[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022092014A1 - 生体吸収性繊維状医療材料 - Google Patents

生体吸収性繊維状医療材料 Download PDF

Info

Publication number
WO2022092014A1
WO2022092014A1 PCT/JP2021/039270 JP2021039270W WO2022092014A1 WO 2022092014 A1 WO2022092014 A1 WO 2022092014A1 JP 2021039270 W JP2021039270 W JP 2021039270W WO 2022092014 A1 WO2022092014 A1 WO 2022092014A1
Authority
WO
WIPO (PCT)
Prior art keywords
suture
less
knot
mpa
medical material
Prior art date
Application number
PCT/JP2021/039270
Other languages
English (en)
French (fr)
Inventor
晃 前原
仁 平田
敦彦 村山
泰伸 中川
Original Assignee
三菱瓦斯化学株式会社
国立大学法人東海国立大学機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社, 国立大学法人東海国立大学機構 filed Critical 三菱瓦斯化学株式会社
Priority to JP2022559116A priority Critical patent/JPWO2022092014A1/ja
Priority to EP21886132.6A priority patent/EP4233922A4/en
Priority to CN202180072656.2A priority patent/CN116490222A/zh
Priority to US18/250,383 priority patent/US20230398257A1/en
Priority to KR1020237013631A priority patent/KR20230097008A/ko
Publication of WO2022092014A1 publication Critical patent/WO2022092014A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L17/00Materials for surgical sutures or for ligaturing blood vessels ; Materials for prostheses or catheters
    • A61L17/06At least partially resorbable materials
    • A61L17/10At least partially resorbable materials containing macromolecular materials
    • A61L17/105Polyesters not covered by A61L17/12
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L17/00Materials for surgical sutures or for ligaturing blood vessels ; Materials for prostheses or catheters
    • A61L17/06At least partially resorbable materials
    • A61L17/10At least partially resorbable materials containing macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L17/00Materials for surgical sutures or for ligaturing blood vessels ; Materials for prostheses or catheters
    • A61L17/06At least partially resorbable materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L17/00Materials for surgical sutures or for ligaturing blood vessels ; Materials for prostheses or catheters
    • A61L17/06At least partially resorbable materials
    • A61L17/10At least partially resorbable materials containing macromolecular materials
    • A61L17/12Homopolymers or copolymers of glycolic acid or lactic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L17/00Materials for surgical sutures or for ligaturing blood vessels ; Materials for prostheses or catheters
    • A61L17/14Post-treatment to improve physical properties
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/62Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyesters
    • D01F6/625Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyesters derived from hydroxy-carboxylic acids, e.g. lactones
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/78Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products
    • D01F6/84Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products from copolyesters

Definitions

  • the present invention relates to a fibrous medical material using an aliphatic polymer fiber that is elastic and bioabsorbable, which makes it easy to form a knot, has a small knot, and is capable of ligation that is difficult to unravel.
  • the suture includes a monofilament suture made of a single fiber and a multifilament suture made of a plurality of fibers.
  • a non-absorbable polymer or an absorbent polymer is used as the material of the suture.
  • the non-absorbent polymer include polyethylene, polypropylene, nylon, silicone, Teflon, silk and the like.
  • the absorbent polymer include homopolymers or copolymers obtained by polymerizing glycolic acid, lactic acid, ⁇ -caprolactone, dioxanone and the like.
  • sutures containing glycolic acid and lactic acid tend to have a strong inflammatory reaction during the absorption process, which may cause a problem in terms of biocompatibility.
  • Conventional bioabsorbable sutures are those used as multifilaments due to their rigid polymers such as polyglycolic acid (PGA) and poly (glycolide / L-lactide) copolymers, and poly (glycolide / trimethylene).
  • rigid polymers such as polyglycolic acid (PGA) and poly (glycolide / L-lactide) copolymers, and poly (glycolide / trimethylene).
  • Patent Document 1 describes a surgical suture made of a monofilament thread made of a copolymer of lactic acid and ⁇ -caprolactone.
  • Patent Document 2 describes a suture obtained by melt-spinning a glycolide / ⁇ -caprolactone copolymer.
  • Patent Document 3 describes a first polymer and a second polymer synthesized from one or more monomers selected from the group consisting of glycolide, glycolic acid, lactide, lactic acid, caprolactone, dioxanone, trimethylene carbonate and ethylene glycol.
  • a monofilament suture that is a compositely spun monofilament suture and has a young ratio of the first polymer and the second polymer of 3.0 GPa or less is described.
  • Patent Document 4 describes a synthetic composite containing collagen, at least one organic polymer (polyglycolide, polylactide, copolymer of glycolide and lactide, polylactone, polyhydroxyalkanoic acid, etc.) and at least one active ingredient. Biomaterials are listed.
  • Patent Document 5 comprises 3-hydroxybutyrate (sometimes referred to as 3HB) units and 4-hydroxybutyrate (sometimes referred to as 4HB) units, and contains 4-hydroxybutyrate units.
  • a polyester molded article containing a biodegradable polyester copolymer having an amount of more than 60 mol% and 95 mol% or less is described.
  • Patent Document 6 and Patent Document 7 describe a medical device including a suture made of biocompatible polyhydroxyalkanoate.
  • Patent Document 8 describes a fiber containing a poly-4-hydroxybutyrate polymer and having a tensile strength higher than 126 MPa.
  • Patent Documents 9 and 10 describe polymer products obtained by stretching a composition characterized by a biodegradable polyhydroxyalkanoate copolymer containing at least two random repeating monomer units.
  • the 3-hydroxybutyrate unit is 97 to 40 mol% and the 4-hydroxybutyrate unit is 3 to 60 mol%, and [ ⁇ ] measured in chloroform at 30 ° C. is 0.4 to 10.0 dl.
  • Polyester copolymers in the range of / g are described, and it is described that they are highly flexible and have good moldability, and that the obtained molded products such as fibers and films are supple and tough.
  • a monofilament suture made of a homopolymer of 4-hydroxybutyric acid (also referred to as P (4HB)) has been developed (Patent Documents 12 and Non-Patent Documents 1 and 2).
  • This MonoMax suture has been reported to have an elasticity of 485 MPa (Non-Patent Document 2), 1370 MPa of PDSII made of poly-p-dioxanone, and 725 MPa of Monocryl made of a poly (glycolide / ⁇ -caprolactone) copolymer. It is said to be a soft suture with a lower elasticity than the above, but when actually used by a doctor, the suture is rigid and the knot tends to loosen, so it is necessary to increase the number of knots.
  • Japanese Unexamined Patent Publication No. 2001-149462 Japanese Unexamined Patent Publication No. 2011-6996 Japanese Patent No. 4071661 Japanese Patent Publication No. 2019-505338 Japanese Unexamined Patent Publication No. 06-336523 U.S. Pat. No. 6,862,247 Japanese Patent No. 5031144 Japanese Patent Publication No. 2007-525601 Special Table 2003-513130 Gazette Special Table 2003-513131 Gazette Japanese Unexamined Patent Publication No. 1-48821 International Publication WO2004 / 101002
  • Multifilament sutures are made by weaving fine fibers and have a non-smooth surface. Therefore, it has the advantage that the knot is difficult to untie and it is highly flexible. However, when the thread is passed through the tissue, the tissue is heavily invaded and the knot lubrication tends to be poor, that is, the friction coefficient is high and the knot tends to be difficult to slip. In addition, there is a problem that the risk of infection is higher than that of monofilament suture because a minute gap (capillary) is generated. In that respect, the monofilament suture has a smooth surface, has little invasion to tissues and is resistant to infection, but has the disadvantages of lacking flexibility and easy loosening of knots.
  • the monofilament suture can compensate for the ease of loosening by increasing the number of knots, but as a result, the knot becomes large and there is a concern about the effect on the tissue.
  • traditional monofilament sutures are rigid, impliable, and incompliant, so doctors often use strong knots to form tight, tight knots. Tends to narrow down. Therefore, when the thread is tightened with a strong force to form a knot, the sutured tissue may be subjected to an excessive force, which may cause unintended damage to the tissue.
  • the suture while suppressing the invasion of the tissue, the suture has high extensibility so that the appropriate tension is uniformly maintained until the tissue self-repairs, the thread itself is pliable, and the knot is difficult to untie.
  • the suture is bioabsorbable, easy to form a knot, has a small knot, and is difficult to unravel, there is no need for suture removal or re-incision, and the embedded knot is around in subcutaneous sutures and sutures inside the body.
  • the present invention is an object to be solved to provide a bioabsorbable fibrous medical material in which a knot is small and a ligature that is difficult to unravel can be formed even with a weak force. It is also a part of the task to provide a bioabsorbable fibrous medical material having elasticity that can follow the movement of tissue.
  • the present inventors have used a bioabsorbable aliphatic polymer as a raw material, and the elongation at break of a molded product obtained by spinning and stretching the bioabsorbable aliphatic polymer is 75%.
  • the intermediate tensile elastic modulus is set to a value lower than the initial tensile elastic modulus, the intermediate tensile elastic modulus is set to 400 MPa or less, and the residual strain rate after 100% deformation is set to 70% or less, so that knots are easily formed.
  • the intermediate tensile elastic modulus between 0.25% and 10% of strain is lower than the rate, the intermediate tensile elastic modulus is 400 MPa or less, and the residual strain rate after 100% deformation is 70% or less.
  • ⁇ 3> The fibrous medical material according to ⁇ 1> or ⁇ 2>, wherein the initial tensile elastic modulus is 480 MPa or less.
  • ⁇ 4> The fibrous medical material according to any one of ⁇ 1> to ⁇ 3>, wherein the intermediate tensile elastic modulus is 300 MPa or less.
  • ⁇ 5> The fibrous medical material according to any one of ⁇ 1> to ⁇ 4>, wherein the residual strain rate after 100% deformation is 50% or less.
  • ⁇ 6> The fibrous medical material according to any one of ⁇ 1> to ⁇ 5>, which has a porosity of 0% to 55%.
  • the diameter of the maximum pores (pores, pores, voids, voids, or hollows) measured by microscopic observation of a cross section orthogonal to the fiber axis direction is 100 ⁇ m or less, from ⁇ 1> to ⁇ 6>.
  • ⁇ 9> The fibrous medical material according to any one of ⁇ 1> to ⁇ 8>, wherein the bioabsorbable aliphatic polymer is an aliphatic polyester.
  • the bioabsorbable aliphatic polymer is polyhydroxyalkanoate.
  • the polyhydroxy alkanoate is a polyhydroxy alkanoate composed of two or more types of hydroxy alkanoate units.
  • the bioabsorbable fibrous medical material of the present invention has good operability, a knot can be formed with a small force, the knot is small, and ligation that is difficult to unravel is possible.
  • FIG. 1 shows a surgical knot.
  • FIG. 2 shows one single nodule in the surgical knot.
  • FIG. 3 shows a surface SEM photograph of P (3HB-co-4HB) suture 2.5-0.
  • P (3HB-co-4HB) means a copolymer of 3-hydroxybutyric acid and 4-hydroxybutyric acid.
  • FIG. 4 shows a surgical knot SEM photograph of P (3HB-co-4HB) suture 3-0.
  • FIG. 5 shows a surgical knot stereomicrograph of cloudy P (3HB-co-4HB) suture 3-0 size.
  • FIG. 6 shows a surgical knot stereomicrograph of colorless P (3HB-co-4HB) suture 3-0 size.
  • FIG. 7 shows a surgical knot stereomicrograph of a colorless P (3HB-co-4HB) suture 1 size.
  • FIG. 8 shows a surgical knot stereomicrograph of white P (3HB-co-4HB) suture 2.5-0 size.
  • FIG. 9 shows a surface SEM photograph of P (4HB) MonoMax® suture 2-0.
  • FIG. 10 shows a surgical knot SEM photograph of P (4HB) MonoMax® suture 2-0.
  • FIG. 11 shows a surgical knot stereomicrograph of P (4HB) MonoMax® suture 2-0.
  • FIG. 12 shows a surgical knot stereomicrograph of PDSII suture 3-0.
  • FIG. 13 shows a surgical knot stereomicrograph of PDSII suture 4-0.
  • FIG. 14 shows the buffer immersion period of the P (3HB-co-4HB) suture and the state of tensile fracture strength and fracture elongation.
  • FIG. 14 shows the buffer immersion period of the P (3HB-co-4HB) suture and the state of tensile fracture strength and fracture elongation.
  • FIG. 15 shows the state of the buffer immersion period of the P (3HB-co-4HB) suture and the decrease in the weight average molecular weight Mw.
  • FIG. 16 shows the period of implantation of P (3HB-co-4HB) suture in a rat and the state of tensile fracture strength and fracture elongation.
  • FIG. 17 shows how the P (3HB-co-4HB) suture was implanted in the rat body and the weight average molecular weight Mw decreased.
  • FIG. 18 shows the state of the sutured portion 7 weeks after suturing with a bioabsorbable suture to a micromini pig.
  • FIG. 19 shows HE staining of P (3HB-co-4HB) suture suture tissue.
  • FIG. 20 shows HE staining of polyglyconate (PGA) suture suture tissue.
  • FIG. 21 shows HE staining of the P (4HB) suture suture tissue.
  • FIG. 22 shows an example of the stress-strain curve of the tensile test until the fiber of Example 1 breaks (measured at a chuck distance of 1 cm).
  • FIG. 23 shows an example of the stress-strain curve of the tensile test until the fiber of Example 2 breaks.
  • FIG. 24 shows an example of the stress-strain curve of the tensile test up to the breakage of the fiber of Example 3.
  • FIG. 25 shows an example of the stress-strain curve of the tensile test until the fiber of Example 4 breaks.
  • FIG. 26 shows a stress-strain curve in a cycle test up to 100% strain of P (3HB-co-4HB) suture 3 cm of Example 1.
  • FIG. 27 shows a stress-strain curve in a cycle test up to 100% strain of P (3HB-co-4HB) suture 3 cm of Example 2.
  • FIG. 28 shows a stress-strain curve in a cycle test up to 100% strain of P (3HB-co-4HB) suture 3 cm of Example 3.
  • FIG. 29 shows a stress-strain curve in a cycle test up to 100% strain of P (3HB-co-4HB) suture 3 cm of Example 4.
  • FIG. 30 shows a stress-strain curve in a cycle test up to 50% strain of P (3HB-co-4HB) suture 12 cm of Example 4.
  • FIG. 31 shows an example of a cross-sectional view of the thread of the first embodiment.
  • FIG. 32 shows an example of a cross-sectional view of the thread of the first embodiment.
  • FIG. 33 shows an example of a cross-sectional view of the thread of the second embodiment.
  • FIG. 34 shows an example of a cross-sectional view of the thread of Example 3.
  • FIG. 35 shows a surface SEM photograph of the P (3HB-co-4HB) suture of Example 4.
  • FIG. 36 shows a cross-sectional SEM photograph of the P (3HB-co-4HB) suture of Example 4.
  • FIG. 37 shows a surgical knot SEM photograph of the P (3HB-co-4HB) suture of Example 4.
  • the bioabsorbable fibrous medical material of the present invention comprises a molded product obtained by spinning and stretching a bioabsorbable aliphatic polymer.
  • Bioabsorbency is a property that, after being placed inside or outside the living body, is naturally decomposed by a hydrolysis reaction or an enzymatic reaction, and disappears by metabolism or excretion of the decomposed product.
  • bioabsorbability means having local disappearance and extracorporeal excretion.
  • Locally disappearing means that it is decomposed within a predetermined number of days (for example, 360 days, 240 days, 120 days, 60 days, or 30 days) and disappears from the application local area under a physiological environment.
  • a sample corresponding to at least 1% by mass polymer concentration is placed in a physiological saline solution (pH 4 to 8) at 37 ° C., mixed with a rotor mixer, and when visually observed, the shape of the sample becomes visible within a predetermined number of days.
  • the sample has local disappearance, or if the sample is implanted in the body and the sample decomposes and disappears within a predetermined number of days, the sample has local disappearance.
  • the in vitro excretion property means that, after the material disappears from the application site, the material can be excreted from the living body without being excessively accumulated in an organ such as a kidney or a liver, for example. If the sample is decomposed to a molecular weight of 70,000 or less, and in some cases 40,000 or less, the sample can be determined to have extracorporeal excretion, or after the material disappears from the application site, a partial decomposition product or a small molecule. It may become a compound and be further metabolized to water or carbon dioxide for use in the body or excreted to the outside.
  • aliphatic polymer examples include polyamides such as aliphatic polyester and nylon, polyolefins such as polystyrene, polyvinyl alcohol, poly (ethylene-co-vinyl acetate) and poly (hydroxyethyl methacrylate), and acid-modified polyolefin (maleic anhydride graft).
  • polyamides such as aliphatic polyester and nylon
  • polyolefins such as polystyrene, polyvinyl alcohol, poly (ethylene-co-vinyl acetate) and poly (hydroxyethyl methacrylate)
  • acid-modified polyolefin maleic anhydride graft
  • ethylene-vinyl compound copolymer ethylene-vinyl acetate copolymer, ethylene-vinyl alcohol copolymer, ethylene-vinyl chloride copolymer, ethylene- (meth) acrylic acid co-polymer
  • examples thereof include polymers and ion-crosslinked products thereof (ionomers), ethylene-methyl methacrylate copolymers, etc.), polyvinyl compounds (methyl polyacrylate, methyl polymethacrylate, etc.), polycarbonates, polyethers (polyethylene oxide, etc.), and the like.
  • aliphatic polyester is preferable in view of bioabsorbability.
  • bioabsorbable aliphatic polyesters include polyglycolic acid, polylactic acid (D, L, DL form), poly ⁇ -caprolactone, polyhydroxybutyrate, polyhydroxyvalerate, polyorthoester, polyhydroxyhexanoate, and poly.
  • the monomer unit in the copolymer includes glycolic acid, lactic acid (D, L, DL form), ⁇ -caprolactone, hydroxybutyrate, hydroxyvalerate, orthoester, hydroxyhexanoate, butylene succinate, and hydroxy other than the above.
  • examples thereof include alkanoate, 1,3-dioxane-2-one (trimethylene carbonate), p-dioxanone, and the like, but the present invention is not particularly limited.
  • the bioabsorbable aliphatic polymer polyhydroxyalkanoate is particularly preferable.
  • the polyhydroxyalkanoate used in the present invention is biodegradable and bioabsorbable, and can have repetitive elasticity (property to repeatedly expand and contract).
  • the polymerization unit preferably contains a 3-hydroxybutyrate unit.
  • the polymerization unit preferably contains 4-hydroxybutyrate (sometimes referred to as 4HB) units in addition to 3-hydroxybutyrate (sometimes referred to as 3HB) units.
  • the weight average molecular weight of polyhydroxyalkanoate measured by polystyrene conversion gel permeation chromatography is preferably 100,000 or more, more preferably 200,000 or more, and further may be 300,000 or more, 400,000 or more, or 500,000 or more.
  • the weight average molecular weight measured by polystyrene conversion gel permeation chromatography is 600,000 or more, 700,000 or more, 800,000 or more, 900,000 or more, 1 million or more, 1.1 million or more, 1.2 million or more, 1.3 million or more, 1.4 million or more, 150. It may be 10,000 or more, 2 million or more, 3 million or more, or 4 million or more.
  • the upper limit of the weight average molecular weight measured by polystyrene conversion gel permeation chromatography is not particularly limited, but is generally 20 million or less, 10 million or less, 8 million or less, 7 million or less, 6 million or less, 5 million or less, It may be 4 million or less, or 3 million or less.
  • the weight average molecular weight measured by polystyrene-equivalent gel permeation chromatography is 400,000 or more and 2.5 million or less, considering that the molecular weight decreases due to thermal decomposition and the viscosity at the time of melting does not become too high. It is more preferably 500,000 or more and 2.2 million or less, and further preferably 600,000 or more and 2 million or less.
  • the polyhydroxyalkanoate used in the present invention preferably contains 3-hydroxybutyrate (3HB) units as the polymerization unit, and more preferably 3-hydroxybutyrate (3HB) units and 4-hydroxybutyrate (4HB). Including units.
  • the polymerization unit may contain other polymerization units other than 3HB units and 4HB units.
  • Other polymerization units described above include lactate (LA), glycolate (GA), 3-hydroxypropionate (3HP), 3-hydroxyvalerate (3HV), 4-hydroxyvalerate (4HV), 5-.
  • Hydroxyvalerate (5HV), 4-hydroxyhexanoate (4HH), 5-hydroxyhexanoate (5HH), 6-hydroxyhexanoate (6HH), or 3-hydroxyhexanoate (3HH), or carbon Hydroxy alkanoates of several 7 or more can be mentioned.
  • a ternary copolymer or a multiplex copolymer containing the above-mentioned polymerization unit can be used instead of the binary copolymer.
  • the above-mentioned copolymer composition can be mixed (blended) at an arbitrary ratio and used.
  • 3-hydroxybutyrate unit and the 4-hydroxybutyrate unit are represented by the following equations, respectively.
  • 4-Hydroxybutyrate unit: -OCH 2 CH 2 CH 2 C ( O)-
  • the ratio of 4-hydroxybutyrate units to all monomer units is preferably 5 mol% to 40 mol%, more preferably 10 mol%. It is about 40 mol%, more preferably 10 mol% to 30 mol%.
  • the ratio of 4-hydroxybutyrate units to all monomer units is 5 mol% or more, 6 mol% or more, 7 mol% or more, 8 mol% or more, 9 mol% or more, 10 mol% or more, 11 mol% or more, 12 It may be mol% or more, 13 mol% or more, 14 mol% or more, 15 mol% or more, or 16 mol% or more, and may be 17 mol% or more, 18 mol% or more, 19 mol% or more, 20 mol% or more.
  • the ratio of 4-hydroxybutyrate units to all monomer units is 40 mol% or less, 39 mol% or less, 38 mol% or less, 37 mol% or less, 36 mol% or less, 35 mol% or less, 34 mol% or less, 33.
  • the polyhydroxyalkanoate of the present invention may be any of a random polymer, a block polymer, an alternating polymer, or a graft polymer, but is preferably a random polymer.
  • a fermentation synthesis method (biosynthesis method) and a chemical synthesis method.
  • the method for producing the polyhydroxy alkanoate used in the present invention may be a fermentation synthesis method (biosynthesis method) or a chemical synthesis method, but in order to obtain a polyhydroxy alkanoate having a large molecular weight, a fermentation synthesis method (biosynthesis method) may be used. Is preferable.
  • the chemical synthesis method is a method for chemically synthesizing polyhydroxyalkanoates according to a normal organic synthesis method.
  • a chemical synthesis method specifically, P (3HB-co-6HHx) is synthesized by ring-opening polymerization of fatty acid lactones such as (R) - ⁇ -butyrolactone and ⁇ -caprolactone under a catalyst. (Abe et al., Macromolecules, 28, 7630 (1995)), P (3HB-co-4HB) by ring-opening polymerization of fatty acid lactones such as (R) - ⁇ -butyrolactone and ⁇ -butyrolactone under a catalyst. ) Etc.
  • Fermentation synthesis method is a method for biosynthesizing PHAs according to the usual culture engineering method.
  • the 4HB-containing polyhydroxyalkanoate used in the present invention uses a microorganism capable of producing P (3HB) as a carbon source and ⁇ -caprolactone (also known as 6-hexanoate). Lactone), or a saponified product thereof, 6-hydroxyhexanoate or a salt thereof, ⁇ -butyrolactone, or a saponified product thereof, 4-hydroxybutyrate or a salt thereof, 4-chlorobutyrate, 4-bromobutyrate, etc.
  • P (3HB-co-4HB) copolymers having various 4HB ratios can be produced by appropriately changing the type of carbon source used and the supply ratio.
  • the PHAs thus obtained by the enzymatic reaction of the organism do not contain a metal catalyst such as tin octylate, which is advantageous in this sense.
  • a genetically modified bacterium may be used, or a non-genetically modified bacterium may be used.
  • a method for extracting polyhydroxyalkanoate from cells is a solvent extraction method in which extraction is performed using a halogenated hydrocarbon solvent such as chloroform, and the mixture is precipitated with a poor solvent such as hexane or methanol.
  • a water-based extraction method may be used as described in Japanese Patent Publication No. 04-061638, Japanese Patent Laid-Open No. 07-177894, WO2004029266.
  • Ates may be depyrogenized with peroxides as described in US6245537.
  • the molecular weight of polyhydroxy alkanoate can be measured by the gel permeation chromatography method as follows. Chloroform is added so that the polyhydroxyalkanoate is about 0.5 mg / ml, and the mixture is dissolved at 60 ° C. for 2 to 4 hours, returned to room temperature, and filtered through a PTFE filter having a pore size of 0.2 ⁇ m to remove insoluble matters. , As a measurement sample.
  • the GPC conditions are as follows.
  • the method for producing a molded product (stretchable suture, etc.) from a bioabsorbable aliphatic polymer such as polyhydroxyalkanoate is that the bioabsorbable aliphatic polymer such as polyhydroxyalkanoate, which has a slow crystallization rate after melting, is amorphous. It is in a state where solidification or crystallization has progressed from the state to the extent that it can be stretched, and is not particularly limited except that a stretching operation is performed in a state where fine microcrystals are present to give elasticity, for example.
  • Japanese Patent Application No. 2019-90739, Japanese Patent Application No. 2020-096144, Japanese Patent Application No. 2020-096145 can be used to manufacture a molded product (stretchable suture, etc.).
  • microcrystals are formed by taking an appropriate waiting time at room temperature or a temperature at which crystallization progresses in order to proceed with crystallization.
  • the stretchable suture can be produced by stretching in a state or by melt-molding in a partially melted state and stretching in a state in which microcrystals remain.
  • an additive may be further added as long as the effect of the present invention is not impaired.
  • Additives include antioxidants, heat stabilizers (eg, hindered phenols, hydroquinones, phosphites and their substitutions, etc.), UV absorbers (eg, resorcinol, salicylate), anticoloring agents (phosphoric acid).
  • antioxidants eg, heat stabilizers (eg, hindered phenols, hydroquinones, phosphites and their substitutions, etc.)
  • UV absorbers eg, resorcinol, salicylate
  • anticoloring agents phosphoric acid
  • the method of blending the additive with the bioabsorbable aliphatic polymer such as polyhydroxy alkanoate is not particularly limited, and the chemistry of the bioabsorbable aliphatic polymer such as dry blend, solution blending, and polyhydroxy alkanoate is not particularly limited. Addition at the time of polymerization and the like can be mentioned.
  • Bioabsorbable aliphatic polymers such as polyhydroxy alkanoates are known melt moldings such as injection molding, injection compression molding, compression molding, extrusion molding (melt extrusion molding), blow molding, press molding and spinning (melt extrusion spinning). It can be performed. It is preferably spinning (melt extrusion spinning, partially melt extrusion spinning), and is preferably accompanied by a stretching operation that imparts elasticity.
  • melt extrusion spinning a small laboratory-level plunger-type melt extruder can be used, but large equipment such as industrially used uniaxial screw type spinning equipment and biaxial screw type spinning equipment is used. You can also do it.
  • the number of times of melt molding is not particularly limited, but preferably it can be performed only once.
  • a heat treatment mediated by a gas, liquid or solid may be performed. It does not have to be (Japanese Patent Application No. 2020-96145).
  • the step of solidifying after melting can be performed in a molding die, in air, or in a liquid (for example, in water). That is, the bioabsorbable aliphatic polymer such as molten polyhydroxyalkanoate can be solidified by cooling in a molding die, in air, or in water. Preferably, the bioabsorbable aliphatic polymer such as molten polyhydroxyalkanoate can be cooled in a molding die or in the air. When cooling in air, the temperature and humidity of the air can be controlled, but cooling at room temperature without special temperature control may be used.
  • a gas in which the composition of components in the air nitrogen, oxygen, carbon dioxide, water concentration, etc.
  • a rare gas helium, neon, argon, etc.
  • the temperature and components water, alcohols, glycerol, etc.
  • Bioabsorbable aliphatic polymers such as polyhydroxyalkanoates in a molten and amorphous state are in the form of a solution at a temperature above the glass transition point and have a slow crystallization rate. Although it will be cut, if crystallization is partially advanced and stretching is performed in a solidified state, the polymer chains can be oriented and stretched.
  • Examples of the molded product of the bioabsorbable aliphatic polymer such as polyhydroxyalkanoate produced by the method of the present invention include various fibers such as drawn yarn and super drawn yarn, and one example is suture.
  • the suture may be either a monofilament suture made of a single fiber or a multifilament suture made of a plurality of fibers.
  • the thread diameter of the suture is not particularly limited, but is generally 1 mm or less, 0.8 mm or less, 0.6 mm or less, 0.5 mm or less, 0.4 mm or less, or 0. It may be 0.3 mm or less, and the lower limit of the thread diameter is generally 0.001 mm or more.
  • the obtained fibers may be woven and knitted and processed into a mesh shape, or may be woven into a three-dimensional structure. Furthermore, composite fibers and three-dimensional composites can be created by combining with other fibers and materials.
  • the fiber extruded by a method such as melt spinning or partial melt spinning is stretched, and the ⁇ crystal forming the lamella crystal in the fiber is along the fiber direction. It is desirable that the lamella consisting of ⁇ crystals is laminated in the direction perpendicular to the fiber axis, and the amorphous layer and tie molecules between the lamella and the lamella are deformed by tension, and ⁇ is a stretch-cut plane zigzag structure.
  • the obtained fiber then exhibits elasticity without heat treatment (annealing treatment) at a temperature equal to or higher than the glass transition point and at a temperature at which the fiber does not melt, but heat treatment may be performed.
  • the elongation at break of the fibrous medical material of the present invention is 75% or more, preferably 100% or more, more preferably 150% or more, still more preferably 180% or more, and particularly preferably 200% or more. Is.
  • the upper limit of elongation at break is not particularly limited, but is generally 1000% or less.
  • the elongation at break of the fibrous medical material is not particularly limited, but can be measured by, for example, the following method. Using a fibrous medical material with a length of 3 cm and a fiber diameter of about 0.1 to 0.4 mm and a tensile tester AGS-50NX (manufactured by Shimadzu Corporation), the temperature is 23 ° C and the test speed is 10 mm / The elongation at break can be measured by performing a tensile test until the fiber breaks under the condition of an initial length (distance between chucks) of 10 mm. When a sample of sufficient length can be used, it is preferable to secure a distance between chucks of 10 cm for the test.
  • the fibrous medical material of the present invention may or may not have voids.
  • the fibrous medical material of the present invention has voids.
  • the range of porosity is not particularly limited, but is preferably 5 to 55%, more preferably 10 to 50%, and even more preferably 20 to 20. It is 45%.
  • the method for measuring the void ratio is not particularly limited, but for example, the void ratio can be measured by observing a cross section of a fibrous medical material with a scanning electron microscope and performing image analysis of the cross section.
  • Software such as ImageJ (an image processing program developed by the National Institutes of Health) may be used for image analysis of cross-sectional views, and the present invention is not limited to this.
  • the initial tensile modulus of the fibrous medical material of the present invention is preferably 1000 MPa or less, more preferably 600 MPa or less. Yes, it is even more preferably 480 MPa or less, further preferably 400 MPa or less, even more preferably 300 MPa or less, and particularly preferably 200 MPa or less.
  • the lower limit of the initial tensile elastic modulus is not particularly limited, but is generally 5 MPa or more, and may be 10 MPa or more.
  • the intermediate tensile elastic modulus is set to a value lower than the initial tensile elastic modulus.
  • the intermediate tensile elastic modulus of the fibrous medical material of the present invention is preferably 400 MPa or less, more preferably 300 MPa or less, still more preferably 250 MPa or less, still more preferably 200 MPa or less, and particularly preferably 150 MPa or less. It is as follows.
  • the lower limit of the intermediate tensile elastic modulus is not particularly limited, but is generally 5 MPa or more, and may be 10 MPa or more.
  • the elastic modulus can be measured using, for example, a tensile tester.
  • the distance between the chucks of the tensile tester shall be 1 to 10 cm, and it shall be fixed to the fixing device using 1 cm above and below.
  • the tensile speed is 10 mm / min.
  • the initial modulus of tensile modulus can be calculated from the slope of the stress-strain curve between 0.05% and 0.25% strain, and the intermediate modulus of tensile modulus is, for example, between 0.25% and 10% strain. It can be calculated from the slope of the stress-strain curve.
  • the strain section used for the intermediate tensile modulus is a strain section larger than the strain section used for calculating the initial tensile modulus and is close to the strain used for calculating the initial tensile modulus.
  • the tensile modulus at a strain of 0.25% to 10% is defined as the intermediate tensile modulus.
  • the residual strain rate after 100% deformation of the fibrous medical material of the present invention is 70% or less, preferably 60% or less, and more preferably 50% or less.
  • the lower limit of the residual strain rate after 100% deformation is not particularly limited, but is generally 5% or more, and may be 10% or more, 20% or more, or 30% or more.
  • the residual strain rate after 50% deformation of the fibrous medical material of the present invention is preferably 40% or less, more preferably 30% or less, still more preferably 20% or less.
  • the lower limit of the residual strain rate after 50% deformation is not particularly limited, but is generally 5% or more, and may be 10% or more, 20% or more, or 30% or more.
  • a fiber with a length of 3 cm was cycle-tested using a tensile tester under the conditions of a temperature of 23 ° C. and an initial length of 10 mm, and a strain of 100% (initial length) at a tensile speed of 20 mm / min.
  • a 12 cm long fiber is cycle tested using a tensile tester at a temperature of 23 ° C. and an initial length of 100 mm, and a strain of 50% (1 of the initial length) at a tensile speed of 100 mm / min. .
  • the second time when the operation of extending to 150 mm, which is 5 times the length, that is, the displacement length of 50 mm), then moving the gripper to the original length at the same speed, and contracting the fibers is repeated.
  • the chuck distance is Y
  • the initial strain is a%
  • the displacement length at the first time point of the second extension is X a .
  • the diameter of the maximum pores (pores, pores, pores, voids, voids, or hollows) measured by microscopic observation of a cross section orthogonal to the fiber axis direction is preferably 100 ⁇ m. It is less than or equal to, more preferably 75 ⁇ m or less, still more preferably 50 ⁇ m or less.
  • the lower limit of the diameter of the maximum pore (pore, pore, pore, void, void, or hollow) is not particularly limited, but is generally 0.1 ⁇ m or more, and may be 0.2 ⁇ m or more or 1 ⁇ m or more. ..
  • the number of holes per cross section is not limited, and may be one or a plurality of holes, and each hole may be independent or connected.
  • the diameter of the maximum pores of the fibrous medical material can be measured, for example, by the following method.
  • An image in which the pores inside the fiber can be identified was taken using a scanning electron microscope or the like, and the image was analyzed by ImageJ (an image processing program developed by the National Institutes of Health) to calculate the diameter of the pores. ..
  • the cross-sectional shape of the fibrous medical material of the present invention does not necessarily have to be circular, and examples thereof include an ellipse, a polygon, a free curve, and a combination thereof. If it is circular, the thread width may be measured for the thread diameter, but if it is elliptical, for example, the ratio of the major axis length to the minor axis length (major axis length / minor axis length) is 1.0 or more. However, it may be 1.1 or more, or 1.2 or more.
  • the upper limit of the ratio of the major axis length to the minor axis length (major axis length / minor axis length) is not particularly limited, but is generally 3.0 or less, and may be 2.0 or less.
  • the ratio of the minor axis length to the major axis length (major axis length / minor axis length) in the cross section of the fibrous medical material in the width direction can be measured by the following method.
  • the minor axis length and the major axis length were measured using a dial thickness gauge (Teklock Co., Ltd., SM-1201L type, scale 0.001 mm). Measurements were made at three points (1/4, 1/2, 3/4 of the total length) of the thread to be measured in the direction of the fiber having the thinnest thickness, and the average value was taken as the minor axis length.
  • the length of the major axis is lightly deformed into a U shape so that the fibers do not have creases, and the major axis is measured so that it is perpendicular to the gauges.
  • the major axis length was measured at 1/4, 1/2, 3/4), and the average value was taken as the major axis length.
  • the knot of the suture and the side surface or cross section of the suture were observed with an electron microscope.
  • a suture cut out with a razor to an appropriate size was placed on a sample table and coated with a thin film of osmium using an osmium plasma coater, NL-OPC80NS (Nippon Laser Electronics Co., Ltd.).
  • Observation was performed using a field emission scanning electron microscope JSM-7610F (JEOL Ltd.) under the condition of an acceleration voltage of 5.0 kV.
  • the suture cut out with a razor to an appropriate size is placed on the sample table, and platinum (Pt) is vapor-deposited using ion sputtering and E1045 (Hitachi High-Technologies Corporation). bottom. Then, it was observed under the condition of an acceleration voltage of 5.0 kV using a thermoelectron gun type low vacuum scanning electron microscope TM4000plus (Hitachi High-Technologies Corporation).
  • Example 1 Using a plunger-type melt extrusion spinning device IMC-19F8 (Imoto Seisakusho Co., Ltd.) using P (3HB-co-14.8 mol% 4HB) with a weight average molecular weight Mw of 970,000, about 5 g to the cylinder. PHA is put in, a die with a die diameter of 1 mm is used, melt-extruded by heating at 170 ° C. for 5 minutes (extrusion speed 1 mm / sec), and the threads do not overlap at a speed of 5 rpm on a bobbin with a diameter of 114 mm. I wound it up like this.
  • a whitened elastic monofilament yarn was produced.
  • the cross section of the P (3HB-co-4HB) yarn is not necessarily circular but elliptical or flat, the minor axis length and major axis length are measured, and the cross-sectional area is calculated as an ellipse for the tensile test. Used for evaluation.
  • the cross section of the yarn of Example 1 in the present specification is a shape in which a molten polymer in an amorphous state is wound up and is not circular but crushed by hot pin stretching, and the yarn diameter in Table 1 is a short axis length. The average length of the thread and the length of the long axis is displayed as the thread diameter.
  • the thermal pin stretching is a method of stretching while pressing a fiber against a heated metal pin.
  • a knot is tied with a surgical knot on an artificial skin sheet made of a soft elastomer, and the knot is knotted with a force gauge (Standard Model Digital Force Gauge: ZTS-100N, IMADA CO., LTD) with a force of about 5N. Tightened.
  • the knot was photographed with a camera (DP26, OLYMPUS.CO., LTD) attached to a stereomicroscope (SZX7, OLYMPUS.CO., LTD), and the knot was taken with image analysis software (cellSens, OLYMPUS.CO., LTD).
  • the size peripheral length of the knot, area surrounded by the peripheral length was analyzed (Fig. 5).
  • the average value of the short-direction thread diameter of the slightly flat suture made of P (3HB-co-14.8 mol% 4HB) of Example 1 was 0.205 mm, and the long-direction thread diameter was 0.352 mm.
  • the average yarn diameter in the major direction was 0.281 mm.
  • the size of the surgical knot tightened with a force of 5N had an average perimeter of 3.46 mm, and the area of the area surrounded by the perimeter was 0.688 mm 2 .
  • the average value of [area surrounded by perimeter / thread diameter] as an index of knot size was 2.45.
  • the weight average molecular weight Mw of PHA after spinning was 320,000.
  • Figure 4 shows the results of observing the state of the surgical knot with a scanning electron microscope.
  • an optical micrograph of the surgical knot used for calculating the numerical value related to the size of the knot is shown in FIG.
  • Example 2 Plunger (piston) type melt viscosity measuring device Flow Tester CFT-500D (Shimadzu Corporation) is used as a melt spinning device using P (3HB-co-15.3 mol% 4HB) with a weight average molecular weight of Mw 700,000. bottom.
  • the weight used was 2.5 kg, and a total load of 3 kg was applied with the weight and fishing tackle, and the polymer was extruded with an extrusion pressure of 2.942 MPa applied to the piston cross-sectional area of 1 cm 2 due to the increase in force due to the pulley (pulley). ..
  • This PHA has a melting peak from 85 ° C. to around 155 ° C. by differential scanning calorimetry (DSC), and at a melting temperature of 150 ° C., it is not a complete melting but a partial melting.
  • the average value of the thread diameter of the suture made of P (3HB-co-15.3 mol% 4HB) of Example 2 is 0.207 mm (almost circular, major axis length / minor axis length ⁇ 1.2).
  • USP (United States Pharmacopeia) standard has a thread diameter corresponding to 3-0.
  • the size of the surgical knot tightened with a force of about 5 N had an average perimeter of 3.61 mm and an average area of the area surrounded by the perimeter was 0.744 mm 2 .
  • the average value of [area surrounded by perimeter / thread diameter] as an index of knot size was 3.59, which was slightly larger than that of Example 1.
  • the weight average molecular weight Mw of PHA after spinning was 470,000.
  • Example 3 Using P (3HB-co-15.3 mol% 4HB) with a weight average molecular weight of Mw 750,000, a plunger (piston) type melt viscosity measuring device Flow Tester CFT-500D (Shimadzu Corporation) is used as a melt spinning device. bottom.
  • the piston diameter is 11.282 mm (piston cross-sectional area 1 cm 2 ), about 1 g of PHA is charged into the cylinder, a die (nozzle) with a hole diameter of 1 mm and a hole length of 1 mm is used, and after a residual heat time of 120 seconds at 170 ° C. It was melt-spun.
  • the weight used was 2.5 kg, and a total load of 3 kg was applied with the weight and the fishing tackle, and the polymer was extruded at an extrusion pressure of 2.942 MPa in the same manner as in Example 2.
  • This PHA has a melting peak from 60 ° C to around 170 ° C by differential scanning calorimetry (DSC), and it is considered that the PHA is almost completely melted at a melting temperature of 170 ° C.
  • the extruded fiber is hung in a straight line without being wound around the bobbin, allowed to solidify for 30 minutes at room temperature (23 ° C), partially promoted crystallization, and then manually stretched about 5 times.
  • a transparent stretchable monofilament yarn was prepared by stretching at a magnification, and the yarn diameter was measured in the same manner as in Example 2. Using this one-size thread, a knot was formed with a surgical knot in the same manner as in Example 1, and the size of the knot was analyzed with a stereomicroscope (FIG. 7). The results are shown in Table 3 (Example 3).
  • the average value of the thread diameter of the suture made of P (3HB-co-15.3 mol% 4HB) of Example 3 is 0.406 mm (almost circular, major axis length / minor axis length ⁇ 1.2). , The thread diameter corresponds to 1 in the USP standard.
  • the size of the surgical knot tightened with a force of about 5 N had an average perimeter of 4.87 mm and an average area of the area surrounded by the perimeter was 1.35 mm 2 .
  • the average value of [area surrounded by peripheral length / thread diameter] as an index of knot size was 3.33, which was equivalent to that of Example 2.
  • the weight average molecular weight Mw of PHA after spinning was 450,000.
  • the knot of the elastic yarn obtained from P (3HB-co-4HB) shown in Examples 1, 2 and 3 has no gap between the yarns and is firmly fixed.
  • [Area surrounded by perimeter / thread diameter] which was used as an index of the size of the knot, was at almost the same level in Example 2 and Example 3, although it was slightly smaller in Example 1. rice field.
  • Example 4 The yarns of Examples 1 to 3 were yarns produced by manual (manual) stretching using a small laboratory-level plunger-type melt extruder. Extruding a P (3HB-co-16.0 mol% 4HB) copolymer with a weight average molecular weight of Mw 560,000 using an industrially used uniaxial screw type spinning / drawing device with a diameter of 16 mm and a die with a diameter of 1 mm. The temperature range of the machine was set to 145 to 160 ° C., partial melt spinning was performed, and the mixture was extruded at a rate of 0.9 g / min.
  • Fibers extruded with a mixture of undissolved crystals and fluidized polymer are once passed through water at 50 ° C, then wound and stretched in air at room temperature of 23 ° C with a multi-step roller (stretching ratio).
  • the yarn diameter was measured in the same manner as in Example 2.
  • a knot was formed with a surgical knot in the same manner as in Example 1, and the size of the knot was analyzed with a stereomicroscope (FIG. 8). The results are shown in Table 4 (Example 4).
  • the average value of the thread diameter of the thread used for evaluating the size of the knot of the suture made of P (3HB-co-16.0 mol% 4HB) of Example 4 is 0.256 mm (almost circular, major axis length /). The minor axis length was ⁇ 1.2), and the thread diameter was equivalent to 2.5-0 in the USP standard.
  • the size of the surgical knot tightened with a force of about 5 N had an average circumference of 4.03 mm and an average area of the area surrounded by the circumference was 0.843 mm 2 .
  • the average value of [area surrounded by peripheral diameter / thread diameter] as an index of the size of the knot was 3.29, which was equivalent to that of Examples 2 and 3.
  • the weight average molecular weight Mw of PHA after spinning was 350,000.
  • the knots of the elastic yarns obtained from P (3HB-co-4HB) shown in Examples 1, 2, 3 and 4 are yarns and yarns as shown in FIGS. 5, 6, 7 and 8. It can be seen that there is no gap in the knot, and the knot size index of Example 1 [Area surrounded by the peripheral diameter / thread diameter] is [Enclosed by the peripheral diameter] of the other examples. Area / thread diameter], but at the same level in Examples 2, 3 and 4.
  • ⁇ Comparative Example 1> B consisting of P (4HB).
  • the procedure was the same as in Example 2 except that the MonoMax suture (2-0 size) manufactured by BRAUN was used, and the thread surface was observed with a scanning electron microscope (FIG. 9), and the surgical knot was observed with a scanning electron microscope (FIG. 10).
  • the circumference of the knot and the area surrounded by the circumference were analyzed (FIG. 11), and the area / thread diameter surrounded by the circumference was calculated. The results are shown in Table 5 (Comparative Example 1).
  • the average thread diameter of the MonoMax suture (2-0 size) made of P (4HB) in Comparative Example 1 was 0.346 mm, which was certainly equivalent to 2-0 in the USP standard.
  • the size of the surgical knot tightened with a force of 5N had an average perimeter of 6.91 mm and an average area of the area surrounded by the perimeter was 2.60 mm 2 .
  • An optical micrograph of the surgical knot used for the calculation is shown in FIG.
  • the average value of [area surrounded by perimeter / thread diameter] as an index of knot size was 7.50, which was clearly larger than that of Examples 1 to 4.
  • the average value of the thread diameter of the PDSII suture (3-0 size) made of polydioxanone of Comparative Example 2 is 0.291 mm, but the medical device attachment states that the PDS suture is within the USP standard except for the diameter, and the thread.
  • the upper limit of the standard value of the diameter is set to be larger than that of USP, and it is described that 3-0 is larger than the standard value by 0.056 mm at the maximum. Therefore, when 0.056 mm is subtracted from 0.291 mm, it becomes 0.235 mm, which corresponds to the USP3-0 size, but the actual yarn diameter is 0.291 mm on average.
  • the size of the surgical knot tightened with a force of 5N had an average perimeter of 6.48 mm and an average area of the plane surrounded by the perimeter was 2.28 mm 2 . An optical micrograph of the surgical knot used for the calculation is shown in FIG.
  • the average value of [area surrounded by peripheral length / thread diameter] as an index of the knot size of the PDSII suture used in Comparative Example 2 was 7.82, and P (3HB-) of Examples 1 to 4 was used. Although it was clearly larger than the co-4HB) suture, it was almost the same as the MonoMax suture, which is the P (4HB) suture of Comparative Example 1.
  • the average value of the thread diameter of the PDSII suture (4-0 size) made of polydioxanone of Comparative Example 3 is 0.163 mm, but the medical device attachment states that the PDS suture is within the USP standard except for the diameter, and the thread.
  • the upper limit of the standard value of the diameter is set to be larger than that of USP, and it is stated that 4-0 is 0.029 mm larger than the standard value at the maximum.
  • the measured suture thread diameter of Comparative Example 3 was 0.163 mm, which was within the USP4-0 size.
  • the size of the surgical knot tightened with a force of 5N had an average perimeter of 4.77 mm, and the average area of the plane surrounded by the perimeter was 1.20 mm 2 .
  • FIG. 1 An optical micrograph of the surgical knot used for the calculation is shown in FIG.
  • the average value of [area surrounded by peripheral length / thread diameter] as an index of the size of the knot of the PDSII suture used in Comparative Example 3 was 7.33, and P (3HB-) of Examples 1 to 4 was used. While clearly larger than the co-4HB) suture, the MonoMax suture (2-0 size), which is the P (4HB) suture of Comparative Example 1, and the PDSII suture (3-0 size) of Comparative Example 2 ) was almost the same level.
  • the circumference of the knot of one size (average thread diameter 0.406 mm) P (3HB-co-4HB) suture of Example 3 is 4.86 mm.
  • the Knot circumference length of the 2-0 size (average thread diameter 0.346 mm) of the MonoMax suture of Example 1 is 6.91 mm
  • the 3-0 size (average thread diameter 0.291 mm) of the PDSII suture of Comparative Example 2 The fact that the knot circumference is smaller than 6.48 mm and is equivalent to the 4-0 size (average thread diameter 0.163 mm) knot circumference of the PDSII suture of Comparative Example 3 is the elasticity.
  • the knot of the P (3HB-co-4HB) suture which is the suture, is smaller than the other resorbable sutures. From the results of Examples 1 to 4 and Comparative Examples 1 to 3, the knot of the P (3HB-co-4HB) suture has a knot more than that of the existing absorbent monofilament sutures such as MonoMax suture and PDSII suture. It was suggested that it was small.
  • a suture was wrapped around a plastic tube with a diameter of 2.9 cm, tightly tied with a surgical knot (Fig. 1), and cut on the opposite side of the knot to create a single thread. Both sides of them were attached to a tensile tester and pulled at a speed of 100 mm / min. If multiple sets of 10 samples were prepared and even one of the 10 samples was solved at the Knot part, a single nodule was added on the surgical knot (Fig. 2), and a single nodule was added until there was nothing that could be solved at the Knot part. .. The number of single nodules added until all 10 samples could not be solved in the Knot part was defined as Knot Security factor (KSF).
  • KSF Knot Security factor
  • KSF can be exemplified as follows.
  • KSF 0 Surgical knots alone cannot be untied with respect to tension and there are no additional single knots.
  • KSF 1 There is only one additional single nodule in the surgical knot and it cannot be unraveled with respect to tension.
  • KSF 3 There are only three additional single nodules in the surgical knot and they cannot be unraveled with respect to tension.
  • KSF n There are only n additional single nodules in the surgical knot and it cannot be unraveled with respect to tension.
  • the KSF of the MonoMax suture 3-0, 2-0, 0 standard consisting of P (4HB) shown in Comparative Example 1 is evaluated as 2, 2, 3 respectively (International Journal of Polymer Science, Vol. 2012, respectively). Article ID216137).
  • the KSF of the PDSII sutures (3-0, 4-0) consisting of polydioxanone and the PDSII sutures of 2-0 shown in Comparative Examples 2 and 3 all added three additional single nodules to the surgical knot. By doing so, it becomes unsolvable with respect to tension, and it is evaluated as KSF 3, and it can be judged that it is excellent (excellent) nodular stability.
  • KSF of P (3HB-co-4HB) elastic monofilament suture is other sutures such as other bioabsorbable / non-absorbable monofilament sutures and bioabsorbable multifilament (blade) sutures. It was better than the thread.
  • P (3HB-co-4HB) elastic monofilament sutures the number of single knots added to the surgical knot can be reduced compared to other threads because there is a concern that the knot will be untied after surgery. Due to the effect of reducing the number of knots themselves and the effect of expanding and contracting the thread itself to make a small knot, the volume occupied by the knot itself does not increase, and the surrounding tissue where the knot is embedded does not increase.
  • the P (3HB-co-4HB) elastic suture has a low initial tensile modulus even if it is a monofilament, and the intermediate tensile modulus is lower than the initial tensile modulus, and it is pliable and knots.
  • the operability is extremely good because it easily becomes firm without applying excessive force and does not start to loosen immediately. Furthermore, it is easy to add a single nodule because the knot tied earlier does not loosen.
  • the part that requires ligation during surgery is not always free and has a large space, but sometimes it is often required to ligate in a narrow range of motion or in the surgical field. In such a case, it is also a fact that a suture with good operability that can firmly form a knot with a light force is required.
  • a suture that satisfies the knot tensile strength as in the current USP standard has a high elastic modulus, and is not always satisfactory from the viewpoint of ease of knot formation and ease of loosening of the knot.
  • the Young's modulus of each tissue of biological tissue is calculated by Funai et al. (Shizuoka Prefectural Shizuoka Industrial Technology Center Research Report, 2007, No. 52, p.33-37 ") Is summarized by. While the elastic modulus of teeth and sebaceous bone exceeds 10,000 MPa, the elastic modulus of ligament is 248 MPa, the elastic modulus of cartilage is 23 MPa, the elastic modulus of corneal is 20 MPa, and various internal organs, muscles, skin, etc. The elastic modulus of the soft structure is 10 MPa or less. The elastic modulus of the existing absorbent suture is 485 MPa of MonoMax even if it is low, and there is no existing absorbent suture having an elastic modulus close to that of soft tissue.
  • EAG ⁇ Ethylene oxide gas (EOG) sterility of PHA elastic suture>
  • the P (3HB-co-4HB) suture of Example 1 was sterilized with EO gas.
  • the P (3HB-co-4HB) suture cut to an appropriate length is packaged in a sterility packaging material (hybrid plating bag HM-1304: manufactured by Hogi Medical Co., Ltd.) having ethylene oxide gas permeability.
  • the opening was heated using a heat sealer and sealed. 95% ethylene oxide 15g (Equitec) using a fully automatic ethylene oxide gas sterilizer (Eogelk, SA-N160, manufactured by Elk) for P (3HB-co-4HB) elastic suture wrapped in sterility packaging material.
  • Tensile test of P (3HB-co-4HB) elastic suture is performed by using a tensile tester AGS-50NX (manufactured by Shimadzu Corporation) for stretched PHA fibers with a length of 3 cm and a fiber diameter of about 0.1 to 0.3 mm. Using, a tensile test was performed until the fiber broke under the conditions of a temperature of 23 ° C., a test speed of 10 mm / min, and an initial length (distance between chucks) of 10 mm.
  • the results of the tensile test are shown in FIG. 14, and the degree of decrease in molecular weight during the immersion period is shown in FIG. 15 with the weight average molecular weight Mw 320,000 of the sample before immersion as a relative value of 100%.
  • the initial fracture elongation of the P (3HB-co-4HB) elastic suture was more than 180% as shown in FIG.
  • the period during which half of the initial linear tensile fracture strength can be maintained is about 16 weeks (Fig. 14), and the weight average molecular weight is also halved in about 16 weeks. It was done (Fig. 15). Regarding the fracture elongation, the average of 150% was maintained even after 16 weeks (Fig. 14), and it was found that the characteristic of high elasticity of this yarn was maintained.
  • the dorsal skin of a rat (F344 / NSlc male, 20 weeks old) was incised 8 cm along the spinal column, and the PHA suture of Example 1 sterilized by EOG was implanted in the subcutaneous tissue. After 4, 8, 12, 16, and 26 weeks, a sample was taken, lightly washed with water, vacuum dried, and subjected to a tensile test and a molecular weight measurement. Those not buried were defined as 0 week (initial).
  • Tensile test of P (3HB-co-4HB) elastic suture is performed by using a tensile tester AGS-50NX (manufactured by Shimadzu Corporation) for stretched PHA fibers with a length of 3 cm and a fiber diameter of about 0.1 to 0.3 mm. Using, a tensile test was performed until the fiber broke under the conditions of a temperature of 23 ° C., a test speed of 10 mm / min, and an initial length (distance between chucks) of 10 mm.
  • the in vivo tensile fracture strength of 3-0 MonoMax suture consisting of P (4HB) can maintain half of the initial fracture strength for 12 weeks, and the in vivo tensile fracture strength of 3-0 PDSII consisting of polydioxanone is 6 weeks. It has been shown to be halved (International Journal of Polymer Science, Vol. 2012, Article ID 216137). From these facts, it is considered that the P (3HB-co-4HB) elastic suture can be used in the site where the tensile strength is desired to be maintained for a longer period than the MonoMax suture or the PDSII suture.
  • ⁇ Micro mini pig abdominal wall suture test Presence or absence of complications and inflammatory reaction using a female micromini pig (Fuji Micra Co., Ltd.) 32 weeks old with P (3HB-co-4HB) elastic suture and other absorbent sutures of Example 1.
  • a suture test was performed for the purpose of macroscopically and microscopically evaluating the amount of swelling. After removing the fetus by caesarean section, the abdominal wall 12 cm was sutured with 3 needles with a cranial P (3HB-co-4HB) suture and a central poly (glycolid-co-trimethylene carbonate) (PGA-TMC copolymer) suture.
  • the abdominal wall including the sutured part was collected, the sutured part of each thread was cut off, fixed with paraffin, and then stained with hematoxylin and eosin (HE) by a conventional method, and the amount of inflammation was observed with an optical microscope.
  • the score in the tissue observation is 0, 1, 2, 3 which shows inflammation, necrosis, and fibrous thickening by a blind method in which one pathologist does not clarify which sample is which suture. It was evaluated on a four-point scale.
  • P (3HB-co-4HB) sutures The feature of less inflammation and the possibility of non-inferiority with respect to necrosis and fibrous thickening helps to show the usefulness of P (3HB-co-4HB) sutures.
  • the knot of the suture part becomes smaller, it can be applied to the part that could not be used because the decomposition and absorption were too fast in the conventional medical treatment, and the tension of the thread is too strong or it is difficult to stretch than the tissue.
  • P (3HB-) is a suture that can be applied even when the tissue side is damaged in a soft tissue, and is a suture that has long-term absorbability and elasticity, and the knot itself becomes smaller.
  • co-4HB) Absorbable elastic sutures have been shown to be attractive medical devices with new applicability.
  • a tensile test was performed until the fiber broke under the conditions of a temperature of 23 ° C., a test speed of 10 mm / min, and an initial length (distance between chucks) of 10 mm.
  • An example of the result of the stress-strain curve is shown in FIG.
  • an example of the stress-strain curve results of the tensile test from the breakage of Examples 2 to 4 is shown in FIGS. 23 to 25.
  • the tensile fracture strength of the fiber used in Example 1 shown in FIG. 22 was 161 MPa on average at 5 points and 240% fracture elongation (variation was 180 to 282%). Further, the tensile fracture strength of the fiber used in Example 2 also shown in FIG. 23 was 120 MPa on average at 5 points and the fracture elongation was 183% (variation was 157 to 209%). The tensile fracture strength of the fiber used in Example 3 also shown in FIG. 24 was 69 MPa on average at 5 points and 250% fracture elongation (variation was 178 to 338%). The tensile fracture strength of the fiber used in Example 4 also shown in FIG. 25 was 110 MPa on average at 5 points and the fracture elongation was 232% (variation was 192 to 272%).
  • the P (3HB-co-4HB) elastic suture used in Example 1 was evaluated by a cycle test in which the elastic suture was repeatedly expanded and contracted.
  • a P (3HB-co-4HB) suture having a length of 3 cm and a major axis thickness of about 0.2 mm was used at a temperature of 23 ° C. using a tensile tester AGS-50NX (manufactured by Shimadzu Corporation).
  • a cycle test was performed under the condition of an initial length of 10 mm.
  • the P (3HB-co-4HB) elastic suture used in Example 1 is approximately at the beginning of the second extension (ie, at the end of the first contraction) when 100% strain is applied during extension.
  • the tensile elongation recovery rate (%) is about 60% and the residual strain rate is about 40%.
  • the tensile elongation recovery rate (%) was about 60% to about 55%, and the residual strain rate was about 40% to about 45% (FIG. 26).
  • the tensile elongation recovery rate R 100 (%) means that a fiber having a length of 3 cm is cycle-tested using a tensile tester at a temperature of 23 ° C. and an initial length of 10 mm to a tensile speed of 20 mm / min. Stretches to 100% strain (20 mm, which is twice the initial length, that is, displacement length 10 mm), and then moves the grip to the original length at the same speed to shrink the fibers.
  • the displacement length at the first time point of the second extension that is, considered to be almost equal to the end time of the first contraction
  • the tensile elongation recovery rate R 100 (%) [(20- (X 100 +10)) / 10] ⁇ 100 Indicated by.
  • Example 2 Evaluation was made in a cycle test in which the P (3HB-co-4HB) elastic suture used in Example 2 was repeatedly expanded and contracted.
  • a P (3HB-co-4HB) suture with a length of 3 cm and a fiber diameter of 0.207 mm was used with a tensile tester AGS-50NX (manufactured by Shimadzu Corporation) at a temperature of 23 ° C. and an initial length of 10 mm.
  • a cycle test was conducted at. At a tensile speed of 20 mm / min, the strain was stretched to 100% strain (twice the length), and then the gripper was moved to the original length at the same speed to contract the PHA fibers. This was repeated 5 times. The stress-strain curve during the first to fifth contractions is shown in FIG. 27.
  • the P (3HB-co-4HB) elastic suture used in Example 2 is approximately at the beginning of the second extension (ie, at the end of the first contraction) when 100% strain is applied during extension.
  • the tensile elongation recovery rate (%) is about 67% and the residual strain rate is about 33%.
  • the tensile elongation recovery rate (%) was about 63% to about 60%, and the residual strain rate was about 37% to about 40% (FIG. 27).
  • the P (3HB-co-4HB) elastic suture used in Example 3 is approximately at the beginning of the second extension (ie, at the end of the first contraction) when 100% strain is applied during extension.
  • the tensile elongation recovery rate (%) is about 70% and the residual strain rate is about 30%.
  • the tensile elongation recovery rate (%) was about 63% to about 68%, and the residual strain rate was about 32% to about 37% (FIG. 28).
  • the P (3HB-co-4HB) elastic suture used in Example 4 was evaluated by a cycle test in which the elastic suture was repeatedly expanded and contracted.
  • a P (3HB-co-4HB) suture with a length of 3 cm and a fiber diameter of about 277 mm was used with a tensile tester AGS-50NX (manufactured by Shimadzu Corporation) at a temperature of 23 ° C. and an initial length of 10 mm.
  • a cycle test was performed. At a tensile speed of 20 mm / min, the strain was stretched to 100% strain (twice the length), and then the gripper was moved to the original length at the same speed to contract the PHA fibers. This was repeated 5 times.
  • the stress-strain curve during the first to fifth contractions is shown in FIG.
  • the P (3HB-co-4HB) elastic suture used in Example 4 is approximately at the beginning of the second extension (ie, at the end of the first contraction) when 100% strain is applied during extension.
  • the tensile elongation recovery rate (%) is about 74% and the residual strain rate is about 26%.
  • the tensile elongation recovery rate (%) was about 72% to about 66%, and the residual strain rate was about 28% to about 34% (FIG. 29).
  • the P (3HB-co-4HB) suture having a length of 12 cm and a fiber diameter of about 0.283 mm used in Example 4 was used with a tensile tester AGS-50NX (manufactured by Shimadzu Corporation).
  • a cycle test was conducted under the conditions of a temperature of 23 ° C. and an initial length of 100 mm. At a tensile speed of 100 mm / min, the strain was stretched to a strain of 50% (1.5 times the length), and then the gripper was moved to the original length at the same speed to contract the PHA fibers. This was repeated 5 times.
  • the stress-strain curve during the first to fifth contractions is shown in FIG.
  • the P (3HB-co-4HB) elastic suture used in Example 4 is considered to be approximately equal to the first point in time of the second extension (ie, the end of the first contraction) after a 50% strain load. ),
  • the tensile elongation recovery rate (%) is about 94%, and the residual strain rate is about 6%.
  • the tensile elongation recovery rate (%) was about 93% to about 90%, and the residual strain rate was about 7% to about 10% (FIG. 30). It can be seen that when the ratio of the initial strain is reduced in this way, the residual strain is reduced and the elastic recovery is easy.
  • a fiber having a length of 12 cm is cycle-tested using a tensile tester under the conditions of a temperature of 23 ° C. and an initial length of 100 mm, and a strain of 50% (1 of the initial length) at a tensile speed of 100 mm / min. .
  • the second time when the operation of extending to 150 mm, which is 5 times the length, that is, the displacement length of 50 mm), then moving the gripper to the original length at the same speed, and contracting the fibers is repeated.
  • FIGS. 33 and 34 scanning electron microscope observations of the P (3HB-co-4HB) suture used in Examples 2 and 3 are shown in FIGS. 33 and 34. Unlike FIGS. 31 and 32, it was observed that there were no holes in the cross sections of FIGS. 33 and 34 and they were tightly packed, which was the P (3HB) of Examples 2 and 3. -Co-4HB) The suture is colorless and transparent, whereas the P (3HB-co-4HB) suture of Example 1 is cloudy.
  • the unstretched P (3HB-co-4HB) copolymer molded product has an ⁇ structure ( ⁇ crystal) showing a disordered orientation. ) Is maintained and the cycle of the ⁇ crystal is not uniform, but when the molded product is deformed by stretching after being subjected to a crystallization treatment for a certain period of time, the degree of orientation of the ⁇ crystal is increased in the elongated direction and at the same time ⁇
  • the molecular chain of the amorphous part between the crystal and the ⁇ crystal is stretched to develop the ⁇ structure (planar zigzag structure), and when unloaded, the ⁇ structure is reduced or the ⁇ structure is reduced while maintaining the degree of orientation of the ⁇ crystal.
  • the ⁇ structure is a folded lamellar structure
  • the ⁇ structure is a planar zigzag stretched chain structure
  • the P (3HB-co-4HB) copolymer is not only a soft material with a low elastic modulus, but also can be spun-stretched into a structure exhibiting elasticity, and the presence of voids in the fiber also It was considered to be one of the factors that made the knot smaller.
  • voids, voids, pores, pores, etc. there are various means for inserting voids, voids, pores, pores, etc. inside the bioabsorbent polymer, such as phase separation method, extraction method, electron beam irradiation / etching method, polymer particle fusion method, foaming agent mixing method, etc. Gas mixing method, stretching method, etc. are known.
  • the microcrystal nucleation stretching method is known for the formation of voids in PHA fibers, which are bioabsorbable polymers, and infiltration of chemicals into PHA void fibers has also been attempted. Sutures due to the presence of such voids This is the first discovery that contributes to the small size of the knot of the thread fiber, and it is a remarkable feature. As long as a strong fiber is obtained, there is no particular limitation on the method of introducing the void into the fiber.
  • the initial tensile modulus and the intermediate tensile modulus of the P (3HB-co-4HB) elastic thread suture of Examples 1 to 4 were measured using a tensile tester.
  • the elastic modulus calculated from the inclination of the stress-strain curve corresponding to the two points of strain 0.05% and 0.25% is defined as the initial tensile elastic modulus, and the strain is 0.25%.
  • the elastic modulus calculated from the slope of the stress-strain curve corresponding between two points of 10% strain is defined as the intermediate tensile elastic modulus.
  • the distance between the chucks of the tensile tester was 1 cm, and it was fixed to the fixing device using 1 cm above and below.
  • the tensile speed was 10 mm / min.
  • the initial tensile modulus of the suture of Example 1 was 520 to 645 MPa, with an average of 589 MPa at 5 points of the sample, and the intermediate tensile modulus was 175 to 296 MPa, with an average of 245 MPa at 5 points of the sample.
  • the initial tensile modulus of the suture of Example 2 was 328 to 599 MPa with an average of 492 MPa at 5 points of the sample, and the intermediate tensile modulus was 105 to 166 MPa with an average of 144 MPa at 5 points of the sample.
  • the initial tensile modulus of the suture of Example 3 was 222 to 467 MPa with an average of 373 MPa, and the intermediate tensile modulus was 99 to 134 MPa, with an average of 116 MPa at 5 points of the sample.
  • the initial tensile modulus of the suture of Example 4 was 354 to 484 MPa with an average of 391 MPa at 5 points of the sample, and the intermediate tensile modulus was 139 to 184 MPa with an average of 167 MPa at 5 points of the sample. It has been reported that the elastic modulus of the MonoMax suture of Comparative Example 1 is 485 MPa (literature value, International Journal of Polymer Science, Vol.
  • the average modulus of tensile elasticity was 457 to 578 MPa, and the average modulus at 3 points of the sample was 531 MPa. It has been reported that the elastic modulus of PDSII of Comparative Examples 2 and 3 is 1370 MPa (literature value, International Journal of Polymer Science, Vol. 2012, Article ID216137), and the initial tensile elastic modulus is 1480 even with the value actually measured with the thread of Comparative Example 2.
  • the average tensile modulus was 1140 to 1210 MPa at 3 points of the sample at 1660 MPa, and the average was 1180 MPa at 3 points of the sample.
  • the initial tensile elastic modulus was 1680 to 1710 MPa and the average was 1710 MPa at three points of the sample, and the intermediate tensile elastic modulus was 1050 to 1080 MPa and the average was 1070 MPa at three points of the sample. ..
  • the measured initial tensile elastic modulus of the nylon suture of Comparative Example 4 was 1250 to 1450 MPa, with an average of 1350 MPa at 3 points of the sample, and intermediate tensile elastic modulus.
  • the rate was 1020 to 1090 MPa, and the average of 3 points of the sample was 1040 MPa.
  • Vicryl described in Comparative Example 5 is a blade yarn, but if the initial tensile elastic modulus of the yarn of 3-0 is calculated assuming that it is a monofilament having a circular cross section, an average of 10000 MPa (actual measurement value) at 3 points of the sample.
  • the intermediate tensile elastic modulus was 4460 MPa on average at 3 points of the sample.
  • the elastic moduli are summarized in Table 10.
  • the initial tensile modulus of the P (3HB-co-4HB) elastic thread suture of Examples 1 to 4 is compared, the initial tensile modulus of Example 1 is 589 MPa, which is an example.
  • it is a blade yarn, it is 10000 MPa assuming a monofilament.
  • the initial tensile modulus of P (3HB-co-4HB) of Examples 1 to 4 is sufficiently lower than that of Comparative Examples 2 to 5, but the initial tensile modulus of the MonoMax suture is 485 MPa. It is about 600 MPa, and the initial tensile elastic modulus of the MonoMax suture of Example 1 and Example 2 is almost the same as that of Comparative Example 1, while the intermediate tensile modulus of Example 1 is 245 MPa, which is intermediate between Example 2.
  • the tensile elastic modulus is 144 MPa, whereas the intermediate tensile modulus of the MonoMax suture is 531 MPa, and the intermediate tensile modulus of P (3HB-co-4HB) is considerably lower than that of the MonoMax suture. It can be seen that when the strain increases to 0.25% to 10%, the P (3HB-co-4HB) elastic suture has a more stretchable property. At the same time, the P (3HB-co-4HB) elastic suture has the property of trying to return to its original shape even when it is stretched. Since the thread in the part other than the knot shrinks and tries to return to the original thickness, it is considered that the knot becomes smaller and at the same time the knot is difficult to untie.
  • the intermediate tensile elastic moduli of the sutures of Examples 3 and 4 are 116 MPa and 167 Pa, which are also low values as in Examples 1 and 2.
  • Example 4 By using the raw material polymer used in Example 4 and changing the spinning conditions (screw temperature, spinneret temperature, discharge amount, crystallization temperature, crystallization time, draw ratio), heat treatment temperature (annealing step), etc. A thread having an initial tensile elasticity of about 180 MPa to 500 MPa could be obtained. By further changing the molecular weight and composition of the polymer used, it is speculated that spinning can cover a wider range of elastic moduli.
  • An example of the fiber shown in Example 4 in which industrial spinning was performed is shown in FIGS. 35 and 36.
  • FIG. 37 shows how the surgical knot was tied. Although there are no holes inside the fiber, the yarn has an initial tensile modulus of 391 MPa and an intermediate tensile modulus of 167 Pa. The fiber is soft, is tolerant of elongation, and has the property of shrinking, and is contained in the knot. It was observed that the threads were tightened without any gaps between them.
  • the stretchable bioabsorbable fibrous medical material of the present invention makes it easy to form knots, makes the knots smaller, and can reduce the number of knots, which imposes a burden on the doctor during surgery. It is less, and for the patient, less physical irritation to the tissue, which is useful for medical contribution.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Surgery (AREA)
  • Vascular Medicine (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Materials For Medical Uses (AREA)

Abstract

本発明の課題は、結び目が小さく、ほどけにくい結紮が弱い力でも形成可能である、生体吸収性かつ伸縮性繊維状医療材料を提供することである。本発明によれば、生体吸収性脂肪族ポリマーを紡糸延伸した成形品からなる繊維状材料であって、破断時伸びが75%以上であり、ひずみ0.05%から0.25%間での初期引張弾性率よりも、ひずみ0.25%から10%間での中間引張弾性率の方が低い値であり、前記中間引張弾性率が400MPa以下であり、100%変形後の残存ひずみ率が70%以下である、繊維状医療材料が提供される。

Description

生体吸収性繊維状医療材料
 本発明は、伸縮性かつ生体吸収性の脂肪族ポリマー繊維を用いた、結び目の形成がしやすく、結び目が小さく、ほどけにくい結紮が可能である繊維状医療材料に関する。
 縫合糸には、単繊維からなるモノフィラメント縫合糸と、複数の繊維からなるマルチフィラメント縫合糸とがある。縫合糸の材質としては、非吸収性ポリマー、又は吸収性ポリマーが用いられている。非吸収性ポリマーとしては、ポリエチレン、ポリプロピレン、ナイロン、シリコーン、テフロン、シルク等が挙げられる。吸収性ポリマーとしては、グリコール酸、乳酸、ε-カプロラクトン、又はジオキサノンなどを重合させたホモポリマー又はコポリマー(共重合体)が挙げられる。一方、グリコール酸や乳酸を含む縫合糸において、吸収過程で炎症反応が強くなる傾向があり、生体適合性という点で問題になる場合があることが知られている。
 従来の生体吸収性縫合糸として、ポリグリコール酸(PGA)、ポリ(グリコライド/L-ラクチド)共重合体のような剛直なポリマーゆえにマルチフィラメントとして用いられるものや、ポリ(グリコライド/トリメチレンカーボネート)共重合体、ポリ(グリコライド/ε-カプロラクトン)共重合体、ポリ-p-ジオキサノン、ポリ(グリコライド/トリメチレンカーボネート/p-ジオキサノン)共重合体、ポリ(グリコライド/トリメチレンカーボネート/ε-カプロラクトン)共重合体、ポリ(グリコライド/L-ラクチド/トリメチレンカーボネート/ε-カプロラクトン)共重合体、ポリ(L-ラクチド/ε-カプロラクトン)共重合体、などのように共重合体としてしなやかさを増して、モノフィラメントとして用いられるものが挙げられる。これらの縫合糸は求められる強度、抗張力の維持期間、吸収期間、適用部位、組織反応、組織損傷性、求められる弾性、結節の安全性、操作性、経済性、感染抵抗性、医師の経験等により、使い分けがなされている。
 例えば、特許文献1には、乳酸とε-カプロラクトンの共重合体からなるモノフィラメント糸から構成された手術用縫合糸が記載されている。特許文献2には、グリコリド/ε-カプロラクトン共重合体を溶融紡糸して得られる縫合糸が記載されている。特許文献3には、グリコリド、グリコール酸、ラクチド、乳酸、カプロラクトン、ジオキサノン、トリメチレンカーボネート及びエチレングリコールからなる群より選択される1種以上のモノマーから合成された第1ポリマーと第2ポリマーとを複合紡糸したモノフィラメント縫合糸であって、第1ポリマーと第2ポリマーのヤング率は3.0GPa以下であるモノフィラメント縫合糸が記載されている。特許文献4には、コラーゲンと、少なくとも1種の有機ポリマー(ポリグリコリド、ポリラクチド、グリコリドとラクチドの共重合体、ポリラクトン及びポリヒドロキシアルカン酸など)と、少なくとも1種の活性成分とを含む合成複合生体材料が記載されている。
 また、ポリヒドロキシアルカノエート(PHAと記載することもある)からなる縫合糸についても報告されている。例えば、特許文献5には、3-ヒドロキシブチレート(3HBと記載することもある)単位と4-ヒドロキシブチレート(4HBと記載することもある)単位からなり、4-ヒドロキシブチレート単位の含有量が60モル%を上廻り95モル%以下である生分解性ポリエステル共重合体を含有するポリエステル成形品が記載されている。特許文献6及び特許文献7には、生体適合性ポリヒドロキシアルカノエートからなる縫合糸を含む医療デバイスが記載されている。特許文献8には、ポリ-4-ヒドロキシブチレートポリマーを含む繊維であって、126MPaより大きい引張り強度を有する繊維が記載されている。特許文献9及び特許文献10には、少なくとも2種のランダム反復モノマー単位を含む生分解性ポリヒドロキシアルカノエートコポリマーによって特徴付けられる組成物を延伸することによって得られるポリマー製品が記載されている。特許文献11には、3-ヒドロキシブチレート単位97~40モル%および4-ヒドロキシブチレート単位3~60モル%からなり、30℃クロロホルム中で測定した〔η〕が0.4~10.0dl/gの範囲にあるポリエステル共重合体が記載され、柔軟性に富み、成形性が良く、得られた繊維やフィルム等の成形品はしなやかで強靭であることが記載されている。しかしながら、上記の先行技術の何れにも、所定値以上の破断時伸びと、所定値以下の弾性率(後述する初期引張弾性率と中間引張弾性率)とを有する繊維状医療材料とすることにより、結び目が小さくほどけにくい繊維が得られるという記載はない。
 さらに、4-ヒドロキシ酪酸のホモポリマー(P(4HB)とも表記する)からなるモノフィラメント縫合糸(MonoMax(登録商標))が開発された(特許文献12、並びに非特許文献1及び2)。このMonoMax縫合糸は、弾性率が485MPaと報告されており(非特許文献2)、ポリ-p-ジオキサノンからなるPDSIIの1370MPaやポリ(グリコライド/ε-カプロラクトン)共重合体からなるMonocrylの725MPaという弾性率よりも低く、柔らかい縫合糸とされているが、実際に医師が使用した場合には縫合糸が剛直で、結び目が緩む傾向にあるため、結び目の数を増やす必要がある。
特開2001-149462号公報 特開2011-6496号公報 特許第4071661号公報 特表2019-505338号公報 特開平06-336523号公報 米国特許第6867247号公報 特許5031144号公報 特表2007-525601号公報 特表2003-513130号公報 特表2003-513131号公報 特開平1-48821号公報 国際公開WO2004/101002号公報
BMC Surgery volume 8, Article number: 12 (2008) International Journal of Polymer Science Volume 2012, Article ID 216137
 外科手術で縫合糸を使用する場合においては、結び目(Knot)を作り、結紮することは基本的技術である。この結び目形成のしやすさや、結び目が解けにくいという特徴は、縫合糸に求められている特徴であり、非吸収性の縫合糸だけでなく生体吸収性の縫合糸でも同様に求められている。
 マルチフィラメント縫合糸は、微細な繊維を編み込んで作られており、表面が滑らかではない。そのため、結び目が解けにくく、柔軟性に富むという利点を持つ。しかし、糸を組織に通す際に組織への侵襲が大きく、結び目のすべり特性(Knot lubrication)が良くない傾向、即ち、摩擦係数が高く結び目がすべりにくい傾向がある。また、微細な隙間(capillary)が生じるためモノフィラメント縫合糸に比べて感染リスクが高いという問題点がある。その点、モノフィラメント縫合糸は表面が平滑であり、組織への侵襲が小さく感染に強いという反面、柔軟性に欠け、結び目が緩みやすいという欠点がある。そのためモノフィラメント縫合糸は、結び目の回数を増やすことで、緩みやすさを補うことができるが、結果として結び目が大きくなり組織への影響も懸念される。また結び目を形成する時に、従来のモノフィラメント縫合糸は剛直でコシが強く(impliable)、柔軟性に欠ける(incompliant)ことから、しっかりと堅くしまった結び目を形成するために医師はしばしば強い力で結び目を絞める傾向がある。従って結び目を形成するため糸を強い力で引き締める際に、縫合部組織に必要以上の力がかかることに繋がり、組織へ意図せぬダメージを与えるという懸念がある。そこで、組織への侵襲を抑えつつ、組織が自己修復するまでの間、適切な張力が均一に保持されるような伸長性が高く、糸自体が柔軟(pliable)で、かつ結び目が解けにくい縫合糸の開発や、強い力で引き締めなくても簡単に解けにくい結び目が形成できる縫合糸の開発が求められている。さらに生体吸収性でかつ、結び目形成がしやすく、結び目が小さく、解けにくい縫合糸であれば、抜糸や再切開が要らず、かつ皮下縫合や身体内部の縫合等において、埋め込まれた結び目が周囲組織に与える異物感の減少が期待できるような、生体吸収性縫合糸の開発が一層求められている。結び目が小さく解けにくいということは、結び目から余った糸を切断する際に、糸の切断端を長く残す必要性が減少し、また柔軟な糸であれば糸の切断面が剛直ゆえにチクチクと組織を刺激することも少なくなることが期待される。
 また、組織は様々な理由から腫れることもあるが、これまでの既存の縫合糸では伸縮性に欠けるため、組織の腫れに適切に追従できず、組織へ余分な張力がかかってしまい、瘢痕の原因となる場合があった。組織の弾性力により近い、つまり従来の縫合糸よりも低い弾性率であり、伸びた後に縮む伸縮性を持つ縫合糸であれば、組織が腫れた場合にでも糸が伸びて張力を分散することが可能であり、腫れが引いた場合には糸が縮んで、引き続き創部の接着に寄与するような生体吸収性縫合糸の開発も求められている。
 本発明は、結び目が小さく、ほどけにくい結紮が弱い力でも形成可能である、生体吸収性繊維状医療材料を提供することを解決すべき課題とする。また組織の動きに追従できる伸縮性のある生体吸収性繊維状医療材料を提供することも課題の一部分である。
 本発明者らは、上記課題を解決するために鋭意検討した結果、生体吸収性脂肪族ポリマーを原料として使用し、前記生体吸収性脂肪族ポリマーを紡糸延伸した成形品の破断時伸びを75%以上とし、初期引張弾性率よりも中間引張弾性率を低い値とし、中間引張弾性率を400MPa以下とし、100%変形後の残存ひずみ率が70%以下とすることにより、結び目が形成しやすく、かつ結び目が小さく解けにくい結紮が可能であり、結び目の回数自体も少なくすることが可能な、生体吸収性でかつ伸縮性も併せ持つ繊維状医療材料を提供できることを見出し、本発明を完成するに至った。本発明によれば、以下の発明が提供される。
<1> 生体吸収性脂肪族ポリマーを紡糸延伸した成形品からなる繊維状材料であって、破断時伸びが75%以上であり、ひずみ0.05%から0.25%間での初期引張弾性率よりも、ひずみ0.25%から10%間での中間引張弾性率の方が低い値であり、前記中間引張弾性率が400MPa以下であり、100%変形後の残存ひずみ率が70%以下である、繊維状医療材料。
<2> 前記初期引張弾性率が1000MPa以下である、<1>に記載の繊維状医療材料。
<3> 前記初期引張弾性率が480MPa以下である、<1>又は<2>に記載の繊維状医療材料。
<4> 前記中間引張弾性率が300MPa以下である、<1>から<3>の何れか一に記載の繊維状医療材料。
<5> 100%変形後の残存ひずみ率が50%以下である、<1>から<4>の何れか一に記載の繊維状医療材料。
<6> 空隙率が0%~55%である、<1>から<5>の何れか一に記載の繊維状医療材料。
<7> 繊維軸方向に直交する断面の顕微鏡観察により測定した場合における最大細孔(細孔、ポア、ボイド、空隙、又は中空)の直径が100μm以下である、<1>から<6>の何れか一に記載の繊維状医療材料。
<8> 幅方向断面における長軸長さと短軸長さの比( 長軸長さ/ 短軸長さ) が1.0以上3.0以下である、<1>から<7>の何れか一に記載の繊維状医療材料。
<9> 生体吸収性脂肪族ポリマーが、脂肪族ポリエステルである、<1>から<8>の何れか一に記載の繊維状医療材料。
<10> 生体吸収性脂肪族ポリマーが、ポリヒドロキシアルカノエートである、<1>から<9>の何れか一に記載の繊維状医療材料。
<11> ポリヒドロキシアルカノエートが、2種類以上のヒドロキシアルカノエートユニットから構成されるポリヒドロキシアルカノエートである、<10>に記載の繊維状医療材料。
 本発明の生体吸収性繊維状医療材料は、操作性がよく、少ない力で結び目が形成でき、結び目が小さく、ほどけにくい結紮が可能である。
図1は、外科結びを示す。 図2は、外科結びに単結節一つを示す。 図3は、P(3HB-co-4HB)縫合糸2.5-0の表面SEM写真を示す。なお、P(3HB-co-4HB)は、3-ヒドロキシ酪酸と4-ヒドロキシ酪酸のコポリマーを意味する。 図4は、P(3HB-co-4HB)縫合糸3-0の外科結びSEM写真を示す。 図5は、白濁P(3HB-co-4HB)縫合糸3-0サイズの外科結び実体顕微鏡写真を示す。 図6は、無色P(3HB-co-4HB)縫合糸3-0サイズの外科結び実体顕微鏡写真を示す。 図7は、無色P(3HB-co-4HB)縫合糸1サイズの外科結び実体顕微鏡写真を示す。 図8は、白色P(3HB-co-4HB)縫合糸2.5-0サイズの外科結び実体顕微鏡写真を示す。 図9は、P(4HB)MonoMax(登録商標)縫合糸2-0の表面SEM写真を示す。 図10は、P(4HB)MonoMax(登録商標)縫合糸2-0の外科結びSEM写真を示す。 図11は、P(4HB)MonoMax(登録商標)縫合糸2-0の外科結び実体顕微鏡写真を示す。 図12は、PDSII縫合糸3-0の外科結び実体顕微鏡写真を示す。 図13は、PDSII縫合糸4-0の外科結び実体顕微鏡写真を示す。 図14は、P(3HB-co-4HB)縫合糸の緩衝液浸漬期間と引張破壊強度・破壊伸びの様子を示す。 図15は、P(3HB-co-4HB)縫合糸の緩衝液浸漬期間と重量平均分子量Mwの低下の様子を示す。 図16は、P(3HB-co-4HB)縫合糸のラット体内埋植期間と引張破壊強度・破壊伸びの様子を示す。 図17は、P(3HB-co-4HB)縫合糸のラット体内埋植期間と重量平均分子量Mwの低下の様子を示す。 図18は、マイクロミニブタへの生体吸収性縫合糸での縫合後7週後の縫合部の様子を示す。 図19は、P(3HB-co-4HB)縫合糸縫合部組織のHE染色を示す。 図20は、ポリグリコネート(PGA)縫合糸縫合部組織のHE染色を示す。 図21は、P(4HB)縫合糸縫合部組織のHE染色を示す。 図22は、実施例1の繊維の破断までの引張試験の応力―ひずみ曲線の一例を示す(チャック間1cmで測定したもの)。 図23は、実施例2の繊維の破断までの引張試験の応力―ひずみ曲線の一例を示す。 図24は、実施例3の繊維の破断までの引張試験の応力―ひずみ曲線の一例を示す。 図25は、実施例4の繊維の破断までの引張試験の応力―ひずみ曲線の一例を示す。 図26は、実施例1のP(3HB-co-4HB)縫合糸3cmのひずみ100%までのサイクル試験での応力―ひずみ曲線を示す。 図27は、実施例2のP(3HB-co-4HB)縫合糸3cmのひずみ100%までのサイクル試験での応力―ひずみ曲線を示す。 図28は、実施例3のP(3HB-co-4HB)縫合糸3cmのひずみ100%までのサイクル試験での応力―ひずみ曲線を示す。 図29は、実施例4のP(3HB-co-4HB)縫合糸3cmのひずみ100%までのサイクル試験での応力―ひずみ曲線を示す。 図30は、実施例4のP(3HB-co-4HB)縫合糸12cmのひずみ50%までのサイクル試験での応力―ひずみ曲線を示す。 図31は、実施例1の糸の断面図の1例を示す。 図32は、実施例1の糸の断面図の1例を示す。 図33は、実施例2の糸の断面図の1例を示す。 図34は、実施例3の糸の断面図の1例を示す。 図35は、実施例4のP(3HB-co-4HB)縫合糸の表面SEM写真を示す。 図36は、実施例4のP(3HB-co-4HB)縫合糸の断面SEM写真を示す。 図37は、実施例4のP(3HB-co-4HB)縫合糸の外科結びSEM写真を示す。
 以下、本発明を詳細に説明する。なお、以下の実施の形態は、本発明を説明するための例示であり、本発明はその実施の形態のみに限定されない。
 本発明の生体吸収性繊維状医療材料は、生体吸収性脂肪族ポリマーを紡糸及び延伸した成形品からなるものである。
<生体吸収性脂肪族ポリマー>
 生体吸収性とは、生体内外に置いた後、加水分解反応又は酵素反応によって自然に分解し、分解物が代謝または排泄されることによって消失する性質である。換言すると、生体吸収性とは、局所消失性と体外排出性とを有することを意味する。
  局所消失性とは、生理環境下で所定日数((例えば、360日、240日、120日、60日、または30日)以内に分解されて適用局所から消失することを言う。局所消失性の一例としては、37℃の生理食塩水(pH4~8)中に少なくとも1質量%ポリマー濃度相当のサンプルを入れ、ローターミキサーで混合し、目視で観察したときに、所定日数以内にサンプルの形状がなくなり透明な水溶液になる場合、サンプルは局所消失性を有すると判定することができる。あるいはサンプルを体内に埋植し、所定日数以内にサンプルが分解消失する場合も、サンプルは局所消失性を有すると判定することができる。体外排出性とは、材料が適用箇所から消失した後、腎臓や肝臓等の臓器に過剰に蓄積されることなく生体外に排出され得ることを言う。例えば、材料が、分子量70,000以下、場合によっては40,000以下に分解される場合、サンプルは体外排出性を有すると判定することができる。あるいは材料が適用箇所から消失した後、部分分解物や低分子化合物になり、さらに水や二酸化炭素にまで代謝されて体内で利用あるいは対外に排出されてもよい。
 脂肪族ポリマーとしては、脂肪族ポリエステル、ナイロンなどのポリアミド類、ポリスチレンやポリビニルアルコール、ポリ(エチレン-co-ビニルアセテート)、ポリ(ヒドロキシエチルメタクリレート)などのポリオレフィン類、酸変性ポリオレフィン(無水マレイン酸グラフトポリエチレンや無水マレイン酸グラフトポリプロピレン等)、エチレン-ビニル化合物共重合体(エチレン-酢酸ビニル共重合体、エチレン-ビニルアルコール共重合体、エチレン-塩化ビニル共重合体、エチレン-(メタ)アクリル酸共重合体やそのイオン架橋物(アイオノマー)、エチレン-メタクリル酸メチル共重合体等)、ポリビニル化合物(ポリアクリル酸メチル、ポリメタクリル酸メチル等)、ポリカーボネート、ポリエーテル(ポリエチレンオキサイド等)などが挙げられるが、上記の中でも生体吸収性に鑑みれば脂肪族ポリエステルが好ましい。
 生体吸収性脂肪族ポリエステルとしては、ポリグリコール酸、ポリ乳酸(D、L、DL体)、ポリε-カプロラクトン、ポリヒドロキシブチレート、ポリヒドロキシバレレート、ポリオルソエステル、ポリヒドロキシヘキサノエート、ポリブチレンサクシネート、上記以外のポリヒドロキシアルカノエート、ポリ-p-ジオキサノン、およびこれらの共重合体からなる群より選択されるポリエステルが挙げられるが、特に限定されない。共重合体におけるモノマーユニットとしては、グリコール酸、乳酸(D、L、DL体)、ε-カプロラクトン、ヒドロキシブチレート、ヒドロキシバレレート、オルソエステル、ヒドロキシヘキサノエート、ブチレンサクシネート、上記以外のヒドロキシアルカノエート、1,3-ジオキサン-2-オン(トリメチレンカーボネート)、p-ジオキサノンなどが挙げられるが、特に限定されない。生体吸収性脂肪族ポリマーとしては、ポリヒドロキシアルカノエートが特に好ましい。
<ポリヒドロキシアルカノエート>
 本発明で使用するポリヒドロキシアルカノエートは、生分解性及び生体吸収性があり、繰り返し伸縮性(繰り返し伸縮する性質)を有することが可能である。重合単位としては、3-ヒドロキシブチレート単位を含むことが好ましい。本発明においては、2種類以上のヒドロキシアルカノエートユニットから構成されるポリヒドロキシアルカノエートを使用することが好ましい。即ち、本発明において使用するポリヒドロキシアルカノエートは、2種類以上のモノマー単位を含む共重合ポリエステルであることが好ましい。重合単位としては、3-ヒドロキシブチレート(3HBと記載することもある)単位に加えて、4-ヒドロキシブチレート(4HBと記載することもある)単位を含むことが好ましい。
 ポリスチレン換算ゲル浸透クロマトグラフィー測定によるポリヒドロキシアルカノエートの重量平均分子量は、好ましくは10万以上であり、より好ましくは20万以上であり、さらに30万以上、40万以上又は50万以上でもよい。ポリスチレン換算ゲル浸透クロマトグラフィー測定による重量平均分子量は、60万以上、70万以上、80万以上、90万以上、100万以上、110万以上、120万以上、130万以上、140万以上、150万以上、200万以上、300万以上、または400万以上でもよい。ポリスチレン換算ゲル浸透クロマトグラフィー測定による重量平均分子量の上限は特に限定されないが、一般的には、2000万以下であり、1000万以下、800万以下、700万以下、600万以下、500万以下、400万以下、又は300万以下でもよい。ただし溶融成型を行う場合には熱分解による分子量低下と溶融時の粘度が高くなりすぎないことを勘案し、ポリスチレン換算ゲル浸透クロマトグラフィー測定による重量平均分子量は40万以上、250万以下が望ましく、より好ましくは50万以上、220万以下であり、さらに好ましくは60万以上、200万以下である。
 本発明において使用するポリヒドロキシアルカノエートは、重合単位として、好ましくは3-ヒドロキシブチレート(3HB)単位を含み、より好ましくは3-ヒドロキシブチレート(3HB)単位と4-ヒドロキシブチレート(4HB)単位とを含む。ポリヒドロキシアルカノエートが、3HB単位を含む場合、並びにポリヒドロキシアルカノエートが3HB単位と4HB単位とを含む場合、重合単位として3HB単位及び4HB単位以外の別の重合単位を含んでいてもよい。上記した別の重合単位としては、ラクテート(LA)、グリコレート(GA)、3-ヒドロキシプロピオネート(3HP)、3-ヒドロキシバレレート(3HV)、4-ヒドロキシバレレート(4HV)、5-ヒドロキシバレレート(5HV)、4-ヒドロキシヘキサノエート(4HH)、5-ヒドロキシヘキサノエート(5HH)、6-ヒドロキシヘキサノエート(6HH)、又は3-ヒドロキシヘキサノエート(3HH)、あるいは炭素数7以上のヒドロキシアルカノエート等を挙げることができる。また2元共重合体としてではなく上記の重合単位を含む3元共重合体や多元共重合体を用いることもできる。また上記共重合体組成物を任意の比率にて混合(ブレンド)し、用いることもできる。
 本発明において、3-ヒドロキシブチレート単位と4-ヒドロキシブチレート単位はそれぞれ次式で表される。
3-ヒドロキシブチレート単位:-OCH(CH3)CH2C(=O)-
4-ヒドロキシブチレート単位:-OCH2CH2CH2C(=O)-
 ポリヒドロキシアルカノエートが、4-ヒドロキシブチレート単位を含む場合においては、全モノマー単位に対する4-ヒドロキシブチレート単位の割合は、好ましくは5モル%~40モル%であり、より好ましくは10モル%~40モル%であり、さらに好ましくは10モル%~30モル%である。全モノマー単位に対する4-ヒドロキシブチレート単位の割合は、5モル%以上、6モル%以上、7モル%以上、8モル%以上、9モル%以上、10モル%以上、11モル%以上、12モル%以上、13モル%以上、14モル%以上、15モル%以上、または16モル%以上でもよく、17モル%以上、18モル%上、19モル%以上、20モル%以上でもよい。全モノマー単位に対する4-ヒドロキシブチレート単位の割合は、40モル%以下、39モル%以下、38モル%以下、37モル%以下、36モル%以下、35モル%以下、34モル%以下、33モル%以下、32モル%以下、31モル%以下、30モル%以下、29モル%以下、28モル%以下、27モル%以下、26モル%以下、25モル%以下、24モル%以下、23モル%以下、22モル%以下、または21モル%以下でもよい。
 本発明のポリヒドロキシアルカノエートは、ランダムポリマー、ブロックポリマー、交互ポリマー、またはグラフトポリマーの何れでもよいが、好ましくはランダムポリマーである。
[ポリヒドロキシアルカノエートの製造方法]
 一般に、ポリヒドロキシアルカノエートを合成する方法としては、発酵合成法(生物合成法)と化学合成法とがある。本発明に使用するポリヒドロキシアルカノエートを製造する方法は発酵合成法(生物合成法)でも化学合成法でもよいが、分子量の大きなポリヒドロキシアルカノエートを得るためには発酵合成法(生物合成法)の方が好ましい。
 化学合成法は、通常の有機合成の手法に従って、ポリヒドロキシアルカノエートを化学合成する方法である。化学合成法として、具体的には、例えば、(R)-β-ブチロラクトン、ε-カプロラクトン等の脂肪酸ラクトンを触媒下で開環重合すること等によりP(3HB-co-6HHx)を合成することができ(Abe et al., Macromolecules, 28, 7630 (1995))、(R)-β-ブチロラクトン、γ-ブチロラクトン等の脂肪酸ラクトンを触媒下で開環重合することによりP(3HB-co-4HB)等を合成することができ(Hori et al., Polymer,36, 4703(1995))、グリコリドとラクチド等を触媒下で開環重合することによりP(GA-co-LA)等を合成することができる(Gilding et al., Polymer 20, 1459 (1979))。ただし使用するオクチル酸スズなどの触媒を用いるため、生体吸収性ポリヒドロキシアルカノエートの化学合成ではその触媒量に注意を払う必要がある。
 発酵合成法(生物合成法)は、通常の培養工学の手法に従って、PHA類を生物合成する方法である。発酵合成法として、具体的には、例えば、本発明で使用する4HBを含有するポリヒドロキシアルカノエートは、P(3HB)生産能を有する微生物を、炭素源としてε-カプロラクトン(別名6-ヘキサノラクトン)、またはそのけん化物である6-ヒドロキシヘキサノエートまたはその塩、γ-ブチロラクトン、またはそのけん化物である4-ヒドロキシブチレートまたはその塩、4-クロロブチレート、4-ブロモブチレートなどの酪酸誘導体等、1,4-ブタンジオール、1,6-ヘキサンジオール、1,8-オクタンジオール、1,10-デカンジオール、1,12-ドデカンジオールなどの炭素数4以上の偶数鎖α、ω-アルカンジオールなどの存在下に培養を行うことにより、製造することができる(Saito et al., Polymer International 39, 169 (1996)、及び国際公開WO2019/044837)。使用する炭素源の種類や供給割合を適宜変更することで様々な4HB比率のP(3HB-co-4HB)共重合体を製造できる。このようにして生物の酵素反応により得られたPHA類には化学合成法のようにオクチル酸スズのごとき金属触媒は含有されておらず、この意味において利点がある。発酵合成法において、遺伝子組換え菌を使用してもよいし、遺伝子非組換え菌を使用することもできる。
 菌体からのポリヒドロキシアルカノエートの抽出方法は既に公知であるように、クロロホルムをはじめとするハロゲン化炭化水素溶媒を用いて抽出し、ヘキサンやメタノールのような貧溶媒にて析出させる溶媒抽出法を用いても良いし、特公平04-061638、特開平07-177894、WO2004029266に記載があるように、水系抽出法を用いても良い。生体に使用するポリヒドロキシアルカノエートを製造する場合においては、ポリヒドロキシアルカノエート精製工程中に菌体由来たんぱく質やエンドトキシンをはじめとする不純物の除去が可能な工程にすればよく、精製したポリヒドロキシアルカノエートをUS6245537に記載があるように、過酸化物を用いて脱パイロジェンしてもよい。
<ポリヒドロキシアルカノエートの分子量測定(ゲルパーミエーションクロマトグラフィー(GPC)法)>
 ポリヒドロキシアルカノエートの分子量の測定は以下のようにゲルパーミエーションクロマトグラフィー法により行うことができる。
 ポリヒドロキシアルカノエートが約0.5mg/mlとなるようにクロロホルムを加え、60℃で2~4時間溶解させた後、室温に戻し、孔径0.2μmのPTFEフィルターでろ過して不溶物を除き、測定サンプルとした。GPC条件は以下の通りである。
装置:島津製作所製 HPLC Prominenceシステム
カラム:昭和電工製 Shodex K-806L(2本直列)
カラム温度:40℃
移動相:クロロホルム(1ml/min)
検出器:RI(40℃)
スタンダード:Shodexポリスチレン分子量スタンダード(687万~1270)
注入量:60μl
分析時間:30分
<ポリヒドロキシアルカノエートなどの生体吸収性脂肪族ポリマーからの成形品の製造>
 ポリヒドロキシアルカノエートなどの生体吸収性脂肪族ポリマーからの成形品(伸縮性縫合糸など)を製造する方法は、溶融後に結晶化速度の遅いポリヒドロキシアルカノエートなどの生体吸収性脂肪族ポリマーがアモルファス状態から延伸できる程度にまで、固化あるいは結晶化が進んでいる状態であり、細かな微結晶が存在している状態にて延伸操作を加えて伸縮性を持たせる以外は特に限定されず、例えば、特願2019-90739、特願2020-096144、特願2020-096145に記載の方法に準じて成形品(伸縮性縫合糸など)を製造することができる。
 具体的には、ポリヒドロキシアルカノエートなどの生体吸収性脂肪族ポリマーを溶融成形後、結晶化を進めるために室温あるいは結晶化の進む温度にて適切な待機時間を採り微結晶を形成させている状態で延伸することにより、あるいは部分溶融状態で溶融成形し、微結晶が残存している状態で延伸することにより、伸縮性縫合糸を製造することができる。ポリヒドロキシアルカノエートなどの生体吸収性脂肪族ポリマーを溶融成形する際には、本発明の効果を損なわない限りさらに、添加剤を添加してもよい。
 添加剤としては、酸化防止剤、熱安定剤(例えば、ヒンダードフェノール、ヒドロキノン、ホスファイト類およびこれらの置換体など)、紫外線吸収剤(例えば、レゾルシノール、サリシレート)、着色防止剤(亜リン酸塩、次亜リン酸塩など)、滑剤、離型剤(モンタン酸およびその金属塩、そのエステル、そのハーフエステル、ステアリルアルコール、ステアラミドおよびポリエチレンワックスなど)、着色剤(染料または顔料など)、導電剤あるいは着色剤としてのカーボンブラック、可塑剤、難燃剤(臭素系難燃剤、燐系難燃剤、赤燐、シリコーン系難燃剤など)、難燃助剤、および帯電防止剤から選択される一種以上を挙げることができる。
 ポリヒドロキシアルカノエートなどの生体吸収性脂肪族ポリマーに添加剤を配合する方法としては、特に限定されるものではなく、ドライブレンド、溶液配合、ポリヒドロキシアルカノエートなどの生体吸収性脂肪族ポリマーの化学重合時における添加などが挙げられる。
 ポリヒドロキシアルカノエートなどの生体吸収性脂肪族ポリマーは、射出成形、射出圧縮成形、圧縮成形、押出成形(溶融押出成形)、ブロー成形、プレス成形、紡糸(溶融押出紡糸)などの公知の溶融成形を行うことができる。好ましくは、紡糸(溶融押出紡糸、部分溶融押出紡糸)であり、伸縮性を付与する延伸操作を伴うことが好ましい。
 溶融押出紡糸は実験室レベルの小型のプランジャータイプの溶融押出装置を使用することもできるが、工業的に使用される一軸スクリュー型紡糸装置や二軸スクリュー型紡糸装置等、大型の装置を使用することもできる。
 溶融成形の回数は特に限定されないが、好ましくは1回だけ行うことができる。また溶融成形に先立って原料であるポリヒドロキシアルカノエートなどの生体吸収性脂肪族ポリマーの主要ラメラ厚を任意に調節するため、気体、液体又は固体によって媒介される加熱処理を行っても良いし行わなくても良い(特願2020-96145)。
 本発明において、溶融後に固化する工程は、成形金型中、空気中、又は液中(例えば、水中など)に行うことができる。即ち、溶融したポリヒドロキシアルカノエートなどの生体吸収性脂肪族ポリマーを、成形金型中、空気中又は水中において冷却することによって、固化を行うことができる。好ましくは、溶融したポリヒドロキシアルカノエートなどの生体吸収性脂肪族ポリマーを、成形金型中、又は空気中において冷却することができる。空気中において冷却する場合には、空気の温度や湿度のコントロールをすることもできるが、特別な温度コントロールを行わない室温における冷却であってもよい。また空気中の成分組成(窒素、酸素、二酸化炭素、水分濃度等)を変更した気体を用いることもできるし、希ガス(ヘリウム、ネオン、アルゴン等)等を添加あるいは循環させる環境下であってもよい。また、液中において冷却する場合には液体の温度や成分(水、アルコール類、グリセロール等)を任意に変更してもよい。
 溶融しアモルファス状態のポリヒドロキシアルカノエートなどの生体吸収性脂肪族ポリマーは、ガラス転移点以上の温度において溶液状であり、結晶化速度が遅いため、そのまま延伸しても分子が流動し、すぐに切断してしまうが、結晶化を一部進め、固化した状態で延伸を行うと、ポリマー鎖が配向し延伸できるようになる。
 本発明の方法で製造されるポリヒドロキシアルカノエートなどの生体吸収性脂肪族ポリマーの成形品としては、延伸糸、超延伸糸などの各種繊維が挙げられ、一例としては、縫合糸を挙げることができる。縫合糸としては、単繊維からなるモノフィラメント縫合糸、及び複数の繊維からなるマルチフィラメント縫合糸の何れでもよい。縫合糸を製造する場合において、縫合糸の糸径は特に限定されないが、一般的には1mm以下であり、0.8mm以下、0.6mm以下、0.5mm以下、0.4mm以下、又は0.3mm以下でもよく、糸径の下限は一般的には0.001mm以上である。得られた繊維を使用して織編し、網目状に加工しても良いし3次元構造体に織り上げてもよい。さらには、他の繊維や素材と組み合わせて複合繊維や、3次元複合体を作成することもできる。
 ただし、得られた繊維が伸縮性を発揮するためには、溶融紡糸、部分溶融紡糸などの方法により押出された繊維を延伸処理し、繊維中のラメラ晶を形成するα晶は繊維方向に沿って配向し、α晶からなるラメラは繊維軸と垂直方向に積層していることが望ましく、ラメラとラメラの間にあるアモルファス層やタイ分子が引張により変形し、伸び切り平面ジグザグ構造であるβ晶が増大し、除荷によりβ晶が減少・消失し、弾性応答を発揮することができる(特願2019-90739)。
 得られた繊維はその後、ガラス転移点以上かつ繊維が溶融しない温度にて熱処理(アニール処理)をしなくても伸縮性を発揮するが、熱処理を施してもよい。
<破断時伸び>
 本発明の繊維状医療材料の破断時伸びは75%以上であり、好ましくは100%以上であり、より好ましくは150%以上であり、さらに好ましくは180%以上であり、特に好ましくは200%以上である。破断時伸びの上限は特に限定されないが、一般的には、1000%以下である。
 繊維状医療材料の破断時伸びは、特に限定されないが、例えば、以下の方法により測定することができる。
 長さ3cm、繊維径約0.1~0.4mm程度の繊維状医療材料と、引張試験機AGS-50NX((株)島津製作所製)とを使用して、温度23℃、試験速度10mm/分、初期長(チャック間距離)10mmの条件で繊維の破断までの引張試験を行うことにより、破断時伸びを測定することができる。十分な長さのサンプルが使用できる場合にはチャック間距離10cmを確保して試験することが好ましい。
<空隙率>
 本発明の繊維状医療材料は空隙を有していてもよいし、空隙を有していなくてもよい。好ましくは、本発明の繊維状医療材料は空隙を有している。本発明の繊維状医療材料が空隙を有している場合、空隙率の範囲は特に限定されないが、好ましくは5~55%であり、より好ましくは10~50%であり、さらに好ましくは20~45%である。
 空隙率の測定方法としては、特に限定されないが、例えば、繊維状医療材料の断面を走査型電子顕微鏡で観察し、断面図の画像解析を行うことにより、空隙率を測定することができる。断面図の画像解析にはImageJ(米国国立衛生研究所で開発された画像処理プログラム)のごときソフトウエアを用いればよく、これに限定されない。
<初期引張弾性率>
 ひずみ0.05%から0.25%における引張弾性率を初期引張弾性率と定義すると、本発明の繊維状医療材料の初期引張弾性率は、好ましくは1000MPa以下であり、より好ましくは600MPa以下であり、より一層好ましくは480MPa以下であり、さらに好ましくは400MPa以下であり、さらに一層好ましくは300MPa以下であり、特に好ましくは200MPa以下である。初期引張弾性率の下限は特に限定されないが、一般的には5MPa以上であり、10MPa以上でもよい。
<中間引張弾性率>
 ひずみ0.25%から10%における引張弾性率を中間引張弾性率と定義すると、本発明においては、初期引張弾性率よりも中間引張弾性率を低い値にする。本発明の繊維状医療材料の中間引張弾性率は、好ましくは400MPa以下であり、より好ましくは300MPa以下であり、さらに好ましくは250MPa以下であり、さらに一層好ましくは200MPa以下であり、特に好ましくは150MPa以下である。中間引張弾性率の下限は特に限定されないが、一般的には5MPa以上であり、10MPa以上でもよい。
 弾性率の測定は、例えば、引張試験機を使用して行うことができる。引張試験機のチャック間距離は1~10cmとし、固定器具へ上下1cmを使用して固定する。引張速度は10mm/minとする。初期引張弾性率は、ひずみ0.05%~0.25%の間の応力-ひずみ曲線の傾きから算出することができ、中間引張弾性率は、例えばひずみ0.25%から10%の間の応力-ひずみ曲線の傾きから算出することができる。中間引張弾性率に使用するひずみの区間は、初期引張弾性率の算出に使用するひずみ区間よりも大きなひずみの区間であり、かつ、初期引張弾性率の算出に使用したひずみに近い部分であれば任意に変更してもよいが、本明細書中では、ひずみ0.25%から10%における引張弾性率を中間引張弾性率とする。
<100%変形後の残存ひずみ率>
 本発明の繊維状医療材料の100%変形後の残存ひずみ率は、70%以下であり、好ましくは60%以下であり、より好ましくは50%以下である。100%変形後の残存ひずみ率の下限は特に限定されないが、一般的には5%以上であり、10%以上、20%以上、又は30%以上でもよい。
<50%変形後の残存ひずみ率>
 本発明の繊維状医療材料の50%変形後の残存ひずみ率は、好ましくは40%以下であり、より好ましくは30%以下であり、さらに好ましくは20%以下である。50%変形後の残存ひずみ率の下限は特に限定されないが、一般的には5%以上であり、10%以上、20%以上、又は30%以上でもよい。
 引張伸長回復率は、長さ3cmの繊維を、引張試験機を使用して、温度23℃、初期長10mmの条件でサイクル試験を行い、引張速度20mm/分にてひずみ100%(最初の長さの2倍の長さである20mm、つまり変位長さ10mm)まで伸張し、続いてもとの長さにまでつかみ具を同速度で移動させ、繊維を収縮させるという操作を繰り返す時、2回目の伸長の最初の時点(すなわち、1回目の収縮の終了時点にほぼ等しいとする)における変位長さをX100mmとすると、引張伸長回復率R100(%)は、
100=[20-(X100+10)]/10×100
で示される。
 残存するひずみ率S100(%)は
100=100-R100
で示される。
 同様に、長さ12cmの繊維を、引張試験機を使用して、温度23℃、初期長100mmの条件でサイクル試験を行い、引張速度100mm/分にてひずみ50%(最初の長さの1.5倍の長さである150mm、つまり変位長さ50mm)まで伸張し、続いてもとの長さにまでつかみ具を同速度で移動させ、繊維を収縮させるという操作を繰り返す時、2回目の伸長の最初の時点(すなわち、1回目の収縮の終了時点にほぼ等しい)における変位長さをX50mmとすると、引張伸長回復率R50(%)は、
50= [150-(X50+100)]/50×100
で示される。
 残存するひずみ率S50(%)は
50=100-R50
で示される。
 一般式で表すと、チャック距離間をYとし、初期に与えるひずみをa%、2回目の伸長の最初の時点(すなわち、1回目の収縮の終了時点にほぼ等しい)における変位長さをXammとすると、引張伸長回復率Ra(%)は、
a= [Y+Y×a/100-(Xa+Y)]/(Y×a/100)×100
で示される。
 残存するひずみ率Sa(%)は
a=100-Ra
で示される。
<最大細孔の直径>
 本発明の繊維状医療材料について、繊維軸方向に直交する断面の顕微鏡観察により測定した場合における最大細孔(空孔、細孔、ポア、ボイド、空隙、又は中空)の直径は、好ましくは100μm以下であり、より好ましくは75μm以下であり、さらに好ましくは50μm以下である。最大細孔(空孔、細孔、ポア、ボイド、空隙、又は中空)の直径の下限は特に限定されないが、一般的には0.1μm以上であり、0.2μm以上でも、1μm以上でもよい。また、断面あたりの空孔の数に制限はなく、一つあるいは複数であってもよく、また、それぞれの空孔が独立していてもよいし、連結していてもよい。
 繊維状医療材料の最大細孔の直径は、例えば、以下の方法により測定することができる。
 繊維内部の空孔が判別できる画像を走査電子顕微鏡等を用いて撮影し、その画像をImageJ(米国国立衛生研究所で開発された画像処理プログラム)にて解析し、細孔の直径を算出した。
<長軸長さと短軸長さの比>
 本発明の繊維状医療材料の断面形状は、必ずしも円形である必要はなく、楕円形、多角形、自由曲線及びこれらの組み合わせなどが例示される。円形であれば糸径は糸幅を測定すればよいが、例えば楕円形であれば、長軸長さと短軸長さの比( 長軸長さ/ 短軸長さ)は、1.0以上でもよく、1.1以上でもよく、1.2以上でもよい。長軸長さと短軸長さの比( 長軸長さ/ 短軸長さ)の上限は特に限定されないが、一般的には、3.0以下であり、2.0以下でもよい。
 繊維状医療材料の幅方向断面における短軸長さと長軸長さの比( 長軸長さ/ 短軸長さ)は、以下の方法により測定することができる。
 短軸長さと長軸長さとはダイヤルシックネスゲージ(株式会社テクロック、SM-1201L型、目量0.001mm)を使用して測定した。測定しようとする糸の3か所(全長の1/4、1/2、3/4)でそれぞれ最も厚さの薄くなる繊維向きにて測定し、その平均値を短軸長さとした。また長軸長さは、繊維に折り目が付かないように軽くU字型に変形させ、長軸がゲージ間に垂直になるようにして測定し、測定しようとする糸の3か所(全長の1/4、1/2、3/4)で長軸長さを測定してその平均値を長軸長さとした。
 以下の実施例により本発明をさらに具体的に説明するが、本発明は実施例により限定されるものではない。
 以下の実施例及び比較例においては、縫合糸の結び目や糸の側面あるいは断面の電子顕微鏡観察を行った。観察に先立って、適切なサイズに剃刀にて切り出した縫合糸を試料台に乗せ、オスミウムプラズマコーター、NL-OPC80NS (日本レーザー電子(株)) を使用してオスミウムの薄膜でコーティングした。電解放出型走査電子顕微鏡JSM-7610F(日本電子(株))を用いて、加速電圧5.0kVの条件で観察した。また一部の縫合糸の断面については、適切なサイズに剃刀にて切り出した縫合糸を試料台に乗せ、イオンスパッタ、E1045((株)日立ハイテクノロジーズ)を使用して白金(Pt)を蒸着した。その後、熱電子銃型低真空走査電子顕微鏡TM4000plus((株)日立ハイテクノロジーズ)を用いて、加速電圧5.0kVの条件で観察した。
<実施例1>
 重量平均分子量Mwが97万のP(3HB-co-14.8mol%4HB)を使用してプランジャータイプの溶融押出紡糸装置IMC-19F8(株式会社井元製作所)を使用し、シリンダーへ約5gのPHAを投入し、ダイはダイ径1mmのものを使用し、170℃5分間の加熱にて溶融押出(押出速度1mm/秒)し、直径114mmのボビンにて5rpmの速度で糸同士が重ならないように巻き取った。巻き取り後に室温(23℃)にて60分間の固化時間をおき、結晶化を一部進め、その後60℃熱ピン延伸を手動で施し、約5~10倍程度の延伸倍率にて、やや扁平白化した伸縮性モノフィラメント糸を作製した。作製した伸縮性モノフィラメント糸の糸径をダイヤルシックネスゲージ(株式会社テクロック、SM-1201L型、目量0.001mm)あるいはダイヤルゲージ(株式会社尾崎製作所、5B-HG型、目量0.001mm)を使用して測定した。10cmに切断した糸の3か所(1/4、1/2、3/4)を測定し、その平均値を糸径とした。なおP(3HB-co-4HB)糸の断面が必ずしも円形ではなく楕円もしくは扁平になっている場合には短軸長さと長軸長さを計測し、楕円として断面積を算出して引張試験の評価に用いた。本明細書中の実施例1の糸の断面は、アモルファス状態の溶融したポリマーを巻取し、かつ熱ピン延伸によって円形ではなくつぶれた形状をしており、表1の糸径は短軸長さと長軸長さとの平均長さを糸径として表示している。なお、熱ピン延伸とは、加熱された金属製のピンに繊維を押し当てながら延伸する方法である。
 また、その糸の表面を走査電子顕微鏡にて観察した(図3)。
 この糸を用いて、軟質エラストマーからなる人工皮膚シートに外科結びにて結び目を形成し、フォースゲージ(Standard Model Digital Force Gauge:ZTS-100N,IMADA CO.,LTD)にておよそ5Nの力で結び目を締め付けた。その結び目を実体顕微鏡(SZX7,OLYMPUS.CO.,LTD) に取り付けたカメラ (DP26,OLYMPUS.CO.,LTD)で撮影し、画像解析ソフト(cellSens,OLYMPUS.CO.,LTD)にて結び目の大きさ(結び目の周囲長、周囲長に囲まれた面積)を解析した(図5)。結び目は立体的であるが、体積を正確に見積もることが困難であったため、[周囲長に囲まれた面積]ならびに[周囲長に囲まれた面積/糸径]を結び目の大きさの指標として用いた。結び目を見る方角によって[周囲長に囲まれた面積]は変動しうるが、5つの結び目をランダムに解析し、平均値として処理した。
 結果を表1に示した(実施例1)。
 実施例1のP(3HB-co-14.8mol%4HB)からなるやや扁平の縫合糸の短方向糸径の平均値は0.205mm、長方向糸径は0.352mmであり、短方向と長方向との平均糸径は0.281mmであった。5Nの力で締め付けた外科結びの結び目の大きさは周囲長平均が3.46mmであり、その周囲長に囲まれた領域の面積平均は0.688mm2であった。結び目の大きさの指標とした[周囲長に囲まれた面積/糸径]の平均値は2.45であった。紡糸後のPHAの重量平均分子量Mwは32万であった。
 外科結びの結び目の様子を走査電子顕微鏡にて観察した結果を図4に示した。また、結び目の大きさに関わる数値の算出に使用した外科結びの光学顕微鏡写真を図5に示した。
Figure JPOXMLDOC01-appb-T000001
<実施例2>
 重量平均分子量Mw70万のP(3HB-co-15.3mol%4HB)を使用してプランジャー(ピストン)型の溶融粘度測定装置フローテスタCFT-500D(株式会社島津製作所)を溶融紡糸装置として使用した。ピストン直径11.282mm(ピストン断面積1cm2)であり、シリンダーへ約1gのPHAを投入し、穴径1mm、穴長1mmのダイ(ノズル)を使用し、150℃にて余熱時間120秒後に部分溶融紡糸した。使用した分銅は2.5kgであり、分銅と釣り具で計3kgの荷重をかけ、プーリ(滑車)による力の増加により、ピストン断面積1cm2へかかる押出圧力を2.942MPaとしてポリマーを押出した。このPHAは示差走査熱量計解析(DSC)で85℃から155℃付近にまで溶融ピークが表れており、150℃の溶融温度では完全溶融ではなく部分溶融である。部分溶融紡糸で溶け残っている結晶と溶融し流動化している押出されたポリマーは、押出直後にすでに半固化しており、押出されたポリマーを手動で5倍から10倍程度に延伸してほぼ透明な伸縮性モノフィラメント糸を作成し、その糸径をダイヤルシックネスゲージ(株式会社テクロック、SM-1201L型、目量0.001mm)あるいはダイヤルゲージ(株式会社尾崎製作所、5B-HG型、目量0.001mm)を使用して測定した。10cmに切断した糸の3か所(1/4、1/2、3/4)を測定し、その平均値を糸径とした。なおこの糸の断面はほぼ円形であった。
 この3-0サイズの糸を用いて、実施例1と同様に外科結びにて結び目を形成し、実体顕微鏡で結び目の大きさを解析した(図6)。結果を表2に示した(実施例2)。
 実施例2のP(3HB-co-15.3mol%4HB)からなる縫合糸の糸径の平均値は0.207mm(ほぼ円形、長軸長さ/短軸長さ<1.2)であり、USP(United States Pharmacopia;米国薬局方)規格では3-0に相当する糸径であった。およそ5Nの力で締め付けた外科結びの結び目の大きさは周囲長平均が3.61mmであり、その周囲長に囲まれた領域の面積平均は0.744mm2であった。結び目の大きさの指標とした[周囲長に囲まれた面積/糸径]の平均値は3.59であり、実施例1よりやや大きかった。紡糸後のPHAの重量平均分子量Mwは47万であった。
Figure JPOXMLDOC01-appb-T000002
<実施例3>
 重量平均分子量Mw75万のP(3HB-co-15.3mol%4HB)を使用してプランジャー(ピストン)型の溶融粘度測定装置フローテスタCFT-500D(株式会社島津製作所)を溶融紡糸装置として使用した。ピストン直径11.282mm(ピストン断面積1cm2)であり、シリンダーへ約1gのPHAを投入し、穴径1mm、穴長1mmのダイ(ノズル)を使用し、170℃にて余熱時間120秒後に溶融紡糸した。使用した分銅は2.5kgであり、分銅と釣り具で計3kgの荷重をかけ、実施例2と同様に押出圧力を2.942MPaとしてポリマーを押出した。このPHAは60℃から170℃付近にまで示差走査熱量計解析(DSC)で溶融ピークが表れており、170℃の溶融温度ではほぼ完全溶融と考えられる。押出された繊維を、ボビンには巻き取らずに直線状のまま吊るして室温(23℃)にて30分間の固化時間をおき、結晶化を一部進め、その後手動で約5倍程度の延伸倍率にて延伸し、透明な伸縮性モノフィラメント糸を作成し、実施例2と同様に糸径を測定した。
 この1サイズの糸を用いて、実施例1と同様に外科結びにて結び目を形成し、実体顕微鏡で結び目の大きさを解析した(図7)。結果を表3に示した(実施例3)。
 実施例3のP(3HB-co-15.3mol%4HB)からなる縫合糸の糸径の平均値は0.406mm(ほぼ円形、長軸長さ/短軸長さ<1.2)であり、USP規格では1に相当する糸径であった。およそ5Nの力で締め付けた外科結びの結び目の大きさは周囲長平均が4.87mmであり、その周囲長に囲まれた領域の面積平均は1.35mm2であった。結び目の大きさの指標とした[周囲長に囲まれた面積/糸径]の平均値は3.33であり、実施例2と同等であった。紡糸後のPHAの重量平均分子量Mwは45万であった。
 実施例1、2、3で示したP(3HB-co-4HB)から得られた伸縮性糸の結び目は図5、6、7に示すように、糸と糸の隙間が無く、しっかりとしまっている様子が見て取れ、結び目の大きさの指標とした[周囲長に囲まれた面積/糸径]は、実施例1がやや小さいものの、実施例2と実施例3ではほぼ同等のレベルであった。
Figure JPOXMLDOC01-appb-T000003
<実施例4>
 実施例1から3の糸は、実験室レベルの小型のプランジャータイプの溶融押出装置を使用し、マニュアル(手動)延伸を施して作成した糸であった。工業的に使用される直径16mmの一軸スクリュー型紡糸・延伸装置と、直径1mmのダイを用いて、重量平均分子量Mw56万のP(3HB-co-16.0mol%4HB)共重合体を、押出機の温度範囲を145~160℃にセットして部分溶融紡糸し、0.9g/minの速度で押出した。溶け残っている結晶と流動化したポリマーの混合物で押出されてきた繊維を一度50℃の水にくぐらせた後、空気中、室温23℃にて多段階のローラーにて巻き取り延伸(延伸倍率は約9倍)を施して伸縮性糸を作成した。得られた断面円形の糸を用いて、実施例2と同様に糸径を測定した。
 この2.5-0規格の糸を用いて、実施例1と同様に外科結びにて結び目を形成し、実体顕微鏡で結び目の大きさを解析した(図8)。結果を表4に示した(実施例4)。
 実施例4のP(3HB-co-16.0mol%4HB)からなる縫合糸の結び目の大きさの評価に使用した糸の糸径の平均値は0.256mm(ほぼ円形、長軸長さ/短軸長さ<1.2)であり、USP規格では2.5-0に相当する糸径であった。およそ5Nの力で締め付けた外科結びの結び目の大きさは周囲径平均が4.03mmであり、その周囲径に囲まれた領域の面積平均は0.843mm2であった。結び目の大きさの指標とした[周囲径に囲まれた面積/糸径]の平均値は3.29であり、実施例2、3と同等であった。紡糸後のPHAの重量平均分子量Mwは35万であった。
 実施例1、2、3、及び4で示したP(3HB-co-4HB)から得られた伸縮性糸の結び目は図5、図6、図7及び図8に示すように、糸と糸の隙間が無く、しっかりとしまっている様子が見て取れ、実施例1の結び目の大きさの指標とした[周囲径に囲まれた面積/糸径]は他の実施例の[周囲径に囲まれた面積/糸径]よりもやや小さいが、実施例2,3,4においては同等のレベルであった。
Figure JPOXMLDOC01-appb-T000004
<比較例1>
 P(4HB)からなるB.BRAUN社のMonoMax縫合糸(2-0サイズ)を使用した以外は、実施例2と同様に行い、糸表面の走査電子顕微鏡観察(図9)、外科結びの走査電子顕微鏡観察(図10)、結び目の周囲径、周囲径に囲まれた面積を解析し(図11)、周囲径に囲まれた面積/糸径を算出した。結果を表5に示した(比較例1)。
 比較例1のP(4HB)からなるMonoMax縫合糸(2-0サイズ)の糸径の平均値は0.346mmであり、確かにUSP規格での2-0に相当する糸径であった。5Nの力で締め付けた外科結びの結び目の大きさは周囲長平均が6.91mmであり、その周囲長に囲まれた領域の面積平均は2.60mm2であった。算出に使用した外科結びの光学顕微鏡写真を図11に示した。
 結び目の大きさの指標とした[周囲長に囲まれた面積/糸径]の平均値は7.50であり、実施例1~4と比較して明らかに大きかった。
Figure JPOXMLDOC01-appb-T000005
<比較例2>PDSII縫合糸(3-0サイズ)
 ポリジオキサノンからなるエチコン社のPDSII縫合糸(3-0サイズ)を使用し、糸表面と結び目の走査電子顕微鏡観察を省略した以外は、比較例1と同様に行い、糸径、結び目の周囲長、周囲長に囲まれた面積を解析し(図12)、周囲長に囲まれた面積/糸径を算出した。結果を表6に示した。
 比較例2のポリジオキサノンからなるPDSII縫合糸(3-0サイズ)の糸径の平均値は0.291mmであるが、医療機器添付文書にはPDS縫合糸は直径を除きUSP規格内であり、糸の直径の規格値の上限はUSPより大きく設定されており、3-0では規格値よりも最大で0.056mm大きくなる旨が記載されている。よって0.291mmから0.056mmを差し引くと0.235mmとなり、これはUSP3-0サイズに相当するが、実際の糸径は平均で0.291mmであった。5Nの力で締め付けた外科結びの結び目の大きさは周囲長平均が6.48mmであり、その周囲長に囲まれた平面の面積平均は2.28mm2であった。算出に使用した外科結びの光学顕微鏡写真を図12に示した。
 比較例2で使用したPDSII縫合糸の結び目の大きさの指標とした[周囲長に囲まれた面積/糸径]の平均値は7.82であり、実施例1~4のP(3HB-co-4HB)縫合糸と比較して明らかに大きい一方で、比較例1のP(4HB)縫合糸であるMonoMax縫合糸とほぼ同等であった。
Figure JPOXMLDOC01-appb-T000006
<比較例3>PDSII縫合糸(4-0サイズ)
 ポリジオキサノンからなるエチコン社のPDSII縫合糸(4-0サイズ)を使用し、糸表面と結び目の走査電子顕微鏡観察を省略した以外は、実施例2と同様に行い、糸径、結び目の周囲長、周囲長に囲まれた面積を解析し(図13)、周囲長に囲まれた面積/糸径を算出した。結果を表7に示した。
 比較例3のポリジオキサノンからなるPDSII縫合糸(4-0サイズ)の糸径の平均値は0.163mmであるが、医療機器添付文書にはPDS縫合糸は直径を除きUSP規格内であり、糸の直径の規格値の上限はUSPより大きく設定されており、4-0では規格値よりも最大で0.029mm大きくなる旨が記載されている。実測した比較例3の縫合糸糸径は0.163mmであり、USP4-0サイズに納まっていた。5Nの力で締め付けた外科結びの結び目の大きさは周囲長平均が4.77mmであり、その周囲長に囲まれた平面の面積平均は1.20mm2であった。算出に使用した外科結びの光学顕微鏡写真を図13に示した。
 比較例3で使用したPDSII縫合糸の結び目の大きさの指標とした[周囲長に囲まれた面積/糸径]の平均値は7.33であり、実施例1~4のP(3HB-co-4HB)縫合糸と比較して明らかに大きい一方で、比較例1のP(4HB)縫合糸であるMonoMax縫合糸(2-0サイズ)や比較例2のPDSII縫合糸(3-0サイズ)とほぼ同等レベルであった。
Figure JPOXMLDOC01-appb-T000007
 外科結びの結び目の周囲長を比較しても、実施例3の、1サイズ(糸径平均0.406mm)のP(3HB-co-4HB)縫合糸の結び目の周囲長4.86mmは、比較例1のMonoMax縫合糸の、2-0サイズ(糸径平均0.346mm)の結び目周囲長6.91mmや、比較例2のPDSII縫合糸の、3-0サイズ(糸径平均0.291mm)の結び目周囲長6.48mmよりも小さく、さらには比較例3のPDSII縫合糸の4-0サイズ(糸径平均0.163mm)の結び目周囲長4.77mmと同等であるという事実は、伸縮性縫合糸であるP(3HB-co-4HB)縫合糸の結び目が他の吸収性縫合糸よりも小さくなることを示している。以上、実施例1~4と比較例1~3の結果から、P(3HB-co-4HB)縫合糸の結び目は、既存の吸収性モノフィラメント縫合糸のMonoMax縫合糸やPDSII縫合糸よりも結び目が小さいことが示唆された。
<Knot security factor(結節安定性)の比較>
 結紮部の解けにくさ(結節安定性)の評価をOdermattら(International Journal of Polymer Science,Vol.2012,Article ID216137)にも記載されているKnot Security factor(KSF)を使用してin vitroで評価した。
 直径2.9cmのプラスチック管の周囲に縫合糸を巻き付け、外科結び(surgical knot:図1)で強く結び、結び目とは反対側を切って一本の糸を作成した。それらの両サイドを引張試験機に取り付けて100mm/minの速度にて引張を行った。10サンプル1セットで複数セット準備し、10サンプル中ひとつでもKnot部で解ければ、外科結びの上に単結節を追加し(図2)、Knot部で解けるものがなくなるまで単結節を追加した。10サンプル全てがKnot部で解けなくなるまで追加した単結節数をKnot Security factor(KSF)と定義した。
 よって以下のようにKSFを例示することができる。
KSF=0 外科結びのみで引張に対して結び目で解けず、追加の単結節がない。
KSF=1 外科結びに追加の単結節が一つのみで引張に対して解けなくなる。
KSF=2 外科結びに追加の単結節が二つのみで引張に対して解けなくなる。
KSF=3 外科結びに追加の単結節が三つのみで引張に対して解けなくなる。
KSF=4 外科結びに追加の単結節が四つのみで引張に対して解けなくなる。
KSF=n 外科結びに追加の単結節がn個のみで引張に対して解けなくなる。
 モノフィラメント糸の場合、一般に2≦KSF≦4となる場合がexcellentな(優れた)結節安定性、KSF≦1となる場合がabsolutely excellentな(さらに優れた)結節安定性ということができる。
 実施例1で示したP(3HB-co-14.8mol%4HB)糸を含むP(3HB-co-14.8mol%4HB)伸縮性モノフィラメント糸のKSFは平均径が3-0、2-0、0相当の太さの伸縮性糸のどれも外科結びに対して追加の単結節が一つのみで引張に対して解けなくなり、KSF=1と評価され、absolutely excellentな(さらに優れた)結節安定性と判断できる。
 実施例2で示した3-0サイズのP(3HB-co-15.3mol%4HB)伸縮性モノフィラメント糸、並びに実施例3で示した3-0サイズのP(3HB-co-15.3mol%4HB)伸縮性モノフィラメント糸のKSFはどちらも外科結びに対して追加の単結節が二つのみで引張に対して解けなくなり、KSF=2と評価されexcellentな(優れた)結節安定性と判断できる。
 実施例4で示した2.5-0サイズのP(3HB-co-16.0mol%4HB)伸縮性モノフィラメント糸のKSFは実施例2や3と同様に外科結びに対して追加の単結節が二つのみで引張に対して解けなくなり、KSF=2と評価されexcellentな(優れた)結節安定性と判断できる。
 比較例1で示したP(4HB)からなるMonoMax縫合糸3-0、2-0、0規格のKSFはそれぞれ2、2、3と評価されている(International Journal of Polymer Science,Vol.2012,Article ID216137)。
 比較例2と3で示したポリジオキサノンからなるPDSII縫合糸(3-0、4-0)並びに2-0のPDSII縫合糸のKSFは、どれも外科結びに対して追加の単結節が三つ追加することで引張に対して解けなくなり、KSF=3と評価され、excellentな(優れた)結節安定性と判断できる。
<比較例4,5>
 また、Silver Eら(J.Oral.Maxillofac.Surg.2016 Jul;74(7):1304-1312.)のデータをKSFに置き換えると、ナイロン縫合糸(比較例4)3-0と4-0の縫合糸のどちらもKSFは3と、マルチフィラメント糸のVicryl縫合糸(比較例5)3-0と4-0の縫合糸のKSFはそれぞれ4と3と評価されることになる。これらKSFの値を表8に示した。
Figure JPOXMLDOC01-appb-T000008
 以上のようにP(3HB-co-4HB)伸縮性モノフィラメント縫合糸のKSFは、他の生体吸収性・非吸収性モノフィラメント縫合糸や生体吸収性のマルチフィラメント(ブレード)縫合糸等、他の縫合糸よりも良好であった。P(3HB-co-4HB)伸縮性モノフィラメント縫合糸の場合には、手術後に結び目が解けることを危惧して外科結びに単結節を追加する数を他の糸よりも少なくすることができるため、実際の手術時に形成する結び目は、結び目の数自体を少なくする効果と、糸自体が伸縮することで小さな結び目になる効果などによって、結び目自体の占める体積が大きくならず、結び目の埋め込まれた周囲組織に与える異物感の減少に寄与することが期待される。また、P(3HB-co-4HB)伸縮性縫合糸はモノフィラメントであっても初期引張弾性率が低く、さらには中間引張弾性率が初期引張弾性率よりも低くなり、しなやか(pliable)で、結び目を形成する際に、過剰の力を加えなくても簡単にしっかりとしまってすぐに緩み始めないため、操作性が極めて良好である。さらに先に結んだ結び目が緩みださないため単結節の追加も容易である。他のモノフィラメント縫合糸(MonoMax、PDSII、ナイロン等既存のモノフィラメント縫合糸)の場合には剛直でコシが強く(impliable)、中間引張弾性率は400MPaを超えて高いままであり、P(3HB-co-4HB)縫合糸よりも柔軟性に欠け(incompliant)、結び目を形成しているそばから結び目が緩みだすことを防ぐために、結び目を強く締めるべく過剰の力で糸を引っ張ってしまう場合が多々発生する。このような状況は、結び目を形成する糸を強い力で引き締める際に、縫合部組織に必要以上の力がかかることに繋がり、組織へ意図せずダメージを与えかねない危険性を内包しており、組織への影響が懸念される。手術時に結紮を必要とする箇所は必ずしも自由で広い空間がある場合だけではなく、時には、狭い可動域や術野での結紮を求められる状況が多々ある。そのような場合に、軽い力でしっかりと結び目が形成できる操作性の良い縫合糸が求められることも事実である。現在のUSP規格にあるような結び目引張強度を満たすような縫合糸は、弾性率も高くなり、結び目形成のしやすさや結び目の緩みやすさといった観点からは、必ずしも満足できるものではない。よって、既存の縫合糸よりも弾性率(初期引張弾性率や中間引張弾性率)が低く、組織の変形への追従性が高く、操作性のよい縫合糸が医療現場で求められている。
 また結び目が小さく解けにくいということは、結び目から余った糸を切断する際に、糸の切断端を長く残す必要がなく、また柔軟な糸であれば糸の切断面が剛直ゆえにチクチクと組織を刺激することも少なくなり、このことにおいても周囲組織に与える異物感の減少に寄与することが期待される。
 生体組織の各組織のヤング率は船井ら(静岡県静岡工業技術センター研究報告、2007, 第52号,p.33-37「生体力学シミュレーションに向けた生体組織の物性値データベース作成とその応用事例」)によってまとめられている。歯や皮脂骨の弾性率が10000MPaを超える高い弾性率に対して、靭帯の弾性率は248MPa、軟骨の弾性率は23MPa、角膜の弾性率は20MPaであり、各種内臓、筋肉、皮膚などその他の柔らかい組織の弾性率は10MPa以下である。既存の吸収性縫合糸の弾性率は低くてもMonoMaxの485MPaであり、柔らかい組織と近い弾性率を有する既存の吸収性縫合糸は存在しない。
<PHA伸縮性縫合糸のエチレンオキサイドガス(EOG)滅菌>
 実施例1のP(3HB-co-4HB)縫合糸に対して、EOガス滅菌を行った。まず適切な長さに切断されたP(3HB-co-4HB)縫合糸を、エチレンオキサイドガス透過性を有する滅菌用包装材(ハイブリッドメッキンバッグHM-1304:(株)ホギメディカル製)で包装し、開口部をヒートシーラーを用いて加熱し密閉した。滅菌用包装材に包まれたP(3HB-co-4HB)伸縮性縫合糸を全自動酸化エチレンガス滅菌器(Eogelk,SA-N160,エルク社製)を使用して95%酸化エチレン15g(エキテック95、日本液炭(株)製)により、40℃でエチレンオキサイドガスにて5時間滅菌し、2時間の空気置換後、更にエアレーション処理を14時間行った。
 P(3HB-co-4HB)縫合糸の明らかな肉眼的・顕微鏡的構造変化や物性変化は認めなかった。
<P(3HB-co-4HB)伸縮性縫合糸の試験管内(in vitro)分解>
 P(3HB-co-4HB)伸縮性縫合糸の分解性を評価するために、緩衝液中での分解挙動を試験管内(in vitro)で評価した。以下に方法を示す。
 ダルベッコリン酸緩衝液 (pH7.4; 37℃)中にEOG滅菌した実施例1の3-0サイズのPHA縫合糸を浸漬し、1、2、3、4、6、8、12、16週で取り出し、水で軽く洗浄後に真空乾燥し、引張試験、分子量測定に供した。酸緩衝液に浸漬しないものを0週(初期)とした。
 P(3HB-co-4HB)伸縮性縫合糸の引張試験は長さ3cm、繊維径約0.1~0.3mmの延伸PHA繊維を引張試験機AGS-50NX((株)島津製作所製)を使用して、温度23℃、試験速度10mm/分、初期長(チャック間距離)10mmの条件で繊維の破断までの引張試験を行った。
 引張試験の結果を図14に、浸漬前サンプルの重量平均分子量Mw32万を相対値100%として、浸漬期間における分子量低下の度合を図15に示した。
 P(3HB-co-4HB)伸縮性縫合糸の初期破壊伸びは図14にも示す通り、180%を超えるものであった。
 緩衝液中にPHA伸縮性縫合糸を浸漬した場合には、初期直線引張破壊強度の半分を維持できている期間はおよそ16週程度であり(図14)、重量平均分子量もおよそ16週で半減していた(図15)。破壊伸びに関しても、16週経過後も平均で150%を維持しており(図14)、この糸の高伸縮性という特徴が維持されていることが分かった。
 Williamsら(Biomed Tech (Berl). 2013 Oct;58(5):439-452、Poly-4-hydroxybutyrate (P4HB): a new generation of resorbable medical devices for tissue repair and regeneration)によると配向させたP(4HB)繊維の破壊伸びはおよそ25~90%以下であり、配向させたP(4HB)からなる直径0.154mmのMonomax縫合糸の破壊伸びは35%であることが報告され、またAlbertsmeierら(Langenbecks Arch Surg (2012) 397:363-371、Evaluation of the safety and efficacy of MonoMaxR suture material for abdominal wall closure after primary midline laparotomy-a controlled prospective multicentre trial: ISSAAC [NCT005725079])によるとMonoMax縫合糸の破壊伸びは90%、ポリジオキサノンからなるPDS縫合糸やMonoPlus縫合糸では破壊伸び45~50%と記載されている。これらの縫合糸と比較して、P(3HB-co-4HB)伸縮性縫合糸の破壊伸びは明らかに約2倍から5倍も大きく、組織の変形に追従できる性質をもつことが期待される。
<P(3HB-co-4HB)伸縮性縫合糸の生体内(in vivo)分解>
 P(3HB-co-4HB)伸縮性縫合糸の分解性を評価するために、生体内での分解挙動をラット体内(in vivo)で評価した。以下に方法を示す。
 ラット(F344/NSlcオス、月齢20週)の背側皮膚を脊柱に沿って8cm切開し、皮下組織にEOG滅菌した実施例1のPHA縫合糸を埋植した。4、8、12、16、26週後にサンプルを採取し、水で軽く洗浄後に真空乾燥し、引張試験、分子量測定に供した。埋植しないものを0週(初期)とした。
 P(3HB-co-4HB)伸縮性縫合糸の引張試験は長さ3cm、繊維径約0.1~0.3mmの延伸PHA繊維を引張試験機AGS-50NX((株)島津製作所製)を使用して、温度23℃、試験速度10mm/分、初期長(チャック間距離)10mmの条件で繊維の破断までの引張試験を行った。
 引張試験の結果を図16に、埋植前サンプルの重量平均分子量を相対値100%として、埋植期間における分子量低下の度合を図17に示した。
 ラット皮下にPHA伸縮性縫合糸を埋植した場合には、初期直線引張破壊強度の半分を維持できている期間はおよそ16週~24週程度であり(図16)、重量平均分子量の低下もおよそ16週で半減していた(図17)。破壊伸びに関しても、26週経過後も150%を維持していた(図16)。
 P(4HB)からなる3-0のMonoMax縫合糸のin vivo引張破壊強度は初期破壊強度の半分を12週間は維持でき、ポリジオキサノンからなる3-0のPDSIIのin vivo引張破壊強度は6週間で半減したことが示されている(International Journal of Polymer Science,Vol.2012,Article ID216137)。
 これらのことから、P(3HB-co-4HB)伸縮性縫合糸は、MonoMax縫合糸やPDSII縫合糸よりも、より長い期間、抗張力を保持したい部位に使用することができると考えられる。
<マイクロミニブタ腹壁縫合試験>
 実施例1のP(3HB-co-4HB)伸縮性縫合糸とその他の吸収性縫合糸で月齢32週のメスのマイクロミニブタ(富士マイクラ(株))を用いて、合併症の有無や炎症反応の多寡を巨視的、微視的に評価することを目的に縫合試験を行った。
 胎児を帝王切開にて取り出した後、腹壁12cmを、頭側P(3HB-co-4HB)縫合糸で3針、中央ポリ(グリコリド-co-炭酸トリメチレン)(PGA-TMC共重合体)縫合糸(Maxon縫合糸)で2針、尾側P(4HB)縫合糸(MonoMax縫合糸)で3針、縫合した。
 縫合後7週にて縫合部の合併症(感染徴候、創離開、腹壁瘢痕ヘルニア、癒着)の有無を肉眼的に観察したが、3種類の糸の縫合部のいずれも著名な合併症は認めなかった(図18)。
 次に縫合部を含む腹壁を採取し、それぞれの糸の縫合部を切り分け、それぞれパラフィン固定の後、ヘマトキシリン・エオジン(HE)染色を常法にて行い、炎症の多寡を光学顕微鏡で観察した。なお、組織観察における評点は、病理専門医1名が、どのサンプルがどの縫合糸であるか明らかにしない盲検法にて、炎症・壊死・繊維性肥厚を次に示す0・1・2・3の4段階にて評価した。
  0:炎症反応はない、壊死がない、肥厚がない
  1:炎症反応は非常に小さい、壊死が非常に少ない、肥厚が非常に少ない
  2:炎症反応がある、壊死がある、肥厚がある
  3:炎症反応が強い、壊死が強い、肥厚が強い
 初回観察の2週間後に再評価し、1回目と2回目で評価が異なる場合は、再度2週間後に再々評価(3回目)をして、最終決定した。結果を表9に示した。P(3HB-co-4HB)縫合糸、ポリ(グリコリド-co-炭酸トリメチレン)(PGA-TMC))縫合糸、P(4HB)縫合糸のそれぞれで縫合した部分の組織のHE染色の結果写真を図19、図20、図21にそれぞれ示した。
 組織観察の結果、P(3HB-co-4HB)糸は、 他の2種類の縫合糸に比して、炎症が小さいということが示唆された。また、壊死や繊維性肥厚に関しても、非劣性である可能性があった。
Figure JPOXMLDOC01-appb-T000009
 炎症が少ない、壊死や繊維性肥厚に関しても非劣性である可能性があるという特徴は、P(3HB-co-4HB)縫合糸の有用性を示す一助である。縫合部の結び目が小さくなる特徴についても加味すると、これまでの医療では分解吸収が速すぎて使うことのできなかった部位への適用や、組織よりも糸の張力が強すぎたり伸長しにくいために柔らかな組織では組織側が損傷してしまうような場合にも適用できる縫合糸として、長期吸収性かつ伸縮性のある糸であり、結び目自体も小さくなる縫合糸として意義のある、P(3HB-co-4HB)吸収性伸縮性縫合糸は、新しい応用可能性を秘めた魅力のある医療機器であることが示された。
<P(3HB-co-4HB)伸縮性縫合糸の引張破断評価>
 実施例1で使用したP(3HB-co-4HB)伸縮性縫合糸と同じ糸を破断時まで引張りを行う引張試験にて再度評価した。長さ3cm、短軸平均繊維径約0.24mm、長軸平均繊維径約0.40mm(長軸長さ/短軸長さ=1.7)のP(3HB-co-4HB)縫合糸を、引張試験機AGS-50NX((株)島津製作所製)を使用して、温度23℃、試験速度10mm/分、初期長(チャック間距離)10mmの条件で繊維の破断までの引張試験を行った。応力ひずみ曲線の結果の一例を図22に示す。同様に、実施例2から4の破断までの引張試験の応力ひずみ曲線の結果の一例を図23~図25に示す。
 一例として図22にも示した実施例1で使用した繊維の引張破壊強度は5点の平均で161MPa、破壊伸び240%(ばらつきは180~282%)であった。
 また、図23にも示した実施例2で使用した繊維の引張破壊強度は5点の平均で120MPa、破壊伸び183%(ばらつきは157~209%)であった。
 図24にも示した実施例3で使用した繊維の引張破壊強度は5点の平均で69MPa、破壊伸び250%(ばらつきは178~338%)であった。
 図25にも示した実施例4で使用した繊維の引張破壊強度は5点の平均で110MPa、破壊伸び232%(ばらつきは192~272%)であった。
<P(3HB-co-4HB)伸縮性縫合糸の伸縮回復性・残存ひずみ評価>
 実施例1で使用したP(3HB-co-4HB)伸縮性縫合糸を繰り返し伸縮させるサイクル試験にて評価した。長さ3cm、長軸厚さ繊維径約0.2mmのP(3HB-co-4HB)縫合糸を、引張試験機AGS-50NX((株)島津製作所製)を使用して、温度23℃、初期長10mmの条件でサイクル試験を行った。引張速度20mm/分にてひずみ100%(2倍の長さ)まで伸張し、続いてもとの長さにまでつかみ具を同速度で移動させ、PHA繊維を収縮させた。これを5回繰り返した。1回目から5回目の収縮時の応力-ひずみ曲線を図26に示した。
 この実施例1で使用したP(3HB-co-4HB)伸縮性縫合糸は、伸長時にひずみ100%を与える時、2回目の伸長の最初の時点(すなわち、1回目の収縮の終了時点にほぼ等しいとみなす)において、引張伸長回復率(%)が約60%であり、残存ひずみ率は約40%である。3回目~5回目の伸長の最初の時点において、引張伸長回復率(%)が約60%~約55%であり、残存ひずみ率は約40%~約45%であった(図26)。
 ここで引張伸長回復率R100(%)とは、長さ3cmの繊維を、引張試験機を使用して、温度23℃、初期長10mmの条件でサイクル試験を行い、引張速度20mm/分にてひずみ100%(最初の長さの2倍の長さである20mm、つまり変位長さ10mm)まで伸張し、続いてもとの長さにまでつかみ具を同速度で移動させ、繊維を収縮させるという操作を繰り返す時、2回目の伸長の最初の時点(すなわち、1回目の収縮の終了時点にほぼ等しいとみなす)における変位長さをX100mmとすると、引張伸長回復率R100(%)は、
100=[(20-(X100+10))/10]×100
で示される。
 残存するひずみ率S100(%)は
100=100-R100
で示される。
 実施例2で使用したP(3HB-co-4HB)伸縮性縫合糸を繰り返し伸縮させるサイクル試験にて評価した。長さ3cm、繊維径0.207mmのP(3HB-co-4HB)縫合糸を、引張試験機AGS-50NX((株)島津製作所製)を使用して、温度23℃、初期長10mmの条件でサイクル試験を行った。引張速度20mm/分にてひずみ100%(2倍の長さ)まで伸張し、続いてもとの長さにまでつかみ具を同速度で移動させ、PHA繊維を収縮させた。これを5回繰り返した。1回目から5回目の収縮時の応力-ひずみ曲線を図27に示した。
 この実施例2で使用したP(3HB-co-4HB)伸縮性縫合糸は、伸長時にひずみ100%を与える時、2回目の伸長の最初の時点(すなわち、1回目の収縮の終了時点にほぼ等しいとみなす)において、引張伸長回復率(%)が約67%であり、残存ひずみ率は約33%である。3回目~5回目の伸長の最初の時点において、引張伸長回復率(%)が約63%~約60%であり、残存ひずみ率は約37%~約40%であった(図27)。
 実施例3で使用したP(3HB-co-4HB)伸縮性縫合糸を繰り返し伸縮させるサイクル試験にて評価した。長さ3cm、繊維径0.410mmのP(3HB-co-4HB)縫合糸を、引張試験機AGS-50NX((株)島津製作所製)を使用して、温度23℃、初期長10mmの条件でサイクル試験を行った。引張速度20mm/分にてひずみ100%(2倍の長さ)まで伸張し、続いてもとの長さにまでつかみ具を同速度で移動させ、PHA繊維を収縮させた。これを5回繰り返した。1回目から5回目の収縮時の応力-ひずみ曲線を図28に示した。
 この実施例3で使用したP(3HB-co-4HB)伸縮性縫合糸は、伸長時にひずみ100%を与える時、2回目の伸長の最初の時点(すなわち、1回目の収縮の終了時点にほぼ等しいとみなす)において、引張伸長回復率(%)が約70%であり、残存ひずみ率は約30%である。3回目~5回目の伸長の最初の時点において、引張伸長回復率(%)が約63%~約68%であり、残存ひずみ率は約32%~約37%であった(図28)。
 実施例4で使用したP(3HB-co-4HB)伸縮性縫合糸を繰り返し伸縮させるサイクル試験にて評価した。長さ3cm、繊維径約277mmのP(3HB-co-4HB)縫合糸を、引張試験機AGS-50NX((株)島津製作所製)を使用して、温度23℃、初期長10mmの条件でサイクル試験を行った。引張速度20mm/分にてひずみ100%(2倍の長さ)まで伸張し、続いてもとの長さにまでつかみ具を同速度で移動させ、PHA繊維を収縮させた。これを5回繰り返した。1回目から5回目の収縮時の応力-ひずみ曲線を図29に示した。
 この実施例4で使用したP(3HB-co-4HB)伸縮性縫合糸は、伸長時にひずみ100%を与える時、2回目の伸長の最初の時点(すなわち、1回目の収縮の終了時点にほぼ等しいとみなす)において、引張伸長回復率(%)が約74%であり、残存ひずみ率は約26%である。3回目~5回目の伸長の最初の時点において、引張伸長回復率(%)が約72%~約66%であり、残存ひずみ率は約28%~約34%であった(図29)。
 さらに、実施例4で使用した長さ12cm、繊維径約0.283mmのP(3HB-co-4HB)縫合糸を、引張試験機AGS-50NX((株)島津製作所製)を使用して、温度23℃、初期長100mmの条件でサイクル試験を行った。引張速度100mm/分にてひずみ50%(1.5倍の長さ)まで伸張し、続いてもとの長さにまでつかみ具を同速度で移動させ、PHA繊維を収縮させた。これを5回繰り返した。1回目から5回目の収縮時の応力-ひずみ曲線を図30に示した。
 この実施例4で使用したP(3HB-co-4HB)伸縮性縫合糸のひずみ50%負荷後の、2回目の伸長の最初の時点(すなわち、1回目の収縮の終了時点にほぼ等しいとみなす)において、引張伸長回復率(%)が約94%であり、残存ひずみ率は約6%である。3回目~5回目の伸長の最初の時点において、引張伸長回復率(%)が約93%~約90%であり、残存ひずみ率は約7%~約10%であった(図30)。
 このように初期ひずみの割合が少なくなれば、残存ひずみは少なくなり、弾性回復しやすい性質であることがわかる。
 ここで、長さ12cmの繊維を、引張試験機を使用して、温度23℃、初期長100mmの条件でサイクル試験を行い、引張速度100mm/分にてひずみ50%(最初の長さの1.5倍の長さである150mm、つまり変位長さ50mm)まで伸張し、続いてもとの長さにまでつかみ具を同速度で移動させ、繊維を収縮させるという操作を繰り返す時、2回目の伸長の最初の時点(すなわち、1回目の収縮の終了時点にほぼ等しい)における変位長さをX50mmとすると、引張伸長回復率R50(%)は、
50=[(150-(X+100))/50]×100
で示される。
 残存するひずみ率S50(%)は
50=100-R50
で示される。
<P(3HB-co-4HB)伸縮性縫合糸の断面解析>
 P(3HB-co-4HB)伸縮性縫合糸の結び目の小さくなるメカニズムを探るため、実施例1のP(3HB-co-4HB)縫合糸の断面を走査型電子顕微鏡で観察した。その結果を図31、図32に示した。繊維の表面は図3に示すように、なめらかで空孔は存在しないが、図31、図32に示したように、実施例1で使用したP(3HB-co-4HB)伸縮性縫合糸には繊維の中に空孔が存在していた。画像解析を行うと図31の断面図から43.5%の空隙があり、また図32の断面図から24.9%の空隙があることが判明した。10本の糸の断面を測定し、平均40±15%の空隙率であった。
 また、実施例2及び実施例3で使用したP(3HB-co-4HB)縫合糸の走査型電子顕微鏡観察を図33、図34に示した。図31、図32とは異なり、図33、図34の断面には空孔は存在せず、密に詰まっていることが観察され、このことは、実施例2、実施例3のP(3HB-co-4HB)縫合糸は無色透明であるのに対して、実施例1のP(3HB-co-4HB)縫合糸は白濁していたことを裏付ける結果である。
 伸縮時の高分子構造変化については、特願2019-90739に記載されているように、未延伸のP(3HB-co-4HB)共重合体成形物は無秩序な向きを示すα構造(α結晶)を保持し、α結晶の周期は均一ではないが、結晶化処理を一定時間施した後に延伸することにより成形体を変形させると、伸びた方向にα結晶の配向度を増加させると同時にα結晶とα結晶との間にある非晶部の分子鎖が引き延ばされてβ構造(平面ジグザク構造)が発現し、除荷するとα晶の配向度を保ったまま、β構造を減少または消失させ、弾性応答を示すことを示唆する観察がなされている。ここでα構造は折り畳みのラメラ構造であり、β構造は平面ジグザグ伸びきり鎖構造を表す。
 P(3HB-co-4HB)共重合体は、弾性率が低く柔らかな素材であることだけでなく、伸縮性を示す構造体に紡糸延伸できること、さらには繊維の中の空隙の存在もまた、結び目がより小さくなる要因の一つであることが考えられた。
 生体非吸収性高分子内部に空隙、ボイド、細孔、多孔などを入れる手段にはいろいろあり、相分離法、抽出法、電子線照射・エッチング法、ポリマー粒子融着法、発泡剤混合法、気体混合法、延伸法、などが知られている。生体吸収性ポリマーであるPHA繊維におけるボイドの形成は微結晶核延伸法が知られており、PHAボイド繊維内部への薬液含侵も試みられたことがあるが、このような空隙の存在による縫合糸繊維の結び目の小ささに寄与する発見は初めてであり、特筆すべき特徴である。なお強度のある繊維が得られれば、ボイドを繊維に導入する方法について特に制限はない。
<弾性率に関する検討>
 実施例1~4のP(3HB-co-4HB)伸縮性糸縫合糸の初期引張弾性率と中間引張弾性率は引張試験機を使用して測定した。ここで、本明細中では、ひずみ0.05%と0.25%のひずみ2点間に対応する応力-ひずみ曲線の傾きから算出した弾性率を初期引張弾性率とし、ひずみ0.25%と10%のひずみ2点間に対応する応力-ひずみ曲線の傾きから算出した弾性率を中間引張弾性率と定義する。
 引張試験機のチャック間距離は1cmとし、固定器具へ上下1cmを使用して固定した。引張速度は10mm/minで行った。実施例1の縫合糸の初期引張弾性率は520~645MPaで、サンプル5点での平均589MPaであり、中間引張弾性率は175~296MPaで、サンプル5点での平均245MPaであった。実施例2の縫合糸の初期引張弾性率は328~599MPaでサンプル5点での平均492MPaあり、中間引張弾性率は105~166MPaで、サンプル5点での平均144MPaであった。実施例3の縫合糸の初期引張弾性率は222~467MPaで平均373MPaあり、中間引張弾性率は99~134MPaで、サンプル5点での平均116MPaであった。実施例4の縫合糸の初期引張弾性率は354~484MPaでサンプル5点での平均391MPaあり、中間引張弾性率は139~184MPaで、サンプル5点での平均167MPaであった。比較例1のMonoMax縫合糸の弾性率は485MPa(文献値、International Journal of Polymer Science,Vol.2012,Article ID216137)と報告があり、実測した値でも初期引張弾性率は576~626MPaでサンプル3点での平均600MPaであり、中間引張弾性率は457~578MPaで、サンプル3点での平均531MPaであった。比較例2と3のPDSIIの弾性率は1370MPa(文献値、International Journal of Polymer Science,Vol.2012,Article ID216137)と報告があり、比較例2の糸で実測した値でも初期引張弾性率は1480~1660MPaでサンプル3点での平均1560MPaあり、中間引張弾性率は1140~1210MPaで、サンプル3点での平均1180MPaであった。比較例3の糸で実測した弾性率について、初期引張弾性率は1680~1710MPaでサンプル3点での平均1710MPaあり、中間引張弾性率は1050~1080MPaで、サンプル3点での平均1070MPaであった。比較例4のナイロン縫合糸(ネスコスーチャー社のナイロン縫合糸4-0を弾性率評価に使用した)の実測した初期引張弾性率は1250~1450MPaでサンプル3点での平均1350MPaあり、中間引張弾性率は1020~1090MPaで、サンプル3点での平均1040MPaであった。また、比較例5に記載のVicrylはブレード糸であるが、仮に断面が円形のモノフィラメントと仮定して3-0の糸の初期引張弾性率を算出するとサンプル3点での平均10000MPa(実測値)であり、中間引張弾性率はサンプル3点での平均4460MPaであった。弾性率は表10にまとめて記載した。
 上記に示したように、実施例1~4のP(3HB-co-4HB)伸縮性糸縫合糸の初期引張弾性率を比較すると、実施例1では初期引張弾性率が589MPaであり、実施例2では492MPaであり、実施例3では373MPaであり、実施例4では391MPaである一方で、比較例2,3のPDSIIでは1370MPa~1710MPa、比較例4のナイロンでは1350MPa、比較例5のVicrylではブレード糸ではあるがモノフィラメントと仮定すると10000MPaとなる。これらを比較すると実施例1~4のP(3HB-co-4HB)の初期引張弾性率は比較例2~5のそれよりも十分に低いと言えるが、MonoMax縫合糸の初期引張弾性率は485MPa~600MPa程度であり、実施例1や実施例2と比較例1のMonoMax縫合糸の初期引張弾性率はほぼ同等である一方で、実施例1の中間引張弾性率は245MPa、実施例2の中間引張弾性率は144MPaであるのに対してMonoMax縫合糸の中間引張弾性率は531MPaであり、P(3HB-co-4HB)の中間引張弾性率はMonoMax縫合糸のそれよりもかなり低くなっており、ひずみが0.25%~10%と大きくなるとP(3HB-co-4HB)伸縮性縫合糸は伸びやすい性質がより発揮されることがわかる。同時にP(3HB-co-4HB)伸縮性縫合糸は、伸ばされてももとに戻ろうとする性質があるため、結び目を形成するときに、適度に伸ばされて結び目が伸びた糸の細い部分で形成され、また結び目以外の部分の糸は縮んで元の太さに戻ろうとすることから、結び目が小さくなると同時に解けにくい結紮が可能であると考えられる。実施例3、実施例4の縫合糸の中間引張弾性率は116MPa、167Paであり、これも実施例1,2と同様に低い値である。
 実施例4で使用した原料ポリマーを使用し、紡糸条件(スクリュー温度、紡糸口金温度、吐出量、結晶化温度、結晶化時間、延伸倍率)や熱処理温度(アニール工程)などを変更することで、初期引張弾性率180MPa~500MPa程度の糸を得ることができた。使用するポリマーの分子量や組成をさらに変更することで、さらに広い範囲の弾性率をカバーできる紡糸の可能性が推測される。
 工業的紡糸を行った実施例4でも示した繊維の一例を図35及び図36に示した。また、外科結びを結んだ様子を図37に示した。繊維内部に空孔はないが、初期引張弾性率が391MPa、中間引張弾性率は167Paの糸であり、繊維が柔らかく、また伸びに対して寛容であり、かつ縮む性質を持ち、結び目の中に糸と糸の隙間もなく締まっている様子が観察された。
 上記の通り、本発明の伸縮性生体吸収性繊維状医療材料は、結び目形成がしやすく、結び目が小さくなり、結び目の数も減らすことが可能であることから、手術時の医師への負担が減り、患者にとっては組織への物理的な刺激が少なくなり、医療の貢献に役立つものである。
<実施例と比較例のまとめ>
 上記した実施例と比較例のまとめを以下の表10に記載する。
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-I000011

Claims (11)

  1. 生体吸収性脂肪族ポリマーを紡糸延伸した成形品からなる繊維状材料であって、破断時伸びが75%以上であり、ひずみ0.05%から0.25%間での初期引張弾性率よりも、ひずみ0.25%から10%間での中間引張弾性率の方が低い値であり、前記中間引張弾性率が400MPa以下であり、100%変形後の残存ひずみ率が70%以下である、繊維状医療材料。
  2. 前記初期引張弾性率が1000MPa以下である、請求項1に記載の繊維状医療材料。
  3. 前記初期引張弾性率が480MPa以下である、請求項1又は2に記載の繊維状医療材料。
  4. 前記中間引張弾性率が300MPa以下である、請求項1から3の何れか一項に記載の繊維状医療材料。
  5. 100%変形後の残存ひずみ率が50%以下である、請求項1から4の何れか一項に記載の繊維状医療材料。
  6. 空隙率が0%~55%である、請求項1から5の何れか一項に記載の繊維状医療材料。
  7. 繊維軸方向に直交する断面の顕微鏡観察により測定した場合における最大細孔(細孔、ポア、ボイド、空隙、又は中空)の直径が100μm以下である、請求項1から6の何れか一項に記載の繊維状医療材料。
  8. 幅方向断面における長軸長さと短軸長さの比( 長軸長さ/ 短軸長さ) が1.0以上3.0以下である、請求項1から7の何れか一項に記載の繊維状医療材料。
  9. 生体吸収性脂肪族ポリマーが、脂肪族ポリエステルである、請求項1から8の何れか一項に記載の繊維状医療材料。
  10. 生体吸収性脂肪族ポリマーが、ポリヒドロキシアルカノエートである、請求項1から9の何れか一項に記載の繊維状医療材料。
  11. ポリヒドロキシアルカノエートが、2種類以上のヒドロキシアルカノエートユニットから構成されるポリヒドロキシアルカノエートである、請求項10に記載の繊維状医療材料。
PCT/JP2021/039270 2020-10-26 2021-10-25 生体吸収性繊維状医療材料 WO2022092014A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2022559116A JPWO2022092014A1 (ja) 2020-10-26 2021-10-25
EP21886132.6A EP4233922A4 (en) 2020-10-26 2021-10-25 BIOABSORBABLE FIBER TYPE MEDICAL MATERIAL
CN202180072656.2A CN116490222A (zh) 2020-10-26 2021-10-25 生物可吸收性纤维状医疗材料
US18/250,383 US20230398257A1 (en) 2020-10-26 2021-10-25 Bioabsorbable fibrous medical material
KR1020237013631A KR20230097008A (ko) 2020-10-26 2021-10-25 생체흡수성 섬유상 의료재료

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-178860 2020-10-26
JP2020178860 2020-10-26

Publications (1)

Publication Number Publication Date
WO2022092014A1 true WO2022092014A1 (ja) 2022-05-05

Family

ID=81382516

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/039270 WO2022092014A1 (ja) 2020-10-26 2021-10-25 生体吸収性繊維状医療材料

Country Status (7)

Country Link
US (1) US20230398257A1 (ja)
EP (1) EP4233922A4 (ja)
JP (1) JPWO2022092014A1 (ja)
KR (1) KR20230097008A (ja)
CN (1) CN116490222A (ja)
TW (1) TW202231303A (ja)
WO (1) WO2022092014A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024086701A1 (en) * 2022-10-19 2024-04-25 W. L. Gore & Associates, Inc. Pha based microporous articles and methods of forming the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022137003A1 (en) * 2020-12-21 2022-06-30 Ethicon, Inc. Adaptive sutures dynamically changing wound holding properties post-implantation

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0461638A (ja) 1990-06-27 1992-02-27 Ube Ind Ltd 光記録媒体
JPH0489065A (ja) * 1990-07-31 1992-03-23 Gunze Ltd 手術用縫合糸
JPH06336523A (ja) 1993-03-31 1994-12-06 Nippon Zeon Co Ltd ポリエステル成形品
JPH07177894A (ja) 1993-12-22 1995-07-18 Mitsubishi Gas Chem Co Inc ポリ−3−ヒドロキシ酪酸の分離精製方法
JP2001149462A (ja) 1999-11-26 2001-06-05 Gunze Ltd 手術用モノフィラメント縫合糸
US6245537B1 (en) 1997-05-12 2001-06-12 Metabolix, Inc. Removing endotoxin with an oxdizing agent from polyhydroxyalkanoates produced by fermentation
JP2003513131A (ja) 1999-10-28 2003-04-08 ザ プロクター アンド ギャンブル カンパニー 柔軟性弾性生分解性ポリヒドロキシアルカノエートコポリマー組成物およびそのような組成物を含むポリマー製品の作製方法
JP2003513130A (ja) 1999-10-28 2003-04-08 ザ プロクター アンド ギャンブル カンパニー 柔軟性弾性生分解性ポリヒドロキシアルカノエートコポリマー組成物を含むポリマー製品およびそのようなポリマー製品の作製方法
JP2003328230A (ja) * 2002-02-28 2003-11-19 Japan Science & Technology Corp ポリヒドロキシアルカン酸の高強度繊維およびその製造法
JP2003339849A (ja) * 2002-03-30 2003-12-02 Samyang Corp モノフィラメント縫合糸及びその製造方法
WO2004029266A1 (ja) 2002-09-30 2004-04-08 Kaneka Corporation 3−ヒドロキシアルカン酸共重合体の精製方法
WO2004101002A2 (en) 2003-05-08 2004-11-25 Tepha, Inc. Polyhydroxyalkanoate medical textiles and fibers
US6867247B2 (en) 1999-03-25 2005-03-15 Metabolix, Inc. Medical devices and applications of polyhydroxyalkanoate polymers
JP2007046050A (ja) * 2005-07-15 2007-02-22 National Institute Of Advanced Industrial & Technology 医療用樹脂組成物とその製造方法および成形体
JP2011006496A (ja) 2007-09-14 2011-01-13 Gunze Ltd グリコリド/ε−カプロラクトン共重合体からなる縫合糸
JP2019505338A (ja) 2016-02-22 2019-02-28 サントレ ナティオナル ド ラ ルシェルシェ シアンティフィク 制御された活性成分の放出を伴う複合生体材料、調製方法及び使用
WO2019044837A1 (ja) 2017-08-29 2019-03-07 三菱瓦斯化学株式会社 ポリエステルの製造方法
JP2019090739A (ja) 2017-11-16 2019-06-13 三菱電機株式会社 熱型赤外線検出器およびその製造方法
JP2020096144A (ja) 2018-12-14 2020-06-18 Tdk株式会社 素子アレイの製造方法と特定素子の除去方法
JP2020096145A (ja) 2018-12-14 2020-06-18 新電元工業株式会社 電子機器装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH525198A (de) 1969-09-10 1972-07-15 Givaudan & Cie Sa Verfahren zur Herstellung von neuen mercapto- oder alkylthio-substituierten Terpenoiden
JPH0819227B2 (ja) 1987-08-18 1996-02-28 三菱化学株式会社 ポリエステル共重合体およびその製造法
JP4562316B2 (ja) * 2001-06-11 2010-10-13 株式会社カネカ 生分解性繊維およびその製造方法
CN102586936B (zh) * 2011-12-29 2014-01-08 大连工业大学 一种具有良好回弹性的可降解纤维及其制备方法

Patent Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0461638A (ja) 1990-06-27 1992-02-27 Ube Ind Ltd 光記録媒体
JPH0489065A (ja) * 1990-07-31 1992-03-23 Gunze Ltd 手術用縫合糸
JPH06336523A (ja) 1993-03-31 1994-12-06 Nippon Zeon Co Ltd ポリエステル成形品
JPH07177894A (ja) 1993-12-22 1995-07-18 Mitsubishi Gas Chem Co Inc ポリ−3−ヒドロキシ酪酸の分離精製方法
US6245537B1 (en) 1997-05-12 2001-06-12 Metabolix, Inc. Removing endotoxin with an oxdizing agent from polyhydroxyalkanoates produced by fermentation
US6867247B2 (en) 1999-03-25 2005-03-15 Metabolix, Inc. Medical devices and applications of polyhydroxyalkanoate polymers
JP5031144B2 (ja) 1999-03-25 2012-09-19 メタボリックス,インコーポレイテッド ポリヒドロキシアルカノエートポリマーの医療デバイスおよび医療適用
JP2003513131A (ja) 1999-10-28 2003-04-08 ザ プロクター アンド ギャンブル カンパニー 柔軟性弾性生分解性ポリヒドロキシアルカノエートコポリマー組成物およびそのような組成物を含むポリマー製品の作製方法
JP2003513130A (ja) 1999-10-28 2003-04-08 ザ プロクター アンド ギャンブル カンパニー 柔軟性弾性生分解性ポリヒドロキシアルカノエートコポリマー組成物を含むポリマー製品およびそのようなポリマー製品の作製方法
JP2001149462A (ja) 1999-11-26 2001-06-05 Gunze Ltd 手術用モノフィラメント縫合糸
JP2003328230A (ja) * 2002-02-28 2003-11-19 Japan Science & Technology Corp ポリヒドロキシアルカン酸の高強度繊維およびその製造法
JP4071661B2 (ja) 2002-03-30 2008-04-02 サムヤン コーポレイション モノフィラメント縫合糸及びその製造方法
JP2003339849A (ja) * 2002-03-30 2003-12-02 Samyang Corp モノフィラメント縫合糸及びその製造方法
WO2004029266A1 (ja) 2002-09-30 2004-04-08 Kaneka Corporation 3−ヒドロキシアルカン酸共重合体の精製方法
WO2004101002A2 (en) 2003-05-08 2004-11-25 Tepha, Inc. Polyhydroxyalkanoate medical textiles and fibers
JP2007525601A (ja) 2003-05-08 2007-09-06 テファ, インコーポレイテッド ポリヒドロキシアルカノエート医療用織物および医療用繊維
JP2007046050A (ja) * 2005-07-15 2007-02-22 National Institute Of Advanced Industrial & Technology 医療用樹脂組成物とその製造方法および成形体
JP2011006496A (ja) 2007-09-14 2011-01-13 Gunze Ltd グリコリド/ε−カプロラクトン共重合体からなる縫合糸
JP2019505338A (ja) 2016-02-22 2019-02-28 サントレ ナティオナル ド ラ ルシェルシェ シアンティフィク 制御された活性成分の放出を伴う複合生体材料、調製方法及び使用
WO2019044837A1 (ja) 2017-08-29 2019-03-07 三菱瓦斯化学株式会社 ポリエステルの製造方法
JP2019090739A (ja) 2017-11-16 2019-06-13 三菱電機株式会社 熱型赤外線検出器およびその製造方法
JP2020096144A (ja) 2018-12-14 2020-06-18 Tdk株式会社 素子アレイの製造方法と特定素子の除去方法
JP2020096145A (ja) 2018-12-14 2020-06-18 新電元工業株式会社 電子機器装置

Non-Patent Citations (12)

* Cited by examiner, † Cited by third party
Title
ABE ET AL., MACROMOLECULES, vol. 28, 1995, pages 7630
ALBERTSMEIER, LANGENBECKS ARCH SURG, vol. 397, 2012, pages 363 - 371
BMC SURGERY, vol. 8, 2008
DAVID P. MARTIN AND SIMON F. WILLIAMS: "Medical applications of poly-4-hydroxybutyrate: a strong flexible absorbable biomaterial", BIOCHEMICAL ENGINEERING JOURNAL, ELSEVIER, AMSTERDAM, NL, vol. 16, 9 December 2002 (2002-12-09), NL , pages 97 - 105, XP002740256, ISSN: 1369-703X, DOI: 10.1016/S 1369-703X(03)00040-8 *
FUNAI ET AL.: "Creation of physical property value database of biological tissue for biomechanical simulation and application thereof", REPORTS OF THE INDUSTRIAL RESEARCH INSTITUTE OF SHIZUOKA PREFECTURE, vol. 52, 2007, pages 33 - 37
GILDING ET AL., POLYMER, vol. 20, 1979, pages 1459
HORI ET AL., POLYMER, vol. 36, 1995, pages 4703
ODERMATT ET AL., INTERNATIONAL JOURNAL OF POLYMER SCIENCE, vol. 2012
SAITO ET AL., POLYMER INTERNATIONAL, vol. 39, 1996, pages 169
See also references of EP4233922A4
SILVER E ET AL., J.ORAL.MAXILLOFAC.SURG., vol. 74, no. 7, July 2016 (2016-07-01), pages 1304 - 1312
WILLIAMS ET AL., BIOMED TECH (BERL, vol. 58, no. 5, October 2013 (2013-10-01), pages 439 - 452

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024086701A1 (en) * 2022-10-19 2024-04-25 W. L. Gore & Associates, Inc. Pha based microporous articles and methods of forming the same

Also Published As

Publication number Publication date
JPWO2022092014A1 (ja) 2022-05-05
TW202231303A (zh) 2022-08-16
US20230398257A1 (en) 2023-12-14
KR20230097008A (ko) 2023-06-30
CN116490222A (zh) 2023-07-25
EP4233922A1 (en) 2023-08-30
EP4233922A4 (en) 2024-03-27

Similar Documents

Publication Publication Date Title
KR100253712B1 (ko) 생체흡수성 중합체 및 그 제조방법
US8084125B2 (en) Non-curling polyhydroxyalkanoate sutures
US4838267A (en) Glycolide/p-dioxanone block copolymers
US5403347A (en) Absorbable block copolymers and surgical articles fabricated therefrom
US8225673B2 (en) Method of manufacturing and testing monofilament and multi-filaments self-retaining sutures
EP2292277A2 (en) Polymer coated sutures
US6048947A (en) Triblock terpolymer, its use for surgical suture material and process for its production
JP2013534978A (ja) ポリ−4−ヒドロキシブチレートおよびコポリマーの乾式紡糸不織布を含む医療装置
JP2003339849A (ja) モノフィラメント縫合糸及びその製造方法
WO2009085823A1 (en) Medical devices containing melt-blown non-wovens of poly-r-hydroxybutyrate and copolymers
JP2007525601A (ja) ポリヒドロキシアルカノエート医療用織物および医療用繊維
US20090274742A1 (en) Multimodal high strength devices and composites
WO2022092014A1 (ja) 生体吸収性繊維状医療材料
EP3180040A1 (en) Self-retaining sutures of poly-4-hydroxybutyrate and copolymers thereof
KR20160091960A (ko) 정밀하게 제어가능한 흡수 속도를 갖는 흡수성 중합체 블렌드 조성물, 가공 방법, 및 그로부터의 치수 안정한 의료 장치
US6090910A (en) Degradable monofilament and preparation process thereof
JP3253222B2 (ja) p−ジオキサノンの共重合体
EP3240819A1 (en) Biodegradable polymer
JP3557050B2 (ja) 生体吸収性重合体及びその製造方法
Bai et al. In vitro hydrolytic degradation of poly (para-dioxanone)/poly (D, L-lactide) blends
JP3712849B2 (ja) 分解性モノフィラメント及びその製造方法
AU4518400A (en) Sutures
MXPA04012824A (es) Copolimeros de bloque para articulos quirurgicos.
JP3582347B2 (ja) ブロック共重合体並びにフィルム及び繊維
JPH11255874A (ja) ブロック共重合体とその製法並びにフィルム及び繊維

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21886132

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022559116

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180072656.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021886132

Country of ref document: EP

Effective date: 20230526