major direction was 0.281 mm.
- the size of the surgical knot tightened with a force of 5N had an average perimeter of 3.46 mm, and the area of the area surrounded by the perimeter was 0.688 mm 2 .
- the average value of [area surrounded by perimeter / thread diameter] as an index of knot size was 2.45.
- the weight average molecular weight Mw of PHA after spinning was 320,000.
- Figure 4 shows the results of observing the state of the surgical knot with a scanning electron microscope.
- an optical micrograph of the surgical knot used for calculating the numerical value related to the size of the knot is shown in FIG.
- Example 2 Plunger (piston) type melt viscosity measuring device Flow Tester CFT-500D (Shimadzu Corporation) is used as a melt spinning device using P (3HB-co-15.3 mol% 4HB) with a weight average molecular weight of Mw 700,000. bottom.
- the weight used was 2.5 kg, and a total load of 3 kg was applied with the weight and fishing tackle, and the polymer was extruded with an extrusion pressure of 2.942 MPa applied to the piston cross-sectional area of 1 cm 2 due to the increase in force due to the pulley (pulley). ..
- This PHA has a melting peak from 85 ° C. to around 155 ° C. by differential scanning calorimetry (DSC), and at a melting temperature of 150 ° C., it is not a complete melting but a partial melting.
- the average value of the thread diameter of the suture made of P (3HB-co-15.3 mol% 4HB) of Example 2 is 0.207 mm (almost circular, major axis length / minor axis length ⁇ 1.2).
- USP (United States Pharmacopeia) standard has a thread diameter corresponding to 3-0.
- the size of the surgical knot tightened with a force of about 5 N had an average perimeter of 3.61 mm and an average area of the area surrounded by the perimeter was 0.744 mm 2 .
- the average value of [area surrounded by perimeter / thread diameter] as an index of knot size was 3.59, which was slightly larger than that of Example 1.
- the weight average molecular weight Mw of PHA after spinning was 470,000.
- Example 3 Using P (3HB-co-15.3 mol% 4HB) with a weight average molecular weight of Mw 750,000, a plunger (piston) type melt viscosity measuring device Flow Tester CFT-500D (Shimadzu Corporation) is used as a melt spinning device. bottom.
- the piston diameter is 11.282 mm (piston cross-sectional area 1 cm 2 ), about 1 g of PHA is charged into the cylinder, a die (nozzle) with a hole diameter of 1 mm and a hole length of 1 mm is used, and after a residual heat time of 120 seconds at 170 ° C. It was melt-spun.
- the weight used was 2.5 kg, and a total load of 3 kg was applied with the weight and the fishing tackle, and the polymer was extruded at an extrusion pressure of 2.942 MPa in the same manner as in Example 2.
- This PHA has a melting peak from 60 ° C to around 170 ° C by differential scanning calorimetry (DSC), and it is considered that the PHA is almost completely melted at a melting temperature of 170 ° C.
- the extruded fiber is hung in a straight line without being wound around the bobbin, allowed to solidify for 30 minutes at room temperature (23 ° C), partially promoted crystallization, and then manually stretched about 5 times.
- a transparent stretchable monofilament yarn was prepared by stretching at a magnification, and the yarn diameter was measured in the same manner as in Example 2. Using this one-size thread, a knot was formed with a surgical knot in the same manner as in Example 1, and the size of the knot was analyzed with a stereomicroscope (FIG. 7). The results are shown in Table 3 (Example 3).
- the average value of the thread diameter of the suture made of P (3HB-co-15.3 mol% 4HB) of Example 3 is 0.406 mm (almost circular, major axis length / minor axis length ⁇ 1.2). , The thread diameter corresponds to 1 in the USP standard.
- the size of the surgical knot tightened with a force of about 5 N had an average perimeter of 4.87 mm and an average area of the area surrounded by the perimeter was 1.35 mm 2 .
- the average value of [area surrounded by peripheral length / thread diameter] as an index of knot size was 3.33, which was equivalent to that of Example 2.
- the weight average molecular weight Mw of PHA after spinning was 450,000.
- the knot of the elastic yarn obtained from P (3HB-co-4HB) shown in Examples 1, 2 and 3 has no gap between the yarns and is firmly fixed.
- [Area surrounded by perimeter / thread diameter] which was used as an index of the size of the knot, was at almost the same level in Example 2 and Example 3, although it was slightly smaller in Example 1. rice field.
- Example 4 The yarns of Examples 1 to 3 were yarns produced by manual (manual) stretching using a small laboratory-level plunger-type melt extruder. Extruding a P (3HB-co-16.0 mol% 4HB) copolymer with a weight average molecular weight of Mw 560,000 using an industrially used uniaxial screw type spinning / drawing device with a diameter of 16 mm and a die with a diameter of 1 mm. The temperature range of the machine was set to 145 to 160 ° C., partial melt spinning was performed, and the mixture was extruded at a rate of 0.9 g / min.
- Fibers extruded with a mixture of undissolved crystals and fluidized polymer are once passed through water at 50 ° C, then wound and stretched in air at room temperature of 23 ° C with a multi-step roller (stretching ratio).
- the yarn diameter was measured in the same manner as in Example 2.
- a knot was formed with a surgical knot in the same manner as in Example 1, and the size of the knot was analyzed with a stereomicroscope (FIG. 8). The results are shown in Table 4 (Example 4).
- the average value of the thread diameter of the thread used for evaluating the size of the knot of the suture made of P (3HB-co-16.0 mol% 4HB) of Example 4 is 0.256 mm (almost circular, major axis length /). The minor axis length was ⁇ 1.2), and the thread diameter was equivalent to 2.5-0 in the USP standard.
- the size of the surgical knot tightened with a force of about 5 N had an average circumference of 4.03 mm and an average area of the area surrounded by the circumference was 0.843 mm 2 .
- the average value of [area surrounded by peripheral diameter / thread diameter] as an index of the size of the knot was 3.29, which was equivalent to that of Examples 2 and 3.
- the weight average molecular weight Mw of PHA after spinning was 350,000.
- the knots of the elastic yarns obtained from P (3HB-co-4HB) shown in Examples 1, 2, 3 and 4 are yarns and yarns as shown in FIGS. 5, 6, 7 and 8. It can be seen that there is no gap in the knot, and the knot size index of Example 1 [Area surrounded by the peripheral diameter / thread diameter] is [Enclosed by the peripheral diameter] of the other examples. Area / thread diameter], but at the same level in Examples 2, 3 and 4.
- ⁇ Comparative Example 1> B consisting of P (4HB).
- the procedure was the same as in Example 2 except that the MonoMax suture (2-0 size) manufactured by BRAUN was used, and the thread surface was observed with a scanning electron microscope (FIG. 9), and the surgical knot was observed with a scanning electron microscope (FIG. 10).
- the circumference of the knot and the area surrounded by the circumference were analyzed (FIG. 11), and the area / thread diameter surrounded by the circumference was calculated. The results are shown in Table 5 (Comparative Example 1).
- the average thread diameter of the MonoMax suture (2-0 size) made of P (4HB) in Comparative Example 1 was 0.346 mm, which was certainly equivalent to 2-0 in the USP standard.
- the size of the surgical knot tightened with a force of 5N had an average perimeter of 6.91 mm and an average area of the area surrounded by the perimeter was 2.60 mm 2 .
- An optical micrograph of the surgical knot used for the calculation is shown in FIG.
- the average value of [area surrounded by perimeter / thread diameter] as an index of knot size was 7.50, which was clearly larger than that of Examples 1 to 4.
- the average value of the thread diameter of the PDSII suture (3-0 size) made of polydioxanone of Comparative Example 2 is 0.291 mm, but the medical device attachment states that the PDS suture is within the USP standard except for the diameter, and the thread.
- the upper limit of the standard value of the diameter is set to be larger than that of USP, and it is described that 3-0 is larger than the standard value by 0.056 mm at the maximum. Therefore, when 0.056 mm is subtracted from 0.291 mm, it becomes 0.235 mm, which corresponds to the USP3-0 size, but the actual yarn diameter is 0.291 mm on average.
- the size of the surgical knot tightened with a force of 5N had an average perimeter of 6.48 mm and an average area of the plane surrounded by the perimeter was 2.28 mm 2 . An optical micrograph of the surgical knot used for the calculation is shown in FIG.
- the average value of [area surrounded by peripheral length / thread diameter] as an index of the knot size of the PDSII suture used in Comparative Example 2 was 7.82, and P (3HB-) of Examples 1 to 4 was used. Although it was clearly larger than the co-4HB) suture, it was almost the same as the MonoMax suture, which is the P (4HB) suture of Comparative Example 1.
- the average value of the thread diameter of the PDSII suture (4-0 size) made of polydioxanone of Comparative Example 3 is 0.163 mm, but the medical device attachment states that the PDS suture is within the USP standard except for the diameter, and the thread.
- the upper limit of the standard value of the diameter is set to be larger than that of USP, and it is stated that 4-0 is 0.029 mm larger than the standard value at the maximum.
- the measured suture thread diameter of Comparative Example 3 was 0.163 mm, which was within the USP4-0 size.
- the size of the surgical knot tightened with a force of 5N had an average perimeter of 4.77 mm, and the average area of the plane surrounded by the perimeter was 1.20 mm 2 .
- FIG. 1 An optical micrograph of the surgical knot used for the calculation is shown in FIG.
- the average value of [area surrounded by peripheral length / thread diameter] as an index of the size of the knot of the PDSII suture used in Comparative Example 3 was 7.33, and P (3HB-) of Examples 1 to 4 was used. While clearly larger than the co-4HB) suture, the MonoMax suture (2-0 size), which is the P (4HB) suture of Comparative Example 1, and the PDSII suture (3-0 size) of Comparative Example 2 ) was almost the same level.
- the circumference of the knot of one size (average thread diameter 0.406 mm) P (3HB-co-4HB) suture of Example 3 is 4.86 mm.
- the Knot circumference length of the 2-0 size (average thread diameter 0.346 mm) of the MonoMax suture of Example 1 is 6.91 mm
- the 3-0 size (average thread diameter 0.291 mm) of the PDSII suture of Comparative Example 2 The fact that the knot circumference is smaller than 6.48 mm and is equivalent to the 4-0 size (average thread diameter 0.163 mm) knot circumference of the PDSII suture of Comparative Example 3 is the elasticity.
- the knot of the P (3HB-co-4HB) suture which is the suture, is smaller than the other resorbable sutures. From the results of Examples 1 to 4 and Comparative Examples 1 to 3, the knot of the P (3HB-co-4HB) suture has a knot more than that of the existing absorbent monofilament sutures such as MonoMax suture and PDSII suture. It was suggested that it was small.
- a suture was wrapped around a plastic tube with a diameter of 2.9 cm, tightly tied with a surgical knot (Fig. 1), and cut on the opposite side of the knot to create a single thread. Both sides of them were attached to a tensile tester and pulled at a speed of 100 mm / min. If multiple sets of 10 samples were prepared and even one of the 10 samples was solved at the Knot part, a single nodule was added on the surgical knot (Fig. 2), and a single nodule was added until there was nothing that could be solved at the Knot part. .. The number of single nodules added until all 10 samples could not be solved in the Knot part was defined as Knot Security factor (KSF).
- KSF Knot Security factor
- KSF can be exemplified as follows.
- KSF 0 Surgical knots alone cannot be untied with respect to tension and there are no additional single knots.
- KSF 1 There is only one additional single nodule in the surgical knot and it cannot be unraveled with respect to tension.
- KSF 3 There are only three additional single nodules in the surgical knot and they cannot be unraveled with respect to tension.
- KSF n There are only n additional single nodules in the surgical knot and it cannot be unraveled with respect to tension.
- the KSF of the MonoMax suture 3-0, 2-0, 0 standard consisting of P (4HB) shown in Comparative Example 1 is evaluated as 2, 2, 3 respectively (International Journal of Polymer Science, Vol. 2012, respectively). Article ID216137).
- the KSF of the PDSII sutures (3-0, 4-0) consisting of polydioxanone and the PDSII sutures of 2-0 shown in Comparative Examples 2 and 3 all added three additional single nodules to the surgical knot. By doing so, it becomes unsolvable with respect to tension, and it is evaluated as KSF 3, and it can be judged that it is excellent (excellent) nodular stability.
- KSF of P (3HB-co-4HB) elastic monofilament suture is other sutures such as other bioabsorbable / non-absorbable monofilament sutures and bioabsorbable multifilament (blade) sutures. It was better than the thread.
- P (3HB-co-4HB) elastic monofilament sutures the number of single knots added to the surgical knot can be reduced compared to other threads because there is a concern that the knot will be untied after surgery. Due to the effect of reducing the number of knots themselves and the effect of expanding and contracting the thread itself to make a small knot, the volume occupied by the knot itself does not increase, and the surrounding tissue where the knot is embedded does not increase.
- the P (3HB-co-4HB) elastic suture has a low initial tensile modulus even if it is a monofilament, and the intermediate tensile modulus is lower than the initial tensile modulus, and it is pliable and knots.
- the operability is extremely good because it easily becomes firm without applying excessive force and does not start to loosen immediately. Furthermore, it is easy to add a single nodule because the knot tied earlier does not loosen.
- the part that requires ligation during surgery is not always free and has a large space, but sometimes it is often required to ligate in a narrow range of motion or in the surgical field. In such a case, it is also a fact that a suture with good operability that can firmly form a knot with a light force is required.
- a suture that satisfies the knot tensile strength as in the current USP standard has a high elastic modulus, and is not always satisfactory from the viewpoint of ease of knot formation and ease of loosening of the knot.
- the Young's modulus of each tissue of biological tissue is calculated by Funai et al. (Shizuoka Prefectural Shizuoka Industrial Technology Center Research Report, 2007, No. 52, p.33-37 ") Is summarized by. While the elastic modulus of teeth and sebaceous bone exceeds 10,000 MPa, the elastic modulus of ligament is 248 MPa, the elastic modulus of cartilage is 23 MPa, the elastic modulus of corneal is 20 MPa, and various internal organs, muscles, skin, etc. The elastic modulus of the soft structure is 10 MPa or less. The elastic modulus of the existing absorbent suture is 485 MPa of MonoMax even if it is low, and there is no existing absorbent suture having an elastic modulus close to that of soft tissue.
- EAG ⁇ Ethylene oxide gas (EOG) sterility of PHA elastic suture>
- the P (3HB-co-4HB) suture of Example 1 was sterilized with EO gas.
- the P (3HB-co-4HB) suture cut to an appropriate length is packaged in a sterility packaging material (hybrid plating bag HM-1304: manufactured by Hogi Medical Co., Ltd.) having ethylene oxide gas permeability.
- the opening was heated using a heat sealer and sealed. 95% ethylene oxide 15g (Equitec) using a fully automatic ethylene oxide gas sterilizer (Eogelk, SA-N160, manufactured by Elk) for P (3HB-co-4HB) elastic suture wrapped in sterility packaging material.
- Tensile test of P (3HB-co-4HB) elastic suture is performed by using a tensile tester AGS-50NX (manufactured by Shimadzu Corporation) for stretched PHA fibers with a length of 3 cm and a fiber diameter of about 0.1 to 0.3 mm. Using, a tensile test was performed until the fiber broke under the conditions of a temperature of 23 ° C., a test speed of 10 mm / min, and an initial length (distance between chucks) of 10 mm.
- the results of the tensile test are shown in FIG. 14, and the degree of decrease in molecular weight during the immersion period is shown in FIG. 15 with the weight average molecular weight Mw 320,000 of the sample before immersion as a relative value of 100%.
- the initial fracture elongation of the P (3HB-co-4HB) elastic suture was more than 180% as shown in FIG.
- the period during which half of the initial linear tensile fracture strength can be maintained is about 16 weeks (Fig. 14), and the weight average molecular weight is also halved in about 16 weeks. It was done (Fig. 15). Regarding the fracture elongation, the average of 150% was maintained even after 16 weeks (Fig. 14), and it was found that the characteristic of high elasticity of this yarn was maintained.
- the dorsal skin of a rat (F344 / NSlc male, 20 weeks old) was incised 8 cm along the spinal column, and the PHA suture of Example 1 sterilized by EOG was implanted in the subcutaneous tissue. After 4, 8, 12, 16, and 26 weeks, a sample was taken, lightly washed with water, vacuum dried, and subjected to a tensile test and a molecular weight measurement. Those not buried were defined as 0 week (initial).
- Tensile test of P (3HB-co-4HB) elastic suture is performed by using a tensile tester AGS-50NX (manufactured by Shimadzu Corporation) for stretched PHA fibers with a length of 3 cm and a fiber diameter of about 0.1 to 0.3 mm. Using, a tensile test was performed until the fiber broke under the conditions of a temperature of 23 ° C., a test speed of 10 mm / min, and an initial length (distance between chucks) of 10 mm.
- the in vivo tensile fracture strength of 3-0 MonoMax suture consisting of P (4HB) can maintain half of the initial fracture strength for 12 weeks, and the in vivo tensile fracture strength of 3-0 PDSII consisting of polydioxanone is 6 weeks. It has been shown to be halved (International Journal of Polymer Science, Vol. 2012, Article ID 216137). From these facts, it is considered that the P (3HB-co-4HB) elastic suture can be used in the site where the tensile strength is desired to be maintained for a longer period than the MonoMax suture or the PDSII suture.
- ⁇ Micro mini pig abdominal wall suture test Presence or absence of complications and inflammatory reaction using a female micromini pig (Fuji Micra Co., Ltd.) 32 weeks old with P (3HB-co-4HB) elastic suture and other absorbent sutures of Example 1.
- a suture test was performed for the purpose of macroscopically and microscopically evaluating the amount of swelling. After removing the fetus by caesarean section, the abdominal wall 12 cm was sutured with 3 needles with a cranial P (3HB-co-4HB) suture and a central poly (glycolid-co-trimethylene carbonate) (PGA-TMC copolymer) suture.
- the abdominal wall including the sutured part was collected, the sutured part of each thread was cut off, fixed with paraffin, and then stained with hematoxylin and eosin (HE) by a conventional method, and the amount of inflammation was observed with an optical microscope.
- the score in the tissue observation is 0, 1, 2, 3 which shows inflammation, necrosis, and fibrous thickening by a blind method in which one pathologist does not clarify which sample is which suture. It was evaluated on a four-point scale.
- P (3HB-co-4HB) sutures The feature of less inflammation and the possibility of non-inferiority with respect to necrosis and fibrous thickening helps to show the usefulness of P (3HB-co-4HB) sutures.
- the knot of the suture part becomes smaller, it can be applied to the part that could not be used because the decomposition and absorption were too fast in the conventional medical treatment, and the tension of the thread is too strong or it is difficult to stretch than the tissue.
- P (3HB-) is a suture that can be applied even when the tissue side is damaged in a soft tissue, and is a suture that has long-term absorbability and elasticity, and the knot itself becomes smaller.
- co-4HB) Absorbable elastic sutures have been shown to be attractive medical devices with new applicability.
- a tensile test was performed until the fiber broke under the conditions of a temperature of 23 ° C., a test speed of 10 mm / min, and an initial length (distance between chucks) of 10 mm.
- An example of the result of the stress-strain curve is shown in FIG.
- an example of the stress-strain curve results of the tensile test from the breakage of Examples 2 to 4 is shown in FIGS. 23 to 25.
- the tensile fracture strength of the fiber used in Example 1 shown in FIG. 22 was 161 MPa on average at 5 points and 240% fracture elongation (variation was 180 to 282%). Further, the tensile fracture strength of the fiber used in Example 2 also shown in FIG. 23 was 120 MPa on average at 5 points and the fracture elongation was 183% (variation was 157 to 209%). The tensile fracture strength of the fiber used in Example 3 also shown in FIG. 24 was 69 MPa on average at 5 points and 250% fracture elongation (variation was 178 to 338%). The tensile fracture strength of the fiber used in Example 4 also shown in FIG. 25 was 110 MPa on average at 5 points and the fracture elongation was 232% (variation was 192 to 272%).
- the P (3HB-co-4HB) elastic suture used in Example 1 was evaluated by a cycle test in which the elastic suture was repeatedly expanded and contracted.
- a P (3HB-co-4HB) suture having a length of 3 cm and a major axis thickness of about 0.2 mm was used at a temperature of 23 ° C. using a tensile tester AGS-50NX (manufactured by Shimadzu Corporation).
- a cycle test was performed under the condition of an initial length of 10 mm.
- the P (3HB-co-4HB) elastic suture used in Example 1 is approximately at the beginning of the second extension (ie, at the end of the first contraction) when 100% strain is applied during extension.
- the tensile elongation recovery rate (%) is about 60% and the residual strain rate is about 40%.
- the tensile elongation recovery rate (%) was about 60% to about 55%, and the residual strain rate was about 40% to about 45% (FIG. 26).
- the tensile elongation recovery rate R 100 (%) means that a fiber having a length of 3 cm is cycle-tested using a tensile tester at a temperature of 23 ° C. and an initial length of 10 mm to a tensile speed of 20 mm / min. Stretches to 100% strain (20 mm, which is twice the initial length, that is, displacement length 10 mm), and then moves the grip to the original length at the same speed to shrink the fibers.
- the displacement length at the first time point of the second extension that is, considered to be almost equal to the end time of the first contraction
- the tensile elongation recovery rate R 100 (%) [(20- (X 100 +10)) / 10] ⁇ 100 Indicated by.
- Example 2 Evaluation was made in a cycle test in which the P (3HB-co-4HB) elastic suture used in Example 2 was repeatedly expanded and contracted.
- a P (3HB-co-4HB) suture with a length of 3 cm and a fiber diameter of 0.207 mm was used with a tensile tester AGS-50NX (manufactured by Shimadzu Corporation) at a temperature of 23 ° C. and an initial length of 10 mm.
- a cycle test was conducted at. At a tensile speed of 20 mm / min, the strain was stretched to 100% strain (twice the length), and then the gripper was moved to the original length at the same speed to contract the PHA fibers. This was repeated 5 times. The stress-strain curve during the first to fifth contractions is shown in FIG. 27.
- the P (3HB-co-4HB) elastic suture used in Example 2 is approximately at the beginning of the second extension (ie, at the end of the first contraction) when 100% strain is applied during extension.
- the tensile elongation recovery rate (%) is about 67% and the residual strain rate is about 33%.
- the tensile elongation recovery rate (%) was about 63% to about 60%, and the residual strain rate was about 37% to about 40% (FIG. 27).
- the P (3HB-co-4HB) elastic suture used in Example 3 is approximately at the beginning of the second extension (ie, at the end of the first contraction) when 100% strain is applied during extension.
- the tensile elongation recovery rate (%) is about 70% and the residual strain rate is about 30%.
- the tensile elongation recovery rate (%) was about 63% to about 68%, and the residual strain rate was about 32% to about 37% (FIG. 28).
- the P (3HB-co-4HB) elastic suture used in Example 4 was evaluated by a cycle test in which the elastic suture was repeatedly expanded and contracted.
- a P (3HB-co-4HB) suture with a length of 3 cm and a fiber diameter of about 277 mm was used with a tensile tester AGS-50NX (manufactured by Shimadzu Corporation) at a temperature of 23 ° C. and an initial length of 10 mm.
- a cycle test was performed. At a tensile speed of 20 mm / min, the strain was stretched to 100% strain (twice the length), and then the gripper was moved to the original length at the same speed to contract the PHA fibers. This was repeated 5 times.
- the stress-strain curve during the first to fifth contractions is shown in FIG.
- the P (3HB-co-4HB) elastic suture used in Example 4 is approximately at the beginning of the second extension (ie, at the end of the first contraction) when 100% strain is applied during extension.
- the tensile elongation recovery rate (%) is about 74% and the residual strain rate is about 26%.
- the tensile elongation recovery rate (%) was about 72% to about 66%, and the residual strain rate was about 28% to about 34% (FIG. 29).
- the P (3HB-co-4HB) suture having a length of 12 cm and a fiber diameter of about 0.283 mm used in Example 4 was used with a tensile tester AGS-50NX (manufactured by Shimadzu Corporation).
- a cycle test was conducted under the conditions of a temperature of 23 ° C. and an initial length of 100 mm. At a tensile speed of 100 mm / min, the strain was stretched to a strain of 50% (1.5 times the length), and then the gripper was moved to the original length at the same speed to contract the PHA fibers. This was repeated 5 times.
- the stress-strain curve during the first to fifth contractions is shown in FIG.
- the P (3HB-co-4HB) elastic suture used in Example 4 is considered to be approximately equal to the first point in time of the second extension (ie, the end of the first contraction) after a 50% strain load. ),
- the tensile elongation recovery rate (%) is about 94%, and the residual strain rate is about 6%.
- the tensile elongation recovery rate (%) was about 93% to about 90%, and the residual strain rate was about 7% to about 10% (FIG. 30). It can be seen that when the ratio of the initial strain is reduced in this way, the residual strain is reduced and the elastic recovery is easy.
- a fiber having a length of 12 cm is cycle-tested using a tensile tester under the conditions of a temperature of 23 ° C. and an initial length of 100 mm, and a strain of 50% (1 of the initial length) at a tensile speed of 100 mm / min. .
- the second time when the operation of extending to 150 mm, which is 5 times the length, that is, the displacement length of 50 mm), then moving the gripper to the original length at the same speed, and contracting the fibers is repeated.
- FIGS. 33 and 34 scanning electron microscope observations of the P (3HB-co-4HB) suture used in Examples 2 and 3 are shown in FIGS. 33 and 34. Unlike FIGS. 31 and 32, it was observed that there were no holes in the cross sections of FIGS. 33 and 34 and they were tightly packed, which was the P (3HB) of Examples 2 and 3. -Co-4HB) The suture is colorless and transparent, whereas the P (3HB-co-4HB) suture of Example 1 is cloudy.
- the unstretched P (3HB-co-4HB) copolymer molded product has an ⁇ structure ( ⁇ crystal) showing a disordered orientation. ) Is maintained and the cycle of the ⁇ crystal is not uniform, but when the molded product is deformed by stretching after being subjected to a crystallization treatment for a certain period of time, the degree of orientation of the ⁇ crystal is increased in the elongated direction and at the same time ⁇
- the molecular chain of the amorphous part between the crystal and the ⁇ crystal is stretched to develop the ⁇ structure (planar zigzag structure), and when unloaded, the ⁇ structure is reduced or the ⁇ structure is reduced while maintaining the degree of orientation of the ⁇ crystal.
- the ⁇ structure is a folded lamellar structure
- the ⁇ structure is a planar zigzag stretched chain structure
- the P (3HB-co-4HB) copolymer is not only a soft material with a low elastic modulus, but also can be spun-stretched into a structure exhibiting elasticity, and the presence of voids in the fiber also It was considered to be one of the factors that made the knot smaller.
- voids, voids, pores, pores, etc. there are various means for inserting voids, voids, pores, pores, etc. inside the bioabsorbent polymer, such as phase separation method, extraction method, electron beam irradiation / etching method, polymer particle fusion method, foaming agent mixing method, etc. Gas mixing method, stretching method, etc. are known.
- the microcrystal nucleation stretching method is known for the formation of voids in PHA fibers, which are bioabsorbable polymers, and infiltration of chemicals into PHA void fibers has also been attempted. Sutures due to the presence of such voids This is the first discovery that contributes to the small size of the knot of the thread fiber, and it is a remarkable feature. As long as a strong fiber is obtained, there is no particular limitation on the method of introducing the void into the fiber.
- the initial tensile modulus and the intermediate tensile modulus of the P (3HB-co-4HB) elastic thread suture of Examples 1 to 4 were measured using a tensile tester.
- the elastic modulus calculated from the inclination of the stress-strain curve corresponding to the two points of strain 0.05% and 0.25% is defined as the initial tensile elastic modulus, and the strain is 0.25%.
- the elastic modulus calculated from the slope of the stress-strain curve corresponding between two points of 10% strain is defined as the intermediate tensile elastic modulus.
- the distance between the chucks of the tensile tester was 1 cm, and it was fixed to the fixing device using 1 cm above and below.
- the tensile speed was 10 mm / min.
- the initial tensile modulus of the suture of Example 1 was 520 to 645 MPa, with an average of 589 MPa at 5 points of the sample, and the intermediate tensile modulus was 175 to 296 MPa, with an average of 245 MPa at 5 points of the sample.
- the initial tensile modulus of the suture of Example 2 was 328 to 599 MPa with an average of 492 MPa at 5 points of the sample, and the intermediate tensile modulus was 105 to 166 MPa with an average of 144 MPa at 5 points of the sample.
- the initial tensile modulus of the suture of Example 3 was 222 to 467 MPa with an average of 373 MPa, and the intermediate tensile modulus was 99 to 134 MPa, with an average of 116 MPa at 5 points of the sample.
- the initial tensile modulus of the suture of Example 4 was 354 to 484 MPa with an average of 391 MPa at 5 points of the sample, and the intermediate tensile modulus was 139 to 184 MPa with an average of 167 MPa at 5 points of the sample. It has been reported that the elastic modulus of the MonoMax suture of Comparative Example 1 is 485 MPa (literature value, International Journal of Polymer Science, Vol.
- the average modulus of tensile elasticity was 457 to 578 MPa, and the average modulus at 3 points of the sample was 531 MPa. It has been reported that the elastic modulus of PDSII of Comparative Examples 2 and 3 is 1370 MPa (literature value, International Journal of Polymer Science, Vol. 2012, Article ID216137), and the initial tensile elastic modulus is 1480 even with the value actually measured with the thread of Comparative Example 2.
- the average tensile modulus was 1140 to 1210 MPa at 3 points of the sample at 1660 MPa, and the average was 1180 MPa at 3 points of the sample.
- the initial tensile elastic modulus was 1680 to 1710 MPa and the average was 1710 MPa at three points of the sample, and the intermediate tensile elastic modulus was 1050 to 1080 MPa and the average was 1070 MPa at three points of the sample. ..
- the measured initial tensile elastic modulus of the nylon suture of Comparative Example 4 was 1250 to 1450 MPa, with an average of 1350 MPa at 3 points of the sample, and intermediate tensile elastic modulus.
- the rate was 1020 to 1090 MPa, and the average of 3 points of the sample was 1040 MPa.
- Vicryl described in Comparative Example 5 is a blade yarn, but if the initial tensile elastic modulus of the yarn of 3-0 is calculated assuming that it is a monofilament having a circular cross section, an average of 10000 MPa (actual measurement value) at 3 points of the sample.
- the intermediate tensile elastic modulus was 4460 MPa on average at 3 points of the sample.
- the elastic moduli are summarized in Table 10.
- the initial tensile modulus of the P (3HB-co-4HB) elastic thread suture of Examples 1 to 4 is compared, the initial tensile modulus of Example 1 is 589 MPa, which is an example.
- it is a blade yarn, it is 10000 MPa assuming a monofilament.
- the initial tensile modulus of P (3HB-co-4HB) of Examples 1 to 4 is sufficiently lower than that of Comparative Examples 2 to 5, but the initial tensile modulus of the MonoMax suture is 485 MPa. It is about 600 MPa, and the initial tensile elastic modulus of the MonoMax suture of Example 1 and Example 2 is almost the same as that of Comparative Example 1, while the intermediate tensile modulus of Example 1 is 245 MPa, which is intermediate between Example 2.
- the tensile elastic modulus is 144 MPa, whereas the intermediate tensile modulus of the MonoMax suture is 531 MPa, and the intermediate tensile modulus of P (3HB-co-4HB) is considerably lower than that of the MonoMax suture. It can be seen that when the strain increases to 0.25% to 10%, the P (3HB-co-4HB) elastic suture has a more stretchable property. At the same time, the P (3HB-co-4HB) elastic suture has the property of trying to return to its original shape even when it is stretched. Since the thread in the part other than the knot shrinks and tries to return to the original thickness, it is considered that the knot becomes smaller and at the same time the knot is difficult to untie.
- the intermediate tensile elastic moduli of the sutures of Examples 3 and 4 are 116 MPa and 167 Pa, which are also low values as in Examples 1 and 2.
- Example 4 By using the raw material polymer used in Example 4 and changing the spinning conditions (screw temperature, spinneret temperature, discharge amount, crystallization temperature, crystallization time, draw ratio), heat treatment temperature (annealing step), etc. A thread having an initial tensile elasticity of about 180 MPa to 500 MPa could be obtained. By further changing the molecular weight and composition of the polymer used, it is speculated that spinning can cover a wider range of elastic moduli.
- An example of the fiber shown in Example 4 in which industrial spinning was performed is shown in FIGS. 35 and 36.
- FIG. 37 shows how the surgical knot was tied. Although there are no holes inside the fiber, the yarn has an initial tensile modulus of 391 MPa and an intermediate tensile modulus of 167 Pa. The fiber is soft, is tolerant of elongation, and has the property of shrinking, and is contained in the knot. It was observed that the threads were tightened without any gaps between them.
- the stretchable bioabsorbable fibrous medical material of the present invention makes it easy to form knots, makes the knots smaller, and can reduce the number of knots, which imposes a burden on the doctor during surgery. It is less, and for the patient, less physical irritation to the tissue, which is useful for medical contribution.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Surgery (AREA)
- Vascular Medicine (AREA)
- Epidemiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Textile Engineering (AREA)
- Materials For Medical Uses (AREA)
Abstract
Description
また、組織は様々な理由から腫れることもあるが、これまでの既存の縫合糸では伸縮性に欠けるため、組織の腫れに適切に追従できず、組織へ余分な張力がかかってしまい、瘢痕の原因となる場合があった。組織の弾性力により近い、つまり従来の縫合糸よりも低い弾性率であり、伸びた後に縮む伸縮性を持つ縫合糸であれば、組織が腫れた場合にでも糸が伸びて張力を分散することが可能であり、腫れが引いた場合には糸が縮んで、引き続き創部の接着に寄与するような生体吸収性縫合糸の開発も求められている。
<2> 前記初期引張弾性率が1000MPa以下である、<1>に記載の繊維状医療材料。
<3> 前記初期引張弾性率が480MPa以下である、<1>又は<2>に記載の繊維状医療材料。
<4> 前記中間引張弾性率が300MPa以下である、<1>から<3>の何れか一に記載の繊維状医療材料。
<5> 100%変形後の残存ひずみ率が50%以下である、<1>から<4>の何れか一に記載の繊維状医療材料。
<6> 空隙率が0%~55%である、<1>から<5>の何れか一に記載の繊維状医療材料。
<7> 繊維軸方向に直交する断面の顕微鏡観察により測定した場合における最大細孔(細孔、ポア、ボイド、空隙、又は中空)の直径が100μm以下である、<1>から<6>の何れか一に記載の繊維状医療材料。
<8> 幅方向断面における長軸長さと短軸長さの比( 長軸長さ/ 短軸長さ) が1.0以上3.0以下である、<1>から<7>の何れか一に記載の繊維状医療材料。
<9> 生体吸収性脂肪族ポリマーが、脂肪族ポリエステルである、<1>から<8>の何れか一に記載の繊維状医療材料。
<10> 生体吸収性脂肪族ポリマーが、ポリヒドロキシアルカノエートである、<1>から<9>の何れか一に記載の繊維状医療材料。
<11> ポリヒドロキシアルカノエートが、2種類以上のヒドロキシアルカノエートユニットから構成されるポリヒドロキシアルカノエートである、<10>に記載の繊維状医療材料。
生体吸収性とは、生体内外に置いた後、加水分解反応又は酵素反応によって自然に分解し、分解物が代謝または排泄されることによって消失する性質である。換言すると、生体吸収性とは、局所消失性と体外排出性とを有することを意味する。
本発明で使用するポリヒドロキシアルカノエートは、生分解性及び生体吸収性があり、繰り返し伸縮性(繰り返し伸縮する性質)を有することが可能である。重合単位としては、3-ヒドロキシブチレート単位を含むことが好ましい。本発明においては、2種類以上のヒドロキシアルカノエートユニットから構成されるポリヒドロキシアルカノエートを使用することが好ましい。即ち、本発明において使用するポリヒドロキシアルカノエートは、2種類以上のモノマー単位を含む共重合ポリエステルであることが好ましい。重合単位としては、3-ヒドロキシブチレート(3HBと記載することもある)単位に加えて、4-ヒドロキシブチレート(4HBと記載することもある)単位を含むことが好ましい。
3-ヒドロキシブチレート単位:-OCH(CH3)CH2C(=O)-
4-ヒドロキシブチレート単位:-OCH2CH2CH2C(=O)-
一般に、ポリヒドロキシアルカノエートを合成する方法としては、発酵合成法(生物合成法)と化学合成法とがある。本発明に使用するポリヒドロキシアルカノエートを製造する方法は発酵合成法(生物合成法)でも化学合成法でもよいが、分子量の大きなポリヒドロキシアルカノエートを得るためには発酵合成法(生物合成法)の方が好ましい。
ポリヒドロキシアルカノエートの分子量の測定は以下のようにゲルパーミエーションクロマトグラフィー法により行うことができる。
ポリヒドロキシアルカノエートが約0.5mg/mlとなるようにクロロホルムを加え、60℃で2~4時間溶解させた後、室温に戻し、孔径0.2μmのPTFEフィルターでろ過して不溶物を除き、測定サンプルとした。GPC条件は以下の通りである。
カラム:昭和電工製 Shodex K-806L(2本直列)
カラム温度:40℃
移動相:クロロホルム(1ml/min)
検出器:RI(40℃)
スタンダード:Shodexポリスチレン分子量スタンダード(687万~1270)
注入量:60μl
分析時間:30分
ポリヒドロキシアルカノエートなどの生体吸収性脂肪族ポリマーからの成形品(伸縮性縫合糸など)を製造する方法は、溶融後に結晶化速度の遅いポリヒドロキシアルカノエートなどの生体吸収性脂肪族ポリマーがアモルファス状態から延伸できる程度にまで、固化あるいは結晶化が進んでいる状態であり、細かな微結晶が存在している状態にて延伸操作を加えて伸縮性を持たせる以外は特に限定されず、例えば、特願2019-90739、特願2020-096144、特願2020-096145に記載の方法に準じて成形品(伸縮性縫合糸など)を製造することができる。
溶融押出紡糸は実験室レベルの小型のプランジャータイプの溶融押出装置を使用することもできるが、工業的に使用される一軸スクリュー型紡糸装置や二軸スクリュー型紡糸装置等、大型の装置を使用することもできる。
溶融成形の回数は特に限定されないが、好ましくは1回だけ行うことができる。また溶融成形に先立って原料であるポリヒドロキシアルカノエートなどの生体吸収性脂肪族ポリマーの主要ラメラ厚を任意に調節するため、気体、液体又は固体によって媒介される加熱処理を行っても良いし行わなくても良い(特願2020-96145)。
溶融しアモルファス状態のポリヒドロキシアルカノエートなどの生体吸収性脂肪族ポリマーは、ガラス転移点以上の温度において溶液状であり、結晶化速度が遅いため、そのまま延伸しても分子が流動し、すぐに切断してしまうが、結晶化を一部進め、固化した状態で延伸を行うと、ポリマー鎖が配向し延伸できるようになる。
ただし、得られた繊維が伸縮性を発揮するためには、溶融紡糸、部分溶融紡糸などの方法により押出された繊維を延伸処理し、繊維中のラメラ晶を形成するα晶は繊維方向に沿って配向し、α晶からなるラメラは繊維軸と垂直方向に積層していることが望ましく、ラメラとラメラの間にあるアモルファス層やタイ分子が引張により変形し、伸び切り平面ジグザグ構造であるβ晶が増大し、除荷によりβ晶が減少・消失し、弾性応答を発揮することができる(特願2019-90739)。
得られた繊維はその後、ガラス転移点以上かつ繊維が溶融しない温度にて熱処理(アニール処理)をしなくても伸縮性を発揮するが、熱処理を施してもよい。
本発明の繊維状医療材料の破断時伸びは75%以上であり、好ましくは100%以上であり、より好ましくは150%以上であり、さらに好ましくは180%以上であり、特に好ましくは200%以上である。破断時伸びの上限は特に限定されないが、一般的には、1000%以下である。
長さ3cm、繊維径約0.1~0.4mm程度の繊維状医療材料と、引張試験機AGS-50NX((株)島津製作所製)とを使用して、温度23℃、試験速度10mm/分、初期長(チャック間距離)10mmの条件で繊維の破断までの引張試験を行うことにより、破断時伸びを測定することができる。十分な長さのサンプルが使用できる場合にはチャック間距離10cmを確保して試験することが好ましい。
本発明の繊維状医療材料は空隙を有していてもよいし、空隙を有していなくてもよい。好ましくは、本発明の繊維状医療材料は空隙を有している。本発明の繊維状医療材料が空隙を有している場合、空隙率の範囲は特に限定されないが、好ましくは5~55%であり、より好ましくは10~50%であり、さらに好ましくは20~45%である。
ひずみ0.05%から0.25%における引張弾性率を初期引張弾性率と定義すると、本発明の繊維状医療材料の初期引張弾性率は、好ましくは1000MPa以下であり、より好ましくは600MPa以下であり、より一層好ましくは480MPa以下であり、さらに好ましくは400MPa以下であり、さらに一層好ましくは300MPa以下であり、特に好ましくは200MPa以下である。初期引張弾性率の下限は特に限定されないが、一般的には5MPa以上であり、10MPa以上でもよい。
ひずみ0.25%から10%における引張弾性率を中間引張弾性率と定義すると、本発明においては、初期引張弾性率よりも中間引張弾性率を低い値にする。本発明の繊維状医療材料の中間引張弾性率は、好ましくは400MPa以下であり、より好ましくは300MPa以下であり、さらに好ましくは250MPa以下であり、さらに一層好ましくは200MPa以下であり、特に好ましくは150MPa以下である。中間引張弾性率の下限は特に限定されないが、一般的には5MPa以上であり、10MPa以上でもよい。
本発明の繊維状医療材料の100%変形後の残存ひずみ率は、70%以下であり、好ましくは60%以下であり、より好ましくは50%以下である。100%変形後の残存ひずみ率の下限は特に限定されないが、一般的には5%以上であり、10%以上、20%以上、又は30%以上でもよい。
本発明の繊維状医療材料の50%変形後の残存ひずみ率は、好ましくは40%以下であり、より好ましくは30%以下であり、さらに好ましくは20%以下である。50%変形後の残存ひずみ率の下限は特に限定されないが、一般的には5%以上であり、10%以上、20%以上、又は30%以上でもよい。
R100=[20-(X100+10)]/10×100
で示される。
残存するひずみ率S100(%)は
S100=100-R100
で示される。
R50= [150-(X50+100)]/50×100
で示される。
残存するひずみ率S50(%)は
S50=100-R50
で示される。
Ra= [Y+Y×a/100-(Xa+Y)]/(Y×a/100)×100
で示される。
残存するひずみ率Sa(%)は
Sa=100-Ra
で示される。
本発明の繊維状医療材料について、繊維軸方向に直交する断面の顕微鏡観察により測定した場合における最大細孔(空孔、細孔、ポア、ボイド、空隙、又は中空)の直径は、好ましくは100μm以下であり、より好ましくは75μm以下であり、さらに好ましくは50μm以下である。最大細孔(空孔、細孔、ポア、ボイド、空隙、又は中空)の直径の下限は特に限定されないが、一般的には0.1μm以上であり、0.2μm以上でも、1μm以上でもよい。また、断面あたりの空孔の数に制限はなく、一つあるいは複数であってもよく、また、それぞれの空孔が独立していてもよいし、連結していてもよい。
繊維内部の空孔が判別できる画像を走査電子顕微鏡等を用いて撮影し、その画像をImageJ(米国国立衛生研究所で開発された画像処理プログラム)にて解析し、細孔の直径を算出した。
本発明の繊維状医療材料の断面形状は、必ずしも円形である必要はなく、楕円形、多角形、自由曲線及びこれらの組み合わせなどが例示される。円形であれば糸径は糸幅を測定すればよいが、例えば楕円形であれば、長軸長さと短軸長さの比( 長軸長さ/ 短軸長さ)は、1.0以上でもよく、1.1以上でもよく、1.2以上でもよい。長軸長さと短軸長さの比( 長軸長さ/ 短軸長さ)の上限は特に限定されないが、一般的には、3.0以下であり、2.0以下でもよい。
短軸長さと長軸長さとはダイヤルシックネスゲージ(株式会社テクロック、SM-1201L型、目量0.001mm)を使用して測定した。測定しようとする糸の3か所(全長の1/4、1/2、3/4)でそれぞれ最も厚さの薄くなる繊維向きにて測定し、その平均値を短軸長さとした。また長軸長さは、繊維に折り目が付かないように軽くU字型に変形させ、長軸がゲージ間に垂直になるようにして測定し、測定しようとする糸の3か所(全長の1/4、1/2、3/4)で長軸長さを測定してその平均値を長軸長さとした。
重量平均分子量Mwが97万のP(3HB-co-14.8mol%4HB)を使用してプランジャータイプの溶融押出紡糸装置IMC-19F8(株式会社井元製作所)を使用し、シリンダーへ約5gのPHAを投入し、ダイはダイ径1mmのものを使用し、170℃5分間の加熱にて溶融押出(押出速度1mm/秒)し、直径114mmのボビンにて5rpmの速度で糸同士が重ならないように巻き取った。巻き取り後に室温(23℃)にて60分間の固化時間をおき、結晶化を一部進め、その後60℃熱ピン延伸を手動で施し、約5~10倍程度の延伸倍率にて、やや扁平白化した伸縮性モノフィラメント糸を作製した。作製した伸縮性モノフィラメント糸の糸径をダイヤルシックネスゲージ(株式会社テクロック、SM-1201L型、目量0.001mm)あるいはダイヤルゲージ(株式会社尾崎製作所、5B-HG型、目量0.001mm)を使用して測定した。10cmに切断した糸の3か所(1/4、1/2、3/4)を測定し、その平均値を糸径とした。なおP(3HB-co-4HB)糸の断面が必ずしも円形ではなく楕円もしくは扁平になっている場合には短軸長さと長軸長さを計測し、楕円として断面積を算出して引張試験の評価に用いた。本明細書中の実施例1の糸の断面は、アモルファス状態の溶融したポリマーを巻取し、かつ熱ピン延伸によって円形ではなくつぶれた形状をしており、表1の糸径は短軸長さと長軸長さとの平均長さを糸径として表示している。なお、熱ピン延伸とは、加熱された金属製のピンに繊維を押し当てながら延伸する方法である。
結果を表1に示した(実施例1)。
重量平均分子量Mw70万のP(3HB-co-15.3mol%4HB)を使用してプランジャー(ピストン)型の溶融粘度測定装置フローテスタCFT-500D(株式会社島津製作所)を溶融紡糸装置として使用した。ピストン直径11.282mm(ピストン断面積1cm2)であり、シリンダーへ約1gのPHAを投入し、穴径1mm、穴長1mmのダイ(ノズル)を使用し、150℃にて余熱時間120秒後に部分溶融紡糸した。使用した分銅は2.5kgであり、分銅と釣り具で計3kgの荷重をかけ、プーリ(滑車)による力の増加により、ピストン断面積1cm2へかかる押出圧力を2.942MPaとしてポリマーを押出した。このPHAは示差走査熱量計解析(DSC)で85℃から155℃付近にまで溶融ピークが表れており、150℃の溶融温度では完全溶融ではなく部分溶融である。部分溶融紡糸で溶け残っている結晶と溶融し流動化している押出されたポリマーは、押出直後にすでに半固化しており、押出されたポリマーを手動で5倍から10倍程度に延伸してほぼ透明な伸縮性モノフィラメント糸を作成し、その糸径をダイヤルシックネスゲージ(株式会社テクロック、SM-1201L型、目量0.001mm)あるいはダイヤルゲージ(株式会社尾崎製作所、5B-HG型、目量0.001mm)を使用して測定した。10cmに切断した糸の3か所(1/4、1/2、3/4)を測定し、その平均値を糸径とした。なおこの糸の断面はほぼ円形であった。
この3-0サイズの糸を用いて、実施例1と同様に外科結びにて結び目を形成し、実体顕微鏡で結び目の大きさを解析した(図6)。結果を表2に示した(実施例2)。
重量平均分子量Mw75万のP(3HB-co-15.3mol%4HB)を使用してプランジャー(ピストン)型の溶融粘度測定装置フローテスタCFT-500D(株式会社島津製作所)を溶融紡糸装置として使用した。ピストン直径11.282mm(ピストン断面積1cm2)であり、シリンダーへ約1gのPHAを投入し、穴径1mm、穴長1mmのダイ(ノズル)を使用し、170℃にて余熱時間120秒後に溶融紡糸した。使用した分銅は2.5kgであり、分銅と釣り具で計3kgの荷重をかけ、実施例2と同様に押出圧力を2.942MPaとしてポリマーを押出した。このPHAは60℃から170℃付近にまで示差走査熱量計解析(DSC)で溶融ピークが表れており、170℃の溶融温度ではほぼ完全溶融と考えられる。押出された繊維を、ボビンには巻き取らずに直線状のまま吊るして室温(23℃)にて30分間の固化時間をおき、結晶化を一部進め、その後手動で約5倍程度の延伸倍率にて延伸し、透明な伸縮性モノフィラメント糸を作成し、実施例2と同様に糸径を測定した。
この1サイズの糸を用いて、実施例1と同様に外科結びにて結び目を形成し、実体顕微鏡で結び目の大きさを解析した(図7)。結果を表3に示した(実施例3)。
実施例1から3の糸は、実験室レベルの小型のプランジャータイプの溶融押出装置を使用し、マニュアル(手動)延伸を施して作成した糸であった。工業的に使用される直径16mmの一軸スクリュー型紡糸・延伸装置と、直径1mmのダイを用いて、重量平均分子量Mw56万のP(3HB-co-16.0mol%4HB)共重合体を、押出機の温度範囲を145~160℃にセットして部分溶融紡糸し、0.9g/minの速度で押出した。溶け残っている結晶と流動化したポリマーの混合物で押出されてきた繊維を一度50℃の水にくぐらせた後、空気中、室温23℃にて多段階のローラーにて巻き取り延伸(延伸倍率は約9倍)を施して伸縮性糸を作成した。得られた断面円形の糸を用いて、実施例2と同様に糸径を測定した。
この2.5-0規格の糸を用いて、実施例1と同様に外科結びにて結び目を形成し、実体顕微鏡で結び目の大きさを解析した(図8)。結果を表4に示した(実施例4)。
P(4HB)からなるB.BRAUN社のMonoMax縫合糸(2-0サイズ)を使用した以外は、実施例2と同様に行い、糸表面の走査電子顕微鏡観察(図9)、外科結びの走査電子顕微鏡観察(図10)、結び目の周囲径、周囲径に囲まれた面積を解析し(図11)、周囲径に囲まれた面積/糸径を算出した。結果を表5に示した(比較例1)。
結び目の大きさの指標とした[周囲長に囲まれた面積/糸径]の平均値は7.50であり、実施例1~4と比較して明らかに大きかった。
ポリジオキサノンからなるエチコン社のPDSII縫合糸(3-0サイズ)を使用し、糸表面と結び目の走査電子顕微鏡観察を省略した以外は、比較例1と同様に行い、糸径、結び目の周囲長、周囲長に囲まれた面積を解析し(図12)、周囲長に囲まれた面積/糸径を算出した。結果を表6に示した。
ポリジオキサノンからなるエチコン社のPDSII縫合糸(4-0サイズ)を使用し、糸表面と結び目の走査電子顕微鏡観察を省略した以外は、実施例2と同様に行い、糸径、結び目の周囲長、周囲長に囲まれた面積を解析し(図13)、周囲長に囲まれた面積/糸径を算出した。結果を表7に示した。
比較例3で使用したPDSII縫合糸の結び目の大きさの指標とした[周囲長に囲まれた面積/糸径]の平均値は7.33であり、実施例1~4のP(3HB-co-4HB)縫合糸と比較して明らかに大きい一方で、比較例1のP(4HB)縫合糸であるMonoMax縫合糸(2-0サイズ)や比較例2のPDSII縫合糸(3-0サイズ)とほぼ同等レベルであった。
結紮部の解けにくさ(結節安定性)の評価をOdermattら(International Journal of Polymer Science,Vol.2012,Article ID216137)にも記載されているKnot Security factor(KSF)を使用してin vitroで評価した。
KSF=0 外科結びのみで引張に対して結び目で解けず、追加の単結節がない。
KSF=1 外科結びに追加の単結節が一つのみで引張に対して解けなくなる。
KSF=2 外科結びに追加の単結節が二つのみで引張に対して解けなくなる。
KSF=3 外科結びに追加の単結節が三つのみで引張に対して解けなくなる。
KSF=4 外科結びに追加の単結節が四つのみで引張に対して解けなくなる。
KSF=n 外科結びに追加の単結節がn個のみで引張に対して解けなくなる。
また、Silver Eら(J.Oral.Maxillofac.Surg.2016 Jul;74(7):1304-1312.)のデータをKSFに置き換えると、ナイロン縫合糸(比較例4)3-0と4-0の縫合糸のどちらもKSFは3と、マルチフィラメント糸のVicryl縫合糸(比較例5)3-0と4-0の縫合糸のKSFはそれぞれ4と3と評価されることになる。これらKSFの値を表8に示した。
また結び目が小さく解けにくいということは、結び目から余った糸を切断する際に、糸の切断端を長く残す必要がなく、また柔軟な糸であれば糸の切断面が剛直ゆえにチクチクと組織を刺激することも少なくなり、このことにおいても周囲組織に与える異物感の減少に寄与することが期待される。
実施例1のP(3HB-co-4HB)縫合糸に対して、EOガス滅菌を行った。まず適切な長さに切断されたP(3HB-co-4HB)縫合糸を、エチレンオキサイドガス透過性を有する滅菌用包装材(ハイブリッドメッキンバッグHM-1304:(株)ホギメディカル製)で包装し、開口部をヒートシーラーを用いて加熱し密閉した。滅菌用包装材に包まれたP(3HB-co-4HB)伸縮性縫合糸を全自動酸化エチレンガス滅菌器(Eogelk,SA-N160,エルク社製)を使用して95%酸化エチレン15g(エキテック95、日本液炭(株)製)により、40℃でエチレンオキサイドガスにて5時間滅菌し、2時間の空気置換後、更にエアレーション処理を14時間行った。
P(3HB-co-4HB)縫合糸の明らかな肉眼的・顕微鏡的構造変化や物性変化は認めなかった。
P(3HB-co-4HB)伸縮性縫合糸の分解性を評価するために、緩衝液中での分解挙動を試験管内(in vitro)で評価した。以下に方法を示す。
ダルベッコリン酸緩衝液 (pH7.4; 37℃)中にEOG滅菌した実施例1の3-0サイズのPHA縫合糸を浸漬し、1、2、3、4、6、8、12、16週で取り出し、水で軽く洗浄後に真空乾燥し、引張試験、分子量測定に供した。酸緩衝液に浸漬しないものを0週(初期)とした。
P(3HB-co-4HB)伸縮性縫合糸の初期破壊伸びは図14にも示す通り、180%を超えるものであった。
P(3HB-co-4HB)伸縮性縫合糸の分解性を評価するために、生体内での分解挙動をラット体内(in vivo)で評価した。以下に方法を示す。
これらのことから、P(3HB-co-4HB)伸縮性縫合糸は、MonoMax縫合糸やPDSII縫合糸よりも、より長い期間、抗張力を保持したい部位に使用することができると考えられる。
実施例1のP(3HB-co-4HB)伸縮性縫合糸とその他の吸収性縫合糸で月齢32週のメスのマイクロミニブタ(富士マイクラ(株))を用いて、合併症の有無や炎症反応の多寡を巨視的、微視的に評価することを目的に縫合試験を行った。
胎児を帝王切開にて取り出した後、腹壁12cmを、頭側P(3HB-co-4HB)縫合糸で3針、中央ポリ(グリコリド-co-炭酸トリメチレン)(PGA-TMC共重合体)縫合糸(Maxon縫合糸)で2針、尾側P(4HB)縫合糸(MonoMax縫合糸)で3針、縫合した。
縫合後7週にて縫合部の合併症(感染徴候、創離開、腹壁瘢痕ヘルニア、癒着)の有無を肉眼的に観察したが、3種類の糸の縫合部のいずれも著名な合併症は認めなかった(図18)。
0:炎症反応はない、壊死がない、肥厚がない
1:炎症反応は非常に小さい、壊死が非常に少ない、肥厚が非常に少ない
2:炎症反応がある、壊死がある、肥厚がある
3:炎症反応が強い、壊死が強い、肥厚が強い
組織観察の結果、P(3HB-co-4HB)糸は、 他の2種類の縫合糸に比して、炎症が小さいということが示唆された。また、壊死や繊維性肥厚に関しても、非劣性である可能性があった。
実施例1で使用したP(3HB-co-4HB)伸縮性縫合糸と同じ糸を破断時まで引張りを行う引張試験にて再度評価した。長さ3cm、短軸平均繊維径約0.24mm、長軸平均繊維径約0.40mm(長軸長さ/短軸長さ=1.7)のP(3HB-co-4HB)縫合糸を、引張試験機AGS-50NX((株)島津製作所製)を使用して、温度23℃、試験速度10mm/分、初期長(チャック間距離)10mmの条件で繊維の破断までの引張試験を行った。応力ひずみ曲線の結果の一例を図22に示す。同様に、実施例2から4の破断までの引張試験の応力ひずみ曲線の結果の一例を図23~図25に示す。
また、図23にも示した実施例2で使用した繊維の引張破壊強度は5点の平均で120MPa、破壊伸び183%(ばらつきは157~209%)であった。
図24にも示した実施例3で使用した繊維の引張破壊強度は5点の平均で69MPa、破壊伸び250%(ばらつきは178~338%)であった。
図25にも示した実施例4で使用した繊維の引張破壊強度は5点の平均で110MPa、破壊伸び232%(ばらつきは192~272%)であった。
実施例1で使用したP(3HB-co-4HB)伸縮性縫合糸を繰り返し伸縮させるサイクル試験にて評価した。長さ3cm、長軸厚さ繊維径約0.2mmのP(3HB-co-4HB)縫合糸を、引張試験機AGS-50NX((株)島津製作所製)を使用して、温度23℃、初期長10mmの条件でサイクル試験を行った。引張速度20mm/分にてひずみ100%(2倍の長さ)まで伸張し、続いてもとの長さにまでつかみ具を同速度で移動させ、PHA繊維を収縮させた。これを5回繰り返した。1回目から5回目の収縮時の応力-ひずみ曲線を図26に示した。
R100=[(20-(X100+10))/10]×100
で示される。
残存するひずみ率S100(%)は
S100=100-R100
で示される。
この実施例4で使用したP(3HB-co-4HB)伸縮性縫合糸は、伸長時にひずみ100%を与える時、2回目の伸長の最初の時点(すなわち、1回目の収縮の終了時点にほぼ等しいとみなす)において、引張伸長回復率(%)が約74%であり、残存ひずみ率は約26%である。3回目~5回目の伸長の最初の時点において、引張伸長回復率(%)が約72%~約66%であり、残存ひずみ率は約28%~約34%であった(図29)。
このように初期ひずみの割合が少なくなれば、残存ひずみは少なくなり、弾性回復しやすい性質であることがわかる。
R50=[(150-(X+100))/50]×100
で示される。
残存するひずみ率S50(%)は
S50=100-R50
で示される。
P(3HB-co-4HB)伸縮性縫合糸の結び目の小さくなるメカニズムを探るため、実施例1のP(3HB-co-4HB)縫合糸の断面を走査型電子顕微鏡で観察した。その結果を図31、図32に示した。繊維の表面は図3に示すように、なめらかで空孔は存在しないが、図31、図32に示したように、実施例1で使用したP(3HB-co-4HB)伸縮性縫合糸には繊維の中に空孔が存在していた。画像解析を行うと図31の断面図から43.5%の空隙があり、また図32の断面図から24.9%の空隙があることが判明した。10本の糸の断面を測定し、平均40±15%の空隙率であった。
実施例1~4のP(3HB-co-4HB)伸縮性糸縫合糸の初期引張弾性率と中間引張弾性率は引張試験機を使用して測定した。ここで、本明細中では、ひずみ0.05%と0.25%のひずみ2点間に対応する応力-ひずみ曲線の傾きから算出した弾性率を初期引張弾性率とし、ひずみ0.25%と10%のひずみ2点間に対応する応力-ひずみ曲線の傾きから算出した弾性率を中間引張弾性率と定義する。
工業的紡糸を行った実施例4でも示した繊維の一例を図35及び図36に示した。また、外科結びを結んだ様子を図37に示した。繊維内部に空孔はないが、初期引張弾性率が391MPa、中間引張弾性率は167Paの糸であり、繊維が柔らかく、また伸びに対して寛容であり、かつ縮む性質を持ち、結び目の中に糸と糸の隙間もなく締まっている様子が観察された。
上記した実施例と比較例のまとめを以下の表10に記載する。
Claims (11)
- 生体吸収性脂肪族ポリマーを紡糸延伸した成形品からなる繊維状材料であって、破断時伸びが75%以上であり、ひずみ0.05%から0.25%間での初期引張弾性率よりも、ひずみ0.25%から10%間での中間引張弾性率の方が低い値であり、前記中間引張弾性率が400MPa以下であり、100%変形後の残存ひずみ率が70%以下である、繊維状医療材料。
- 前記初期引張弾性率が1000MPa以下である、請求項1に記載の繊維状医療材料。
- 前記初期引張弾性率が480MPa以下である、請求項1又は2に記載の繊維状医療材料。
- 前記中間引張弾性率が300MPa以下である、請求項1から3の何れか一項に記載の繊維状医療材料。
- 100%変形後の残存ひずみ率が50%以下である、請求項1から4の何れか一項に記載の繊維状医療材料。
- 空隙率が0%~55%である、請求項1から5の何れか一項に記載の繊維状医療材料。
- 繊維軸方向に直交する断面の顕微鏡観察により測定した場合における最大細孔(細孔、ポア、ボイド、空隙、又は中空)の直径が100μm以下である、請求項1から6の何れか一項に記載の繊維状医療材料。
- 幅方向断面における長軸長さと短軸長さの比( 長軸長さ/ 短軸長さ) が1.0以上3.0以下である、請求項1から7の何れか一項に記載の繊維状医療材料。
- 生体吸収性脂肪族ポリマーが、脂肪族ポリエステルである、請求項1から8の何れか一項に記載の繊維状医療材料。
- 生体吸収性脂肪族ポリマーが、ポリヒドロキシアルカノエートである、請求項1から9の何れか一項に記載の繊維状医療材料。
- ポリヒドロキシアルカノエートが、2種類以上のヒドロキシアルカノエートユニットから構成されるポリヒドロキシアルカノエートである、請求項10に記載の繊維状医療材料。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022559116A JPWO2022092014A1 (ja) | 2020-10-26 | 2021-10-25 | |
EP21886132.6A EP4233922A4 (en) | 2020-10-26 | 2021-10-25 | BIOABSORBABLE FIBER TYPE MEDICAL MATERIAL |
CN202180072656.2A CN116490222A (zh) | 2020-10-26 | 2021-10-25 | 生物可吸收性纤维状医疗材料 |
US18/250,383 US20230398257A1 (en) | 2020-10-26 | 2021-10-25 | Bioabsorbable fibrous medical material |
KR1020237013631A KR20230097008A (ko) | 2020-10-26 | 2021-10-25 | 생체흡수성 섬유상 의료재료 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-178860 | 2020-10-26 | ||
JP2020178860 | 2020-10-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022092014A1 true WO2022092014A1 (ja) | 2022-05-05 |
Family
ID=81382516
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/039270 WO2022092014A1 (ja) | 2020-10-26 | 2021-10-25 | 生体吸収性繊維状医療材料 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20230398257A1 (ja) |
EP (1) | EP4233922A4 (ja) |
JP (1) | JPWO2022092014A1 (ja) |
KR (1) | KR20230097008A (ja) |
CN (1) | CN116490222A (ja) |
TW (1) | TW202231303A (ja) |
WO (1) | WO2022092014A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024086701A1 (en) * | 2022-10-19 | 2024-04-25 | W. L. Gore & Associates, Inc. | Pha based microporous articles and methods of forming the same |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022137003A1 (en) * | 2020-12-21 | 2022-06-30 | Ethicon, Inc. | Adaptive sutures dynamically changing wound holding properties post-implantation |
Citations (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0461638A (ja) | 1990-06-27 | 1992-02-27 | Ube Ind Ltd | 光記録媒体 |
JPH0489065A (ja) * | 1990-07-31 | 1992-03-23 | Gunze Ltd | 手術用縫合糸 |
JPH06336523A (ja) | 1993-03-31 | 1994-12-06 | Nippon Zeon Co Ltd | ポリエステル成形品 |
JPH07177894A (ja) | 1993-12-22 | 1995-07-18 | Mitsubishi Gas Chem Co Inc | ポリ−3−ヒドロキシ酪酸の分離精製方法 |
JP2001149462A (ja) | 1999-11-26 | 2001-06-05 | Gunze Ltd | 手術用モノフィラメント縫合糸 |
US6245537B1 (en) | 1997-05-12 | 2001-06-12 | Metabolix, Inc. | Removing endotoxin with an oxdizing agent from polyhydroxyalkanoates produced by fermentation |
JP2003513131A (ja) | 1999-10-28 | 2003-04-08 | ザ プロクター アンド ギャンブル カンパニー | 柔軟性弾性生分解性ポリヒドロキシアルカノエートコポリマー組成物およびそのような組成物を含むポリマー製品の作製方法 |
JP2003513130A (ja) | 1999-10-28 | 2003-04-08 | ザ プロクター アンド ギャンブル カンパニー | 柔軟性弾性生分解性ポリヒドロキシアルカノエートコポリマー組成物を含むポリマー製品およびそのようなポリマー製品の作製方法 |
JP2003328230A (ja) * | 2002-02-28 | 2003-11-19 | Japan Science & Technology Corp | ポリヒドロキシアルカン酸の高強度繊維およびその製造法 |
JP2003339849A (ja) * | 2002-03-30 | 2003-12-02 | Samyang Corp | モノフィラメント縫合糸及びその製造方法 |
WO2004029266A1 (ja) | 2002-09-30 | 2004-04-08 | Kaneka Corporation | 3−ヒドロキシアルカン酸共重合体の精製方法 |
WO2004101002A2 (en) | 2003-05-08 | 2004-11-25 | Tepha, Inc. | Polyhydroxyalkanoate medical textiles and fibers |
US6867247B2 (en) | 1999-03-25 | 2005-03-15 | Metabolix, Inc. | Medical devices and applications of polyhydroxyalkanoate polymers |
JP2007046050A (ja) * | 2005-07-15 | 2007-02-22 | National Institute Of Advanced Industrial & Technology | 医療用樹脂組成物とその製造方法および成形体 |
JP2011006496A (ja) | 2007-09-14 | 2011-01-13 | Gunze Ltd | グリコリド/ε−カプロラクトン共重合体からなる縫合糸 |
JP2019505338A (ja) | 2016-02-22 | 2019-02-28 | サントレ ナティオナル ド ラ ルシェルシェ シアンティフィク | 制御された活性成分の放出を伴う複合生体材料、調製方法及び使用 |
WO2019044837A1 (ja) | 2017-08-29 | 2019-03-07 | 三菱瓦斯化学株式会社 | ポリエステルの製造方法 |
JP2019090739A (ja) | 2017-11-16 | 2019-06-13 | 三菱電機株式会社 | 熱型赤外線検出器およびその製造方法 |
JP2020096144A (ja) | 2018-12-14 | 2020-06-18 | Tdk株式会社 | 素子アレイの製造方法と特定素子の除去方法 |
JP2020096145A (ja) | 2018-12-14 | 2020-06-18 | 新電元工業株式会社 | 電子機器装置 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH525198A (de) | 1969-09-10 | 1972-07-15 | Givaudan & Cie Sa | Verfahren zur Herstellung von neuen mercapto- oder alkylthio-substituierten Terpenoiden |
JPH0819227B2 (ja) | 1987-08-18 | 1996-02-28 | 三菱化学株式会社 | ポリエステル共重合体およびその製造法 |
JP4562316B2 (ja) * | 2001-06-11 | 2010-10-13 | 株式会社カネカ | 生分解性繊維およびその製造方法 |
CN102586936B (zh) * | 2011-12-29 | 2014-01-08 | 大连工业大学 | 一种具有良好回弹性的可降解纤维及其制备方法 |
-
2021
- 2021-10-25 US US18/250,383 patent/US20230398257A1/en active Pending
- 2021-10-25 KR KR1020237013631A patent/KR20230097008A/ko unknown
- 2021-10-25 EP EP21886132.6A patent/EP4233922A4/en active Pending
- 2021-10-25 JP JP2022559116A patent/JPWO2022092014A1/ja active Pending
- 2021-10-25 CN CN202180072656.2A patent/CN116490222A/zh active Pending
- 2021-10-25 WO PCT/JP2021/039270 patent/WO2022092014A1/ja active Application Filing
- 2021-10-26 TW TW110139598A patent/TW202231303A/zh unknown
Patent Citations (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0461638A (ja) | 1990-06-27 | 1992-02-27 | Ube Ind Ltd | 光記録媒体 |
JPH0489065A (ja) * | 1990-07-31 | 1992-03-23 | Gunze Ltd | 手術用縫合糸 |
JPH06336523A (ja) | 1993-03-31 | 1994-12-06 | Nippon Zeon Co Ltd | ポリエステル成形品 |
JPH07177894A (ja) | 1993-12-22 | 1995-07-18 | Mitsubishi Gas Chem Co Inc | ポリ−3−ヒドロキシ酪酸の分離精製方法 |
US6245537B1 (en) | 1997-05-12 | 2001-06-12 | Metabolix, Inc. | Removing endotoxin with an oxdizing agent from polyhydroxyalkanoates produced by fermentation |
US6867247B2 (en) | 1999-03-25 | 2005-03-15 | Metabolix, Inc. | Medical devices and applications of polyhydroxyalkanoate polymers |
JP5031144B2 (ja) | 1999-03-25 | 2012-09-19 | メタボリックス,インコーポレイテッド | ポリヒドロキシアルカノエートポリマーの医療デバイスおよび医療適用 |
JP2003513131A (ja) | 1999-10-28 | 2003-04-08 | ザ プロクター アンド ギャンブル カンパニー | 柔軟性弾性生分解性ポリヒドロキシアルカノエートコポリマー組成物およびそのような組成物を含むポリマー製品の作製方法 |
JP2003513130A (ja) | 1999-10-28 | 2003-04-08 | ザ プロクター アンド ギャンブル カンパニー | 柔軟性弾性生分解性ポリヒドロキシアルカノエートコポリマー組成物を含むポリマー製品およびそのようなポリマー製品の作製方法 |
JP2001149462A (ja) | 1999-11-26 | 2001-06-05 | Gunze Ltd | 手術用モノフィラメント縫合糸 |
JP2003328230A (ja) * | 2002-02-28 | 2003-11-19 | Japan Science & Technology Corp | ポリヒドロキシアルカン酸の高強度繊維およびその製造法 |
JP4071661B2 (ja) | 2002-03-30 | 2008-04-02 | サムヤン コーポレイション | モノフィラメント縫合糸及びその製造方法 |
JP2003339849A (ja) * | 2002-03-30 | 2003-12-02 | Samyang Corp | モノフィラメント縫合糸及びその製造方法 |
WO2004029266A1 (ja) | 2002-09-30 | 2004-04-08 | Kaneka Corporation | 3−ヒドロキシアルカン酸共重合体の精製方法 |
WO2004101002A2 (en) | 2003-05-08 | 2004-11-25 | Tepha, Inc. | Polyhydroxyalkanoate medical textiles and fibers |
JP2007525601A (ja) | 2003-05-08 | 2007-09-06 | テファ, インコーポレイテッド | ポリヒドロキシアルカノエート医療用織物および医療用繊維 |
JP2007046050A (ja) * | 2005-07-15 | 2007-02-22 | National Institute Of Advanced Industrial & Technology | 医療用樹脂組成物とその製造方法および成形体 |
JP2011006496A (ja) | 2007-09-14 | 2011-01-13 | Gunze Ltd | グリコリド/ε−カプロラクトン共重合体からなる縫合糸 |
JP2019505338A (ja) | 2016-02-22 | 2019-02-28 | サントレ ナティオナル ド ラ ルシェルシェ シアンティフィク | 制御された活性成分の放出を伴う複合生体材料、調製方法及び使用 |
WO2019044837A1 (ja) | 2017-08-29 | 2019-03-07 | 三菱瓦斯化学株式会社 | ポリエステルの製造方法 |
JP2019090739A (ja) | 2017-11-16 | 2019-06-13 | 三菱電機株式会社 | 熱型赤外線検出器およびその製造方法 |
JP2020096144A (ja) | 2018-12-14 | 2020-06-18 | Tdk株式会社 | 素子アレイの製造方法と特定素子の除去方法 |
JP2020096145A (ja) | 2018-12-14 | 2020-06-18 | 新電元工業株式会社 | 電子機器装置 |
Non-Patent Citations (12)
Title |
---|
ABE ET AL., MACROMOLECULES, vol. 28, 1995, pages 7630 |
ALBERTSMEIER, LANGENBECKS ARCH SURG, vol. 397, 2012, pages 363 - 371 |
BMC SURGERY, vol. 8, 2008 |
DAVID P. MARTIN AND SIMON F. WILLIAMS: "Medical applications of poly-4-hydroxybutyrate: a strong flexible absorbable biomaterial", BIOCHEMICAL ENGINEERING JOURNAL, ELSEVIER, AMSTERDAM, NL, vol. 16, 9 December 2002 (2002-12-09), NL , pages 97 - 105, XP002740256, ISSN: 1369-703X, DOI: 10.1016/S 1369-703X(03)00040-8 * |
FUNAI ET AL.: "Creation of physical property value database of biological tissue for biomechanical simulation and application thereof", REPORTS OF THE INDUSTRIAL RESEARCH INSTITUTE OF SHIZUOKA PREFECTURE, vol. 52, 2007, pages 33 - 37 |
GILDING ET AL., POLYMER, vol. 20, 1979, pages 1459 |
HORI ET AL., POLYMER, vol. 36, 1995, pages 4703 |
ODERMATT ET AL., INTERNATIONAL JOURNAL OF POLYMER SCIENCE, vol. 2012 |
SAITO ET AL., POLYMER INTERNATIONAL, vol. 39, 1996, pages 169 |
See also references of EP4233922A4 |
SILVER E ET AL., J.ORAL.MAXILLOFAC.SURG., vol. 74, no. 7, July 2016 (2016-07-01), pages 1304 - 1312 |
WILLIAMS ET AL., BIOMED TECH (BERL, vol. 58, no. 5, October 2013 (2013-10-01), pages 439 - 452 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024086701A1 (en) * | 2022-10-19 | 2024-04-25 | W. L. Gore & Associates, Inc. | Pha based microporous articles and methods of forming the same |
Also Published As
Publication number | Publication date |
---|---|
JPWO2022092014A1 (ja) | 2022-05-05 |
TW202231303A (zh) | 2022-08-16 |
US20230398257A1 (en) | 2023-12-14 |
KR20230097008A (ko) | 2023-06-30 |
CN116490222A (zh) | 2023-07-25 |
EP4233922A1 (en) | 2023-08-30 |
EP4233922A4 (en) | 2024-03-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100253712B1 (ko) | 생체흡수성 중합체 및 그 제조방법 | |
US8084125B2 (en) | Non-curling polyhydroxyalkanoate sutures | |
US4838267A (en) | Glycolide/p-dioxanone block copolymers | |
US5403347A (en) | Absorbable block copolymers and surgical articles fabricated therefrom | |
US8225673B2 (en) | Method of manufacturing and testing monofilament and multi-filaments self-retaining sutures | |
EP2292277A2 (en) | Polymer coated sutures | |
US6048947A (en) | Triblock terpolymer, its use for surgical suture material and process for its production | |
JP2013534978A (ja) | ポリ−4−ヒドロキシブチレートおよびコポリマーの乾式紡糸不織布を含む医療装置 | |
JP2003339849A (ja) | モノフィラメント縫合糸及びその製造方法 | |
WO2009085823A1 (en) | Medical devices containing melt-blown non-wovens of poly-r-hydroxybutyrate and copolymers | |
JP2007525601A (ja) | ポリヒドロキシアルカノエート医療用織物および医療用繊維 | |
US20090274742A1 (en) | Multimodal high strength devices and composites | |
WO2022092014A1 (ja) | 生体吸収性繊維状医療材料 | |
EP3180040A1 (en) | Self-retaining sutures of poly-4-hydroxybutyrate and copolymers thereof | |
KR20160091960A (ko) | 정밀하게 제어가능한 흡수 속도를 갖는 흡수성 중합체 블렌드 조성물, 가공 방법, 및 그로부터의 치수 안정한 의료 장치 | |
US6090910A (en) | Degradable monofilament and preparation process thereof | |
JP3253222B2 (ja) | p−ジオキサノンの共重合体 | |
EP3240819A1 (en) | Biodegradable polymer | |
JP3557050B2 (ja) | 生体吸収性重合体及びその製造方法 | |
Bai et al. | In vitro hydrolytic degradation of poly (para-dioxanone)/poly (D, L-lactide) blends | |
JP3712849B2 (ja) | 分解性モノフィラメント及びその製造方法 | |
AU4518400A (en) | Sutures | |
MXPA04012824A (es) | Copolimeros de bloque para articulos quirurgicos. | |
JP3582347B2 (ja) | ブロック共重合体並びにフィルム及び繊維 | |
JPH11255874A (ja) | ブロック共重合体とその製法並びにフィルム及び繊維 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21886132 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022559116 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202180072656.2 Country of ref document: CN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2021886132 Country of ref document: EP Effective date: 20230526 |