[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022088158A1 - 一种上报信道信息的方法及装置 - Google Patents

一种上报信道信息的方法及装置 Download PDF

Info

Publication number
WO2022088158A1
WO2022088158A1 PCT/CN2020/125680 CN2020125680W WO2022088158A1 WO 2022088158 A1 WO2022088158 A1 WO 2022088158A1 CN 2020125680 W CN2020125680 W CN 2020125680W WO 2022088158 A1 WO2022088158 A1 WO 2022088158A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
terminal
channel
channel information
access network
Prior art date
Application number
PCT/CN2020/125680
Other languages
English (en)
French (fr)
Inventor
蔡世杰
刘鹍鹏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2020/125680 priority Critical patent/WO2022088158A1/zh
Priority to EP20959319.3A priority patent/EP4224905A4/en
Priority to CN202080103581.5A priority patent/CN116018836B/zh
Publication of WO2022088158A1 publication Critical patent/WO2022088158A1/zh
Priority to US18/141,071 priority patent/US20230269046A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • H04L5/0046Determination of how many bits are transmitted on different sub-channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided

Definitions

  • the embodiments of the present application relate to the field of communication technologies, and in particular, to a method and apparatus for reporting channel information.
  • terminals in communication scenarios gradually exhibit characteristics such as large numbers and multiple forms.
  • the terminal may report the channel information of the downlink channel between the terminal and the access network device to the access network device, so that the access network device sends the downlink signal or data to the terminal according to the channel information of the downlink channel.
  • the embodiment of the present application provides a method for reporting channel information, so that different terminals can cooperatively report channel information.
  • an embodiment of the present application provides a method for reporting channel information, the method may be executed by a first terminal, a chip or other devices, and the method may include: determining channel information of the first terminal, wherein the first terminal's channel information The channel information is used to indicate the channel state of the downlink channel between the first terminal and the access network device, and the first information is reported to the access network device, and the first information is used to indicate the channel information of the first terminal and the channel information of the second terminal Part of the information or all of the information in the first common information in , and the channel information of the second terminal is used to indicate the channel state of the downlink channel between the second terminal and the access network device.
  • the channel information of the first terminal includes N1 elements
  • the channel information of the second terminal includes N2 elements
  • N1 and N2 are integers greater than or equal to 1
  • the first common information includes N3 elements
  • N3 The elements are the same elements and/or similar elements among the N1 elements of the first terminal and the N2 elements of the second terminal, wherein the same elements refer to the elements with the same position and the same value among the N1 elements and the N2 elements , similar elements refer to the elements in the same position among the N1 elements and the N2 elements, and the difference is less than the threshold.
  • the same elements and/or similar elements in the channel information of different terminals are used as common information to simplify the system design.
  • the channel information of the first terminal includes R1 sub-channel information
  • the channel information of the second terminal includes R2 sub-channel information
  • R1 and R2 are integers greater than or equal to 1
  • the first common information includes the first terminal.
  • the first location may be determined by the access network device and indicated to the first terminal, or determined by the first terminal and indicated to the access network device, or set by a protocol agreement.
  • the value of the first position of the first terminal and the value of the first position of the second terminal are the same or similar.
  • the first information is used to indicate that part or all of the first common information in the channel information of the first terminal and the channel information of the second terminal includes: the first information includes the first common information. or, the first information includes quantized bits obtained by quantizing part or all of the information; or, the first information includes part or all of the quantized bits obtained after quantizing all the information; or, the third A piece of information is used to indicate the relationship value between the first public information and the reference information; alternatively, the first information is used to indicate the relationship value between the partial information of the first public information and the partial information of the reference information; alternatively, the first information Including the relationship value between the first part of the bits and the second part of the bits, the first part of the bits is the part of the quantized bits obtained after the quantization of the first common information, and the second part of the bits is the part of the quantized bits obtained after the reference information is quantized bit; the reference information is the channel information of the third terminal, and the channel information of the third terminal is used to indicate the channel state of the downlink channel
  • part or all of the information in the first public information can be effectively and flexibly indicated.
  • the method further includes: receiving first indication information, where the first indication information is used to indicate one or more of the following: a position of the first public information in the channel information of the first terminal, partial information The position in the first public information, the quantization method of the partial information, the quantization method of the first public information, the position of the partial bits in the quantized bits obtained by quantizing the first public information, and the information of the third terminal.
  • the method further includes: reporting second information to the access network device, where the second information is specific information in the channel information of the first terminal.
  • the specific information of the terminal can be reported to the access network device separately, so that the access network device can restore the complete channel information of the terminal according to the specific information of the terminal and the public information reported by the terminal and other terminals in collaboration, Simplify system design.
  • the channel information of the first terminal includes information of R1 sub-channels, where R1 is an integer greater than or equal to 1, and the second information includes information used to indicate the second common information in the channel information of the first terminal.
  • the third information of all or part of the information and the R pieces of fourth information, the second common information is the common information of the R1 pieces of subchannel information, and the R pieces of fourth information correspond to the R pieces of subchannel information in the R1 pieces of subchannel information , the fourth information is used to indicate specific information in the sub-channel information corresponding to the fourth information, and R is an integer greater than or equal to 0 and an integer less than or equal to R1.
  • the manner in which the terminal reports specific information may be performed independently without relying on the collaborative reporting of public information by multiple terminals, that is, the possible design may be performed independently as a specific embodiment.
  • the second common information includes the value of the element at the second position in the R1 sub-channel information; and/or, the second common information is the first part of the information in the first common information, and the first part of the information is R1 The same and/or similar information in the sub-channel information.
  • the value of the element in the second position in the R1 sub-channel information, or the specific information belonging to the first terminal in the common information reported by multiple terminals cooperatively, and belonging to the same and/or R1 sub-channel information Similar information is used as public information, simplifying system design.
  • the method further includes: receiving second indication information for indicating a compression parameter of the first compressor, where the first compressor is used for compressing the first information.
  • the compression parameters of the compressor used for compressing and processing the first information can be indicated to the first terminal, so that the first terminal can determine the compression processing method of the first information according to the indication, thereby saving signaling when reporting information overhead.
  • the method further includes: receiving third indication information, where the third indication information is used to instruct the third terminal to join a terminal group, and the terminal group includes the first terminal and the second terminal. Based on this possible design, the information of the newly added terminal can be indicated to the first terminal, so that the first terminal can adjust the way of reporting public information after learning that a new terminal has joined the terminal group, so that the designed system is more flexible.
  • the method further includes: receiving fourth indication information, where the fourth indication information is used to instruct the fourth terminal to exit the terminal group. Based on this possible design, the information of the terminal leaving the terminal group can be indicated to the first terminal, so that the first terminal adjusts the way of reporting public information after learning that the terminal leaves the terminal group, making the designed system more flexible.
  • the method before the first terminal joins the terminal group, the method further includes: receiving fifth indication information, where the fifth indication information is used to indicate an existing terminal in the terminal group.
  • the existing terminals in the terminal group can be known before joining the terminal group, so that the newly added terminal can exchange information with the existing terminal, making the designed system more flexible.
  • the present application provides a communication device, where the communication device may be a first terminal or a chip or a system-on-chip in the first terminal, and may also be used in the first terminal to implement the reporting channel described in the embodiments of the present application
  • the communication apparatus may implement the above-mentioned first aspect or the functions performed by the first terminal in each possible design.
  • the functions can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the communication device may include modules corresponding to one-to-one execution of the methods/operations/steps/actions described in the first aspect, and the modules may be hardware circuits, software, or hardware circuits combined with software.
  • the communication device may include: a processing unit and a sending unit;
  • the processing unit is configured to determine channel information of the first terminal, where the channel information of the first terminal is used to indicate the channel state of the downlink channel between the first terminal and the access network device.
  • the sending unit is configured to report first information to the access network device, where the first information is used to indicate part or all of the first common information in the channel information of the first terminal and the channel information of the second terminal, and the second The channel information of the terminal is used to indicate the channel state of the downlink channel between the second terminal and the access network device.
  • a communication device in a third aspect, may be a first terminal or a chip or a system-on-a-chip in the first terminal, or other modules or units capable of implementing the method on the first terminal side.
  • the communication apparatus may implement the functions performed by the first terminal in the first aspect or each possible design, and the functions may be implemented by hardware.
  • the communication device may include: a processor and a communication interface, where the processor and the communication interface may be used to support the communication device to implement the first aspect or any of the possible designs of the first aspect.
  • the communication device may further include a memory for storing computer instructions and/or data.
  • the processor executes the computer instructions stored in the memory, so that the communication apparatus executes the method for reporting channel information described in the first aspect or any possible design of the first aspect.
  • the communication interface may be a transceiver, an interface circuit, a bus interface, a pin, or other devices capable of implementing a transceiver function.
  • a computer-readable storage medium is provided, and instructions are stored in the computer-readable storage medium, and when the instructions are executed on a computer, the computer can execute the above-mentioned first aspect or any of the above-mentioned first aspects.
  • a fifth aspect provides a computer program product containing instructions, the computer program product may include program instructions, when the program instructions are run on a computer, the computer can execute the above-mentioned first aspect or any one of the above-mentioned first aspects. It is possible to design the method for reporting channel information.
  • a sixth aspect provides a chip system
  • the chip system includes a processor and a communication interface, and the chip system can be used to implement the functions performed by the first terminal in the first aspect or any possible design of the first aspect .
  • the chip system further includes a memory for storing program instructions, and when the chip system runs, the processor executes the program instructions stored in the memory, so that the chip system executes the above-mentioned program instructions
  • the first aspect or any possible design of the first aspect is the method for reporting channel information.
  • the chip system may be composed of chips, and may also include chips and other discrete devices, which is not limited.
  • the embodiments of the present application further provide a method for reporting channel information.
  • the method for reporting channel information may be performed by an access network device, a chip, or other devices, and the method may include: receiving a first message from a first terminal. information, and according to the first information, determine the first public information.
  • the first information is used to indicate part or all of the first common information in the channel information of the first terminal and the channel information of the second terminal, and the channel information of the first terminal is used to indicate the connection between the first terminal and the access
  • the channel state of the downlink channel between the network devices, and the channel information of the second terminal is used to indicate the channel state of the downlink channel between the second terminal and the access network device.
  • the method further includes: receiving second information from the first terminal, where the second information is specific information in the channel information of the first terminal, and determining the first information according to the first common information and the second information.
  • Channel information of the terminal For the relevant description of the second information, reference may be made to the description in the first aspect or the possible designs of the first aspect, which will not be repeated.
  • the method further includes: sending second indication information to the first terminal, where the second indication information is used to indicate compression parameters of the first compressor; wherein the first compressor is used to perform a Compression processing.
  • the method further includes: sending third indication information to the first terminal, where the third indication information is used to instruct the third terminal to join a terminal group, and the terminal group includes the first terminal and the second terminal.
  • the method further includes: sending fourth indication information to the first terminal, where the fourth indication information is used to instruct the fourth terminal to quit the terminal group.
  • the method before the first terminal joins the terminal group, the method further includes: sending fifth indication information to the first terminal, where the fifth indication information is used to indicate an existing terminal in the terminal group.
  • the present application provides a communication device.
  • the communication device may be an access network device or a chip or a system-on-chip in the access network device, and may also be used in the access network device to implement the methods described in the embodiments of the present application.
  • the communication apparatus may implement the functions performed by the access network device in the seventh aspect or any possible design of the seventh aspect, and the functions may be implemented by hardware, or by executing corresponding software in hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the communication device may include modules corresponding to one-to-one execution of the methods/operations/steps/actions described in the seventh aspect, and the modules may be hardware circuits, software, or hardware circuits combined with software. accomplish.
  • the communication device may include: a receiving unit and a processing unit.
  • a receiving unit configured to receive first information from the first terminal, wherein the first information is used to indicate part or all of the first common information in the channel information of the first terminal and the channel information of the second terminal,
  • the channel information of the first terminal is used to indicate the channel state of the downlink channel between the first terminal and the access network device
  • the channel information of the second terminal is used to indicate the channel state of the downlink channel between the second terminal and the access network device.
  • the processing unit is configured to determine the first common information in the channel information of the first terminal according to the first information.
  • a communication apparatus may be an access network device, a chip or a system-on-a-chip in the access network device, or other modules or units capable of implementing methods at the access network side.
  • the communication apparatus may implement the functions performed by the access network device in the seventh aspect or any possible design of the seventh aspect, and the functions may be implemented by hardware.
  • the communication device may include: a processor and a communication interface, and the processor and the communication interface may be used to support the communication device to implement the seventh aspect or any of the possible designs involved in the seventh aspect.
  • the communication device may further include a memory for storing computer instructions and/or data. When the communication apparatus is running, the processor executes the computer instructions stored in the memory, so that the communication apparatus executes the method for reporting channel information described in the seventh aspect or any possible design of the seventh aspect.
  • a computer-readable storage medium is provided, and instructions are stored in the computer-readable storage medium.
  • the instructions are executed on a computer, the computer can execute the seventh aspect or any of the seventh aspect.
  • An eleventh aspect provides a computer program product comprising instructions, the computer program product may include program instructions, when the program instructions are run on a computer, the computer can execute the above seventh aspect or any of the above seventh aspects.
  • a twelfth aspect provides a chip system, the chip system includes a processor and a communication interface, and the chip system can be used to implement the above seventh aspect or any possible design of the seventh aspect to be executed by an access network device function.
  • the chip system further includes a memory for storing program instructions and/or data, and when the chip system is running, the processor executes the program instructions stored in the memory to make The chip system executes the method for reporting channel information described in the seventh aspect or any possible design of the seventh aspect.
  • the chip system may be composed of chips, and may also include chips and other discrete devices, which is not limited.
  • an embodiment of the present application further provides a communication system, where the communication system includes the communication device according to the second aspect or the third aspect, and the communication device according to the eighth or ninth aspect.
  • FIG. 1a is a schematic diagram of a three-dimensional signal space provided by an embodiment of the present application.
  • FIG. 1b is a schematic diagram of beamformed (beamforming) CSI-RS provided by an access network device according to an embodiment of the application;
  • FIG. 2 is a simplified schematic diagram of a communication system provided by an embodiment of the present application.
  • FIG. 2a is a schematic diagram of a transceiver antenna between an access network device and a terminal according to an embodiment of the present application
  • FIG. 3 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 4 is a flowchart of a method for reporting channel information provided by an embodiment of the present application.
  • 5a is a schematic diagram of (N-1) terminals cooperatively reporting channel information according to an embodiment of the present application
  • 5b is a schematic diagram of N terminals cooperatively reporting channel information according to an embodiment of the present application.
  • FIG. 5c is a schematic diagram of N terminals cooperatively reporting channel information according to an embodiment of the present application.
  • 5d is a schematic diagram of N terminals cooperatively reporting channel information according to an embodiment of the present application.
  • FIG. 5e is a schematic diagram of (N-1) terminals cooperatively reporting channel information according to an embodiment of the present application
  • 6a is a schematic diagram of (N-1) terminals cooperatively reporting channel information according to an embodiment of the present application
  • 6b is a schematic diagram of N terminals cooperatively reporting channel information according to an embodiment of the present application.
  • FIG. 7 is a flowchart of another method for reporting channel information provided by an embodiment of the present application.
  • 8a is a schematic diagram of beamformed CSI-RS of a terminal with multiple antennas provided by an embodiment of the present application;
  • 8b is a schematic diagram of cooperative reporting of channel information between multiple antennas of a terminal according to an embodiment of the present application
  • FIG. 8c is a schematic diagram of beamformed CSI-RS of multiple terminals according to an embodiment of the present application.
  • FIG. 8d is a schematic diagram of multiple terminals cooperatively reporting channel information according to an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a communication device 90 provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a communication device 100 according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a communication system provided by an embodiment of the present application.
  • the multiple input and multiple output (multiple input and multiple output, MIMO) technology is widely used.
  • the sending device and the receiving device support MIMO technology
  • the sending device can use the space frequency block code (SFBC) transmission mode to send signals to the receiving device to improve the signal-to-noise at the cell edge.
  • SFBC space frequency block code
  • the sending device may also use a precoding (precoding) technology to send a signal to the receiving device, so as to improve the quality or rate of signal transmission.
  • precoding precoding
  • Precoding (precoding) technology can refer to the sending device when sending a signal, when all or part of the channel state from the sending device (such as an access network device) to a receiving device (such as a terminal) is known, the sending device
  • the signal to be transmitted is precoded by means of a precoding matrix matching the channel state of the channel.
  • the precoded signal is adapted to the channel that the signal will experience, thereby reducing the complexity of the receiving device to eliminate the influence between the channels, and the quality of the received signal (such as the signal to interference plus noise ratio (signal to interference plus noise ratio) can be reduced. interference plus noise ratio, SINR), etc.) can be improved to improve the quality or rate of signal transmission.
  • the precoding technology can realize the transmitting device (such as access network device) and multiple receiving devices (such as terminal) to transmit signals on the same time-frequency resources, and realize multiple user multiple input multiple output (MU- MIMO).
  • the sending device obtains all or part of the channel state of the channel from the sending device to the receiving device through the channel information reported by the receiving device.
  • the sending device can receive channel information reported by a receiving device.
  • the transmitting device can receive channel information reported by multiple receiving devices respectively.
  • the reported channel information may contain the same and/or similar information, that is, information redundancy. If the multiple receiving devices report the channel information of their corresponding channels respectively, transmission resources will be wasted.
  • the plurality may be 2, 3, 4 or more, which is not limited.
  • an embodiment of the present application provides a method for reporting channel information, including: the first receiving device determines the channel information of the first receiving device, and reports the first information to the sending device, where the first information is used to indicate Part or all of the first common information in the channel information of the first receiving device and the channel information of the second receiving device. That is, for the common information in the channel information of multiple receiving devices, some of the receiving devices can report all the information of the public information, or different parts of the public information can be reported by different receiving devices, so as to realize the collaborative reporting of public information between the receiving devices. , reducing the signaling overhead when channel information is reported.
  • the sending device and the receiving device are for downlink signals, such as downlink data channels and/or downlink control channels.
  • downlink signals such as downlink data channels and/or downlink control channels.
  • the receiving device of the downlink signal is the transmitting device of the uplink signal
  • the transmitting device of the downlink signal is the The receiver of the upstream signal. Similar situations will not be repeated below.
  • the channel from the transmitting device to the receiving device may be referred to as a downlink channel.
  • the transmitting device and the receiving device are for uplink signals
  • the channel from the transmitting device to the receiving device may be referred to as an uplink channel.
  • the sending device may include one or more antennas, and the antenna included in the sending device may be called a sending antenna, that is, the sending antenna represents an antenna on the sending device side.
  • the transmitting antenna may be a one-dimensional antenna array or a two-dimensional antenna array. In this embodiment of the present application, the transmitting antenna is an example of a two-dimensional antenna array, and similar situations will not be repeated below.
  • the transmitting antenna may also be referred to as a transmitting antenna. Each transmit antenna has one polarization direction or two polarization directions.
  • N t N 1 *N 2 .
  • N 1 and N 2 are integers greater than or equal to 1, and the values of N 1 and N 2 may be the same or different, and are not limited.
  • the transmitting antenna can also be regarded as a one-dimensional antenna array.
  • the antenna ports may be referred to as antennas for short, and the number of antenna ports may be referred to as the number of antennas for short.
  • An antenna port can correspond to one or more logical antennas on the antenna panel.
  • a logical antenna may be obtained by using a plurality of antenna elements in the form of one-drive-multiple elements, or one logical antenna may correspond to one antenna element.
  • the number of transmitting antenna ports on the transmitting device side can be pre-configured, one antenna port corresponds to one spatial vector, and the transmitting device side can send the precoded CSI-RS on the pre-configured antenna ports.
  • the concept of space vector is as follows.
  • the receiving device may include one or more antennas, and the antennas included in the receiving device may be referred to as receiving antennas, that is, the receiving antenna represents the antenna on the receiving device side, and similar situations will not be repeated below.
  • the number of receiving antennas is represented by NRx .
  • the receiving device may receive downlink signals using NRx receiving antennas.
  • the receiving device may also receive downlink signals with a spatial layer (or simply referred to as a layer) as a granularity, and a spatial layer can be regarded as a data stream that can be independently transmitted.
  • the spatial layer may be obtained by weighting N t transmit antenna ports, and N Layer is used to represent the number of spatial layers in this paper.
  • the frequency resources used for transmitting downlink signals between the sending device and the receiving device include one or more frequency domain units, and N f herein represents the number of frequency domain units.
  • the length (or referred to as width or referred to as frequency-domain resource granularity) of the frequency domain unit can be preset as required.
  • the frequency domain unit may be a subband (subband), a resource block (RB), a subcarrier, a resource block group (RBG), or a precoding resource block group (PRG) ) in any frequency domain resource granularity.
  • one subband may be R times of one channel quality indication (CQI) subband, where R is greater than 0 and less than or equal to 1, for example, the value of R may be, for example, 1 or The value of R may be pre-configured by the sending device to the receiving device through signaling.
  • RBG group or one PRG group includes one or more RBs, such as 4, 6 or other numbers, which are not limited.
  • the channel information of the channel from the sending device to the receiving device reported by the receiving device may include the following methods (1), (2) and (3) Either:
  • the channel information includes a channel matrix or a precoding matrix.
  • the channel matrix can be used to represent the channel state of the three-dimensional signal space of "transmitting antenna-receiving antenna-frequency domain unit".
  • the channel matrix of the channel from the transmitting device to the receiving device may include space-frequency matrices corresponding to NRx receiving antennas of the receiving device, one receiving antenna corresponding to one space-frequency matrix.
  • the precoding matrix can be used to represent the channel state of the three-dimensional signal space of "transmitting antenna-layer (layer)-frequency domain unit".
  • the precoding matrix of the channel from the sending device to the receiving device may include space-frequency matrices corresponding to N Layer spaces of the receiving device, and one spatial layer corresponds to one space-frequency matrix.
  • the space-frequency matrix W r can be regarded as a joint matrix formed by combining N f channel vectors (or simply referred to as vectors) corresponding to N f frequency domain units one-to-one.
  • the space-frequency matrix W r may include N f vectors, the N f vectors are in one-to-one correspondence with the N f frequency domain units, one vector is used to indicate the channel state of the channel corresponding to one frequency domain unit, and the length of one vector is N t .
  • the N f vectors can be arranged in the format of column vectors in W r , and can also be arranged in the format of row vectors in W r .
  • the N f vectors arranged as column vectors in the space-frequency matrix W r is the N f column vectors corresponding to the N f frequency domain units one-to-one respectively.
  • the transmitting device may map channel state information-reference signals (CSI-RS) to N f frequency domain units, and use N t transmitting ports to convert the CSI - RS is sent to the receiving device.
  • the receiving device receives CSI-RS through NRx receiving antennas, performs channel estimation on the received CSI-RS to obtain a space-frequency matrix corresponding to each receiving antenna, and uses the method described in the embodiment of the present application to cooperate with other receiving devices to The space-frequency matrix corresponding to each receiving antenna is included in the channel information and reported to the transmitting device.
  • the sending device receives the channel information reported by the receiving device, recovers the space-frequency matrix corresponding to each receiving antenna of the receiving device according to the channel information, and then determines the corresponding space-frequency matrix of each frequency domain unit according to the space-frequency matrix corresponding to each receiving antenna.
  • the precoding matrix corresponding to the frequency domain unit is determined, and the downlink signal transmitted through the frequency domain unit is precoded based on the precoding matrix corresponding to the frequency domain unit.
  • determining the precoding matrix corresponding to the frequency domain unit according to the channel matrix corresponding to the frequency domain unit may include: obtaining the precoding matrix corresponding to the frequency domain unit by performing singular value decomposition (SVD) on the channel matrix; Alternatively, the precoding matrix corresponding to the frequency domain unit is obtained by performing eigenvalue decomposition (eigenvalue decomposition, EVD) on the covariance matrix of the channel matrix.
  • SVD singular value decomposition
  • EVD eigenvalue decomposition
  • the transmitting device may perform precoding processing on the CSI-RS, map the precoded CSI-RS to N f frequency domain units, and transmit the CSI-RS through the preconfigured antenna port. to the receiving device.
  • the receiving device receives the CSI-RS sent by the sending device on its corresponding receiving antenna, performs channel estimation on the received CSI-RS to obtain a space-frequency matrix corresponding to each spatial layer, and adopts the method described in the embodiment of the present application and
  • the other receiving devices cooperate to include the space-frequency matrix corresponding to each spatial layer in the channel information and report it to the sending device.
  • the sending device receives the channel information reported by the receiving device, recovers the space-frequency matrix corresponding to each spatial layer of the receiving device according to the channel information, and then determines the corresponding space-frequency matrix of each frequency domain unit according to the space-frequency matrix corresponding to each spatial layer.
  • the precoding matrix of the frequency domain unit is used to perform precoding processing on the downlink signal transmitted through the frequency domain unit based on the precoding matrix corresponding to the frequency domain unit.
  • the embodiments of the present application do not limit the specific usage form of the precoding matrix.
  • the precoding matrix can be directly used by the access network device to send downlink signals, or the precoding matrix can also be subjected to beamforming and other processing to obtain a precoding matrix that is finally used for sending downlink signals.
  • Beamforming can include zero forcing (ZF), regularized zero-forcing (RZF), minimum mean-squared error (MMSE), or maximizing the signal-to-leakage-to-noise ratio (signal- to-leakage-and-noise, SLNR).
  • ZF zero forcing
  • RZF regularized zero-forcing
  • MMSE minimum mean-squared error
  • SLNR signal-to-leakage-to-noise ratio
  • vectors corresponding to the same frequency domain unit in the space-frequency matrices corresponding to the NRx receiving antennas may be combined to obtain a channel matrix corresponding to the frequency domain unit.
  • a precoding matrix corresponding to the frequency domain unit may be obtained by combining vectors corresponding to the same frequency domain unit in the space-frequency matrices corresponding to the N Layer space layers. That is, it can be understood that the space-frequency matrix is an intermediate quantity used to determine the precoding matrix or the channel matrix corresponding to the frequency domain unit.
  • N f vectors can also be arranged into a one-dimensional vector with a length of N f * N t in a first-place manner, Or they can be arranged into N f vectors according to other predefined rules, without limitation.
  • the channel information including the channel matrix may include: the space-frequency matrices corresponding to the NRx receiving antennas are carried in the NRx arrays in the channel information in one-to-one correspondence, or the elements included in the space-frequency matrices corresponding to all the receiving antennas carry in the same array in the channel info.
  • the channel information including the precoding matrix may include: the space-frequency matrices corresponding to the N Layer receiving antennas are carried in the N Layer arrays in the channel information in a one-to-one correspondence, or the elements included in the space-frequency matrices corresponding to all the receiving antennas are carried in the channel information. information in the same array.
  • the specific carrying mode to be adopted may be pre-agreed by the receiving device and the sending device for dual transmission or stipulated by the agreement, and is not limited.
  • the channel information includes information of some or all non-zero combining coefficients in the combining coefficient matrix obtained by performing dual-domain compression on the space-frequency matrix W r .
  • the information of the non-zero merging coefficients includes one or more of the following: the value of the non-zero merging coefficients, position information, the index of the frequency domain vector used to construct the space-frequency component matrix corresponding to the non-zero merging coefficients, and the index of the space domain vector index.
  • a space-frequency component matrix can be constructed from a space-domain vector and a frequency-domain vector.
  • a space-frequency component matrix can be obtained by multiplying a space-domain vector by the conjugate transpose of a frequency-domain vector.
  • the spatial vector may be included in the preconfigured spatial vector set, and the frequency domain vector may be included in the preconfigured frequency domain vector set. Therefore, the transmitting device can restore the space-frequency matrix W r as long as it knows the space-domain vector and frequency-domain vector for constructing the space-frequency component matrix, and the weighted value (or referred to as the weight) of the space-frequency component matrix.
  • the receiving device can use the dual-domain compression method shown in the following formula (1) to process the space-frequency matrix W r , and the processed combined coefficient matrix
  • the combining coefficient in , the index of the frequency-domain vector constituting the space-frequency component matrix, and the index of the space-domain vector are included in the channel information, and the channel information can be reported to the transmitting device in cooperation with other receiving devices to reduce signaling overhead.
  • the length of the space vector is N1*N2, in other words, in the case that the transmitting antenna is a single-polarized antenna, the length of the space vector can be the number of transmitting antenna ports N t , When the transmitting antenna is a dual-polarized antenna, the length of the space vector can be the number of transmitting antenna ports L is an integer greater than or equal to 1.
  • the L space domain vectors can be called L bases, and the L bases are The L bases are arranged as a diagonal block matrix in the following order
  • the embodiments of the present application do not limit the naming of the spatial domain vector, and the spatial domain vector may be referred to as a spatial domain component vector, a beam vector, a spatial domain beam basis vector, or a spatial domain basis vector, or the like.
  • a space vector includes multiple elements, one element in the space vector uniquely corresponds to an antenna port (antenna port) on the sending device side, and each element in the space vector can represent the weight of each antenna port on the sending device side.
  • the antenna port of the transmitting device is determined according to the antenna port of the first dimension, the antenna port of the second dimension, and the polarization mode of the antenna .
  • the antenna port on the sending device side is preset.
  • L spatial vectors may be selected from the set of candidate spatial vectors.
  • the candidate airspace vector set may include one or more candidate airspace vectors (or airspace components), and the lengths of the candidate airspace components included in the candidate airspace vector set may be the same or different.
  • the candidate airspace vector set may be referred to as the candidate airspace component vector set, the airspace component Vector set, candidate airspace basis vector set, airspace basis vector set, candidate beam vector set, beam vector set, candidate airspace beam basis vector set, or airspace beam basis vector set, etc.
  • the set of candidate airspace vectors can be pre-configured for the transmitting device and the receiving device.
  • an index value (or referred to as an index) is used to identify the candidate airspace components in the candidate airspace vector set, and the index values of different candidate airspace components are different.
  • the L airspace vectors are agreed upon in the protocol, or configured by the sending device to the receiving device in advance. This method can be used for beamformed scenarios, for example.
  • the spatial domain vector can be a discrete Fourier transform (DFT) vector or a conjugate transpose vector of a DFT vector or an oversampled DFT vector.
  • DFT vector may refer to a vector in a DFT matrix, which may be an orthogonal DFT matrix or a type II in the new radio (NR) protocol TS 38.214 (such as release 15 (release 15, R15) or other versions) (type II) 2dimensions (2D)-DFT defined in the codebook.
  • the conjugate transpose vector of the DFT vector may refer to a vector in the conjugate transpose matrix of the DFT matrix.
  • An oversampled DFT vector may refer to a vector in an oversampled DFT matrix.
  • the orthogonal DFT matrix can be for The orthogonal DFT matrix of .
  • the function kron(A, B) means multiplying the elements a i, j in matrix A by matrix B (that is, multiplying each element in matrix B by a i, j ), and multiplying the resulting matrix Place it at the position where elements a i, j are located. Similarly, perform the above operation on each element in matrix A until the position of each element in matrix A is replaced by the multiplied matrix, and the final obtained A matrix as the output of the function kron(A,B).
  • the frequency domain vector matrix including K frequency domain vectors used to construct the frequency domain component matrix, where K is an integer greater than or equal to 1. It is the matrix after transposing the frequency domain vector matrix.
  • the length of the frequency domain vector can be the number of frequency domain units N f
  • the K frequency domain vectors can be called K bases, and the K bases are respectively
  • the K bases are arranged in the following order to get
  • Frequency domain vector It can be called a frequency domain component vector, or a frequency domain basis vector, etc., and can be used to represent the change law of the channel in the frequency domain.
  • Each frequency domain vector can represent a variation law. Since the signal is transmitted through the wireless channel, there are multiple paths from the transmitting antenna to the receiving antenna. Multipath delay leads to frequency selective fading, which is the variation of the frequency domain channel. Therefore, the variation law of the channel in the frequency domain caused by the delay on different transmission paths can be represented by different frequency domain vectors.
  • K frequency domain vectors may be selected from the candidate frequency domain vector set.
  • the candidate frequency domain vector set may include one or more candidate frequency domain vectors (or frequency domain components), and the lengths of the candidate frequency domain components included in the candidate frequency domain vector set may be the same or different, and the candidate frequency domain vector set may be called candidate frequency domain.
  • the set of candidate frequency domain vectors can be pre-configured for the transmitting device and the receiving device.
  • an index value is used to identify the candidate frequency domain components in the candidate frequency domain vector set, and the index values of different candidate frequency domain components are different.
  • K frequency domain vectors can be selected from the orthogonal DFT base B 2 , where B 2 is an N f ⁇ N f matrix, and the elements included in B 2 are defined as 0 ⁇ m ⁇ N f -1, 0 ⁇ n ⁇ N f -1, N f column vectors are N f bases, and K bases can be selected from the N f bases as K frequency domain vectors.
  • j is the imaginary unit, and the square of j equals -1.
  • is pi.
  • the bases in the orthogonal DFT base B 2 are identified by index values, and the index values of different bases are different.
  • the K frequency domain vectors are agreed in a protocol, or configured by the sending device to the receiving device in advance. This method can be used for beamformed scenarios, for example.
  • the space-frequency combining coefficient matrix can be pre-configured
  • the value of K 0 is related to the number L of space domain vectors and the number K of frequency domain vectors,
  • the value of ⁇ can be ⁇ 3/4, 1/2, 1/4, 1/8 ⁇ .
  • the one or more features A when describing one or more features A for a feature A, such as a spatial vector, the one or more features A may be referred to as at least one feature A, or a feature A set or the like.
  • the one or more features A can be represented in various forms such as sets, lists, subsets, or elements in a set, etc., without limitation.
  • the one or more features A may also be referred to as one or more candidate features A, at least one candidate feature A, feature A candidate set, Or candidate feature A set, etc., without limitation.
  • the sending device After the sending device receives the channel information shown in the mode (2) of the collaborative reporting between the receiving device and other receiving devices, it restores the channel information according to the non-zero combining coefficient included in the channel information.
  • the spatial vector matrix is restored according to the indices of the L spatial vectors included in the channel information and the position information of the non-zero combining coefficients
  • the frequency domain vector matrix is restored according to the indices of the L spatial domain vectors included in the channel information and the position information of the non-zero combining coefficients
  • the transmitting device inversely deduces the space-frequency matrix W r according to formula (1). After the space-frequency matrix W r corresponding to each receiving antenna or space layer is obtained, according to the space-frequency matrix corresponding to each receiving antenna or space layer. W r obtains the precoding matrix corresponding to the frequency domain unit, and performs precoding processing on the downlink signal transmitted on the frequency domain unit according to the precoding matrix corresponding to the frequency domain unit and sends it out.
  • the information that the channel information includes the non-zero combining coefficients may include: the information of the non-zero combining coefficients in the combining coefficient matrices corresponding to the NRx (or N Layer ) space-frequency matrices corresponds one-to-one to the NRx carried in the channel information (or N Layer ) arrays, or, the information of the non-zero combining coefficients in the combining coefficient matrices corresponding to all the space-frequency matrices is carried in the same array in the channel information.
  • the specific carrying mode to be adopted may be pre-agreed by the receiving device and the sending device for dual transmission or stipulated by the agreement, and is not limited.
  • the channel information includes The value of the non-zero merging coefficients a i,j .
  • the space-frequency matrix W r can also be represented by the following formula (2).
  • represents the pair sum of the non-zero merging coefficients to be reported
  • c i is The i-th column vector of
  • b j is The jth row vector of
  • "*" represents multiplication calculation.
  • the sending device in order to obtain the channel information of the downlink channel, the sending device only needs to obtain a i,j , c i and b j .
  • the sending device can obtain a i,j , c i and b j in the following ways: the receiving device sends an uplink sounding reference signal (sounding reference signal, SRS) to the sending device, the sending device receives the SRS, and measures the SRS to obtain the sending device The channel status of the upstream channel with the receiving device.
  • the sending device transforms the uplink channel information as described in formula (2) to obtain the corresponding The position of the non-zero pooling coefficients in .
  • the downlink channel corresponds to corresponding to the upstream channel
  • the position of the non-zero combining coefficients is the same, and the values of the non-zero combining coefficients are different.
  • the transmitting device generates beamformed CSI-RS, that is, generates a space domain vector c i and a frequency domain vector b j at the position of each non-zero combining coefficient.
  • the receiving device feeds back the received a i,j to the sending device in sequence, and the sending device knows the space domain vector c i and the frequency domain vector b j corresponding to each a i, j, and can then recover the
  • the sending device playing beamformed CSI-RS may refer to sending the beamformed CSI-RS by the sending device.
  • the shaded parts in Figure 1b are the positions of the non-zero combining coefficients, and the transmitting device can play beamformed CSI-RS at these positions, that is, play (or send) the positions of these non-zero combining coefficients.
  • beamformed CSI-RS After receiving the beamformed CSI-RS at these positions, the receiving device measures the received beamformed CSI-RS to obtain the value of the non-zero combining coefficient, that is, the ai corresponding to the position of the non-zero combining coefficient is obtained.
  • the value of j the value of the non-zero combining coefficient is carried in the channel information and reported to the sending device.
  • the values of the non-zero combining coefficients included in the channel information may include: the values of the non-zero combining coefficients in the combining coefficient matrices corresponding to the N Rx (or N Layer ) space-frequency matrices correspond one-to-one and are carried in the channel information.
  • N Rx (or N Layer ) arrays or, the values of non-zero combining coefficients in combining coefficient matrices corresponding to all space-frequency matrices are carried in the same array in the channel information.
  • the specific carrying mode to be adopted may be pre-agreed by the receiving device and the sending device for dual transmission or stipulated by the agreement, and is not limited.
  • the above methods (1) to (3) have introduced several representation forms of channel information.
  • the channel information reported by each sending device eg, the first terminal, the second terminal, etc.
  • the channel information in the above three modes is only used for illustration, and the embodiments of the present application are not limited thereto.
  • the channel information in the embodiments of the present application may also be other forms of channel information.
  • the design method of the channel information to be reported by the sending device for collaboratively reporting the channel information is the same. If the terminal 1 and the terminal 2 need to collaboratively report the channel information, the terminal 1 and the terminal 2 can use the above-mentioned method (1).
  • the channel information can also be designed in the manner shown in the above (2) or the manner (3) to design the channel information.
  • the sending device is an access network device and the receiving device is a terminal as an example for description.
  • the method for reporting channel information can be applied to various communication systems, for example, a long term evolution (LTE) system, a fifth generation (5G) mobile communication system, a wireless fidelity (wireless) -fidelity, WiFi) system, future communication system, or a system integrating multiple communication systems, etc., which are not limited in this embodiment of the present application.
  • LTE long term evolution
  • 5G fifth generation
  • wireless fidelity wireless
  • WiFi wireless
  • future communication system or a system integrating multiple communication systems, etc.
  • NR new radio
  • the method for reporting channel information can be applied to various communication scenarios, for example, can be applied to one or more of the following communication scenarios: enhanced mobile broadband (eMBB), ultra-reliable and low-latency Communication (ultra-reliable low-latency communication, URLLC), machine type communication (machine type communication, MTC), massive machine type communication (massive machine type communication, mMTC), device-to-device (device-to-device, D2D) , vehicle outreach (vehicle to everything, V2X), vehicle to vehicle (vehicle to vehicle, V2V), and Internet of things (Internet of things, IoT), etc.
  • eMBB enhanced mobile broadband
  • URLLC ultra-reliable and low-latency Communication
  • MTC machine type communication
  • massive machine type communication massive machine type communication
  • mMTC massive machine type communication
  • device-to-device device-to-device
  • D2D vehicle outreach
  • V2X vehicle to vehicle
  • V2V vehicle to vehicle
  • IoT Internet of things
  • the method for reporting channel information provided by the embodiment of the present application is described below by taking the communication system shown in FIG. 2 as an example.
  • FIG. 2 is a schematic diagram of a communication system provided by an embodiment of the present application.
  • the communication system may include access network equipment and multiple terminals, and may also include core network equipment and the like.
  • the access network device may cover one or more cells, and the terminal may access the access network device in a cell covered by the access network device, and send uplink data to the access network device and/or receive downlink data sent by the access network device. Signal.
  • the terminals can communicate directly.
  • a device to device (device to device, D2D) technology can be used to realize direct communication between terminals.
  • the terminal may have NRx receive antennas.
  • Access network equipment and terminals can support the transmission of data streams through N Layer spatial layers. Access network equipment and terminals support signal transmission in N f frequency domain units.
  • FIG. 2 is only an exemplary frame diagram, and the number of nodes and the number of cells included in FIG. 2 is not limited. In addition to the functional nodes shown in FIG. 2 , other nodes may also be included, such as a gateway device, and/or an application server, etc., which are not limited.
  • the access network equipment communicates with the core network equipment in a wired or wireless manner, for example, communicates with each other through a next generation (NG) interface.
  • NG next generation
  • the access network equipment is mainly used to implement functions such as resource scheduling, radio resource management, and/or radio access control of the terminal.
  • the access network equipment may include any node among a base station, a wireless access point, a transmission receive point (TRP), a transmission point (TP), and some other access nodes.
  • the device for implementing the function of the access network device may be the access network device, or may be a device capable of supporting the access network device to realize the function, such as a chip system, and the device may be installed in the access network device. It can be used in the network access device or matched with the access network device.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the terminal may be a terminal equipment (terminal equipment), a user equipment (user equipment, UE), a mobile station (mobile station, MS), or a mobile terminal (mobile terminal, MT), and the like.
  • the terminal may be a mobile phone (mobile phone), a tablet computer, or a computer with a wireless transceiver function, and may also be a virtual reality (VR) terminal, an augmented reality (AR) terminal, or a wireless terminal in industrial control.
  • the device for realizing the function of the terminal may be a terminal, or a device capable of supporting the terminal to realize the function, such as a chip system, and the device may be installed in the terminal or used in combination with the terminal.
  • the method for reporting channel information provided by the embodiments of the present application is described below by taking the device for realizing the function of the terminal as the terminal as an example.
  • FIG. 3 is a schematic structural diagram of a communication device 300 according to an embodiment of the present application.
  • the communication device 300 may be a terminal or a chip or on-chip in the terminal. system.
  • the communication apparatus 300 may be the access network device or a chip or a system-on-chip in the access network device.
  • the communication apparatus 300 may include a processor 301 , a communication line 302 and a communication interface 303 . Further, the communication apparatus 300 may further include a memory 304 . The processor 301 , the memory 304 and the communication interface 303 may be connected through a communication line 302 .
  • the processor 301 may be a central processing unit (CPU), a general-purpose processor, a network processor (NP), a digital signal processing (DSP), a microprocessor, or a microcontroller. , programmable logic device (PLD) or any combination of them.
  • the processor 301 may also be other apparatuses with processing functions, such as circuits, devices, or software modules.
  • the communication line 302 is used to transmit information between components included in the communication device 300 .
  • the communication interface 303 is used for the communication apparatus 300 to communicate with other devices or other communication networks.
  • the other communication network may be Ethernet, radio access network (RAN), or wireless local area networks (WLAN), or the like.
  • the communication interface 303 may be an interface circuit, a pin, a radio frequency module, a transceiver or any device capable of implementing communication, wherein the radio frequency module may include an antenna, a radio frequency circuit, etc., and the radio frequency circuit may include a radio frequency integrated chip, a power amplifier, and the like.
  • Memory 304 for storing instructions.
  • the instructions may be computer programs.
  • the memory 304 may be a read-only memory (ROM) or other types of static storage devices that can store static information and/or instructions, or a random access memory (RAM) or a Other types of dynamic storage devices that store information and/or instructions, and may also be electrically erasable programmable read-only memory (EEPROM), compact disc read-only memory (CD- ROM) or other optical disk storage, optical disk storage, magnetic disk storage media or other magnetic storage devices.
  • ROM read-only memory
  • RAM random access memory
  • EEPROM electrically erasable programmable read-only memory
  • CD- ROM compact disc read-only memory
  • Optical disc storage includes compact disc, laser disc, optical disc, digital versatile disc, or blu-ray disc.
  • the memory 304 may exist independently of the processor 301 , or may be integrated with the processor 301 .
  • the memory 304 may be used to store instructions or program code or some data or the like.
  • the memory 304 may be located in the communication device 300, or may be located outside the communication device 300, which is not limited.
  • the processor 301 is configured to execute the instructions stored in the memory 304 to implement the method for reporting channel information provided by the following embodiments of the present application.
  • the processor 301 may include one or more CPUs, such as CPU0 and CPU1 in FIG. 3 .
  • the communication apparatus 300 includes a plurality of processors, for example, in addition to the processor 301 in FIG. 3 , a processor 307 may also be included.
  • the communication apparatus 300 further includes an output device 305 and an input device 306 .
  • the input device 306 is a device such as a keyboard, a mouse, a microphone or a joystick
  • the output device 305 is a device such as a display screen, a speaker, and the like.
  • the communication apparatus 300 may be a desktop computer, a portable computer, a network server, a mobile phone, a tablet computer, a wireless terminal, an embedded device, a chip system or a device with a similar structure in FIG. 3 .
  • the composition shown in FIG. 3 does not constitute a limitation on the communication device, and in addition to the components shown in FIG. 3 , the communication device may include more or less components than those shown in the figure, or combine some components , or a different component arrangement.
  • each device in the following embodiments may have the components shown in FIG. 3 .
  • the actions, terms, etc. involved in the various embodiments of the present application may refer to each other without limitation.
  • Report in this embodiment of the present application may be replaced with "feedback".
  • the names of the messages or the names of parameters in the messages exchanged between the devices are just an example, and other names may also be used in the specific implementation, which is not limited.
  • FIG. 4 is a flowchart of a method for reporting channel information provided by an embodiment of the present application. As shown in FIG. 4 , the method may include steps 401 to 403:
  • Step 401 The first terminal determines channel information of the first terminal.
  • the first terminal may be any terminal in FIG. 2 .
  • the first terminal may have NRx receive antennas.
  • the present application does not limit the polarization mode of the receiving antenna of the first terminal, and the receiving antenna of the first terminal may be a single-polarized antenna or a dual-polarized antenna.
  • the channel information of the first terminal may be used to indicate the channel state of the downlink channel between the first terminal and the access network device.
  • the channel information of the first terminal may include a channel matrix of a downlink channel between the first terminal and the access network device, such as a space-frequency matrix corresponding to NRx receiving and receiving antennas; or, as shown in the above manner (1), the channel information of the first terminal includes a precoding matrix of the downlink channel between the first terminal and the access network device, such as including space-frequency matrices corresponding to N Layer spatial layers; or, as shown in the above manner (2), the channel information of the first terminal includes a combining coefficient matrix information about some or all of the non-zero combining coefficients in The value of the non-zero merge coefficient in the middle.
  • Step 402 The first terminal reports the first information to the access network device.
  • the first information may be used to indicate part or all of the information in the first common information (common information) in the channel information of the first terminal and the channel information of the second terminal.
  • the first common information may be the same and/or similar information (or referred to as common information) in the channel information of the first terminal and the channel information of the second terminal.
  • the same and/or similar information in the channel information of different terminals may be referred to as the first common information, in other words, the first common information in the channel information of the first terminal and the first common information in the channel information of the second terminal
  • the first public information is the same and/or similar information.
  • the same and/or similar information in different sub-channel information of the same terminal may be referred to as second common information, which is described here in a unified manner, and similar situations will not be repeated below.
  • the channel information of the first terminal and the channel information of the second terminal may include one set of common information, or may include two or more sets of public information, and each set of public information may include The first public information is reported to the access network device with reference to the reporting method of the first public information.
  • the number of groups of common information included in the channel information of the first terminal and the channel information of the second terminal may be predetermined or determined by the access network device and instructed to the first terminal, or determined by the first terminal and instructed to the access network. access equipment.
  • the channel information of the second terminal may be used to indicate the channel state of the downlink channel between the second terminal and the access network device.
  • the second terminal may be a terminal in the same terminal group as the first terminal, or the second terminal may be a terminal that will join the terminal group where the first terminal is located.
  • the terminal group described in this embodiment of the present application may include one or more terminals capable of cooperatively feeding back/reporting channel information, and the same and/or similar information exists in the channel information of different terminals in the terminal group.
  • Example 1 The channel information of the first terminal includes N1 elements, the channel information of the second terminal includes N2 elements, the first common information may include N3 elements, and the N3 elements are the N1 elements of the first terminal and the second terminal.
  • the same element and/or similar element among the N2 elements of , N3 may be an integer greater than or equal to 1.
  • the same element may refer to an element with the same position and the same value among the N1 elements and the N2 elements.
  • the position of the same element in the N1 elements is the same as the position of the same element in the N2 elements.
  • the same position means that the elements in the space-frequency matrix corresponding to the receiving antennas of different terminals are at the same position, or the space-frequency corresponding to all the receiving antennas of different terminals is at the same position. A certain position in the matrix is the same.
  • the position of the X-th row and Y-th column of each space-frequency matrix in the two space-frequency matrices corresponding to the two receiving antennas of UE1 and the position of each space-frequency matrix in the four space-frequency matrices corresponding to the four receiving antennas of UE2 The X-th row and Y-th column of the matrix are in the same position.
  • the same position means that the element positions in the space-frequency matrices corresponding to the spatial layers of different terminals are the same, for example, the space corresponding to the first layer of UE1 is in the same position.
  • the X-th row and Y-th column of the frequency matrix and the X-th row and Y-th column of the space-frequency matrix corresponding to the first layer of UE2 are considered to be the same position.
  • the similar elements may refer to the elements of the N1 elements and the N2 elements in the same position and the difference value is smaller than the threshold.
  • the positions of the similar elements in the N1 elements are the same as the positions of the similar elements in the N2 elements.
  • the threshold may be preset as required or configured/indicated to the first terminal by the access network device.
  • the positions of the N1 elements and the N2 elements are the same and the difference value is smaller than the threshold may include: the positions of the N1 elements and the N2 elements are the same and the difference value of the binary values corresponding to the quantized bits obtained after quantization is smaller than the threshold.
  • the quantization bits obtained after the quantization of the values of N3 elements among the N1 elements are the same as the quantization bits obtained after the quantization of the values of the N3 elements among the N2 elements, and the quantization bits of the N1 elements are The positions of the N3 elements in the N1 elements are the same as the positions of the N3 elements in the N2 elements in the N2 elements, then the N3 elements in the N1 elements and the N3 elements in the N2 elements are the same.
  • the elements are similar elements; or, if the quantization bits obtained after quantization of N3 elements among the N1 elements are the same as the quantization bits obtained after quantization of the values of the N3 elements among the N2 elements, the probability is greater than the probability threshold, and N1 The positions of the N3 elements in the N1 elements are the same as the positions of the N3 elements in the N2 elements in the N2 elements, so the N3 elements are similar elements.
  • N1 and N2 are integers greater than or equal to 1, and N1 and N2 may be the same or different, that is, the number of elements included in the channel information of the first terminal is the same as the number of elements included in the channel information of the second terminal or different.
  • the precoding matrix corresponding to UE(1) includes 10 elements ⁇ (a11, a21, a31, a41 , a51), (a12, a22, a32, a42, a52) ⁇
  • the precoding matrix corresponding to UE(2) includes 10 elements ⁇ (b11, b21, b31, b41, b51), (b12, b22, b32, b42, b52) ⁇ as an example, for elements (a11, a21, a31, a41, a51) and (b11, b21, b31, b41, b51) at the same position, if (a11, a21, a31, a41, a51) and (b11, b21, b31, b41, b51) have the same value, then (a11, a21, a21, a31, a41, a51) have the same value, then (a11, a21,
  • the quantization bit after the amplitude quantization of a11 is 110011
  • the quantization bit obtained after the amplitude quantization of b11 is 110110
  • the 3 bits are the same, the lower 3 bits are different, and the difference between 110011 and 110110 is less than or equal to the threshold, then a11 and b11 are similar elements and can be included in the first common information.
  • the first common information which is the first common information may be indicated to the first terminal in advance by the access network device, for example, the position information of the N3 elements in the channel information of the first terminal may be indicated to the first terminal.
  • the channel information shown in Example 1 may include the channel matrix shown in way (1), the precoding matrix shown in way (1), or the information of non-zero combining coefficients shown in way (2).
  • the first common information including N3 elements may refer to location information and/or values including N3 elements.
  • the index of the frequency domain vector and the index of the space domain vector corresponding to the N3 elements may also be included.
  • Example 2 The channel information of the first terminal includes R1 sub-channel information, the channel information of the second terminal includes R2 sub-channel information, and the first common information may be R1 sub-channel information of the first terminal and R2 sub-channel information of the second terminal The value of the first position in .
  • R1 and R2 are integers greater than or equal to 1, and R1 and R2 may be the same or different, and are not limited.
  • R1 may be the number of receiving antennas N Rx of the first terminal or the number of layers (or spatial layers) N Layer . If R1 is the number of receiving antennas of the first terminal, the information of the R1 sub-channels may include the non-uniformity among the NRx combining coefficient matrices obtained by performing dual-domain compression on the space-frequency matrices corresponding to the NRx receiving antennas of the first terminal respectively. The value of the zero binning coefficient.
  • the R1 sub-channel information corresponds to N Layer layers
  • the R1 sub-channel information may include performing dual-domain compression processing on the space-frequency matrices corresponding to the N Layer spatial layer to obtain non-zero values in the N Layer combining coefficient matrices. The value of the merging coefficient.
  • R2 may be the number of receiving antennas or the number of layers (or spatial layers) of the second terminal. If R2 is the number of receiving antennas of the second terminal, the sub-channel information of R2 may include the sum of the non-zero combining coefficients in the combining coefficient matrix obtained by performing dual-domain compression on the space-frequency matrix corresponding to each receiving antenna of the second terminal respectively. value. If R2 is N Layer , the R2 sub-channel information corresponds to N Layer layers, and the R2 sub-channel information may include performing dual-domain compression processing on the space-frequency matrix corresponding to each spatial layer to obtain the non-zero combining coefficients in the combining coefficient matrix. value. That is, the channel information shown in Example 2 includes the values of the non-zero combining coefficients in the combining coefficient matrix shown in the mode (3).
  • the first position may be a position corresponding to an element with the same or similar value in the R1 subchannel information of the first terminal and the R2 subchannel information of the second terminal.
  • the similar value of the first position may include any one of the following situations: Case 1.
  • the value of the first position in the R1 sub-channel information of the first terminal is the same as the first position in the R2 sub-channel information of the second terminal.
  • the difference between the values of the positions is less than the threshold.
  • the threshold may be preset as required or configured/indicated to the first terminal by the access network device.
  • Case 2 The quantization bits obtained after the quantization of the value of the first position in the R1 sub-channel information of the first terminal are the same as or all of the quantized bits obtained after the value of the first position in the R2 sub-channel information of the second terminal is quantized. same.
  • Case 3 The difference between the quantized bits obtained after quantizing the value of the first position in the R1 sub-channel information of the first terminal and the quantization bit obtained after quantizing the value of the first position in the R2 sub-channel information of the second terminal is less than threshold.
  • Case 4 The probability that the quantized bits obtained after the quantization of the value of the first position in the R1 sub-channel information of the first terminal is the same as the quantized bit obtained after the quantization of the value of the first position in the R2 sub-channel information of the second terminal is greater than probability threshold.
  • the access network device may determine the location information of the first location in the channel information of the first terminal, and indicate the location information of the first location to the first terminal.
  • the first terminal may determine the first position, and indicate the position information of the first position to the access network device, which is not limited.
  • the space-frequency matrix corresponding to one spatial layer of UE1 and UE2 consists of 2L spatial vectors (or called beam vectors) and 16 Frequency domain vector construction.
  • the position of the non-zero combining coefficient is ⁇ the sixth frequency domain vector of beam vector 1, the seventh frequency domain vector of beam vector 1, the sixth frequency domain vector of beam vector 2, the seventh frequency domain vector of beam vector 2 frequency domain vector, the 10th frequency domain vector of the beam vector 2L, the 11th frequency domain vector of the beam vector 2L, the 14th frequency domain vector of the beam vector 2L ⁇ .
  • the seventh frequency domain vector of beam vector 1, and the sixth frequency domain vector of beam vector 2 ⁇ have the same value Or similarly, ⁇ the sixth frequency domain vector of beam vector 1, the seventh frequency domain vector of beam vector 1, the sixth frequency domain vector of beam vector 2 ⁇ can be called the first position, and the first public information includes The value of ⁇ the sixth frequency domain vector of beam vector 1, the seventh frequency domain vector of beam vector 1, and the sixth frequency domain vector of beam vector 2 ⁇ .
  • the first information may indicate some or all of the information in the first public information through several possible designs shown in the following first possible designs to sixth possible designs.
  • the first terminal may also report second information to the access network device, and the second information may be used to indicate that the channel information of the first terminal is in the channel information of the first terminal.
  • specific information may refer to information for the first terminal that is different from channel information of other terminals. Specifically, for the process of reporting the specific information by the first terminal, reference may be made to the description in the following embodiment corresponding to FIG. 7 .
  • the first terminal may process the first information by the first compressor, and report the codeword obtained by the compression processing to the access network device, so as to reduce the compression space when reporting the first information and improve resource utilization.
  • the first terminal may also process the second information through the second compressor, and report the compressed codeword to the access network device, so as to reduce the time for reporting the second information compressed space and improve resource utilization.
  • the first compressor is used for compressing the first information
  • the second compressor can be used for compressing the second information.
  • the compression parameters of the first compressor and the compression parameters of the second compressor may be indicated by the access network device to the first terminal.
  • the access network device may send second indication information to the first terminal, and the second indication information may be used for Indicates the compression parameters of the first compressor.
  • the access network device may send sixth indication information to the first terminal, where the sixth indication information may be used to indicate compression parameters of the second compressor.
  • the compression parameters of the first compressor and the compression parameters of the second compressor may be agreed upon by both the access network device and the terminal or predetermined by the agreement.
  • a compression parameter of a compressor may be used to indicate the compressor, to indicate a function that the compressor implements or assists to implement, and/or initialization parameters of the compressor, and the like.
  • the compression parameters of the compressor may include one or more of the following: the identifier of the neural network model, the information of the network structure corresponding to the neural network model, the network weight information corresponding to the neural network model, the neural network model. The identifier of the network structure corresponding to the network model and the identifier of the network weight corresponding to the neural network model.
  • the above steps 401 to 402 are described as an example of reporting the first information by the first terminal. It should be understood that other terminals, such as the second terminal, may also report part of the information in the first public information to the access network device by referring to the above steps. Or all the information, so that one or more terminals cooperate to report all the complete information in the first public information to the access network device.
  • part of the first public information reported by different terminals may not overlap or partially overlap, and part of the first public information reported by different terminals may be non-overlapping or partially overlapping.
  • the information constitutes the complete information of the first public information.
  • the compressors used when different terminals report part of the information in the first public information may be the same or different, and are not limited.
  • at least one terminal in the multiple terminals or at least one terminal with a smaller load may report all the information in the first public information
  • other terminals in the multiple terminals may report all the information in the first public information. There is no need to report the first public information.
  • the number of terminals reporting all the information of the first public information is greater than 1, the robustness of the information transmission can be improved, that is, as long as the access network device can receive the public information reported by at least one terminal.
  • Step 403 The access network device receives the first information, and determines common information in the channel information of the first terminal according to the first information.
  • the access network device receives the first information reported by the first terminal, and if the first information indicates all information of the first public information, restores all the information of the first public information according to the first information. If the first information indicates partial information of the first public information, the partial information of the first public information is recovered according to the first information. After other terminals have finished reporting other partial information of the first public information, the partial information of the first public information reported by the other terminals and the partial information of the first public information reported by the first terminal are combined to obtain the first public information.
  • the first terminal can obtain the channel information of the first terminal according to the first public information and the specific information of the first terminal, and determine the downlink channel between the first terminal and the access network device according to the channel information of the first terminal.
  • the matched precoding matrix performs precoding processing on the downlink signal to be sent to the first terminal according to the determined precoding matrix, and sends the precoded downlink signal to the terminal.
  • each terminal reports part or all of the common information, so that multiple terminals can cooperate/jointly report channel information and reduce signaling overhead.
  • the first information used to indicate all or part of the first public information may include any one of the following first possible design methods to sixth possible design methods:
  • the first information includes part or all of the information in the first public information.
  • all the information of the first common information may refer to information of all elements included in the first common information or values of all non-zero combining coefficients included in the first common information.
  • the first position is the sixth frequency domain unit of beam vector 1 and the seventh frequency domain unit of beam vector 1
  • the first information may include the value of the sixth frequency domain unit of beam vector 1 and the beam vector The value of the 7th frequency domain element of vector 1.
  • the partial information of the first public information may refer to some elements in the N3 elements or the value of some positions in the first position, or, the partial value of the comprehensive value of all the information of the first public information, such as the The ones or ten digits in the comprehensive value are taken as part of the value; or, the comprehensive value is converted into a binary bit string, and the upper or lower bits in the binary bit string are taken as part of the value.
  • the comprehensive value may refer to a value obtained by inputting all information into a preset calculation rule, and the preset calculation rule may be pre-agreed by the access network device and the terminal, or pre-determined by the protocol .
  • the preset calculation rule may include a function f(x), where x is an input variable of the function f(), and x may be all the information in the first public information.
  • the 10 elements can be divided into 2 parts, and the first information can include information of 5 elements in one of them.
  • the element is indicated to the access network device, and the information of the remaining 5 elements is reported to the access network device by the second terminal.
  • N3 elements are calculated to obtain a comprehensive value of 18, and the ten-digit value "value" is taken as part of the information in the first public information, and reported to the access network device by the first terminal.
  • the first information may include The value of the sixth frequency domain unit of beam vector 1 and the value of the seventh frequency domain unit of beam vector 1, one of these two values is reported by the first terminal to the access network device, and the other can be Reported to the access network device by the second terminal.
  • the first information specifically includes which information in the first public information can be indicated to the terminal by the access network device.
  • the access network device may indicate the location information of the first public information in the channel information of the first terminal to the first terminal; if the first information includes partial information of the first public information, before step 402, the access network device The location information of the partial information of the first public information in the channel information of the first terminal may be indicated to the first terminal, or, before step 402, the access network device may include the first public information in the channel information of the first terminal.
  • the location information of the first public information and the location information of the partial information of the first public information in the first public information are both indicated to the first terminal.
  • the first information includes quantized bits obtained by quantizing part of the first common information or all the information.
  • the first terminal may quantize all the information of the first public information according to a preset quantization manner, and carry the quantized quantized bits in the first information.
  • the first terminal quantizes part of the information of the first public information according to a preset quantization manner, and carries the quantized quantized bits in the first information, so as to reduce signaling overhead.
  • the quantization method may include uniform quantization or non-uniform quantization, and the quantization method and the length of the quantization bits may be configured by the access network device and indicated to the first terminal and the second terminal, or, the quantization method and the length of the quantization bits It can be pre-specified by agreement.
  • the first information includes all or part of the quantized bits obtained by quantizing all the information of the first common information.
  • the quantization bits obtained after quantizing all the information of the first public information may refer to: quantization bits obtained by inputting all the information of the first public information into the quantizer as input parameters.
  • a quantizer may include, but is not limited to, an analog-to-digital converter.
  • the first information includes all the bits in the quantized bits obtained after quantizing all the information of the first common information, and may include: In the case of Example 1, the first information includes the N3 elements obtained after inputting the above-mentioned N3 elements into the quantizer. Quantization bits; in the case of Example 2, the first information includes quantization bits obtained by inputting the value of the first position into the quantizer.
  • the first information includes all the bits in the quantized bits obtained after quantizing all the information of the first common information, which may be applicable to the first common information being the same information in the channel information of the first terminal and the channel information of the second terminal, That is, the scene of information with the same location and the same value.
  • the first public information can be reported by the first terminal to the access network device, and other terminals (such as the second terminal) do not need to report the first public information in their own channel information, reducing the confidence of other terminals reporting channel information. make overhead.
  • part of the bits in the quantized bits obtained by quantizing all the information including the first public information may include the following situations: Case 1: The first public information is the channel information of the first terminal and the second terminal. The same information in the channel information of the first common information is divided into multiple quantized bits corresponding to the first terminal and the second terminal, and the lengths of the quantized bits of different parts are the same or different. A piece of information includes the share of quantized bits corresponding to the first terminal. Case 2.
  • the first common information is similar information in the channel information of the first terminal and the channel information of the second terminal, the first information includes a first common bit, and the first common bit is the first common bit in the channel information of the first terminal.
  • the quantized bits of all the information of the common information and the quantized bits of all the information of the first common information in the channel information of the second terminal have the same value;
  • the number of bits corresponding to the terminal and the second terminal, and the first information includes the bit corresponding to the first terminal.
  • the part of the quantized bits of the quantized bits of all the information of the first common information except the first common bit belongs to the specific information of the first terminal. It can be reported to the access network device separately.
  • the part of the quantized bits of the quantized bits of all the information in the first public information except the first common bit belongs to the second terminal.
  • the second terminal may report the specific information to the access network device independently.
  • the first information including part of the first common information may be applicable to a scenario where the first common information is the same information and/or similar information in the channel information of the first terminal and the channel information of the second terminal.
  • the first information is used to indicate a relationship value between the first public information and the reference information.
  • the similar information in the channel information of any terminal among the multiple terminals is used as Reference Information.
  • the plurality of terminals may include terminals already in the terminal group or terminals to be added to the terminal group (similar information).
  • the terminal group may include multiple terminals that support cooperative reporting of channel information using the methods described in the embodiments of the present application.
  • the reference information may be pre-agreed by the terminal and the access network device or indicated to the first terminal by the access network device, which is not limited.
  • reference information may be pre-configured, for each of the multiple terminals.
  • at least one terminal among the multiple terminals cooperates to report the relationship value between the first public information and the preconfigured reference information to the access network device.
  • the reference information corresponding to each part of the information may be the same or different, which is not limited. Specifically, the third implementation manner can be referred to as shown in FIG. 5e below.
  • the first information is used to indicate the relationship value between the first public information and the reference information
  • the first information may include the first information used to indicate the relationship value between the first public information and the reference information, or the quantization bits after the relationship value is quantized, etc.
  • the relationship value between the first public information and the reference information may include: a deviation value between the first public information and the reference information, or a multiple value between the first public information and the reference information, or a normalization of the first public information The deviation value between the normalized value and the normalized value of the reference information.
  • the first terminal may acquire the reference information from the terminal corresponding to the reference information.
  • the first terminal can obtain the reference information from the third terminal by performing signaling interaction with the third terminal through the D2D technology according to the identifier of the third terminal. Specifically, the process can be referred to as shown in FIG. 6a below.
  • the identification information of the third terminal may be indicated to the first terminal by the access network device, so that the first terminal determines, according to the indication of the access network device, which terminal's similar information in the channel information can be used as reference information.
  • the first information is used to indicate a relationship value between the partial information of the first public information and the partial information of the reference information.
  • the partial information of the first public information and the related descriptions of the reference information are as described above, and will not be repeated.
  • the partial information of the reference information may include some elements in the reference information or a partial value of the comprehensive value of all the information of the reference information, and the relevant description of the comprehensive value may refer to the above.
  • the relationship value between the partial information of the first public information and the partial information of the reference information may include: a deviation value between the partial information of the first public information and the partial information of the reference information, or the partial information of the first public information
  • which form of the relationship value to use and which part of the reference information to use may be predetermined by the terminal and the access network device or pre-defined by the protocol.
  • the first information is used to indicate the relationship value between the first part of the bits and the second part of the bits, the first part of the bits Part of the quantized bits obtained after the reference information is quantized.
  • the length of the first part of the bit and the length of the second part of the bit may be the same or different.
  • the length of the first part of the bits and the position of the first part of the bits in the quantized bits obtained by quantizing the first common information may be indicated to the first terminal by the access network device.
  • the relationship value between the first part of the bits and the second part of the bits may include: the deviation value between the binary value corresponding to the first part of the bit and the binary value corresponding to the second part of the bit, or the binary value corresponding to the first part of the bit.
  • the form of the relationship value to be used may be predetermined by the terminal and the access network device or pre-determined by the protocol.
  • the terminal group includes (N-1) UEs: ⁇ UE(1), UE(2), ... UE(N-1) ⁇ , N is an integer greater than or equal to 3, the channel information of each UE is designed in the same way, for example, the channel information includes a channel matrix, and the same elements in the channel information of (N-1) UEs are common Information (common information) A, the specific information of UE(1) is B(1), the specific information of UE(2) is B(2), ........ the specific information of UE(N-1) is B(N-1).
  • the compressor used for processing common information is En(i).1, and the compressor used for processing specific information is En(i).2, where i is [1, (N-1)].
  • (N-1) UEs can cooperatively report public information A through the following steps 1 to 3.
  • Step 1 The access network device sends first indication information to each of the (N-1) UEs, indicates to the UE partial information and specific information corresponding to the UE, and indicates the compression parameters of each compressor to the UE.
  • the embodiments of the present application are not limited to indicating to the UE the partial information and specific information corresponding to the UE, and indicating the compression parameters of each compressor to the UE.
  • the compression parameters of the compressor may be pre-configured, and in this case, the access network device only needs to indicate to the UE some information and specific information corresponding to the UE.
  • the compression parameters of the compressor are also used to indicate partial information and specific information corresponding to the UE. In this case, the access network device only needs to indicate the compression parameters of each compressor to the UE.
  • Step 2 The i-th UE among the (N-1) UEs, according to the first indication information sent by the access network device, reports the partial information A(i) corresponding to itself after being processed by the compressor En(i).1 To the access network equipment, and to report its specific information to the access network equipment after being processed by the compressor En(i).2.
  • UE(1) obtains codeword C(1).1 after processing A(1) by compressor En(1).1, and reports C(1).1 to the access network equipment
  • UE(1) obtains the codeword C(1).2 after processing B(1) by the compressor En(1).2, and reports C(1).2 to the access network equipment
  • UE(2) After A(2) is processed by the compressor En(2).1, the code word C(2).1 is obtained, and C(2).1 is reported to the access network device, and the UE(2) passes B(2) through After processing by the compressor En(2).2, the codeword C(2).2 is obtained, and C(2).2 is reported to the access network device, and so on.
  • UE(N-1) sends A(N-1) ) is processed by the compressor En(N-1).1 to obtain the codeword C(N-1).1, and reports C(N-1).1 to the access network device, and the UE(N-1) sends B (N-1) After being processed by the compressor En(N-1).2, the code word C(N-1).2 is obtained, and C(N-1).2 is reported to the access network device.
  • Step 3 The access network device receives partial information and specific information reported by each UE, and determines channel information of each UE according to the partial information and specific information reported by each terminal.
  • the decompressor used by the access network device side to decompress the received codeword C(i).2 sent by UE(i) may be named De(i).2.
  • the decompressor used for decompressing the codeword corresponding to the received public information may be named De1.
  • the common information in the channel information of (N-1) terminals can be divided into (N-1) pieces of partial information, and each terminal reports its own partial information and its own specific information. information.
  • the received partial information reported by each terminal is combined to obtain common information, and the common information and the specific information of the terminal are combined to obtain the channel E matrix of the terminal. In this way, each terminal can report a part of information, thereby reducing the signaling overhead of the terminal.
  • the first method is to not update the public information A in the channel information of the original terminals in the terminal group, and not to Update/do not change the execution process of the original terminal.
  • the public information in the channel information of the newly added terminal is also A, and the newly added terminal only reports its own specific information.
  • the second is to not update the public information A in the channel information of the original terminal in the terminal group, so that the specific information of the original terminal in the terminal group can be guaranteed unchanged.
  • the default public information in the channel information of the newly added terminal is also: A, and make the newly added terminal also join the team for collaboratively reporting the public information A, that is, the newly added terminal shares part of the information in the public information reported.
  • the third method is to update the public information A to the public information A' in the channel information of the newly added terminal and the channel information of the original terminal in the terminal group, and the newly added terminal and the original terminal in the terminal group cooperate to report the public information with reference to FIG. 5a A'.
  • the terminal group includes (N-1) UEs: ⁇ UE(1), UE(2),...UE(N-1) ⁇ , where N is an integer greater than or equal to 3,
  • the channel information of each UE is designed in the same way.
  • the channel information includes a channel matrix, the same element in the channel information of (N-1) UEs is common information (common information) A, and the specific information of UE (1) is B (1), the specific information of UE(2) is B(2), whereas the specific information of UE(N-1) is B(N-1).
  • the compressor used for processing common information is En(i).1, and the compressor used for processing specific information is En(i).2, where i is [1, (N-1)].
  • UE(N) is a UE newly joining the terminal group.
  • Steps 1 to 3 corresponding to FIG. 5a are performed. That is, the original (N-1) UEs in the terminal group can still refer to FIG. 5a and report their own partial information and specific information according to the instructions of the access network equipment.
  • Step 4 The access network device determines to add the UE(N) to the terminal group. For the newly added UE(N), the access network device indicates to the UE(N) that the specific information B(N) of the UE(N) is in the terminal group. The location information in the channel information of the UE(N), and the compression parameter of the compressor En(N).2 that indicates to the UE(N) the specific information B(N) of the UE(N).
  • the access network device may determine to add the UE(N) to the terminal group according to the following manner: if the channel information of the UE(N) includes the same and/or similar information as the first common information, then determine to add the UE(N) to the terminal group. The UE(N) is added to the terminal group; or, if the distance between the UE(N) and each terminal in the terminal group is less than the distance threshold, it is determined to add the UE(N) to the terminal group.
  • Step 5 According to the instruction of the access network equipment, the UE(N) processes its own specific information B(N) through the compressor En(N).2 to obtain the codeword C(N). .2 Report to the access network equipment.
  • Step 6 The access network device receives the specific information C(N).2 reported by the UE(N), and decompresses the C(N).2 to obtain the specific information B(N). According to the specific information B of the UE(N) (N) and the determined common information A determine the channel information of the UE (N), for example, determine the channel matrix of the UE (N).
  • the access network device decompresses the received C1.1, C2.1.... and C(N-1).1 respectively to obtain A(1) , A(2). « and A(N-1), A(1), A(2), «A(N-1) are combined to obtain A, and A is combined with UE(N) specific information B(N) to recover the UE(N) channel matrix
  • the above-mentioned second collaborative reporting method will be described below with reference to Figure 5c: for the newly added terminal, it is not limited to reporting the specific information of the newly added terminal. Alternatively, the newly added terminal can also be combined with the original terminal in the terminal group. Collaborate to report public information together, that is, each terminal in the terminal group participates in the reporting of public information to achieve load balancing.
  • the terminal group includes (N-1) UEs: ⁇ UE(1), UE(2),...UE(N-1) ⁇ , where N is an integer greater than or equal to 3,
  • the channel information of each UE is designed in the same way.
  • the channel information includes a channel matrix, the same element in the channel information of (N-1) UEs is common information (common information) A, and the specific information of UE (1) is B (1), the specific information of UE(2) is B(2), whereas the specific information of UE(N-1) is B(N-1).
  • the compressor used for processing common information is En(i).1, and the compressor used for processing specific information is En(i).2, where i is [1, (N-1)].
  • the process of reporting specific information by each UE described in steps 1 to 3 in FIG. 5a is performed.
  • the access network device needs to re-indicate its corresponding partial information to each of the (N-1) UEs location information and/or compression parameters of the UE(i) compressor En(i).1.
  • Step 4 The access network device determines to add the UE(N) to the terminal group. For the newly added UE(N), the access network device indicates one or more of the following information to the UE(N): UE(N) ) location information of A(N)', compression parameters of UE(N) compressor En(N).1, UE(N) specific information B(N) location in UE(N) channel information information, and the compression parameters of the UE(N) compressor En(N).2.
  • the compression parameters of the compressor En(N).1 of the UE(N) can be used to compress the partial information A(N)' of the UE(N), and the compressor En(N).
  • the compression parameter of 1 may include information for indicating A(N)' of UE(N), such as location information of A(N)' of UE(N).
  • the compression parameters of the compressor En(N).2 of the UE(N) are used to compress the specific information B(N) of the UE(N).
  • the compression parameters of the compressor En(N).2 of the UE(N) Information for indicating B(N) of UE(N) may be included, such as location information of B(N) of UE(N).
  • the manner in which the access network device determines to add the UE(N) to the terminal group may refer to the description in FIG. 5b, which will not be repeated.
  • Step 5 According to the instruction of the access network equipment, the UE(N) processes its own specific information B(N) through the compressor En(N).2 to obtain the codeword C(N). .2 Report to the access network equipment.
  • the codeword C(N).1 is obtained after processing the partial information A(N)' of the compressor En(N).1, and the C(N).1 is reported to the access network device.
  • UE(1) processes A(1)' through the compressor En(N)1.1 to obtain the codeword C(1).1, and reports C(1).1 to the access network equipment
  • UE(2) obtains the code word C(2).1 after processing A(2)' by the compressor En(N)2.1, and reports C(2).1 to the access network equipment
  • UE(N-1) processes A(N-1)' through the compressor En(N-1).1 to obtain the codeword C(N-1).1, and reports C(N-1).1 to The access network device
  • the UE(N) obtains the code word C(N).1 after processing A(N)' by the compressor En(N).1, and reports C(N).1 to the access network device.
  • Step 6 The access network device receives part of the information reported by each UE in UE(1) to UE(N-1), and receives part of the information and specific information reported by UE(N), and determines the common information according to the part of the information reported by each terminal.
  • information A the channel information of each UE, such as the channel matrix of each UE, is determined according to the common information A and the specific information of each UE.
  • the access network device decompresses the received C(1).1, C(2).1.... and C(N).1 respectively, and obtains A(1)', A(2)'. «and A(N)', A(1)', A(2)', whilA(N)' Combining calculation to obtain A, combining A with the specific information B(1) of UE(1) to recover the channel matrix of UE(1) Similarly, the channel matrix of UE(N) is recovered by combining A with UE(N) specific information B(N)
  • the newly added terminal when a new terminal joins the terminal group that cooperatively reports channel information, the newly added terminal also participates in the reporting of public information, that is, the (N-1) terminal's
  • the public information in the channel information is divided into N pieces of partial information, and each terminal correspondingly reports its own piece of partial information.
  • the received partial information reported by each terminal is combined to obtain common information, and the common information and the specific information of the terminal are combined to obtain the channel information of the terminal. In this way, each terminal reports a part of information, which reduces the signaling overhead of the terminal.
  • the terminal group includes (N-1) UEs: ⁇ UE(1), UE(2),...UE(N-1) ⁇ , where N is an integer greater than or equal to 3,
  • the channel information of each UE is designed in the same way.
  • the channel information includes a channel matrix, the same element in the channel information of (N-1) UEs is common information (common information) A, and the specific information of UE (1) is B (1), the specific information of UE(2) is B(2), whereas the specific information of UE(N-1) is B(N-1).
  • UE(N) is a UE newly added to the terminal group
  • B(1)' the specific information of UE(2) is updated to B(2)', whereas
  • the specific information of UE(N) is B(N) '.
  • the compressor used to process common information is En(i).1, and the compressor used to process specific information is En(i).2, where i is [1, N].
  • Step 1 The access network device sends the first indication information to the UE(i) in the terminal group, indicating one or more of the following information to the UE(i): the partial information A(i) corresponding to the UE(i)” , the specific information B(i)' corresponding to the UE(i), the compression parameters of the compressor En(i).1 of the UE(i), and the compression parameters of the compressor En(i).2 of the UE(i).
  • Step 2 According to the first indication information sent by the access network device, the UE(i) reports the partial information A(i)" corresponding to itself to the access network device after being processed by the compressor En(i). Its own specific information B(i)' is processed by the compressor En(i).2 and then reported to the access network device.
  • UE(1) processes A(1)" through the compressor En(1).1 to obtain the codeword C(1).1, and reports C(1).1 to the access network equipment
  • UE(1) processes B(1)' through the compressor En(1).2 to obtain the codeword C(1).2, and reports C(1).2 to the access network equipment, UE(1).
  • Step 3 The access network device receives partial information and specific information reported by each UE, and determines channel information of each UE according to the partial information and specific information reported by each terminal.
  • the access network device decompresses the received C(1).1, C(2).1.... and C(N).1, respectively, to obtain A(1)", A(2)".&and A(N)", perform A(1)", A(2)",...A(N)” Combining calculation to obtain A', decompressing the received C(1).2 to obtain B(1)', and combining A' with the specific information B(1)' of UE(1) to restore UE(1)
  • the channel matrix of UE(N-1) is recovered by combining A" with UE(N-1) specific information B(N-1)'
  • the channel information of UE(N) is recovered by combining A" with the specific information of UE(N) B(N)'
  • the common information in the channel information of N terminals can be divided into N pieces of partial information, and each terminal correspondingly reports its own partial information and its own specific information.
  • the received partial information reported by each terminal is combined to obtain common information, and the common information and the specific information of the terminal are combined to obtain the channel information of the terminal. In this way, each terminal can report a part of information, thereby reducing the signaling overhead of the terminal.
  • 5b to 5d described above take adding a terminal to a terminal group as an example for description.
  • the implementation method is similar. For example, when a terminal exits, and the exiting terminal does not participate in reporting public information or other terminals report the public information reported by the terminal repeatedly, the public information reported by each terminal may not be updated.
  • the public information reported by other terminals in the terminal group is updated.
  • a reference information can also be pre-configured, and after the common information is divided into multiple pieces of partial information corresponding to multiple terminals, the partial information and the reference information are divided. The relationship value between them is reported to the access network. This method will be described below with reference to FIG. 5e.
  • the terminal group includes (N-1) UEs: ⁇ UE(1), UE(2),...UE(N-1) ⁇ , N is an integer greater than or equal to 3, and each The channel information of each UE is designed in the same way.
  • the channel information includes a channel matrix.
  • the specific information of UE(1) is B(1)
  • the specific information of UE(2) is B(2)
  • the specific information of UE(N-1) is B(N-1)
  • the compressor used to process the relationship value between the partial information and the reference information is En(i).1
  • the compressor used to process the specific information is En(i).2
  • the value of i is [1, (N- 1)].
  • (N-1) UEs can report the relationship value between their respective public information and the reference information through the following steps 1 to 3.
  • Step 1 The access network device sends first indication information to each of the (N-1) UEs, indicates to the UE partial information and specific information corresponding to the UE, and indicates the compression parameters of each compressor to the UE.
  • the access network device indicates the reference information S to UE(1), UE(2), . . . UE(N-1) in the terminal group.
  • Step 2 UE(1), UE(2), ?? UE(N-1) in the terminal group, according to the instructions of the access network equipment, establish the relationship between the part of the information corresponding to itself and the reference information
  • the value is processed by its own compressor En(i).1 and then reported to the access network device, and its own specific information is processed by the compressor En(i).2 and then reported to the access network device.
  • UE(1) passes the deviation value ⁇ 1 between A(1) and S through the compressor En(1). After 1 processing, the codeword C(1).1 is obtained, and C(1).1 is reported to the access network device, and the UE(1) processes B(1) through the compressor En(1).2 to obtain the codeword C(1).2, reporting C(1).2 to the access network device.
  • UE(2) obtains the code word C(2).1 after processing the deviation value ⁇ 2 between A(2) and S through the compressor En(2).1, and reports C(2).1 to the access network device
  • UE(2) obtains the codeword C(2).2 after processing B(2) by the compressor En(2).2, and reports C(2).2 to the access network device, and so on, UE(2).
  • N-1) After the deviation value ⁇ (N-1) of A(N-1) and S is processed by the compressor En(N-1).1, the code word C(N-1).1 is obtained, and the C(N-1).1 (N-1).1 is reported to the access network device, and UE(N-1) processes B(N-1) through the compressor En(N-1).2 to obtain the codeword C(N-1). 2. Report C(N-1).2 to the access network device.
  • Step 3 The access network device receives the relationship value between the partial information and the reference information reported by each UE and the specific information, and determines the channel information of each UE according to the relationship value and the specific information reported by each terminal.
  • the access network device decompresses the received C(1).1 to obtain ⁇ 1, and obtains partial information A(1) according to ⁇ 1 and the reference information S, and decompresses the received C(1). (2).1 is decompressed to obtain ⁇ 2, and partial information A(2) is obtained according to ⁇ 2 and the reference information S, and so on, until the received C(N-1).1 is decompressed to obtain ⁇ (N-1), and obtain partial information A(N-1) according to ⁇ (N-1) and reference information S.
  • the channel matrix of UE(1) is recovered For example, put the specific information B(1) of A and UE(1) into the channel matrix corresponding position in .
  • the channel matrix of UE(N-1) is recovered by combining A with UE(N-1) specific information B(N-1)
  • the public information in the channel information of the terminal can be divided into multiple pieces of partial information, and the relationship value between the partial information and the reference information and its own specific information can be reported to the access network device.
  • the value of is smaller, since the information bits corresponding to the relation value are less, the signaling overhead of the terminal can be reduced.
  • 5a to 5e above describe the joint reporting of channel information by multiple terminals by taking as an example that the same information exists in the channel information of multiple terminals.
  • the following is an example of the relationship between the common information and the reference information reported by the terminals in the terminal group to the access network equipment by taking the similar information as the public information and the similar information in the channel information of multiple terminals as an example to compare Fig. 4
  • multiple terminals jointly report the channel information for description.
  • the terminal group includes (N-1) UEs: ⁇ UE(1), UE(2), ... UE(N-1) ⁇ , N is an integer greater than or equal to 3, and each The channel information of each UE is designed in the same way.
  • the channel information includes a channel matrix, and the similar elements in the channel information of (N-1) UEs are used as common information.
  • the channel information of UE (1) The common information in the channel information of UE(2) is marked as A 1
  • the common information in the channel information of UE(2) is marked as A 2 , . . .
  • the common information in the channel information of UE(N-1) is marked as A N-1
  • the common information A N-1 in the channel information of the UE (N-1) is reference information, wherein A 1 , A 2 ?? A N-1 is similar information.
  • the specific information of UE(1) is B(1)
  • the specific information of UE(2) is B(2)
  • « the specific information of UE(N-1) is B(N-1) .
  • the compressor used to process the relationship value between the public information and the reference information is En(i).1, the compressor used to process the specific information is En(i).2, and the value of i is [1, (N- 1)].
  • (N-1) UEs may report their respective public information through the following steps 1 to 3.
  • Step 1 The access network device sends first indication information to each of the (N-1) UEs, indicates to the UE which information in the channel information of the UE is common information and which is specific information, and indicates to the UE Compression parameters for individual compressors.
  • the access network device indicates to the UE(1), UE(2), ... UE(N-2) in the terminal group that the reference information is included in the channel information of the UE(N-1), and informs the UE(N-1) (N-1) indicates that the common information in the channel information of the UE (N-1) is reference information.
  • Step 2 UE(1), UE(2), ?? UE(N-2) in the terminal group performs D2D interaction with UE(N-1) according to the instructions of the access network equipment, and from UE(N-1) -1) Obtain reference information A N-1 , UE(1), UE(2), ?? UE(N-2) pass the relationship value between its own public information and reference information through its own compressor After En(i).1 is processed, it is reported to the access network device, and its specific information is processed by the compressor En(i).2 and then reported to the access network device.
  • UE(N-1) reports the reference information to the access network device after being processed by its own compressor En(N-1).1, and reports its own specific information After being processed by the compressor En(N-2).2, it is reported to the access network device.
  • UE(1) passes the deviation value ⁇ 1 between A 1 and A N- 1 through the compressor En(1) After .1 processing, the code word C(1).1 is obtained, and C(1).1 is reported to the access network device, and the UE(1) processes B(1) through the compressor En(1).2 to obtain the code word The word C(1).2, reports C(1).2 to the access network device.
  • UE(2) obtains the code word C(2).1 after processing the deviation value ⁇ 2 between A 2 and A N-1 by the compressor En(2).1, and reports C(2).1 to the access network equipment
  • UE(2) obtains the codeword C(2).2 after processing B(2) by the compressor En(2).2, and reports C(2).2 to the access network equipment
  • UE(N-1) obtains the codeword C(N-1).1 after processing its own reference information A N-1 by the compressor En(N-1).1, and reports C(N-1).1
  • UE(N-1) processes B(N-1) through the compressor En(N-1).2 to obtain the codeword C(N-1).2, and converts C(N-1). ).2 report to the access network equipment.
  • Step 3 The access network device receives the relationship value between the public information and the reference information and the specific information reported by each UE, and determines the channel information of each UE according to the relationship value and the specific information reported by each terminal.
  • the access network device decompresses the received C(N-1).1 to obtain reference information A N-1 , and decompresses C(1).1, C(2).1. ...and C(N-2).1 are decompressed to obtain relational values ⁇ 1, ⁇ 2, ising ⁇ (N-2), and according to the reference information A N-1 and The relationship value ⁇ 1 obtains the public information A 1 , and the public information A 2 is obtained according to the reference information A N-1 and the relationship value ⁇ 2, Vietnamese, according to the reference information A N-1 and the relationship value ⁇ (N-2) Get public information AN-2 .
  • the access network device if the terminal corresponding to the reference information, such as UE(N-1), leaves the terminal group, the access network device also needs to send indication information to each terminal, indicating that UE(N-1) Exit the terminal group, no longer use the information included in the channel information of the UE(N-1) as the reference information, and use the new reference information or the terminal corresponding to the new reference information (such as the above UE(N-2) or other UEs)
  • the identification information of the terminal group is indicated to each terminal still in the terminal group.
  • the relationship value between the public information and the reference information in the channel information of the terminal and its own specific information can be reported to the access network device.
  • the received information reported by each terminal and the reference information are calculated to obtain the public information of the terminal, and the channel information of the terminal is obtained by combining the public information and the specific information of the terminal.
  • each terminal can report the relationship value between the public information and the reference information. Since the value of the relationship value is small and the information bits corresponding to the relationship value are less, signaling overhead of the terminal can be reduced.
  • the access network device may send indication information to the newly added terminal, indicating which terminal the reference information belongs to, so that the newly added terminal corresponds to the reference information.
  • the terminal obtains the reference information, or, if the reference information is updated to the channel information of the newly added terminal, the access network device may re-send indication information to each terminal, indicating the identification information of the newly added terminal, so that the terminal can re-enter the terminal according to the newly added terminal.
  • the identification information of the terminal is obtained as reference information.
  • the following description takes the channel information of the newly added terminal as the reference information as an example:
  • the terminal group includes (N-1) UEs: ⁇ UE(1), UE(2),...UE(N-1) ⁇ , N is an integer greater than or equal to 3, and each The channel information of each UE is designed in the same way.
  • the channel information includes a channel matrix, and the similar elements in the channel information of (N-1) UEs are used as common information.
  • the common information in the channel information of UE(2) is marked as A 1
  • the common information in the channel information of UE(2) is marked as A 2 , . . .
  • the common information in the channel information of UE(N-1) is marked as A N-1
  • the common information A N-1 in the channel information of the UE (N-1) is reference information, wherein A 1 , A 2 ?? A N-1 is similar information.
  • the specific information of UE(1) is B(1)
  • the specific information of UE(2) is B(2)
  • « the specific information of UE(N-1) is B(N-1) .
  • the compressor used to process the relationship value between the public information and the reference information is En(i).1, the compressor used to process the specific information is En(i).2, and the value of i is [1, (N- 1)].
  • Steps 1 to 3 corresponding to FIG. 6a are performed.
  • UE(N) joins the terminal group, and it is determined to update the reference information A N-1 to the information A N , A 1 , A 2 . . . in the channel information of the newly joined UE(N). ....A N-1 , A N is similar information, continue to perform steps 4 to 6:
  • Step 4 The access network device determines to add the UE(N) to the terminal group. For the newly added UE(N), the access network device determines to use AN in the channel information of the UE( N ) as the reference information, then Indicate the identification information of UE(N) to each of the original (N-1) UEs, indicate to UE(N) that AN in the channel information of UE( N ) is reference information, and indicate to UE(N) Indicates one or more of the following information: the location of A N in the channel information of UE(N), the location of UE(N) specific information B(N) in the channel information of UE(N), the location of UE(N) in the channel information of UE(N) ) of the compressor En(N).1 and the compression parameter of the UE(N) compressor En(i).2.
  • Step 5 According to the instruction of the access network equipment, the UE(N) processes the A N in the channel information through the compressor En(N).1 to obtain the code word C(N).1, and converts the C(N).1 Report it to the access network device, and process its own specific information B(N) through the compressor En(N).2 to obtain the code word C(N).2, and report C(N).2 to the access network equipment.
  • the i-th UE among the (N-1) UEs performs D2D interaction with the UE(N) according to the instructions of the access network equipment, obtains the reference information A N , and compares the public information A i of the i-th UE with the reference information A
  • the relationship value between N is reported to the access network device after being processed by the compressor En(i).1, and its specific information is reported to the access network device after being processed by the compressor En(i).2.
  • Step 6 The access network device receives the relationship value between the public information and the reference information and the specific information reported by each UE, and determines the channel information of each UE according to the relationship value and the specific information reported by each terminal.
  • the access network device decompresses the received C(N).1 to obtain reference information A N , and decompresses C(1).1, C(2).1... .. and C( N -1).1 are decompressed to obtain relational values ⁇ 1, ⁇ 2, Vietnamese For information A 1 , common information A 2 , . Decompress the received C(1).2 to obtain B(1), and combine A1 with the specific information B( 1 ) of UE(1) to recover the channel matrix of UE(1). For example, put the specific information B(1) of A 1 and UE(1) into the channel matrix corresponding position in . Similarly, the channel matrix of UE(N-1) is recovered by combining A N with UE(N) specific information B(N)
  • the access network device if the UE(N) corresponding to the reference information exits the terminal group, the access network device also needs to send indication information to each terminal, instructing the UE(N) to exit the terminal group and no longer use the terminal group.
  • the information included in the channel information of the UE(N) is used as reference information, and the new reference information or the identification information of the terminal (such as the UE(N-2) or other UEs) corresponding to the new reference information is indicated to the terminal group and the terminal group. at each terminal.
  • the relationship value between the public information and the reference information in the channel information of the terminal and its own specific information can be reported to the access network device.
  • the received information reported by each terminal and the reference information are calculated to obtain the public information of the terminal, and the channel information of the terminal is obtained by combining the public information and the specific information of the terminal.
  • each terminal can report the relationship value between the public information and the reference information. Since the value of the relationship value is small and the information bits corresponding to the relationship value are less, signaling overhead of the terminal can be reduced.
  • sub-channel information there may be two or more sub-channels between a single terminal and an access network device, and the channel information of different sub-channels (may be referred to as sub-channel information herein) may have the same and/or different sub-channels. Or similar information, that is, redundant information, if all the channel information of each sub-channel is reported to the access network device, it will cause waste of transmission resources.
  • sub-channel information may be referred to as sub-channel information herein
  • similar information that is, redundant information, if all the channel information of each sub-channel is reported to the access network device, it will cause waste of transmission resources.
  • one copy may be reported to the access network device to reduce signaling. overhead. This method is shown in FIG. 7 .
  • the manner in which the terminal reports channel information of different subchannels shown in FIG. 7 is performed in combination with the manner in which multiple terminals cooperatively report common information as shown in FIG.
  • the terminal cooperatively reports the public information to be performed independently, that is, the method shown in FIG. 7 may be performed independently as a specific embodiment.
  • the method shown in FIG. 7 may be performed independently as a specific embodiment.
  • a single terminal reports channel information, for the same and/or similar information in the channel information of different subchannels
  • one copy can be reported to the access network device with reference to the method shown in FIG. 7 to reduce signaling overhead.
  • the method shown in FIG. 7 if the channel information of the sub-channel of the first terminal contains the same and/or similar information as the channel information of other terminals, the method shown in FIG.
  • Common information of each terminal as for the specific information of the first terminal, if the specific information of the first terminal is scattered and included in multiple sub-channel information, and the same and/or similar information exists in the specific information included in the multiple sub-channel information, it can be It is sufficient to report one copy of the same and/or similar information in the fixed information to the access network device by using the method shown in the following FIG. 7 to reduce signaling overhead.
  • FIG. 7 is a flowchart of a method for reporting channel information provided by an embodiment of the present application.
  • the method shown in FIG. 7 may be applicable to a MU-MIMO scenario or a scenario where a single terminal reports channel information.
  • the method may include steps 701 to 703:
  • Step 701 The first terminal determines channel information of the first terminal.
  • the first terminal may be any terminal in FIG. 2 .
  • the first terminal may have NRx receive antennas.
  • the present application does not limit the polarization mode of the receiving antenna of the first terminal, and the receiving antenna of the first terminal may be a single-polarized antenna or a dual-polarized antenna.
  • the channel information of the first terminal may include information of R1 sub-channels, and R1 may be the number of receiving antennas N Rx or the number of layers (or spatial layers) N Layer of the first terminal.
  • R1 is the number NRx of receiving antennas of the first terminal, there are NRx subchannels corresponding to the NRx receiving antennas one-to-one between the first terminal and the access network device.
  • the R1 sub-channel information may refer to the channel information of the R1 sub-channels.
  • a sub-channel information may include a space-frequency matrix corresponding to a receiving antenna (or a channel matrix corresponding to a receiving antenna) or a space-frequency matrix corresponding to a receiving antenna.
  • the information of the non-zero merging coefficients in the merging coefficient matrix of the The value of the non-zero combining coefficients in the combining coefficient matrix corresponding to the space-frequency matrix corresponding to the receiving antenna.
  • R1 is the number of spatial layers N Layer of the first terminal, there are N Layer subchannels corresponding to the N Layer access antennas one-to-one between the first terminal and the access network device, and the R1 subchannel information may refer to the N Layer subchannels
  • a sub-channel information may include a space-frequency matrix corresponding to a spatial layer (or a precoding matrix corresponding to a spatial layer) or a non-zero value in the combining coefficient matrix corresponding to a space-frequency matrix corresponding to a spatial layer.
  • the information of the merging coefficients (such as position information, value, the index of the corresponding frequency-domain vector, and/or the index of the spatial-domain vector), or, as shown in the above-mentioned method (3), includes a space-frequency matrix corresponding to a spatial layer.
  • the channel information of the first terminal may be determined with reference to the foregoing manner (1) or manner (2) or manner (3).
  • Step 702 The first terminal reports the third information and the R pieces of fourth information to the access network device.
  • the third information may be used to indicate all or part of the second common information in the channel information of the first terminal, and the second common information is the same information and/or similar information in the R1 sub-channel information of the first terminal .
  • the same information and similar information reference may be made to the description in the embodiment corresponding to FIG. 4 .
  • the R1 sub-channel information of the first terminal may include one group of common information, or may include two or more groups of common information.
  • the number of groups of common information included in the channel information of the first terminal may be predetermined or determined by the access network device and indicated to the first terminal, or determined by the first terminal and indicated to the access network device.
  • the second common information may include the same and/or similar information in the information other than the first common information in the R1 sub-channel information, or the second common information may include the information of the first terminal.
  • the first common information in the channel information this part of the information is specific to the first terminal and different from other terminals, but this part of the information is the same and/or similar in the R1 sub-channel information.
  • the second common information is the same and/or similar information in all the channel information corresponding to the R1 subchannels of the first terminal.
  • the second common information may include N4 elements in the R1 sub-channel information of the first terminal, where the N4 elements are the same or similar elements in the R1 sub-channel information.
  • the same element may refer to an element with the same position and the same value in different sub-channel information
  • a similar element may refer to an element in the different sub-channel information with the same position and a difference value smaller than a threshold.
  • the same element or similar element has the same position in the R1 sub-channel information.
  • UE1 includes two receiving antennas: receiving antenna 1 and receiving antenna 2.
  • the positions of the X-th row and Y-th column in the space-frequency matrix corresponding to the receiving antenna 1 of UE1 are the same as those in the space-frequency matrix corresponding to the receiving antenna 2 of UE1.
  • the positions and values of the Xth row and the Yth column are the same, and the elements of the Xth row and the Yth column may be used as the second common information.
  • the sub-channel information includes values of non-zero combining coefficients
  • the R1 sub-channel information of the first terminal includes values of non-zero combining coefficients of N Rx or N Layer groups
  • the second common information may be the first terminal.
  • UE1 includes two receiving antennas: receiving antenna 1 and receiving antenna 2.
  • the receiving antenna 1 of UE1 corresponds to a set of values at the positions of non-zero combining coefficients
  • the receiving antenna 2 corresponds to a set of values at the positions of non-zero combining coefficients.
  • the second position may be the position corresponding to the following public information 1 and public information 2 in FIG. 8a.
  • the R pieces of fourth information correspond to R pieces of sub-channel information in the R1 pieces of sub-channel information, the fourth pieces of information may be used to indicate specific information in the sub-channel information corresponding to the fourth pieces of information, and R is a natural number less than or equal to R1.
  • step 702 may be replaced by the first terminal reporting the third information to the access network device.
  • the third information can be designed with reference to the design forms of the first information in the above-mentioned first possible designs to sixth possible designs, for example, the third information includes part or all of the information in the second public information; Or, the third information includes some or all bits in the quantized bits obtained after all the information is quantized; or, the third information is used to indicate the relationship value between the second public information and the reference information, etc.
  • the method can refer to the descriptions in the first possible design to the sixth possible design, and will not be described in detail.
  • the third information can be used to indicate all the information of the second common information; if the second common information is the R1 sub-channels of the first terminal similar information in the information, the third information may be used to indicate part of the information in the second common information, such as indicating the same bits in the quantized bits obtained by quantizing the similar information.
  • the first terminal before the first terminal performs step 702, the first terminal also needs to know one or more of the following information: the number of groups of public information included in the channel information of the first terminal, the number of each The number of elements in the group common information, the value of the elements in each group of common information/quantization parameters (such as quantization method, the number of quantization bits, etc.) Quantization parameters for elements in a specific information. All of the information may be indicated to the first terminal by the access network device, or the access network device may indicate part of the information to the first terminal, while the remaining part of the information is determined by the first terminal and notified to the access network device, Or pre-specified and indicated to the access network device and the first terminal.
  • All of the information may be indicated to the first terminal by the access network device, or the access network device may indicate part of the information to the first terminal, while the remaining part of the information is determined by the first terminal and notified to the access network device, Or pre-specified and indicated to the access network device and the first terminal.
  • Step 703 The access network device receives the third information and the R pieces of fourth information, and determines the channel information of the first terminal according to the third information and the R pieces of fourth information.
  • the access network device receives the third information reported by the first terminal, and restores all the information of the second public information according to the third information. If the third information indicates the second public information, the channel information of the first terminal is obtained by combining the second public information with the R pieces of fourth information reported by the first terminal.
  • the access network device determines a precoding matrix matching the downlink channel between the first terminal and the access network device according to the channel information of the first terminal, and according to the determined precoding matrix, the data to be reported to the first terminal is to be The signal is precoded, and the precoded signal is reported to the terminal.
  • the terminal can report the same information in the R1 sub-channel information to the access network device, and for different receiving antennas or layer-specific information of the terminal, the specific information in one sub-channel information is sent to the access network device.
  • One copy of the access network device is used, and multiple copies of the specific information of multiple sub-channel information are reported. In this way, repeated reporting of the same information to the access network device can be avoided, and signaling overhead can be reduced.
  • R is less than R1
  • for the R1 minus R subchannels it can be considered that there is no specific information about the R1 minus the R subchannels, that is, the channel of the R1 minus the R subchannels can be obtained through the second common information. information.
  • the first terminal is UE1 as an example, the method for a single terminal to cooperatively report the public information in its own R1 sub-channel information is described.
  • UE1 has two receiving antennas Rx1 and Rx2, and the access network device sends (or sends) beamformed CSI-RS of 9 ports (port) to UE1 in sequence, of which the first 4 beamformed CSI-RS are The first group of public information (Public Information 1 in Figure 8a), the 5th-6th beamformed CSI-RS in the middle is the second group of public information (Public Information 2 in Figure 8a), the 7th and 8th beamformed The CSI-RS is Rx1 specific, and the ninth beamformed CSI-RS is Rx2 specific.
  • the access network device indicates to UE1 which beamformed CSI-RSs are common information, which are specific, quantization parameters of public information, quantization parameters of specific information, and the like.
  • all of these information may be indicated to UE1 by the access network device, or, part of the information may be indicated to UE1 by the access network device, and the remaining part of the information may be determined by UE1 and notified to the access network device, or It is pre-defined and indicated to the access network equipment and UE1.
  • UE1 uses two receiving antennas Rx1 and Rx2 to receive the beamformed CSI-RS of 9 ports that the access network equipment sequentially broadcasts (or sends) to UE1. As shown in Figure 8a, UE1 receives the received CSI-RS at the following position corresponding to Rx1.
  • the beamformed CSI-RS from the network access device ⁇ the 6th frequency domain vector of beam vector 1, the 7th frequency domain vector of beam vector 1, the 14th frequency domain vector of beam vector 1, the 6th frequency domain vector of beam vector 2 frequency domain vector, 7th frequency domain vector of beamvector 2, 14th frequency domain vector of beam vector 2, 10th frequency domain vector of beam vector 2L, 11th frequency domain vector of beam vector 2L ⁇ , and
  • the beamformed CSI-RS from the access network device is received at the following position corresponding to Rx2 ⁇ the sixth frequency domain vector of beam vector 1, the seventh frequency domain vector of beam vector 1, the sixth frequency domain vector of beam vector 2 domain vector, the 7th frequency domain vector of beam vector 2, the 10th frequency domain vector of beam vector 2L, the 11th frequency domain vector of beam vector 2L, the 14th frequency domain vector of beam vector 2L ⁇ .
  • the position of the non-zero combining coefficient corresponds to the pattern filling part
  • the position of the non-zero combining coefficient ⁇ the sixth frequency domain vector of beam vector 1, the seventh frequency domain vector of beam vector 1, the sixth frequency domain vector of beam vector 2 frequency domain vector, the 7th frequency domain vector of beam vector 2 ⁇ corresponds to common information 1
  • the non-zero combining coefficient position ⁇ the 10th frequency domain vector of beam vector 2L, the 11th frequency domain vector of beam vector 2L ⁇ corresponds to Common information 2
  • the specific information corresponding to Rx1 is the value of the non-zero combining coefficient position ⁇ the 14th frequency domain vector of beam vector 1, the 14th frequency domain vector of beam vector 2 ⁇
  • the specific information corresponding to Rx2 is non-zero Combined coefficient position: the value of the 14th frequency domain vector of the beam vector 2L.
  • UE1 includes the public information 1 After quantification, we get a binary bit string of length 7, The upper 5 bits of the binary bit strings are the same, and UE1 can only feed back a copy of the upper 5 binary bits to the access network device. Similarly, including public information 2 After quantification, we get a binary bit string of length 6, The upper 4 bits of each binary bit string are the same. UE1 can only feed back a copy of the upper 4 binary bits to the access network device. The remaining lower bits are different for the receiving antenna Rx1 and the receiving antenna Rx2. A copy of the antenna Rx feedback. In addition, for the specific information of the receiving antenna Rx1 UE1 feeds back a copy of the specific information for the receiving antenna Rx2 UE1 feedback a copy.
  • the access network device sends (or sends) beamformed CSI-RS of 9 ports to UE1 and UE2 in sequence, of which the first 4 beamformed CSI-RS are the first group of public information (as shown in the figure).
  • the 5th to 6th beamformed CSI-RS in the middle are the second group of public information (public information 2 in Figure 8c)
  • the 7th and 8th beamformed CSI-RS are UE1 specific
  • the The 9 beamformed CSI-RSs are UE2 specific.
  • the access network device indicates to UE1 and UE2 which beamformed CSI-RSs are public information, which are specific, quantization parameters of public information, quantization parameters of specific information, and the like.
  • all of these information may be indicated to UE1 and UE2 by the access network device, or, part of the information may be indicated to UE1 and UE2 by the access network device, while the remaining part of the information is determined by UE1 and UE2 and notified to The access network equipment, or pre-specified and indicated to the access network equipment and UE1 and UE2.
  • UE1 and UE2 use the receiving antenna to receive the beamformed CSI-RS of 9 ports that the access network equipment plays (or sends) in sequence.
  • UE1 receives the beamformed CSI-RS played by the access network equipment at the following position ⁇ The 6th frequency domain vector of beam vector 1, the 7th frequency domain vector of beam vector 1, the 14th frequency domain vector of beam vector 1, the 6th frequency domain vector of beam vector 2, the 1st frequency domain vector of beam vector 2 7 frequency domain vectors, the 14th frequency domain vector of beam vector 2, the 10th frequency domain vector of beam vector 2L, the 11th frequency domain vector of beam vector 2L ⁇
  • UE2 receives the access network equipment at the following location Hit beamformed CSI-RS ⁇ The 6th frequency domain vector of beam vector 1, the 7th frequency domain vector of beam vector 1, the 6th frequency domain vector of beam vector 2, the 7th frequency domain vector of beam vector 2 , the 10th frequency domain vector of the beam vector 2L, the 11th frequency domain vector of the beam vector 2L, the 14th frequency domain vector
  • the position of the non-zero combining coefficient corresponds to the pattern filling part
  • the position of the non-zero combining coefficient ⁇ the sixth frequency domain vector of beam vector 1, the seventh frequency domain vector of beam vector 1, the sixth frequency domain vector of beam vector 2 frequency domain vector, the 7th frequency domain vector of beam vector 2 ⁇ corresponds to common information 1
  • the non-zero combining coefficient position ⁇ the 10th frequency domain vector of beam vector 2L, the 11th frequency domain vector of beam vector 2L ⁇ corresponds to Common information 2
  • the specific information corresponding to UE1 is the value of the non-zero combining coefficient position ⁇ the 14th frequency domain vector of beam vector 1, the 14th frequency domain vector of beam vector 2 ⁇
  • the specific information corresponding to UE2 is non-zero Merging coefficient position: the value of the 14th frequency domain vector of the beam vector 2L.
  • the public information 1 includes After quantification, we get a binary bit string of length 11, The upper 5 bits of a binary bit string It is the same for UE1 and UE2, and can be fed back by UE1 and UE2 cooperatively, such as UE1 feedback or UE2 feedback Or, UE1 feedback The middle part of the bits, such as the first 3 bits, the UE2 feedback part of the bits, such as the upper 5 bits The last 2 bits in , etc. The last 6 bits of the binary bit string are different for UE1 and UE2, and they feed back their respective last 6 bits.
  • the first 4 bits of the last 6 bits are is the same information in multiple sub-channel information of UE1, then UE1 feeds back the first 4 bits of the last 6 bits to the access network device That is, the last two of the last 6 bits are different for different receiving antennas RX of UE1, so UE1 feeds back one copy of RX for each receiving antenna.
  • a binary bit string of length 8 The upper 4 bits of the binary bit string are the same for UE1 and UE2, and can be fed back by UE1 and UE2 cooperatively, such as UE1 feedback or UE2 feedback, or UE1 feeds back some bits, such as the first 2 bits, and UE2 feeds back some bits, such as The last 2 bits in the upper 4 bits, etc.
  • the last 4 bits of the binary bit string are different for UE1 and UE2, and the last 4 bits are fed back respectively.
  • the first 2 bits in the last 4 bits of the binary bit string are the same information in the multiple sub-channel information corresponding to the multiple receiving antennas RX of UE1, then UE1 feeds back a copy of the first 2 bits among the last 4 bits to the access network device
  • the last two bits in the last four bits are different for different receiving antennas RX of UE1, so UE1 feeds back one copy of RX for each receiving antenna.
  • bit string of length 5 For UE2 specific information: A bit string of length 5, for different receiving antennas R X of UE2, the first 2 bits in the bit string of length 5 is the same information in multiple sub-channel information corresponding to multiple receiving antennas R X of UE2, then UE2 feeds back a copy to the access network device Then the last three bits are different for different receiving antennas R X of UE2, so UE2 feeds back one copy for each receiving antenna R X.
  • each node such as an access network device and a terminal, includes hardware structures and/or software modules corresponding to executing each function in order to implement the above functions.
  • each node such as an access network device and a terminal
  • each node includes hardware structures and/or software modules corresponding to executing each function in order to implement the above functions.
  • the methods of the embodiments of the present application can be implemented in hardware, software, or a combination of hardware and computer software. Whether a function is performed by hardware or computer software driving hardware depends on the specific application and design constraints of the technical solution. Skilled artisans may implement the described functionality using different methods for each particular application, but such implementations should not be considered beyond the scope of this application.
  • the access network equipment and the terminal may be divided into functional modules according to the foregoing method examples.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware, and can also be implemented in the form of software function modules. It should be noted that, the division of modules in the embodiments of the present application is schematic, and is only a logical function division, and there may be other division manners in actual implementation.
  • FIG. 9 shows a structural diagram of a communication device 90.
  • the communication device 90 may be a first terminal, a chip in the first terminal, a system-on-chip, or other devices capable of implementing the functions of the first terminal in the above method.
  • the communication apparatus 90 may be configured to perform the functions of the first terminal involved in the foregoing method embodiments.
  • the communication apparatus 90 shown in FIG. 9 includes: a processing unit 901 and a sending unit 902 .
  • the processing unit 901 is configured to determine the channel information of the first terminal.
  • the processing unit 901 is configured to support the communication device 90 to perform step 401 .
  • a sending unit 902 configured to report first information to the access network device, where the first information is used to indicate part or all of the first common information in the channel information of the first terminal and the channel information of the second terminal , the channel information of the second terminal is used to indicate the channel state of the downlink channel between the second terminal and the access network device.
  • the sending unit 902 is used to support the communication device 90 to perform step 402 .
  • the communication device 90 is configured to perform the function of the first terminal in the method for reporting channel information shown in the method shown in FIG. 4 , so it can achieve the same effect as the above-mentioned method for reporting channel information.
  • the processing unit 901 is configured to determine the channel information of the first terminal.
  • the processing unit 901 is configured to support the communication device 90 to perform step 701 .
  • a sending unit 902 configured to report the third information and the R pieces of fourth information to the access network device; wherein the third information is used to indicate all or part of the second public information in the channel information of the first terminal; R The fourth pieces of information correspond to the R pieces of sub-channel information in the R1 pieces of sub-channel information, the fourth pieces of information are used to indicate specific information in the sub-channel information corresponding to the fourth pieces of information, and R is a natural number less than or equal to R1.
  • the sending unit 902 is configured to support the communication device 90 to perform step 702 .
  • the communication device 90 is configured to perform the function of the first terminal in the method for reporting channel information shown in the method shown in FIG. 7 , so it can achieve the same effect as the above-mentioned method for reporting channel information.
  • the communication apparatus 90 shown in FIG. 9 includes: a processing module and a communication module.
  • the processing module is used to control and manage the actions of the communication device 90.
  • the processing module can integrate the functions of the processing unit 901 and can be used to support the communication device 90 to perform steps 401, 701 and other processes of the techniques described herein.
  • the communication module can integrate the function of the sending unit 902 and can be used to support the communication device 90 to perform steps 402 and 702 and communicate with other network entities, such as communication with the function modules or network entities shown in FIG. 2 .
  • the communication device 90 may also include a storage module for storing instructions and/or data. When the instruction is executed by the processing module, the processing module implements the method on the first terminal side.
  • the processing module may be a processor, a controller, a module or a circuit. It may implement or execute the various exemplary logic blocks described in connection with this disclosure.
  • the communication module may be a transceiver circuit, a pin, an interface circuit, a bus interface, or a communication interface.
  • the storage module may be a memory. When the processing module is a processor, the communication module is a communication interface, and the storage module is a memory, the communication device 90 involved in the embodiment of the present application is the communication device shown in FIG. 3 .
  • the processor may be a general-purpose processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component, which can implement or
  • a general purpose processor may be a microprocessor or any conventional processor or the like.
  • the steps of the methods disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware processor, or executed by a combination of hardware and software modules in the processor.
  • the memory may be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), etc., or may also be a volatile memory (volatile memory), for example Random-access memory (RAM).
  • Memory is, but is not limited to, any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer.
  • the memory in this embodiment of the present application may also be a circuit or any other device capable of implementing a storage function, for storing instructions and/or data.
  • FIG. 10 shows a structural diagram of a communication apparatus 100.
  • the communication apparatus 100 may be an access network device, a chip in the access network device, a system-on-chip, or any other device capable of implementing the functions of the access network device in the above method.
  • the communication apparatus 100 may be configured to perform the functions of the access network equipment involved in the foregoing method embodiments.
  • the communication apparatus 100 may be configured to perform the functions of the access network equipment involved in the foregoing method embodiments.
  • the communication apparatus 100 shown in FIG. 10 includes: a receiving unit 1001 and a receiving unit 1002 .
  • a receiving unit 1001 configured to receive first information reported by a first terminal, where the first information is used to indicate part or all of the first common information in the channel information of the first terminal and the channel information of the second terminal , the channel information of the first terminal is used to indicate the channel status of the downlink channel between the first terminal and the access network equipment, and the channel information of the second terminal is used to indicate the channel status of the downlink channel between the second terminal and the access network equipment .
  • the receiving unit 1001 may be used to support the communication apparatus 100 to perform step 403 .
  • the processing unit 1002 is configured to determine the first common information in the channel information of the first terminal according to the first information reported by the first terminal.
  • the processing unit 1002 may be configured to support the communication apparatus 100 to perform step 403 .
  • the communication apparatus 100 is configured to perform the function of the access network device in the method for reporting channel information shown in the method shown in FIG. 4 , so it can achieve the same effect as the above-mentioned method for reporting channel information.
  • a receiving unit 1001 configured to receive third information and R pieces of fourth information reported by the first terminal; wherein the third information is used to indicate all or part of the second public information in the channel information of the first terminal; R The fourth pieces of information correspond to the R pieces of sub-channel information in the R1 pieces of sub-channel information, the fourth pieces of information are used to indicate specific information in the sub-channel information corresponding to the fourth pieces of information, and R is a natural number less than or equal to R1.
  • the receiving unit 1001 may be used to support the communication apparatus 100 to perform step 703 .
  • the processing unit 1002 is configured to determine channel information of the first terminal according to the third information and the R pieces of fourth information reported by the first terminal.
  • the processing unit 1002 may be configured to support the communication apparatus 100 to perform step 703 .
  • the communication apparatus 100 is configured to perform the function of the access network device in the method for reporting channel information shown in the method shown in FIG. 4 , so it can achieve the same effect as the above-mentioned method for reporting channel information.
  • the communication apparatus 100 shown in FIG. 10 includes: a processing module and a communication module.
  • the processing module is used to control and manage the actions of the communication apparatus 100.
  • the processing module may integrate the functions of the processing unit 1002, and may be used to support the communication apparatus 100 to perform steps 403, 703 and the access network equipment described herein. Actions other than sending and receiving actions.
  • the communication module can integrate the functions of the receiving unit 1001 and can be used to support the communication device 100 to perform steps 403 and 703 and communicate with other network entities, such as communication with the function modules or network entities shown in FIG. 2 .
  • the communication device 100 may further include a storage module for storing instructions and/or data of the communication device 100 . When the instruction is executed by the processing module, the processing module implements the above method on the device side of the access network.
  • the processing module may be a processor, a controller, a module or a circuit. It may implement or execute the various exemplary logic blocks described in connection with this disclosure.
  • a processor may also be a combination that implements computing functions, such as a combination of one or more microprocessors, a combination of a DSP and a microprocessor, and the like.
  • the communication module may be a transceiver circuit, a pin, an interface circuit, a bus interface, or a communication interface.
  • the storage module may be a memory. When the processing module is a processor, the communication module is a communication interface, and the storage module is a memory, the communication device 100 involved in the embodiment of the present application may be the communication device shown in FIG. 3 .
  • FIG. 11 is a structural diagram of a communication system provided by an embodiment of the application. As shown in FIG. 11 , the communication system includes: a plurality of terminals 110 and an access network device 111 . Multiple terminals 110 may cooperatively report common information in the channel information.
  • the terminal 110 may have the function of the above-mentioned communication device 90 .
  • the access network device 111 may have the functions of the above-mentioned communication apparatus 100 .
  • the first terminal 110 determines the channel information of the first terminal 110, and reports the first information to the access network device 111, where the first information is used to indicate the channel information of the first terminal 110 and the channel information of the second terminal 110 Some or all of the information in the first common information in the to indicate the channel status of the downlink channel between the second terminal 110 and the access network device 111;
  • the access network device 111 is configured to receive the first information reported by the first terminal 110, and determine the first common information in the channel information of the first terminal 110 according to the first information.
  • the method performed by the second terminal 110 is similar to the method performed by the first terminal 110 .
  • the second terminal 110 determines the channel information of the second terminal 110, and reports the first information to the access network device 111, where the first information is used to indicate the channel information of the second terminal 110 and the channel information of the first terminal 110 Some or all of the information in the first common information in the It is used to indicate the channel state of the downlink channel between the second terminal 110 and the access network device 111 .
  • the information reported by the first terminal 110 and the second terminal 110 may be the same, may be different, or may have different parts in the same part, which is not limited.
  • At least one (item) refers to one or more
  • multiple refers to two or more
  • at least two (item) refers to two or more
  • three or more, "and/or” is used to describe the association relationship of related objects, indicating that three kinds of relationships can exist, for example, “A and/or B” can mean: only A exists, only B exists, and at the same time There are three cases of A and B, where A and B can be singular or plural.
  • the character “/” generally indicates that the associated objects are an "or” relationship.
  • At least one item(s) below” or similar expressions thereof refer to any combination of these items, including any combination of single item(s) or plural items(s).
  • At least one (a) of a, b or c can mean: a, b, c, "a and b", “a and c", “b and c", or "a and b and c" ", where a, b, c can be single or multiple.
  • connection in the embodiments of the present application, refers to various connection modes such as direct connection or indirect connection, so as to realize communication between devices, which is not limited in the embodiments of the present application.
  • transmission in the embodiments of the present application refers to bidirectional transmission, including the actions of sending and/or receiving.
  • transmission in the embodiments of the present application includes data transmission, data reception, or data transmission and data reception.
  • the data transmission here includes uplink and/or downlink signal transmission.
  • the data may include channels and/or signals.
  • Uplink data transmission is uplink channel and/or uplink signal transmission
  • downlink signal transmission is downlink channel and/or downlink signal transmission.
  • Network and “system” appearing in the embodiments of this application express the same concept, and a communication system is a communication network.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.
  • the technical solutions provided in the embodiments of the present application may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software When implemented in software, it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, an access network device, a terminal device, or other programmable devices.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server, or data center Transmission to another website site, computer, server, or data center by wire (eg, coaxial cable, optical fiber, digital subscriber line, DSL) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium can be any available media that can be accessed by a computer, or a data storage device such as a server, data center, etc. that includes one or more available media integrated.
  • the usable media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, digital video discs (DVDs)), or semiconductor media, and the like.
  • the embodiments may refer to each other.
  • the methods and/or terms between the method embodiments may refer to each other, such as the functions and/or the device embodiments.
  • terms may refer to each other, for example, functions and/or terms between an apparatus embodiment and a method embodiment may refer to each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种上报信道信息的方法及装置,所述方法包括:确定第一终端的用于指示第一终端与接入网设备间的下行信道的信道状态的信道信息,向接入网设备上报用于指示第一终端的信道信息与第二终端的信道信息中的第一公共信息中的部分信息或者全部信息第一信息,第二终端的信道信息用于指示第二终端与接入网设备间的下行信道的信道状态。该方法可以实现不同终端联合上报信道信息。本申请方案可广泛适用于通信技术领域、人工智能、车联网、智能家居联网等领域。

Description

一种上报信道信息的方法及装置 技术领域
本申请实施例涉及通信技术领域,尤其涉及一种上报信道信息的方法及装置。
背景技术
随着通信技术的发展和用户需求的提升,通信场景中的终端逐渐呈现大数量、多形态等特征。例如,工业自动化场景中,厂房中存在大量的监控设备、机器、或传感器等;家庭和生活场景中,存在大量手机、平板、穿戴式设备、智能家电、或车载终端等各种类型的终端。终端可以向接入网设备上报终端与接入网设备之间的下行信道的信道信息,以使得接入网设备根据下行信道的信道信息向终端发送下行信号或者数据。
发明内容
本申请实施例提供一种上报信道信息的方法,实现不同终端协同上报信道信息。
为达到上述目的,本申请实施例采用如下技术方案:
第一方面,本申请实施例提供一种上报信道信息的方法,该方法可以由第一终端、芯片或者其它装置执行,该方法可以包括:确定第一终端的信道信息,其中,第一终端的信道信息用于指示第一终端与接入网设备间的下行信道的信道状态,向接入网设备上报第一信息,第一信息用于指示第一终端的信道信息与第二终端的信道信息中的第一公共信息中的部分信息或者全部信息,第二终端的信道信息用于指示第二终端与接入网设备间的下行信道的信道状态。
基于第一方面所述的方法,在多个终端的信道信息中存在公共信息(即冗余信息)时,对于多个终端中的一个终端,上报该公共信息的部分信息或者全部信息,实现多个终端协同/联合上报信道信息,降低信令开销。
一种可能的设计中,第一终端的信道信息包括N1个元素,第二终端的信道信息包括N2个元素,N1、N2为大于或等于1的整数;第一公共信息包括N3个元素,N3个元素为第一终端的N1个元素与第二终端的N2个元素中的相同元素和/或相似元素,其中,相同元素是指N1个元素与N2个元素中位置相同且取值相同的元素,相似元素是指N1个元素与N2个元素中位置相同且差值小于门限的元素。
基于该可能的设计,将不同终端的信道信息中的相同元素和/或相似元素作为公共信息,简化系统设计。
一种可能的设计中,第一终端的信道信息包括R1个子信道信息,第二终端的信道信息包括R2个子信道信息,R1、R2为大于或等于1的整数;第一公共信息包括第一终端的R1个子信道信息与第二终端的R2个子信道信息中的第一位置的取值。可选地,第一位置可以由接入网设备确定并指示给第一终端,或者由第一终端确定并指示给接入网设备,或者协议约定设定。第一终端的第一位置的取值和第二终端的第一位置的取值相同或者相似。
基于该可能的设计,将不同终端的信道信息中相同位置的取值作为公共信息,简化系统设计。
一种可能的设计中,第一信息用于指示第一终端的信道信息与第二终端的信道信息中的 第一公共信息中的部分信息或者全部信息包括:第一信息包括第一公共信息中的部分信息或者全部信息;或者,第一信息包括部分信息或者全部信息量化后得到的量化比特;或者,第一信息包括全部信息量化后得到的量化比特中的部分比特或者全部比特;或者,第一信息用于指示第一公共信息与参考信息之间的关系值;或者,第一信息用于指示第一公共信息的部分信息与参考信息的部分信息之间的关系值;或者,第一信息包括第一部分比特与第二部分比特之间的关系值,第一部分比特为第一公共信息量化后得到的量化比特中的部分比特,第二部分比特为参考信息量化后得到的量化比特中的部分比特;参考信息为第三终端的信道信息,第三终端的信道信息用于指示第三终端与接入网设备之间的下行信道的信道状态。
基于该可能的设计,可以有效且灵活地指示第一公共信息中的部分信息或全部信息。
一种可能的设计中,所述方法还包括:接收第一指示信息,第一指示信息用于指示下述一个或多个:第一公共信息在第一终端的信道信息中的位置、部分信息在第一公共信息中的位置、部分信息的量化方式,第一公共信息的量化方式、部分比特在第一公共信息量化后得到的量化比特中的位置、第三终端的信息。
基于该可能的设计,可以在第一指示信息的指示下确定信道信息中哪部分信息是公共信息、上报公共信息中的哪部分信息、上报时的量化方式等等,简化系统设计。
一种可能的设计中,所述方法还包括:向接入网设备上报第二信息,第二信息为第一终端的信道信息中的特定信息。基于该可能的设计,可以将终端的特定信息单独上报给接入网设备,以便接入网设备根据终端的特定信息以及该终端与其他终端协同上报的公共信息恢复出终端的完整的信道信息,简化系统设计。
一种可能的设计中,第一终端的信道信息包括R1个子信道信息,所述R1为大于或等于1的整数,第二信息包括用于指示第一终端的信道信息中的第二公共信息的全部信息或部分信息的第三信息以及R个第四信息,所述第二公共信息为所述R1个子信道信息的公共信息,R个第四信息与R1个子信道信息中的R个子信道信息对应,第四信息用于指示与第四信息对应的子信道信息中的特定信息,R为大于或等于0的整数且小于等于R1的整数。
基于该可能的设计,在上报终端的特定信息时,向接入网设备上报一份终端的公共信息,而对于终端的不同子信道信息中的特定信息,为每个子信道信息的特定信息反馈一份,如此,可以通过减少终端的公共信息的上报数量来降低信令开销。
需要说明的是,该可能的设计中,终端上报特定信息的方式可以不依赖于多个终端协同上报公共信息独立执行,即该可能的设计可以作为一个具体实施例来单独执行。
一种可能的设计中,第二公共信息包括R1个子信道信息中第二位置的元素的取值;和/或,第二公共信息为第一公共信息中的第一部分信息,第一部分信息为R1个子信道信息中相同和/或相似的信息。
基于该可能的设计,将R1个子信道信息中第二位置的元素的取值、或者多个终端协同上报的公共信息中属于第一终端的特定信息、且属于R1个子信道信息中相同和/或相似的信息作为公共信息,简化系统设计。
一种可能的设计中,所述方法还包括:接收用于指示第一压缩器的压缩参数的第二指示信息,第一压缩器用于对第一信息进行压缩处理。基于该可能的设计,可以将用于压缩处理第一信息的压缩器的压缩参数指示给第一终端,以便第一终端根据该指示确定第一信息的压缩处理方式,节省上报信息时的信令开销。
一种可能的设计中,所述方法还包括:接收第三指示信息,第三指示信息用于指示第三终端加入终端组,终端组包括第一终端和第二终端。基于该可能的设计,可以将新加入的终端的信息指示给第一终端,以便第一终端获知有新的终端加入终端组后,调整上报公共信息的方式,使得所设计的系统更加灵活。
一种可能的设计中,所述方法还包括:接收第四指示信息,第四指示信息用于指示第四终端退出终端组。基于该可能的设计,可以将离开终端组的终端的信息指示给第一终端,以便第一终端获知有终端离开终端组后调整上报公共信息的方式,使得所设计的系统更加灵活。
一种可能的设计中,在第一终端加入终端组之前,所述方法还包括:接收第五指示信息,第五指示信息用于指示终端组中已有的终端。基于该可能的设计,可以在加入终端组之前,获知终端组中已有的终端,以便新加入的终端与已有终端进行信息交互,使得所设计的系统更加灵活。
第二方面,本申请提供一种通信装置,该通信装置可以为第一终端或者第一终端中的芯片或者片上系统,还可以为第一终端中用于实现本申请实施例所述的上报信道信息的方法的模块或者单元,或者为其他能够实现第一终端侧方法的模块或者单元。该通信装置可以实现上述第一方面或者各可能的设计中第一终端所执行的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个上述功能相应的模块。一种设计中,该通信装置可以包括执行第一方面中所描述的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种设计中,该通信装置可以包括:处理单元、发送单元;
处理单元,用于确定第一终端的信道信息,第一终端的信道信息用于指示第一终端与接入网设备间的下行信道的信道状态。
发送单元,用于向接入网设备上报第一信息,第一信息用于指示第一终端的信道信息与第二终端的信道信息中的第一公共信息中的部分信息或者全部信息,第二终端的信道信息用于指示第二终端与接入网设备间的下行信道的信道状态。
其中,第一公共信息、第一信息的相关描述可参照第一方面或者第一方面的可能的设计中所述,不予赘述。
其中,该通信装置的具体实现方式可以参考第一方面或第一方面的任一可能的设计提供的上报信道信息的方法中第一终端的行为功能,在此不再重复赘述。
第三方面,提供了一种通信装置,该通信装置可以为第一终端或者第一终端中的芯片或者片上系统,或者为其他能够实现第一终端侧方法的模块或者单元。该通信装置可以实现上述第一方面或者各可能的设计中第一终端所执行的功能,所述功能可以通过硬件实现。一种可能的设计中,该通信装置可以包括:处理器和通信接口,处理器和通信接口可以用于支持通信装置实现上述第一方面或者第一方面的任一种可能的设计中所涉及的功能。在又一种可能的设计中,通信装置还可以包括存储器,存储器用于存储计算机指令和/或数据。当该通信装置运行时,该处理器执行该存储器存储的计算机指令,以使该通信装置执行第一方面或者第一方面的任一种可能的设计所述的上报信道信息的方法。在本申请实施例中,通信接口可以是收发器、接口电路、总线接口、管脚或其它能够实现收发功能的装置。
第四方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当所述指令在计算机上运行时,使得计算机可以执行上述第一方面或者上述第一方面的任一可 能的设计所述的上报信道信息的方法。
第五方面,提供了一种包含指令的计算机程序产品,该计算机程序产品可以包括程序指令,当该程序指令在计算机上运行时,使得计算机可以执行上述第一方面或者上述第一方面的任一可能的设计所述的上报信道信息的方法。
第六方面,提供了一种芯片系统,该芯片系统包括处理器以及通信接口,该芯片系统可以用于实现上述第一方面或第一方面的任一可能的设计中第一终端所执行的功能。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器用于存储程序指令,当该芯片系统运行时,该处理器执行该存储器存储的程序指令,以使该芯片系统执行上述第一方面或者第一方面的任一种可能的设计所述的上报信道信息的方法。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件,不予限制。
第七方面,本申请实施例还提供一种上报信道信息的方法,该上报信道信息的方法可以由接入网设备、芯片或者其它装置执行,该方法可以包括:接收来自第一终端的第一信息,根据第一信息,确定第一公共信息。其中,第一信息用于指示第一终端的信道信息与第二终端的信道信息中的第一公共信息中的部分信息或者全部信息,第一终端的信道信息用于指示第一终端与接入网设备间的下行信道的信道状态,第二终端的信道信息用于指示第二终端与接入网设备间的下行信道的信道状态。
其中,第一公共信息、第一信息的相关描述可参照第一方面或者第一方面的可能的设计中所述,不予赘述。
一种可能的设计中,所述方法还包括:接收来自第一终端的第二信息,第二信息为第一终端的信道信息中的特定信息,根据第一公共信息以及第二信息确定第一终端的信道信息。其中,第二信息的相关描述可参照第一方面或者第一方面的可能的设计中所述,不予赘述。
一种可能的设计中,所述方法还包括:向第一终端发送第二指示信息,第二指示信息用于指示第一压缩器的压缩参数;其中,第一压缩器用于对第一信息进行压缩处理。
一种可能的设计中,所述方法还包括:向第一终端发送第三指示信息,第三指示信息用于指示第三终端加入终端组,终端组包括第一终端和第二终端。
一种可能的设计中,所述方法还包括:向第一终端发送第四指示信息,第四指示信息用于指示第四终端退出终端组。
一种可能的设计中,在第一终端加入终端组之前,所述方法还包括:向第一终端发送第五指示信息,第五指示信息用于指示终端组中已有的终端。
第八方面,本申请提供一种通信装置,该通信装置可以为接入网设备或者接入网设备中的芯片或者片上系统,还可以为接入网设备中用于实现本申请实施例所述的上报信道信息的方法的模块或者单元,或者为其他能够实现接入网侧方法的模块或者单元。该通信装置可以实现上述第七方面或者第七方面的任一可能的设计中接入网设备所执行的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个上述功能相应的模块。一种设计中,该通信装置可以包括执行第七方面中所描述的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种设计中,该通信装置可以包括:接收单元、处理单元。
接收单元,用于接收来自第一终端的第一信息,其中,第一信息用于指示第一终端的信道信息与第二终端的信道信息中的第一公共信息中的部分信息或者全部信息,第一终端的信 道信息用于指示第一终端与接入网设备间的下行信道的信道状态,第二终端的信道信息用于指示第二终端与接入网设备间的下行信道的信道状态。
处理单元,用于根据第一信息,确定第一终端的信道信息中的第一公共信息。
其中,该通信装置的具体实现方式可以参考第七方面或第七方面的任一可能的设计提供的上报信道信息的方法中接入网设备的行为功能,在此不再重复赘述。
第九方面,提供了一种通信装置,该通信装置可以为接入网设备或者接入网设备中的芯片或者片上系统,或者为其他能够实现接入网侧方法的模块或者单元。该通信装置可以实现上述第七方面或者第七方面的任一可能的设计中接入网设备所执行的功能,所述功能可以通过硬件实现。一种可能的设计中,该通信装置可以包括:处理器和通信接口,处理器和通信接口可以用于支持通信装置实现上述第七方面或者第七方面的任一种可能的设计中所涉及的功能。在又一种可能的设计中,所述通信装置还可以包括存储器,存储器用于存储计算机指令和/或数据。当该通信装置运行时,该处理器执行该存储器存储的计算机指令,以使该通信装置执行上述第七方面或者第七方面的任一种可能的设计所述的上报信道信息的方法。
第十方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当所述指令在计算机上运行时,使得计算机可以执行上述第七方面或者上述第七方面的任一可能的设计所述的上报信道信息的方法。
第十一方面,提供了一种包含指令的计算机程序产品,该计算机程序产品可以包括程序指令,当该程序指令在计算机上运行时,使得计算机可以执行上述第七方面或者上述第七方面的任一可能的设计所述的上报信道信息的方法。
第十二方面,提供了一种芯片系统,该芯片系统包括处理器以及通信接口,该芯片系统可以用于实现上述第七方面或第七方面的任一可能的设计中接入网设备所执行的功能。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于存储程序指令和/或数据,当该芯片系统运行时,该处理器执行该存储器存储的程序指令,以使该芯片系统执行上述第七方面或者第七方面的任一种可能的设计所述的上报信道信息的方法。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件,不予限制。
第十三方面,本申请实施例还提供一种通信系统,所述通信系统包括如第二方面或第三方面所述的通信装置、和如第八方面或第九方面所述的通信装置。
附图说明
图1a为本申请实施例提供的三维信号空间示意图;
图1b为本申请实施例提供的接入网设备打beamformed(波束成形)CSI-RS示意图;
图2为本申请实施例提供的一种通信系统的简化示意图;
图2a为本申请实施例提供的接入网设备与终端之间收发天线示意图;
图3为本申请实施例提供的一种通信装置的结构示意图;
图4为本申请实施例提供的一种上报信道信息的方法的流程图;
图5a为本申请实施例提供的(N-1)个终端协同上报信道信息的示意图;
图5b为本申请实施例提供的N个终端协同上报信道信息的示意图;
图5c为本申请实施例提供的N个终端协同上报信道信息的示意图;
图5d为本申请实施例提供的N个终端协同上报信道信息的示意图;
图5e为本申请实施例提供的(N-1)个终端协同上报信道信息的示意图;
图6a为本申请实施例提供的(N-1)个终端协同上报信道信息的示意图;
图6b为本申请实施例提供的N个终端协同上报信道信息的示意图;
图7为本申请实施例提供的又一种上报信道信息的方法的流程图;
图8a为本申请实施例提供的具备多个天线的终端的beamformed CSI-RS示意图;
图8b为本申请实施例提供的终端的多天线之间协同上报信道信息的示意图;
图8c为本申请实施例提供的多个终端的beamformed CSI-RS示意图;
图8d为本申请实施例提供的多个终端协同上报信道信息的示意图;
图9为本申请实施例提供的一种通信装置90的结构示意图;
图10为本申请实施例提供的一种通信装置100的结构示意图;
图11为本申请实施例提供的一种通信系统的结构示意图。
具体实施方式
在长期演进(long term evolution,LTE)系统以及新无线(new radio,NR)系统中,多输入多输出(multiple input and multiple output,MIMO)技术被广泛应用。在发送设备与接收设备支持MIMO技术的情况下,对于小区边缘的接收设备,发送设备可以采用空频块码(space frequency block code,SFBC)传输模式向接收设备发送信号,以提高小区边缘信噪比。此外,发送设备也可以采用预编码(precoding)技术向接收设备发送信号,以提高信号传输质量或者速率。本申请实施例涉及预编码技术的相关描述。
预编码(precoding)技术:可以指发送设备在发送信号时,在已知从发送设备(例如接入网设备)到接收设备(例如终端)的信道的全部或者部分信道状态的情况下,发送设备借助与该信道的信道状态相匹配的预编码矩阵对待发送的信号进行预编码处理。通过该技术,使得经过预编码处理的信号与该信号将经历的信道相适配,进而可以使得接收设备消除信道间影响的复杂度降低,接收信号质量(例如信号与干扰加噪声比(signal to interference plus noise ratio,SINR)等)得以提升,提高信号传输质量或者速率。预编码技术可以实现发送设备(如接入网设备)与多个接收设备(如终端)在相同的时频资源上传输信号,实现多用户多输入多输出(multiple user multiple input multiple output,MU-MIMO)。
可选的,发送设备通过接收设备上报的信道信息,获知从发送设备到接收设备的信道的全部或者部分信道状态。在单用户场景下,发送设备可以接收一个接收设备上报的信道信息。在MU-MIMO场景下,发送设备可以接收多个接收设备分别上报的信道信息。对于物理位置比较接近的多个接收设备,上报的信道信息中可能存在相同和/或相似的信息,即信息冗余。如果该多个接收设备分别上报自己对应的信道的信道信息,则会造成传输资源浪费。其中,本申请实施例中,多个可以是2个、3个、4个或者更多个,不予限制。
为解决传输资源浪费的问题,本申请实施例提供一种上报信道信息的方法,包括:第一接收设备确定第一接收设备的信道信息,向发送设备上报第一信息,第一信息用于指示第一接收设备的信道信息与第二接收设备的信道信息中的第一公共信息中的部分信息或者全部信息。即对于多个接收设备的信道信息中的公共信息,其中部分接收设备可以上报该公共信息的全部信息,也可以不同接收设备上报该公共信息的不同部分信息,实现接收设备之间协同上报公共信息,降低信道信息上报时的信令开销。
其中,发送设备和接收设备是针对下行信号,如下行数据信道和/或下行控制信道,而言的。可以理解,针对该接收设备反馈给该发送设备的上行信号而言,二者的角色是互换的, 即该下行信号的接收设备是该上行信号的发送设备,该下行信号的发送设备是该上行信号的接收设备。下文类似的情况不再赘述。在发送设备和接收设备是针对下行信号而言的情况下,从发送设备到接收设备的信道可以称为下行信道。在发送设备和接收设备是针对上行信号而言的情况下,从发送设备到接收设备的信道可以称为上行信道。
其中,发送设备可以包括一个或者多个天线,发送设备包括的天线可以称为发送天线,即发送天线表示发送设备侧的天线。发送天线可以是一维天线阵列,也可以为二维天线阵列,本申请实施例以发送天线为二维天线阵列为例,下文类似的情况不再赘述。其中,发送天线还可以称为发射天线。每个发送天线具备一个极化方向或者两个极化方向。
本申请实施例中,以N t表示非波束成形(non-beamformed)场景下,发送设备侧的发送天线端口数量(或者称为发送端口数量或者端口数量),发送天线端口数量根据发送天线数量以及发送天线的极化方向数量确定。如果发送天线具备两个极化方向(即双极化),则N t=2N 1*N 2,N 1和N 2分别为发送天线的二维天线阵列的第一维度的天线端口数量(或者水平天线端口数量)和第二维度的天线端口数量(或者垂直天线端口数量),乘以2是因为有两个极化方向。如果发送天线具备一个极化方向,则N t=N 1*N 2。其中,N 1和N 2为大于或等于1的整数,N 1和N 2的值可以相同,可以不同,不予限制。N 1和N 2中有一个的值为1时,如N 1等于1,N 2大于1时,发送天线还可以看做一维天线阵列。本申请实施例中,non-beamformed场景下,天线端口可以简称为天线,天线端口数量可以简称为天线数量。一个天线端口可以和天线面板上的一个或多个逻辑天线对应。一个逻辑天线可以是由多个天线振子通过一驱多的形式得到,或者,一个逻辑天线可以是对应一个天线振子。beamformed场景下,发送设备侧的发送天线端口数量可以预先配置,一个天线端口对应一个空域向量,发送设备侧可以在预配置的天线端口上发送预编码处理后的CSI-RS。其中,空域向量的概念如下所述。
其中,接收设备可以包括一个或者多个天线,接收设备包括的天线可以称为接收天线,即接收天线表示接收设备侧的天线,下文类似的情况不再赘述。本申请实施例中,以N Rx表示接收天线数量。接收设备可以利用N Rx个接收天线接收下行信号。接收设备也可以以空间层(或者简称为层)为粒度接收下行信号,一个空间层可以看成是一个可独立传输的数据流。其中空间层可以是对N t个发送天线端口进行加权处理得到,本文中以N Layer表示空间层数。
本申请实施例中,发送设备与接收设备之间用于传输下行信号的频率资源包括一个或者或者多个频域单元,本文中以N f表示频域单元数量。频域单元的长度(或者称为宽度或者称为频域资源粒度)可以根据需要预先设置。示例性的,频域单元可以是子带(subband)、资源块(resource block,RB)、子载波、资源块组(resource block group,RBG)或预编码资源块组(precoding resource block group,PRG)中的任一种频域资源粒度。可选地,一个子带可以为一个信道质量指示(channel quality indication,CQI)子带的R倍,其中,R大于0且小于等于1,例如R的取值例如可以为1或
Figure PCTCN2020125680-appb-000001
R的取值可以由发送设备预先通过信令配置给接收设备。一个RBG组或一个PRG组中包括一个或多个RB,如4个、6个或其它个数,不予限制。
以从发送设备到接收设备的信道是下行信道为例,接收设备上报的从发送设备到接收设备的信道的信道信息可以包括下述方式(1)、方式(2)和方式(3)中的任一种:
方式(1)、信道信息包括信道矩阵或者预编码矩阵。
其中,信道矩阵可以用于表示“发送天线—接收天线—频域单元”三维信号空间的信道状态。从发送设备到接收设备的信道的信道矩阵可以包括接收设备的N Rx个接收天线对应的空频矩阵,一个接收天线对应一个空频矩阵。
其中,预编码矩阵可以用于表示“发送天线—层(layer)—频域单元”三维信号空间的信道状态。从发送设备到接收设备的信道的预编码矩阵可以包括接收设备的N Layer个空间成对 应的空频矩阵,一个空间层对应一个空频矩阵。
本申请实施例中,如图1a所示,以W r表示一个空频矩阵,如果r=1,...,N Layer,则W r表示一个空间层对应的空频矩阵,如果r=1,...,N Rx,则W r表示一个接收天线对应的空频矩阵。该空频矩阵W r可以视为是将N f个频域单元一一对应的N f个信道向量(或者简称为向量)组合构成的联合矩阵。如空频矩阵W r可以包括N f个向量,N f个向量与N f个频域单元一一对应,一个向量用于指示一个频域单元对应的信道的信道状态,一个向量的长度为N t
其中,N f个向量在W r中可以排列成列向量的格式,也可以在W r中排列成行向量的格式。以N f个向量在空频矩阵W r中排列成列向量的格式为例,
Figure PCTCN2020125680-appb-000002
以N f个向量在空频矩阵W r中排列成行向量的格式为例,
Figure PCTCN2020125680-appb-000003
其中
Figure PCTCN2020125680-appb-000004
为与N f个频域单元分别一一对应的N f个列向量。
一种示例中,beamformed场景下,发送设备可以将信道状态信息-参考信号(channel state information-reference signal,CSI-RS)映射到N f个频域单元上,并通过N t个发送端口将CSI-RS发送给接收设备。接收设备通过N Rx个接收天线接收CSI-RS,对接收到的CSI-RS进行信道估计得到每个接收天线对应的空频矩阵,并采用本申请实施例所述的方法与其他接收设备协同将每个接收天线对应的空频矩阵包括在信道信息中上报给发送设备。进一步的,发送设备接收到接收设备上报的信道信息,根据信道信息恢复出接收设备的每个接收天线对应的空频矩阵,进而根据每个接收天线对应的空频矩阵确定每个频域单元对应的信道矩阵,根据频域单元对应的信道矩阵确定频域单元对应的预编码矩阵,基于频域单元对应的预编码矩阵对通过该频域单元传输的下行信号进行预编码处理。
其中,根据频域单元对应的信道矩阵确定频域单元对应的预编码矩阵可以包括:通过对信道矩阵进行奇异值分解(singular value decomposition,SVD)的方式,获得频域单元对应的预编码矩阵;或者,通过对信道矩阵的协方差矩阵进行特征值分解(eigenvalue decomposition,EVD)的方式获得频域单元对应的预编码矩阵。
又一种示例中,non-beamformed场景下,发送设备可以对CSI-RS进行预编码处理,将预编码处理后的CSI-RS映射到N f个频域单元,并通过预配置的天线端口发送给接收设备。接收设备在其对应的接收天线上接收发送设备发送的CSI-RS,对接收到的CSI-RS进行信道估计得到每个空间层对应的空频矩阵,并采用本申请实施例所述的方法与其他接收设备协同将每个空间层对应的空频矩阵包括在信道信息中上报给发送设备。
进一步的,发送设备接收到接收设备上报的信道信息,根据信道信息恢复出接收设备的每个空间层对应的空频矩阵,进而根据每个空间层对应的空频矩阵确定每个频域单元对应的预编码矩阵,基于频域单元对应的预编码矩阵对通过该频域单元传输的下行信号进行预编码处理。其中,本申请实施例不限制预编码矩阵的具体使用形式。预编码矩阵可以直接用于接入网设备发送下行信号,或者该预编码矩阵也可以经过波束成形等处理后得到最终用于发送下行信号的预编码矩阵。波束成形可以包括迫零(zero forcing,ZF)、正则化迫零(regularized zero-forcing,RZF)、最小均方误差(minimum mean-squared error,MMSE)、或者最大化信漏噪比(signal-to-leakage-and-noise,SLNR)。
其中,可以将N Rx个接收天线对应的空频矩阵中同一频域单元对应的向量组合在一起得到 该频域单元对应的信道矩阵。可以将N Layer个空间层对应的空频矩阵中同一频域单元对应的向量组合在一起得到该频域单元对应的预编码矩阵。即可以理解为空频矩阵为用于确定频域单元对应的预编码矩阵或信道矩阵的中间量。
应理解,本申请不限于将N f个向量组合成空频矩阵的形式,可替换的,还可以将N f个按照首位相接方式排列成一个长度为N f*N t的一维向量,或者按照其他预定义的规则排列成N f个向量,不予限制。
应理解,信道信息包括信道矩阵可以包括:N Rx个接收天线对应的空频矩阵一一对应携带在信道信息中的N Rx个数组中,或者,所有接收天线对应的空频矩阵包括的元素携带在信道信息中的同一数组中。信道信息包括预编码矩阵可以包括:N Layer个接收天线对应的空频矩阵一一对应携带在信道信息中的N Layer个数组中,或者,所有接收天线对应的空频矩阵包括的元素携带在信道信息中的同一数组中。具体采用哪种携带方式可以由接收设备和发送设备双发预先约定或者由协议规定,不予限制。
方式(2)、信道信息包括对空频矩阵W r进行双域压缩得到的合并系数矩阵中的部分或者全部非零合并系数的信息。
其中,非零合并系数的信息包括以下一项或多项:非零合并系数的取值、位置信息、非零合并系数对应的用于构建空频分量矩阵的频域向量的索引和空域向量的索引。
由于空频矩阵W r可以是由多个空频分量矩阵的加权和得到。空频分量矩阵可以由空域向量和频域向量构建得到,如将一个空域向量与一个频域向量的共轭转置相乘可以得到一个空频分量矩阵。其中空域向量可以包括在预先配置的空域向量集合中,频域向量可以包括在预先配置的频域向量集合中。因此,发送设备只要获知构建空频分量矩阵的空域向量和频域向量、以及空频分量矩阵的加权值(或称为权重)就可以恢复出空频矩阵W r
鉴于此,为了降低接收设备上报信道信息带来的信令开销,接收设备可以采用下述公式(1)所示的双域压缩方式对空频矩阵W r进行处理,将处理后的合并系数矩阵中的合并系数、构成空频分量矩阵的频域向量的索引以及空域向量的索引包括在信道信息中,与其他接收设备协同将信道信息上报给发送设备即可,降低信令开销。
Figure PCTCN2020125680-appb-000005
其中,公式(1)中的r=1,...,N Layer,或者,r=1,...,N Rx
其中,公式(1)中
Figure PCTCN2020125680-appb-000006
表示空域向量矩阵,
Figure PCTCN2020125680-appb-000007
包括用于构建空频分量矩阵的L个空域向量,空域向量的长度为N1*N2,换言之,在发送天线为单极化天线的情况下,空域向量的长度可以为发送天线端口数量N t,在发送天线为双极化天线的情况下,空域向量的长度可以为发送天线端口数量
Figure PCTCN2020125680-appb-000008
L为大于或等于1的整数。L个空域向量可以称为L个基底,这L个基底分别为
Figure PCTCN2020125680-appb-000009
这L个基底按如下顺序排列为对角块矩阵
Figure PCTCN2020125680-appb-000010
Figure PCTCN2020125680-appb-000011
本申请实施例不限制空域向量(spatial domain vector)的命名,空域向量可以称为空域分量向量、波束(beam)向量、空域波束基向量、或空域基向量等。一个空域向量中包括多个元素,空域向量中的一个元素唯一地对应发送设备侧的一个天线端口(antenna port),空域向量中的各个元素可以表示发送设备侧的各个天线端口的权重。如上所述,non-beamformed场景下,如果发送设备侧的发送天线为二维天线阵列,则发送设备的天线端口根据第一维度的天线端口、第二维度的天线端口和天线的极化方式确定。beamformed场景下,发送设备侧 的天线端口为预先设置的。
一种示例中,可以从候选空域向量集合中选择出L个空域向量。候选空域向量集合可以包括一个或多个候选空域向量(或者空域分量),候选空域向量集合包括的候选空域分量的长度可以相同或者不同,候选空域向量集合可以称为候选空域分量向量集合、空域分量向量集合、候选空域基向量集合、空域基向量集合、候选波束向量集合、波束向量集合、候选空域波束基向量集合、或空域波束基向量集合等。候选空域向量集合可以预先配置给发送设备和接收设备。可选的,用索引值(或者称为索引)标识候选空域向量集合中的候选空域分量,不同候选空域分量的索引值是不同的。
又一种示例中,L个空域向量是协议约定的,或者是发送设备提前配置给接收设备的。该方法例如可以用于beamformed场景。
空域向量可以是离散傅里叶变换(discrete fourier transform,DFT)向量或者DFT向量的共轭转置向量或者过采样DFT向量。DFT向量可以是指DFT矩阵中的向量,该DFT矩阵可以是正交DFT矩阵或者是新无线(new radio,NR)协议TS 38.214(如版本15(release 15,R15)或其它版本)中类型II(type II)码本中定义的二维(2dimensions,2D)-DFT。DFT向量的共轭转置向量可以是指DFT矩阵的共轭转置矩阵中的向量。过采样DFT向量可以是指过采样DFT矩阵中的向量。
例如,发送天线为双极化天线,正交DFT矩阵可以是
Figure PCTCN2020125680-appb-000012
Figure PCTCN2020125680-appb-000013
Figure PCTCN2020125680-appb-000014
的正交DFT矩阵。函数kron(A,B)表示将矩阵A中的元素a i,j与矩阵B相乘(即相当于对矩阵B中的每个元素乘以a i,j),将相乘后得到的矩阵放置到元素a i,j所在的位置,类似的,对矩阵A中的每个元素执行上述操作,直至矩阵A中的每个元素所在的位置被相乘后的矩阵替换掉,将最终得到的矩阵作为函数kron(A,B)的输出结果。其中,
Figure PCTCN2020125680-appb-000015
为N1*N1的正交DFT矩阵,
Figure PCTCN2020125680-appb-000016
为N2*N2的正交DFT矩阵,
Figure PCTCN2020125680-appb-000017
或者
Figure PCTCN2020125680-appb-000018
中第m行第n列的元素为
Figure PCTCN2020125680-appb-000019
表示N*N的旋转矩阵,q为旋转因子。假设旋转因子q为均匀分布,那么
Figure PCTCN2020125680-appb-000020
i=0,1,...,O 1-1,
Figure PCTCN2020125680-appb-000021
i=0,1,...,O 2-1。旋转矩阵与DFT正交矩阵的乘积构成的矩阵满足
Figure PCTCN2020125680-appb-000022
0≤q<1。其中N=N1或N2,
Figure PCTCN2020125680-appb-000023
可以从正交DFT矩阵B 1中的
Figure PCTCN2020125680-appb-000024
个向量中选择出L个向量作为L个空域向量。
其中,公式(1)中的
Figure PCTCN2020125680-appb-000025
为频域向量矩阵,包括用于构建频域分量矩阵的K个频域向量,K为大于或等于1的整数。
Figure PCTCN2020125680-appb-000026
为对频域向量矩阵进行转置处理后的矩阵。频域向量的长度可以为频域单元数量N f,K个频域向量可以称为K个基底,这K个基底分别为
Figure PCTCN2020125680-appb-000027
Figure PCTCN2020125680-appb-000028
这K个基底按如下顺序排列得到
Figure PCTCN2020125680-appb-000029
Figure PCTCN2020125680-appb-000030
频域向量(frequency domain vector):可以称为频域分量向量、或频域基向量等,可用于表示信道在频域的变化规律的向量。每个频域向量可以表示一种变化规律。由于信号在经过无线信道传输时,从发送天线可以经过多个路径到达接收天线。多径时延导致频率选择性 衰落,就是频域信道的变化。因此,可以通过不同的频域向量来表示不同传输路径上时延导致的信道在频域上的变化规律。
一种示例中,可以从候选频域向量集合中选择出K个频域向量。候选频域向量集合可以包括一个或多个候选频域向量(或者频域分量),候选频域向量集合包括的候选频域分量的长度可以相同或者不同,候选频域向量集合可以称为候选频域分量向量集合、频域分量向量集合、频域基向量集合、或频域向量集合等。候选频域向量集合可以预先配置给发送设备和接收设备。可选的,用索引值标识候选频域向量集合中的候选频域分量,不同候选频域分量的索引值是不同的。
又一种示例中,可以从正交DFT基底B 2中选择出K个频域向量,B 2为N f×N f矩阵,其B 2包括的元素定义为
Figure PCTCN2020125680-appb-000031
0≤m≤N f-1,0≤n≤N f-1,N f个列向量是N f个基,可以从N f个基中选择出K个基作为K个频域向量。j是虚数单位,j的平方等于-1。π为圆周率。可选的,用索引值标识正交DFT基底B 2中的基,不同基的索引值是不同的。
又一种示例中,K个频域向量是协议约定的,或者是发送设备提前配置给接收设备的。该方法例如可以用于beamformed场景。
其中,公式(1)中的
Figure PCTCN2020125680-appb-000032
可以如下所述,为维度为2L*K的合并系数矩阵,
Figure PCTCN2020125680-appb-000033
中的元素a i,j称为合并系数,空频合并系数矩阵
Figure PCTCN2020125680-appb-000034
中第i行第j列的元素a i,j称为合并系数,其中取值不为零的合并系数可以称为非零合并系数,非零合并系数a i,j对应空频分量矩阵
Figure PCTCN2020125680-appb-000035
中的第i个空域向量、频域向量矩阵
Figure PCTCN2020125680-appb-000036
中的第j个频域向量,i=1,2,...,2L,j=1,2,...,N f,元素a i,j的取值为第i个空域向量(即
Figure PCTCN2020125680-appb-000037
的第i列向量)与第j个频域向量(即
Figure PCTCN2020125680-appb-000038
的第j行向量)的共轭转置相乘得到的空频分量矩阵的加权值。
Figure PCTCN2020125680-appb-000039
可选的,为了控制信令开销,可以预先配置空频合并系数矩阵
Figure PCTCN2020125680-appb-000040
中可以上报的空频合并系数的最大数量K 0(K 0<=2L*K),即可以上报的非零合并系数的数量不超过K 0。其中K 0的取值与空域向量的数量L以及频域向量的数量K相关,
Figure PCTCN2020125680-appb-000041
其中β的取值可以为{3/4,1/2,1/4,1/8}。可选的,可以上报K 0个合并系数子集中对应的K 1个幅度非0的空频合并系数(K 1<=K 0)。
在本申请实施例中,对于一种特征A,如空域向量等,描述一个或多个特征A时,可以称该一个或多个特征A为至少一个特征A、或特征A集合等。该一个或多个特征A可以表示成集合、列表、子集、或一个集合中的元素等各种形式,不予限制。当从该一个或多个特征A中配置将被使用的特征A时,该一个或多个特征A还可以被称为一个或多个候选特征A、至少一个候选特征A、特征A候选集合、或候选特征A集合等,不予限制。
进一步的,发送设备接收到接收设备与其他接收设备协同上报的方式(2)所示的信道信息后,根据信道信息中包括的非零合并系数恢复出
Figure PCTCN2020125680-appb-000042
根据信道信息中包括的L个空域向量的索引以及非零合并系数的位置信息恢复出空域向量矩阵
Figure PCTCN2020125680-appb-000043
根据信道信息中包括的L个空域向量的索引以及非零合并系数的位置信息恢复出频域向量矩阵
Figure PCTCN2020125680-appb-000044
进一步的,发送设备根据公式(1)反推出空频矩阵W r,待每个接收天线或者空间层对 应的空频矩阵W r均得到后,根据每个接收天线或者空间层对应的空频矩阵W r得到频域单元对应的预编码矩阵,根据频域单元对应的预编码矩阵对频域单元上传输的下行信号进行预编码处理并发送出去。
应理解,信道信息包括非零合并系数的信息可以包括:N Rx(或者N Layer)个空频矩阵对应的合并系数矩阵中的非零合并系数的信息一一对应携带在信道信息中的N Rx(或者N Layer)个数组中,或者,所有空频矩阵对应的合并系数矩阵中的非零合并系数的信息携带在信道信息中的同一数组中。具体采用哪种携带方式可以由接收设备和发送设备双发预先约定或者由协议规定,不予限制。
方式(3)、信道信息包括
Figure PCTCN2020125680-appb-000045
中非零合并系数a i,j的取值。
例如,空频矩阵W r还可以用下述公式(2)表示。其中,公式(2)中,∑表示对
Figure PCTCN2020125680-appb-000046
中待上报的非零合并系数求和,c i
Figure PCTCN2020125680-appb-000047
的第i列向量,b j
Figure PCTCN2020125680-appb-000048
的第j行向量,本申请实施例中,“*”表示乘法计算。
W r=∑ i,ja i,j*c i*b j  公式(2)
由公式(2)可知,为了获取下行信道的信道信息,发送设备获取a i,j、c i以及b j即可。其中发送设备可以通过下述方式获取a i,j、c i以及b j:接收设备向发送设备发送上行探测参考信号(sounding reference signal,SRS),发送设备接收SRS,对SRS进行测量得到发送设备与接收设备之间的上行信道的信道状态。发送设备将上行信道信息做如公式(2)所述变换,获得上行信道对应的
Figure PCTCN2020125680-appb-000049
中非零合并系数的位置。根据信道互异性,下行信道对应的
Figure PCTCN2020125680-appb-000050
和上行信道对应的
Figure PCTCN2020125680-appb-000051
的非零合并系数位置相同,非零合并系数数值不同。
进而,为获得下行信道,发送设备打波束成行(beamformed)CSI-RS,即在每一个非零合并系数的位置上打空域向量c i和频域向量b j。接收设备将接收到的a i,j依序反馈给发送设备,发送设备知道每个a i,j对应的空域向量c i和频域向量b j,进而可以恢复出
Figure PCTCN2020125680-appb-000052
需要说明的是,本申请实施例中发送设备打beamformed CSI-RS可以指发送设备发送beamformed CSI-RS。
例如,如图1b所示,图1b中阴影部分即为非零合并系数的位置,发送设备可以在这些位置上打beamformed CSI-RS,即在这些非零合并系数的位置上打(或者发送)beamformed CSI-RS,接收设备接收到这些位置上的beamformed CSI-RS后,对接收到的beamformed CSI-RS进行测量得到非零合并系数的取值,即得到非零合并系数的位置对应的a i,j的取值,将非零合并系数的取值携带在信道信息中上报给发送设备。
应理解,信道信息包括非零合并系数的取值可以包括:N Rx(或者N Layer)个空频矩阵对应的合并系数矩阵中的非零合并系数的取值一一对应携带在信道信息中的N Rx(或者N Layer)个数组中,或者,所有空频矩阵对应的合并系数矩阵中的非零合并系数的取值携带在信道信息中的同一数组中。具体采用哪种携带方式可以由接收设备和发送设备双发预先约定或者由协议规定,不予限制。
上述方式(1)~方式(3)对信道信息的几种表示形式进行了介绍。MU-MIMO场景下,每个发送设备(如第一终端、第二终端等)上报的信道信息都可以参照方式(1)~方式(3)来设计。上述三种方式的信道信息仅用于举例说明,本申请实施例不限于此,例如本申请实施例的信道信息还可以是其它形式的信道信息。应理解的是,协同上报信道信息的发送设备待上报的信道信息的设计方式是相同,如若终端1、终端2需要协同上报信道信息,则终端1和终端2可以采用上述方式(1)所示方式设计信道信息,也可以采用上述(2)或者方式(3)所示方式设计信道信息。
下面结合说明书附图,对多个不同发送设备协同上报信道信息的方法进行描述。为便于描述,本申请实施例中以发送设备为接入网设备,接收设备为终端为例进行描述。
本申请实施例提供的上报信道信息的方法可以应用于各种通信系统,例如:长期演进 (long term evolution,LTE)系统、第五代(5th generation,5G)移动通信系统、无线保真(wireless-fidelity,WiFi)系统、未来的通信系统、或者多种通信系统融合的系统等,本申请实施例不做限定。其中,5G还可以称为新无线(new radio,NR)。
本申请实施例提供的上报信道信息的方法可以应用于各种通信场景,例如可以应用于以下通信场景中的一种或多种:增强移动宽带(enhanced mobile broadband,eMBB)、超可靠低时延通信(ultra-reliable low-latency communication,URLLC)、机器类型通信(machine type communication,MTC)、大规模机器类型通信(massive machine type communications,mMTC)、设备到设备(device-to-device,D2D)、车辆外联(vehicle to everything,V2X)、车辆到车辆(vehicle to vehicle,V2V)、和物联网(internet of things,IoT)等。
下面以图2所示通信系统为例,对本申请实施例提供的上报信道信息的方法进行描述。
图2是本申请实施例提供的一种通信系统的示意图,如图2所示,该通信系统可以包括接入网设备以及多个终端,还可以包括核心网设备等。接入网设备可以覆盖一个或者多个小区,终端可以在接入网设备覆盖的一个小区中接入接入网设备,向接入网设备发送上行数据和/或接收接入网设备发送的下行信号。可选地,终端之间可以直接通信。例如可以利用设备到设备(device to device,D2D)技术等实现终端之间的直接通信。
本申请实施例中,如图2a所示,图2中的接入网设备可以具备N 1个水平天线,N 2个垂直天线,如果水平天线和垂直天线具备两个极化方向,则接入网设备的发送天线端口数量N t=2N 1*N 2,如果水平天线和垂直天线具备一个极化方向,则接入网色设备的发送天线端口数量N t=N 1*N 2。终端可以具备N Rx个接收天线。接入网设备与终端可以支持通过N Layer个空间层传输数据流。接入网设备和终端支持在N f个频域单元传输信号。
需要说明的是,图2仅为示例性框架图,图2中包括的节点的数量以及小区数量不受限制。除图2所示功能节点外,还可以包括其他节点,如:网关设备、和/或应用服务器等等,不予限制。接入网设备通过有线方式或无线方式与核心网设备相互通信,如通过下一代(next generation,NG)接口相互通信。
其中,接入网设备主要用于实现终端的资源调度、无线资源管理、和/或无线接入控制等功能。具体的,接入网设备可以包括基站、无线接入点、收发点(transmission receive point,TRP)、传输点(transmission point,TP)以及某种其它接入节点中的任一节点。本申请实施例中,用于实现接入网设备的功能的装置可以是接入网设备,也可以是能够支持接入网设备实现该功能的装置,例如芯片系统,该装置可以被安装在接入网设备中或者和接入网设备匹配使用。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。在本申请实施例提供的技术方案中,以用于实现接入网设备的功能的装置是接入网设备为例,描述本申请实施例提供的技术方案。
终端可以为终端设备(terminal equipment)、用户设备(user equipment,UE)、移动台(mobile station,MS)或者移动终端(mobile terminal,MT)等。具体的,终端可以是手机(mobile phone)、平板电脑或带无线收发功能的电脑,还可以是虚拟现实(virtual reality,VR)终端、增强现实(augmented reality,AR)终端、工业控制中的无线终端、无人驾驶中的无线终端、远程医疗中的无线终端、智能电网中的无线终端、智慧城市(smart city)中的无线终端、智能家居、或车载终端等。本申请实施例中,用于实现终端的功能的装置可以是终端,也可以是能够支持终端实现该功能的装置,例如芯片系统,该装置可以被安装在终端中或者和终端匹配使用。下面以用于实现终端的功能的装置是终端为例,描述本申请实施例 提供的上报信道信息的方法。
在具体实现时,图2所示各网元,如:终端、接入网设备可采用图3所示的组成结构或者包括图3所示的部件。图3为本申请实施例提供的一种通信装置300的结构示意图,当该通信装置300具有本申请实施例所述的终端的功能时,该通信装置300可以为终端或者终端中的芯片或者片上系统。当通信装置300具有本申请实施例所述的接入网设备的功能时,通信装置300可以为接入网设备或者接入网设备中的芯片或者片上系统。
如图3所示,该通信装置300可以包括处理器301,通信线路302以及通信接口303。进一步的,该通信装置300还可以包括存储器304。其中,处理器301,存储器304以及通信接口303之间可以通过通信线路302连接。
其中,处理器301可以是中央处理器(central processing unit,CPU)、通用处理器网络处理器(network processor,NP)、数字信号处理器(digital signal processing,DSP)、微处理器、微控制器、可编程逻辑器件(programmable logic device,PLD)或它们的任意组合。处理器301还可以是其它具有处理功能的装置,如电路、器件或软件模块等。
通信线路302,用于在通信装置300所包括的各部件之间传送信息。
通信接口303,用于通信装置300与其他设备或其它通信网络进行通信。该其它通信网络可以为以太网,无线接入网(radio access network,RAN)、或无线局域网(wireless local area networks,WLAN)等。通信接口303可以是接口电路、管脚、射频模块、收发器或者任何能够实现通信的装置,其中射频模块可以包括天线、射频电路等,射频电路可以包括射频集成芯片、功率放大器等。
存储器304,用于存储指令。其中,指令可以是计算机程序。
其中,存储器304可以是只读存储器(read-only memory,ROM)或可存储静态信息和/或指令的其他类型的静态存储设备,也可以是随机存取存储器(random access memory,RAM)或者可存储信息和/或指令的其他类型的动态存储设备,还可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储、磁盘存储介质或其他磁存储设备。光碟存储包括压缩光碟、激光碟、光碟、数字通用光碟、或蓝光光碟。
需要说明的是,存储器304可以独立于处理器301存在,也可以和处理器301集成在一起。存储器304可以用于存储指令或者程序代码或者一些数据等。存储器304可以位于通信装置300内,也可以位于通信装置300外,不予限制。处理器301,用于执行存储器304中存储的指令,以实现本申请下述实施例提供的上报信道信息的方法。
在一种示例中,处理器301可以包括一个或多个CPU,例如图3中的CPU0和CPU1。
作为一种可选的实现方式,通信装置300包括多个处理器,例如,除图3中的处理器301之外,还可以包括处理器307。
作为一种可选的实现方式,通信装置300还包括输出设备305和输入设备306。示例性地,输入设备306是键盘、鼠标、麦克风或操作杆等设备,输出设备305是显示屏、扬声器(speaker)等设备。
需要说明的是,通信装置300可以是台式机、便携式电脑、网络服务器、移动手机、平板电脑、无线终端、嵌入式设备、芯片系统或有图3中类似结构的设备。此外,图3中示出的组成结构并不构成对该通信装置的限定,除图3所示部件之外,该通信装置可以包括比图 示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
下面结合图2所示通信系统,对本申请实施例提供的上报信道信息的方法进行描述。其中,下述实施例中的各设备可以具有图3所示部件。其中,本申请各实施例之间涉及的动作,术语等均可以相互参考,不予限制。例如,本申请实施例中的“上报”可以替换为“反馈”。本申请的实施例中各个设备之间交互的消息名称或消息中的参数名称等只是一个示例,具体实现中也可以采用其他的名称,不予限制。
图4为本申请实施例提供的一种上报信道信息的方法的流程图,如图4所示,所述方法可以包括步骤401~步骤403:
步骤401:第一终端确定第一终端的信道信息。
其中,第一终端可以为图2中的任一终端。第一终端可以具备N Rx个接收天线。本申请不限定接收第一终端的接收天线的极化方式,第一终端的接收天线可以为单极化天线,也可以为双极化天线。第一终端和接入网设备之间存在N Layer个空间层。
其中,第一终端的信道信息可以用于指示第一终端与接入网设备之间的下行信道的信道状态。如上述方式(1)所示,第一终端的信道信息可以包括第一终端与接入网设备之间的下行信道的信道矩阵,如包括N Rx个接收收天线对应的空频矩阵;或者,如上述方式(1)所示,第一终端的信道信息包括第一终端与接入网设备之间的下行信道的预编码矩阵,如包括N Layer个空间层对应的空频矩阵;或者,如上述方式(2)所示,第一终端的信道信息包括合并系数矩阵
Figure PCTCN2020125680-appb-000053
中部分或者全部非零合并系数的信息;或者,如上述方式(3)所示,第一终端的信道信息包括合并系数矩阵
Figure PCTCN2020125680-appb-000054
中非零合并系数的取值。
具体的,信道矩阵、预编码矩阵、合并系数矩阵、空域向量矩阵、频域向量矩阵的相关描述,以及第一终端的信道信息的设计形式可参照上述方式(1)~方式(3)中所述。
步骤402:第一终端向接入网设备上报第一信息。
其中,第一信息可以用于指示第一终端的信道信息与第二终端的信道信息中的第一公共信息(common information)中的部分信息或者全部信息。第一公共信息可以为第一终端的信道信息与第二终端的信道信息中的相同和/或相似信息(或者称为公共信息(common information))。本申请实施例中,不同终端的信道信息中的相同和/或相似信息可以称为第一公共信息,换言之,第一终端的信道信息中的第一公共信息和第二终端的信道信息中的第一公共信息是相同和/或相似信息。同一终端的不同子信道信息中的相同和/或相似信息可以称为第二公共信息,在此统一说明,下文类似的情况不再赘述。
需要说明的是,本申请实施例中,第一终端的信道信息与第二终端的信道信息中可以包括一组公共信息,也可以包括两组或两组以上公共信息,每组公共信息均可以参照第一公共信息的上报方式上报给接入网设备。具体的,第一终端的信道信息与第二终端的信道信息中包括的公共信息的组数可以预先规定或由接入网设备确定并指示给第一终端或由第一终端确定并指示给接入网设备。
其中,第二终端的信道信息可以用于指示第二终端与接入网设备之间的下行信道的信道状态。第二终端的信道信息包括的内容可参照上述方式(1)~方式(3)中所述。第二终端可以为与第一终端处于同一终端组的终端,或者,第二终端可以为即将加入第一终端所处的终端组的终端。本申请实施例所述的终端组可以包括能够协同反馈/上报信道信息的一个或者多个终端,终端组中不同终端的信道信息中存在相同和/或相似的信息。
具体的,第一公共信息的设计形式如下示例一或者示例二所述:
示例一:第一终端的信道信息包括N1个元素,第二终端的信道信息包括N2个元素,第一公共信息可以包括N3个元素,N3个元素为第一终端的N1个元素与第二终端的N2个元素中的相同元素和/或相似元素,N3可以大于或等于1的整数。
其中,相同元素可以指N1个元素与N2个元素中位置相同且取值相同的元素。其中,相同元素在该N1个元素中的位置与该相同元素在该N2个元素中的位置相同。比如信道信息包括如方式(1)所示的信道矩阵的情况下,位置相同指的是不同终端的接收天线对应的空频矩阵中的元素位置相同,或者不同终端的所有接收天线对应的空频矩阵中的某一个位置相同。例如:UE1的2个接收天线对应的2个空频矩阵中每个空频矩阵的第X行和第Y列的位置和UE2的4个接收天线对应的4个空频矩阵中每个空频矩阵的第X行和第Y列的位置相同。又比如信道信息包括方式(1)所示的预编码矩阵的情况下,位置相同指的是不同终端的空间层对应的空频矩阵中的元素位置相同,例如UE1的第一个layer对应的空频矩阵的第X行第Y列和UE2的第一个layer对应的空频矩阵的第X行第Y列认为是相同位置。
其中,相似元素可以指N1个元素与N2个元素中位置相同且差值小于门限的元素。其中,相似元素在该N1个元素中的位置与该相似元素在该N2个元素中的位置相同。该门限可以根据需要预先设置或者由接入网设备配置给/指示给第一终端。N1个元素与N2个元素中位置相同且差值小于门限可以包括:N1个元素与N2个元素中位置相同且量化后得到的量化比特对应的二进制取值的差值小于门限。
除此之外,如果N1个元素中的N3个元素的取值量化后得到的量化比特与N2个元素中的N3个元素的取值量化后得到的量化比特部分相同,且N1个元素中的该N3个元素在该N1个元素中的位置和N2个元素中的该N3个元素在该N2个元素中的位置相同,则N1个元素中的该N3个元素和N2个元素中的该N3个元素为相似元素;或者,如果N1个元素中的N3个元素量化后得到的量化比特与N2个元素中的N3个元素的取值量化后得到的量化比特相同的概率大于概率阈值,且N1个元素中的该N3个元素在该N1个元素中的位置和N2个元素中的该N3个元素在该N2个元素中的位置相同,则N3个元素为相似元素。
本申请实施例中,N1、N2为大于或等于1的整数,N1与N2可以相同或不同,即第一终端的信道信息包括的元素个数与第二终端的信道信息包括的元素个数相同或不同。
例如,以信道信息包括预编码矩阵,第一终端为UE(1)、第二终端为UE(2),UE(1)对应的预编码矩阵包括10个元素{(a11,a21,a31,a41,a51)、(a12,a22,a32,a42,a52)},UE(2)对应的预编码矩阵包括10个元素{(b11,b21,b31,b41,b51)、(b12,b22,b32,b42,b52)}为例,对于相同位置的元素(a11,a21,a31,a41,a51)和(b11,b21,b31,b41,b51),如果(a11,a21,a31,a41,a51)与(b11,b21,b31,b41,b51)的取值相同,则(a11,a21,a31,a41,a51)、(b11,b21,b31,b41,b51)可以称为相同元素,可以作为第一公共信息。如果(a11,a21,a31,a41,a51)与(b11,b21,b31,b41,b51)中,a11的幅度量化后的量化比特为110011,b11的幅度量化后得到的量化比特为110110,高3位相同,低3位不同,110011和110110的差值小于或等于门限,则a11与b11为相似元素,可以包括在第一公共信息。
示例一中,哪些是第一公共信息可以由接入网设备预先指示给第一终端,如可以将N3个元素在第一终端的信道信息中的位置信息指示给第一终端。此外,示例一所示的信道信息可以包括如方式(1)所示的信道矩阵或者如方式(1)所示的预编码矩阵或者如方式(2)所 示的非零合并系数的信息。第一公共信息包括N3个元素可以指包括N3个元素的位置信息、和/或取值。可选地,还可以在信道信息包括如方式(2)所示的非零合并系数的信息的情况下,包括N3个元素对应的频域向量的索引和空域向量的索引。
示例二:第一终端的信道信息包括R1个子信道信息,第二终端的信道信息包括R2个子信道信息,第一公共信息可以为第一终端的R1个子信道信息与第二终端的R2个子信道信息中的第一位置的取值。
其中,R1、R2为大于或等于1的整数,R1、R2可以相同也可以不同,不予限制。R1可以为第一终端的接收天线数量N Rx或者层(或空间层)数量N Layer。如果R1为第一终端的接收天线数量,则R1个子信道信息可以包括对第一终端的N Rx个接收天线对应的空频矩阵分别进行双域压缩处理得到的到N Rx个合并系数矩阵中非零合并系数的取值。如果R1为N Layer,则R1个子信道信息与N Layer个层对应,R1个子信道信息可以包括对N Layer空间层对应的空频矩阵分别进行双域压缩处理得到N Layer个合并系数矩阵中非零合并系数的取值。
其中,R2可以为第二终端的接收天线数量或者层(或空间层)数量。如果R2为第二终端的接收天线数量,则R2个子信道信息可以包括对第二终端的每个接收天线对应的空频矩阵分别进行双域压缩处理得到的到合并系数矩阵中非零合并系数的取值。如果R2为N Layer,则R2个子信道信息与N Layer个层对应,R2个子信道信息可以包括对每个空间层对应的空频矩阵分别进行双域压缩处理得到合并系数矩阵中非零合并系数的取值。即示例二所示的信道信息包括方式(3)所示的合并系数矩阵中非零合并系数的取值。
其中,第一位置可以是第一终端的R1个子信道信息与第二终端的R2个子信道信息中取值相同或者相似的元素所对应的位置。第一位置的取值相似可以包括下述几种情况中的任一种:情况一、第一终端的R1个子信道信息中第一位置的取值与第二终端的R2个子信道信息中第一位置的取值的差值小于门限。该门限可以根据需要预先设置或者由接入网设备配置给/指示给第一终端。情况二、第一终端的R1个子信道信息中第一位置的取值量化后得到的量化比特与第二终端的R2个子信道信息中第一位置的取值量化后得到的量化比特部分相同或全部相同。情况三、第一终端的R1个子信道信息中第一位置的取值量化后得到的量化比特与第二终端的R2个子信道信息中第一位置的取值量化后得到的量化比特的差值小于门限。情况四、第一终端的R1个子信道信息中第一位置的取值量化后得到的量化比特与第二终端的R2个子信道信息中第一位置的取值量化后得到的量化比特相同的概率大于概率阈值。
示例二中,可以由接入网设备确定第一位置在第一终端的信道信息中的位置信息,并将第一位置的位置信息指示给第一终端。或者,预先规定第一位置为信道信息中哪些位置,或者,可以由第一终端确定第一位置,并将第一位置的位置信息指示给接入网设备,不予限制。
例如,以第一终端为UE1,第二终端为UE2为例,如图8c所示,UE1、UE2的一个空间层对应的空频矩阵由2L个空域向量(或称为波束向量)以及16个频域向量构建。UE(1)的空频矩阵对应的合并系数中的非零合并系数位置{波束向量1的第6个频域向量、波束向量1的第7个频域向量、波束向量1的第14个频域向量、波束向量2的第6个频域向量、波束向量2的第7个频域向量、波束向量2L的第10个频域向量、波束向量2L的第11个频域向量},UE(2)的非零合并系数的位置为{波束向量1的第6个频域向量、波束向量1的第7个频域向量、波束向量2的第6个频域向量、波束向量2的第7个频域向量、波束向量2L的第10个频域向量、波束向量2L的第11个频域向量、波束向量2L的第14个频域向量}。如果UE(1)、UE(2)对应的{波束向量1的第6个频域向量、波束向量1的第7个频域向量、波束向量2的第6个频域向量}的取值相同或者相似,则{波束向量1的第6个频域向量、波束向量 1的第7个频域向量、波束向量2的第6个频域向量}可以称为第一位置,第一公共信息包括{波束向量1的第6个频域向量、波束向量1的第7个频域向量、波束向量2的第6个频域向量}的取值。
本申请各实施例中,第一信息可以通过下述第一种可能的设计~第六种可能的设计所示的几种可能的设计指示第一公共信息中的部分信息或全部信息。
进一步的,如果第一终端的信道信息中还存在第一终端的特定信息,则第一终端还可以向接入网设备上报第二信息,第二信息可以用于指示第一终端的信道信息中的特定信息(specific information)。第一终端的特定信息可以指针对第一终端的、不同于其他终端的信道信息的信息。具体的,第一终端上报特定信息的过程可参照下述图7对应的实施例中所述。
示例性的,第一终端可以将第一信息经过第一压缩器处理,将压缩处理得到的码字上报给接入网设备,以降低第一信息上报时的压缩空间,提高资源利用率。类似的,如果第一终端还上报第二信息,则第一终端也可以将第二信息经过第二压缩器处理,将压缩得到的码字上报给接入网设备,以降低第二信息上报时的压缩空间,提高资源利用率。
其中,第一压缩器用于对第一信息进行压缩处理,第二压缩器可以用于对第二信息进行压缩处理。第一压缩器的压缩参数、第二压缩器的压缩参数可以由接入网设备指示给第一终端,如接入网设备可以向第一终端发送第二指示信息,第二指示信息可以用于指示第一压缩器的压缩参数。接入网设备可以向第一终端发送第六指示信息,第六指示信息可以用于指示第二压缩器的压缩参数。或者,第一压缩器的压缩参数、第二压缩器的压缩参数可以是接入网设备和终端双方约定好的或者协议预先规定的。
压缩器的压缩参数可以用于指示该压缩器、指示该压缩器实现或者辅助实现的功能、和/或该压缩器的初始化参数等等。以压缩器为神经网络模型为例,压缩器的压缩参数可以包括下述一个或多个:神经网络模型的标识、神经网络模型对应的网络结构的信息、神经网络模型对应的网络权重信息、神经网络模型对应的网络结构的标识、和神经网络模型对应的网络权重的标识。
上述步骤401~步骤402对第一终端上报第一信息为例进行描述,应理解,对于其他终端,如第二终端,也可以参照上述步骤向接入网设备上报第一公共信息中的部分信息或者全部信息,以使一个或者多个终端协同将第一公共信息中的完整信息全部上报给接入网设备。
其中,在终端上报第一公共信息的部分信息的情况下,不同终端协同上报的第一公共信息中的部分信息可以是不重叠的或者部分重叠的,不同终端上报的第一公共信息中的部分信息组成第一公共信息的完整信息。其中不同终端上报第一公共信息中的部分信息时采用的压缩器可以相同或者不同,不予限制。在终端上报第一公共信息中的全部信息的情况下,可以由多个终端中的至少一个终端或者负载较小的至少一个终端上报第一公共信息的全部信息,而多个终端中的其他终端不用再上报第一公共信息。其中,当上报第一公共信息的全部信息的终端数量大于1时,可以提高该信息传输的鲁棒性,即只要接入网设备能收到其中至少一个终端上报的公共信息即可。
步骤403:接入网设备接收第一信息,根据第一信息确定第一终端的信道信息中的公共信息。
示例性的,接入网设备接收第一终端上报的第一信息,如果第一信息指示第一公共信息的全部信息,则根据第一信息恢复出第一公共信息的全部信息。如果第一信息指示第一公共 信息的部分信息,则根据第一信息恢复出第一公共信息的部分信息。等到其他终端上报完第一公共信息的其他部分信息,将其他终端上报的第一公共信息的部分信息与第一终端上报的第一公共信息的部分信息结合起来得到第一公共信息。
进一步的,第一终端可以根据第一公共信息以及第一终端的特定信息得到第一终端的信道信息,根据第一终端的信道信息确定出与第一终端与接入网设备之间的下行信道相匹配的预编码矩阵,根据确定的预编码矩阵对待发送给第一终端的下行信号进行预编码处理,将预编码处理后的下行信号发送给终端。
基于图4所示方法,在多个终端的信道信息中存在公共信息时,每个终端上报该公共信息的部分信息或者全部信息,实现多个终端协同/联合上报信道信息,降低信令开销。
图4所示方法中,第一信息用于指示第一公共信息的全部信息或者部分信息可以包括下述第一种可能的设计方式~第六种可能的设计方式中的任一种:
第一种可能的设计,第一信息包括第一公共信息中的部分信息或者全部信息。
其中,第一公共信息的全部信息可以指第一公共信息包括的所有元素的信息或者第一公共信息包括的所有非零合并系数的取值。如第一信息包括N3个元素,或者,第一信息包括第一位置的取值。比如,假设N3=10,第一信息可以包括这个10个元素。又比如,第一位置为波束向量1的第6个频域单元以及波束向量1的第7个频域单元,则第一信息可以包括波束向量1的第6个频域单元的取值以及波束向量1的第7个频域单元的取值。
其中,第一公共信息的部分信息可以指N3个元素中的部分元素或者第一位置中部分位置的取值,或者,第一公共信息的全部信息的综合取值中的部分取值,如将综合取值中的个位或者十位作为部分取值;或者,将综合取值转换为二进制比特串,将二进制比特串中的高几位或者低几位作为部分取值。本申请实施例中,综合取值可以指将全部信息输入预设计算规则中计算得到的取值,该预设计算规则可以是接入网设备和终端双发预先约定好的或者协议预先规定的。具体的,该预设计算规则可以包括函数f(x),其中x为函数f()的输入变量,x可以是第一公共信息中的全部信息。
比如,假设第一公共信息包括N3个元素,N3=10,可以将这10个元素分为2份,第一信息可以包括其中一份的5个元素的信息,由第一终端将这5个元素指示给接入网设备,而而剩余5个元素的信息由第二终端上报给接入网设备。或者,将N3个元素进行计算得到综合取值18,将十位数值“值位作为第一公共信息中的部分信息,由第一终端上报给接入网设备。又比如:第一信息可以包括波束向量1的第6个频域单元的取值以及波束向量1的第7个频域单元的取值,这两个取值中的一个由第一终端上报给接入网设备,另一个可以由第二终端上报给接入网设备。
该可能的设计中,第一信息具体包括第一公共信息中的哪些信息可以由接入网设备指示给终端,比如,如果第一信息包括第一公共信息的全部信息,则在步骤402之前,接入网设备可以将第一公共信息在第一终端的信道信息中的位置信息指示给第一终端;如果第一信息包括第一公共信息的部分信息,则在步骤402之前,接入网设备可以将第一公共信息的部分信息在第一终端的信道信息中的位置信息指示给第一终端,或者,在步骤402之前,接入网设备将第一公共信息在第一终端的信道信息中的位置信息以及第一公共信息的部分信息在第一公共信息中的位置信息均指示给第一终端。
第二种可能的设计,第一信息包括第一公共信息的部分信息或者全部信息量化后得到的 量化比特。
其中,第一公共信息的部分信息的相关描述可以参照上述第一种可能的设计中所述。
示例性的,第一终端可以根据预先设置的量化方式对第一公共信息的全部信息进行量化,将量化后的量化比特携带在第一信息中。或者,第一终端根据预先设置的量化方式对第一公共信息的部分信息进行量化,将量化后的量化比特携带在第一信息中,以降低信令开销。
其中,量化方式可以包括均匀量化或者非均匀量化,该量化方式、以及量化比特的长度可以由接入网设备配置并指示给第一终端、第二终端,或者,该量化方式以及量化比特的长度可以由协议预先规定好。
第三种可能的设计,第一信息包括第一公共信息的全部信息量化后得到的量化比特中的全部比特或者部分比特。
其中,第一公共信息的全部信息的相关描述可以参照上述第一种可能的设计中所述。
其中,第一公共信息的全部信息量化后得到的量化比特可以指:将第一公共信息的全部信息作为输入参数输入到量化器得到的量化比特。量化器可以包括但不限于模数转换器(analog-to-digital converter)。
具体的,第一信息包括第一公共信息的全部信息量化后得到的量化比特中的全部比特可以包括:在示例一的情况下,第一信息包括将上述N3个元素输入到量化器后得到的量化比特;在示例二的情况下,第一信息包括将第一位置的取值输入到量化器后得到的量化比特。
应理解,第一信息包括第一公共信息的全部信息量化后得到的量化比特中的全部比特可以适用于第一公共信息为第一终端的信道信息和第二终端的信道信息中的相同信息,即位置相同且取值相同的信息的场景。此时,第一公共信息可以由第一终端上报给接入网设备,而其他终端(如第二终端)无需再上报自己的信道信息中的第一公共信息,降低其他终端上报信道信息的信令开销。
具体的,第一信息包括第一公共信息的全部信息量化后得到的量化比特中的部分比特可以包括下述几种情况:情况一、第一公共信息为第一终端的信道信息和第二终端的信道信息中的相同信息,将第一公共信息的全部信息量化后的量化比特分为与第一终端、第二终端对应的多份量化比特,不同份的量化比特的长度相同或者不同,第一信息包括与第一终端对应的那份量化比特。情况二、第一公共信息为第一终端的信道信息和第二终端的信道信息中的相似信息,第一信息包括第一公共比特,第一公共比特为第一终端的信道信息中的第一公共信息的全部信息量化后的量化比特与第二终端的信道信息中的第一公共信息的全部信息量化后的量化比特中取值相同的比特;或者,将第一公共比特分为与第一终端、第二终端对应的多份比特,第一信息包括与第一终端对应的那份比特。应理解,情况二中,对于第一终端而言,其第一公共信息的全部信息量化后的量化比特中除第一公共比特之外的那部分比特属于第一终端的特定信息,第一终端可以单独上报给接入网设备,类似的,对于第二终端而言,其第一公共信息中的全部信息量化后的量化比特中除第一公共比特之外的那部分比特属于第二终端的特定信息,第二终端可以单独上报给接入网设备。
应理解,第一信息包括第一公共信息中的部分信息可以适用于第一公共信息为第一终端的信道信息和第二终端的信道信息中相同信息和/或相似信息的场景。
第四种可能的设计,第一信息用于指示第一公共信息与参考信息之间的关系值。
本申请实施例中,一种可能的设计中,在多个终端(包括第一终端)的信道信息中存在 相似信息的情况下,将多个终端中任一终端的信道信息中的相似信息作为参考信息。多个终端可以包括已处于终端组中的终端或者待加入终端组的终端(similar information)。终端组中可以包括支持采用本申请实施例所述方法协同上报信道信息的多个终端。或者,参考信息可以由终端和接入网设备预先约定或者由接入网设备指示给第一终端,不予限制。
又一种可能的设计中,在多个终端(包括第一终端)的信道信息中存在相同信息(如第一公共信息)的情况下,可以预先配置一参考信息,对于多个终端中的每个终端而言,由多个终端中的至少一个终端协同将第一公共信息与该预先配置的参考信息的关系值上报给接入网设备。比如,有如下三种实现方式:一、由其中一个终端将第一公共信息与该预先配置的参考信息的关系值上报给接入网设备。二、将第一公共信息与该预先配置的参考信息的关系值分为几部分,由对应的几个终端将该关系值的几部分分别上报给接入网设备,以使得接入网设备根据将几部分信息合成后,根据合成后的信息与关系值恢复出每部分信息,再合成最终的公共信息。三、将第一公共信息分为几部分,将这些部分信息与参考信息之间的关系值上报给接入网设备,以便接入网设备根据关系值以及参考信息恢复出部分信息,将部分信息合成得到公共信息。其中,第三种实现方式中,每部分信息对应的参考信息可以相同或者不同,不予限制。具体的,第三种实现方式可参照下述图5e所示。
其中,第一信息用于指示第一公共信息与参考信息之间的关系值可以包括第一信息用于指示第一公共信息与参考信息之间的关系值或者包括关系值量化后的量化比特等。第一公共信息与参考信息之间的关系值可以包括:第一公共信息与参考信息之间的偏差值、或者第一公共信息与参考信息之间的倍数值、或者第一公共信息的归一化值与参考信息的归一化值之间的偏差值。
示例性的,如果参考信息不是第一终端自身的信道信息中的信息,而是其他终端的信道信息中的信息,则第一终端可以从参考信息对应的终端处获取参考信息。比如以参考信息为第三终端的信道信息中的信息为例,第一终端可以根据第三终端的标识,通过D2D技术与第三终端进行信令交互,从第三终端获得参考信息。具体的,该过程可参照下述图6a所示。
其中,第三终端的标识信息可以由接入网设备指示给第一终端,以便第一终端根据接入网设备的指示确定哪个终端的信道信息中的相似信息可以作为参考信息。
第五种可能的设计,第一信息用于指示第一公共信息的部分信息与参考信息的部分信息之间的关系值。
其中,第一公共信息的部分信息、参考信息的相关描述如上述,不予赘述。
其中,参考信息的部分信息中可以包括参考信息中的部分元素或者参考信息的全部信息的综合取值中的部分取值,其中综合取值的相关描述可参照上述。
其中,第一公共信息的部分信息与参考信息的部分信息之间的关系值可以包括:第一公共信息的部分信息与参考信息的部分信息之间的偏差值、或者第一公共信息的部分信息与参考信息的部分信息之间的倍数值、或第一公共信息的部分信息的归一化值与参考信息的部分信息的归一化值之间的偏差值等。具体的,采用哪种形式的关系值、以及采用参考信息中的哪部分信息可以由终端和接入网设备事先预定好或者协议预先规定。
第六种可能的设计,第一信息用于指示第一部分比特与第二部分比特之间的关系值,第一部分比特为第一公共信息量化后得到的量化比特中的部分比特,第二部分比特为参考信息量化后得到的量化比特中的部分比特。
其中,第一公共信息、参考信息的相关描述如上述,不予赘述。
其中,第一部分比特的长度与第二部分比特的长度可以相同或者不同。第一部分比特的长度以及第一部分比特在第一公共信息量化后得到的量化比特中的位置可以由接入网设备指示给第一终端。
其中,第一部分比特与第二部分比特之间的关系值可以包括:第一部分比特对应的二进制的数值与第二部分比特对应的二进制的数值之间的偏差值、或者第一部分比特对应的二进制的数值与第二部分比特对应的二进制的数值之间的倍数值、或第一部分比特的归一化值与第二部分比特的归一化值之间的偏差值等。具体的,采用哪种形式的关系值可以由终端和接入网设备事先预定好或者协议预先规定。
下面结合图5a对图4所示多个终端协同上报信道信息方法进行详细描述,其中假设终端组包括(N-1)个UE:{UE(1)、UE(2)、.....UE(N-1)},N为大于等于3的整数,每个UE的信道信息的设计方式相同,如信道信息包括信道矩阵,(N-1)个UE的信道信息中的相同元素为公共信息(common information)A,UE(1)的特定信息为B(1)、UE(2)的特定信息为B(2)、........UE(N-1)的特定信息为B(N-1)。用于处理公共信息的压缩器为En(i).1,用于处理特定信息的压缩器为En(i).2,i取值为[1,(N-1)]。
如图5a所示,将A分为与(N-1)个UE对应的(N-1)份信息:A(1)、A(2).......A(N-1),其中,A(1)+A(2)+......A(N-1)=A,其中,该公式中的+可以理解为结合或者联合,而不是仅限于加法。(N-1)个UE可以通过下述步骤1~步骤3协同上报公共信息A。
步骤1:接入网设备向(N-1)个UE中的各个UE发送第一指示信息,向UE指示该UE对应的部分信息以及特定信息,以及向UE指示各个压缩器的压缩参数。
本申请实施例中不限于向UE指示该UE对应的部分信息以及特定信息,以及向UE指示各个压缩器的压缩参数。可替换的,可以预先配置好压缩器的压缩参数,此时,接入网设备仅向UE指示该UE对应的部分信息以及特定信息即可。或者,压缩器的压缩参数还用于指示UE对应的部分信息以及特定信息,此时,接入网设备仅向UE指示各个压缩器的压缩参数即可。
步骤2:(N-1)个UE中的第i个UE根据接入网设备发送的第一指示信息,将自身对应的部分信息A(i)经过压缩器En(i).1处理后上报给接入网设备、以及将自身的特定信息经过压缩器En(i).2处理后上报给接入网设备。
例如,如图5a所示,UE(1)将A(1)经过压缩器En(1).1处理后得到码字C(1).1,将C(1).1上报给接入网设备,UE(1)将B(1)经过压缩器En(1).2处理后得到码字C(1).2,将C(1).2上报给接入网设备,UE(2)将A(2)经过压缩器En(2).1处理后得到码字C(2).1,将C(2).1上报给接入网设备,UE(2)将B(2)经过压缩器En(2).2处理后得到码字C(2).2,将C(2).2上报给接入网设备,以此类推,UE(N-1)将A(N-1)经过压缩器En(N-1).1处理后得到码字C(N-1).1,将C(N-1).1上报给接入网设备,UE(N-1)将B(N-1)经过压缩器En(N-1).2处理后得到码字C(N-1).2,将C(N-1).2上报给接入网设备。
步骤3:接入网设备接收各个UE上报的部分信息以及特定信息,根据各个终端上报的部分信息以及特定信息确定各个UE的信道信息。
例如,如图5a所示,接入网设备将接收到的C(1).1、C(2).1.......以及C(N-1).1分别进行解压缩处理,得到A(1)、A(2).......以及A(N-1),将A(1)、A(2)、......A(N-1)进行组合计算得 到A,将接收到的C(1).2进行解压处理得到B(1),将A与UE(1)的特定信息B(1)结合起来恢复出UE(1)的信道矩阵
Figure PCTCN2020125680-appb-000055
如将A、UE(1)的特定信息B(1)放到信道矩阵
Figure PCTCN2020125680-appb-000056
中的相应位置。类似的,将A与UE(N-1)的特定信息B(N-1)结合起来恢复出UE(N-1)的信道矩阵
Figure PCTCN2020125680-appb-000057
其中,本申请各实施例中,接入网设备侧对接收到的UE(i)发送的码字C(i).2进行解压处理所用的解压器可以命名为De(i).2,对接收到的公共信息对应的码字进行解压处理所用的解压器可以命名为De1。
基于图5a所示方法,可以将(N-1)个终端的信道信息中的公共信息分为(N-1)份部分信息,每个终端对应上报属于自己的那份部分信息以及自己的特定信息。接入网设备侧,将接收到的每个终端上报的部分信息组合起来得到公共信息,将公共信息以及终端的特定信息组合起来得到终端的信道E矩阵。如此,可以每个终端上报一部分信息,降低终端的信令开销。
实际应用中,会存在新的终端加入终端组中,这种情况下,可以包括下述三种协同上报方法:第一种、不更新终端组中原有终端的信道信息中的公共信息A,不更新/不改变原有终端的执行过程,默认新加入的终端的信道信息中的公共信息也为A,新加入的终端仅上报自己的特定信息。第二种、不更新终端组中原有终端的信道信息中的公共信息A,如此可以保证终端组中原有终端的特定信息不变,此外,默认新加入的终端的信道信息中的公共信息也为A,并使新加入的终端也加入到协同上报公共信息A的队伍中,即新加入的终端分担上报公共信息中的部分信息。第三种、将公共信息A更新为新加入的终端的信道信息与终端组中原有终端的信道信息中公共信息A’,新加入的终端与终端组中原有终端参照图5a方式协同上报公共信息A’。
下面结合图5b对上述第一种协同上报方式:终端加入到终端组中,对于新加入的终端仅向接入网设备上报的特定信息进行描述。如图5b所示,假设终端组包括(N-1)个UE:{UE(1)、UE(2)、.....UE(N-1)},N为大于等于3的整数,每个UE的信道信息的设计方式相同,如信道信息包括信道矩阵,(N-1)个UE的信道信息中的相同元素为公共信息(common information)A,UE(1)的特定信息为B(1)、UE(2)的特定信息为B(2)、........UE(N-1)的特定信息为B(N-1)。用于处理公共信息的压缩器为En(i).1,用于处理特定信息的压缩器为En(i).2,i取值为[1,(N-1)]。UE(N)为新加入终端组的UE。
执行图5a对应的步骤1~步骤3。即终端组中原有的(N-1)个UE,仍可以参照图5a中所示,根据接入网设备的指示上报属于自己的那份部分信息以及特定信息。
步骤4:接入网设备确定将UE(N)加入到终端组中,对于新加入的UE(N),接入网设备向UE(N)指示UE(N)的特定信息B(N)在UE(N)的信道信息中的位置信息,以及向UE(N)指示用于处理UE(N)的特定信息B(N)的压缩器En(N).2的压缩参数。
示例性的,接入网设备可以根据下述方式确定将UE(N)加入到终端组:如果UE(N)的信道信息中包括与第一公共信息相同和/或相似的信息,则确定将UE(N)加入到终端组中;或者,如果UE(N)与终端组中各个终端的距离小于距离阈值,则确定将UE(N)加入到终端组中。
步骤5:UE(N)根据接入网设备的指示,将自身的特定信息B(N)经过压缩器En(N).2处理后得到码字C(N).2,将C(N).2上报给接入网设备。
步骤6:接入网设备接收UE(N)上报的特定信息C(N).2,对C(N).2进行解压处理得到特定信息B(N),根据UE(N)的特定信息B(N)以及确定出的公共信息A确定UE(N)的信道信息,如确定UE(N)的信道矩阵。
例如,如图5b所示,接入网设备将接收到的C1.1、C2.1.......以及C(N-1).1分别进行解压缩处理,得到A(1)、A(2).......以及A(N-1),将A(1)、A(2)、......A(N-1)进行组合计算得到A,将A与UE(N)的特定信息B(N)结合起来恢复出UE(N)的信道矩阵
Figure PCTCN2020125680-appb-000058
基于图5b所示方法,当有新的终端加入到协同上报信道信息的终端组时,对于该新加入的终端,指示其上报自己的特定信息,降低新加入的终端上报信道信息带来的信令开销。
下面结合图5c对上述第二种协同上报方式进行描述:对于新加入的终端,不限于上报新加入的终端的特定信息,可替换的,新加入的终端还可以与终端组中的原有终端一起协同上报公共信息,即终端组中每个终端都参与到公共信息的上报中,实现负载均衡。
如图5c所示,假设终端组包括(N-1)个UE:{UE(1)、UE(2)、.....UE(N-1)},N为大于等于3的整数,每个UE的信道信息的设计方式相同,如信道信息包括信道矩阵,(N-1)个UE的信道信息中的相同元素为公共信息(common information)A,UE(1)的特定信息为B(1)、UE(2)的特定信息为B(2)、........UE(N-1)的特定信息为B(N-1)。用于处理公共信息的压缩器为En(i).1,用于处理特定信息的压缩器为En(i).2,i取值为[1,(N-1)]。此时,如果UE(N)为新加入到终端组的UE,则可以重新对公共信息A进行划分,分为A(1)’、A(2)’.......A(N)’,其中A(1)’+A(2)’+......A(N)’=A。
执行图5a中步骤1~步骤3中所述的各个UE上报特定信息的过程。对于终端组中原有的(N-1)个UE,由于更新了UE(i)对应的部分信息,则接入网设备需要向(N-1)个UE中各个UE重新指示其对应的部分信息的位置信息和/或UE(i)的压缩器En(i).1的压缩参数。
步骤4:接入网设备确定将UE(N)加入到终端组中,对于新加入的UE(N),接入网设备向UE(N)指示下述一种或者多种信息:UE(N)的A(N)’的位置信息、UE(N)的压缩器En(N).1的压缩参数、UE(N)的特定信息B(N)在UE(N)的信道信息中的位置信息、和UE(N)的压缩器En(N).2的压缩参数。
其中,UE(N)的压缩器En(N).1的压缩参数可以用于对UE(N)的部分信息A(N)’进行压缩处理,UE(N)的压缩器En(N).1的压缩参数可以包括用于指示UE(N)的A(N)’的信息,如UE(N)的A(N)’的位置信息等。UE(N)的压缩器En(N).2的压缩参数用于对UE(N)的特定信息B(N)进行压缩处理,UE(N)的压缩器En(N).2的压缩参数可以包括用于指示UE(N)的B(N)的信息,如UE(N)的B(N)的位置信息。
其中,接入网设备确定将UE(N)加入到终端组的方式可参照图5b中所述,不予赘述。
步骤5:UE(N)根据接入网设备的指示,将自身的特定信息B(N)经过压缩器En(N).2处理后得到码字C(N).2,将C(N).2上报给接入网设备。将自身的部分信息A(N)’经过压缩器En(N).1处理后得到码字C(N).1,将C(N).1上报给接入网设备。
例如,如图5c所示,UE(1)将A(1)’经过压缩器En(N)1.1处理后得到码字C(1).1,将C(1).1上报给接入网设备,UE(2)将A(2)’经过压缩器En(N)2.1处理后得到码字C(2).1,将C(2).1上报给接入网设备,以此类推,UE(N-1)将A(N-1)’经过压缩器En(N-1).1处理后得到码字C(N-1).1,将C(N-1).1上报给接入网设备,UE(N)将A(N)’经过压缩器En(N).1处理后得到码字C(N).1,将C(N).1上报给接入网设备。
步骤6:接入网设备接收UE(1)至UE(N-1)中各个UE上报的部分信息,以及接收UE(N)上报的部分信息以及特定信息,根据各个终端上报的部分信息确定公共信息A,根据公共信息A以及各个UE的特定信息确定各个UE的信道信息,如各个UE的信道矩阵。
例如,如图5c所示,接入网设备将接收到的C(1).1、C(2).1.......以及C(N).1分别进行解压缩处理,得到A(1)’、A(2)’.......以及A(N)’,将A(1)’、A(2)’、......A(N)’进行组合计算得到A,将A与UE(1)的特定信息B(1)结合起来恢复出UE(1)的信道矩阵
Figure PCTCN2020125680-appb-000059
类似的,将A与UE(N)的特定信息B(N)结合起来恢复出UE(N)的信道矩阵
Figure PCTCN2020125680-appb-000060
基于图5c所示方法,当有新的终端加入到协同上报信道信息的终端组时,对于该新加入的终端,也参与到公共信息的上报中,即重新将(N-1)个终端的信道信息中的公共信息分为N份部分信息,每个终端对应上报属于自己的那份部分信息。接入网设备侧,将接收到的每个终端上报的部分信息组合起来得到公共信息,将公共信息以及终端的特定信息组合起来得到终端的信道信息。如此,每个终端上报一部分信息,降低终端的信令开销。
下面结合图5d对上述第三种协同上报方式进行描述。如图5d所示,假设终端组包括(N-1)个UE:{UE(1)、UE(2)、.....UE(N-1)},N为大于等于3的整数,每个UE的信道信息的设计方式相同,如信道信息包括信道矩阵,(N-1)个UE的信道信息中的相同元素为公共信息(common information)A,UE(1)的特定信息为B(1)、UE(2)的特定信息为B(2)、........UE(N-1)的特定信息为B(N-1)。如果UE(N)为新加入到终端组的UE,则可以重新确定终端组中N个UE的信道信息中相同的信息为公共信息为A’,将A’分为A(1)”、A(2)”.......A(N)”份部分信息,其中A(1)”+A(2)”+......A(N)”=A’。UE(1)的特定信息更新后B(1)’、UE(2)的特定信息更新为B(2)’、........UE(N)的特定信息为B(N)’。用于处理公共信息的压缩器为En(i).1,用于处理特定信息的压缩器为En(i).2,i取值为[1,N]。N个终端协同上报信道信息的过程可参照下述步骤1~步骤3:
步骤1:接入网设备向终端组中的UE(i)发送第一指示信息,向UE(i)指示下述一种或者多种信息:UE(i)对应的部分信息A(i)”、UE(i)对应的特定信息B(i)’、UE(i)的压缩器En(i).1的压缩参数和UE(i)的压缩器En(i).2的压缩参数。
步骤2:UE(i)根据接入网设备发送的第一指示信息,将自身对应的部分信息A(i)”经过压缩器En(i).1处理后上报给接入网设备、以及将自身的特定信息B(i)’经过压缩器En(i).2处理后上报给接入网设备。
例如,如图5d所示,UE(1)将A(1)”经过压缩器En(1).1处理后得到码字C(1).1,将C(1).1上报给接入网设备,UE(1)将B(1)’经过压缩器En(1).2处理后得到码字C(1).2,将C(1).2上报给接入网设备,UE(2)将A(2)”经过压缩器En(2).1处理后得到码字C(2).1,将C(2).1上报给接入网设备,UE(2)将B(2)’经过压缩器En(2).2处理后得到码字C(2).2,将C(2).2上报给接入网设备,以此类推,UE(N)将A(N)”经过压缩器En(N).1处理后得到码字C(N).1,将C(N).1上报给接入网设备,UE(N)将B(N)’经过压缩器En(N).2处理后得到码字C(N).2,将C(N).2上报给接入网设备。
步骤3:接入网设备接收各个UE上报的部分信息以及特定信息,根据各个终端上报的部分信息以及特定信息确定各个UE的信道信息。
例如,如图5d所示,接入网设备将接收到的C(1).1、C(2).1.......以及C(N).1分别进行解压缩处理,得到A(1)”、A(2)”.......以及A(N)”,将A(1)”、A(2)”、......A(N)”进行组合计算得到A’,将接收到的C(1).2进行解压处理得到B(1)’,将A’与UE(1)的特定信息B(1)’结合起来恢复出UE(1)的信道矩阵
Figure PCTCN2020125680-appb-000061
如将A”、UE(1)的特定信息B(1)’放到信道矩阵
Figure PCTCN2020125680-appb-000062
中的相应位置。类似的,将A”与UE(N-1)的特定信息B(N-1)’结合起来恢复出UE(N-1)的信道矩阵
Figure PCTCN2020125680-appb-000063
类似的,将A”与UE(N)的特定信息B(N)’结合起来恢复出UE(N)的信道信息
Figure PCTCN2020125680-appb-000064
基于图5d所示方法,可以将N个终端的信道信息中的公共信息分为N份部分信息,每个终端对应上报属于自己的那份部分信息以及自己的特定信息。接入网设备侧,将接收到的每个终端上报的部分信息组合起来得到公共信息,将公共信息以及终端的特定信息组合起来得到终端的信道信息。如此,可以每个终端上报一部分信息,降低终端的信令开销。
上述图5b~图5d以终端组中加入终端为例进行描述,当终端组中退出终端时,实现方法是类似的。例如,当有终端退出时,且该退出的终端不参与上报公共信息时或者该终端上报的公共信息其他终端也会重复上报时,可以不更新各终端上报的公共信息。或者,当有终端退出时,类似图5c或图5d,更新终端组中的其它终端上报的公共信息。
可替换的,在多个终端的信道信息中存在相同信息的情况下,还可以预先配置一参考信息,将公共信息分为与多个终端对应的多份部分信息后,将部分信息与参考信息之间的关系值上报给接入网络。下面结合图5e对该方式进行描述。
如图5e所示,终端组包括(N-1)个UE:{UE(1)、UE(2)、.....UE(N-1)},N为大于等于3的整数,每个UE的信道信息的设计方式相同,如信道信息包括信道矩阵,(N-1)个UE的信道信息中存在相同元素,相同元素称为为公共信息(common information)A,如图5e所示,将A分为与(N-1)个UE对应的(N-1)份信息:A(1)、A(2).......A(N-1),其中,A(1)+A(2)+......A(N-1)=A,其中,该公式中的+可以理解为结合或者联合,而不是仅限于加法。UE(1)的特定信息为B(1)、UE(2)的特定信息为B(2)、........UE(N-1)的特定信息为B(N-1)。用于处理部分信息与参考信息之间的关系值的压缩器为En(i).1,用于处理特定信息的压缩器为En(i).2,i取值为[1,(N-1)]。假设参考信息为S,则(N-1)个UE可以通过下述步骤1~步骤3上报各自的公共信息与参考信息之间的关系值。
步骤1:接入网设备向(N-1)个UE中的各个UE发送第一指示信息,向UE指示该UE对应的部分信息以及特定信息,以及向UE指示各个压缩器的压缩参数。此外,接入网设备向终端组中的UE(1)、UE(2)、.....UE(N-1)指示参考信息S。
步骤2:终端组中的UE(1)、UE(2)、.....UE(N-1)根据接入网设备的指示,将自身对应的那部分信息与参考信息之间的关系值经过自己的压缩器En(i).1处理后上报给接入网设备、以及将自身的特定信息经过压缩器En(i).2处理后上报给接入网设备。
例如,如图5e所示,以关系值为部分信息与参考信息之间的偏差值△为例,UE(1)将A(1)与S的偏差值△1经过压缩器En(1).1处理后得到码字C(1).1,将C(1).1上报给接入网设备,UE(1)将B(1)经过压缩器En(1).2处理后得到码字C(1).2,将C(1).2上报给接入网设备。UE(2)将A(2)与S的偏差值△2经过压缩器En(2).1处理后得到码字C(2).1,将C(2).1上报给接入网设备,UE(2)将B(2)经过压缩器En(2).2处理后得到码字C(2).2,将C(2).2上报给接入网设备,以此类推,UE(N-1)将A(N-1)与S的偏差值△(N-1)经过压缩器En(N-1).1处理后得到码字C(N-1).1,将C(N-1).1上报给接入网设备,UE(N-1)将B(N-1)经过压缩器En(N-1).2处理后得到码字C(N-1).2,将C(N-1).2上报给接入网设备。
步骤3:接入网设备接收各个UE上报的部分信息与参考信息之间的关系值、以及特定信息,根据各个终端上报的关系值、以及特定信息确定各个UE的信道信息。
例如,如图5e所示,接入网设备对接收到的C(1).1进行解压处理得到△1,并根据△1以及参考信息S得到部分信息A(1),对接收到的C(2).1进行解压处理得到△2,并根据△2以 及参考信息S得到部分信息A(2),以此类推,直至对接收到的C(N-1).1进行解压处理得到△(N-1),并根据△(N-1)以及参考信息S得到部分信息A(N-1)。将A(1)、A(2)、......A(N-1)进行组合计算得到A,将接收到的C(1).2进行解压处理得到B(1),将A与UE(1)的特定信息B(1)结合起来恢复出UE(1)的信道矩阵
Figure PCTCN2020125680-appb-000065
如将A、UE(1)的特定信息B(1)放到信道矩阵
Figure PCTCN2020125680-appb-000066
中的相应位置。类似的,将A与UE(N-1)的特定信息B(N-1)结合起来恢复出UE(N-1)的信道矩阵
Figure PCTCN2020125680-appb-000067
基于图5e所示方法,可以将终端的信道信息中的公共信息分为多份部分信息,将部分信息与参考信息之间的关系值以及自己的特定信息上报给接入网设备,由于关系值的取值较小,由于关系值对应的信息比特较少,可以降低终端的信令开销。
上述图5a~图5e以多个终端的信道信息中存在相同信息为例对多个终端联合上报信道信息进行了描述。下面以多个终端的信道信息中存在相似信息(similar information),以相似信息作为公共信息,终端组中的终端向接入网设备上报公共信息与参考信息之间的关系值为例对图4所示方法中多个终端联合上报信道信息进行描述。
如图6a所示,终端组包括(N-1)个UE:{UE(1)、UE(2)、.....UE(N-1)},N为大于等于3的整数,每个UE的信道信息的设计方式相同,如信道信息包括信道矩阵,(N-1)个UE的信道信息中的相似(similar)元素作为为公共信息(common information),UE(1)的信道信息中的公共信息记为A 1,UE(2)的信道信息中的公共信息记为A 2,.....,UE(N-1)的信道信息中的公共信息记为A N-1,UE(N-1)的信道信息中的公共信息A N-1为参考信息,其中A 1、A 2.......A N-1为相似信息。UE(1)的特定信息为B(1)、UE(2)的特定信息为B(2)、........UE(N-1)的特定信息为B(N-1)。用于处理公共信息与参考信息之间的关系值的压缩器为En(i).1,用于处理特定信息的压缩器为En(i).2,i取值为[1,(N-1)]。(N-1)个UE可以通过下述步骤1~步骤3上报各自的公共信息。
步骤1:接入网设备向(N-1)个UE中的各个UE发送第一指示信息,向UE指示该UE的信道信息中的哪些信息为公共信息以及哪些是特定信息,以及向UE指示各个压缩器的压缩参数。此外,接入网设备向终端组中的UE(1)、UE(2)、.....UE(N-2)指示参考信息包括在UE(N-1)的信道信息中,向UE(N-1)指示UE(N-1)的信道信息中的公共信息为参考信息。
步骤2:终端组中的UE(1)、UE(2)、.....UE(N-2)根据接入网设备的指示与UE(N-1)进行D2D交互,从UE(N-1)获取参考信息A N-1,UE(1)、UE(2)、.....UE(N-2)将自身的公共信息与参考信息之间的关系值经过自己的压缩器En(i).1处理后上报给接入网设备、以及将自身的特定信息经过压缩器En(i).2处理后上报给接入网设备。
应理解,对于UE(N-1)而言,UE(N-1)将参考信息经过自己的压缩器En(N-1).1处理后上报给接入网设备、以及将自身的特定信息经过压缩器En(N-2).2处理后上报给接入网设备。
例如,如图6a所示,以关系值为公共信息与参考信息之间的偏差值△为例,UE(1)将A 1与A N-1的偏差值△1经过压缩器En(1).1处理后得到码字C(1).1,将C(1).1上报给接入网设备,UE(1)将B(1)经过压缩器En(1).2处理后得到码字C(1).2,将C(1).2上报给接入网设备。UE(2)将A 2与A N-1的偏差值△2经过压缩器En(2).1处理后得到码字C(2).1,将C(2).1上报给接入网设备,UE(2)将B(2)经过压缩器En(2).2处理后得到码字C(2).2,将C(2).2上报给接入网设备,以此类推,UE(N-1)将自己的参考信息A N-1经过压缩器En(N-1).1处理后得到码字C(N-1).1,将C(N-1).1上报给接入网设备,UE(N-1)将B(N-1)经过压缩器En(N-1).2处理后得到码字 C(N-1).2,将C(N-1).2上报给接入网设备。
步骤3:接入网设备接收各个UE上报的公共信息与参考信息之间的关系值、以及特定信息,根据各个终端上报的关系值、以及特定信息确定各个UE的信道信息。
例如,如图6a所示,接入网设备对接收到的C(N-1).1进行解压处理得到参考信息A N-1,将C(1).1、C(2).1.......以及C(N-2).1分别进行解压缩处理得到关系值△1、△2、.....△(N-2),并根据参考信息A N-1以及关系值△1得到公共信息A 1,根据参考信息A N-1以及关系值△2得到公共信息A 2,.....,根据参考信息A N-1以及关系值△(N-2)得到公共信息A N-2。将接收到的C(1).2进行解压处理得到B(1),将A 1与UE(1)的特定信息B(1)结合起来恢复出UE(1)的信道矩阵
Figure PCTCN2020125680-appb-000068
如将A 1、UE(1)的特定信息B(1)放到信道矩阵
Figure PCTCN2020125680-appb-000069
中的相应位置。类似的,将A N-1与UE(N-1)的特定信息B(N-1)结合起来恢复出UE(N-1)的信道矩阵
Figure PCTCN2020125680-appb-000070
进一步的,在图6a所示方法中,如果参考信息对应的终端,如UE(N-1)退出终端组,则接入网设备还需要向各个终端发送指示信息,指示UE(N-1)退出终端组,不再以UE(N-1)的信道信息包括的信息作为参考信息,并将新的参考信息或者新的参考信息对应的终端(如上述UE(N-2)或者其他UE)的标识信息指示给终端组中还在的各个终端。
基于图6a所示方法,可以将终端的信道信息中的公共信息与参考信息之间的关系值以及自己的特定信息上报给接入网设备。接入网设备侧,将接收到的每个终端上报的信息与参考信息进行计算得到终端的公共信息,将公共信息以及终端的特定信息组合起来得到终端的信道信息。如此,实现每个终端上报公共信息与参考信息之间的关系值,由于关系值的取值较小,由于关系值对应的信息比特较少,可以降低终端的信令开销。
进一步的,如果有终端加入到终端组中,对于新加入的终端,接入网设备可以向该新加入的终端发送指示信息,指示参考信息为哪个终端的,以便新加入的终端从参考信息对应的终端获取参考信息,或者,如果将参考信息更新为新加入的终端的信道信息,则接入网设备可以重新向各个终端发送指示信息,指示新加入的终端的标识信息,以便终端根据新加入的终端的标识信息获取参考信息。下面以新加入的终端的信道信息为参考信息为例进行说明:
如图6b所示,终端组包括(N-1)个UE:{UE(1)、UE(2)、.....UE(N-1)},N为大于等于3的整数,每个UE的信道信息的设计方式相同,如信道信息包括信道矩阵,(N-1)个UE的信道信息中的相似(similar)元素作为为公共信息(common information),UE(1)的信道信息中的公共信息记为A 1,UE(2)的信道信息中的公共信息记为A 2,.....,UE(N-1)的信道信息中的公共信息记为A N-1,UE(N-1)的信道信息中的公共信息A N-1为参考信息,其中A 1、A 2.......A N-1为相似信息。UE(1)的特定信息为B(1)、UE(2)的特定信息为B(2)、........UE(N-1)的特定信息为B(N-1)。用于处理公共信息与参考信息之间的关系值的压缩器为En(i).1,用于处理特定信息的压缩器为En(i).2,i取值为[1,(N-1)]。
执行图6a对应的步骤1~步骤3。
如果有新的终端:UE(N)加入到终端组,且确定将参考信息A N-1更新为新加入的UE(N)的信道信息中的信息A N,A 1、A 2.......A N-1,A N为相似信息,继续执行步骤4~步骤6:
步骤4:接入网设备确定将UE(N)加入到终端组中,对于新加入的UE(N),接入网设备确定将UE(N)的信道信息中A N的作为参考信息,则向原有的(N-1)个UE中每个UE指示UE(N)的标识信息,向UE(N)指示UE(N)的信道信息中的A N为参考信息,以及向UE(N)指示下述一种或者多种信息:A N在UE(N)的信道信息中的位置、UE(N)的特定信息B(N)在UE(N)的信 道信息中的位置、UE(N)的压缩器En(N).1的压缩参数和UE(N)的压缩器En(i).2的压缩参数。
步骤5:UE(N)根据接入网设备的指示,将信道信息中的A N经过压缩器En(N).1处理后得到码字C(N).1,将C(N).1上报给接入网设备,以及将自身的特定信息B(N)经过压缩器En(N).2处理后得到码字C(N).2,将C(N).2上报给接入网设备。
(N-1)个UE中的第i个UE根据接入网设备的指示,与UE(N)进行D2D交互,获取参考信息A N,将第i个UE的公共信息A i与参考信息A N之间的关系值经过压缩器En(i).1处理后上报给接入网设备、以及将自身的特定信息经过压缩器En(i).2处理后上报给接入网设备。
步骤6:接入网设备接收各个UE上报的公共信息与参考信息之间的关系值、以及特定信息,根据各个终端上报的关系值、以及特定信息确定各个UE的信道信息。
例如,如图6b所示,接入网设备对接收到的C(N).1进行解压处理得到参考信息A N,将C(1).1、C(2).1.......以及C(N-1).1分别进行解压缩处理得到关系值△1、△2、.....△(N-1),并根据参考信息A N以及关系值△1得到公共信息A 1,根据参考信息A N以及关系值△2得到公共信息A 2,.....,根据参考信息A N以及关系值△(N-1)得到公共信息A N-1。将接收到的C(1).2进行解压处理得到B(1),将A 1与UE(1)的特定信息B(1)结合起来恢复出UE(1)的信道矩阵
Figure PCTCN2020125680-appb-000071
如将A 1、UE(1)的特定信息B(1)放到信道矩阵
Figure PCTCN2020125680-appb-000072
中的相应位置。类似的,将A N与UE(N)的特定信息B(N)结合起来恢复出UE(N-1)的信道矩阵
Figure PCTCN2020125680-appb-000073
进一步的,在图6b所示方法中,如果参考信息对应的UE(N)退出终端组,则接入网设备还需要向各个终端发送指示信息,指示UE(N)退出终端组,不再以UE(N)的信道信息包括的信息作为参考信息,并将新的参考信息或者新的参考信息对应的终端(如上述UE(N-2)或者其他UE)的标识信息指示给终端组中还在的各个终端。
基于图6b所示方法,可以将终端的信道信息中的公共信息与参考信息之间的关系值以及自己的特定信息上报给接入网设备。接入网设备侧,将接收到的每个终端上报的信息与参考信息进行计算得到终端的公共信息,将公共信息以及终端的特定信息组合起来得到终端的信道信息。如此,实现每个终端上报公共信息与参考信息之间的关系值,由于关系值的取值较小,由于关系值对应的信息比特较少,可以降低终端的信令开销。
本申请实施例中,单个终端与接入网设备之间可能会存在两个以及两个以上的子信道,不同子信道的信道信息(本文中可以称为子信道信息)中可能存在相同和/或相似信息,即冗余信息,如果将每个子信道的信道信息全部上报给接入网设备,则会造成传输资源浪费。为解决该问题,本申请实施例中,在单终端上报信道信息的场景,对于不同子信道的信道信息中的相同和/或相似信息,可以向接入网设备上报一份,以降低信令开销。该方式如图7所示。
本申请实施例中,图7所示的终端上报不同子信道的信道信息的方式与图4所示多个终端协同上报公共信息的方式结合执行,也可以不依赖于图4所示的多个终端协同上报公共信息独立执行,即图7所示方法可以作为一个具体实施例来单独执行。例如,在单终端上报信道信息的场景,对于不同子信道的信道信息中的相同和/或相似信息,可以参照图7所示方法向接入网设备上报一份,以降低信令开销。在MU-MIMO场景下,如果第一终端的子信道的信道信息中存在与其他终端的信道信息中相同和/相似的信息,则采用上述图4所示方法多个终端协同上报的方式上报多个终端的公共信息,对于第一终端的特定信息,如果第一终端的特定信息分散包括在多个子信道信息中,且多个子信道信息包括的特定信息中存在相同和/或相似信息,则可以将定信息中存在相同和/或相似信息采用下述图7所示方法向接入网设备上 报一份即可,降低信令开销。
下面对图7所示方法进行介绍:
图7为本申请实施例提供的一种上报信道信息的方法的流程图,图7所示方法可以适用于MU-MIMO场景,也可以适用于单终端上报信道信息的场景。如图7所示,所述方法可以包括步骤701~步骤703:
步骤701:第一终端确定第一终端的信道信息。
其中,如上所述,第一终端可以为图2中的任一终端。第一终端可以具备N Rx个接收天线。本申请不限定接收第一终端的接收天线的极化方式,第一终端的接收天线可以为单极化天线,也可以为双极化天线。第一终端和接入网设备之间存在N Layer个空间层。
其中,第一终端的信道信息可以包括R1个子信道信息,R1可以为第一终端的接收天线数量N Rx或者层(或空间层)数量N Layer
如果R1为第一终端的接收天线数量N Rx,第一终端与接入网设备之间存在与N Rx个接收天线一一对应的N Rx个子信道。R1个子信道信息可以指R1个子信道的信道信息,如一个子信道信息可以包括一个接收天线对应的空频矩阵(或者称为接收天线对应的信道矩阵)或者包括一个接收天线对应的空频矩阵对应的合并系数矩阵中的非零合并系数的信息(如位置信息、取值、对应的频域向量的索引、和/或空域向量的索引),或者,如上述方式(3)所示,包括一个接收天线对应的空频矩阵对应的合并系数矩阵中非零合并系数的取值。
如果R1为第一终端的空间层数量N Layer,第一终端与接入网设备之间存在与N Layer个接入天线一一对应的N Layer个子信道,R1个子信道信息可以指N Layer个子信道的信道信息,如一个子信道信息可以包括一个空间层对应的空频矩阵(或者称为空间层对应的预编码矩阵)或者包括一个空间层对应的空频矩阵对应的合并系数矩阵中的非零合并系数的信息(如位置信息、取值、对应的频域向量的索引、和/或空域向量的索引),或者,如上述方式(3)所示,包括一个空间层对应的空频矩阵对应的合并系数矩阵中非零合并系数的取值。
具体的,可参照上述方式(1)或方式(2)或方式(3)所述确定第一终端的信道信息。
步骤702:第一终端向接入网设备上报第三信息以及R个第四信息。
其中,第三信息可以用于指示第一终端的信道信息中的第二公共信息的全部信息或部分信息,第二公共信息为第一终端的R1个子信道信息中的相同信息和/或相似信息。相同信息、相似信息的相关描述可参照图4对应的实施例中所述。
本申请实施例中,第一终端的R1个子信道信息中可以包括一组公共信息,也可以包括两组或两组以上公共信息。具体的,第一终端的信道信息中包括的公共信息的组数可以预先规定或由接入网设备确定并指示给第一终端或由第一终端确定并指示给接入网设备。
应理解,MU-MIMO场景下,第二公共信息可以包括R1个子信道信息中除第一公共信息之外的信息中的相同和/或相似信息,或者,第二公共信息可以包括第一终端的信道信息中的第一公共信息中的部分信息,这部分信息是第一终端特定的、不同于其他终端的信息,但这部分信息在R1个子信道信息中是相同和/或相似的。单终端场景下,第二公共信息为第一终端的R1个子信道对应的全部信道信息中的相同和/或相似信息。
一种示例中,第二公共信息可以包括第一终端的R1个子信道信息中的N4个元素,N4个元素为R1个子信道信息中的相同元素或者相似元素。相同元素可以指不同子信道信息中位置相同且取值相同的元素,相似元素可以指不同子信道信息中位置相同且差值小于门限的元素。其中,相同元素或者相似元素在R1个子信道信息中的位置相同。比如UE1包括2个 接收天线:接收天线1和接收天线2,UE1的接收天线1对应的空频矩阵中的第X行和第Y列的位置和UE1的接收天线2对应的空频矩阵中的第X行和第Y列的位置相同且取值相同,则可以将第X行和第Y列的元素作为第二公共信息。
又一种示例中,子信道信息包括非零合并系数的取值,第一终端的R1个子信道信息包括N Rx或者N Layer组非零合并系数的取值,第二公共信息可以为第一终端的R1个子信道信息中第二位置的取值,第二位置为R1个子信道信息中位置相同且取值相同的位置。比如UE1包括2个接收天线:接收天线1和接收天线2,UE1的接收天线1对应一组非零合并系数位置上的取值,接收天线2对应一组非零合并系数位置上的取值,第二位置可以为下述图8a中的公共信息1和公共信息2对应的位置。
其中,R个第四信息与R1个子信道信息中的R个子信道信息对应,第四信息可以用于指示与第四信息对应的子信道信息中的特定信息,R为小于或等于R1的自然数。当R=0时,步骤702可以替换为第一终端向接入网设备上报第三信息。
示例性的,可参照上述第一种可能的设计~第六种可能的设计中第一信息的设计形式来设计第三信息,如第三信息包括第二公共信息中的部分信息或者全部信息;或者,第三信息包括全部信息量化后得到的量化比特中的部分比特或者全部比特;或者,第三信息用于指示第二公共信息与参考信息之间的关系值等,具体的,其详细设计方式可参照第一种可能的设计~第六种可能的设计中所述,不予详述。例如,如果第二公共信息为第一终端的R1个子信道信息中的相同信息,则第三信息可以用于指示第二公共信息的全部信息;如果第二公共信息为第一终端的R1个子信道信息中的相似信息,则第三信息可以用于指示第二公共信息中的部分信息,如指示相似信息量化得到的量化比特中的相同比特。
需要说明的是,本申请实施例中,第一终端执行步骤702之前,第一终端还需要获知下述一种或者多种信息:第一终端的信道信息中包括的公共信息的组数、每组公共信息中的元素数量、每组公共信息中的元素的取值/非零合并系数的取值的量化参数(如量化方式、量化比特数等)、R个特定信息中的元素数量、R个特定信息中的元素的量化参数。这些信息可以由接入网设备全部指示给第一终端,或者,可以由接入网设备将部分信息指示给第一终端,而剩余部分信息由第一终端确定,并通知给接入网设备,或者由预先规定并指示给接入网设备和第一终端。
步骤703:接入网设备接收第三信息以及R个第四信息,根据第三信息以及R个第四信息确定第一终端的信道信息。
示例性的,接入网设备接收第一终端上报的第三信息,根据第三信息恢复出第二公共信息的全部信息。如果第三信息指示第二公共信息,将第二公共信息与第一终端上报的R个第四信息结合起来得到第一终端的信道信息。
进一步的,接入网设备根据第一终端的信道信息确定出与第一终端与接入网设备之间的下行信道相匹配的预编码矩阵,根据确定的预编码矩阵对待上报给第一终端的信号进行预编码处理,将预编码处理后的信号上报给终端。
基于图7所示方法,终端可以将R1个子信道信息中的相同信息向接入网设备上报一份,而对于终端的不同接收天线或者层特定信息,则将一个子信道信息中的特定信息向接入网设备一份,多个子信道信息的特定信息则上报多份,如此,可以避免重复向接入网设备上报相同信息,降低信令开销。可选地,R小于R1时,对于其中R1减去R个子信道,可以认为该R1减去R个子信道不存在特定信息,即,可以通过第二公共信息得到该R1减去R个子信道 的信道信息。
下面结合图8a和图8b,以接入网设备打beamformed CSI-RS场景,第一终端为UE1为例,对单个终端协同上报自己的R1个子信道信息中的公共信息的方式进行描述。
如图8a所示,UE1有两个接收天线Rx1以及Rx2,接入网设备向UE1顺次打出(或发出)9个端口(port)的beamformed CSI-RS,其中前4个beamformed CSI-RS为第一组公共信息(如图8a中公共信息1),中间第5-第6个beamformed CSI-RS为第二组公共信息(如图8a中公共信息2),第7个、第8个beamformed CSI-RS为Rx1特定,第9个beamformed CSI-RS为Rx2特定。同时,接入网设备向UE1指示beamformed CSI-RS中哪些是公共信息、哪些是特定的、公共信息的量化参数、特定信息的量化参数等。需要说明的是,这些信息可以由接入网设备全部指示给UE1,或者,可以由接入网设备将部分信息指示给UE1,而剩余部分信息由UE1确定,并通知给接入网设备,或者由预先规定并指示给接入网设备和UE1。
UE1利用两个接收天线Rx1以及Rx2接收接入网设备向UE1顺次打出(或发出)的9个port的beamformed CSI-RS,如图8a所示,UE1在Rx1对应的下述位置接收到接入网设备打的beamformed CSI-RS{波束向量1的第6个频域向量、波束向量1的第7个频域向量、波束向量1的第14个频域向量、波束向量2的第6个频域向量、波束向量2的第7个频域向量、波束向量2的第14个频域向量、波束向量2L的第10个频域向量、波束向量2L的第11个频域向量},以及在Rx2对应的下述位置接收到接入网设备打的beamformed CSI-RS{波束向量1的第6个频域向量、波束向量1的第7个频域向量、波束向量2的第6个频域向量、波束向量2的第7个频域向量、波束向量2L的第10个频域向量、波束向量2L的第11个频域向量、波束向量2L的第14个频域向量}。
如图8a所示,非零合并系数位置对应图案填充部分,非零合并系数位置{波束向量1的第6个频域向量、波束向量1的第7个频域向量、波束向量2的第6个频域向量、波束向量2的第7个频域向量}对应公共信息1,非零合并系数位置{波束向量2L的第10个频域向量、波束向量2L的第11个频域向量}对应公共信息2,Rx1对应的特定信息为非零合并系数位置{波束向量1的第14个频域向量、波束向量2的第14个频域向量}的取值,Rx2对应的特定信息为非零合并系数位置:波束向量2L的第14个频域向量的取值。
如图8b所示,UE1将公共信息1包括的
Figure PCTCN2020125680-appb-000074
量化以后,得到
Figure PCTCN2020125680-appb-000075
个长度为7的二进制比特串,
Figure PCTCN2020125680-appb-000076
个二进制比特串的高5位相同,UE1可以只向接入网设备反馈一份高5位二进制比特
Figure PCTCN2020125680-appb-000077
类似的,将公共信息2包括的
Figure PCTCN2020125680-appb-000078
量化以后,得到
Figure PCTCN2020125680-appb-000079
个长度为6的二进制比特串,
Figure PCTCN2020125680-appb-000080
个二进制比特串的高4位相同,UE1可以只向接入网设备反馈一份高4位二进制比特,剩余的低几位对于接收天线Rx1和接收天线Rx2而言是不同的,UE1针对各个接收天线Rx反馈一份。此外,对于接收天线Rx1的特定信息
Figure PCTCN2020125680-appb-000081
UE1反馈一份,对于接收天线Rx2的特定信息
Figure PCTCN2020125680-appb-000082
UE1反馈一份。
下面结合图8c和图8d,以接入网设备打beamformed CSI-RS场景,第一终端为UE1、第二终端为UE2为例,对多个终端协同上报公共信息的方式结合单个终端协同上报自己的多个个子信道信息中的公共信息的方式进行描述。
如图8c所示,接入网设备向UE1、UE2顺次打出(或发出)9个端口(port)的beamformed CSI-RS,其中前4个beamformed CSI-RS为第一组公共信息(如图8c中公共信息1),中间第5-第6个beamformed CSI-RS为第二组公共信息(如图8c中公共信息2),第7个、第8个beamformed CSI-RS为UE1特定,第9个beamformed CSI-RS为UE2特定。同时,接入网 设备向UE1、UE2指示beamformed CSI-RS中哪些是公共信息、哪些是特定的、公共信息的量化参数、特定信息的量化参数等。需要说明的是,这些信息可以由接入网设备全部指示给UE1、UE2,或者,可以由接入网设备将部分信息指示给UE1、UE2,而剩余部分信息由UE1、UE2确定,并通知给接入网设备,或者由预先规定并指示给接入网设备和UE1、UE2。
UE1、UE2利用接收天线接收接入网设备顺次打出(或发出)的9个port的beamformed CSI-RS,如图8c所示,UE1在下述位置接收到接入网设备打的beamformed CSI-RS{波束向量1的第6个频域向量、波束向量1的第7个频域向量、波束向量1的第14个频域向量、波束向量2的第6个频域向量、波束向量2的第7个频域向量、波束向量2的第14个频域向量、波束向量2L的第10个频域向量、波束向量2L的第11个频域向量},UE2在下述位置接收到接入网设备打的beamformed CSI-RS{波束向量1的第6个频域向量、波束向量1的第7个频域向量、波束向量2的第6个频域向量、波束向量2的第7个频域向量、波束向量2L的第10个频域向量、波束向量2L的第11个频域向量、波束向量2L的第14个频域向量}。
如图8c所示,非零合并系数位置对应图案填充部分,非零合并系数位置{波束向量1的第6个频域向量、波束向量1的第7个频域向量、波束向量2的第6个频域向量、波束向量2的第7个频域向量}对应公共信息1,非零合并系数位置{波束向量2L的第10个频域向量、波束向量2L的第11个频域向量}对应公共信息2,UE1对应的特定信息为非零合并系数位置{波束向量1的第14个频域向量、波束向量2的第14个频域向量}的取值,UE2对应的特定信息为非零合并系数位置:波束向量2L的第14个频域向量的取值。
如图8d所示,将公共信息1包括的
Figure PCTCN2020125680-appb-000083
量化以后,得到
Figure PCTCN2020125680-appb-000084
个长度为11的二进制比特串,
Figure PCTCN2020125680-appb-000085
个二进制比特串的高5位
Figure PCTCN2020125680-appb-000086
对于UE1和UE2是相同的,可以由UE1与UE2协同反馈,如UE1反馈或者UE2反馈
Figure PCTCN2020125680-appb-000087
或者,UE1反馈
Figure PCTCN2020125680-appb-000088
中部分比特,如前3个比特,UE2反馈部分比特,如高5位
Figure PCTCN2020125680-appb-000089
中的后2位比特等。
Figure PCTCN2020125680-appb-000090
个二进制比特串的后6位对于UE1和UE2是不相同的,各自反馈各自的后6位,其中,对于UE1而言,后6位中的前4位
Figure PCTCN2020125680-appb-000091
是UE1的多个子信道信息中相同的信息,则UE1向接入网设备反馈一份后6位中的前4位
Figure PCTCN2020125680-appb-000092
即可,而后6位中的后两个,针对UE1的不同接收天线R X是不同,则UE1针对每个接收天线R X反馈一份。
类似的,将公共信息2包括的
Figure PCTCN2020125680-appb-000093
量化以后,得到
Figure PCTCN2020125680-appb-000094
个长度为8的二进制比特串,
Figure PCTCN2020125680-appb-000095
个二进制比特串的高4位对于UE1和UE2是相同的,可以由UE1与UE2协同反馈,如UE1反馈或者UE2反馈,或者,UE1反馈部分比特,如前2个比特,UE2反馈部分比特,如高4位中的后2位比特等。
Figure PCTCN2020125680-appb-000096
个二进制比特串的后4位对于UE1和UE2是不相同的,各自反馈各自的后4位,其中,对于UE1而言,
Figure PCTCN2020125680-appb-000097
个二进制比特串的后4位中的前2位是UE1的多个接收天线R X对应的多个子信道信息中相同的信息,则UE1向接入网设备反馈一份后4位中的前2位即可,而后4位中的后两个,针对UE1的不同接收天线R X是不同,则UE1针对每个接收天线R X反馈一份。
此外,对于UE1的特定信息:
Figure PCTCN2020125680-appb-000098
个长度为5的比特串,针对UE1的不同接收天线R X是不同,长度为5的比特串中前3位是UE1的多个接收天线R X对应的多个子信道信息中相同的信息,则UE1向接入网设备反馈一份,而后2位针对UE1的不同接收天线R X是不同,则UE1针对每个接收天线R X各反馈一份。对于UE2的特定信息:
Figure PCTCN2020125680-appb-000099
个长度为5的比特串,针对UE2的不同接收天线R X,长度为5的比特串中的前2位
Figure PCTCN2020125680-appb-000100
是UE2的多个接收天线R X对应的多个子信道信息中相同的信息,则UE2向接入网设备反馈一份
Figure PCTCN2020125680-appb-000101
而后3位针对UE2 的不同接收天线R X是不同,则UE2针对每个接收天线R X各反馈一份。
上述主要从各个节点之间交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,各个节点,例如接入网设备、终端为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的算法步骤,本申请实施例的方法能够以硬件、软件、或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对接入网设备、终端进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
图9示出了一种通信装置90的结构图,该通信装置90可以为第一终端、第一终端中的芯片、片上系统或者其他能够实现上述方法中第一终端的功能的装置等,该通信装置90可以用于执行上述方法实施例中涉及的第一终端的功能。作为一种可实现方式,图9所示通信装置90包括:处理单元901、发送单元902。
一种可能的设计中,处理单元901,用于确定第一终端的信道信息。例如,处理单元901用于支持通信装置90执行步骤401。
发送单元902,用于向接入网设备上报第一信息,其中,第一信息用于指示第一终端的信道信息与第二终端的信道信息中的第一公共信息中的部分信息或者全部信息,第二终端的信道信息用于指示第二终端与接入网设备间的下行信道的信道状态。例如,发送单元902用于支持通信装置90执行步骤402。
具体的,上述图4所示方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。通信装置90用于执行图4所示方法所示上报信道信息的方法中第一终端的功能,因此可以达到与上述上报信道信息的方法相同的效果。
又一种可能的设计中,处理单元901,用于确定第一终端的信道信息。例如,处理单元901用于支持通信装置90执行步骤701。
发送单元902,用于向接入网设备上报第三信息以及R个第四信息;其中,第三信息用于指示第一终端的信道信息中的第二公共信息的全部信息或部分信息;R个第四信息与R1个子信道信息中的R个子信道信息对应,第四信息用于指示与第四信息对应的子信道信息中的特定信息,R为小于或等于R1的自然数。例如,发送单元902用于支持通信装置90执行步骤702。
具体的,上述图7所示方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。通信装置90用于执行图7所示方法所示上报信道信息的方法中第一终端的功能,因此可以达到与上述上报信道信息的方法相同的效果。
作为又一种可实现方式,图9所示通信装置90包括:处理模块和通信模块。处理模块用于对通信装置90的动作进行控制管理,例如,处理模块可以集成处理单元901的功能,可以用于支持该通信装置90执行步骤401、步骤701及本文所描述的技术的其它过程。通信模块 可以集成发送单元902的功能,可以用于支持通信装置90执行步骤402、步骤702以及与其他网络实体的通信,例如与图2示出的功能模块或网络实体之间的通信。该通信装置90还可以包括存储模块,用于存储指令和/或数据。该指令被处理模块执行时,使得处理模块实现上述第一终端侧的方法。
其中,处理模块可以是处理器、控制器、模块或电路。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框。通信模块可以是收发电路、管脚、接口电路、总线接口、或通信接口等。存储模块可以是存储器。当处理模块为处理器,通信模块为通信接口,存储模块为存储器时,本申请实施例涉及的通信装置90为图3所示通信装置。
在本申请实施例中,处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
在本申请实施例中,存储器可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储指令和/或数据。
图10示出了一种通信装置100的结构图,该通信装置100可以为接入网设备、接入网设备中的芯片、片上系统、或者其他能够实现上述方法中接入网设备的功能的装置等,该通信装置100可以用于执行上述方法实施例中涉及的接入网设备的功能。该通信装置100可以用于执行上述方法实施例中涉及的接入网设备的功能。作为一种可实现方式,图10所示通信装置100包括:接收单元1001、接收单元1002。
接收单元1001,用于接收第一终端上报的第一信息,其中,第一信息用于指示第一终端的信道信息与第二终端的信道信息中的第一公共信息中的部分信息或者全部信息,第一终端的信道信息用于指示第一终端与接入网设备间的下行信道的信道状态,第二终端的信道信息用于指示第二终端与接入网设备间的下行信道的信道状态。例如,接收单元1001可以用于支持通信装置100执行步骤403。
处理单元1002,用于根据第一终端上报的第一信息,确定第一终端的信道信息中的第一公共信息。例如,处理单元1002可以用于支持通信装置100执行步骤403。
具体的,上述图4所示方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。通信装置100用于执行图4所示方法所示上报信道信息的方法中接入网设备的功能,因此可以达到与上述上报信道信息的方法相同的效果。
接收单元1001,用于接收第一终端上报的第三信息以及R个第四信息;其中,第三信息用于指示第一终端的信道信息中的第二公共信息的全部信息或部分信息;R个第四信息与R1个子信道信息中的R个子信道信息对应,第四信息用于指示与第四信息对应的子信道信息中的特定信息,R为小于或等于R1的自然数。例如,接收单元1001可以用于支持通信装置100执行步骤703。
处理单元1002,用于根据第一终端上报的第三信息以及R个第四信息,确定第一终端的信道信息。例如,处理单元1002可以用于支持通信装置100执行步骤703。
具体的,上述图4所示方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。通信装置100用于执行图4所示方法所示上报信道信息的方法中接入网设备的功能,因此可以达到与上述上报信道信息的方法相同的效果。
作为又一种可实现方式,图10所示通信装置100包括:处理模块和通信模块。处理模块用于对通信装置100的动作进行控制管理,例如,处理模块可以集成处理单元1002的功能,可以用于支持该通信装置100执行步骤403、步骤703以及本文所描述的接入网设备除收发动作之外的动作。通信模块可以集成接收单元1001的功能,可以用于支持通信装置100执行步骤403、步骤703以及与其他网络实体的通信,例如与图2示出的功能模块或网络实体之间的通信。该通信装置100还可以包括存储模块,用于存储通信装置100的指令和/或数据。该指令被处理模块执行时,使得处理模块实现上述接入网设备侧的方法。
其中,处理模块可以是处理器、控制器、模块或电路。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框。处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信模块可以是收发电路、管脚、接口电路、总线接口、或通信接口等。存储模块可以是存储器。当处理模块为处理器,通信模块为通信接口,存储模块为存储器时,本申请实施例所涉及的通信装置100可以为图3所示通信装置。
图11为本申请实施例提供的一种通信系统的结构图,如图11所示,该通信系统包括:多个终端110、接入网设备111。多个终端110可以协同上报信道信息中的公共信息。
其中,终端110可以具有上述通信装置90的功能。接入网设备111可以具有上述通信装置100的功能。
例如,第一终端110,确定第一终端110的信道信息,向接入网设备111上报第一信息,其中,第一信息用于指示第一终端110的信道信息与第二终端110的信道信息中的第一公共信息中的部分信息或者全部信息,第一终端110的信道信息用于指示第一终端110与接入网设备111间的下行信道的信道状态,第二终端110的信道信息用于指示第二终端110与接入网设备111间的下行信道的信道状态;
接入网设备111,用于接收第一终端110上报的第一信息,根据第一信息确定第一终端110的信道信息中的第一公共信息。
类似地,第二终端110执行的方法类似第一终端110执行的方法。如第二终端110,确定第二终端110的信道信息,向接入网设备111上报第一信息,其中,该第一信息用于指示第二终端110的信道信息与第一终端110的信道信息中的第一公共信息中的部分信息或者全部信息,第一终端110的信道信息用于指示第一终端110与接入网设备111间的下行信道的信道状态,第二终端110的信道信息用于指示第二终端110与接入网设备111间的下行信道的信道状态。第一终端110和第二终端110上报的信息可以相同,可以不同,或者可以部分相同部分不同,不予限制。
具体的,终端110的具体实现过程可参照上述图4方法实施例中第一终端的执行过程,在此不再赘述。接入网设备111的具体实现过程可参照上述图4方法实施例中接入网设备111的执行过程,在此不再赘述。
需要说明的是,本申请的说明书、权利要求书及附图中的术语“第一”和“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
应当理解,在本申请实施例中,“至少一个(项)”是指一个或者多个,“多个”是指两个或两个以上,“至少两个(项)”是指两个或三个及三个以上,“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/或B”可以表示:只存在A,只存在B以及同时存在A和B三种情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,“a和b”,“a和c”,“b和c”,或“a和b和c”,其中a,b,c可以是单个,也可以是多个。
应理解,在本申请实施例中,“与A对应的B”表示B与A相关联。例如,可以根据A可以确定B。还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。此外,本申请实施例中出现的“连接”是指直接连接或者间接连接等各种连接方式,以实现设备间的通信,本申请实施例对此不做任何限定。
本申请实施例中出现的“传输”(transmit/transmission)如无特别说明,是指双向传输,包含发送和/或接收的动作。具体地,本申请实施例中的“传输”包含数据的发送,数据的接收,或者数据的发送和数据的接收。或者说,这里的数据传输包括上行和/或下行信号传输。数据可以包括信道和/或信号,上行数据传输即上行信道和/或上行信号传输,下行信号传输即下行信道和/或下行信号传输。本申请实施例中出现的“网络”与“系统”表达的是同一概念,通信系统即为通信网络。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
本申请实施例提供的技术方案可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、接入网设备、终端设备或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机可以存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(digital video disc,DVD))、或者半导体介质等。
在本申请实施例中,在无逻辑矛盾的前提下,各实施例之间可以相互引用,例如方法实施例之间的方法和/或术语可以相互引用,例如装置实施例之间的功能和/或术语可以相互引用, 例如装置实施例和方法实施例之间的功能和/或术语可以相互引用。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (38)

  1. 一种上报信道信息的方法,其特征在于,所述方法包括:
    确定第一终端的信道信息,其中,所述第一终端的信道信息用于指示所述第一终端与接入网设备间的下行信道的信道状态;
    向所述接入网设备上报第一信息,其中,所述第一信息用于指示所述第一终端的信道信息与第二终端的信道信息中的第一公共信息中的部分信息或者全部信息,所述第二终端的信道信息用于指示所述第二终端与所述接入网设备间的下行信道的信道状态。
  2. 根据权利要求1所述的方法,其特征在于,所述第一终端的信道信息包括N1个元素,所述第二终端的信道信息包括N2个元素,所述N1、所述N2为大于或等于1的整数;
    所述第一公共信息包括N3个元素,所述N3个元素为所述第一终端的N1个元素与第二终端的N2个元素中的相同元素和/或相似元素,其中,所述相同元素是指所述N1个元素与所述N2个元素中位置相同且取值相同的元素,所述相似元素是指所述N1个元素与所述N2个元素中位置相同且差值小于门限的元素。
  3. 根据权利要求1所述的方法,其特征在于,所述第一终端的信道信息包括R1个子信道信息,所述第二终端的信道信息包括R2个子信道信息,所述R1、R2为大于或等于1的整数;
    所述第一公共信息包括所述第一终端的R1个子信道信息与第二终端的R2个子信道信息中的第一位置的取值。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述第一信息用于指示所述第一终端的信道信息与第二终端的信道信息中的第一公共信息中的部分信息或者全部信息包括:
    所述第一信息包括所述第一公共信息中的部分信息或者全部信息;
    所述第一信息包括所述部分信息或者全部信息量化后得到的量化比特;
    所述第一信息包括所述全部信息量化后得到的量化比特中的部分比特或者全部比特;
    所述第一信息用于指示所述第一公共信息与参考信息之间的关系值;
    所述第一信息用于指示所述第一公共信息的部分信息与参考信息的部分信息之间的关系值;或者,
    所述第一信息包括第一部分比特与第二部分比特之间的关系值,所述第一部分比特为所述第一公共信息量化后得到的量化比特中的部分比特,所述第二部分比特为参考信息量化后得到的量化比特中的部分比特;
    其中,所述参考信息为第三终端的信道信息,所述第三终端的信道信息用于指示所述第三终端与所述接入网设备之间的下行信道的信道状态。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述方法还包括:
    向所述接入网设备上报第二信息,其中,所述第二信息为所述第一终端的信道信息中的特定信息。
  6. 根据权利要求5所述的方法,其特征在于,所述第一终端的信道信息包括R1个子信道信息,所述R1为大于或等于1的整数;
    所述第二信息包括第三信息以及R个第四信息;其中,所述第三信息用于指示所述第一终端的信道信息中的第二公共信息的全部信息或部分信息,所述第二公共信息为所述R1 个子信道信息的公共信息;所述R个第四信息与所述R1个子信道信息中的R个子信道信息对应,所述第四信息用于指示与所述第四信息对应的子信道信息中的特定信息,所述R为大于等于0且小于等于所述R1的整数。
  7. 根据权利要求6所述的方法,其特征在于,
    所述第二公共信息包括所述R1个子信道信息中第二位置的元素的取值;和/或,
    所述第二公共信息为所述第一公共信息中的第一部分信息,所述第一部分信息为所述R1个子信道信息中相同和/或相似的信息。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,所述方法还包括:
    接收第二指示信息,所述第二指示信息用于指示第一压缩器的压缩参数;
    其中,所述第一压缩器用于对所述第一信息进行压缩处理。
  9. 根据权利要求1-8任一项所述的方法,其特征在于,所述方法还包括:
    接收第三指示信息,所述第三指示信息用于指示第三终端加入终端组,所述终端组包括所述第一终端和所述第二终端。
  10. 根据权利要求1-9任一项所述的方法,其特征在于,所述方法还包括:
    接收第四指示信息,所述第四指示信息用于指示第四终端退出终端组,所述终端组包括所述第一终端、所述第二终端和所述第四终端。
  11. 根据权利要求1-10任一项所述的方法,其特征在于,在所述第一终端加入终端组之前,所述方法还包括:
    接收第五指示信息,所述第五指示信息用于指示所述终端组中已有的终端。
  12. 一种上报信道信息的方法,其特征在于,所述方法包括:
    接收来自第一终端的第一信息,其中,所述第一信息用于指示所述第一终端的信道信息与第二终端的信道信息中的第一公共信息中的部分信息或者全部信息,所述第一终端的信道信息用于指示所述第一终端与接入网设备间的下行信道的信道状态,所述第二终端的信道信息用于指示所述第二终端与所述接入网设备间的下行信道的信道状态;
    根据所述第一信息,确定所述第一公共信息。
  13. 根据权利要求12所述的方法,其特征在于,所述第一终端的信道信息包括N1个元素,所述第二终端的信道信息包括N2个元素,所述N1、所述N2为大于或等于1的整数;
    所述第一公共信息包括N3个元素,所述N3个元素为所述第一终端的N1个元素与第二终端的N2个元素中的相同元素和/或相似元素,其中,所述相同元素是指所述N1个元素与所述N2个元素中位置相同且取值相同的元素,所述相似元素是指所述N1个元素与所述N2个元素中位置相同且差值小于门限的元素。
  14. 根据权利要求12所述的方法,其特征在于,所述第一终端的信道信息包括R1个子信道信息,所述第二终端的信道信息包括R2个子信道信息,所述R1、R2为大于或等于1的整数;
    所述第一公共信息包括所述第一终端的R1个子信道信息与第二终端的R2个子信道信息中的第一位置的取值。
  15. 根据权利要求12-14任一项所述的方法,其特征在于,所述第一信息用于指示所述第一终端的信道信息与第二终端的信道信息中的第一公共信息中的部分信息或者全部 信息包括:
    所述第一信息包括所述第一公共信息中的部分信息或者全部信息;
    所述第一信息包括所述部分信息或者全部信息量化后得到的量化比特;
    所述第一信息包括所述全部信息量化后得到的量化比特中的部分比特或者全部比特;
    所述第一信息用于指示所述第一公共信息与参考信息之间的关系值;
    所述第一信息用于指示所述第一公共信息的部分信息与参考信息的部分信息之间的关系值;或者,
    所述第一信息包括第一部分比特与第二部分比特之间的关系值,所述第一部分比特为所述第一公共信息量化后得到的量化比特中的部分比特,所述第二部分比特为参考信息量化后得到的量化比特中的部分比特;
    其中,所述参考信息为第三终端的信道信息,所述第三终端的信道信息用于指示所述第三终端与所述接入网设备之间的下行信道的信道状态。
  16. 根据权利要求12-15任一项所述的方法,其特征在于,所述方法还包括:
    接收来自第一终端的第二信息,其中,所述第二信息为所述第一终端的信道信息中的特定信息;
    根据所述第一公共信息以及所述第二信息,确定所述第一终端的信道信息。
  17. 根据权利要求16所述的方法,其特征在于,所述第一终端的信道信息包括R1个子信道信息,所述R1为大于或等于1的整数;
    所述第二信息包括第三信息以及R个第四信息;其中,所述第三信息用于指示所述第一终端的信道信息中的第二公共信息的全部信息或部分信息,所述第二公共信息为所述R1个子信道信息的公共信息;所述R个第四信息与所述R1个子信道信息中的R个子信道信息对应,所述第四信息用于指示与所述第四信息对应的子信道信息中的特定信息,所述R为大于等于0且小于等于所述R1的自然数。
  18. 根据权利要求17所述的方法,其特征在于,
    所述第二公共信息包括所述R1个子信道信息中第二位置的元素的取值;和/或,
    所述第二公共信息为所述第一公共信息中的第一部分信息,所述第一部分信息为所述R1个子信道信息中相同和/或相似的信息。
  19. 根据权利要求12-18任一项所述的方法,其特征在于,所述方法还包括:
    向所述第一终端发送第二指示信息,所述第二指示信息用于指示第一压缩器的压缩参数;其中,所述第一压缩器用于对所述第一信息进行压缩处理。
  20. 根据权利要求12-19任一项所述的方法,其特征在于,所述方法还包括:
    向所述第一终端发送第三指示信息,所述第三指示信息用于指示第三终端加入终端组,所述终端组包括所述第一终端和所述第二终端。
  21. 根据权利要求12-20任一项所述的方法,其特征在于,所述方法还包括:
    向所述第一终端发送第四指示信息,所述第四指示信息用于指示第四终端退出终端组,所述终端组包括所述第一终端、所述第二终端和所述第四终端。
  22. 根据权利要求12-21任一项所述的方法,其特征在于,在所述第一终端加入终端组之前,所述方法还包括:
    向所述第一终端发送第五指示信息,所述第五指示信息用于指示所述终端组中已有的 终端。
  23. 一种通信系统,其特征在于,所述通信系统包括:
    第一终端,用于确定所述第一终端的信道信息,向接入网设备上报第一信息,其中,所述第一信息用于指示所述第一终端的信道信息与第二终端的信道信息中的第一公共信息中的部分信息或者全部信息,所述第一终端的信道信息用于指示所述第一终端与接入网设备间的下行信道的信道状态,所述第二终端的信道信息用于指示所述第二终端与所述接入网设备间的下行信道的信道状态;
    所述接入网设备,用于接收来自所述第一终端的所述第一信息,根据所述第一信息确定所述第一公共信息。
  24. 一种上报信道信息的方法,其特征在于,所述方法包括:
    确定终端的信道信息,其中,所述终端的信道信息用于指示所述终端与接入网设备间的下行信道的信道状态,所述终端的信道信息包括R1个子信道信息,所述R1为大于或等于1的整数;
    向所述接入网设备上报第三信息,其中,所述第三信息用于指示所述终端的信道信息中的第二公共信息的全部信息或部分信息,所述第二公共信息为所述R1个子信道信息的公共信息。
  25. 根据权利要求24所述的方法,其特征在于,所述方法还包括:
    向所述接入网设备上报R个第四信息,其中,所述R个第四信息与所述R1个子信道信息中的R个子信道信息对应,所述第四信息用于指示与所述第四信息对应的子信道信息中的特定信息,所述R为大于等于0且小于等于所述R1的整数。
  26. 一种上报信道信息的方法,其特征在于,所述方法包括:
    接收来自终端的第三信息,其中,
    所述第三信息用于指示所述终端的信道信息中的第二公共信息的全部信息或部分信息,所述终端的信道信息用于指示所述终端与接入网设备间的下行信道的信道状态,所述终端的信道信息包括R1个子信道信息,所述R1为大于或等于1的整数,所述第二公共信息为所述R1个子信道信息的公共信息。
  27. 根据权利要求26所述的方法,其特征在于,所述方法还包括:
    接收来自所述终端的R个第四信息,其中,所述R个第四信息与所述R1个子信道信息中的R个子信道信息对应,所述第四信息用于指示与所述第四信息对应的子信道信息中的特定信息,所述R为大于等于0且小于等于所述R1的整数。
  28. 一种通信装置,用于执行如权利要求1-11和24-25任一项所述的上报信道信息的方法。
  29. 一种通信装置,包括处理器和存储器,所述存储器和所述处理器耦合,所述处理器用于执行如权利要求1-11和24-25任一项所述的上报信道信息的方法。
  30. 一种通信装置,包括处理器和通信接口,所述处理器确定第一终端的信道信息,并利用所述通信接口向接入网设备上报第一信息;
    其中,所述第一信息用于指示所述第一终端的信道信息与第二终端的信道信息中的第一公共信息中的部分信息或者全部信息,所述第一终端的信道信息用于指示所述第一终端与接入网设备间的下行信道的信道状态,所述第二终端的信道信息用于指示所述第二终端 与所述接入网设备间的下行信道的信道状态。
  31. 一种通信装置,包括处理器和通信接口,所述处理器确定终端的信道信息,并利用所述通信接口:
    向接入网设备上报第三信息,其中,所述第三信息用于指示所述终端的信道信息中的第二公共信息的全部信息或部分信息,所述终端的信道信息用于指示所述终端与接入网设备间的下行信道的信道状态,所述终端的信道信息包括R1个子信道信息,所述R1为大于或等于1的整数,所述第二公共信息为所述R1个子信道信息的公共信息。
  32. 一种通信装置,用于执行如权利要求12-22和26-27任一项所述的上报信道信息的方法。
  33. 一种通信装置,其中,所述通信装置包括处理器和存储器,所述存储器和所述处理器耦合,所述处理器用于执行如权利要求12-22和26-27任一项所述的上报信道信息的方法。
  34. 一种通信装置,包括处理器和通信接口,
    所述处理器利用所述通信接口:接收第一终端上报的所述第一信息;其中,所述第一信息用于指示所述第一终端的信道信息与第二终端的信道信息中的第一公共信息中的部分信息或者全部信息,所述第一终端的信道信息用于指示所述第一终端与接入网设备间的下行信道的信道状态,所述第二终端的信道信息用于指示所述第二终端与所述接入网设备间的下行信道的信道状态;
    所述处理器用于根据所述第一信息确定所述第一公共信息。
  35. 一种通信装置,包括处理器和通信接口,
    所述处理器利用所述通信接口:接收来自终端的第三信息,其中,所述第三信息用于指示所述终端的信道信息中的第二公共信息的全部信息或部分信息,所述终端的信道信息用于指示所述终端与接入网设备间的下行信道的信道状态,所述终端的信道信息包括R1个子信道信息,所述R1为大于或等于1的整数,所述第二公共信息为所述R1个子信道信息的公共信息;
    所述处理器用于根据所述第三信息确定所述第二公共信息。
  36. 一种计算机可读存储介质,其中,所述计算机可读存储介质存储计算机指令,当所述计算机指令在计算机上运行时,使得计算机执行如权利要求1-22和24-27任一项所述的上报信道信息的方法。
  37. 一种计算机程序产品,其中,所述计算机程序产品包括计算机指令,当所述计算机指令在计算机上运行时,使得计算机执行如权利要求1-22和24-27任一项所述的上报信道信息的方法。
  38. 一种通信系统,其特征在于,所述通信系统包括:
    终端,用于确定终端的信道信息并向接入网设备上报第三信息,其中,所述终端的信道信息用于指示所述终端与接入网设备间的下行信道的信道状态,所述终端的信道信息包括R1个子信道信息,所述R1为大于或等于1的整数,所述第三信息用于指示所述终端的信道信息中的第二公共信息的全部信息或部分信息,所述第二公共信息为所述R1个子信道信息的公共信息;
    所述接入网设备,用于接收来自所述终端的第三信息,根据所述第三信息确定所述第 二公共信息。
PCT/CN2020/125680 2020-10-31 2020-10-31 一种上报信道信息的方法及装置 WO2022088158A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2020/125680 WO2022088158A1 (zh) 2020-10-31 2020-10-31 一种上报信道信息的方法及装置
EP20959319.3A EP4224905A4 (en) 2020-10-31 2020-10-31 CHANNEL INFORMATION REPORTING METHOD AND APPARATUS
CN202080103581.5A CN116018836B (zh) 2020-10-31 2020-10-31 一种上报信道信息的方法及装置
US18/141,071 US20230269046A1 (en) 2020-10-31 2023-04-28 Channel Information Reporting Method and Apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/125680 WO2022088158A1 (zh) 2020-10-31 2020-10-31 一种上报信道信息的方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/141,071 Continuation US20230269046A1 (en) 2020-10-31 2023-04-28 Channel Information Reporting Method and Apparatus

Publications (1)

Publication Number Publication Date
WO2022088158A1 true WO2022088158A1 (zh) 2022-05-05

Family

ID=81381699

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/125680 WO2022088158A1 (zh) 2020-10-31 2020-10-31 一种上报信道信息的方法及装置

Country Status (4)

Country Link
US (1) US20230269046A1 (zh)
EP (1) EP4224905A4 (zh)
CN (1) CN116018836B (zh)
WO (1) WO2022088158A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101686077A (zh) * 2008-09-26 2010-03-31 大唐移动通信设备有限公司 一种多点协同传输的方法及装置
CN105794256A (zh) * 2013-12-05 2016-07-20 Lg电子株式会社 用于在无线通信系统中反馈信道状态信息的方法及其设备
CN107148763A (zh) * 2014-11-25 2017-09-08 英特尔公司 用于载波聚合的信道状态信息(csi)报告
US20190296854A1 (en) * 2018-03-23 2019-09-26 Nec Corporation Base station, communication terminal, and wireless communication method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9185599B2 (en) * 2009-09-23 2015-11-10 Electronics And Telecommunications Research Institute Method and device for managing interference in neighbouring cells having multiple sending and receiving nodes
CN102739369B (zh) * 2011-04-02 2015-01-21 华为技术有限公司 反馈信道状态信息参数的方法、接入点和终端
IN2014KN02949A (zh) * 2012-07-02 2015-05-08 Lg Electronics Inc
KR20140074723A (ko) * 2012-12-10 2014-06-18 한국전자통신연구원 다중 셀 환경에서 피드백을 통한 채널 상태 정보 공유 방법
WO2017185201A1 (zh) * 2016-04-25 2017-11-02 广东欧珀移动通信有限公司 数据传输方法和设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101686077A (zh) * 2008-09-26 2010-03-31 大唐移动通信设备有限公司 一种多点协同传输的方法及装置
CN105794256A (zh) * 2013-12-05 2016-07-20 Lg电子株式会社 用于在无线通信系统中反馈信道状态信息的方法及其设备
CN107148763A (zh) * 2014-11-25 2017-09-08 英特尔公司 用于载波聚合的信道状态信息(csi)报告
US20190296854A1 (en) * 2018-03-23 2019-09-26 Nec Corporation Base station, communication terminal, and wireless communication method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4224905A4 *

Also Published As

Publication number Publication date
CN116018836B (zh) 2024-07-30
EP4224905A1 (en) 2023-08-09
US20230269046A1 (en) 2023-08-24
CN116018836A8 (zh) 2024-05-14
CN116018836A (zh) 2023-04-25
EP4224905A4 (en) 2023-11-29

Similar Documents

Publication Publication Date Title
CN111342912B (zh) 一种信道测量方法和通信装置
CN111342873B (zh) 一种信道测量方法和通信装置
WO2020199964A1 (zh) 通信方法及装置
JP7238167B2 (ja) プリコーディング行列表示及び決定方法、及び通信装置
WO2020083057A1 (zh) 指示和确定预编码向量的方法以及通信装置
WO2021203373A1 (zh) 一种信道测量方法和通信装置
CN111865372B (zh) 一种用于构建预编码矩阵的系数指示方法和通信装置
CN115053465B (zh) 一种信息传输方法及装置
CN111342913B (zh) 一种信道测量方法和通信装置
US20220271900A1 (en) Method for configuring transmit port of downlink reference signal and communication apparatus
CN111713054A (zh) 通信方法、通信装置和系统
WO2017152750A1 (zh) 一种反馈信息的传输方法和装置
WO2020244496A1 (zh) 一种信道测量方法和通信装置
WO2021081847A1 (zh) 一种信道测量方法和通信装置
WO2020143461A1 (zh) 指示和确定预编码向量的方法以及通信装置
CN108667490B (zh) 一种信道状态信息反馈方法及装置
WO2022088158A1 (zh) 一种上报信道信息的方法及装置
WO2023165458A1 (zh) 信道状态信息的反馈方法和通信装置
WO2021062806A1 (zh) 信道测量的方法和通信装置
WO2024169743A1 (zh) 通信方法及装置
WO2024001655A1 (zh) 一种通信方法及装置
WO2024067251A1 (zh) 一种通信方法及相关设备
WO2024027393A1 (zh) 信道状态信息反馈方法及装置
CN110875768A (zh) 一种信道状态信息的反馈方法及装置、网络设备和终端
WO2023274101A1 (zh) 一种获得预编码矩阵的方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20959319

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202080103581.5

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2020959319

Country of ref document: EP

Effective date: 20230503

NENP Non-entry into the national phase

Ref country code: DE