[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022092062A1 - Bearing device - Google Patents

Bearing device Download PDF

Info

Publication number
WO2022092062A1
WO2022092062A1 PCT/JP2021/039429 JP2021039429W WO2022092062A1 WO 2022092062 A1 WO2022092062 A1 WO 2022092062A1 JP 2021039429 W JP2021039429 W JP 2021039429W WO 2022092062 A1 WO2022092062 A1 WO 2022092062A1
Authority
WO
WIPO (PCT)
Prior art keywords
outer ring
housing
flank
fitting surface
ring
Prior art date
Application number
PCT/JP2021/039429
Other languages
French (fr)
Japanese (ja)
Inventor
隼人 川口
俊樹 増田
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Priority to CN202180072717.5A priority Critical patent/CN116457586A/en
Priority to KR1020237017658A priority patent/KR20230115985A/en
Publication of WO2022092062A1 publication Critical patent/WO2022092062A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/04Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
    • F16C19/06Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row or balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers
    • F16C35/04Rigid support of bearing units; Housings, e.g. caps, covers in the case of ball or roller bearings
    • F16C35/06Mounting or dismounting of ball or roller bearings; Fixing them onto shaft or in housing
    • F16C35/067Fixing them in a housing

Definitions

  • the present invention relates to a bearing device incorporating a rolling bearing that supports a radial load between a shaft and a housing.
  • the shaft of an automobile transmission is supported by a rolling bearing fitted in a housing.
  • This rolling bearing has an inner ring fitted on the outer periphery of the shaft, an outer ring coaxially arranged on the radial outer side of the inner ring, and a plurality of rolling elements incorporated between the inner ring and the outer ring.
  • the outer ring is usually squeezed with respect to the housing in order to facilitate the assembly work of the rolling bearing with respect to the housing. That is, the dimensional tolerance is set so that the outer diameter dimension of the cylindrical fitting surface on the outer circumference of the outer ring is always smaller than the inner diameter dimension of the cylindrical fitting surface on the inner circumference of the housing.
  • the outer ring when the outer ring is squeezed into the housing, if the shaft is rotated with a radial load applied from the shaft to the inner ring, the outer ring may gradually rotate with respect to the housing (creep phenomenon).
  • the following is known as one of the mechanisms of this creep phenomenon. That is, when a radial load is applied from the shaft to the inner ring, the radial load is transmitted to the outer ring via the rolling element, and the outer ring is deformed into a corrugated shape.
  • the rolling element moves in the circumferential direction while rolling, so that the deformation of the waveform of the outer ring also moves in the circumferential direction, and the deformation of the outer ring forms a progressive wave.
  • the traveling wave causes a minute slip between the fitting surface on the outer circumference of the outer ring and the fitting surface on the inner circumference of the housing, and the creep phenomenon occurs by accumulating the minute slip.
  • This bearing device has a shaft, a housing that surrounds the outer circumference of the shaft, and a rolling bearing that supports a radial load between the shaft and the housing.
  • the outer ring of the rolling bearing is squeezed into the housing.
  • a flank that divides the cylindrical fitting surface of the outer circumference of the outer ring in the circumferential direction is formed at one place on the outer circumference of the outer ring.
  • a flank that divides the cylindrical fitting surface in the circumferential direction is formed on the outer circumference of the outer ring, and the flank blocks the deformation of the waveform of the outer ring from being transmitted to the housing as a traveling wave. And the creep phenomenon can be suppressed.
  • the shaft when a horizontally arranged shaft is supported by a rolling bearing and the shaft rotates while a vertically downward radial load is applied from the shaft to the inner ring, the shaft is vertical among the cylindrical fitting surfaces of the housing and the outer ring.
  • the range corresponding to the predetermined central angle of less than 180 ° on the lower side is the load load range.
  • the outer circumference of the outer ring and the inner circumference of the housing come into contact with each other, and the deformation of the waveform of the outer ring is transmitted to the housing as a traveling wave, so that the creep phenomenon occurs once.
  • the outer ring gradually rotates due to the creep phenomenon, and after the flank of the outer circumference of the outer ring reaches the load-bearing area, the outer circumference of the outer ring and the inner circumference of the housing become non-contact in the load-bearing area.
  • the deformation of the waveform of the outer ring is blocked from being transmitted to the housing as a traveling wave, the outer ring does not rotate any more, and the creep phenomenon is suppressed.
  • the direction of the radial load applied to the rolling bearing is not constant and may always fluctuate.
  • the load applied to the rolling bearing is a rotational load (when the direction of the radial load applied to the rolling bearing rotates).
  • the load-bearing range of the rolling bearing always moves. Therefore, if a rolling bearing having only one flank on the outer periphery of the outer ring is used as shown in FIG. 1 of Patent Document 1, the load-bearing range moves with the movement of the rolling bearing.
  • the load-bearing area overlaps the position of the flank, it is possible to block the deformation of the outer ring waveform from being transmitted to the housing as a progressive wave, but while the load-bearing range is out of the flank position.
  • the problem to be solved by the present invention is to provide a bearing device capable of effectively suppressing the creep phenomenon even when the direction of the radial load applied to the rolling bearing fluctuates.
  • the present invention provides a bearing device having the following configuration.
  • Axis and A housing that surrounds the outer circumference of the shaft and
  • a rolling bearing which supports a radial load between the shaft and the housing, is provided.
  • the rolling bearing has a raceway ring that is squeezed with a mating member that is one of the shaft and the housing.
  • a bearing device having a cylindrical fitting surface in which the raceway ring and the mating member are fitted to each other.
  • flanks extending in the entire axial direction of the fitting surface are spaced apart in the circumferential direction so as to divide the fitting surface of the member in the circumferential direction.
  • a bearing device characterized in that two or more are formed.
  • the flank can be formed on the raceway ring. That is, two or more flanks extending in the axial direction of the fitting surface can be formed on the raceway ring so as to divide the fitting surface of the raceway ring in the circumferential direction. ..
  • the mating member may be the housing, and the raceway ring may be an outer ring. That is, the rolling bearing has an outer ring fitted with the housing, the outer ring and the housing have a cylindrical fitting surface that fits each other, and the outer ring has the fitting that the outer ring has. It is possible to adopt a configuration in which two or more flanks extending in the axial direction of the fitting surface are formed at intervals in the circumferential direction so as to divide the surface in the circumferential direction.
  • flanks are provided on the outer periphery of the outer ring in a range of 3 or more and 6 or less at equal intervals in the circumferential direction.
  • the direction of the radial load applied to the rolling bearing changes, and even when the load load range constantly moves, the load is always present. It is possible to maintain a state in which one of the flanks enters the load range, and it is possible to effectively suppress the creep phenomenon. Further, by setting the number of flanks provided on the outer periphery of the outer ring at equal intervals in the circumferential direction to be 6 or less, it is possible to secure the circumferential length of each flank, so that the waveform of the outer ring is deformed. It is possible to effectively block the traveling wave from being transmitted to the housing.
  • the flank may be a flat surface or a concave arc shape, but a convex circle formed so as to pass radially inside the fitting surface of the outer ring. It is preferable to adopt an arc-shaped curved surface.
  • the radial thickness of the outer ring due to the formation of the flank is larger than the case where a flat flank or a concave arc shape is adopted as the flank formed on the outer periphery of the outer ring. It is possible to suppress the decrease in thickness, and it is possible to suppress the deflection of the outer ring when a radial load is applied.
  • flank of the outer ring is smoothly connected to the fitting surface, so that the connection between the flank of the outer ring and the fitting surface attacks the fitting surface of the housing, causing excessive surface pressure. Can be prevented.
  • the flank is provided so that even when a maximum radial load is applied to the rolling bearing, the flank and the fitting surface of the housing do not come into contact with each other and a radial gap is secured between the flanks. It is preferable to form it.
  • two or more flanks are formed at one of the raceway ring and the mating member to which the raceway ring is squeezed at intervals in the circumferential direction.
  • a partial cross-sectional view showing a bearing device according to an embodiment of the present invention Sectional view taken along line II-II of FIG. Partial cross-sectional view showing an outer ring taken out from the bearing device shown in FIG. Enlarged view of the vicinity of the flank in FIG.
  • the figure which shows the state which the direction of the radial load applied to the rolling bearing is rotated from the direction shown in FIG.
  • Sectional drawing which shows the bearing apparatus which concerns on other embodiment of this invention.
  • This bearing device has a shaft 1, a housing 2 that surrounds the outer periphery of the shaft 1, and a rolling bearing 3 that supports a radial load between the shaft 1 and the housing 2.
  • the shaft 1 is a rotation shaft in which rotation is input from a rotation drive source (automobile engine, etc.) (not shown).
  • the housing 2 is a non-rotating fixing member.
  • a cylindrical housing hole 4 is formed in the housing 2, and a rolling bearing 3 is incorporated in the housing hole 4.
  • the rolling bearing 3 includes an inner ring (inner raceway ring) 5 fitted to the outer periphery of the shaft 1, an outer ring (outer raceway ring) 6 coaxially arranged on the radial outer side of the inner ring 5, and an inner ring 5 and an outer ring 6. It has a plurality of rolling elements 7 incorporated at intervals in the circumferential direction, and a cage 8 for holding the circumferential spacing of the plurality of rolling elements 7.
  • the rolling element 7 is a ball.
  • an inner ring raceway groove 9 with which the rolling element 7 rolls and contacts, and an inner ring shoulder portion 10 located on both sides of the inner ring raceway groove 9 in the axial direction are formed on the outer periphery of the inner ring 5. Also on the inner circumference of the outer ring 6, an outer ring raceway groove 11 with which the rolling element 7 rolls and contacts, and an outer ring shoulder portion 12 located on both sides of the outer ring raceway groove 11 in the axial direction are formed.
  • the inner ring raceway groove 9 and the outer ring raceway groove 11 are both grooves having an arcuate cross section.
  • the inner ring 5 is squeezed around the outer circumference of the shaft 1. That is, the inner ring 5 has a cylindrical fitting surface 13 formed on the inner circumference of the inner ring 5, and the shaft 1 has a cylindrical fitting surface 14 formed on the outer periphery of the shaft 1, and the inner ring 5 has a cylindrical fitting surface 14.
  • the fitting surface 13 and the fitting surface 14 of the shaft 1 are fitted with a tightening margin.
  • the inner diameter of the fitting surface 13 on the inner circumference of the inner ring 5 is smaller than the outer diameter of the fitting surface 14 on the outer circumference of the shaft 1.
  • the outer ring 6 is fitted in the housing hole 4 of the housing 2. That is, the housing 2 has a cylindrical fitting surface 15 formed on the inner circumference of the housing hole 4, and the outer ring 6 has a cylindrical fitting surface 16 formed on the outer circumference of the outer ring 6.
  • the fitting surface 15 of the housing and the fitting surface 16 of the outer ring 6 are fitted with a gap (a small annular gap).
  • the outer diameter of the fitting surface 16 on the outer circumference of the outer ring 6 is smaller than the inner diameter of the fitting surface 15 on the inner circumference of the housing hole 4.
  • flanks 17 are spaced apart from each other so as to divide the fitting surface 16 in the circumferential direction. In the figure, three are formed at 120 ° intervals. It is preferable that the flanks 17 are provided on the outer periphery of the outer ring 6 at equal intervals in the circumferential direction in a range of 3 or more and 6 or less.
  • a radial gap 18 is formed between the flank 17 of the outer ring 6 and the fitting surface 15 of the housing 2.
  • the radial gap 18 has a thin crescent shape.
  • the radial dimension of the radial gap 18 gradually decreases from the circumferential center of the radial gap 18 toward both ends in the circumferential direction, and the radial dimension of the circumferential center of the radial gap 18 is the fitting surface of the outer ring 6. It is larger than the radial dimension of the gap (annular microgap) set between the fitting surface 15 of the housing 2 and the housing 2.
  • the radial gap 18 is a space in which no member exists.
  • the flank 17 is a convex arcuate curved surface formed so as to pass radially inside the fitting surface 16 of the outer ring 6 (the position of the alternate long and short dash line in the figure). .. Both ends of the flank 17 in the circumferential direction are smoothly connected to the fitting surface 16. That is, both end portions of the flank surface 17 in the circumferential direction have a shape having the contour of a curve (for example, an arc curve, a logarithmic curve, etc.) having a curvature larger than the central portion in the circumferential direction of the flank surface 17, and the flank surface 17 is formed. Both ends of the flank 17 in the circumferential direction are smoothly connected to the fitting surface 16 so that an edge does not occur at the boundary of the fitting surface 16.
  • a curve for example, an arc curve, a logarithmic curve, etc.
  • the radial depth ⁇ of the flank 17 with respect to the radial position of the fitting surface 16 of the outer ring 6 is the flank 17 even when the rolling bearing 3 is loaded with the maximum radial load.
  • the housing 2 is formed in such a size that a radial gap 18 (see FIG. 2) is secured between the flank surface 17 and the fitting surface 15 without contacting the fitting surface 15.
  • the maximum radial load is, for example, a basic static radial rated load.
  • the basic static radial rated load is that when the rolling element 7 is a ball, the contact stress at the center of the contact portion between the rolling element 7 and the outer ring raceway groove 11 that receives the maximum load when the rolling bearing 3 is loaded with the static radial load is 4. It is a static radial load such that it becomes .2 GPa.
  • the circumferential length of the flank 17 can be defined by the angle ⁇ around the center of the outer ring 6.
  • the angle ⁇ corresponding to the circumferential length of the flank 17 is the rolling element 7 when the pitch angle of the rolling elements 7 corresponding to the arrangement intervals of the adjacent rolling elements 7 is ⁇ . It is preferable to set the pitch angle ⁇ to 0.5 times or more. This makes it possible to effectively block the deformation of the waveform of the outer ring 6 from being transmitted to the housing 2 as a traveling wave.
  • the angle ⁇ corresponding to the circumferential length of the flank 17 is preferably set to 2.0 times or less (preferably 1.0 times or less) the pitch angle ⁇ of the rolling element 7. As a result, it is possible to suppress the deflection of the outer ring 6 when a radial load is applied.
  • the load load region W may move to any position.
  • the load-bearing region W tends to overlap the position of the flank 17, and the deformation of the waveform of the outer ring 6 is difficult to be transmitted to the housing 2 as a traveling wave. Therefore, it is possible to effectively suppress the creep phenomenon.
  • flanks 17 are provided on the outer periphery of the outer ring 6 at equal intervals in the circumferential direction. In this way, even when the direction of the radial load F loaded on the rolling bearing 3 fluctuates and the load load region W constantly moves, one of the flanks 17 always enters the load load region W. It can be maintained and the creep phenomenon can be effectively suppressed. It is also possible to provide three or more flanks 17 unevenly on the outer circumference of the outer ring 6. In this case, regardless of the direction in which the radial load F is loaded, the flank surface 17 may be arranged so that at least one flank surface 17 is included in the load load region W due to the radial load F.
  • the number of flanks 17 provided on the outer periphery of the outer ring 6 at equal intervals in the circumferential direction is 6 or less.
  • this bearing device adopts a convex arcuate curved surface formed so as to pass radially inside the fitting surface 16 of the outer ring 6, so that the outer ring 6 has a curved surface.
  • the radial wall thickness of the outer ring 6 is reduced by forming the flank 17 as compared with the case where a flat flank or a concave arc shape is adopted as the flank 17 formed on the outer periphery. It can be suppressed. Therefore, it is possible to suppress the deflection of the outer ring 6 when the radial load F is applied.
  • both ends of the flank surface 17 in the circumferential direction are smoothly connected to the fitting surface 16, so that the connection portion between the flank surface 17 and the fitting surface 16 of the outer ring 6 is formed. It is possible to prevent excessive surface pressure from being generated by attacking the fitting surface 15 of the housing 2.
  • this bearing device escapes so that the flank 17 and the fitting surface 15 do not come into contact with each other and a radial gap 18 is secured between them. Since the surface 17 is formed, it is possible to reliably suppress the creep phenomenon even when the radial load F applied to the rolling bearing 3 is large.
  • flank 17 is formed on the outer ring 6, but the flank 17 may be formed on the housing 2 instead of the outer ring 6. good. That is, in the housing 2, two or more flanks 17 extending in the axial direction of the fitting surface 15 are formed at intervals in the circumferential direction so as to divide the fitting surface 15 of the housing 2 in the circumferential direction. May be adopted.
  • the rolling bearing 3 in which the outer ring 6 and the housing 2 are fitted in a crevice fit is taken as an example, but the present invention is based on the crevice fit between the inner ring 5 and the shaft 1. It can also be applied to a rolling bearing 3 that fits. In this case, a flank 17 is formed on one of the inner ring 5 and the shaft 1 which are fitted to each other due to the clearance fit.
  • the inner ring 5 is spaced in the circumferential direction from the flanks 17 extending over the entire axial width of the fitting surface 13 so as to divide the fitting surface 13 of the inner ring 5 in the circumferential direction. It is possible to adopt a configuration in which two or more (three in the figure) are formed. In this way, even when the direction of the radial load F loaded on the rolling bearing 3 fluctuates, as in the case where the rotational load is loaded on the rolling bearing 3, the deformation of the waveform of the inner ring 5 is the axis as a traveling wave. It is difficult to transmit to 1, and it is possible to effectively suppress the creep phenomenon.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mounting Of Bearings Or Others (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

In a bearing device where an outer race (6) and a housing (2) have cylindrical mating surfaces (15, 16) that mate with each other, the outer race (6) has, formed in the mating surface (16) thereof, two or more flank surfaces (17) that are disposed at intervals in the circumferential direction and that extend over the entire axial width of the mating surface (16) so as to divide the mating surface (16) in the circumferential direction.

Description

軸受装置Bearing equipment
 この発明は、軸とハウジングの間にラジアル荷重を支持する転がり軸受を組み込んだ軸受装置に関する。 The present invention relates to a bearing device incorporating a rolling bearing that supports a radial load between a shaft and a housing.
 一般に、自動車のトランスミッションの軸は、ハウジングに嵌め込まれた転がり軸受で支持される。この転がり軸受は、軸の外周に嵌合する内輪と、内輪の径方向外側に同軸に配置される外輪と、内輪と外輪の間に組み込まれる複数の転動体とを有する。 Generally, the shaft of an automobile transmission is supported by a rolling bearing fitted in a housing. This rolling bearing has an inner ring fitted on the outer periphery of the shaft, an outer ring coaxially arranged on the radial outer side of the inner ring, and a plurality of rolling elements incorporated between the inner ring and the outer ring.
 ここで、トランスミッションの軸を支持する転がり軸受においては、ハウジングに対する転がり軸受の組み付け作業を容易にするために、通常、ハウジングに対して外輪がすきまばめされる。すなわち、外輪の外周の円筒状のはめあい面の外径寸法が、常に、ハウジングの内周の円筒状のはめあい面の内径寸法よりも小さくなるように寸法公差が設定される。 Here, in the rolling bearing that supports the shaft of the transmission, the outer ring is usually squeezed with respect to the housing in order to facilitate the assembly work of the rolling bearing with respect to the housing. That is, the dimensional tolerance is set so that the outer diameter dimension of the cylindrical fitting surface on the outer circumference of the outer ring is always smaller than the inner diameter dimension of the cylindrical fitting surface on the inner circumference of the housing.
 一方、ハウジングに外輪をすきまばめした場合、軸から内輪にラジアル荷重を負荷した状態で軸を回転させると、ハウジングに対して外輪が次第に回転する現象(クリープ現象)が生じることがある。 On the other hand, when the outer ring is squeezed into the housing, if the shaft is rotated with a radial load applied from the shaft to the inner ring, the outer ring may gradually rotate with respect to the housing (creep phenomenon).
 このクリープ現象のメカニズムの一つとして、次のものが知られている。すなわち、軸から内輪にラジアル荷重が負荷されると、そのラジアル荷重が、転動体を介して外輪に伝達し、外輪が波形に変形する。この状態で内輪が回転すると、転動体が転がりながら周方向に移動するので、外輪の波形の変形も周方向に移動し、その外輪の変形が進行波を形成する。そして、その進行波によって、外輪の外周のはめあい面とハウジングの内周のはめあい面との間で微小なすべりが生じ、その微小なすべりが累積することでクリープ現象が生じる。 The following is known as one of the mechanisms of this creep phenomenon. That is, when a radial load is applied from the shaft to the inner ring, the radial load is transmitted to the outer ring via the rolling element, and the outer ring is deformed into a corrugated shape. When the inner ring rotates in this state, the rolling element moves in the circumferential direction while rolling, so that the deformation of the waveform of the outer ring also moves in the circumferential direction, and the deformation of the outer ring forms a progressive wave. Then, the traveling wave causes a minute slip between the fitting surface on the outer circumference of the outer ring and the fitting surface on the inner circumference of the housing, and the creep phenomenon occurs by accumulating the minute slip.
 同様に、内輪に軸をすきまばめした場合にも、内輪と軸の間でクリープ現象が生じることがある。 Similarly, when the shaft is squeezed into the inner ring, a creep phenomenon may occur between the inner ring and the shaft.
 このクリープ現象を抑制するため、既に、本願の発明者は、特許文献1の図1に示される軸受装置を提案している。この軸受装置は、軸と、軸の外周を取り囲むハウジングと、軸とハウジングとの間でラジアル荷重を支持する転がり軸受とを有する。転がり軸受の外輪は、ハウジングにすきまばめされている。そして、その外輪とハウジングの間でクリープ現象が生じるのを抑制するため、外輪の外周の1箇所に、外輪の外周の円筒状のはめあい面を周方向に分断する逃げ面を形成している。 In order to suppress this creep phenomenon, the inventor of the present application has already proposed the bearing device shown in FIG. 1 of Patent Document 1. This bearing device has a shaft, a housing that surrounds the outer circumference of the shaft, and a rolling bearing that supports a radial load between the shaft and the housing. The outer ring of the rolling bearing is squeezed into the housing. Then, in order to suppress the creep phenomenon from occurring between the outer ring and the housing, a flank that divides the cylindrical fitting surface of the outer circumference of the outer ring in the circumferential direction is formed at one place on the outer circumference of the outer ring.
 この軸受装置は、外輪の外周に、円筒状のはめあい面を周方向に分断する逃げ面が形成されているので、その逃げ面によって、外輪の波形の変形が進行波としてハウジングに伝わるのを遮断することができ、クリープ現象を抑制することができる。 In this bearing device, a flank that divides the cylindrical fitting surface in the circumferential direction is formed on the outer circumference of the outer ring, and the flank blocks the deformation of the waveform of the outer ring from being transmitted to the housing as a traveling wave. And the creep phenomenon can be suppressed.
 例えば、水平に配置した軸を転がり軸受で支持し、鉛直下向きのラジアル荷重が軸から内輪に負荷された状態で軸が回転するとき、ハウジングと外輪の円筒状のはめあい面のうち、軸の鉛直下側の180°未満の所定の中心角に対応する範囲が荷重負荷域となる。 For example, when a horizontally arranged shaft is supported by a rolling bearing and the shaft rotates while a vertically downward radial load is applied from the shaft to the inner ring, the shaft is vertical among the cylindrical fitting surfaces of the housing and the outer ring. The range corresponding to the predetermined central angle of less than 180 ° on the lower side is the load load range.
 そして、この荷重負荷域に外輪の外周の逃げ面が位置するように転がり軸受を組み付けたときは、荷重負荷域において外輪の外周とハウジングの内周とが非接触となるため、外輪の波形の変形が進行波としてハウジングに伝わるのを遮断することができ、クリープ現象が抑制される。一方、荷重負荷域から外れた領域(例えば、ハウジングと外輪の円筒状のはめあい面のうち、軸の鉛直上側の範囲)に、外輪の外周の逃げ面が位置するように転がり軸受を組み付けたときは、組み付けの直後、軸の鉛直下側の荷重負荷域において、外輪の外周とハウジングの内周とが接触し、外輪の波形の変形が進行波としてハウジングに伝わることで、一旦、クリープ現象が発生するが、そのクリープ現象で外輪が次第に回転し、外輪の外周の逃げ面が荷重負荷域に到達した後は、荷重負荷域において外輪の外周とハウジングの内周とが非接触となるため、外輪の波形の変形が進行波としてハウジングに伝わるのが遮断され、外輪はそれ以上回転しなくなり、クリープ現象がおさまる。 When the rolling bearing is assembled so that the flank of the outer circumference of the outer ring is located in this load-bearing area, the outer circumference of the outer ring and the inner circumference of the housing are not in contact with each other in the load-bearing area. It is possible to block the deformation from being transmitted to the housing as a traveling wave, and the creep phenomenon is suppressed. On the other hand, when the rolling bearing is assembled so that the clearance surface on the outer circumference of the outer ring is located in the area outside the load-bearing area (for example, the range on the vertical upper side of the shaft in the cylindrical fitting surface of the housing and the outer ring). Immediately after assembly, in the load-bearing area on the vertical lower side of the shaft, the outer circumference of the outer ring and the inner circumference of the housing come into contact with each other, and the deformation of the waveform of the outer ring is transmitted to the housing as a traveling wave, so that the creep phenomenon occurs once. Although it occurs, the outer ring gradually rotates due to the creep phenomenon, and after the flank of the outer circumference of the outer ring reaches the load-bearing area, the outer circumference of the outer ring and the inner circumference of the housing become non-contact in the load-bearing area. The deformation of the waveform of the outer ring is blocked from being transmitted to the housing as a traveling wave, the outer ring does not rotate any more, and the creep phenomenon is suppressed.
特開2020-45987号公報Japanese Unexamined Patent Publication No. 2020-45987
 本願の発明者は、特許文献1の図1のように転がり軸受の外輪の外周に逃げ面を1箇所だけ設けた場合、上述のように、転がり軸受を、外輪の外周の逃げ面が荷重負荷域に位置するように組み付けても、また外輪の外周の逃げ面が荷重負荷域から外れた領域に位置するように組み付けても、その組み付けの向きによらず、クリープ現象を抑制することができると考えていたが、実際には、クリープ現象が抑制されないケースがあることが分かった。そして、その原因を調査検討したところ、転がり軸受の荷重負荷域が変動する場合に、クリープ現象が抑制されないことが分かった。 When the inventor of the present application provides only one flank on the outer periphery of the outer ring of the rolling bearing as shown in FIG. 1 of Patent Document 1, as described above, the roll bearing is loaded with the flank on the outer ring of the outer ring. Even if it is assembled so that it is located in the area, or if it is assembled so that the flank of the outer circumference of the outer ring is located in the area outside the load-bearing area, the creep phenomenon can be suppressed regardless of the direction of the assembly. However, in reality, it turned out that there are cases where the creep phenomenon is not suppressed. Then, as a result of investigating the cause, it was found that the creep phenomenon was not suppressed when the load-bearing range of the rolling bearing fluctuated.
 すなわち、転がり軸受に負荷されるラジアル荷重の方向が一定ではなく、常に変動する場合がある。典型的には、転がり軸受に負荷される荷重が回転荷重である場合(転がり軸受に負荷されるラジアル荷重の方向が回転する場合)である。この場合、転がり軸受の荷重負荷域が常に移動するので、特許文献1の図1のように、外輪の外周に逃げ面を1箇所だけ設けた転がり軸受を使用すると、荷重負荷域の移動に伴い、荷重負荷域が逃げ面の位置に重なったときは、外輪の波形の変形が進行波としてハウジングに伝わるのを遮断することができるが、荷重負荷域が逃げ面の位置から外れている間は、外輪の波形の変形が進行波としてハウジングに伝わり、クリープ現象が生じることとなる。そして、このクリープ現象によって外輪の外周の逃げ面がいずれの位置まで移動しても、荷重負荷域が常に移動するので、結局、クリープ現象はおさまらない。つまり、回転荷重が転がり軸受に負荷される場合のように、転がり軸受の荷重負荷域が常に移動する場合、特許文献1の図1のように、転がり軸受の外輪の外周に1箇所の逃げ面を設けたのでは、クリープ現象を抑制することができないことが分かった。 That is, the direction of the radial load applied to the rolling bearing is not constant and may always fluctuate. Typically, the load applied to the rolling bearing is a rotational load (when the direction of the radial load applied to the rolling bearing rotates). In this case, the load-bearing range of the rolling bearing always moves. Therefore, if a rolling bearing having only one flank on the outer periphery of the outer ring is used as shown in FIG. 1 of Patent Document 1, the load-bearing range moves with the movement of the rolling bearing. When the load-bearing area overlaps the position of the flank, it is possible to block the deformation of the outer ring waveform from being transmitted to the housing as a progressive wave, but while the load-bearing range is out of the flank position. , The deformation of the waveform of the outer ring is transmitted to the housing as a traveling wave, and a creep phenomenon occurs. Then, no matter where the flank of the outer ring of the outer ring moves due to this creep phenomenon, the load-bearing area always moves, so that the creep phenomenon does not subside after all. That is, when the load load range of the rolling bearing constantly moves, as in the case where the rotational load is applied to the rolling bearing, one flank surface is provided on the outer periphery of the outer ring of the rolling bearing as shown in FIG. 1 of Patent Document 1. It was found that the creep phenomenon could not be suppressed by providing the above.
 この発明が解決しようとする課題は、転がり軸受に負荷されるラジアル荷重の方向が変動する場合においても効果的にクリープ現象を抑制することが可能な軸受装置を提供することである。 The problem to be solved by the present invention is to provide a bearing device capable of effectively suppressing the creep phenomenon even when the direction of the radial load applied to the rolling bearing fluctuates.
 上記の課題を解決するため、この発明では、以下の構成の軸受装置を提供する。
 軸と、
 前記軸の外周を取り囲むハウジングと、
 前記軸と前記ハウジングとの間でラジアル荷重を支持する転がり軸受と、を備え、
 前記転がり軸受が、前記軸と前記ハウジングのうちのいずれか一方である相手部材とすきまばめされる軌道輪を有し、
 前記軌道輪と前記相手部材は、互いに嵌まり合う円筒状のはめあい面を有する軸受装置において、
 前記軌道輪と前記相手部材のうちの一方の部材には、その部材が有する前記はめあい面を周方向に分断するようにそのはめあい面の軸方向全幅にわたって延びる逃げ面が周方向に間隔をおいて2つ以上形成されていることを特徴とする軸受装置。
In order to solve the above problems, the present invention provides a bearing device having the following configuration.
Axis and
A housing that surrounds the outer circumference of the shaft and
A rolling bearing, which supports a radial load between the shaft and the housing, is provided.
The rolling bearing has a raceway ring that is squeezed with a mating member that is one of the shaft and the housing.
In a bearing device having a cylindrical fitting surface in which the raceway ring and the mating member are fitted to each other.
On one of the raceway ring and the mating member, flanks extending in the entire axial direction of the fitting surface are spaced apart in the circumferential direction so as to divide the fitting surface of the member in the circumferential direction. A bearing device characterized in that two or more are formed.
 このようにすると、軌道輪とその軌道輪がすきまばめされる相手部材とのうちの一方の部材に、2つ以上の逃げ面が周方向に間隔をおいて形成されているので、回転荷重が転がり軸受に負荷される場合のように、転がり軸受に負荷されるラジアル荷重の方向が変動する場合においても、軌道輪の波形の変形が進行波として相手部材に伝わりにくく、効果的にクリープ現象を抑制することが可能である。 In this way, two or more flanks are formed at one of the bearing ring and the mating member to which the bearing ring is squeezed at intervals in the circumferential direction, so that the rotational load is formed. Even when the direction of the radial load applied to the rolling bearing fluctuates, as in the case where is loaded on the rolling bearing, the deformation of the waveform of the raceway ring is difficult to be transmitted to the mating member as a traveling wave, and the creep phenomenon is effective. It is possible to suppress.
 前記逃げ面は、前記軌道輪に形成することができる。すなわち、前記軌道輪に、前記軌道輪が有する前記はめあい面を周方向に分断するようにそのはめあい面の軸方向全幅にわたって延びる逃げ面を周方向に間隔をおいて2つ以上形成することができる。 The flank can be formed on the raceway ring. That is, two or more flanks extending in the axial direction of the fitting surface can be formed on the raceway ring so as to divide the fitting surface of the raceway ring in the circumferential direction. ..
 さらに、前記相手部材は、前記ハウジングであり、前記軌道輪は、外輪である構成を採用することができる。すなわち、前記転がり軸受が、前記ハウジングとすきまばめされる外輪を有し、前記外輪と前記ハウジングは、互いに嵌まり合う円筒状のはめあい面を有し、前記外輪には、外輪が有する前記はめあい面を周方向に分断するようにそのはめあい面の軸方向全幅にわたって延びる逃げ面が周方向に間隔をおいて2つ以上形成されている構成を採用することができる。 Further, the mating member may be the housing, and the raceway ring may be an outer ring. That is, the rolling bearing has an outer ring fitted with the housing, the outer ring and the housing have a cylindrical fitting surface that fits each other, and the outer ring has the fitting that the outer ring has. It is possible to adopt a configuration in which two or more flanks extending in the axial direction of the fitting surface are formed at intervals in the circumferential direction so as to divide the surface in the circumferential direction.
 前記逃げ面は、前記外輪の外周に周方向に等間隔に3つ以上6つ以下の範囲で設けると好ましい。 It is preferable that the flanks are provided on the outer periphery of the outer ring in a range of 3 or more and 6 or less at equal intervals in the circumferential direction.
 前記逃げ面を、前記外輪の外周に周方向に等間隔に3つ以上設けると、転がり軸受に負荷されるラジアル荷重の方向が変動し、荷重負荷域が常に移動する場合にも、常にその荷重負荷域にいずれかの逃げ面が入る状態を保つことができ、効果的にクリープ現象を抑制することが可能となる。また、前記外輪の外周に周方向に等間隔に設ける逃げ面を6つ以下とすることにより、1つあたりの逃げ面の周方向長さを確保することができるので、外輪の波形の変形が進行波としてハウジングに伝わるのを効果的に遮断することが可能となる。 When three or more flanks are provided on the outer periphery of the outer ring at equal intervals in the circumferential direction, the direction of the radial load applied to the rolling bearing changes, and even when the load load range constantly moves, the load is always present. It is possible to maintain a state in which one of the flanks enters the load range, and it is possible to effectively suppress the creep phenomenon. Further, by setting the number of flanks provided on the outer periphery of the outer ring at equal intervals in the circumferential direction to be 6 or less, it is possible to secure the circumferential length of each flank, so that the waveform of the outer ring is deformed. It is possible to effectively block the traveling wave from being transmitted to the housing.
 前記逃げ面は、平面状のものや凹円弧状のものを採用することも可能であるが、前記外輪が有する前記はめあい面の径方向位置よりも径方向内側を通るように形成された凸円弧状の曲面を採用すると好ましい。 The flank may be a flat surface or a concave arc shape, but a convex circle formed so as to pass radially inside the fitting surface of the outer ring. It is preferable to adopt an arc-shaped curved surface.
 このようにすると、外輪の外周に形成する逃げ面として平面状のものを採用したり、凹円弧状のものを採用したりした場合よりも、逃げ面を形成することによる外輪の径方向の肉厚の減少を抑えることができ、ラジアル荷重が負荷されたときの外輪のたわみを抑えることが可能となる。 In this way, the radial thickness of the outer ring due to the formation of the flank is larger than the case where a flat flank or a concave arc shape is adopted as the flank formed on the outer periphery of the outer ring. It is possible to suppress the decrease in thickness, and it is possible to suppress the deflection of the outer ring when a radial load is applied.
 逃げ面の周方向の両端は、前記外輪が有する前記はめあい面と滑らかに接続している構成を採用すると好ましい。 It is preferable to adopt a configuration in which both ends of the flank in the circumferential direction are smoothly connected to the fitting surface of the outer ring.
 このようにすると、外輪の逃げ面がはめあい面と滑らかに接続しているので、外輪の逃げ面とはめあい面の接続部が、ハウジングのはめあい面を攻撃することで過大な面圧が生じるのを防止することができる。 In this way, the flank of the outer ring is smoothly connected to the fitting surface, so that the connection between the flank of the outer ring and the fitting surface attacks the fitting surface of the housing, causing excessive surface pressure. Can be prevented.
 前記逃げ面は、前記転がり軸受に最大ラジアル荷重が負荷された場合にも、前記逃げ面と前記ハウジングが有する前記はめあい面とが接触せずに両者の間に径方向隙間が確保されるように形成すると好ましい。 The flank is provided so that even when a maximum radial load is applied to the rolling bearing, the flank and the fitting surface of the housing do not come into contact with each other and a radial gap is secured between the flanks. It is preferable to form it.
 このようにすると、転がり軸受に負荷されるラジアル荷重が大きいときにも、確実にクリープ現象を抑制することが可能となる。 By doing so, it is possible to reliably suppress the creep phenomenon even when the radial load applied to the rolling bearing is large.
 この発明の軸受装置は、軌道輪とその軌道輪がすきまばめされる相手部材とのうちの一方の部材に、2つ以上の逃げ面が周方向に間隔をおいて形成されているので、回転荷重が転がり軸受に負荷される場合のように、転がり軸受に負荷されるラジアル荷重の方向が変動する場合においても、軌道輪の波形の変形が進行波としてハウジングに伝わりにくく、効果的にクリープ現象を抑制することが可能である。 In the bearing device of the present invention, two or more flanks are formed at one of the raceway ring and the mating member to which the raceway ring is squeezed at intervals in the circumferential direction. Even when the direction of the radial load applied to the rolling bearing fluctuates, such as when the rotational load is applied to the rolling bearing, the deformation of the waveform of the raceway ring is less likely to be transmitted to the housing as a traveling wave, effectively creeping. It is possible to suppress the phenomenon.
この発明の実施形態にかかる軸受装置を示す部分断面図A partial cross-sectional view showing a bearing device according to an embodiment of the present invention. 図1のII-II線に沿った断面図Sectional view taken along line II-II of FIG. 図1に示す軸受装置から取り出した外輪を示す部分断面図Partial cross-sectional view showing an outer ring taken out from the bearing device shown in FIG. 図3の逃げ面の近傍の拡大図Enlarged view of the vicinity of the flank in FIG. 図1に示す転がり軸受に鉛直上向きのラジアル荷重が負荷された状態を示す図The figure which shows the state which the vertical upward radial load is applied to the rolling bearing shown in FIG. 転がり軸受に負荷されるラジアル荷重の向きが図5に示す向きから回転した状態を示す図The figure which shows the state which the direction of the radial load applied to the rolling bearing is rotated from the direction shown in FIG. この発明の他の実施形態にかかる軸受装置を示す断面図Sectional drawing which shows the bearing apparatus which concerns on other embodiment of this invention.
 図1、図2に、この発明の実施形態にかかる軸受装置を示す。この軸受装置は、軸1と、軸1の外周を取り囲むハウジング2と、軸1とハウジング2との間でラジアル荷重を支持する転がり軸受3とを有する。 1 and 2 show a bearing device according to an embodiment of the present invention. This bearing device has a shaft 1, a housing 2 that surrounds the outer periphery of the shaft 1, and a rolling bearing 3 that supports a radial load between the shaft 1 and the housing 2.
 軸1は、図示しない回転駆動源(自動車のエンジン等)から回転が入力される回転軸である。一方、ハウジング2は、非回転の固定部材である。ハウジング2には、円筒状のハウジング穴4が形成され、そのハウジング穴4に転がり軸受3が組み込まれている。 The shaft 1 is a rotation shaft in which rotation is input from a rotation drive source (automobile engine, etc.) (not shown). On the other hand, the housing 2 is a non-rotating fixing member. A cylindrical housing hole 4 is formed in the housing 2, and a rolling bearing 3 is incorporated in the housing hole 4.
 転がり軸受3は、軸1の外周に嵌合する内輪(内側の軌道輪)5と、内輪5の径方向外側に同軸に配置される外輪(外側の軌道輪)6と、内輪5と外輪6の間に周方向に間隔をおいて組み込まれる複数の転動体7と、その複数の転動体7の周方向間隔を保持する保持器8とを有する。転動体7は玉である。 The rolling bearing 3 includes an inner ring (inner raceway ring) 5 fitted to the outer periphery of the shaft 1, an outer ring (outer raceway ring) 6 coaxially arranged on the radial outer side of the inner ring 5, and an inner ring 5 and an outer ring 6. It has a plurality of rolling elements 7 incorporated at intervals in the circumferential direction, and a cage 8 for holding the circumferential spacing of the plurality of rolling elements 7. The rolling element 7 is a ball.
 図2に示すように、内輪5の外周には、転動体7が転がり接触する内輪軌道溝9と、内輪軌道溝9の軸方向の両側に位置する内輪肩部10とが形成されている。外輪6の内周にも、転動体7が転がり接触する外輪軌道溝11と、外輪軌道溝11の軸方向の両側に位置する外輪肩部12とが形成されている。内輪軌道溝9と外輪軌道溝11は、いずれも断面円弧状の溝である。 As shown in FIG. 2, on the outer periphery of the inner ring 5, an inner ring raceway groove 9 with which the rolling element 7 rolls and contacts, and an inner ring shoulder portion 10 located on both sides of the inner ring raceway groove 9 in the axial direction are formed. Also on the inner circumference of the outer ring 6, an outer ring raceway groove 11 with which the rolling element 7 rolls and contacts, and an outer ring shoulder portion 12 located on both sides of the outer ring raceway groove 11 in the axial direction are formed. The inner ring raceway groove 9 and the outer ring raceway groove 11 are both grooves having an arcuate cross section.
 内輪5は、軸1の外周にしまりばめされている。すなわち、内輪5は、内輪5の内周に形成された円筒状のはめあい面13を有し、軸1は、軸1の外周に形成された円筒状のはめあい面14を有し、内輪5のはめあい面13と軸1のはめあい面14とが、締め代をもって嵌まり合っている。ここで、軸1の外周に内輪5を取り付ける前の状態において、内輪5の内周のはめあい面13の内径は、軸1の外周のはめあい面14の外径よりも小さい。 The inner ring 5 is squeezed around the outer circumference of the shaft 1. That is, the inner ring 5 has a cylindrical fitting surface 13 formed on the inner circumference of the inner ring 5, and the shaft 1 has a cylindrical fitting surface 14 formed on the outer periphery of the shaft 1, and the inner ring 5 has a cylindrical fitting surface 14. The fitting surface 13 and the fitting surface 14 of the shaft 1 are fitted with a tightening margin. Here, in the state before the inner ring 5 is attached to the outer circumference of the shaft 1, the inner diameter of the fitting surface 13 on the inner circumference of the inner ring 5 is smaller than the outer diameter of the fitting surface 14 on the outer circumference of the shaft 1.
 外輪6は、ハウジング2のハウジング穴4にすきまばめされている。すなわち、ハウジング2は、ハウジング穴4の内周に形成された円筒状のはめあい面15を有し、外輪6は、外輪6の外周に形成された円筒状のはめあい面16を有し、ハウジング2のはめあい面15と外輪6のはめあい面16とが、隙間(環状の微小隙間)をもって嵌まり合っている。ここで、ハウジング穴4に外輪6をはめ込む前の状態において、外輪6の外周のはめあい面16の外径は、ハウジング穴4の内周のはめあい面15の内径よりも小さい。 The outer ring 6 is fitted in the housing hole 4 of the housing 2. That is, the housing 2 has a cylindrical fitting surface 15 formed on the inner circumference of the housing hole 4, and the outer ring 6 has a cylindrical fitting surface 16 formed on the outer circumference of the outer ring 6. The fitting surface 15 of the housing and the fitting surface 16 of the outer ring 6 are fitted with a gap (a small annular gap). Here, in the state before fitting the outer ring 6 into the housing hole 4, the outer diameter of the fitting surface 16 on the outer circumference of the outer ring 6 is smaller than the inner diameter of the fitting surface 15 on the inner circumference of the housing hole 4.
 図3に示すように、外輪6の外周には、はめあい面16を周方向に分断するように、はめあい面16の軸方向全幅にわたって延びる逃げ面17が周方向に間隔をおいて2つ以上(図では120°間隔で3つ)形成されている。逃げ面17は、外輪6の外周に周方向に等間隔に3つ以上6つ以下の範囲で設けると好ましい。 As shown in FIG. 3, on the outer periphery of the outer ring 6, two or more flanks 17 extending in the circumferential direction are spaced apart from each other so as to divide the fitting surface 16 in the circumferential direction. In the figure, three are formed at 120 ° intervals. It is preferable that the flanks 17 are provided on the outer periphery of the outer ring 6 at equal intervals in the circumferential direction in a range of 3 or more and 6 or less.
 図2に示すように、外輪6の逃げ面17とハウジング2のはめあい面15との間には、径方向隙間18が形成されている。径方向隙間18は、薄い三日月状を呈している。径方向隙間18の径方向寸法は、径方向隙間18の周方向中央から周方向両端に向かって次第に小さくなっており、径方向隙間18の周方向中央の径方向寸法は、外輪6のはめあい面16とハウジング2のはめあい面15との間に設定される隙間(環状の微小隙間)の径方向寸法よりも大きい。径方向隙間18は、その内部に部材が存在しない空間である。 As shown in FIG. 2, a radial gap 18 is formed between the flank 17 of the outer ring 6 and the fitting surface 15 of the housing 2. The radial gap 18 has a thin crescent shape. The radial dimension of the radial gap 18 gradually decreases from the circumferential center of the radial gap 18 toward both ends in the circumferential direction, and the radial dimension of the circumferential center of the radial gap 18 is the fitting surface of the outer ring 6. It is larger than the radial dimension of the gap (annular microgap) set between the fitting surface 15 of the housing 2 and the housing 2. The radial gap 18 is a space in which no member exists.
 図4に示すように、逃げ面17は、外輪6のはめあい面16の径方向位置(図の二点鎖線の位置)よりも径方向内側を通るように形成された凸円弧状の曲面である。逃げ面17の周方向の両端は、はめあい面16と滑らかに接続している。すなわち、逃げ面17の周方向の両端部分は、逃げ面17の周方向の中央部分よりも大きい曲率をもつ曲線(例えば、円弧曲線、対数曲線など)の輪郭をもつ形状とされ、逃げ面17とはめあい面16の境界にエッジが生じないように、逃げ面17の周方向の両端部分が滑らかにはめあい面16に接続している。 As shown in FIG. 4, the flank 17 is a convex arcuate curved surface formed so as to pass radially inside the fitting surface 16 of the outer ring 6 (the position of the alternate long and short dash line in the figure). .. Both ends of the flank 17 in the circumferential direction are smoothly connected to the fitting surface 16. That is, both end portions of the flank surface 17 in the circumferential direction have a shape having the contour of a curve (for example, an arc curve, a logarithmic curve, etc.) having a curvature larger than the central portion in the circumferential direction of the flank surface 17, and the flank surface 17 is formed. Both ends of the flank 17 in the circumferential direction are smoothly connected to the fitting surface 16 so that an edge does not occur at the boundary of the fitting surface 16.
 外輪6のはめあい面16の径方向位置(図の二点鎖線の位置)に対する逃げ面17の径方向深さδは、転がり軸受3に最大ラジアル荷重が負荷された場合にも、逃げ面17とハウジング2のはめあい面15とが接触せずに、逃げ面17とはめあい面15の間に径方向隙間18(図2参照)が確保される大きさに形成されている。最大ラジアル荷重は、例えば、基本静ラジアル定格荷重である。基本静ラジアル定格荷重は、転動体7が玉の場合、転がり軸受3に静ラジアル荷重を負荷したときに最大荷重を受ける転動体7と外輪軌道溝11との接触部の中央における接触応力が4.2GPaとなるような静ラジアル荷重である。 The radial depth δ of the flank 17 with respect to the radial position of the fitting surface 16 of the outer ring 6 (the position of the alternate long and short dash line in the figure) is the flank 17 even when the rolling bearing 3 is loaded with the maximum radial load. The housing 2 is formed in such a size that a radial gap 18 (see FIG. 2) is secured between the flank surface 17 and the fitting surface 15 without contacting the fitting surface 15. The maximum radial load is, for example, a basic static radial rated load. The basic static radial rated load is that when the rolling element 7 is a ball, the contact stress at the center of the contact portion between the rolling element 7 and the outer ring raceway groove 11 that receives the maximum load when the rolling bearing 3 is loaded with the static radial load is 4. It is a static radial load such that it becomes .2 GPa.
 図3に示すように、逃げ面17の周方向長さは、外輪6の中心まわりの角度αで規定することができる。この逃げ面17の周方向長さに対応する角度αは、図1に示すように、隣り合う転動体7の配置間隔に対応する転動体7のピッチ角度をθとしたときに、転動体7のピッチ角度θの0.5倍以上の大きさに設定すると好ましい。これにより、外輪6の波形の変形が進行波としてハウジング2に伝わるのを効果的に遮断することが可能となる。また、逃げ面17の周方向長さに対応する角度αは、転動体7のピッチ角度θの2.0倍以下(好ましくは1.0倍以下)に設定すると好ましい。これにより、ラジアル荷重が負荷されたときの外輪6のたわみを抑えることができる。 As shown in FIG. 3, the circumferential length of the flank 17 can be defined by the angle α around the center of the outer ring 6. As shown in FIG. 1, the angle α corresponding to the circumferential length of the flank 17 is the rolling element 7 when the pitch angle of the rolling elements 7 corresponding to the arrangement intervals of the adjacent rolling elements 7 is θ. It is preferable to set the pitch angle θ to 0.5 times or more. This makes it possible to effectively block the deformation of the waveform of the outer ring 6 from being transmitted to the housing 2 as a traveling wave. Further, the angle α corresponding to the circumferential length of the flank 17 is preferably set to 2.0 times or less (preferably 1.0 times or less) the pitch angle θ of the rolling element 7. As a result, it is possible to suppress the deflection of the outer ring 6 when a radial load is applied.
 この軸受装置は、外輪6に、2つ以上の逃げ面17が周方向に間隔をおいて形成されているので、回転荷重が転がり軸受3に負荷される場合のように、転がり軸受3に負荷されるラジアル荷重の方向が変動する場合においても、外輪6の波形の変形が進行波としてハウジング2に伝わりにくく、効果的にクリープ現象を抑制することが可能である。 In this bearing device, since two or more flanks 17 are formed on the outer ring 6 at intervals in the circumferential direction, a load is applied to the rolling bearing 3 as in the case where a rotational load is applied to the rolling bearing 3. Even when the direction of the radial load is changed, the deformation of the waveform of the outer ring 6 is difficult to be transmitted to the housing 2 as a traveling wave, and the creep phenomenon can be effectively suppressed.
 すなわち、図5に示すように、軸1から内輪5にラジアル荷重Fが負荷されると、ラジアル荷重Fが負荷される方向に荷重負荷域Wが生じる。この荷重負荷域Wでは、軸1から内輪5に負荷されるラジアル荷重Fが、転動体7(図1参照)を介して外輪6に伝達し、外輪6が波形に変形する。そして、図5および図6に示すように、軸1から内輪5に負荷されるラジアル荷重Fの方向が回転する場合、ラジアル荷重Fが負荷される方向に生じる荷重負荷域Wも、ラジアル荷重Fの回転に応じて周方向に移動する。ここで、この実施形態の軸受装置においては、外輪6に2つ以上の逃げ面17が周方向に間隔をおいて形成されているので、荷重負荷域Wがいずれの位置に移動しても、その荷重負荷域Wが逃げ面17の位置に重なった状態となりやすく、外輪6の波形の変形が進行波としてハウジング2に伝わりにくくなっている。そのため、効果的にクリープ現象を抑制することが可能である。 That is, as shown in FIG. 5, when the radial load F is loaded from the shaft 1 to the inner ring 5, a load load region W is generated in the direction in which the radial load F is loaded. In this load-bearing region W, the radial load F loaded from the shaft 1 to the inner ring 5 is transmitted to the outer ring 6 via the rolling element 7 (see FIG. 1), and the outer ring 6 is deformed into a waveform. Then, as shown in FIGS. 5 and 6, when the direction of the radial load F loaded on the inner ring 5 from the shaft 1 rotates, the load load region W generated in the direction in which the radial load F is loaded is also the radial load F. It moves in the circumferential direction according to the rotation of. Here, in the bearing device of this embodiment, since two or more flanks 17 are formed on the outer ring 6 at intervals in the circumferential direction, the load load region W may move to any position. The load-bearing region W tends to overlap the position of the flank 17, and the deformation of the waveform of the outer ring 6 is difficult to be transmitted to the housing 2 as a traveling wave. Therefore, it is possible to effectively suppress the creep phenomenon.
 逃げ面17は、外輪6の外周に周方向に等間隔に3つ以上設けると好ましい。このようにすると、転がり軸受3に負荷されるラジアル荷重Fの方向が変動し、荷重負荷域Wが常に移動する場合にも、常にその荷重負荷域Wにいずれかの逃げ面17が入る状態を保つことができ、効果的にクリープ現象を抑制することが可能となる。3つ以上の逃げ面17を外輪6の外周に不等配に設けることも可能である。この場合、いずれの方向にラジアル荷重Fが負荷されても、そのラジアル荷重Fによる荷重負荷域Wに、少なくとも1つの逃げ面17が入るように逃げ面17を配置するとよい。 It is preferable that three or more flanks 17 are provided on the outer periphery of the outer ring 6 at equal intervals in the circumferential direction. In this way, even when the direction of the radial load F loaded on the rolling bearing 3 fluctuates and the load load region W constantly moves, one of the flanks 17 always enters the load load region W. It can be maintained and the creep phenomenon can be effectively suppressed. It is also possible to provide three or more flanks 17 unevenly on the outer circumference of the outer ring 6. In this case, regardless of the direction in which the radial load F is loaded, the flank surface 17 may be arranged so that at least one flank surface 17 is included in the load load region W due to the radial load F.
 また、外輪6の外周に周方向に等間隔に設ける逃げ面17は6つ以下とすると好ましい。このようにすると、1つあたりの逃げ面17の周方向長さを確保することができるので、外輪6の波形の変形が進行波としてハウジング2に伝わるのを効果的に遮断することが可能となる。 Further, it is preferable that the number of flanks 17 provided on the outer periphery of the outer ring 6 at equal intervals in the circumferential direction is 6 or less. By doing so, it is possible to secure the circumferential length of each flank 17, so that it is possible to effectively block the deformation of the waveform of the outer ring 6 from being transmitted to the housing 2 as a traveling wave. Become.
 この軸受装置は、図4に示すように、外輪6が有するはめあい面16の径方向位置よりも径方向内側を通るように形成された凸円弧状の曲面を採用しているので、外輪6の外周に形成する逃げ面17として平面状のものを採用したり、凹円弧状のものを採用したりした場合よりも、逃げ面17を形成することによる外輪6の径方向の肉厚の減少を抑えることができる。そのため、ラジアル荷重Fが負荷されたときの外輪6のたわみを抑えることが可能となっている。 As shown in FIG. 4, this bearing device adopts a convex arcuate curved surface formed so as to pass radially inside the fitting surface 16 of the outer ring 6, so that the outer ring 6 has a curved surface. The radial wall thickness of the outer ring 6 is reduced by forming the flank 17 as compared with the case where a flat flank or a concave arc shape is adopted as the flank 17 formed on the outer periphery. It can be suppressed. Therefore, it is possible to suppress the deflection of the outer ring 6 when the radial load F is applied.
 また、この軸受装置は、図4に示すように、逃げ面17の周方向の両端がはめあい面16と滑らかに接続しているので、外輪6の逃げ面17とはめあい面16の接続部が、ハウジング2のはめあい面15を攻撃することで過大な面圧が生じるのを防止することが可能である。 Further, as shown in FIG. 4, in this bearing device, both ends of the flank surface 17 in the circumferential direction are smoothly connected to the fitting surface 16, so that the connection portion between the flank surface 17 and the fitting surface 16 of the outer ring 6 is formed. It is possible to prevent excessive surface pressure from being generated by attacking the fitting surface 15 of the housing 2.
 また、この軸受装置は、転がり軸受3に最大ラジアル荷重が負荷された場合にも、逃げ面17とはめあい面15とが接触せずに両者の間に径方向隙間18が確保されるように逃げ面17を形成しているので、転がり軸受3に負荷されるラジアル荷重Fが大きいときにも、確実にクリープ現象を抑制することが可能である。 Further, even when the maximum radial load is applied to the rolling bearing 3, this bearing device escapes so that the flank 17 and the fitting surface 15 do not come into contact with each other and a radial gap 18 is secured between them. Since the surface 17 is formed, it is possible to reliably suppress the creep phenomenon even when the radial load F applied to the rolling bearing 3 is large.
 上記実施形態では、すきまばめの関係で互いに嵌まり合う外輪6とハウジング2のうち、外輪6に逃げ面17を形成したが、外輪6にかえてハウジング2に逃げ面17を形成してもよい。すなわち、ハウジング2に、ハウジング2のはめあい面15を周方向に分断するようにそのはめあい面15の軸方向全幅にわたって延びる逃げ面17を周方向に間隔をおいて2つ以上形成するようにした構成を採用してもよい。 In the above embodiment, of the outer ring 6 and the housing 2 that are fitted to each other due to the clearance fit, the flank 17 is formed on the outer ring 6, but the flank 17 may be formed on the housing 2 instead of the outer ring 6. good. That is, in the housing 2, two or more flanks 17 extending in the axial direction of the fitting surface 15 are formed at intervals in the circumferential direction so as to divide the fitting surface 15 of the housing 2 in the circumferential direction. May be adopted.
 また、上記実施形態では、外輪6とハウジング2がすきまばめの関係で嵌まり合う転がり軸受3を例に挙げて説明したが、この発明は、内輪5と軸1がすきまばめの関係で嵌まり合う転がり軸受3にも適用することができる。この場合、すきまばめの関係で互いに嵌まり合う内輪5と軸1のうちの一方の部材に逃げ面17を形成する。 Further, in the above embodiment, the rolling bearing 3 in which the outer ring 6 and the housing 2 are fitted in a crevice fit is taken as an example, but the present invention is based on the crevice fit between the inner ring 5 and the shaft 1. It can also be applied to a rolling bearing 3 that fits. In this case, a flank 17 is formed on one of the inner ring 5 and the shaft 1 which are fitted to each other due to the clearance fit.
 具体的には、図7に示すように、内輪5に、内輪5のはめあい面13を周方向に分断するようにそのはめあい面13の軸方向全幅にわたって延びる逃げ面17を周方向に間隔をおいて2つ以上(図では3つ)形成するようにした構成を採用することができる。このようにすると、回転荷重が転がり軸受3に負荷される場合のように、転がり軸受3に負荷されるラジアル荷重Fの方向が変動する場合においても、内輪5の波形の変形が進行波として軸1に伝わりにくく、効果的にクリープ現象を抑制することが可能である。また、軸1に、軸1のはめあい面14を周方向に分断するようにそのはめあい面14の軸方向全幅にわたって延びる逃げ面17を周方向に間隔をおいて2つ以上形成した構成を採用することもできる。 Specifically, as shown in FIG. 7, the inner ring 5 is spaced in the circumferential direction from the flanks 17 extending over the entire axial width of the fitting surface 13 so as to divide the fitting surface 13 of the inner ring 5 in the circumferential direction. It is possible to adopt a configuration in which two or more (three in the figure) are formed. In this way, even when the direction of the radial load F loaded on the rolling bearing 3 fluctuates, as in the case where the rotational load is loaded on the rolling bearing 3, the deformation of the waveform of the inner ring 5 is the axis as a traveling wave. It is difficult to transmit to 1, and it is possible to effectively suppress the creep phenomenon. Further, a configuration is adopted in which two or more flanks 17 extending over the entire axial width of the fitting surface 14 are formed on the shaft 1 at intervals in the circumferential direction so as to divide the fitting surface 14 of the shaft 1 in the circumferential direction. You can also do it.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time should be considered to be exemplary in all respects and not restrictive. The scope of the present invention is shown by the scope of claims rather than the above description, and is intended to include all modifications within the meaning and scope equivalent to the scope of claims.
1   軸
2   ハウジング
3   転がり軸受
5   内輪(軌道輪)
6   外輪(軌道輪)
13,14,15,16 はめあい面
17  逃げ面
18  径方向隙間
1 Shaft 2 Housing 3 Rolling bearing 5 Inner ring (track ring)
6 Outer ring (orbital ring)
13, 14, 15, 16 Fitting surface 17 Escape surface 18 Radial gap

Claims (7)

  1.  軸(1)と、
     前記軸(1)の外周を取り囲むハウジング(2)と、
     前記軸(1)と前記ハウジング(2)との間でラジアル荷重を支持する転がり軸受(3)と、を備え、
     前記転がり軸受(3)が、前記軸(1)と前記ハウジング(2)のうちのいずれか一方である相手部材とすきまばめされる軌道輪を有し、
     前記軌道輪と前記相手部材は、互いに嵌まり合う円筒状のはめあい面を有する軸受装置において、
     前記軌道輪と前記相手部材のうちの一方の部材には、その部材が有する前記はめあい面を周方向に分断するようにそのはめあい面の軸方向全幅にわたって延びる逃げ面(17)が周方向に間隔をおいて2つ以上形成されていることを特徴とする軸受装置。
    Axis (1) and
    The housing (2) surrounding the outer circumference of the shaft (1) and
    A rolling bearing (3) that supports a radial load between the shaft (1) and the housing (2) is provided.
    The rolling bearing (3) has a raceway ring fitted with a mating member which is one of the shaft (1) and the housing (2).
    In a bearing device having a cylindrical fitting surface in which the raceway ring and the mating member are fitted to each other.
    On one of the raceway ring and the mating member, flanks (17) extending in the axial direction of the fitting surface so as to divide the fitting surface of the member in the circumferential direction are spaced apart from each other in the circumferential direction. A bearing device characterized in that two or more bearing devices are formed.
  2.  前記逃げ面(17)は、前記軌道輪に形成されている請求項1に記載の軸受装置。 The bearing device according to claim 1, wherein the flank (17) is formed on the raceway ring.
  3.  前記相手部材は、前記ハウジング(2)であり、
     前記軌道輪は、外輪(6)である請求項2に記載の軸受装置。
    The mating member is the housing (2).
    The bearing device according to claim 2, wherein the raceway ring is an outer ring (6).
  4.  前記逃げ面(17)は、前記外輪(6)の外周に周方向に等間隔に3つ以上6つ以下の範囲で設けられている請求項3に記載の軸受装置。 The bearing device according to claim 3, wherein the flank (17) is provided on the outer periphery of the outer ring (6) at equal intervals in the circumferential direction in a range of 3 or more and 6 or less.
  5.  前記逃げ面(17)は、前記外輪(6)が有する前記はめあい面(16)の径方向位置よりも径方向内側を通るように形成された凸円弧状の曲面である請求項3または4に記載の軸受装置。 According to claim 3 or 4, the flank surface (17) is a convex arcuate curved surface formed so as to pass radially inside the fitting surface (16) of the outer ring (6). The described bearing device.
  6.  前記逃げ面(17)の周方向の両端が、前記外輪(6)が有する前記はめあい面(16)と滑らかに接続している請求項3から5のいずれかに記載の軸受装置。 The bearing device according to any one of claims 3 to 5, wherein both ends of the flank surface (17) in the circumferential direction are smoothly connected to the fitting surface (16) of the outer ring (6).
  7.  前記逃げ面(17)は、前記転がり軸受(3)に最大ラジアル荷重が負荷された場合にも、前記逃げ面(17)と前記ハウジング(2)が有する前記はめあい面(15)とが接触せずに両者の間に径方向隙間(18)が確保されるように形成されている請求項3から6のいずれかに記載の軸受装置。 The flank surface (17) is in contact with the clearance surface (17) and the fitting surface (15) of the housing (2) even when the maximum radial load is applied to the rolling bearing (3). The bearing device according to any one of claims 3 to 6, which is formed so as to secure a radial gap (18) between the two.
PCT/JP2021/039429 2020-10-29 2021-10-26 Bearing device WO2022092062A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180072717.5A CN116457586A (en) 2020-10-29 2021-10-26 Bearing device
KR1020237017658A KR20230115985A (en) 2020-10-29 2021-10-26 bearing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020181352A JP7557340B2 (en) 2020-10-29 2020-10-29 Bearing device
JP2020-181352 2020-10-29

Publications (1)

Publication Number Publication Date
WO2022092062A1 true WO2022092062A1 (en) 2022-05-05

Family

ID=81382490

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/039429 WO2022092062A1 (en) 2020-10-29 2021-10-26 Bearing device

Country Status (4)

Country Link
JP (1) JP7557340B2 (en)
KR (1) KR20230115985A (en)
CN (1) CN116457586A (en)
WO (1) WO2022092062A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024171958A1 (en) * 2023-02-15 2024-08-22 Ntn株式会社 Rolling bearing and bearing device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008281026A (en) * 2007-05-08 2008-11-20 Ntn Corp Bearing device
JP2017101730A (en) * 2015-12-01 2017-06-08 日本精工株式会社 Bearing device
JP2018119580A (en) * 2017-01-24 2018-08-02 Ntn株式会社 Creep preventive rolling bearing

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002213471A (en) 2001-01-16 2002-07-31 Ntn Corp Bearing-installing structure and main electric motor for gauge variable bogie using the bearing-installing structure
JP4513787B2 (en) 2006-06-30 2010-07-28 株式会社ジェイテクト Rolling bearing
JP7152916B2 (en) 2018-09-19 2022-10-13 Ntn株式会社 bearing device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008281026A (en) * 2007-05-08 2008-11-20 Ntn Corp Bearing device
JP2017101730A (en) * 2015-12-01 2017-06-08 日本精工株式会社 Bearing device
JP2018119580A (en) * 2017-01-24 2018-08-02 Ntn株式会社 Creep preventive rolling bearing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024171958A1 (en) * 2023-02-15 2024-08-22 Ntn株式会社 Rolling bearing and bearing device

Also Published As

Publication number Publication date
KR20230115985A (en) 2023-08-03
JP2022072100A (en) 2022-05-17
CN116457586A (en) 2023-07-18
JP7557340B2 (en) 2024-09-27

Similar Documents

Publication Publication Date Title
KR20120105349A (en) Noncircular bearing, wave generator, and wave gear device
JP6515565B2 (en) Bearing device and fixing plate for bearing device
US10054164B2 (en) Rolling bearing
JP6728901B2 (en) Rolling bearing
WO2022092062A1 (en) Bearing device
JP4466473B2 (en) Rolling bearing
JP6169793B2 (en) Inner joint part and roller element of tripod type constant velocity joint
JP6790555B2 (en) Rolling bearing
JP7152916B2 (en) bearing device
JP6510960B2 (en) Helicopter mast spacer, and helicopter transmission device and helicopter including the same
US9995343B2 (en) Rolling bearing
US10119568B2 (en) Rolling bearing
JP6064783B2 (en) Rolling bearing
JP2012041969A (en) Boot for constant velocity universal joint and constant velocity universal joint
US11703081B2 (en) Rolling bearing
WO2024171958A1 (en) Rolling bearing and bearing device
JP2020165498A (en) Bearing device
JP7353067B2 (en) bearing device
JP2009156401A (en) Tripod type constant velocity universal joint
JP2005061431A (en) Ball bearing
JP7245711B2 (en) bearing device
JP2007071292A (en) Roller bearing
US9328767B2 (en) Bearing assembly
JP2023076334A (en) Vehicular power transmission device
JP6824729B2 (en) Tripod type constant velocity universal joint

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21886180

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180072717.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21886180

Country of ref document: EP

Kind code of ref document: A1