[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022088517A1 - 一种双功能型金属有机骨架膜材料及其制备方法与应用 - Google Patents

一种双功能型金属有机骨架膜材料及其制备方法与应用 Download PDF

Info

Publication number
WO2022088517A1
WO2022088517A1 PCT/CN2021/071808 CN2021071808W WO2022088517A1 WO 2022088517 A1 WO2022088517 A1 WO 2022088517A1 CN 2021071808 W CN2021071808 W CN 2021071808W WO 2022088517 A1 WO2022088517 A1 WO 2022088517A1
Authority
WO
WIPO (PCT)
Prior art keywords
tmu
organic framework
metal
bifunctional
preparing
Prior art date
Application number
PCT/CN2021/071808
Other languages
English (en)
French (fr)
Inventor
马继平
李爽
Original Assignee
青岛理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛理工大学 filed Critical 青岛理工大学
Priority to KR1020227023868A priority Critical patent/KR20220116223A/ko
Publication of WO2022088517A1 publication Critical patent/WO2022088517A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/223Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
    • B01J20/226Coordination polymers, e.g. metal-organic frameworks [MOF], zeolitic imidazolate frameworks [ZIF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28033Membrane, sheet, cloth, pad, lamellar or mat
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/285Treatment of water, waste water, or sewage by sorption using synthetic organic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/12Halogens or halogen-containing compounds
    • C02F2101/14Fluorine or fluorine-containing compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Definitions

  • the invention belongs to the technical field of metal-organic framework materials, and relates to a preparation method of a bifunctional metal-organic framework film material.
  • Metal-organic frameworks are a class of nanoporous materials formed by organic-inorganic hybridization, and are currently one of the hot spots and frontiers in the field of new materials.
  • Metal-organic framework materials are mainly composed of three-dimensional network structure crystals formed by coordination bonding of aromatic acids or bases containing multidentate organic ligands of nitrogen and oxygen with inorganic metal centers. Because MOFs combine inorganic components with organic components, they have many advantages compared to traditional porous materials, such as many types, strong functions, large porosity and specific surface area, strong pore size controllability and certain Biocompatibility. Common types of MOFs are IRMOF series, ZIF series, MIL series and UiO series.
  • UiO series MOFs UiO - 66
  • metal Zr metal center
  • the tetrahedral and Octahedral two types of hole cages Such a special spatial configuration makes it have great application prospects in many fields, especially in the field of adsorption of pollutants in water.
  • MOFs films mainly include in situ growth method, seed method and mixed matrix method.
  • the mixed matrix method is to embed MOFs crystal particles into a polymer substrate such as polysulfone, polytetrafluoroethylene, and polyvinylidene fluoride.
  • the preparation method of this MOFs membrane not only retains the porous structure, high specific surface area and selectivity of MOFs, but also has high permeability and mechanical strength.
  • the purpose of the present invention is to overcome the shortcomings of the prior art, seek to design a preparation method of a bifunctional metal-organic framework film material, the method prepares the metal-organic framework material into a film, and at the same time, the MOFs are functionalized to have F at the same time. Atom and anion exchange groups.
  • a first aspect of the present invention provides a method for preparing a bifunctional metal-organic framework film material, comprising:
  • the mixed matrix membrane method was used on polypropylene plate to prepare F-TMU-66 + mixed matrix membrane;
  • the F-TMU-66 + mixed matrix membrane was dipped in acid to form a F-TMU-66 + ⁇ Cl - mixed matrix membrane with ion exchange groups, and washed to neutrality to obtain a bifunctional type Metal organic framework film material.
  • the traditional MOFs material is functionalized so that it has a group for adsorbing strong polar ionic compounds, thereby efficiently, rapidly and exclusively adsorbing pollutants.
  • the second aspect of the present invention provides a bifunctional metal-organic framework film material prepared by any of the above methods.
  • the advantages of the bifunctional metal-organic framework film material of the present invention are: on the one hand, there are F atoms in the framework structure, which forms a strong FF force with the F-containing compound, which solves the problem of poor adsorption of strong polar compounds by MOF; On the one hand, it has a positively charged structure in its framework, which breaks the limitation of the neutral framework of previous MOFs and expands its application in the adsorption of anionic pollutants in the environment. It is worth mentioning that the film-forming F-TMU-66 + material not only retains the efficient selective adsorption of metal-organic framework materials, but also facilitates separation from aqueous solutions, and can remove and enrich the highly polar anionic pollutants in water. The set has a very good application prospect.
  • the third aspect of the present invention provides the application of the above-mentioned bifunctional metal-organic framework membrane material in the adsorption/enrichment and analysis/detection of perfluorinated compounds.
  • the bifunctional metal-organic framework membrane material of the present invention has both high-efficiency selective adsorption and easy separation from an aqueous solution, it is expected to be widely used in sewage treatment.
  • the material of the present invention has F atoms in the frame structure, which forms a strong F-F force with the F-containing compound, which solves the problem of poor adsorption of strong polar compounds by MOF;
  • the electrical structure breaks the limitation of the neutral framework of the previous MOF and expands its application in the adsorption of anionic pollutants in the environment.
  • the film-forming F-TMU-66 + material of the present invention not only retains the high-efficiency selective adsorption of metal-organic framework materials, but also facilitates separation from aqueous solutions, and has the advantages of removing and enriching strong polar anionic pollutants in water. Very good application prospects.
  • the preparation method of the present invention is simple, convenient to operate, strong practicability, and easy to popularize.
  • Fig. 1 is a scanning electron microscope (SEM) image according to Example 1 of the present invention, wherein A and B are granular bifunctional F-TMU-66 + , and Figs C and D are bifunctional F-TMU-66 + mixed matrix membrane.
  • FIG. 2 is an infrared spectrum diagram involved in Example 1 of the present invention (AF-TMU-66 + mixed matrix membrane, BF-TMU-66 + , C. pure polyvinylidene fluoride membrane).
  • FIG. 3 is an X-ray diffraction pattern (AF-TMU-66 + , BF-TMU-66 + mixed matrix film) involved in Example 1 of the present invention.
  • FIG. 4 is a chromatogram of perfluorinated compounds detected by a bifunctional F-TMU-66 + ⁇ Cl - mixed matrix membrane in Example 3 of the present invention.
  • a preparation method of a bifunctional metal-organic framework film material specifically comprising the following steps:
  • Step 1 Preparation of F-functionalized positively charged metal-organic framework material F-TMU-66 + :
  • step (2) react the mixture prepared in step (1) under the condition of 100-150 °C in the solvothermal reactor for 20-28h;
  • step (2) volatilize the mixed solution prepared in step (1) by rotary evaporation to volatilize the acetone, and then spread the remaining mixed solution dropwise on a polypropylene plate; place the polypropylene in an oven at 50-80° C. to heat The solvent was evaporated to prepare the F-TMU-66 + mixed matrix membrane.
  • Step 3 Preparation of ion-exchange F-TMU-66 + ⁇ Cl - mixed matrix membrane
  • the F-TMU-66 + membrane was placed in a hydrochloric acid solution and soaked for 10-15 h to form a F-TMU-66 + ⁇ Cl - mixed matrix membrane with ion exchange groups.
  • the two ligands there are two functional organic ligands with carboxyl structure, tetrafluoroterephthalic acid and isonicotinic acid N-oxide.
  • the two ligands have different chemical functional groups, respectively, forming F atom-containing organic ligands and pyridyl-containing organic ligands.
  • the MOF materials thus prepared have the dual-functional advantages of both F and positronization.
  • the coordinating metal is zirconium and the MOF particles have a particle size of 300-400 nm.
  • the granular bifunctional metal-organic framework material is prepared into a film by a mixed matrix membrane method, so as to achieve the purpose of rapid separation from water samples.
  • the molar ratio of zirconium tetrachloride to tetrafluoroterephthalic acid and isonicotinic acid N-oxide is 1:(5-12):(1-3) to form the F function by self-assembly
  • the positively charged metal-organic framework material F-TMU-66 + can be converted to complete the reaction between the ligand and metal zirconium, and the utilization rate of raw materials can be improved.
  • the mass ratio of F-TMU-66 + to PVDF is (1-3):(3-5) to form a F-TMU-66 + mixed matrix membrane for subsequent loading of anion exchange groups .
  • the concentration of PVDF/ is 1%-5%, so that PVDF can be fully dispersed in the DMF solution, which is beneficial to the mixing of PVDF and F-TMU-66 + .
  • the bifunctional metal-organic framework membrane material of the invention is applied to the enrichment analysis of perfluorinated compounds in water.
  • Step 1 Preparation of F-functionalized positively charged metal-organic framework material F-TMU-66 + :
  • step (2) react the mixture prepared in step (1) under the condition of 120 °C in the solvothermal reactor for 24h;
  • step (2) The mixed solution prepared in step (1) was volatilized by rotary evaporation method, and then the remaining mixed solution was spread on a polypropylene plate dropwise; the polypropylene was placed in a 70° C. oven and heated to make the solvent Volatilized to prepare F-TMU-66 + mixed matrix membrane.
  • Step 3 Preparation of ion-exchange F-TMU-66 + ⁇ Cl - mixed matrix membrane
  • the F-TMU-66 + membrane was placed in a hydrochloric acid solution (concentration of 0.1 mol/L) and soaked for 12 h to form a F-TMU-66 + ⁇ Cl - mixed matrix membrane with ion exchange groups.
  • Example 1 of the present invention The morphology and structural characteristics of the F-TMU-66 + mixed matrix film prepared in Example 1 of the present invention will be analyzed and explained below through the analysis of scanning electron microscopy, X-ray diffraction, and infrared spectra.
  • Figure 1 is a scanning electron microscope (SEM) image of the film material prepared by the present invention, wherein A and B are granular bifunctional F-TMU-66 + , and Figures C and D are bifunctional F-TMU-66 + ⁇ Cl - mixed matrix membranes. It can be seen that the bifunctional MOF crystals with spherical structure are about 300-400 nm in diameter. In Figures C and D, the configuration of the MOF crystals in the bifunctional F-TMU-66 + ⁇ Cl - mixed matrix film did not change significantly, indicating that the preparation process of the mixed matrix film did not affect the skeleton structure of the MOF.
  • SEM scanning electron microscope
  • Figure 2 is the infrared spectrum of F-TMU-66 + ⁇ Cl - mixed matrix film (AF-TMU-66 + ⁇ Cl - mixed matrix film, BF-TMU-66 + , C. pure polyvinylidene fluoride film) .
  • the absorption peak at 1180 cm -1 is due to the existence of CF bonds in the structure of F-TMU-66 + and polyvinylidene fluoride.
  • the superposition of CF bonds in the structure of the F-TMU-66 + ⁇ Cl - film resulted in a significant enhancement of the absorption peak at 1180 cm -1 in Figure A, which indicated that the bifunctional MOFs were successfully synthesized.
  • the 15 mg F-TMU-66 + ⁇ Cl - mixed matrix membrane material obtained in Example 1 was used for the adsorption and enrichment of 15 perfluorinated compounds in water.
  • the standard concentration was 25 ng/L, and the adsorption time was 30 min.
  • the methanolic ammonia solution was eluted, and the elution time was 30 min.
  • the eluate was blown dry with nitrogen and then redissolved. It was detected by UPLC-MS/MS.
  • 15 perfluorinated compounds (1. perfluorobutyric acid, 2. perfluorobutyric acid, Fluorovaleric acid, 3. perfluorobutanesulfonic acid, 4. perfluorohexanoic acid, 5.
  • perfluoroheptanoic acid 6. perfluorohexanesulfonic acid, 7. perfluorooctanoic acid, 8. perfluorononanoic acid, 9. perfluorooctanoic acid Fluorooctanesulfonic acid, 10. perfluorodecanoic acid, 11. perfluoroundecanoic acid, 12. perfluorodecanesulfonic acid, 13. perfluorododecanoic acid, 14. perfluorotridecanoic acid, 15. perfluoro The recovery of tetradecanoic acid) was between 62-118%, and the chromatogram is shown in Figure 4.
  • step 1 (2) the mixture was reacted in a solvothermal reactor at 100° C. for 28 hours.
  • step 1 (2) the mixture is reacted in a solvothermal reactor at 150° C. for 20 hours.
  • Step 2 Preparation of F-TMU-66 + mixed matrix membrane
  • step (2) The mixed solution prepared in step (1) was volatilized by rotary evaporation method to volatilize the acetone, and then the remaining mixed solution was spread on a polypropylene plate dropwise; the polypropylene was placed in a 50° C. oven to heat to make the solvent Volatilized to prepare F-TMU-66 + mixed matrix membrane.
  • Step 2 Preparation of F-TMU-66 + mixed matrix membrane
  • step (2) The mixed solution prepared in step (1) was volatilized by the rotary evaporation method to volatilize the acetone, and then the remaining mixed solution was spread on the polypropylene plate dropwise; Volatilized to prepare F-TMU-66 + mixed matrix membrane.
  • step 3 (1) soak for 10h.
  • step 3 (1) soak for 15h.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Inorganic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

本发明涉及一种双功能型金属有机骨架膜材料及其制备方法与应用,属于金属有机骨架材料领域,先将两种具有羧基结构的功能型有机配体(四氟对苯二甲酸、异烟酸N-氧化物)与金属锆制备成F功能化荷正电的金属有机骨架材料F-TMU-66 +,再将颗粒状F-TMU-66 +与聚偏二氟乙烯制备成F-TMU-66 +膜。本发明的材料一方面框架结构中具有F,与含F化合物形成较强的F-F作用力,解决了MOF吸附强极性化合物差的难题;另一方面其框架中具有荷正电的结构,打破了以往MOF中性框架的限制,拓展了其对阴离子型污染物吸附的应用。更值得一提的是,成膜的F-TMU-66 +材料既保留了金属有机骨架材料的高效选择吸附性,又便于从水溶液中分离,对水中强极性阴离子型污染物的去除及富集具有很好的应用前景。

Description

一种双功能型金属有机骨架膜材料及其制备方法与应用 技术领域
本发明属于金属有机骨架材料技术领域,涉及一种双功能型金属有机骨架膜材料的制备方法。
背景技术
公开该背景技术部分的信息仅仅旨在增加对本发明的总体背景的理解,而不必然被视为承认或以任何形式暗示该信息构成已经成为本领域一般技术人员所公知的现有技术。
金属-有机骨架材料(metal-organic frameworks,MOFs),简称MOFs,是一类有机-无机杂化形成的纳米多孔材料,目前是新材料领域的研究热点与前沿之一。金属-有机骨架材料主要由含有氮、氧的多齿有机配体的芳香酸或碱与无机金属中心配位键合而形成的立体网络结构晶体。由于MOFs材料将无机组分与有机组分结合在一起,故相较于传统多孔材料具有很多优点,如种类多、功能强、孔隙率和比表面积大、孔尺寸可调控性强及具有一定的生物相容性。常见的MOFs种类有IRMOF系列、ZIF系列、MIL系列和UiO系列。其中,UiO系列因其具有较大的比表面积、良好的热稳定性和化学稳定性,而被广泛关注。典型的UiO系列MOFs——UiO-66,是一种以金属Zr为金属中心的MOFs材料,由无机金属单元Zr 6O 4(OH) 4与配体中羧基氧的配位作用形成四面体和八面体两种类型的孔笼。这样特殊的空间构型使其在诸多领域中具有巨大的应用前景,特别是在水中污染物的吸附领域。
但是MOFs材料的固体颗粒分散在水中时,很难进行固液分离,这便限制 了其在水中污染物吸附的应用。为了解决这一难题,将颗粒状MOFs材料制备成膜,这样既保留了MOFs的高效选择吸附性,又极大地缩短了MOFs从水相中分离的时间。MOFs膜的制备方法主要包括原位生长法、晶种法和混合基质法。其中,混合基质法是将MOFs晶体微粒嵌入如含有聚砜、聚四氟乙烯、聚偏二氟乙烯等聚合物基底中。此种MOFs膜的制备方法既保留了MOFs的多孔结构、高比表面积和选择性,又具有较高的渗透性和机械强度。
由于MOFs材料的带电金属中心与有机配体相互结合呈现电中性,极大地限制了其对强极性离子型化合物的选择吸附性,阻碍其在水环境中对强极性离子型化合物的应用发展。功能型金属有机骨架材料是最近几年报道的新型MOFs材料,有望解决这一问题,但对其制备及应用研究目前尚处于起步阶段。
发明内容
本发明的目的在于克服现有技术存在的缺点,寻求设计一种双功能型金属有机骨架膜材料的制备方法,该方法将金属有机骨架材料制备成膜,同时将MOFs功能化使其同时具有F原子和阴离子交换基团。
为实现上述技术目的,本发明采用如下技术方案:
本发明的第一个方面,提供了一种双功能型金属有机骨架膜材料的制备方法,包括:
以四氟对苯二甲酸和异烟酸N-氧化物为配体,与金属盐自组装,形成F功能化荷正电的金属有机骨架材料F-TMU-66 +
以F-TMU-66 +、聚偏二氟乙烯PVDF为基质,在聚丙烯板上采用混合基质膜法,制得F-TMU-66 +混合基质膜;
将所述的F-TMU-66 +混合基质膜在酸中浸渍,使其形成具有离子交换基团 的F-TMU-66 +·Cl -混合基质膜,洗涤至中性,即得双功能型金属有机骨架膜材料。
本发明对传统MOFs材料进行功能化处理,使其具有吸附强极性离子型化合物的基团,从而高效、快速、专一地吸附污染物。
本发明的第二个方面,提供了任一上述的方法制备的双功能型金属有机骨架膜材料。
本发明的双功能型金属有机骨架膜材料的优势在于:一方面框架结构中具有F原子,与含F化合物形成较强的F-F作用力,解决了MOF吸附强极性化合物差的难题;另一方面其框架中具有荷正电的结构,打破了以往MOF中性框架的限制,拓展了其在环境中对阴离子型污染物吸附的应用。更值得一提的是,成膜的F-TMU-66 +材料既保留了金属有机骨架材料的高效选择吸附性,又便于从水溶液中分离,对水中强极性阴离子型污染物的去除及富集具有很好的应用前景。
本发明的第三个方面,提供了上述的双功能型金属有机骨架膜材料在全氟化合物的吸附/富集及分析/检测中的应用。
由于本发明的双功能型金属有机骨架膜材料既具有高效选择吸附性,又便于从水溶液中分离,因此,有望在污水处理中得到广泛的应用。
本发明的有益效果在于:
(1)本发明中的材料一方面框架结构中具有F原子,与含F化合物形成较强的F-F作用力,解决了MOF吸附强极性化合物差的难题;另一方面其框架中具有荷正电的结构,打破了以往MOF中性框架的限制,拓展了其在环境中对阴离子型污染物吸附的应用。
(2)本发明成膜的F-TMU-66 +材料既保留了金属有机骨架材料的高效选择吸附性,又便于从水溶液中分离,对水中强极性阴离子型污染物的去除及富集具有 很好的应用前景。
(3)本发明的制备方法简单、操作方便、实用性强,易于推广。
附图说明
构成本发明的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。
图1为本发明实施例1涉及的扫描电镜(SEM)图,其中A、B为颗粒状的双功能型F-TMU-66 +,图C、D为双功能型F-TMU-66 +混合基质膜。
图2为本发明实施例1涉及的红外光谱图(A.F-TMU-66 +混合基质膜,B.F-TMU-66 +,C.纯聚偏二氟乙烯膜)。
图3为本发明实施例1涉及的X射线衍射图(A.F-TMU-66 +,B.F-TMU-66 +混合基质膜)。
图4为本发明实施例3中双功能型F-TMU-66 +·Cl -混合基质膜检测全氟化合物的色谱图。
具体实施方式
应该指出,以下详细说明都是示例性的,旨在对本发明提供进一步的说明。除非另有指明,本发明使用的所有技术和科学术语具有与本发明所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本发明的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
一种双功能型金属有机骨架膜材料的制备方法,具体包括以下步骤:
步骤一:制备F功能化荷正电的金属有机骨架材料F-TMU-66 +
(1)将四氟对苯二甲酸和异烟酸N-氧化物与四氯化锆共同溶于N,N-二甲基甲酰胺(DMF)溶液中充分搅拌溶解;
(2)将步骤(1)中制得的混合物在溶剂热反应釜内100-150℃条件下反应20-28h;
(3)将溶剂热反应釜冷却至室温,所的产物用DMF和丙酮洗涤4次,于120℃烘箱中干燥24h,制得F功能化荷正电的金属有机骨架材料F-TMU-66 +备用;
步骤二:制备F-TMU-66 +混合基质膜
(1)将制得的F-TMU-66 +分散在丙酮中,超声分散5-15min,聚偏二氟乙烯(PVDF)溶解于DMF中,将溶有PVDF的DMF溶液加入F-TMU-66 +的丙酮溶液中,超声充分混合5-15min;
(2)将步骤(1)中制得的混合溶液采用旋转蒸发法使丙酮挥发,再将剩余的混合溶液逐滴平铺在聚丙烯板上;将聚丙烯置于50-80℃烘箱中加热使溶剂挥发,制得F-TMU-66 +混合基质膜。
步骤三:制备离子交换型F-TMU-66 +·Cl -混合基质膜
(1)F-TMU-66 +膜置于盐酸溶液中,浸泡10-15h,使其形成具有离子交换基团的F-TMU-66 +·Cl -混合基质膜。
(2)将F-TMU-66 +·Cl -混合基质膜用超纯水洗涤数次,直至洗涤液呈中性。
在一些实施例中,含有两种具有羧基结构的功能型有机配体四氟对苯二甲酸和异烟酸N-氧化物。除了均具备用于与金属中心链接的羧基官能团以外,两种配体分别具有不同的化学功能基团,形成含F原子的有机配体和含吡啶基的有 机配体。由此制备而成的MOF材料兼具F化和荷正电化的双功能型优势。
在一些实施例中,配位金属是锆,MOF颗粒的粒径为300-400nm。将颗粒状的双功能型金属有机骨架材料采用混合基质膜法制备成膜,从而达到从水样中快速分离的目的。
在一些实施例中,四氯化锆与四氟对苯二甲酸和异烟酸N-氧化物的摩尔比为1:(5-12):(1-3),以通过自组装形成F功能化荷正电的金属有机骨架材料F-TMU-66 +,并使配体与金属锆反应完全,提高原料利用率。
在一些实施例中,F-TMU-66 +与PVDF的质量比为(1-3):(3-5),以形成F-TMU-66 +混合基质膜,便于后续阴离子交换基团的负载。
在一些实施例中,PVDF/的浓度为1%-5%,使PVDF在DMF溶液充分分散,利于PVDF与F-TMU-66 +的混合。
本发明所述的双功能型金属有机骨架膜材料被应用于水中全氟化合物的富集分析。
下面结合具体的实施例,对本发明做进一步的详细说明,应该指出,所述具体实施例是对本发明的解释而不是限定。
实施例1:
实施例涉及的双功能型金属有机骨架膜材料的制备方法,具体包括以下步骤:
步骤一:制备F功能化荷正电的金属有机骨架材料F-TMU-66 +
(1)将1.39g四氟对苯二甲酸和0.278g异烟酸N-氧化物与0.24g四氯化锆共同溶于N,N-二甲基甲酰胺(DMF)溶液中充分搅拌溶解;
(2)将步骤(1)中制得的混合物在溶剂热反应釜内120℃条件下反应24h;
(3)将溶剂热反应釜冷却至室温,所的产物用DMF和丙酮洗涤4次,于120℃烘箱中干燥24h,制得F功能化荷正电的金属有机骨架材料F-TMU-66 +备用;
步骤二:制备F-TMU-66 +混合基质膜
(1)将制得的F-TMU-66 +分散在丙酮中(质量浓度为0.6%),超声分散10min,聚偏二氟乙烯(PVDF)溶解于DMF中,将溶有PVDF的DMF溶液(质量浓度为5.3%)加入F-TMU-66 +的丙酮溶液中,超声充分混合10min,F-TMU-66 +与PVDF的质量比为3:10;
(2)将步骤(1)中制得的混合溶液采用旋转蒸发法使丙酮挥发,再将剩余的混合溶液逐滴平铺在聚丙烯板上;将聚丙烯置于70℃烘箱中加热使溶剂挥发,制得F-TMU-66 +混合基质膜。
步骤三:制备离子交换型F-TMU-66 +·Cl -混合基质膜
(1)F-TMU-66 +膜置于盐酸溶液(浓度为0.1mol/L)中,浸泡12h,使其形成具有离子交换基团的F-TMU-66 +·Cl -混合基质膜。
(2)将F-TMU-66 +·Cl -混合基质膜用超纯水洗涤数次,直至洗涤液呈中性。
下面通过扫描电镜图、X射线衍射图、红外光谱图的分析,对本发明实施例1制备的F-TMU-66 +混合基质膜的形貌和结构特征进行分析说明。
一、形貌表征
图1为本发明制备的膜材料的扫描电镜(SEM)图,其中A、B为颗粒状的双功能型F-TMU-66 +,图C、D为双功能型F-TMU-66 +·Cl -混合基质膜。可以看到球型结构的双功能型MOF晶体直径大约为300-400nm。图C、D中,双功能型F-TMU-66 +·Cl -混合基质膜中MOF晶体的构型并未发生明显变化,说明混合基质膜制备的过程并未对MOF的骨架结构造成影响。
二、红外光谱分析
图2为F-TMU-66 +·Cl -混合基质膜的红外光谱图(A.F-TMU-66 +·Cl -混合基质膜,B.F-TMU-66 +,C.纯聚偏二氟乙烯膜)。其中,图2B和2C中,1180cm -1的吸收峰是由于F-TMU-66 +和聚偏二氟乙烯结构中C-F键的存在。而F-TMU-66 +·Cl -膜的结构中C-F键叠加,导致图A中1180cm -1的吸收峰明显增强,这个结果表明了双功能型MOF已成功合成。图A、B中1250cm -1的吸收峰是由于功能型配体异烟酸N-氧化物中N-O键伸缩振动所引起的,这表明了功能型配体异烟酸N-氧化物已被成功引入到MOF的结构中。以上结果表明,两种功能型配体被成功用于F-TMU-66 +·Cl -混合基质膜的制备中。
二、XRD分析
图3为X射线衍射图(A.F-TMU-66 +,B.F-TMU-66 +·Cl -混合基质膜)在2θ=7.4,和20.2°的峰是F-TMU-66 +系列的特征峰,F-TMU-66 +·Cl -混合基质膜与F-TMU-66 +具有这些吸收峰的存在,说明混合基质膜制备的过程并未对MOF的晶体结构造成影响。
综上所述,一种存在F原子及阴离子交换基团的双功能型F-TMU-66 +·Cl -混合基质膜材料已被成功制备。
实施例2:
将实施例1得到的15mg F-TMU-66 +·Cl -混合基质膜材料用于水中15种全氟化合物的吸附富集,加标浓度为25ng/L,吸附时间30min,采用6mL 2%的甲醇氨水溶液进行洗脱,洗脱时间为30min,将洗脱液用氮气吹干后复溶,通过UPLC-MS/MS进行检测,15种全氟化合物(1.全氟丁酸、2.全氟戊酸、3.全氟丁烷磺酸、4.全氟己酸、5.全氟庚酸、6.全氟己烷磺酸、7.全氟辛酸、8.全氟壬酸、 9.全氟辛烷磺酸、10.全氟癸酸、11.全氟十一酸、12.全氟癸烷磺酸、13.全氟十二酸、14.全氟十三酸、15.全氟十四酸)的回收率在62-118%之间,色谱图如图4所示。
实施例3
与实施例1的不同之处在于:步骤一(2)中,混合物在溶剂热反应釜内100℃条件下反应28h。
实施例4
与实施例1的不同之处在于:步骤一(2)中,混合物在溶剂热反应釜内150℃条件下反应20h。
实施例5
与实施例1的不同之处在于:步骤二:制备F-TMU-66 +混合基质膜
(1)将制得的F-TMU-66 +分散在丙酮中,超声分散5min,聚偏二氟乙烯(PVDF)溶解于DMF中,将溶有PVDF的DMF溶液加入F-TMU-66 +的丙酮溶液中,超声充分混合5min;
(2)将步骤(1)中制得的混合溶液采用旋转蒸发法使丙酮挥发,再将剩余的混合溶液逐滴平铺在聚丙烯板上;将聚丙烯置于50℃烘箱中加热使溶剂挥发,制得F-TMU-66 +混合基质膜。
实施例6
与实施例1的不同之处在于:步骤二:制备F-TMU-66 +混合基质膜
(1)将制得的F-TMU-66 +分散在丙酮中,超声分散15min,聚偏二氟乙烯(PVDF)溶解于DMF中,将溶有PVDF的DMF溶液加入F-TMU-66 +的丙酮溶液中,超声充分混合5-15min;
(2)将步骤(1)中制得的混合溶液采用旋转蒸发法使丙酮挥发,再将剩余的混合溶液逐滴平铺在聚丙烯板上;将聚丙烯置于80℃烘箱中加热使溶剂挥发,制得F-TMU-66 +混合基质膜。
实施例7
与实施例1的不同之处在于:步骤三(1)中,浸泡10h。
实施例8
与实施例1的不同之处在于:步骤三(1)中,浸泡15h。
最后应该说明的是,以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述实施例所记载的技术方案进行修改,或者对其中部分进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。上述虽然对本发明的具体实施方式进行了描述,但并非对本发明保护范围的限制,所属领域技术人员应该明白,在本发明的技术方案的基础上,本领域技术人员不需要付出创造性劳动即可做出的各种修改或变形仍在本发明的保护范围以内。

Claims (10)

  1. 一种双功能型金属有机骨架膜材料的制备方法,其特征在于,包括:
    以四氟对苯二甲酸和异烟酸N-氧化物为配体,与金属盐自组装,形成F功能化荷正电的金属有机骨架材料F-TMU-66 +
    以F-TMU-66 +、聚偏二氟乙烯PVDF为基质,在聚丙烯板上采用混合基质膜法,制得F-TMU-66 +混合基质膜;
    将所述的F-TMU-66 +混合基质膜在酸中浸渍,使其形成具有离子交换基团的F-TMU-66 +·Cl -混合基质膜,洗涤至中性,即得双功能型金属有机骨架膜材料。
  2. 如权利要求1所述的双功能型金属有机骨架膜材料的制备方法,其特征在于,所述金属盐为锆盐。
  3. 如权利要求2所述的双功能型金属有机骨架膜材料的制备方法,其特征在于,所述锆盐与四氟对苯二甲酸和异烟酸N-氧化物的摩尔比为1:5-12:1-3。
  4. 如权利要求1所述的双功能型金属有机骨架膜材料的制备方法,其特征在于,所述F-TMU-66 +的粒径为300-400nm。
  5. 如权利要求1所述的双功能型金属有机骨架膜材料的制备方法,其特征在于,所述F-TMU-66 +与PVDF的质量比为1-3:3-5。
  6. 如权利要求1所述的双功能型金属有机骨架膜材料的制备方法,其特征在于,所述自组装采用溶剂热合成,合成的条件为100-150℃下反应20-28h。
  7. 如权利要求1所述的双功能型金属有机骨架膜材料的制备方法,其特征在于,所述F-TMU-66 +分散在丙酮,所述PVDF溶解于DMF,将溶有PVDF的DMF溶液加入F-TMU-66 +的丙酮溶液中,超声充分混合5-15min,得到混合溶液。
  8. 如权利要求7所述的双功能型金属有机骨架膜材料的制备方法,其特征在于,PVDF/DMF溶液的浓度为1%-5%。
  9. 权利要求1-8任一项所述的方法制备的双功能型金属有机骨架膜材料。
  10. 权利要求9所述的双功能型金属有机骨架膜材料在全氟化合物的吸附/富集、分析/检测中的应用。
PCT/CN2021/071808 2020-10-28 2021-01-14 一种双功能型金属有机骨架膜材料及其制备方法与应用 WO2022088517A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020227023868A KR20220116223A (ko) 2020-10-28 2021-01-14 이관능형 금속 유기 골격체 막 재료 및 이의 제조 방법 및 응용

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011174851.X 2020-10-28
CN202011174851.XA CN112316911B (zh) 2020-10-28 2020-10-28 一种双功能型金属有机骨架膜材料及其制备方法与应用

Publications (1)

Publication Number Publication Date
WO2022088517A1 true WO2022088517A1 (zh) 2022-05-05

Family

ID=74297091

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/071808 WO2022088517A1 (zh) 2020-10-28 2021-01-14 一种双功能型金属有机骨架膜材料及其制备方法与应用

Country Status (3)

Country Link
KR (1) KR20220116223A (zh)
CN (1) CN112316911B (zh)
WO (1) WO2022088517A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115149206A (zh) * 2022-07-13 2022-10-04 陕西科技大学 氟修饰准固态混合基质锂电池隔膜及锂电池制备方法
CN115356305A (zh) * 2022-07-08 2022-11-18 徐州工程学院 一种新型铝基mof材料制备方法及其在四环素检测中的应用
CN115558279A (zh) * 2022-10-12 2023-01-03 南昌大学 一种金属-有机框架混合基质膜反应器及制备方法和应用
CN116120579A (zh) * 2023-01-16 2023-05-16 太原科技大学 一种金属-有机骨架材料及其制备方法与应用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113353917B (zh) * 2021-07-02 2022-11-04 哈尔滨师范大学 自支撑二维介孔纳米材料的可控制备方法
CN115368582B (zh) * 2022-09-01 2023-06-02 湖北工业大学 一种异烟酸功能化的Eu-MOFs荧光探针的制备方法及其对甲硝唑的可回收性检测

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107020020A (zh) * 2017-05-22 2017-08-08 天津工业大学 一种新型MOFs‑PVDF复合膜的制备方法
CN110237819A (zh) * 2019-06-14 2019-09-17 陕西师范大学 一种含氟金属-有机骨架及其制备方法和在吸附全氟辛酸中的应用
CN110563992A (zh) * 2019-09-20 2019-12-13 青岛理工大学 一种阳离子型金属有机骨架膜材料的制备方法
CN111253580A (zh) * 2018-11-30 2020-06-09 中国科学院大连化学物理研究所 一种管状mof膜的制备方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104411673B (zh) * 2012-07-02 2018-10-23 株式会社可乐丽 金属配合物,以及包含金属配合物的吸附材料、吸藏材料和分离材料
JP2014113586A (ja) * 2012-11-19 2014-06-26 Toshiba Corp ハロゲン吸着剤、水処理用タンク、及び水処理システム
CN102993222B (zh) * 2012-12-20 2015-07-08 南开大学 一种具有溶剂分子磁响应镝配位聚合物材料及制备方法
JP6586366B2 (ja) * 2013-03-11 2019-10-02 ユーティーアイ リミテッド パートナーシップ 金属有機フレームワーク、その製造および使用
WO2015175348A1 (en) * 2014-05-16 2015-11-19 University Of Houston System Thermally robust, highly porous, and partially fluorinated organic framework with affinity for hydrocarbons, fluorocarbons and freons
CN105622654B (zh) * 2015-12-25 2017-10-03 厦门大学 以异烟酸和羟基乙酸为混合配体的稀土金属有机框架材料及其制备方法
CN107064367B (zh) * 2017-04-20 2019-09-13 青岛理工大学 一种环境水样中四种杂环类农药的分析检测方法
GB201706805D0 (en) * 2017-04-28 2017-06-14 Cambridge Entpr Ltd Composite metal organic framework materials, processes for their manufacture and uses thereof
US11565235B2 (en) * 2017-07-19 2023-01-31 Youngstown State University System and method for removing contaminants
SG11202000933QA (en) * 2017-08-04 2020-02-27 Univ California Overcoming two carbon dioxide adsorption steps in diamine-appended metal-organic frameworks
CN111282405A (zh) * 2018-12-09 2020-06-16 中国科学院大连化学物理研究所 一种改性金属有机骨架纳米片及其制备方法
CN111072987B (zh) * 2019-12-19 2022-02-15 北京工业大学 两种氟化金属有机骨架材料、制备及其低碳烃分离应用
CN111330464B (zh) * 2020-01-06 2021-10-01 青岛科技大学 一种共混改性聚砜荷电纳滤膜的制备方法及所得膜
CN111821952A (zh) * 2020-07-15 2020-10-27 广东石油化工学院 一种聚偏氟乙烯/氧化石墨烯/金属有机骨架三相复合材料的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107020020A (zh) * 2017-05-22 2017-08-08 天津工业大学 一种新型MOFs‑PVDF复合膜的制备方法
CN111253580A (zh) * 2018-11-30 2020-06-09 中国科学院大连化学物理研究所 一种管状mof膜的制备方法
CN110237819A (zh) * 2019-06-14 2019-09-17 陕西师范大学 一种含氟金属-有机骨架及其制备方法和在吸附全氟辛酸中的应用
CN110563992A (zh) * 2019-09-20 2019-12-13 青岛理工大学 一种阳离子型金属有机骨架膜材料的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HELGE REINSCH, BART BUEKEN, FREDERIK VERMOORTELE, IVO STASSEN, ALEXANDRA LIEB, KARL-PETTER LILLERUD, DIRK DE VOS: "Green synthesis of zirconium-MOFs", CRYSTENGCOMM, ROYAL SOCIETY OF CHEMISTRY, CAMBRIDGE, GB, vol. 17, no. 22, 1 January 2015 (2015-01-01), GB , pages 4070 - 4074, XP055534481, ISSN: 1466-8033, DOI: 10.1039/C5CE00618J *
SHOKOUHFAR NASRIN, ABOUTORABI LEILA, MORSALI ALI: "Improving the capability of UiO-66 for Cr(VI) adsorption from aqueous solutions by introducing isonicotinate N-oxide as the functional group", DALTON TRANSACTIONS, RSC - ROYAL SOCIETY OF CHEMISTRY, CAMBRIDGE, vol. 47, no. 41, 23 October 2018 (2018-10-23), Cambridge , pages 14549 - 14555, XP055925989, ISSN: 1477-9226, DOI: 10.1039/C8DT03196G *
ZHANG XUE-JING, SU FANG-ZHE, CHEN DI-MING, PENG YU, GUO WAN-YING, LIU CHUN-SEN, DU MIAO: "A water-stable Eu III -based MOF as a dual-emission luminescent sensor for discriminative detection of nitroaromatic pollutants", DALTON TRANSACTIONS, RSC - ROYAL SOCIETY OF CHEMISTRY, CAMBRIDGE, vol. 48, no. 5, 30 January 2019 (2019-01-30), Cambridge , pages 1843 - 1849, XP055925990, ISSN: 1477-9226, DOI: 10.1039/C8DT04397C *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115356305A (zh) * 2022-07-08 2022-11-18 徐州工程学院 一种新型铝基mof材料制备方法及其在四环素检测中的应用
CN115356305B (zh) * 2022-07-08 2023-06-16 徐州工程学院 一种铝基mof材料制备方法及其在四环素检测中的应用
CN115149206A (zh) * 2022-07-13 2022-10-04 陕西科技大学 氟修饰准固态混合基质锂电池隔膜及锂电池制备方法
CN115558279A (zh) * 2022-10-12 2023-01-03 南昌大学 一种金属-有机框架混合基质膜反应器及制备方法和应用
CN115558279B (zh) * 2022-10-12 2023-11-03 南昌大学 一种金属-有机框架混合基质膜反应器及制备方法和应用
CN116120579A (zh) * 2023-01-16 2023-05-16 太原科技大学 一种金属-有机骨架材料及其制备方法与应用

Also Published As

Publication number Publication date
CN112316911A (zh) 2021-02-05
CN112316911B (zh) 2021-11-16
KR20220116223A (ko) 2022-08-22

Similar Documents

Publication Publication Date Title
WO2022088517A1 (zh) 一种双功能型金属有机骨架膜材料及其制备方法与应用
Chen et al. High efficiency synthesis of HKUST-1 under mild conditions with high BET surface area and CO2 uptake capacity
JP5132671B2 (ja) 水分の吸着及び脱着のための吸着剤
CN110563992B (zh) 一种阳离子型金属有机骨架膜材料的制备方法
Zou et al. Understanding the modifications and applications of highly stable porous frameworks via UiO-66
Wu et al. Recent advances in aluminium-based metal-organic frameworks (MOF) and its membrane applications
Hu et al. De facto methodologies toward the synthesis and scale-up production of UiO-66-type metal–organic frameworks and membrane materials
CN102030767B (zh) 一种超分子金属有机骨架化合物材料
Ma et al. Self-assembled MOF microspheres with hierarchical porous structure for efficient uranium adsorption
JP2010512991A (ja) 多孔性有・無機混成体及びこれを含有する吸着剤
CN111282405A (zh) 一种改性金属有机骨架纳米片及其制备方法
CN109293467A (zh) 一种吸附分离丙烯、丙炔、丙烷和丙二烯的方法
CN110229349A (zh) 一种沸石咪唑类金属有机框架材料及其制备方法和应用
CN106832323A (zh) 一种双功能模板法快速合成多级孔hkust‑1材料的方法
CN110064372A (zh) 一种金属有机骨架磁性复合材料及其制备方法和应用
Duan et al. Ultrafast room-temperature synthesis of hierarchically porous metal–organic frameworks with high space–time yields
CN108310982A (zh) 一种化学战剂自消毒金属-有机骨架纤维滤膜及其制备方法
CN108947813B (zh) 一步溶剂热法制备二维mof材料的工艺
CN105693506A (zh) 一种多孔钛晶金属有机骨架材料的合成方法
CN112705167A (zh) Mof改性活性炭砖的制备方法及其在大风量空气过滤中的应用
CN114832863A (zh) 一种多级孔金属有机框架材料及其制备方法和应用
CN115232320A (zh) 一种采用修饰剂系统调控晶体MOFs晶体尺寸和形貌的绿色方法
CN115975211B (zh) 一种高水稳定性介孔锆基金属有机骨架及其合成方法与应用
CN114405475A (zh) 一种吸附材料及其制备方法和应用
CN116920811B (zh) 一种zif-8中空结构材料的钒吸附剂制备方法及应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21884262

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227023868

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21884262

Country of ref document: EP

Kind code of ref document: A1