[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022085749A1 - Display device, and electronic instrument - Google Patents

Display device, and electronic instrument Download PDF

Info

Publication number
WO2022085749A1
WO2022085749A1 PCT/JP2021/038862 JP2021038862W WO2022085749A1 WO 2022085749 A1 WO2022085749 A1 WO 2022085749A1 JP 2021038862 W JP2021038862 W JP 2021038862W WO 2022085749 A1 WO2022085749 A1 WO 2022085749A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
pixel
horizontal
lens
pixels
Prior art date
Application number
PCT/JP2021/038862
Other languages
French (fr)
Japanese (ja)
Inventor
知彦 島津
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to CN202180070820.6A priority Critical patent/CN116507948A/en
Publication of WO2022085749A1 publication Critical patent/WO2022085749A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/879Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers

Definitions

  • This disclosure relates to display devices and electronic devices.
  • the present disclosure particularly relates to a display device including a plurality of light emitting elements having an organic compound layer and a plurality of lenses, and an electronic device including the display device.
  • Patent Document 1 discloses a display device having a rectangular pixel region of three colors corresponding to each of red, blue, and green as sub-pixels corresponding to three colors of red, blue, and green. There is.
  • the display device of Patent Document 1 on the light emitting surface of another rectangular pixel region having a luminance lower than the luminance in the rectangular pixel region of 1, with respect to the length of the short side in the other rectangular pixel region.
  • a hemispherical lens having a lens diameter of 2 times or more and 4 times or less is provided.
  • the present disclosure has been made in view of the above points, and one of the purposes of the present disclosure is to provide a display device having excellent viewing angle characteristics.
  • the present disclosure relates to, for example, (1) a plurality of sub-pixels forming a pixel unit and corresponding to at least red, green, and blue color types.
  • a plurality of light emitting elements formed corresponding to each of the sub-pixels and having a structure in which a first electrode and a second electrode are laminated with an organic compound layer interposed therebetween.
  • a lens formed at least one corresponding to each of the sub-pixels is provided.
  • Each of the light emitting elements is provided with an insulating layer that covers the peripheral edge of the first electrode and forms an opening corresponding to each of the sub-pixels on the first electrode.
  • the following formulas 1 and 2 are satisfied. It is a display device.
  • the WR is the horizontal width of the opening corresponding to the red sub-pixel, and is along the horizontal direction of the lens corresponding to the red sub-pixel.
  • the ⁇ LR is the horizontal width of the bottom surface of the lens formed corresponding to the red sub-pixel if the first horizontal arrangement number is 1.
  • the total horizontal width of each bottom surface of the lenses formed in a state of being arranged horizontally corresponding to the red sub-pixels is shown.
  • the WG is the horizontal width of the opening corresponding to the green sub-pixel, and the number of formations of the lens corresponding to the green sub-pixel along the horizontal direction is defined as the second horizontal arrangement number.
  • the ⁇ LG has a horizontal width of the bottom surface of the lens formed corresponding to the green sub-pixels, and the number of second horizontal arrangements is 2 or more.
  • the WB is the horizontal width of the opening corresponding to the blue sub-pixel, and the number of formations of the lens corresponding to the blue sub-pixel along the horizontal direction is defined as the third horizontal arrangement number.
  • the ⁇ LB has a horizontal width of the bottom surface of the lens formed corresponding to the blue sub-pixel, and the third horizontal arrangement number is 2 or more.
  • the sum of the horizontal widths of the bottom surfaces of the lenses formed in a horizontally aligned state corresponding to the blue sub-pixels is shown.
  • the present disclosure comprises (2) a plurality of sub-pixels corresponding to at least red, green and blue color types.
  • a plurality of light emitting elements formed corresponding to each of the sub-pixels and having a structure in which a first electrode and a second electrode are laminated with an organic compound layer interposed therebetween.
  • a wall surface is formed around the lens formed at least one corresponding to each of the sub-pixels and each of the light emitting elements corresponding to each of the sub-pixels, and from the first electrode to the second electrode. It is provided with a reflective wall extending in the direction toward which the following equations 3 and 4 are satisfied. It may be a display device.
  • the WrR is the horizontal width of the tip of the wall surface corresponding to the red sub-pixel, and is in the horizontal direction of the lens corresponding to the red sub-pixel.
  • the ⁇ LR is the horizontal direction of the bottom surface of the lens formed corresponding to the red sub-pixel if the first horizontal arrangement number is 1.
  • the width, if the first horizontal arrangement number is 2 or more, indicates the total horizontal width of each bottom surface of the lenses formed in a state of being arranged horizontally corresponding to the red sub-pixels.
  • the WrG is the horizontal width of the tip of the wall surface corresponding to the green sub-pixel, and the number of formations of the lens corresponding to the green sub-pixel along the horizontal direction is defined as the second horizontal arrangement number.
  • the number of front second horizontal arrangements is 1, the width of the bottom surface of the lens formed corresponding to the green sub-pixels and the number of second horizontal arrangements are 2 or more. If, then the sum of the horizontal widths of the bottom surfaces of the lenses formed in a horizontally aligned state corresponding to the green sub-pixels is shown.
  • the WrB is the horizontal width of the tip of the wall surface corresponding to the blue sub-pixel, and the number of formations of the lens corresponding to the blue sub-pixel along the horizontal direction is defined as the third horizontal arrangement number. If the third horizontal arrangement number is 1, the ⁇ LB has a horizontal width of the bottom surface of the lens formed corresponding to the blue sub-pixel, and the third horizontal arrangement number is 2 or more. If, the total horizontal width of each bottom surface of the lenses formed in a state of being arranged horizontally corresponding to the blue sub-pixels is shown.
  • the present disclosure comprises (3) a plurality of sub-pixels corresponding to at least red, green and blue color types.
  • a plurality of light emitting elements formed corresponding to each of the sub-pixels and having a structure in which a first electrode and a second electrode are laminated with an organic compound layer interposed therebetween.
  • a lens formed at least one corresponding to each of the sub-pixels,
  • a reflector plate formed at a predetermined position on the formation surface side of the first electrode of the light emitting element corresponding to each of the sub-pixels is provided.
  • the following formulas 5 and 6 are satisfied. It may be a display device.
  • the WbR is the horizontal width of the reflector corresponding to the red sub-pixel, and is along the horizontal direction of the lens corresponding to the red sub-pixel.
  • the ⁇ LR is the horizontal width of the bottom surface of the lens formed corresponding to the red sub-pixel if the first horizontal arrangement number is 1.
  • the number of the first horizontal arrangements is 2 or more, the total horizontal width of each bottom surface of the lenses formed in a state of being arranged horizontally corresponding to the red sub-pixels is shown.
  • the WbG is the horizontal width of the reflector corresponding to the green sub-pixel, and the number of formations of the lens corresponding to the green sub-pixel along the horizontal direction is defined as the second horizontal arrangement number.
  • the ⁇ LG has a horizontal width of the bottom surface of the lens formed corresponding to the green sub-pixels, and the number of second horizontal arrangements is 2 or more.
  • the total horizontal width of the bottom surface of each of the lenses formed in a horizontally aligned state corresponding to the green sub-pixel is shown.
  • the WbB is the horizontal width of the reflector corresponding to the blue sub-pixel, and the number of formations of the lens corresponding to the blue sub-pixel along the horizontal direction is defined as the third horizontal arrangement number.
  • the ⁇ LB has a horizontal width of the bottom surface of the lens formed corresponding to the blue sub-pixel, and the third horizontal arrangement number is 2 or more.
  • the sum of the horizontal widths of the bottom surfaces of the lenses formed in a horizontally aligned state corresponding to the blue sub-pixels is shown.
  • present disclosure may be, for example, an electronic device provided with the display device described in (1) above.
  • FIG. 1 is a cross-sectional view for explaining an embodiment of a display device according to a first embodiment.
  • FIG. 2A is a plan view showing a display area of the display device according to the first embodiment.
  • FIG. 2B is a plan view showing an embodiment of the layout of the sub-pixels.
  • 3A, 3B, and 3C are cross-sectional views showing an embodiment of a method for manufacturing a display device according to a first embodiment.
  • FIG. 4 is a cross-sectional view for explaining a display device according to another embodiment of the first embodiment.
  • 5A and 5B are plan views for explaining a method of manufacturing a display device according to a modification of the first embodiment.
  • 6A and 6B are plan views showing an embodiment of the layout of the sub-pixels.
  • FIG. 7A, 7B, and 7C are diagrams showing an embodiment of the layout of the sub-pixels.
  • 8A and 8B are cross-sectional views for explaining a display device according to a modification of the first embodiment.
  • FIG. 9 is a cross-sectional view for explaining an embodiment of the display device according to the second embodiment.
  • FIG. 10 is a cross-sectional view for explaining an embodiment of the display device according to the third embodiment.
  • FIG. 11 is a cross-sectional view for explaining a display device according to a modified example of the fourth embodiment.
  • FIG. 12 is a cross-sectional view for explaining a method of manufacturing a display device according to a modified example of the first embodiment.
  • FIG. 13 is a cross-sectional view for explaining a method of manufacturing a display device according to a modified example of the first embodiment.
  • FIG. 14 is a cross-sectional view for explaining a method of manufacturing a display device according to a modified example of the first embodiment.
  • 15A and 15B are diagrams for explaining a first simulation example.
  • 16A and 16B are diagrams for explaining a second simulation example.
  • FIG. 17 is a diagram for explaining a second simulation example.
  • 18A and 18B are diagrams for explaining an embodiment of an electronic device using a display device.
  • FIG. 19 is a diagram for explaining an embodiment of an electronic device using a display device.
  • FIG. 20 is a diagram for explaining an embodiment of an electronic device using a display device.
  • the Z-axis direction is the thickness direction (the upper side is the + Z direction, the lower side is the ⁇ Z direction), the X-axis direction is the horizontal direction, and the Y-axis direction is the vertical direction. Further, the thickness direction is sometimes called the vertical direction.
  • FIGS. 3 to 14 The size and thickness of each layer shown in FIGS. 1 and the like, the relative size ratio of each configuration and the size and thickness of each region are described for convenience, and do not limit the actual size ratio. The rules regarding these directions and the magnitude ratio are the same for each of the figures shown in FIGS. 2 to 14.
  • FIG. 1 is a cross-sectional view showing a configuration example of a display device 10 according to an embodiment of the present disclosure.
  • the display device 10 includes a substrate 11, a plurality of light emitting elements 13, an insulating layer 14, a protective layer 15, a plurality of color filters 17, and a lens 18.
  • the display device 10 is a top emission type display device.
  • the substrate 11 is located on the back surface side of the display device 10, and the direction from the substrate 11 to the lens 18 is the front surface side direction of the display device 10.
  • the forming surface side of the lens 18 faces the top side, and the substrate 11 side faces the bottom side.
  • the direction connecting the top side and the bottom side is the thickness direction (vertical direction) of the display device 10.
  • the surface on the display surface side of the display device 10 is referred to as a first surface (upper surface, front surface), and the surface on the back surface side of the display device 10 is referred to as a second surface. It is called a surface (bottom surface).
  • the display device 10 may be, for example, an OLED (Organic Light Emitting Diode).
  • the display device 10 may be a micro display, and specifically, a self-luminous element such as a Micro-OLED (Micro-Organic Light Emitting Diode) or a Micro-LED (Micro-Light Emitting Diode) is formed in an array. It may be a micro display or the like. Further, the display device 10 may be used in various electronic devices as described later. Examples of the electronic device in which the display device 10 is used include a display device for VR (Virtual Reality), MR (Mixed Reality), or AR (Augmented Reality), an electronic viewfinder (EVF), or a small projector. And so on.
  • the peripheral area 110B (different from the area of reference numeral 110A) is located on the periphery of the display area 110A (area shown with hatching) and the display area 110A on the substrate 11. Areas shown with hatching) are provided.
  • sub-pixels (sub-pixels 100R, 100G, 100B) corresponding to red, green, and blue color types are arranged in a matrix as sub-pixels 100 corresponding to a plurality of color types.
  • the sub-pixel 100R displays red
  • the sub-pixel 100G displays green
  • the sub-pixel 100B displays blue.
  • FIG. 2A is a plan view showing an example of the display device 10 according to the first embodiment.
  • sub-pixel 100 may be used when the sub-pixels 100R, 100G, and 100B are not particularly distinguished. Further, in FIG. 2A, the region surrounded by the broken line XS indicates a region of one pixel, and in FIG. 2B, a partially enlarged view of the portion surrounded by the broken line XS is shown.
  • the combinations of sub-pixels 100R, 100G, and 100B that display the same color are repeatedly arranged two-dimensionally in the horizontal and vertical directions.
  • the sub-pixels 100R, 100G, and 100B corresponding to the three color types are arranged in the horizontal direction, and the combination thereof is one pixel (pixel unit) (pixel).
  • pixel unit pixel unit
  • the combinations of the sub-pixels 100R, 100G, and 100B are arranged in the X-axis direction and the Y-axis direction.
  • the horizontal direction corresponds to a direction that is left-right when the user views an image displayed in the display area 110A
  • the vertical direction corresponds to a direction that is orthogonal to the horizontal direction in the display area 110A.
  • the substrate 11 is provided with various circuits for driving a plurality of light emitting elements 13. That is, on the first surface of the substrate 11, a drive circuit including a sampling transistor for controlling the drive of the plurality of light emitting elements 13 and a drive transistor, and a power supply circuit for supplying power to the plurality of light emitting elements 13 (all). (Not shown) is provided.
  • the substrate 11 may be made of, for example, glass or resin having low permeability of water and oxygen, or may be made of a semiconductor such as a transistor which can be easily formed.
  • the substrate 11 may be a glass substrate, a semiconductor substrate, a resin substrate, or the like.
  • the glass substrate includes, for example, high strain point glass, soda glass, borosilicate glass, forsterite, lead glass, quartz glass and the like.
  • the semiconductor substrate includes, for example, amorphous silicon, polycrystalline silicon, single crystal silicon, and the like.
  • the resin substrate contains, for example, at least one selected from the group consisting of polymethylmethacrylate, polyvinyl alcohol, polyvinylphenol, polyether sulfone, polyimide, polycarbonate, polyethylene terephthalate, polyethylene naphthalate and the like.
  • an insulating film (not shown) that covers the above-mentioned drive circuit, power supply circuit, and the like is formed on the first surface of the substrate 11, and the first electrode 13A constituting the light emitting element 13 is formed via the insulating film.
  • a plurality of contact plugs for connecting to the drive circuit are provided.
  • the plurality of light emitting elements 13 are provided on the first surface side of the substrate 11.
  • the plurality of light emitting elements 13 are formed in a predetermined arrangement pattern such as a matrix.
  • the light emitting element 13 is configured to be capable of emitting white light.
  • the light emitting element 13 is, for example, a white OLED or a white Micro-OLED (MOLED).
  • MOLED white Micro-OLED
  • the colorization method in the display device 10 a method using a light emitting element 13 and a color filter 17 is used as the colorization method in the display device 10.
  • the colorization method is not limited to this, and an RGB coloring method or the like may be used.
  • a monochromatic filter may be used instead of the color filter 17, a monochromatic filter may be used.
  • the organic compound layer 13B is provided for each color type of the sub-pixel 100.
  • the light itself generated from the light emitting element 13 can be set to red, green, and blue color types according to the color type of the sub-pixel 100, so that the color filter 17 may be omitted. ..
  • the light emitting element 13 includes a first electrode 13A, an organic compound layer 13B, and a second electrode 13C.
  • the first electrode 13A, the organic compound layer 13B, and the second electrode 13C are laminated in this order from the substrate 11 side toward the lens 18 described later.
  • the first electrode 13A is provided on the insulating film on the first surface side of the substrate 11.
  • the first electrode 13A is electrically separated for each sub-pixel 100 by an insulating layer 14 described later.
  • the first electrode 13A is an anode.
  • the first electrode 13A is preferably composed of at least one of a metal layer and a metal oxide layer, and more specifically, a single-layer film of a metal layer or a metal oxide layer, or a metal layer and a metal. It is preferably composed of a laminated film of an oxide layer.
  • the metal oxide layer may be provided on the organic compound layer 13B side, or the metal layer may be provided on the organic compound layer 13B side. From the viewpoint of adjoining the layer having a high work function to the organic compound layer 13B, it is preferable that the metal oxide layer is provided on the organic compound layer 13B side.
  • the metal layer is, for example, chromium (Cr), gold (Au), platinum (Pt), nickel (Ni), copper (Cu), molybdenum (Mo), titanium (Ti), tantalum (Ta), aluminum (Al). , Magnesium (Mg), Iron (Fe), Tungsten (W) and Silver (Ag).
  • the metal layer may contain at least one of the above metal elements as a constituent element of the alloy.
  • alloys include aluminum alloys and silver alloys.
  • Specific examples of the aluminum alloy include, for example, AlNd or AlCu.
  • the metal oxide layer contains, for example, at least one of a mixture of indium oxide and tin oxide (ITO), a mixture of indium oxide and zinc oxide (IZO), and titanium oxide (TIO).
  • ITO indium oxide and tin oxide
  • IZO indium oxide and zinc oxide
  • TIO titanium oxide
  • the second electrode 13C is provided so as to face the first electrode 13A.
  • the second electrode 13C is provided as an electrode common to all the sub-pixels 100.
  • the second electrode 13C is a cathode.
  • the second electrode 13C is preferably a transparent electrode having transparency to the light generated in the organic compound layer 13B.
  • the transparent electrode also includes a translucent reflective layer.
  • the second electrode 13C is made of a material having as high a transparency as possible and a small work function in order to increase the luminous efficiency.
  • the second electrode 13C is composed of at least one of a metal layer and a metal oxide layer. More specifically, the second electrode 13C is composed of a single-layer film of a metal layer or a metal oxide layer, or a laminated film of a metal layer and a metal oxide layer.
  • the metal layer may be provided on the organic compound layer 13B side or the metal oxide layer may be provided on the organic compound layer 13B side, but the work is low. From the viewpoint of making the layer having a function adjacent to the organic compound layer 13B, it is preferable that the metal layer is provided on the organic compound layer 13B side.
  • the metal layer contains, for example, at least one metal element selected from the group consisting of magnesium (Mg), aluminum (Al), silver (Ag), calcium (Ca) and sodium (Na).
  • the metal layer may contain at least one of the above metal elements as a constituent element of the alloy. Specific examples of the alloy include MgAg alloy, MgAl alloy, AlLi alloy and the like.
  • the metal oxide contains, for example, at least one of a mixture of indium oxide and tin oxide (ITO), a mixture of indium oxide and zinc oxide (IZO) and zinc oxide (ZnO).
  • the organic compound layer 13B is provided between the first electrode 13A and the second electrode 13C.
  • the organic compound layer 13B is provided as an organic compound layer common to all the sub-pixels 100.
  • the organic compound layer 13B is configured to be capable of emitting white light. However, this does not prohibit that the emission color of the organic compound layer 13B is other than white, and colors such as red, blue, and green may be adopted. That is, the emission color of the organic compound layer 13B may be, for example, any one of white, red, blue and green.
  • the organic compound layer 13B has a structure in which a hole injection layer, a hole transport layer, a light emitting layer, and an electron transport layer are laminated in this order from the first electrode 13A toward the second electrode 13C.
  • the structure of the organic compound layer 13B is not limited to this, and layers other than the light emitting layer are provided as needed.
  • the hole injection layer is a buffer layer for increasing the hole injection efficiency into the light emitting layer and for suppressing leakage.
  • the hole transport layer is for increasing the hole transport efficiency to the light emitting layer. In the light emitting layer, when an electric field is applied, electrons and holes are recombined to generate light.
  • the light emitting layer is an organic light emitting layer containing an organic light emitting material.
  • the electron transport layer is for increasing the electron transport efficiency to the light emitting layer.
  • An electron injection layer may be provided between the electron transport layer and the second electrode 13C. This electron injection layer is for increasing the electron injection efficiency.
  • the insulating layer 14 is formed on the first surface side of the substrate 11.
  • the insulating layer 14 electrically separates each first electrode 13A for each light emitting element 13 (that is, for each sub-pixel).
  • the insulating layer 14 has a plurality of openings 14A corresponding to the sub-pixels 100, and the first surface (the surface facing the second electrode 13C) of the separated first electrode 13A is exposed from the openings 14A. There is.
  • the insulating layer 14 may cover the separated first electrode 13A from the peripheral edge portion of the first surface to the side surface (end surface).
  • the peripheral edge portion of the first surface means a region having a predetermined width from the peripheral edge of the first surface toward the inside.
  • the insulating layer 14 is made of, for example, an organic material or an inorganic material.
  • the organic material contains, for example, at least one of polyimide and acrylic resin.
  • the inorganic material includes, for example, at least one of silicon oxide, silicon nitride, silicon nitriding and aluminum oxide.
  • the protective layer 15 is provided on the surface (first surface) of the second electrode 13C and covers the light emitting element 13.
  • the thickness of the protective layer 15 is preferably 0.5 ⁇ m or more and 2.0 ⁇ m or less. When the thickness of the protective layer 15 is within this range, the effect of satisfying the mathematical formulas 7 and 8 described later is enhanced.
  • the thickness of the protective layer 15 is defined as the thickness from the surface of the light emitting element 13 (first surface of the second electrode) to the surface of the protective layer 15 (first surface).
  • the protective layer 15 blocks the light emitting element 13 from the outside air and suppresses the infiltration of moisture from the external environment into the light emitting element 13. Further, when the second electrode 13C is composed of a metal layer, the protective layer 15 may have a function of suppressing oxidation of the metal layer.
  • the protective layer 15 is made of, for example, an inorganic material.
  • the inorganic material constituting the protective layer 15 a material having low hygroscopicity is preferable.
  • the inorganic material constituting the protective layer 15 is selected from the group consisting of silicon oxide (SiO), silicon nitride (SiN), silicon oxide nitride (SiNO), titanium oxide (TIO) and aluminum oxide (AlO). It is preferable to contain at least one of these.
  • the protective layer 15 may have a single-layer structure, but may have a multi-layer structure when the thickness is increased. This is to relieve the internal stress in the protective layer 15.
  • the color filter 17 is provided on the protective layer 15. In the example of FIG. 1, the color filter 17 is provided at a position closer to the first electrode 13A than the lens 18 described later.
  • the color filter 17 is, for example, an on-chip color filter (OCCF).
  • OCCF on-chip color filter
  • the color filter 17 is formed corresponding to the sub-pixel 100.
  • a plurality of color type filters red filter 17R, green filter 17G, and blue filter 17B
  • the red filter 17R, the green filter 17G, and the blue filter 17B are provided facing the light emitting element 13 for the red sub-pixel, the light emitting element 13 for the green sub-pixel, and the light emitting element 13 for the blue sub-pixel, respectively.
  • the white light emitted from each light emitting element 13 in the red sub-pixel 100R, the green sub-pixel 100G, and the blue sub-pixel 100B passes through the red filter 17R, the green filter 17G, and the blue filter 17B, respectively. By doing so, red light, green light, and blue light are emitted from the display surface, respectively.
  • the type of the color filter 17 shown here is an example, and the type of the color filter 17 is not limited to the combination of three types of red, green, and blue.
  • the type of the color filter 17 may be a combination of four types of white in addition to red, green, and blue.
  • a color filter formed separately may be bonded.
  • each color filter 17 (red filter 17R, blue filter 17B, and green filter 17G) is formed in a striped shape.
  • the red filter 17R, the blue filter 17B, and the green filter 17G are formed in a state where the end faces are in contact with each other, but the red filter 17R, the blue filter 17B, and the green filter 17G may be separated from each other. ..
  • At least one lens 18 is formed corresponding to the sub-pixel 100, and in the example of FIG. 1, one lens 18 is provided on the color filter 17 (on the + Z direction side).
  • the number of lenses 18 is plurality, it becomes easy to control the light-collecting property of the lenses 18.
  • the number of lenses 18 is 3 or less with respect to one sub-pixel 100.
  • the bottom surface 18A of the lens 18 is directed toward the opening 14A, and most of the light generated from the light emitting element 13 passes through the color filter 17 and faces the bottom surface 18A side of the lens 18. Then, the traveling direction of the light is adjusted by passing the light through the lens 18.
  • the lens 18 is, for example, an on-chip lens (On Chip Lens: OCL).
  • the lens 18 may be formed of, for example, a thermosetting resin, an ultraviolet curable resin, or the like.
  • the shape of the lens 18 is not particularly limited, and examples thereof include a columnar shape, a frustum shape, and a dome shape.
  • the lens 18 has a shape in which the cross section in the XZ plane (here, it may be simply referred to as a cross-sectional shape) has a half-moon shape with respect to the cross-sectional shape.
  • the planar shape of the lens 18 is formed into a rectangular shape.
  • the cross-sectional shape of the lens 18 may be, for example, a rectangular shape as shown in FIG. 4 or a trapezoidal shape as shown in FIG.
  • planar shape of the lens 18 may be a circular shape, an elliptical shape, a square shape or another polygonal shape, or a chamfered shape. As will be described later, the shape of such a lens 18 may be determined according to various conditions such as a combination of sub-pixels 100.
  • WR is the horizontal width of the opening 14A corresponding to the red sub-pixel 100R.
  • the horizontal width of the opening 14A indicates the width in the horizontal cross section of the display device 10 passing through the center of the opening 14A. This also applies to the opening 14A corresponding to the green sub-pixel 100G and the blue sub-pixel 100B, in addition to the red sub-pixel 100R.
  • the horizontal cross section is a cross section when a plane (XZ plane) stretched in the horizontal direction (X-axis direction) of the display device 10 and the thickness direction (Z-axis direction) of the light emitting element 13 is used as a cut surface. ..
  • ⁇ LR is the horizontal width (indicated by reference numeral LR in FIG. 1) of the bottom surface 18A of the lens 18 formed corresponding to the red sub-pixel 100R when the first horizontal arrangement number is 1.
  • the ⁇ LR is the horizontal width of each bottom surface 18A of the lenses 18 formed in a state of being arranged horizontally corresponding to the red sub-pixels 100R.
  • the total of LR is shown.
  • the first horizontal arrangement number indicates the number of formations of the lens 18 corresponding to the red sub-pixel 100R along the horizontal direction. For example, when two lenses 18 are formed side by side in the horizontal direction corresponding to the sub-pixel 100R, the number of first horizontal arrangements is 2.
  • the horizontal width of the bottom surface 18A of the lens 18 indicates the width in the horizontal cross section of the display device 10 passing through the center of the bottom surface 18A of the lens 18. This also applies to the lens 18 corresponding to the red sub-pixel 100R, the green sub-pixel 100G, and the blue sub-pixel 100B.
  • WG is the horizontal width of the opening 14A corresponding to the green sub-pixel 100G.
  • the ⁇ LG is the horizontal width of the bottom surface 18A of the lens 18 formed corresponding to the green sub-pixel 100G (indicated by the reference numeral LG in FIG. 1). .. Further, when the number of second horizontal arrangements is 2 or more, the ⁇ LG is the horizontal width of each bottom surface 18A of the lenses 18 formed in a state of being arranged horizontally corresponding to the green sub-pixels 100G. The total of LG is shown.
  • the second horizontal arrangement number indicates the number of formations of the lens 18 corresponding to the green sub-pixel 100G along the horizontal direction.
  • WB is the horizontal width of the opening 14A corresponding to the blue sub-pixel 100B.
  • the ⁇ LB is the horizontal width of the bottom surface 18A of the lens 18 formed corresponding to the blue sub-pixel 100B (indicated by the reference numeral LB in FIG. 1). .. Further, when the number of third horizontal arrangements is 2 or more, the ⁇ LB is the horizontal width of each bottom surface 18A of the lenses 18 formed in a state of being arranged horizontally corresponding to the blue sub-pixels 100B. The total of LB is shown.
  • the third horizontal arrangement number indicates the number of formations of the lens 18 corresponding to the blue sub-pixel 100B along the horizontal direction.
  • the horizontal width LB of the lens 18 corresponding to the sub-pixel 100B is the width LR of the lens 18 corresponding to the sub-pixel 100R, and the lens 18 corresponding to the sub-pixel 100G.
  • the above equations 7 and 8 are satisfied by making the width LG larger than the width LG.
  • Equations 7 and 8 are not limited to cases where the widths LR, LG, and LB of the lens 18 are specified. Equations 7 and 8 may be realized by defining the magnitudes of the widths WR, WG, and WB of the openings 14A as shown in FIG. 5A, and the magnitudes of the widths LR, LG, and LB of the lens 18 may be determined. It may be realized in combination. In FIG. 5A, the widths LR, LG, and LB of the lens 18 are the same, and the widths WR and WG of the opening 14A corresponding to the sub-pixels 100R and 100G are larger than the width WB of the opening 14A corresponding to the sub-pixel 100B. An example is shown when it is specified to be large.
  • the lower limit values of ⁇ LR / WR, ⁇ LB / WB, and ⁇ LG / WG are 1, respectively, from the viewpoint of more efficiently exhibiting the light-collecting property of the lens 18.
  • the upper limit of ⁇ LR / WR, ⁇ LB / WB and ⁇ LG / WG is the viewpoint of reducing the width of the opening 14A while suppressing the influence on the organic compound layer 13B, and the lens 18 while suppressing the influence on the adjacent sub-pixel 100. From the viewpoint of increasing the bottom surface 18A of the above, each is 3.
  • the display device 10 is satisfied with at least one of the following formula 11 or formula 12.
  • LB indicates the horizontal width of the bottom surface 18A of the lens 18 formed corresponding to the red sub-pixel 100R as described above.
  • LG indicates the horizontal width of the bottom surface 18A of the lens 18 formed corresponding to the green sub-pixel 100G.
  • LB indicates the horizontal width of the bottom surface 18A of the lens 18 formed corresponding to the blue sub-pixel 100B.
  • the display device 10 When the display device 10 satisfies at least one of the above formula 11 and the above formula 12, the light from at least one light emitting element 13 of the red sub-pixel 100R or the green sub-pixel 100G corresponds to the blue sub-pixel 100B. It is possible to enhance the effect of suppressing the entry into the lens 18. From the viewpoint of enhancing this effect, it is preferable that both the formula 11 and the formula 12 are satisfied. When both the formula 11 and the formula 12 are satisfied, the light from the light emitting element 13 of the red sub-pixel 100R and the green sub-pixel 100G enters the lens 18 corresponding to the blue sub-pixel 100B. Can be effectively suppressed.
  • the third horizontal arrangement number is a value of 1 or more.
  • the number of first horizontal arrangements for the lens 18 corresponding to the sub-pixel 100R is 1.
  • the number of second horizontal arrangements for the lens 18 corresponding to the sub-pixel 100G is 1.
  • the number of third horizontal arrangements of the lens 18 corresponding to the sub-pixel 100B is 1.
  • the number of lenses 18 is 3 or less for one sub-pixel 100 as described above, the number of first horizontal arrangements, the number of second horizontal arrangements, and the number of third horizontal arrangements are three. The following is preferable.
  • the separation distance WH) between the lens 18 and the bottom surface of the lens 18 is preferably 0.5 ⁇ m or more and 5.0 ⁇ m or less. This indicates that it is more strongly required to suppress the chromaticity shift when the separation distance WH is in such a range. Further, when the separation distance WH is in such a range, it becomes easy to make the display device 10 a micro display.
  • the insulating layer 14 and the organic compound layer 13B having the first electrode 13A and the opening 14A formed on the first surface of the substrate 11 by using, for example, a thin film forming technique, a photolithography technique, an etching technique, a sputtering technique, or the like.
  • the second electrode 13C is formed.
  • the opening 14A is formed with a pattern corresponding to the sub-pixel 100 of each color.
  • the protective layer 15 and the color filter 17 are formed by appropriately using a CVD method, a vapor deposition method, a photolithography method, or the like.
  • the color filter 17 is formed according to the layout of the sub-pixel 100. Further, in the example of FIG. 3, the red filter 17R, the green filter 17G, and the blue filter 17B are formed in a striped shape.
  • the lens 18 is formed on the surface of the color filter 17.
  • the method of forming the lens 18 is not particularly limited.
  • the resin material forming the lens 18 is applied on the surface of the color filter 17 to form the resin layer 30.
  • a resist 31 is provided on the resin layer 30 so as to have a pattern corresponding to the formation position of the lens 18 (FIG. 3B).
  • a lens 18 is formed on the color filter 17 as shown in FIG. 3C (etchback method).
  • etchback method an on-chip microlens (OCL) forming method such as a melting method may be applied.
  • the display device is required to suppress the chromaticity shift between the case where the front direction is the line-of-sight direction and the case where the diagonal direction is the line-of-sight direction.
  • the chromaticity deviation is the chromaticity in the front direction and the diagonal when comparing the chromaticity when the front direction is the line-of-sight direction and the chromaticity when the diagonal direction is the line-of-sight direction with respect to the display area of the display device. Indicates the difference (deviation) from the chromaticity in the direction.
  • the light intensity in the front direction and the direction in which the degree of inclination is large (based on the front direction).
  • the viewing angle characteristics of red light are different.
  • the viewing angle characteristics of the relationship between blue light and green light are different as in the relationship between blue light and red light.
  • the viewing angle characteristic of the blue light becomes red as shown in the simulation example (FIG. 15A) described later. It is close to the viewing angle characteristics of light and green light, and the chromaticity shift is reduced.
  • the display device 10 according to the first embodiment with respect to the horizontal direction (X-axis direction) of the display area 110A, chromaticity deviation is unlikely to occur even when the direction in which the inclination angle with respect to the front direction is large is the line-of-sight direction.
  • the viewing angle characteristics in the horizontal direction can be improved, and a wide viewing angle in the horizontal direction can be realized.
  • the brightness in the front direction can be improved by satisfying the formula 1 and the formula 2.
  • Modification 1 (Vertical direction)
  • the relationship between the width 18A of the lens 18 and the width of the opening 14A is defined in the horizontal direction.
  • the display device 10 of the first embodiment is not limited to this, and the relationship between the width 18A of the lens 18 and the width of the opening 14A may be defined in the vertical direction (modification example 1).
  • WvR is the vertical width of the opening 14A corresponding to the red sub-pixel 100R, as also shown in FIG. 2B.
  • the vertical width of the opening 14A indicates the width in the vertical cross section of the display device 10 passing through the center of the opening 14A. This also applies to the opening 14A corresponding to the green sub-pixel 100G and the blue sub-pixel 100B, in addition to the red sub-pixel 100R.
  • the vertical cross section is a cross section when a plane (YZ plane) stretched in the vertical direction (Y-axis direction) of the display device 10 and the thickness direction (Z-axis direction) of the light emitting element 13 is used as a cut surface.
  • ⁇ LvR is the vertical width of the bottom surface 18A of the lens 18 formed corresponding to the red sub-pixel 100R (indicated by the reference numeral LvR in FIG. 2B) when the number of first vertical arrangements is 1. be.
  • ⁇ LvR is the sum of the vertical widths of the bottom surfaces 18A of the lenses 18 formed in a vertically aligned state corresponding to the red sub-pixels 100R when the number of first vertical arrangements is 2 or more. Is shown.
  • the first vertical arrangement number indicates the number of formations of the lens 18 corresponding to the red sub-pixel 100R along the vertical direction.
  • the vertical width of the bottom surface 18A of the lens 18 indicates the width in the vertical cross section of the display device 10 passing through the center of the bottom surface 18A of the lens 18. This also applies to the lens 18 corresponding to the red sub-pixel 100R, the green sub-pixel 100G, and the blue sub-pixel 100B.
  • WvG is the vertical width of the opening 14A corresponding to the green sub-pixel 100G.
  • ⁇ LvG is the vertical width of the bottom surface 18A of the lens 18 formed corresponding to the green sub-pixel 100G (indicated by the reference numeral LvG in FIG. 2B) when the number of second vertical arrangements is 1. be.
  • ⁇ LvG is the sum of the vertical widths of the bottom surfaces of the lenses 18 formed in a vertically aligned state corresponding to the green sub-pixels 100G when the number of second vertical arrangements is 2 or more. show.
  • the second vertical arrangement number indicates the number of formations of the lens 18 corresponding to the green sub-pixel 100G along the vertical direction.
  • WvB is the vertical width of the opening 14A corresponding to the blue sub-pixel 100B.
  • ⁇ LvB is the vertical width of the bottom surface 18A of the lens 18 formed corresponding to the blue sub-pixel 100B (indicated by the reference numeral LvB in FIG. 2B) when the third vertical arrangement number is 1.
  • ⁇ LvB is the sum of the vertical widths of the bottom surfaces 18A of the lenses 18 formed in a vertically aligned state corresponding to the blue sub-pixels 100B when the number of third horizontal arrangements is 2 or more. Is shown.
  • the third vertical arrangement number indicates the number of formations of the lens 18 corresponding to the blue sub-pixel 100B along the vertical direction.
  • the vertical width LvB of the lens 18 corresponding to the sub-pixel 100B is made larger than the width LvR of the lens 18 corresponding to the sub-pixel 100R and the width LvG of the lens 18 corresponding to the sub-pixel 100G.
  • the above equations 13 and 14 are satisfied.
  • Equations 13 and 14 are not limited to the case where the widths LvR, LvG, and LvB of the lens 18 are specified. Equations 13 and 14 may be realized by defining the magnitudes of the widths WvR, WvG, and WvB of the opening 14A as shown in FIG. 5A, and the magnitudes of the widths LvR, LvG, and LvB of the lens 18 may be determined. It may be realized in combination. In FIG.
  • the widths LvR, LvG, and LvB of the lens 18 are the same, and the widths WvR and WvG of the opening 14A corresponding to the sub-pixels 100R and 100G are larger than the width WvB of the opening 14A corresponding to the sub-pixel 100B.
  • An example is shown where it is specified to be large.
  • the lower limit of ⁇ LvR / WvR, ⁇ LvB / WvB and ⁇ LvG / WvG is 1 as in the case of the lower limit of ⁇ LR / WR, ⁇ LB / WB and ⁇ LG / WG, respectively.
  • the upper limit values of ⁇ LvR / WvR, ⁇ LvB / WvB and ⁇ LvG / WvG are 3 as in the case of the upper limit values of ⁇ LR / WR, ⁇ LB / WB and ⁇ LG / WG, respectively.
  • the above-mentioned values of ⁇ LvB / WvB, ⁇ LvG / WvG, and ⁇ LvR / WvR may satisfy the following formula 15 or formula 16. preferable.
  • the display device 10 is satisfied with at least one of the following formula 17 or formula 18.
  • LvB indicates the vertical width of the bottom surface 18A of the lens 18 formed corresponding to the red sub-pixel 100R as described above.
  • LvG indicates the vertical width of the bottom surface 18A of the lens 18 formed corresponding to the green subpixel 100G.
  • LvB indicates the vertical width of the bottom surface 18A of the lens 18 formed corresponding to the blue sub-pixel 100B.
  • the display device 10 When the display device 10 satisfies at least one of the above formula 17 or 18, the light from at least one light emitting element 13 of the red sub-pixel 100R or the green sub-pixel 100G corresponds to the blue sub-pixel 100B. It is possible to suppress the entry into the lens 18. From the viewpoint of enhancing this effect, it is preferable that both the formula 11 and the formula 12 are satisfied. When both the formula 11 and the formula 12 are satisfied, the light from the light emitting element 13 of the red sub-pixel 100R and the green sub-pixel 100G enters the lens 18 corresponding to the blue sub-pixel 100B. Can be effectively suppressed.
  • the third vertical arrangement number is a value of 1 or more.
  • the number of first vertical arrangements for the lens 18 corresponding to the sub-pixel 100R is 1.
  • the number of second vertical arrangements for the lens 18 corresponding to the sub-pixel 100G is 1.
  • the number of third vertical arrangements of the lens 18 corresponding to the sub-pixel 100B is 1.
  • the number of lenses 18 is 3 or less with respect to one sub-pixel 100 as described above, the number of first vertical arrangements, the number of second vertical arrangements, and the number of third vertical arrangements are three. The following is preferable.
  • FIG. 5B shows an example in which the number of first vertical arrangements, the number of second vertical arrangements, and the number of third vertical arrangements are three.
  • the relationship between the total width of the bottom surface 18A and the width of the opening 14A satisfies the conditions of the above formulas 13 and 14.
  • the chromaticity shift is less likely to occur in the vertical direction (Y-axis direction) of the display area 110A even when the direction in which the tilt angle with respect to the front direction is large is the line-of-sight direction. It is possible to improve the viewing angle characteristics and realize a wide viewing angle in the vertical direction.
  • Modification 2 Regarding the layout of the sub-pixel 100 of the display device 10 according to the first embodiment, in the example of FIG. 1, the sub-pixels 100R, 100B, and 100G arranged in the horizontal direction form a pixel unit, but this is a sub-pixel. It is an example of 100.
  • the layout of the sub-pixel 100 is not limited to this.
  • the sub-pixels 100B As the layout of the sub-pixel 100, as shown in FIG. 6B, two sub-pixels 100B, a combination of one sub-pixel 100R and 100G, respectively, and each sub-pixel 100 may be arranged squarely.
  • the sub-pixels 100B may be arranged side by side as shown in FIG. 6B, or may be arranged so as to avoid the positions where they are next to each other as shown in FIG. 7A.
  • the sub-pixels 100R and 100G may be shaped like a square, and the sub-pixels 100B may be shaped like a rectangle, and these may be combined.
  • the sub-pixels 100R, 100G, and 100B may be arranged in a delta shape.
  • the field of view is set so that the width of the bottom surface 18A of the lens 18 and the width of the opening 14A satisfy the above-mentioned predetermined conditions in both the horizontal direction and the vertical direction.
  • the angle characteristics can be improved.
  • the width LB of the bottom surface 18A of the lens 18 is set to a value larger than the width LR and LG
  • the width LvB of the bottom surface 18A of the lens 18 is set to a value larger than the width LvR and LvG.
  • the width WB of the opening 14A is set to a value smaller than the width WR and WG
  • the width WvB of the bottom surface 18A of the lens 18 is set to a value smaller than the width WvR and WvG.
  • the viewing angle characteristics are good in both the horizontal direction and the vertical direction.
  • the color filter 17 may be provided at a position farther from the first electrode 13A than the lens 18.
  • reference numeral 20 is a flattening layer.
  • the flattening layer 20 can be formed of a resin or the like. This also applies to FIG. 8B.
  • a plurality of color filters 17 may be provided in each sub-pixel 100.
  • the color filter 17 may be provided at both positions farther and closer to the first electrode 13A than the lens 18.
  • the dimensions of the red filter 17R, the green filter 17G, and the blue filter 17B formed as the color filter 17 corresponding to the sub-pixels corresponding to the respective color types are substantially the same. ing.
  • This example is an example of the sub-pixel 100, and the display device 10 according to the first embodiment is not limited to this.
  • the dimensions of the red filter 17R, the green filter 17G, and the blue filter 17B may be different between the sub-pixels 100 of different color types.
  • the horizontal width of the blue filter 17B is narrower than the horizontal width of the red filter 17R and the horizontal width of the green filter 17G.
  • the color filter 17 of the display device 10 has such a configuration, the intensity of the light in the diagonal direction with respect to the light in the front direction is relatively weakened with respect to the blue light, and the viewing angle characteristics of the blue light are red light and green light. The effect of facilitating close proximity to the viewing angle characteristics of is obtained.
  • the display device 10 includes filters of a plurality of different color types as color filters 17 corresponding to the sub-pixels 100 corresponding to the respective color types, and adjacent to each other.
  • the black matrix layer 19 may be provided between or at the boundary between filters of different color types.
  • the red filter 17R, the green filter 17G, and the blue filter 17B are provided as filters of different color types corresponding to the sub-pixels 100 of different color types.
  • the black matrix layer 19 is provided at least on the boundary between the red filter 17R and the blue filter 17B and on the boundary between the green filter 17G and the blue filter 17B.
  • the black matrix layer 19 may be, for example, a black resin film having an optical density of 1 or more mixed with a black colorant.
  • a black polyimide resin or the like can be exemplified.
  • the display device 10 of the modified example 8 by further providing the black matrix layer 19, the blue light directed in the oblique direction is adjusted, and the viewing angle characteristic can be improved.
  • the refractive powers of the lenses 18 provided in the red sub-pixel 100R, the green sub-pixel 100G, and the blue sub-pixel 100B are substantially the same as each other.
  • the display device 10 is not limited to this example.
  • the lens 18 formed corresponding to the blue sub-pixel 100B corresponds to the lens 18 formed corresponding to the red sub-pixel 100R and the lens 18 formed corresponding to the green sub-pixel 100G.
  • the refractive power may be larger than 18.
  • the refractive power of the lens 18 indicates the degree to which light is guided in the front direction. Therefore, the higher the refractive power of the lens 18, the easier it is for light to be guided in the front direction.
  • the lens 18 formed corresponding to the blue sub-pixel 100B has a higher refractive power than the lens 18 formed corresponding to the red sub-pixel 100R and the lens 18 formed corresponding to the green sub-pixel 100G.
  • the method of making the relative height is not particularly limited.
  • the lens 18 formed corresponding to the blue sub-pixel 100B is formed corresponding to the lens 18 formed corresponding to the red sub-pixel 100R and the green sub-pixel 100G. It can be mentioned that the height is higher than that of the lens 18 (FIG. 14).
  • FIG. 9 is a cross-sectional view showing a configuration example of the display device 10 according to the second embodiment.
  • the display device 10 according to the second embodiment includes a substrate 11, a plurality of light emitting elements 13, a reflection wall 21, a protective layer 15, a plurality of color filters 17, and a lens 18.
  • the display device 10 according to the second embodiment shown in the example of FIG. 9 has the same configuration as the display device 10 according to the first embodiment, except that the insulating layer 14 is omitted and the reflection wall 21 is provided. ..
  • the reflective wall 21 extends from between the light emitting elements 13 adjacent to each other with the first main surface of the substrate 11 as the base end in the thickness direction (+ Z direction) of the light emitting element 13. Similar to the insulating layer 14, the reflective wall 21 electrically separates the first electrode 13A for each light emitting element 13 (that is, for each sub-pixel). Further, the reflective wall 21 may be covered from the peripheral edge portion of the first surface of the separated first electrode 13A to the side surface (end surface), similarly to the insulating layer 14.
  • the reflective wall 21 forms a wall surface 22 around the light emitting region of each light emitting element 13 corresponding to each sub-pixel 100.
  • the reflective wall 21 is located on the surface located on the red sub-pixel 100R side and on the wall surface 22R and the blue sub-pixel 100B side.
  • the wall surface 22B is formed on the surface to be located.
  • the reflective wall 21 is a surface located on the blue sub-pixel 100B side and is located on the wall surface 22B and the green sub-pixel 100G side.
  • the wall surface 22G is formed on the surface located at.
  • the reflective wall 21 When the reflective wall 21 is formed between the adjacent red sub-pixel 100R and the green sub-pixel 100G, the reflective wall 21 is located on the surface located on the red sub-pixel 100R side and is located on the wall surface 22R and the green sub-pixel 100G side.
  • the wall surface 22G is formed on the surface to be located.
  • the wall surface 22R, 22G, and 22B may be collectively referred to as the wall surface 22.
  • the wall surface 22B is formed around the light emitting region SB of the light emitting element 13 corresponding to the green sub-pixel 100B (in the example of FIG. 9, both side edges of the light emitting region SB separated in the horizontal direction).
  • the wall surfaces 22R and 22G are around the light emitting regions SR and SG of the light emitting element 13 corresponding to the red and green subpixels 100R and 100G, respectively (in the example of FIG. 9, the light emitting regions SR and SG are horizontal, respectively). Formed on both sides separated in the direction).
  • the shape of the reflective wall 21 is formed so that the horizontal cross section (cross section in the XZ plane) is trapezoidal, but this particularly limits the shape of the reflective wall 21. is not.
  • the shape of the reflective wall 21 may be such that the horizontal cross section is rectangular.
  • the material of the reflective wall 21 is not particularly limited as long as it has light reflection and insulating properties, and silicon oxide (SiO), silicon oxynitride (SiON), and the like can be exemplified.
  • the bottom surface 18A of the lens 18 is directed to the surface side (first surface side) of the second electrode 13C of the light emitting element 13, and the light generated by the light emitting element 13 in each sub-pixel 100. A part of the light can be reflected by the wall surface 22 and directed toward the lens 18.
  • WrR is the horizontal width of the tip portion 24 of the wall surface 22R corresponding to the red sub-pixel 100R.
  • WrG is the horizontal width of the tip portion 24 of the wall surface 22G corresponding to the green sub-pixel 100G.
  • WrB is the horizontal width of the tip portion 24 of the wall surface 22B corresponding to the blue sub-pixel 100B.
  • the horizontal width of the tip portion 24 of the wall surface 22R means the width in the horizontal cross section (cross section in the XZ plane) of the display device 10 passing through the center of the light emitting region SR. This also applies to the opening 14A corresponding to the green sub-pixel 100G and the blue sub-pixel 100B, in addition to the red sub-pixel 100R.
  • the ⁇ LR, ⁇ LG and ⁇ LB in the formulas 19 and 20 are the same as the ⁇ LR, ⁇ LG and ⁇ LB described in the first embodiment, respectively.
  • the insulating layer 14 is omitted, but the insulating layer 14 may be further formed as in the first embodiment.
  • the display device 10 may be a combination of the first embodiment and the second embodiment.
  • the viewing angle characteristic of the blue light becomes red light as in the display device 10 according to the first embodiment. It is close to the viewing angle characteristics of green light and the chromaticity deviation is reduced. According to the display device 10 according to the second embodiment, the viewing angle characteristic in the horizontal direction can be improved and the wide viewing angle in the horizontal direction can be realized, as in the first embodiment.
  • FIG. 10 is a cross-sectional view showing a configuration example of the display device 10 according to the third embodiment.
  • the display device 10 according to the third embodiment includes a substrate 11, a reflector 23, a plurality of light emitting elements 13, an insulating layer 14, a protective layer 15, a plurality of color filters 17, and a lens 18. ..
  • the display device 10 according to the third embodiment shown in the example of FIG. 10 has the same configuration as the display device 10 according to the first embodiment, except that the reflector 23 is provided below the light emitting element 13.
  • the reflector 23 is provided at a predetermined position below the light emitting element 13 according to the sub-pixel 100. In the example of FIG. 10, it is provided in the substrate 11.
  • the reflector 23 is formed of a material having light reflectivity.
  • the reflector 23 and the second electrode 13C form a resonator structure in each sub-pixel 100.
  • the resonator structure resonates, emphasizes, and emits light having a specified wavelength.
  • the resonator structure resonates and emphasizes the red light contained in the white light generated in the organic compound layer 13B, and emits it to the outside.
  • the resonator structure resonates and emphasizes the green light contained in the white light generated in the organic compound layer 13B, and emits it to the outside.
  • the resonator structure resonates and emphasizes the blue light contained in the white light generated in the organic compound layer 13B, and emits it to the outside.
  • the optical path length (optical distance) between the reflector 23 and the second electrode 13C is set according to the light of the specified wavelength to be resonated. More specifically, in the resonator structure of the sub-pixel 100R, the optical path length between the reflector 23 and the second electrode 13C is set so that red light resonates. In the resonator structure of the sub-pixel 100G, the optical path length between the reflector 23 and the second electrode 13C is set so that green light resonates. In the resonator structure 102B, the optical path length between the reflector 23 and the second electrode 13C is set so that blue light resonates.
  • WbR is the horizontal width of the reflector 23 corresponding to the red sub-pixel 100R
  • WbG is the horizontal width of the reflector 23 corresponding to the green sub-pixel 100G
  • WbB is the horizontal width of the reflector 23 corresponding to the blue sub-pixel 100B.
  • the horizontal width of the reflector 23 corresponding to the red sub-pixel 100R indicates the width in the horizontal cross section (cross section in the XZ plane) of the display device 10 passing through the center of the light emitting region SR. This also applies to the reflector 23 corresponding to the green sub-pixel 100G and the blue sub-pixel 100B, in addition to the red sub-pixel 100R.
  • the ⁇ LR, ⁇ LG and ⁇ LB in the formulas 19 and 20 are the same as the ⁇ LR, ⁇ LG and ⁇ LB described in the first embodiment, respectively.
  • the separation distance BH from the surface 23A of the reflector 23 corresponding to each sub-pixel 100 to the bottom surface 18A of the lens 18 is preferably 0.5 ⁇ m or more and 5.0 ⁇ m or less. It is more preferably 5 ⁇ m or more and 2.0 ⁇ m or less.
  • the separation distance BH is in such a range, it becomes easy to use the display device 10 as a micro display. Further, this indicates that, as in the first embodiment, it is more strongly required to suppress the chromaticity shift when the separation distance BH is in such a range.
  • the viewing angle characteristic of the blue light becomes the red light as in the display device 10 according to the first embodiment. It is close to the viewing angle characteristics of green light and the chromaticity deviation is reduced. According to the display device 10 according to the third embodiment, the viewing angle characteristic in the horizontal direction can be improved and the wide viewing angle in the horizontal direction can be realized, as in the first embodiment.
  • FIG. 11 is a cross-sectional view showing a configuration example of the display device 10 according to the fourth embodiment.
  • the display device 10 according to the fourth embodiment has the same configuration as the display device 10 according to the first embodiment, except that the shape of the first electrode is curved.
  • the surface of the first electrode 13A on the first main surface side forms a concave curved surface.
  • the first electrode 13A is preferably a layer having light reflectivity.
  • the surface of the first electrode 13A on the first main surface side forms a concave curved surface, so that the first of the light generated from the light emitting element 13 is formed.
  • the light reflected by the electrode 13A can be easily collected, and the difference in viewing angle characteristics of red, blue, and green can be reduced.
  • the front luminance can be improved.
  • FIG. 15A shows the results of simulation under the condition that the relationship between the horizontal width of the bottom surface of the lens 18 and the horizontal width of the opening 14A in the display device 10 according to the first embodiment satisfies Equations 1 and 2. It is a figure which shows.
  • FIG. 15A shows the results of simulation under the condition that the relationship between the horizontal width of the bottom surface of the lens 18 and the horizontal width of the opening 14A in the display device 10 according to the first embodiment satisfies Equations 1 and 2. It is a figure which shows.
  • the layout pattern of the sub-pixels 100 (100R, 100B, 100G) is a pattern (delta shape) shown in FIG. 7B, and the lens 18 has a dome shape, and the lens 18 has a dome shape. It is formed in a circular shape in the plan view of the above, and the case where the opening 14A has a circular shape is adopted.
  • the relationship between the horizontal viewing angle [degree] and the light intensity is determined for each of the red, blue, and green color types on the display device 10, and the light at the viewing angle of 0 ° (0 [degree]) is determined. It was carried out by determining the relative light intensity (standardized intensity) at each viewing angle [degree] with the intensity as a reference.
  • the results of the simulation are as shown in FIGS. 15A and 15B.
  • the graphs of FIGS. 15A and 15B are graphs based on the relationship between the viewing angle and the normalized intensity, with the viewing angle as the horizontal axis and the normalized intensity as the vertical axis.
  • the coordinates are defined so that the viewing angle increases in the left-right direction with the position of the viewing angle 0 ° (0 [degree]) as the center of the horizontal axis. ..
  • the graph E (B) shown by the solid line is a graph showing the relationship between the viewing angle and the normalized intensity of blue light.
  • the graph E (R) shown by the alternate long and short dash line is a graph showing the relationship between the viewing angle and the normalized intensity of red light.
  • the graph E (G) shown by the broken line is a graph showing the relationship between the viewing angle and the normalized intensity of green light. This also applies to FIGS. 16A, 16B and 17 showing the results of the second simulation described later.
  • FIGS. 16A, 16B, and 17 are diagram showing the results of simulation when the thickness of the protective layer 15 is 0.5 ⁇ m.
  • FIG. 16B is a diagram showing the results of simulation when the thickness of the protective layer 15 is 1.0 ⁇ m.
  • FIG. 17 is a diagram showing the results of simulation when the thickness of the protective layer 15 is 2.0 ⁇ m.
  • the display device 10 according to each modification from the first embodiment to the fourth embodiment and the first embodiment described above may be provided in various electronic devices.
  • high resolution is required such as an electronic viewfinder or a head-mounted display of a video camera or a single-lens reflex camera, and it is preferable to prepare for a magnified use near the eyes.
  • FIG. 18A is a front view showing an example of the appearance of the digital still camera 310.
  • FIG. 18B is a rear view showing an example of the appearance of the digital still camera 310.
  • This digital still camera 310 is of an interchangeable lens type single-lens reflex type, has an interchangeable shooting lens unit (interchangeable lens) 312 in the center of the front of the camera body (camera body) 311 and is on the left side of the front. It has a grip portion 313 for the photographer to grip.
  • interchangeable lens unit interchangeable lens
  • a monitor 314 is provided at a position shifted to the left from the center of the back of the camera body 311.
  • An electronic viewfinder (eyepiece window) 315 is provided on the upper part of the monitor 314. By looking into the electronic viewfinder 315, the photographer can visually recognize the optical image of the subject guided from the photographing lens unit 312 and determine the composition.
  • the electronic viewfinder 315 any one of the display devices 10 according to the above-described embodiment and modification can be used.
  • FIG. 19 is a perspective view showing an example of the appearance of the head-mounted display 320.
  • the head-mounted display 320 has, for example, ear hooks 322 for being worn on the user's head on both sides of the eyeglass-shaped display unit 321.
  • the display unit 321 any one of the display devices 10 according to the above-described embodiment and modification can be used.
  • FIG. 20 is a perspective view showing an example of the appearance of the television device 330.
  • the television device 330 has, for example, a video display screen unit 331 including a front panel 332 and a filter glass 333, and the video display screen unit 331 is a display device 10 according to the above-described embodiment and modification. It is composed of any of.
  • the present disclosure may also adopt the following configuration.
  • a plurality of sub-pixels that form a pixel unit and correspond to at least red, green, and blue color types.
  • a plurality of light emitting elements formed corresponding to each of the sub-pixels and having a structure in which a first electrode and a second electrode are laminated with an organic compound layer interposed therebetween.
  • a lens formed at least one corresponding to each of the sub-pixels is provided.
  • Each of the light emitting elements is provided with an insulating layer that covers the peripheral edge of the first electrode and forms an opening corresponding to each of the sub-pixels on the first electrode.
  • the following formulas 23 and 24 are satisfied. Display device.
  • the WR is the horizontal width of the opening corresponding to the red sub-pixel, and is along the horizontal direction of the lens corresponding to the red sub-pixel.
  • the ⁇ LR is the horizontal width of the bottom surface of the lens formed corresponding to the red sub-pixel if the first horizontal arrangement number is 1.
  • the total horizontal width of each bottom surface of the lenses formed in a state of being arranged horizontally corresponding to the red sub-pixels is shown.
  • the WG is the horizontal width of the opening corresponding to the green sub-pixel, and the number of formations of the lens corresponding to the green sub-pixel along the horizontal direction is defined as the second horizontal arrangement number.
  • the ⁇ LG has a horizontal width of the bottom surface of the lens formed corresponding to the green sub-pixels, and the number of second horizontal arrangements is 2 or more.
  • the WB is the horizontal width of the opening corresponding to the blue sub-pixel, and the number of formations of the lens corresponding to the blue sub-pixel along the horizontal direction is defined as the third horizontal arrangement number.
  • the ⁇ LB has a horizontal width of the bottom surface of the lens formed corresponding to the blue sub-pixel, and the third horizontal arrangement number is 2 or more.
  • the sum of the horizontal widths of the bottom surfaces of the lenses formed in a horizontally aligned state corresponding to the blue sub-pixels is shown.
  • the WvR is the vertical width of the opening corresponding to the red sub-pixel, and is along the vertical direction of the lens corresponding to the red sub-pixel.
  • the ⁇ LvR is the vertical width of the bottom surface of the lens formed corresponding to the red sub-pixels if the number of first vertical arrangements is 1.
  • the number of the first vertical arrangements is 2 or more, the total vertical width of each bottom surface of the lenses formed in a vertically aligned state corresponding to the red sub-pixels is shown.
  • the WvG is the vertical width of the opening corresponding to the green sub-pixel, and the number of formations of the lens corresponding to the green sub-pixel along the vertical direction is defined as the second vertical arrangement number.
  • the ⁇ LvG has a vertical width of the bottom surface of the lens formed corresponding to the green sub-pixels, and the number of second vertical arrangements is 2 or more.
  • the total vertical width of the bottom surface of each of the lenses formed in a vertically aligned state corresponding to the green sub-pixel is shown.
  • the WvB is the vertical width of the opening corresponding to the blue sub-pixel, and the number of formations of the lens corresponding to the blue sub-pixel along the vertical direction is defined as the third vertical arrangement number.
  • the ⁇ LvB has a vertical width of the bottom surface of the lens formed corresponding to the blue sub-pixel, and the third vertical arrangement number is 2 or more.
  • the total of the vertical widths of the bottom surfaces of the lenses formed in a vertically aligned state corresponding to the blue sub-pixels is shown.
  • LB indicates the horizontal width of the bottom surface of the lens formed corresponding to the red sub-pixel.
  • LG indicates the horizontal width of the bottom surface of the lens formed corresponding to the green sub-pixel.
  • LB indicates the horizontal width of the bottom surface of the lens formed corresponding to the blue sub-pixel.
  • LvB indicates the vertical width of the bottom surface of the lens formed corresponding to the red sub-pixel.
  • LvG indicates the vertical width of the bottom surface of the lens formed corresponding to the green sub-pixel.
  • LvB indicates the vertical width of the bottom surface of the lens formed corresponding to the blue sub-pixel.
  • the number of the first horizontal arrangement, the number of the second horizontal arrangement, and the number of the third horizontal arrangement are 3 or less.
  • the display device according to any one of (1) to (4) above. The number of the first vertical arrangement, the number of the second vertical arrangement, and the number of the third vertical arrangement are 3 or less.
  • the display device according to (2) or (4) above. The separation distance between the surface of the first electrode and the bottom surface of the lens corresponding to each of the sub-pixels is 0.5 ⁇ m or more and 5.0 ⁇ m or less.
  • (8) Equipped with a color filter The color filter is provided at a position closer to the first electrode than the lens.
  • (9) Equipped with a color filter The color filter is provided at a position farther from the first electrode than the lens.
  • the display device according to any one of (1) to (8) above. (10) Equipped with multiple color filters The color filter is provided at both a position farther and a position closer to the first electrode than the lens.
  • the display device according to any one of (1) to (9) above. (11) A red filter, a green filter, and a blue filter are provided as color filters corresponding to the sub-pixels corresponding to each color type.
  • the horizontal width of the blue filter is narrower than at least one of the horizontal width of the red filter and the horizontal width of the green filter.
  • a plurality of different color types are provided as color filters corresponding to the sub-pixels corresponding to each color type.
  • a black matrix is provided between or at the boundaries of adjacent filters of different color types.
  • the display device according to any one of (1) to (11) above.
  • the lens formed corresponding to the blue sub-pixel is at least the lens formed corresponding to the red sub-pixel or the lens formed corresponding to the green sub-pixel. Greater refractive power than one, The display device according to any one of (1) to (12) above.
  • a wall surface is formed around a lens formed at least one corresponding to each of the sub-pixels and a light emitting region of each of the light emitting elements corresponding to each of the sub-pixels, and in the thickness direction of the light emitting element. With an extended reflective wall, the following equations 31 and 32 are satisfied. Display device.
  • the WrR is the horizontal width of the tip of the wall surface corresponding to the red sub-pixel, and is in the horizontal direction of the lens corresponding to the red sub-pixel.
  • the ⁇ LR is the horizontal direction of the bottom surface of the lens formed corresponding to the red sub-pixel if the first horizontal arrangement number is 1.
  • the width, if the first horizontal arrangement number is 2 or more, indicates the total horizontal width of each bottom surface of the lenses formed in a state of being arranged horizontally corresponding to the red sub-pixels.
  • the WrG is the horizontal width of the tip of the wall surface corresponding to the green sub-pixel, and the number of formations of the lens corresponding to the green sub-pixel along the horizontal direction is defined as the second horizontal arrangement number.
  • the number of front second horizontal arrangements is 1, the width of the bottom surface of the lens formed corresponding to the green sub-pixels and the number of second horizontal arrangements are 2 or more. If, then the sum of the horizontal widths of the bottom surfaces of the lenses formed in a horizontally aligned state corresponding to the green sub-pixels is shown.
  • the WrB is the horizontal width of the tip of the wall surface corresponding to the blue sub-pixel, and the number of formations of the lens corresponding to the blue sub-pixel along the horizontal direction is defined as the third horizontal arrangement number. If the third horizontal arrangement number is 1, the ⁇ LB has a horizontal width of the bottom surface of the lens formed corresponding to the blue sub-pixel, and the third horizontal arrangement number is 2 or more. If, the total horizontal width of each bottom surface of the lenses formed in a state of being arranged horizontally corresponding to the blue sub-pixels is shown.
  • a reflector plate formed at a predetermined position on the formation surface side of the first electrode of the light emitting element corresponding to each of the sub-pixels is provided. The following formulas 33 and 34 are satisfied. Display device.
  • the WbR is the horizontal width of the reflector corresponding to the red sub-pixel, and is along the horizontal direction of the lens corresponding to the red sub-pixel.
  • the ⁇ LR is the horizontal width of the bottom surface of the lens formed corresponding to the red sub-pixel if the first horizontal arrangement number is 1.
  • the number of the first horizontal arrangements is 2 or more, the total horizontal width of each bottom surface of the lenses formed in a state of being arranged horizontally corresponding to the red sub-pixels is shown.
  • the WbG is the horizontal width of the reflector corresponding to the green sub-pixel, and the number of formations of the lens corresponding to the green sub-pixel along the horizontal direction is defined as the second horizontal arrangement number.
  • the ⁇ LG has a horizontal width of the bottom surface of the lens formed corresponding to the green sub-pixels, and the number of second horizontal arrangements is 2 or more.
  • the total horizontal width of the bottom surface of each of the lenses formed in a horizontally aligned state corresponding to the green sub-pixel is shown.
  • the WbB is the horizontal width of the reflector corresponding to the blue sub-pixel, and the number of formations of the lens corresponding to the blue sub-pixel along the horizontal direction is defined as the third horizontal arrangement number.
  • the ⁇ LB has a horizontal width of the bottom surface of the lens formed corresponding to the blue sub-pixel, and the third horizontal arrangement number is 2 or more.
  • the sum of the horizontal widths of the bottom surfaces of the lenses formed in a horizontally aligned state corresponding to the blue sub-pixels is shown.
  • the separation distance between the surface of the reflector and the bottom surface of the lens corresponding to each of the sub-pixels is 0.5 ⁇ m or more and 5.0 ⁇ m or less.
  • Display device 11
  • Substrate 13A 1st electrode 13B
  • Organic compound layer 13C 2nd electrode
  • Insulation layer 14A Opening 15
  • Protective layer 17
  • Color filter 18
  • Black matrix layer 21
  • Reflective wall 22
  • Wall surface 23
  • Reflector 310
  • Digital still camera (electronic equipment)
  • Head-mounted display (electronic device)
  • Television equipment (electronic equipment)

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

Provided is a display device which is capable of suppressing color mixing of light, and which has an excellent light extraction efficiency. This display device is provided with: a plurality of sub-pixels which form pixel units and which correspond at least to red, green, and blue color types; a plurality of light emitting elements which are formed corresponding to each sub-pixel, and which have a structure in which a first electrode and a second electrode are stacked sandwiching an organic compound layer; and at least one lens formed to correspond to each sub-pixel. Each light emitting element is provided with an insulating layer which covers a peripheral edge portion of the first electrode, and in which an opening portion is formed on the first electrode to correspond to each sub-pixel, wherein formula 1 and formula 2 are satisfied. (Formula 1): ΣLR/WR<ΣLB/WB (Formula 2): ΣLG/WG<ΣLB/WB (Where, in formula 1 and formula 2, WR, WG, and WB are respectively the width in the horizontal direction of the opening portions corresponding to the red, green, and blue sub-pixels. ΣLR represents the width in the horizontal direction of the bottom surface of the lens formed to correspond to the red sub-pixel if a first horizontal arrangement number is 1, and represents the sum of the widths in the horizontal direction of the bottom surfaces of each lens formed side by side in the horizontal direction to correspond to the red sub-pixels if the first horizontal arrangement number is 2 or more. ΣLG represents the width in the horizontal direction of the bottom surface of the lens formed to correspond to the green sub-pixel if a second horizontal arrangement number is 1, and represents the sum of the widths in the horizontal direction of the bottom surfaces of each lens formed side by side in the horizontal direction to correspond to the green sub-pixels if the second horizontal arrangement number is 2 or more. ΣLB represents the width in the horizontal direction of the bottom surface of the lens formed to correspond to the blue sub-pixel if a third horizontal arrangement number is 1, and represents the sum of the widths in the horizontal direction of the bottom surfaces of each lens formed side by side in the horizontal direction to correspond to the blue sub-pixels if the third horizontal arrangement number is 2 or more.)

Description

表示装置及び電子機器Display devices and electronic devices
 本開示は、表示装置及び電子機器に関する。本開示は、特に、有機化合物層を有する複数の発光素子と複数のレンズとを備えた表示装置、及び表示装置を備えた電子機器に関する。 This disclosure relates to display devices and electronic devices. The present disclosure particularly relates to a display device including a plurality of light emitting elements having an organic compound layer and a plurality of lenses, and an electronic device including the display device.
 有機化合物層を有する複数の発光素子と複数のレンズとを備えた表示装置として、色種を異にする副画素間の特性の均一性を向上する技術が開示されている。例えば、特許文献1には、表示装置として、赤色、青色および緑色の3色に対応した副画素として赤色、青色および緑色のそれぞれに対応する3色の矩形状画素領域を有するものが開示されている。特許文献1の表示装置では、1の矩形状画素領域における輝度よりも低い輝度を有する他の矩形状画素領域の発光面上に、前記他の矩形状画素領域における短辺の長さに対して2倍以上4倍以下のレンズ径からなる半球状レンズが設けられている。 As a display device including a plurality of light emitting elements having an organic compound layer and a plurality of lenses, a technique for improving the uniformity of characteristics between sub-pixels having different color types is disclosed. For example, Patent Document 1 discloses a display device having a rectangular pixel region of three colors corresponding to each of red, blue, and green as sub-pixels corresponding to three colors of red, blue, and green. There is. In the display device of Patent Document 1, on the light emitting surface of another rectangular pixel region having a luminance lower than the luminance in the rectangular pixel region of 1, with respect to the length of the short side in the other rectangular pixel region. A hemispherical lens having a lens diameter of 2 times or more and 4 times or less is provided.
特開2011-54488号公報Japanese Unexamined Patent Publication No. 2011-54488
 色種を異にする副画素間の特性の均一性については、特許文献1に示されるような輝度だけではなく、色度ずれを抑制すること、すなわち視野角特性を向上させること、が要請されている。 Regarding the uniformity of the characteristics between the sub-pixels having different color types, it is required to suppress not only the luminance as shown in Patent Document 1 but also the chromaticity deviation, that is, to improve the viewing angle characteristics. ing.
 本開示は、上述した点に鑑みてなされたものであり、視野角特性に優れた表示装置の提供を目的の一つとする。 The present disclosure has been made in view of the above points, and one of the purposes of the present disclosure is to provide a display device having excellent viewing angle characteristics.
 本開示は、例えば、(1)画素の単位を形成し少なくとも赤色、緑色と青色の色種に対応した複数の副画素と、
 それぞれの前記副画素に対応して形成され、且つ有機化合物層を挟んで第1電極と第2電極とを積層した構造を有する複数の発光素子と、
 それぞれの前記副画素に対応して少なくとも1つ形成されるレンズと、を備え、
 それぞれの前記発光素子には、前記第1電極の周縁部を覆い且つ前記第1電極上にそれぞれの前記副画素に対応した開口部を形成している絶縁層が設けられており、
 下記の数式1及び数式2が満たされている、
 表示装置である。
The present disclosure relates to, for example, (1) a plurality of sub-pixels forming a pixel unit and corresponding to at least red, green, and blue color types.
A plurality of light emitting elements formed corresponding to each of the sub-pixels and having a structure in which a first electrode and a second electrode are laminated with an organic compound layer interposed therebetween.
A lens formed at least one corresponding to each of the sub-pixels is provided.
Each of the light emitting elements is provided with an insulating layer that covers the peripheral edge of the first electrode and forms an opening corresponding to each of the sub-pixels on the first electrode.
The following formulas 1 and 2 are satisfied.
It is a display device.
ΣLR/WR<ΣLB/WB   ・・・(数式1) ΣLR / WR <ΣLB / WB ... (Formula 1)
ΣLG/WG<ΣLB/WB   ・・・(数式2) ΣLG / WG <ΣLB / WB ... (Formula 2)
 ただし、前記数式1及び前記数式2において、前記WRは、赤色の前記副画素に対応した前記開口部の水平方向の幅であり、赤色の前記副画素に対応した前記レンズの水平方向に沿った形成数を第1水平配置数とした場合に、前記ΣLRは、前記第1水平配置数が1であれば赤色の前記副画素に対応して形成された前記レンズの底面の水平方向の幅、前記第1水平配置数が2以上であれば赤色の前記副画素に対応して水平方向に並んだ状態で形成された前記レンズのそれぞれの底面の水平方向の幅の合計を示し、
 前記WGは、緑色の前記副画素に対応した前記開口部の水平方向の幅であり、緑色の前記副画素に対応した前記レンズの水平方向に沿った形成数を第2水平配置数とした場合に、前記ΣLGは、前第2水平配置数が1であれば緑色の前記副画素に対応して形成された前記レンズの底面の水平方向の幅、前記第2水平配置数が2以上であれば緑色の前記副画素に対応して水平方向に並んだ状態で形成された前記レンズのそれぞれの底面の水平方向の幅の合計を示し、
 前記WBは、青色の前記副画素に対応した前記開口部の水平方向の幅であり、青色の前記副画素に対応した前記レンズの水平方向に沿った形成数を第3水平配置数とした場合に、前記ΣLBは、前記第3水平配置数が1であれば青色の前記副画素に対応して形成された前記レンズの底面の水平方向の幅、前記第3水平配置数が2以上であれば青色の前記副画素に対応して水平方向に並んだ状態で形成された前記レンズのそれぞれの底面の水平方向の幅の合計を示す。
However, in the formula 1 and the formula 2, the WR is the horizontal width of the opening corresponding to the red sub-pixel, and is along the horizontal direction of the lens corresponding to the red sub-pixel. When the number of formations is the first horizontal arrangement number, the ΣLR is the horizontal width of the bottom surface of the lens formed corresponding to the red sub-pixel if the first horizontal arrangement number is 1. When the number of the first horizontal arrangements is 2 or more, the total horizontal width of each bottom surface of the lenses formed in a state of being arranged horizontally corresponding to the red sub-pixels is shown.
The WG is the horizontal width of the opening corresponding to the green sub-pixel, and the number of formations of the lens corresponding to the green sub-pixel along the horizontal direction is defined as the second horizontal arrangement number. In addition, if the number of front second horizontal arrangements is 1, the ΣLG has a horizontal width of the bottom surface of the lens formed corresponding to the green sub-pixels, and the number of second horizontal arrangements is 2 or more. For example, the total horizontal width of the bottom surface of each of the lenses formed in a horizontally aligned state corresponding to the green sub-pixel is shown.
The WB is the horizontal width of the opening corresponding to the blue sub-pixel, and the number of formations of the lens corresponding to the blue sub-pixel along the horizontal direction is defined as the third horizontal arrangement number. In addition, if the third horizontal arrangement number is 1, the ΣLB has a horizontal width of the bottom surface of the lens formed corresponding to the blue sub-pixel, and the third horizontal arrangement number is 2 or more. For example, the sum of the horizontal widths of the bottom surfaces of the lenses formed in a horizontally aligned state corresponding to the blue sub-pixels is shown.
 本開示は、(2)少なくとも赤色、緑色と青色の色種に対応した複数の副画素と、
 それぞれの前記副画素に対応して形成され、且つ有機化合物層を挟んで第1電極と第2電極とを積層した構造を有する複数の発光素子と、
 それぞれの前記副画素に対応して少なくとも1つ形成されるレンズと
 それぞれの前記副画素に対応してそれぞれの前記発光素子の周囲に壁面を形成し、且つ前記第1電極から前記第2電極に向かう方向に延び出た反射壁と、を備え
 下記の数式3及び数式4が満たされている、
 表示装置であってもよい。
The present disclosure comprises (2) a plurality of sub-pixels corresponding to at least red, green and blue color types.
A plurality of light emitting elements formed corresponding to each of the sub-pixels and having a structure in which a first electrode and a second electrode are laminated with an organic compound layer interposed therebetween.
A wall surface is formed around the lens formed at least one corresponding to each of the sub-pixels and each of the light emitting elements corresponding to each of the sub-pixels, and from the first electrode to the second electrode. It is provided with a reflective wall extending in the direction toward which the following equations 3 and 4 are satisfied.
It may be a display device.
ΣLR/WrR<ΣLB/WrB   ・・・(数式3) ΣLR / WrR <ΣLB / WrB ... (Formula 3)
ΣLG/WrG<ΣLB/WrB   ・・・(数式4) ΣLG / WrG <ΣLB / WrB ... (Formula 4)
 ただし、前記数式3及び前記数式4において、前記WrRは、赤色の前記副画素に対応した前記壁面の先端部の水平方向の幅であり、赤色の前記副画素に対応した前記レンズの水平方向に沿った形成数を第1水平配置数とした場合に、前記ΣLRは、前記第1水平配置数が1であれば赤色の前記副画素に対応して形成された前記レンズの底面の水平方向の幅、前記第1水平配置数が2以上であれば赤色の前記副画素に対応して水平方向に並んだ状態で形成された前記レンズのそれぞれの底面の水平方向の幅の合計を示し、
 前記WrGは、緑色の前記副画素に対応した前記壁面の先端部の水平方向の幅であり、緑色の前記副画素に対応した前記レンズの水平方向に沿った形成数を第2水平配置数とした場合に、前記ΣLGは、前第2水平配置数が1であれば緑色の前記副画素に対応して形成された前記レンズの底面の水平方向の幅、前記第2水平配置数が2以上であれば緑色の前記副画素に対応して水平方向に並んだ状態で形成された前記レンズのそれぞれの底面の水平方向の幅の合計を示し、
 前記WrBは、青色の前記副画素に対応した前記壁面の先端部の水平方向の幅であり、青色の前記副画素に対応した前記レンズの水平方向に沿った形成数を第3水平配置数とした場合に、前記ΣLBは、前記第3水平配置数が1であれば青色の前記副画素に対応して形成された前記レンズの底面の水平方向の幅、前記第3水平配置数が2以上であれば青色の前記副画素に対応して水平方向に並んだ状態で形成された前記レンズのそれぞれの底面の水平方向の幅の合計を示す。
However, in the formula 3 and the formula 4, the WrR is the horizontal width of the tip of the wall surface corresponding to the red sub-pixel, and is in the horizontal direction of the lens corresponding to the red sub-pixel. When the number of formations along the line is the first horizontal arrangement number, the ΣLR is the horizontal direction of the bottom surface of the lens formed corresponding to the red sub-pixel if the first horizontal arrangement number is 1. The width, if the first horizontal arrangement number is 2 or more, indicates the total horizontal width of each bottom surface of the lenses formed in a state of being arranged horizontally corresponding to the red sub-pixels.
The WrG is the horizontal width of the tip of the wall surface corresponding to the green sub-pixel, and the number of formations of the lens corresponding to the green sub-pixel along the horizontal direction is defined as the second horizontal arrangement number. In this case, if the number of front second horizontal arrangements is 1, the width of the bottom surface of the lens formed corresponding to the green sub-pixels and the number of second horizontal arrangements are 2 or more. If, then the sum of the horizontal widths of the bottom surfaces of the lenses formed in a horizontally aligned state corresponding to the green sub-pixels is shown.
The WrB is the horizontal width of the tip of the wall surface corresponding to the blue sub-pixel, and the number of formations of the lens corresponding to the blue sub-pixel along the horizontal direction is defined as the third horizontal arrangement number. If the third horizontal arrangement number is 1, the ΣLB has a horizontal width of the bottom surface of the lens formed corresponding to the blue sub-pixel, and the third horizontal arrangement number is 2 or more. If, the total horizontal width of each bottom surface of the lenses formed in a state of being arranged horizontally corresponding to the blue sub-pixels is shown.
 本開示は、(3)少なくとも赤色、緑色と青色の色種に対応した複数の副画素と、
 それぞれの前記副画素に対応して形成され、且つ有機化合物層を挟んで第1電極と第2電極とを積層した構造を有する複数の発光素子と、
 それぞれの前記副画素に対応して少なくとも1つ形成されるレンズと、
 それぞれの前記副画素に対応して前記発光素子の前記第1電極の形成面側の所定位置に形成される反射板と、を備え、
 下記の数式5及び数式6が満たされている、
 表示装置であってもよい。
The present disclosure comprises (3) a plurality of sub-pixels corresponding to at least red, green and blue color types.
A plurality of light emitting elements formed corresponding to each of the sub-pixels and having a structure in which a first electrode and a second electrode are laminated with an organic compound layer interposed therebetween.
A lens formed at least one corresponding to each of the sub-pixels,
A reflector plate formed at a predetermined position on the formation surface side of the first electrode of the light emitting element corresponding to each of the sub-pixels is provided.
The following formulas 5 and 6 are satisfied.
It may be a display device.
ΣLR/WbR<ΣLB/WbB   ・・・(数式5) ΣLR / WbR <ΣLB / WbB ... (Formula 5)
ΣLG/WbG<ΣLB/WbB   ・・・(数式6) ΣLG / WbG <ΣLB / WbB ... (Formula 6)
 ただし、前記数式5及び前記数式6において、前記WbRは、赤色の前記副画素に対応した前記反射板の水平方向の幅であり、赤色の前記副画素に対応した前記レンズの水平方向に沿った形成数を第1水平配置数とした場合に、前記ΣLRは、前記第1水平配置数が1であれば赤色の前記副画素に対応して形成された前記レンズの底面の水平方向の幅、前記第1水平配置数が2以上であれば赤色の前記副画素に対応して水平方向に並んだ状態で形成された前記レンズのそれぞれの底面の水平方向の幅の合計を示し、
 前記WbGは、緑色の前記副画素に対応した前記反射板の水平方向の幅であり、緑色の前記副画素に対応した前記レンズの水平方向に沿った形成数を第2水平配置数とした場合に、前記ΣLGは、前第2水平配置数が1であれば緑色の前記副画素に対応して形成された前記レンズの底面の水平方向の幅、前記第2水平配置数が2以上であれば緑色の前記副画素に対応して水平方向に並んだ状態で形成された前記レンズのそれぞれの底面の水平方向の幅の合計を示し、
 前記WbBは、青色の前記副画素に対応した前記反射板の水平方向の幅であり、青色の前記副画素に対応した前記レンズの水平方向に沿った形成数を第3水平配置数とした場合に、前記ΣLBは、前記第3水平配置数が1であれば青色の前記副画素に対応して形成された前記レンズの底面の水平方向の幅、前記第3水平配置数が2以上であれば青色の前記副画素に対応して水平方向に並んだ状態で形成された前記レンズのそれぞれの底面の水平方向の幅の合計を示す。
However, in the formula 5 and the formula 6, the WbR is the horizontal width of the reflector corresponding to the red sub-pixel, and is along the horizontal direction of the lens corresponding to the red sub-pixel. When the number of formations is the first horizontal arrangement number, the ΣLR is the horizontal width of the bottom surface of the lens formed corresponding to the red sub-pixel if the first horizontal arrangement number is 1. When the number of the first horizontal arrangements is 2 or more, the total horizontal width of each bottom surface of the lenses formed in a state of being arranged horizontally corresponding to the red sub-pixels is shown.
The WbG is the horizontal width of the reflector corresponding to the green sub-pixel, and the number of formations of the lens corresponding to the green sub-pixel along the horizontal direction is defined as the second horizontal arrangement number. In addition, if the number of front second horizontal arrangements is 1, the ΣLG has a horizontal width of the bottom surface of the lens formed corresponding to the green sub-pixels, and the number of second horizontal arrangements is 2 or more. For example, the total horizontal width of the bottom surface of each of the lenses formed in a horizontally aligned state corresponding to the green sub-pixel is shown.
The WbB is the horizontal width of the reflector corresponding to the blue sub-pixel, and the number of formations of the lens corresponding to the blue sub-pixel along the horizontal direction is defined as the third horizontal arrangement number. In addition, if the third horizontal arrangement number is 1, the ΣLB has a horizontal width of the bottom surface of the lens formed corresponding to the blue sub-pixel, and the third horizontal arrangement number is 2 or more. For example, the sum of the horizontal widths of the bottom surfaces of the lenses formed in a horizontally aligned state corresponding to the blue sub-pixels is shown.
 また、本開示は、例えば、上記(1)記載の表示装置を備えた電子機器であってもよい。 Further, the present disclosure may be, for example, an electronic device provided with the display device described in (1) above.
図1は、第1の実施形態にかかる表示装置の一実施例を説明するための断面図である。FIG. 1 is a cross-sectional view for explaining an embodiment of a display device according to a first embodiment. 図2Aは、第1の実施形態にかかる表示装置の表示領域を示す平面図である。図2Bは、副画素のレイアウトの一実施例を示す平面図である。FIG. 2A is a plan view showing a display area of the display device according to the first embodiment. FIG. 2B is a plan view showing an embodiment of the layout of the sub-pixels. 図3A、図3B、図3Cは、第1の実施形態にかかる表示装置の製造方法の一実施例を示す断面図である。3A, 3B, and 3C are cross-sectional views showing an embodiment of a method for manufacturing a display device according to a first embodiment. 図4は、第1の実施形態の他の一実施例にかかる表示装置を説明するための断面図である。FIG. 4 is a cross-sectional view for explaining a display device according to another embodiment of the first embodiment. 図5A、図5Bは、第1の実施形態の変形例にかかる表示装置の製造方法を説明するための平面図である。5A and 5B are plan views for explaining a method of manufacturing a display device according to a modification of the first embodiment. 図6A、図6Bは、副画素のレイアウトの一実施例を示す平面図である。6A and 6B are plan views showing an embodiment of the layout of the sub-pixels. 図7A、図7B、図7Cは、副画素のレイアウトの一実施例を示す図である。7A, 7B, and 7C are diagrams showing an embodiment of the layout of the sub-pixels. 図8A、図8Bは、第1の実施形態の変形例にかかる表示装置を説明するための断面図である。8A and 8B are cross-sectional views for explaining a display device according to a modification of the first embodiment. 図9は、第2の実施形態にかかる表示装置の一実施例を説明するための断面図である。FIG. 9 is a cross-sectional view for explaining an embodiment of the display device according to the second embodiment. 図10は、第3の実施形態にかかる表示装置の一実施例を説明するための断面図である。FIG. 10 is a cross-sectional view for explaining an embodiment of the display device according to the third embodiment. 図11は、第4の実施形態の変形例にかかる表示装置を説明するための断面図である。FIG. 11 is a cross-sectional view for explaining a display device according to a modified example of the fourth embodiment. 図12は、第1の実施形態の変形例にかかる表示装置の製造方法を説明するための断面図である。FIG. 12 is a cross-sectional view for explaining a method of manufacturing a display device according to a modified example of the first embodiment. 図13は、第1の実施形態の変形例にかかる表示装置の製造方法を説明するための断面図である。FIG. 13 is a cross-sectional view for explaining a method of manufacturing a display device according to a modified example of the first embodiment. 図14は、第1の実施形態の変形例にかかる表示装置の製造方法を説明するための断面図である。FIG. 14 is a cross-sectional view for explaining a method of manufacturing a display device according to a modified example of the first embodiment. 図15A、図15Bは、第1のシミュレーション例を説明するための図である。15A and 15B are diagrams for explaining a first simulation example. 図16A、図16Bは、第2のシミュレーション例を説明するための図である。16A and 16B are diagrams for explaining a second simulation example. 図17は、第2のシミュレーション例を説明するための図である。FIG. 17 is a diagram for explaining a second simulation example. 図18A、図18Bは、表示装置を用いた電子機器の一実施例を説明するための図である。18A and 18B are diagrams for explaining an embodiment of an electronic device using a display device. 図19は、表示装置を用いた電子機器の一実施例を説明するための図である。FIG. 19 is a diagram for explaining an embodiment of an electronic device using a display device. 図20は、表示装置を用いた電子機器の一実施例を説明するための図である。FIG. 20 is a diagram for explaining an embodiment of an electronic device using a display device.
 以下、本開示にかかる一実施例等について図面を参照しながら説明する。なお、説明は以下の順序で行う。本明細書及び図面において、実質的に同一の機能構成を有する構成については、同一の符号を付することにより重複説明を省略する。 Hereinafter, an embodiment or the like according to the present disclosure will be described with reference to the drawings. The explanation will be given in the following order. In the present specification and the drawings, configurations having substantially the same functional configuration are designated by the same reference numerals, and duplicate description will be omitted.
 なお、説明は以下の順序で行うものとする。
1.第1の実施形態
2.第2の実施形態
3.第3の実施形態
4.第4の実施形態
5.シミュレーション(simulation)例
6.応用例(電子機器)
The explanations will be given in the following order.
1. 1. First embodiment 2. Second embodiment 3. Third embodiment 4. Fourth Embodiment 5. Simulation example 6. Application example (electronic device)
 以下の説明は本開示の好適な具体例であり、本開示の内容は、これらの実施の形態等に限定されるものではない。また、以下の説明において、説明の便宜を考慮して前後、左右、上下等の方向を示すが、本開示の内容はこれらの方向に限定されるものではない。図1、図2の例では、Z軸方向を厚み方向(上側が+Z方向、下側が-Z方向)、X軸方向を水平方向、Y軸方向を垂直方向とし、これに基づき説明を行う。また、厚み方向は上下方向と呼ばれることがある。これは、図3から図14についても同様である。図1等の各図に示す各層の大きさや厚み、各構成及び各領域の大きさや厚みの相対的な大小比率は便宜上の記載であり、実際の大小比率を限定するものではない。これらの方向に関する定めや大小比率については、図2から図14までの各図についても同様である。 The following description is a suitable specific example of the present disclosure, and the content of the present disclosure is not limited to these embodiments and the like. Further, in the following description, directions such as front-back, left-right, up-down, etc. are shown for convenience of explanation, but the content of the present disclosure is not limited to these directions. In the examples of FIGS. 1 and 2, the Z-axis direction is the thickness direction (the upper side is the + Z direction, the lower side is the −Z direction), the X-axis direction is the horizontal direction, and the Y-axis direction is the vertical direction. Further, the thickness direction is sometimes called the vertical direction. This also applies to FIGS. 3 to 14. The size and thickness of each layer shown in FIGS. 1 and the like, the relative size ratio of each configuration and the size and thickness of each region are described for convenience, and do not limit the actual size ratio. The rules regarding these directions and the magnitude ratio are the same for each of the figures shown in FIGS. 2 to 14.
[1 第1の実施形態]
[1-1 表示装置の構成]
 図1は、本開示の一実施形態に係る表示装置10の一構成例を示す断面図である。表示装置10は、基板11と、複数の発光素子13と、絶縁層14と、保護層15と、複数のカラーフィルタ17と、レンズ18とを備える。
[1 First Embodiment]
[1-1 Display device configuration]
FIG. 1 is a cross-sectional view showing a configuration example of a display device 10 according to an embodiment of the present disclosure. The display device 10 includes a substrate 11, a plurality of light emitting elements 13, an insulating layer 14, a protective layer 15, a plurality of color filters 17, and a lens 18.
 表示装置10は、トップエミッション方式の表示装置である。基板11が表示装置10の裏面側に位置し、基板11からレンズ18に向かう方向が表示装置10の表面側方向となっている。レンズ18の形成面側がトップ側を向き、基板11側がボトム側となる。トップ側とボトム側を結ぶ方向が表示装置10の厚み方向(上下方向)となる。以下の説明において、表示装置10を構成する各層において、表示装置10の表示面側となる面を第1の面(上面、表面)といい、表示装置10の裏面側となる面を第2の面(下面)という。 The display device 10 is a top emission type display device. The substrate 11 is located on the back surface side of the display device 10, and the direction from the substrate 11 to the lens 18 is the front surface side direction of the display device 10. The forming surface side of the lens 18 faces the top side, and the substrate 11 side faces the bottom side. The direction connecting the top side and the bottom side is the thickness direction (vertical direction) of the display device 10. In the following description, in each layer constituting the display device 10, the surface on the display surface side of the display device 10 is referred to as a first surface (upper surface, front surface), and the surface on the back surface side of the display device 10 is referred to as a second surface. It is called a surface (bottom surface).
 表示装置10としては、例えば、OLED(Organic Light Emitting Diode)であってもよい。表示装置10は、マイクロディスプレイであってもよく、具体的に、Micro-OLED(Micro-Organic Light Emitting Diode)またはMicro-LED(Micro-Light Emitting Diode)等の自発光素子をアレイ状に形成したマイクロディスプレイ等であってもよい。また、表示装置10は、後述するように各種の電子機器に用いられてもよい。表示装置10が用いられる電子機器としては、例えば、VR(Virtual Reality)用、MR(Mixed Reality)用もしくはAR(Augmented Reality)用の表示装置、電子ビューファインダ(Electronic View Finder:EVF)または小型プロジェクタ等が挙げられる。 The display device 10 may be, for example, an OLED (Organic Light Emitting Diode). The display device 10 may be a micro display, and specifically, a self-luminous element such as a Micro-OLED (Micro-Organic Light Emitting Diode) or a Micro-LED (Micro-Light Emitting Diode) is formed in an array. It may be a micro display or the like. Further, the display device 10 may be used in various electronic devices as described later. Examples of the electronic device in which the display device 10 is used include a display device for VR (Virtual Reality), MR (Mixed Reality), or AR (Augmented Reality), an electronic viewfinder (EVF), or a small projector. And so on.
(画素と副画素)
 表示装置10においては、図2Aに示すように、基板11上には表示領域110A(ハッチングを附して示した領域)および表示領域110Aの周縁に、周辺領域110B(符号110Aの領域とは異なるハッチングを附して示した領域)が設けられている。表示領域110A内には、複数の色種に対応する副画素100として、赤色、緑色及び青色の色種に対応する副画素(副画素100R、100G、100B)がマトリクス状に配置されている。副画素100Rは赤色を表示し、副画素100Gは緑色を表示し、副画素100Bは青色を表示する。図2Aは、第1の実施形態に係る表示装置10の一例を示す平面図である。なお、本明細書においては、副画素100R、100G、100Bを特に区別しない場合に、副画素100の語が用いられることがある。また、図2Aにおいて、破線XSで囲まれた領域は、1画素の領域を示し、図2Bでは、破線XSで囲まれた部分についての部分拡大図が示されている。
(Pixel and sub-pixel)
In the display device 10, as shown in FIG. 2A, the peripheral area 110B (different from the area of reference numeral 110A) is located on the periphery of the display area 110A (area shown with hatching) and the display area 110A on the substrate 11. Areas shown with hatching) are provided. In the display area 110A, sub-pixels (sub-pixels 100R, 100G, 100B) corresponding to red, green, and blue color types are arranged in a matrix as sub-pixels 100 corresponding to a plurality of color types. The sub-pixel 100R displays red, the sub-pixel 100G displays green, and the sub-pixel 100B displays blue. FIG. 2A is a plan view showing an example of the display device 10 according to the first embodiment. In this specification, the term sub-pixel 100 may be used when the sub-pixels 100R, 100G, and 100B are not particularly distinguished. Further, in FIG. 2A, the region surrounded by the broken line XS indicates a region of one pixel, and in FIG. 2B, a partially enlarged view of the portion surrounded by the broken line XS is shown.
 同色を表示する副画素100R、100G、100Bの組み合わせが、水平方向と垂直方向に二次元的に繰り返し配置されている。図1、図2A、図2Bの例では、3つの色種に対応する副画素100R、100G、100Bが、水平方向に並んでおり、それらの組み合わせが一つの画素(画素の単位)(ピクセル)を形成している(図2B)。図1の例では、副画素100R、100G、100Bの組み合わせが、X軸方向、Y軸方向に配列されている。水平方向は、使用者が表示領域110Aに表示される画像を見る場合に左右方向となる方向に対応し、垂直方向は、表示領域110Aにおいて水平方向に直交する方向に対応している。 The combinations of sub-pixels 100R, 100G, and 100B that display the same color are repeatedly arranged two-dimensionally in the horizontal and vertical directions. In the examples of FIGS. 1, 2A, and 2B, the sub-pixels 100R, 100G, and 100B corresponding to the three color types are arranged in the horizontal direction, and the combination thereof is one pixel (pixel unit) (pixel). (Fig. 2B). In the example of FIG. 1, the combinations of the sub-pixels 100R, 100G, and 100B are arranged in the X-axis direction and the Y-axis direction. The horizontal direction corresponds to a direction that is left-right when the user views an image displayed in the display area 110A, and the vertical direction corresponds to a direction that is orthogonal to the horizontal direction in the display area 110A.
(基板11)
 基板11は、複数の発光素子13を駆動する各種回路を設けている。すなわち、基板11の第1の面上には、複数の発光素子13の駆動を制御するサンプリング用トランジスタと駆動用トランジスタを含む駆動回路および複数の発光素子13に電力を供給する電源回路(いずれも図示せず)が設けられている。
(Board 11)
The substrate 11 is provided with various circuits for driving a plurality of light emitting elements 13. That is, on the first surface of the substrate 11, a drive circuit including a sampling transistor for controlling the drive of the plurality of light emitting elements 13 and a drive transistor, and a power supply circuit for supplying power to the plurality of light emitting elements 13 (all). (Not shown) is provided.
 基板11は、例えば、水分および酸素の透過性が低いガラスまたは樹脂で構成されていてもよく、トランジスタ等の形成が容易な半導体で形成されてもよい。具体的には、基板11は、ガラス基板、半導体基板または樹脂基板等であってもよい。ガラス基板は、例えば、高歪点ガラス、ソーダガラス、ホウケイ酸ガラス、フォルステライト、鉛ガラスまたは石英ガラス等を含む。半導体基板は、例えば、アモルファスシリコン、多結晶シリコンまたは単結晶シリコン等を含む。樹脂基板は、例えば、ポリメチルメタクリレート、ポリビニルアルコール、ポリビニルフェノール、ポリエーテルスルホン、ポリイミド、ポリカーボネート、ポリエチレンテレフタラートおよびポリエチレンナフタレート等からなる群より選ばれる少なくとも1種を含む。 The substrate 11 may be made of, for example, glass or resin having low permeability of water and oxygen, or may be made of a semiconductor such as a transistor which can be easily formed. Specifically, the substrate 11 may be a glass substrate, a semiconductor substrate, a resin substrate, or the like. The glass substrate includes, for example, high strain point glass, soda glass, borosilicate glass, forsterite, lead glass, quartz glass and the like. The semiconductor substrate includes, for example, amorphous silicon, polycrystalline silicon, single crystal silicon, and the like. The resin substrate contains, for example, at least one selected from the group consisting of polymethylmethacrylate, polyvinyl alcohol, polyvinylphenol, polyether sulfone, polyimide, polycarbonate, polyethylene terephthalate, polyethylene naphthalate and the like.
 基板11の第1の面上には、一般に、上記した駆動回路および電源回路等を覆う図示しない絶縁膜が形成されており、絶縁膜を介して、発光素子13を構成する第1電極13Aと駆動回路とを接続するための複数のコンタクトプラグが設けられる。 Generally, an insulating film (not shown) that covers the above-mentioned drive circuit, power supply circuit, and the like is formed on the first surface of the substrate 11, and the first electrode 13A constituting the light emitting element 13 is formed via the insulating film. A plurality of contact plugs for connecting to the drive circuit are provided.
(発光素子13)
 複数の発光素子13は、基板11の第1の面側に設けられている。複数の発光素子13は、例えば、マトリクス状等の所定の配置パターンで形成されている。図1の例では、発光素子13は、白色光を発光可能に構成されている。発光素子13は、例えば、白色OLEDまたは白色Micro-OLED(MOLED)である。本実施形態では、表示装置10におけるカラー化の方式としては、発光素子13とカラーフィルタ17とを用いる方式が用いられる。但し、カラー化の方式はこれに限定されるものではなく、RGBの塗り分け方式等を用いてもよい。また、カラーフィルタ17に代えて、単色のフィルタを用いるようにしてよい。なお、発光素子13について、発光素子13がRGBの塗り分け方式で形成されている場合、有機化合物層13Bは、副画素100の色種別に設けられる。このような表示装置10においては、副画素100の色種に応じて発光素子13から生じる光自体を赤色、緑色および青色の色種とすることができるため、カラーフィルタ17が省略されてもよい。
(Light emitting element 13)
The plurality of light emitting elements 13 are provided on the first surface side of the substrate 11. The plurality of light emitting elements 13 are formed in a predetermined arrangement pattern such as a matrix. In the example of FIG. 1, the light emitting element 13 is configured to be capable of emitting white light. The light emitting element 13 is, for example, a white OLED or a white Micro-OLED (MOLED). In the present embodiment, as the colorization method in the display device 10, a method using a light emitting element 13 and a color filter 17 is used. However, the colorization method is not limited to this, and an RGB coloring method or the like may be used. Further, instead of the color filter 17, a monochromatic filter may be used. Regarding the light emitting element 13, when the light emitting element 13 is formed by the RGB painting method, the organic compound layer 13B is provided for each color type of the sub-pixel 100. In such a display device 10, the light itself generated from the light emitting element 13 can be set to red, green, and blue color types according to the color type of the sub-pixel 100, so that the color filter 17 may be omitted. ..
 発光素子13は、第1電極13Aと、有機化合物層13Bと、第2電極13Cとを備える。第1電極13A、有機化合物層13Bおよび第2電極13Cは、基板11側から後述するレンズ18に向かって、この順序で積層されている。 The light emitting element 13 includes a first electrode 13A, an organic compound layer 13B, and a second electrode 13C. The first electrode 13A, the organic compound layer 13B, and the second electrode 13C are laminated in this order from the substrate 11 side toward the lens 18 described later.
(第1電極13A)
 第1電極13Aは、基板11の第1の面側の絶縁膜上に設けられる。第1電極13Aは、後述する絶縁層14で副画素100毎に電気的に分離されている。第1電極13Aは、アノードである。
(First electrode 13A)
The first electrode 13A is provided on the insulating film on the first surface side of the substrate 11. The first electrode 13A is electrically separated for each sub-pixel 100 by an insulating layer 14 described later. The first electrode 13A is an anode.
 第1電極13Aは、金属層および金属酸化物層のうちの少なくとも一層により構成されていることが好ましく、より具体的には、金属層もしくは金属酸化物層の単層膜、または金属層と金属酸化物層の積層膜により構成されていることが好ましい。第1電極13Aが積層膜により構成されている場合、金属酸化物層が有機化合物層13B側に設けられていてもよいし、金属層が有機化合物層13B側に設けられていてもよいが、高い仕事関数を有する層を有機化合物層13Bに隣接させる観点からすると、金属酸化物層が有機化合物層13B側に設けられていることが好ましい。 The first electrode 13A is preferably composed of at least one of a metal layer and a metal oxide layer, and more specifically, a single-layer film of a metal layer or a metal oxide layer, or a metal layer and a metal. It is preferably composed of a laminated film of an oxide layer. When the first electrode 13A is composed of a laminated film, the metal oxide layer may be provided on the organic compound layer 13B side, or the metal layer may be provided on the organic compound layer 13B side. From the viewpoint of adjoining the layer having a high work function to the organic compound layer 13B, it is preferable that the metal oxide layer is provided on the organic compound layer 13B side.
 金属層は、例えば、クロム(Cr)、金(Au)、白金(Pt)、ニッケル(Ni)、銅(Cu)、モリブデン(Mo)、チタン(Ti)、タンタル(Ta)、アルミニウム(Al)、マグネシウム(Mg)、鉄(Fe)、タングステン(W)および銀(Ag)からなる群より選ばれる少なくとも1種の金属元素を含む。金属層は、上記少なくとも1種の金属元素を合金の構成元素として含んでいてもよい。合金の具体例としては、アルミニウム合金または銀合金が挙げられる。アルミニウム合金の具体例としては、例えば、AlNdまたはAlCuが挙げられる。 The metal layer is, for example, chromium (Cr), gold (Au), platinum (Pt), nickel (Ni), copper (Cu), molybdenum (Mo), titanium (Ti), tantalum (Ta), aluminum (Al). , Magnesium (Mg), Iron (Fe), Tungsten (W) and Silver (Ag). The metal layer may contain at least one of the above metal elements as a constituent element of the alloy. Specific examples of alloys include aluminum alloys and silver alloys. Specific examples of the aluminum alloy include, for example, AlNd or AlCu.
 金属酸化物層は、例えば、インジウム酸化物と錫酸化物の混合体(ITO)、インジウム酸化物と亜鉛酸化物の混合体(IZO)および酸化チタン(TiO)のうちの少なくとも1種を含む。 The metal oxide layer contains, for example, at least one of a mixture of indium oxide and tin oxide (ITO), a mixture of indium oxide and zinc oxide (IZO), and titanium oxide (TIO).
(第2電極13C)
 第2電極13Cは、第1電極13Aと対向して設けられている。図1の例では、第2電極13Cは、すべての副画素100に共通する電極として設けられている。第2電極13Cは、カソードである。第2電極13Cは、有機化合物層13Bで発生した光に対して透過性を有する透明電極であることが好ましい。ここで、透明電極には、半透過性反射層も含まれるものとする。第2電極13Cは、できるだけ透過性が高く、かつ仕事関数が小さい材料によって構成されることが、発光効率を高める上で好ましい。
(Second electrode 13C)
The second electrode 13C is provided so as to face the first electrode 13A. In the example of FIG. 1, the second electrode 13C is provided as an electrode common to all the sub-pixels 100. The second electrode 13C is a cathode. The second electrode 13C is preferably a transparent electrode having transparency to the light generated in the organic compound layer 13B. Here, it is assumed that the transparent electrode also includes a translucent reflective layer. It is preferable that the second electrode 13C is made of a material having as high a transparency as possible and a small work function in order to increase the luminous efficiency.
 第2電極13Cは、金属層および金属酸化物層のうちの少なくとも一層により構成されている。より具体的には、第2電極13Cは、金属層もしくは金属酸化物層の単層膜、または金属層と金属酸化物層の積層膜により構成されている。第2電極13Cが積層膜により構成されている場合、金属層が有機化合物層13B側に設けられてもよいし、金属酸化物層が有機化合物層13B側に設けられてもよいが、低い仕事関数を有する層を有機化合物層13Bに隣接させる観点からすると、金属層が有機化合物層13B側に設けられていることが好ましい。 The second electrode 13C is composed of at least one of a metal layer and a metal oxide layer. More specifically, the second electrode 13C is composed of a single-layer film of a metal layer or a metal oxide layer, or a laminated film of a metal layer and a metal oxide layer. When the second electrode 13C is composed of a laminated film, the metal layer may be provided on the organic compound layer 13B side or the metal oxide layer may be provided on the organic compound layer 13B side, but the work is low. From the viewpoint of making the layer having a function adjacent to the organic compound layer 13B, it is preferable that the metal layer is provided on the organic compound layer 13B side.
 金属層は、例えば、マグネシウム(Mg)、アルミニウム(Al)、銀(Ag)、カルシウム(Ca)およびナトリウム(Na)からなる群より選ばれる少なくとも1種の金属元素を含む。金属層は、上記少なくとも1種の金属元素を合金の構成元素として含んでいてもよい。合金の具体例としては、MgAg合金、MgAl合金またはAlLi合金等が挙げられる。金属酸化物は、例えば、インジウム酸化物と錫酸化物の混合体(ITO)、インジウム酸化物と亜鉛酸化物の混合体(IZO)および酸化亜鉛(ZnO)のうちの少なくとも1種を含む。 The metal layer contains, for example, at least one metal element selected from the group consisting of magnesium (Mg), aluminum (Al), silver (Ag), calcium (Ca) and sodium (Na). The metal layer may contain at least one of the above metal elements as a constituent element of the alloy. Specific examples of the alloy include MgAg alloy, MgAl alloy, AlLi alloy and the like. The metal oxide contains, for example, at least one of a mixture of indium oxide and tin oxide (ITO), a mixture of indium oxide and zinc oxide (IZO) and zinc oxide (ZnO).
(有機化合物層13B)
 有機化合物層13Bは、第1電極13Aと第2電極13Cの間に設けられている。有機化合物層13Bは、すべての副画素100に共通の有機化合物層として設けられている。図1の例では、有機化合物層13Bは、白色光を発光可能に構成されている。ただし、このことは、有機化合物層13Bの発光色が白色以外であることを禁止するものではなく、赤色、青色、緑色などの色が採用されてもよい。すなわち、有機化合物層13Bの発光色は、例えば白色、赤色、青色及び緑色のいずれか1種類であってもよい。
(Organic compound layer 13B)
The organic compound layer 13B is provided between the first electrode 13A and the second electrode 13C. The organic compound layer 13B is provided as an organic compound layer common to all the sub-pixels 100. In the example of FIG. 1, the organic compound layer 13B is configured to be capable of emitting white light. However, this does not prohibit that the emission color of the organic compound layer 13B is other than white, and colors such as red, blue, and green may be adopted. That is, the emission color of the organic compound layer 13B may be, for example, any one of white, red, blue and green.
 有機化合物層13Bは、第1電極13Aから第2電極13Cに向かって正孔注入層、正孔輸送層、発光層、電子輸送層がこの順序で積層された構成を有する。なお、有機化合物層13Bの構成はこれに限定されるものではなく、発光層以外の層は必要に応じて設けられるものである。 The organic compound layer 13B has a structure in which a hole injection layer, a hole transport layer, a light emitting layer, and an electron transport layer are laminated in this order from the first electrode 13A toward the second electrode 13C. The structure of the organic compound layer 13B is not limited to this, and layers other than the light emitting layer are provided as needed.
 正孔注入層は、発光層への正孔注入効率を高めるためのものであると共に、リークを抑制するためのバッファ層である。正孔輸送層は、発光層への正孔輸送効率を高めるためのものである。発光層は、電界をかけることにより電子と正孔との再結合が起こり、光を発生するものである。発光層は、有機発光材料を含む有機発光層である。電子輸送層は、発光層への電子輸送効率を高めるためのものである。電子輸送層と第2電極13Cとの間には、電子注入層を設けてもよい。この電子注入層は、電子注入効率を高めるためのものである。 The hole injection layer is a buffer layer for increasing the hole injection efficiency into the light emitting layer and for suppressing leakage. The hole transport layer is for increasing the hole transport efficiency to the light emitting layer. In the light emitting layer, when an electric field is applied, electrons and holes are recombined to generate light. The light emitting layer is an organic light emitting layer containing an organic light emitting material. The electron transport layer is for increasing the electron transport efficiency to the light emitting layer. An electron injection layer may be provided between the electron transport layer and the second electrode 13C. This electron injection layer is for increasing the electron injection efficiency.
(絶縁層14)
 絶縁層14は、基板11の第1の面側に形成される。絶縁層14は、各第1電極13Aを発光素子13毎(すなわち副画素毎)に電気的に分離する。絶縁層14は、副画素100に対応した複数の開口部14Aを有し、分離された第1電極13Aの第1の面(第2電極13Cとの対向面)が開口部14Aから露出している。絶縁層14が、分離された第1電極13Aの第1の面の周縁部から側面(端面)にかけて覆っていてもよい。本明細書において、第1の面の周縁部とは、第1の面の周縁から内側に向かって、所定の幅を有する領域をいう。
(Insulation layer 14)
The insulating layer 14 is formed on the first surface side of the substrate 11. The insulating layer 14 electrically separates each first electrode 13A for each light emitting element 13 (that is, for each sub-pixel). The insulating layer 14 has a plurality of openings 14A corresponding to the sub-pixels 100, and the first surface (the surface facing the second electrode 13C) of the separated first electrode 13A is exposed from the openings 14A. There is. The insulating layer 14 may cover the separated first electrode 13A from the peripheral edge portion of the first surface to the side surface (end surface). In the present specification, the peripheral edge portion of the first surface means a region having a predetermined width from the peripheral edge of the first surface toward the inside.
 絶縁層14は、例えば有機材料または無機材料により構成される。有機材料は、例えば、ポリイミドおよびアクリル樹脂のうちの少なくとも1種を含む。無機材料は、例えば、酸化シリコン、窒化シリコン、酸窒化シリコンおよび酸化アルミニウムのうちの少なくとも1種を含む。 The insulating layer 14 is made of, for example, an organic material or an inorganic material. The organic material contains, for example, at least one of polyimide and acrylic resin. The inorganic material includes, for example, at least one of silicon oxide, silicon nitride, silicon nitriding and aluminum oxide.
(保護層)
 保護層15は、第2電極13Cの表面(第1の面)上に設けられ、発光素子13を覆う。保護層15の厚みは、0.5μm以上2.0μm以下であることが好ましい。保護層15の厚みがこの範囲である場合に、後述する数式7及び数式8が満たされることによる効果が高められる。保護層15の厚みとは、発光素子13の表面(第2電極の第1の面)から保護層15の表面(第1の面)までの厚みを示すものとする。保護層15は、発光素子13を外気と遮断し、外部環境から発光素子13への水分浸入を抑制する。また、第2電極13Cが金属層により構成されている場合には、保護層15は、この金属層の酸化を抑制する機能を有していてもよい。
(Protective layer)
The protective layer 15 is provided on the surface (first surface) of the second electrode 13C and covers the light emitting element 13. The thickness of the protective layer 15 is preferably 0.5 μm or more and 2.0 μm or less. When the thickness of the protective layer 15 is within this range, the effect of satisfying the mathematical formulas 7 and 8 described later is enhanced. The thickness of the protective layer 15 is defined as the thickness from the surface of the light emitting element 13 (first surface of the second electrode) to the surface of the protective layer 15 (first surface). The protective layer 15 blocks the light emitting element 13 from the outside air and suppresses the infiltration of moisture from the external environment into the light emitting element 13. Further, when the second electrode 13C is composed of a metal layer, the protective layer 15 may have a function of suppressing oxidation of the metal layer.
 保護層15は、例えば、無機材料により構成されている。保護層15を構成する無機材料としては、吸湿性が低いものが好ましい。具体的には、保護層15を構成する無機材料は、酸化シリコン(SiO)、窒化シリコン(SiN)、酸化窒化シリコン(SiNO)、酸化チタン(TiO)および酸化アルミニウム(AlO)からなる群より選ばれる少なくとも1種を含むことが好ましい。保護層15は、単層構造であってもよいが、厚さを大きくする場合には多層構造としてもよい。保護層15における内部応力を緩和するためである。 The protective layer 15 is made of, for example, an inorganic material. As the inorganic material constituting the protective layer 15, a material having low hygroscopicity is preferable. Specifically, the inorganic material constituting the protective layer 15 is selected from the group consisting of silicon oxide (SiO), silicon nitride (SiN), silicon oxide nitride (SiNO), titanium oxide (TIO) and aluminum oxide (AlO). It is preferable to contain at least one of these. The protective layer 15 may have a single-layer structure, but may have a multi-layer structure when the thickness is increased. This is to relieve the internal stress in the protective layer 15.
(カラーフィルタ)
 カラーフィルタ17は、保護層15上に設けられている。図1の例では、カラーフィルタ17は、後述するレンズ18よりも第1電極13Aに対して近い位置に設けられている。カラーフィルタ17は、例えば、オンチップカラーフィルタ(On Chip Color Filter:OCCF)である。カラーフィルタ17は、副画素100に対応して形成されている。例えば、図1の例に示すように、カラーフィルタ17は、複数色種のフィルタ(赤色フィルタ17R、緑色フィルタ17Gおよび青色フィルタ17B)を挙げることができる。赤色フィルタ17R、緑色フィルタ17G、青色フィルタ17Bはそれぞれ、赤色の副画素用の発光素子13、緑色の副画素用の発光素子13、青色の副画素用の発光素子13に対向して設けられている。これにより、赤色の副画素100R、緑色の副画素100G、青色の副画素100B内の各発光素子13から発せられた白色光がそれぞれ、上記の赤色フィルタ17R、緑色フィルタ17Gおよび青色フィルタ17Bを透過することによって、赤色光、緑色光、青色光がそれぞれ表示面から出射される。   
(Color filter)
The color filter 17 is provided on the protective layer 15. In the example of FIG. 1, the color filter 17 is provided at a position closer to the first electrode 13A than the lens 18 described later. The color filter 17 is, for example, an on-chip color filter (OCCF). The color filter 17 is formed corresponding to the sub-pixel 100. For example, as shown in the example of FIG. 1, as the color filter 17, a plurality of color type filters (red filter 17R, green filter 17G, and blue filter 17B) can be mentioned. The red filter 17R, the green filter 17G, and the blue filter 17B are provided facing the light emitting element 13 for the red sub-pixel, the light emitting element 13 for the green sub-pixel, and the light emitting element 13 for the blue sub-pixel, respectively. There is. As a result, the white light emitted from each light emitting element 13 in the red sub-pixel 100R, the green sub-pixel 100G, and the blue sub-pixel 100B passes through the red filter 17R, the green filter 17G, and the blue filter 17B, respectively. By doing so, red light, green light, and blue light are emitted from the display surface, respectively.
 なお、ここで示すカラーフィルタ17の例は一例であり、カラーフィルタ17の種類を、赤、緑、青の3種の組合せのみに限定しようとするものではない。例えば、カラーフィルタ17の種類は、赤、緑、青の他に白の4種の組合せとされてもよい。また、上記ではカラーフィルタ17が、オンチップカラーフィルタである場合を例示したが、別体で形成されたカラーフィルタを貼り合わせてもよい。 Note that the example of the color filter 17 shown here is an example, and the type of the color filter 17 is not limited to the combination of three types of red, green, and blue. For example, the type of the color filter 17 may be a combination of four types of white in addition to red, green, and blue. Further, although the case where the color filter 17 is an on-chip color filter is exemplified above, a color filter formed separately may be bonded.
(カラーフィルタの配列)
 カラーフィルタ17の配列は、図1、図2の例では、赤色フィルタ17R、青色フィルタ17Bおよび緑色フィルタ17Gがこの順に繰り返し並べられた配列となっている。図1、図2A、図2Bの例では、それぞれのカラーフィルタ17(赤色フィルタ17R、青色フィルタ17Bおよび緑色フィルタ17G)は、ストライプ状に形成される。なお、図1では、赤色フィルタ17R、青色フィルタ17Bおよび緑色フィルタ17Gが互いに端面を接した状態で形成されているが、赤色フィルタ17R、青色フィルタ17Bおよび緑色フィルタ17Gは互いに離間していてもよい。
(Array of color filters)
In the examples of FIGS. 1 and 2, the arrangement of the color filters 17 is such that the red filter 17R, the blue filter 17B, and the green filter 17G are repeatedly arranged in this order. In the examples of FIGS. 1, 2A, and 2B, each color filter 17 (red filter 17R, blue filter 17B, and green filter 17G) is formed in a striped shape. In FIG. 1, the red filter 17R, the blue filter 17B, and the green filter 17G are formed in a state where the end faces are in contact with each other, but the red filter 17R, the blue filter 17B, and the green filter 17G may be separated from each other. ..
(レンズ)
 レンズ18は、副画素100に対応して少なくとも1つ形成されており、図1の例では、カラーフィルタ17の上(+Z方向側)に、1つ設けられている。なおレンズ18の数が複数であると、レンズ18による集光性を制御しやすくなる。ただしレンズ18の強度を維持しつつ厚み寸法が小さくなりすぎない観点からは、レンズ18は、1つの副画素100に対して3つ以下であることが好ましい。
(lens)
At least one lens 18 is formed corresponding to the sub-pixel 100, and in the example of FIG. 1, one lens 18 is provided on the color filter 17 (on the + Z direction side). When the number of lenses 18 is plurality, it becomes easy to control the light-collecting property of the lenses 18. However, from the viewpoint of maintaining the strength of the lens 18 and preventing the thickness dimension from becoming too small, it is preferable that the number of lenses 18 is 3 or less with respect to one sub-pixel 100.
 レンズ18の底面18Aは、開口部14Aに向けられており、発光素子13から生じた光の多くは、カラーフィルタ17を通過してレンズ18の底面18A側に向かう。そして、光がレンズ18を通過することで光の進行方向が整えられる。レンズ18は、例えば、オンチップレンズ(On Chip Lens:OCL)である。レンズ18は、例えば、熱硬化型樹脂および紫外線硬化型樹脂等で形成されてよい。 The bottom surface 18A of the lens 18 is directed toward the opening 14A, and most of the light generated from the light emitting element 13 passes through the color filter 17 and faces the bottom surface 18A side of the lens 18. Then, the traveling direction of the light is adjusted by passing the light through the lens 18. The lens 18 is, for example, an on-chip lens (On Chip Lens: OCL). The lens 18 may be formed of, for example, a thermosetting resin, an ultraviolet curable resin, or the like.
(レンズの形状)
 レンズ18の形状は特に限定されず、柱状、錐台状、ドーム状などを例示することができる。図1の例では、レンズ18は、その断面形状についてXZ平面での断面(ここでは単に断面形状と呼ぶことがある)が半月状となる形状となっている。図2Bに示すように、レンズ18の平面形状は、矩形状に形成されている。ただし、これは、レンズ18の形状の一例であり、レンズ18の形状を限定するものではない。レンズ18の断面形状は、例えば、図4に示すように、矩形状でもよいし、図3Cに示すように、台形状であってもよい。また、レンズ18の平面形状は、円形状でも楕円形状でもよいし、正方形状やそのほかの多角形状でもよい、また面取り形状であってもよい。後述するように、こうしたレンズ18の形状は、副画素100の組み合わせ等の諸条件に応じて定められてよい。
(Lens shape)
The shape of the lens 18 is not particularly limited, and examples thereof include a columnar shape, a frustum shape, and a dome shape. In the example of FIG. 1, the lens 18 has a shape in which the cross section in the XZ plane (here, it may be simply referred to as a cross-sectional shape) has a half-moon shape with respect to the cross-sectional shape. As shown in FIG. 2B, the planar shape of the lens 18 is formed into a rectangular shape. However, this is an example of the shape of the lens 18, and does not limit the shape of the lens 18. The cross-sectional shape of the lens 18 may be, for example, a rectangular shape as shown in FIG. 4 or a trapezoidal shape as shown in FIG. 3C. Further, the planar shape of the lens 18 may be a circular shape, an elliptical shape, a square shape or another polygonal shape, or a chamfered shape. As will be described later, the shape of such a lens 18 may be determined according to various conditions such as a combination of sub-pixels 100.
(レンズの底面と開口部の幅の関係)
 第1の実施形態にかかる表示装置10においては、レンズ18の底面18Aと開口部14Aの幅に関して、下記の数式7及び数式8が満たされている。
(Relationship between the bottom surface of the lens and the width of the opening)
In the display device 10 according to the first embodiment, the following formulas 7 and 8 are satisfied with respect to the widths of the bottom surface 18A and the opening 14A of the lens 18.
ΣLR/WR<ΣLB/WB   ・・・(数式7) ΣLR / WR <ΣLB / WB ... (Formula 7)
ΣLG/WG<ΣLB/WB   ・・・(数式8) ΣLG / WG <ΣLB / WB ... (Formula 8)
 ただし、数式7及び数式8において、WRは、赤色の副画素100Rに対応した開口部14Aの水平方向の幅である。開口部14Aの水平方向の幅とは、開口部14Aの中心を通り、表示装置10の水平断面における幅を示す。これは、赤色の副画素100Rのほか、緑色の副画素100G、青色の副画素100Bに対応した開口部14Aについても同様である。水平断面とは、表示装置10の水平方向(X軸方向)と発光素子13の厚み方向(Z軸方向)で張られた平面(XZ平面)を切断面とする場合の断面であるものとする。 However, in Equation 7 and Equation 8, WR is the horizontal width of the opening 14A corresponding to the red sub-pixel 100R. The horizontal width of the opening 14A indicates the width in the horizontal cross section of the display device 10 passing through the center of the opening 14A. This also applies to the opening 14A corresponding to the green sub-pixel 100G and the blue sub-pixel 100B, in addition to the red sub-pixel 100R. The horizontal cross section is a cross section when a plane (XZ plane) stretched in the horizontal direction (X-axis direction) of the display device 10 and the thickness direction (Z-axis direction) of the light emitting element 13 is used as a cut surface. ..
 ΣLRは、第1水平配置数が1である場合には、赤色の副画素100Rに対応して形成されたレンズ18の底面18Aの水平方向の幅(図1中、符号LRで示す。)となる。また、ΣLRは、第1水平配置数が2以上である場合には、赤色の副画素100Rに対応して水平方向に並んだ状態で形成されたレンズ18のそれぞれの底面18Aの水平方向の幅LRの合計を示す。なお、第1水平配置数は、赤色の前記副画素100Rに対応したレンズ18の水平方向に沿った形成数を示す。例えば、レンズ18が、副画素100Rに対応して、水平方向に2つ並んで形成されている場合には、第1水平配置数は2となる。レンズ18の底面18Aの水平方向の幅とは、レンズ18の底面18Aの中心を通り、表示装置10の水平断面における幅を示す。これは、赤色の副画素100Rのほか、緑色の副画素100G、青色の副画素100Bに対応したレンズ18についても同様である。 ΣLR is the horizontal width (indicated by reference numeral LR in FIG. 1) of the bottom surface 18A of the lens 18 formed corresponding to the red sub-pixel 100R when the first horizontal arrangement number is 1. Become. Further, when the number of first horizontal arrangements is 2 or more, the ΣLR is the horizontal width of each bottom surface 18A of the lenses 18 formed in a state of being arranged horizontally corresponding to the red sub-pixels 100R. The total of LR is shown. The first horizontal arrangement number indicates the number of formations of the lens 18 corresponding to the red sub-pixel 100R along the horizontal direction. For example, when two lenses 18 are formed side by side in the horizontal direction corresponding to the sub-pixel 100R, the number of first horizontal arrangements is 2. The horizontal width of the bottom surface 18A of the lens 18 indicates the width in the horizontal cross section of the display device 10 passing through the center of the bottom surface 18A of the lens 18. This also applies to the lens 18 corresponding to the red sub-pixel 100R, the green sub-pixel 100G, and the blue sub-pixel 100B.
 また、WGは、緑色の副画素100Gに対応した開口部14Aの水平方向の幅である。 Further, WG is the horizontal width of the opening 14A corresponding to the green sub-pixel 100G.
 ΣLGは、第2水平配置数が1である場合には、緑色の副画素100Gに対応して形成されたレンズ18の底面18Aの水平方向の幅(図1中、符号LGで示す)となる。また、ΣLGは、第2水平配置数が2以上である場合には、緑色の副画素100Gに対応して水平方向に並んだ状態で形成されたレンズ18のそれぞれの底面18Aの水平方向の幅LGの合計を示す。なお、第2水平配置数は、緑色の副画素100Gに対応したレンズ18の水平方向に沿った形成数を示す。 When the second horizontal arrangement number is 1, the ΣLG is the horizontal width of the bottom surface 18A of the lens 18 formed corresponding to the green sub-pixel 100G (indicated by the reference numeral LG in FIG. 1). .. Further, when the number of second horizontal arrangements is 2 or more, the ΣLG is the horizontal width of each bottom surface 18A of the lenses 18 formed in a state of being arranged horizontally corresponding to the green sub-pixels 100G. The total of LG is shown. The second horizontal arrangement number indicates the number of formations of the lens 18 corresponding to the green sub-pixel 100G along the horizontal direction.
 WBは、青色の副画素100Bに対応した開口部14Aの水平方向の幅である。 WB is the horizontal width of the opening 14A corresponding to the blue sub-pixel 100B.
 ΣLBは、第3水平配置数が1である場合には、青色の副画素100Bに対応して形成されたレンズ18の底面18Aの水平方向の幅(図1中、符号LBで示す)となる。また、ΣLBは、第3水平配置数が2以上である場合には、青色の副画素100Bに対応して水平方向に並んだ状態で形成されたレンズ18のそれぞれの底面18Aの水平方向の幅LBの合計を示す。なお、第3水平配置数は、青色の副画素100Bに対応したレンズ18の水平方向に沿った形成数を示す。 When the third horizontal arrangement number is 1, the ΣLB is the horizontal width of the bottom surface 18A of the lens 18 formed corresponding to the blue sub-pixel 100B (indicated by the reference numeral LB in FIG. 1). .. Further, when the number of third horizontal arrangements is 2 or more, the ΣLB is the horizontal width of each bottom surface 18A of the lenses 18 formed in a state of being arranged horizontally corresponding to the blue sub-pixels 100B. The total of LB is shown. The third horizontal arrangement number indicates the number of formations of the lens 18 corresponding to the blue sub-pixel 100B along the horizontal direction.
 図1の例では、図2Bにも示すように、副画素100Bに対応したレンズ18の水平方向の幅LBを、副画素100Rに対応したレンズ18の幅LR、副画素100Gに対応したレンズ18の幅LGよりも大きくすることで、上記数式7及び数式8が満たされている。 In the example of FIG. 1, as shown in FIG. 2B, the horizontal width LB of the lens 18 corresponding to the sub-pixel 100B is the width LR of the lens 18 corresponding to the sub-pixel 100R, and the lens 18 corresponding to the sub-pixel 100G. The above equations 7 and 8 are satisfied by making the width LG larger than the width LG.
 数式7及び数式8は、レンズ18の幅LR、LG、LBの大小を規定することで実現される場合に限定されない。数式7及び数式8は、図5Aに示すように、開口部14Aの幅WR、WG、WBの大小を規定することで実現されてもよいし、レンズ18の幅LR、LG、LBの大小を組み合わせて実現されてもよい。図5Aには、レンズ18の幅LR、LG、LBを同じとし、副画素100R、100Gに対応した開口部14Aの幅WR、WGが、副画素100Bに対応した開口部14Aの幅WBよりも大きくなるように規定されている場合の例が示されている。 Equations 7 and 8 are not limited to cases where the widths LR, LG, and LB of the lens 18 are specified. Equations 7 and 8 may be realized by defining the magnitudes of the widths WR, WG, and WB of the openings 14A as shown in FIG. 5A, and the magnitudes of the widths LR, LG, and LB of the lens 18 may be determined. It may be realized in combination. In FIG. 5A, the widths LR, LG, and LB of the lens 18 are the same, and the widths WR and WG of the opening 14A corresponding to the sub-pixels 100R and 100G are larger than the width WB of the opening 14A corresponding to the sub-pixel 100B. An example is shown when it is specified to be large.
(ΣLR/WR、ΣLB/WB及びΣLG/WGの上限値と下限値)
 ΣLR/WR、ΣLB/WB及びΣLG/WGの下限値は、レンズ18の集光性をより効率的に発揮させる観点からは、それぞれ1である。
(Upper and lower limits of ΣLR / WR, ΣLB / WB and ΣLG / WG)
The lower limit values of ΣLR / WR, ΣLB / WB, and ΣLG / WG are 1, respectively, from the viewpoint of more efficiently exhibiting the light-collecting property of the lens 18.
 ΣLR/WR、ΣLB/WB及びΣLG/WGの上限値は、有機化合物層13Bへの影響を抑えながら開口部14Aの幅を小さくする観点、及び隣接する副画素100への影響を抑えながらレンズ18の底面18Aを大きくする観点から、それぞれ3である。 The upper limit of ΣLR / WR, ΣLB / WB and ΣLG / WG is the viewpoint of reducing the width of the opening 14A while suppressing the influence on the organic compound layer 13B, and the lens 18 while suppressing the influence on the adjacent sub-pixel 100. From the viewpoint of increasing the bottom surface 18A of the above, each is 3.
 なお、色度ずれをより効率的に抑制する観点からは、上記したΣLB/WB、ΣLG/WG、ΣLR/WRの値は、下記数式9又は数式10を満たすことがより好ましい。 From the viewpoint of more efficiently suppressing the chromaticity shift, it is more preferable that the above-mentioned values of ΣLB / WB, ΣLG / WG, and ΣLR / WR satisfy the following formula 9 or formula 10.
 0.01 <(ΣLB/WB-ΣLR/WR)< 0.3  ・・・(数式9) 0.01 <(ΣLB / WB-ΣLR / WR) <0.3 ... (Formula 9)
 0.01 <(ΣLB/WB-ΣLG/WG)< 0.3  ・・・(数式10) 0.01 <(ΣLB / WB-ΣLG / WG) <0.3 ... (Formula 10)
 また、表示装置10は、下記の数式11又は数式12の少なくとも一方が満たされていることが好ましい。 Further, it is preferable that the display device 10 is satisfied with at least one of the following formula 11 or formula 12.
LB/LR≦2   ・・・(数式11) LB / LR≤2 ... (Formula 11)
LB/LG≦2   ・・・(数式12) LB / LG ≤ 2 ... (Formula 12)
 ただし、数式11及び数式12において、LBは、上記したように赤色の副画素100Rに対応して形成されたレンズ18の底面18Aの水平方向の幅を示す。LGは、緑色の副画素100Gに対応して形成されたレンズ18の底面18Aの水平方向の幅を示す。LBは、青色の副画素100Bに対応して形成されたレンズ18の底面18Aの水平方向の幅を示す。 However, in Equation 11 and Equation 12, LB indicates the horizontal width of the bottom surface 18A of the lens 18 formed corresponding to the red sub-pixel 100R as described above. LG indicates the horizontal width of the bottom surface 18A of the lens 18 formed corresponding to the green sub-pixel 100G. LB indicates the horizontal width of the bottom surface 18A of the lens 18 formed corresponding to the blue sub-pixel 100B.
 表示装置10が、上記数式11又は数式12の少なくとも一方を満たすことで、赤色の副画素100R又は緑色の副画素100Gの少なくとも一方の発光素子13からの光が、青色の副画素100Bに対応したレンズ18に入り込んでくることを抑制する効果を高めることができる。この効果を高める観点からは、数式11及び数式12の両方が満たされていることが好ましい。数式11及び数式12の両方が満たされていることで、赤色の副画素100R及び緑色の副画素100Gの発光素子13からの光が、青色の副画素100Bに対応したレンズ18に入り込んでくることを効果的に抑制することができる。 When the display device 10 satisfies at least one of the above formula 11 and the above formula 12, the light from at least one light emitting element 13 of the red sub-pixel 100R or the green sub-pixel 100G corresponds to the blue sub-pixel 100B. It is possible to enhance the effect of suppressing the entry into the lens 18. From the viewpoint of enhancing this effect, it is preferable that both the formula 11 and the formula 12 are satisfied. When both the formula 11 and the formula 12 are satisfied, the light from the light emitting element 13 of the red sub-pixel 100R and the green sub-pixel 100G enters the lens 18 corresponding to the blue sub-pixel 100B. Can be effectively suppressed.
(第1水平配置数、第2水平配置数及び第3水平配置数)
 レンズ18は、上記したように各色種の副画素100(副画素100R、100G、100B)それぞれに対応して少なくとも1つ形成されることから、上記した第1水平配置数、第2水平配置数、第3水平配置数は、1以上の値である。図1の例では、副画素100Rに対応するレンズ18についての第1水平配置数は1である。副画素100Gに対応するレンズ18についての第2水平配置数は1である。また、副画素100Bに対応するレンズ18についての後述する第3水平配置数は1である。
(Number of 1st horizontal arrangement, number of 2nd horizontal arrangement and number of 3rd horizontal arrangement)
Since at least one lens 18 is formed corresponding to each of the sub-pixels 100 (sub-pixels 100R, 100G, 100B) of each color type as described above, the first horizontal arrangement number and the second horizontal arrangement number described above are formed. , The third horizontal arrangement number is a value of 1 or more. In the example of FIG. 1, the number of first horizontal arrangements for the lens 18 corresponding to the sub-pixel 100R is 1. The number of second horizontal arrangements for the lens 18 corresponding to the sub-pixel 100G is 1. Further, the number of third horizontal arrangements of the lens 18 corresponding to the sub-pixel 100B, which will be described later, is 1.
 上記したようにレンズ18は、1つの副画素100に対して3つ以下であることが好ましい点を考慮すれば、第1水平配置数、第2水平配置数及び第3水平配置数は、3以下であることが好ましい。 Considering that it is preferable that the number of lenses 18 is 3 or less for one sub-pixel 100 as described above, the number of first horizontal arrangements, the number of second horizontal arrangements, and the number of third horizontal arrangements are three. The following is preferable.
(レンズの底面と第1電極の表面との離間距離)
 表示装置10においては、それぞれの副画素100に対応した開口部14Aに位置する第1電極13Aの表面から、その開口部14Aに向けられたレンズ18の底面18Aまでの離間距離(第1電極13Aとレンズ18の底面との離間距離WH)が、0.5μm以上5.0μm以下であることが好ましい。このことは、離間距離WHがこのような範囲である場合に色度ずれを抑制されることがより強く要請されることを示す。また、離間距離WHがこのような範囲であると、表示装置10をマイクロディスプレイとすることが容易となる。
(Distance between the bottom surface of the lens and the surface of the first electrode)
In the display device 10, the separation distance from the surface of the first electrode 13A located at the opening 14A corresponding to each sub-pixel 100 to the bottom surface 18A of the lens 18 directed to the opening 14A (first electrode 13A). The separation distance WH) between the lens 18 and the bottom surface of the lens 18 is preferably 0.5 μm or more and 5.0 μm or less. This indicates that it is more strongly required to suppress the chromaticity shift when the separation distance WH is in such a range. Further, when the separation distance WH is in such a range, it becomes easy to make the display device 10 a micro display.
[1-2 第1の実施形態にかかる表示装置の製造方法]
 以下、本開示の一実施形態に係る表示装置10の製造方法の一例について説明する。ただし、表示装置10においてレンズ18の断面形状が台形状である場合を例に挙げて説明する。
[1-2 Manufacturing method of display device according to the first embodiment]
Hereinafter, an example of the manufacturing method of the display device 10 according to the embodiment of the present disclosure will be described. However, the case where the cross-sectional shape of the lens 18 in the display device 10 is trapezoidal will be described as an example.
 まず、例えば薄膜形成技術、フォトリソグラフィ技術およびエッチング技術、スパッタリング技術等を用いて、基板11の第1の面上に、第1電極13A、開口部14Aを形成した絶縁層14、有機化合物層13B、第2電極13Cを形成する。開口部14Aは、各色の副画素100に対応したパターンで形成される。さらに、CVD法、蒸着法やフォトリソグラフィ法等を適宜用いて保護層15とカラーフィルタ17を形成する。カラーフィルタ17は、副画素100のレイアウトに応じて形成される。また、図3の例では、赤色フィルタ17R、緑色フィルタ17Gおよび青色フィルタ17Bがストライプ状に形成されている。 First, the insulating layer 14 and the organic compound layer 13B having the first electrode 13A and the opening 14A formed on the first surface of the substrate 11 by using, for example, a thin film forming technique, a photolithography technique, an etching technique, a sputtering technique, or the like. , The second electrode 13C is formed. The opening 14A is formed with a pattern corresponding to the sub-pixel 100 of each color. Further, the protective layer 15 and the color filter 17 are formed by appropriately using a CVD method, a vapor deposition method, a photolithography method, or the like. The color filter 17 is formed according to the layout of the sub-pixel 100. Further, in the example of FIG. 3, the red filter 17R, the green filter 17G, and the blue filter 17B are formed in a striped shape.
 カラーフィルタ17の表面上にレンズ18が形成される。レンズ18の形成方法は特に限定されない。例えば、図3Aに示すように、レンズ18を形成する樹脂材料をカラーフィルタ17の表面上に塗布し、樹脂層30を形成する。レンズ18の形成位置に対応したパターンとなるように樹脂層30上にレジスト31を設ける(図3B)。そして、例えばエッチング技術等を適用することで、図3Cに示すように、カラーフィルタ17上にレンズ18が形成される(エッチバック法)。これにより、表示装置10が得られる。なお、ここに示すレンズ18の形成方法は一例である。例えば、エッチバック法のほかにも溶融法等といったオンチップマイクロレンズ(OCL)形成方法が適用されてよい。 The lens 18 is formed on the surface of the color filter 17. The method of forming the lens 18 is not particularly limited. For example, as shown in FIG. 3A, the resin material forming the lens 18 is applied on the surface of the color filter 17 to form the resin layer 30. A resist 31 is provided on the resin layer 30 so as to have a pattern corresponding to the formation position of the lens 18 (FIG. 3B). Then, for example, by applying an etching technique or the like, a lens 18 is formed on the color filter 17 as shown in FIG. 3C (etchback method). As a result, the display device 10 is obtained. The method of forming the lens 18 shown here is an example. For example, in addition to the etchback method, an on-chip microlens (OCL) forming method such as a melting method may be applied.
[1-3 作用効果]
 表示装置に対しては、正面方向を視線方向とする場合と斜め方向を視線方向とする場合色との間で、色度ずれの抑制が要請されている。色度ずれとは、表示装置の表示領域に対して正面方向を視線方向とした場合の色度と斜め方向を視線方向とする場合の色度とを比較した場合における正面方向の色度と斜め方向の色度との差(ズレ)を示す。
[1-3 Action effect]
The display device is required to suppress the chromaticity shift between the case where the front direction is the line-of-sight direction and the case where the diagonal direction is the line-of-sight direction. The chromaticity deviation is the chromaticity in the front direction and the diagonal when comparing the chromaticity when the front direction is the line-of-sight direction and the chromaticity when the diagonal direction is the line-of-sight direction with respect to the display area of the display device. Indicates the difference (deviation) from the chromaticity in the direction.
 ところで、一般的に表示装置における視野角と光強度との関係については、後述のシミュレーション例(図15B)でも示すように、正面方向の光強度と傾斜度が大きい方向(正面方向を基準とした方位角の大きい方向(視野角の大きい方向))における光強度の相対的比率(規格化強度)が、青色光と赤色光との間で大きな相違が認められ、すなわち青色光の視野角特性と赤色光の視野角特性が異なる。青色光と緑色光との関係でも、青色光と赤色光との関係と同様に視野角特性が異なる。 By the way, generally, as for the relationship between the viewing angle and the light intensity in the display device, as shown in the simulation example (FIG. 15B) described later, the light intensity in the front direction and the direction in which the degree of inclination is large (based on the front direction). There is a large difference in the relative ratio (standardized intensity) of light intensity in the direction with a large azimuth angle (direction with a large viewing angle) between blue light and red light, that is, with the viewing angle characteristics of blue light. The viewing angle characteristics of red light are different. The viewing angle characteristics of the relationship between blue light and green light are different as in the relationship between blue light and red light.
 この点、第1の実施形態にかかる表示装置10によれば、数式1及び数式2が満たされることで、後述のシミュレーション例(図15A)でも示すように、青色光の視野角特性が、赤色光と緑色光の視野角特性に近接し、色度ずれが低減される。第1の実施形態にかかる表示装置10によれば、表示領域110Aの水平方向(X軸方向)に関して、正面方向に対する傾斜角度が大きい方向を視線方向としても色度ずれが生じにくくなることから、水平方向について視野角特性を向上させることができ、水平方向の広視野角化を実現することができる。 In this regard, according to the display device 10 according to the first embodiment, when the mathematical formulas 1 and 2 are satisfied, the viewing angle characteristic of the blue light becomes red as shown in the simulation example (FIG. 15A) described later. It is close to the viewing angle characteristics of light and green light, and the chromaticity shift is reduced. According to the display device 10 according to the first embodiment, with respect to the horizontal direction (X-axis direction) of the display area 110A, chromaticity deviation is unlikely to occur even when the direction in which the inclination angle with respect to the front direction is large is the line-of-sight direction. The viewing angle characteristics in the horizontal direction can be improved, and a wide viewing angle in the horizontal direction can be realized.
 また、表示装置10によれば、数式1及び数式2が満たされることで正面方向の輝度を向上させることができる。 Further, according to the display device 10, the brightness in the front direction can be improved by satisfying the formula 1 and the formula 2.
[1-4 変形例]
(変形例1)(垂直方向)
 上記第1の実施形態の表示装置10では、水平方向についてレンズ18の幅18Aと開口部14Aの幅の関係が規定されている。第1の実施形態の表示装置10は、これに限定されず、さらに垂直方向についてレンズ18の幅18Aと開口部14Aの幅の関係が規定されていてもよい(変形例1)。
[1-4 Modification Example]
(Modification 1) (Vertical direction)
In the display device 10 of the first embodiment, the relationship between the width 18A of the lens 18 and the width of the opening 14A is defined in the horizontal direction. The display device 10 of the first embodiment is not limited to this, and the relationship between the width 18A of the lens 18 and the width of the opening 14A may be defined in the vertical direction (modification example 1).
(レンズの底面と開口部の幅の関係)
 変形例1にかかる表示装置10においては、レンズ18の底面18Aと開口部14Aの幅に関して、下記の数式13及び数式14が満たされている。
(Relationship between the bottom surface of the lens and the width of the opening)
In the display device 10 according to the first modification, the following mathematical formulas 13 and 14 are satisfied with respect to the widths of the bottom surface 18A and the opening 14A of the lens 18.
ΣLvR/WvR<ΣLvB/WvB   ・・・(数式13) ΣLvR / WvR <ΣLvB / WvB ... (Formula 13)
ΣLvG/WvG<ΣLvB/WvB   ・・・(数式14) ΣLvG / WvG <ΣLvB / WvB ... (Formula 14)
 ただし、上記数式13及び数式14において、WvRは、図2Bにも示すように、赤色の副画素100Rに対応した開口部14Aの垂直方向の幅である。開口部14Aの垂直方向の幅とは、開口部14Aの中心を通り、表示装置10の垂直断面における幅を示す。これは、赤色の副画素100Rのほか、緑色の副画素100G、青色の副画素100Bに対応した開口部14Aについても同様である。垂直断面とは、表示装置10の垂直方向(Y軸方向)と発光素子13の厚み方向(Z軸方向)で張られた平面(YZ平面)を切断面とする場合の断面である。 However, in the above equations 13 and 14, WvR is the vertical width of the opening 14A corresponding to the red sub-pixel 100R, as also shown in FIG. 2B. The vertical width of the opening 14A indicates the width in the vertical cross section of the display device 10 passing through the center of the opening 14A. This also applies to the opening 14A corresponding to the green sub-pixel 100G and the blue sub-pixel 100B, in addition to the red sub-pixel 100R. The vertical cross section is a cross section when a plane (YZ plane) stretched in the vertical direction (Y-axis direction) of the display device 10 and the thickness direction (Z-axis direction) of the light emitting element 13 is used as a cut surface.
 ΣLvRは、第1垂直配置数が1である場合には、赤色の副画素100Rに対応して形成されたレンズ18の底面18Aの垂直方向の幅(図2B中、符号LvRで示す。)である。ΣLvRは、第1垂直配置数が2以上である場合には、赤色の副画素100Rに対応して垂直方向に並んだ状態で形成されたレンズ18のそれぞれの底面18Aの垂直方向の幅の合計を示す。ただし、第1垂直配置数は、赤色の副画素100Rに対応したレンズ18の垂直方向に沿った形成数を示す。レンズ18の底面18Aの垂直方向の幅とは、レンズ18の底面18Aの中心を通り、表示装置10の垂直断面における幅を示す。これは、赤色の副画素100Rのほか、緑色の副画素100G、青色の副画素100Bに対応したレンズ18についても同様である。 ΣLvR is the vertical width of the bottom surface 18A of the lens 18 formed corresponding to the red sub-pixel 100R (indicated by the reference numeral LvR in FIG. 2B) when the number of first vertical arrangements is 1. be. ΣLvR is the sum of the vertical widths of the bottom surfaces 18A of the lenses 18 formed in a vertically aligned state corresponding to the red sub-pixels 100R when the number of first vertical arrangements is 2 or more. Is shown. However, the first vertical arrangement number indicates the number of formations of the lens 18 corresponding to the red sub-pixel 100R along the vertical direction. The vertical width of the bottom surface 18A of the lens 18 indicates the width in the vertical cross section of the display device 10 passing through the center of the bottom surface 18A of the lens 18. This also applies to the lens 18 corresponding to the red sub-pixel 100R, the green sub-pixel 100G, and the blue sub-pixel 100B.
 WvGは、緑色の副画素100Gに対応した開口部14Aの垂直方向の幅である。 WvG is the vertical width of the opening 14A corresponding to the green sub-pixel 100G.
 ΣLvGは、第2垂直配置数が1である場合には、緑色の副画素100Gに対応して形成されたレンズ18の底面18Aの垂直方向の幅(図2B中、符号LvGで示す。)である。ΣLvGは、第2垂直配置数が2以上である場合には、緑色の副画素100Gに対応して垂直方向に並んだ状態で形成されたレンズ18のそれぞれの底面の垂直方向の幅の合計を示す。ただし、第2垂直配置数は、緑色の副画素100Gに対応したレンズ18の垂直方向に沿った形成数を示す。 ΣLvG is the vertical width of the bottom surface 18A of the lens 18 formed corresponding to the green sub-pixel 100G (indicated by the reference numeral LvG in FIG. 2B) when the number of second vertical arrangements is 1. be. ΣLvG is the sum of the vertical widths of the bottom surfaces of the lenses 18 formed in a vertically aligned state corresponding to the green sub-pixels 100G when the number of second vertical arrangements is 2 or more. show. However, the second vertical arrangement number indicates the number of formations of the lens 18 corresponding to the green sub-pixel 100G along the vertical direction.
 WvBは、青色の副画素100Bに対応した開口部14Aの垂直方向の幅である。 WvB is the vertical width of the opening 14A corresponding to the blue sub-pixel 100B.
 ΣLvBは、第3垂直配置数が1である場合には、青色の副画素100Bに対応して形成されたレンズ18の底面18Aの垂直方向の幅(図2B中、符号LvBで示す。)である。ΣLvBは、第3水平配置数が2以上である場合には、青色の副画素100Bに対応して垂直方向に並んだ状態で形成されたレンズ18のそれぞれの底面18Aの垂直方向の幅の合計を示す。ただし、第3垂直配置数は、青色の副画素100Bに対応したレンズ18の垂直方向に沿った形成数を示す。 ΣLvB is the vertical width of the bottom surface 18A of the lens 18 formed corresponding to the blue sub-pixel 100B (indicated by the reference numeral LvB in FIG. 2B) when the third vertical arrangement number is 1. be. ΣLvB is the sum of the vertical widths of the bottom surfaces 18A of the lenses 18 formed in a vertically aligned state corresponding to the blue sub-pixels 100B when the number of third horizontal arrangements is 2 or more. Is shown. However, the third vertical arrangement number indicates the number of formations of the lens 18 corresponding to the blue sub-pixel 100B along the vertical direction.
 図1の例では、副画素100Bに対応したレンズ18の垂直方向の幅LvBを、副画素100Rに対応したレンズ18の幅LvR、副画素100Gに対応したレンズ18の幅LvGよりも大きくすることで、上記数式13及び数式14が、満たれている。 In the example of FIG. 1, the vertical width LvB of the lens 18 corresponding to the sub-pixel 100B is made larger than the width LvR of the lens 18 corresponding to the sub-pixel 100R and the width LvG of the lens 18 corresponding to the sub-pixel 100G. The above equations 13 and 14 are satisfied.
 数式13及び数式14は、レンズ18の幅LvR、LvG、LvBの大小を規定することで実現される場合に限定されない。数式13及び数式14は、図5Aに示すように、開口部14Aの幅WvR、WvG、WvBの大小を規定することで実現されてもよいし、レンズ18の幅LvR、LvG、LvBの大小を組み合わせて実現されてもよい。図5Aには、レンズ18の幅LvR、LvG、LvBを同じとし、副画素100R、100Gに対応した開口部14Aの幅WvR、WvGが、副画素100Bに対応した開口部14Aの幅WvBよりも大きくなるように規定されている場合の例が示されている。 The formulas 13 and 14 are not limited to the case where the widths LvR, LvG, and LvB of the lens 18 are specified. Equations 13 and 14 may be realized by defining the magnitudes of the widths WvR, WvG, and WvB of the opening 14A as shown in FIG. 5A, and the magnitudes of the widths LvR, LvG, and LvB of the lens 18 may be determined. It may be realized in combination. In FIG. 5A, the widths LvR, LvG, and LvB of the lens 18 are the same, and the widths WvR and WvG of the opening 14A corresponding to the sub-pixels 100R and 100G are larger than the width WvB of the opening 14A corresponding to the sub-pixel 100B. An example is shown where it is specified to be large.
(ΣLvR/WvR、ΣLvB/WvB及びΣLvG/WvGの上限値と下限値)
 ΣLvR/WvR、ΣLvB/WvB及びΣLvG/WvGの下限値は、ΣLR/WR、ΣLB/WB及びΣLG/WGの下限値の場合と同様に、それぞれ1である。
(Upper and lower limits of ΣLvR / WvR, ΣLvB / WvB and ΣLvG / WvG)
The lower limit of ΣLvR / WvR, ΣLvB / WvB and ΣLvG / WvG is 1 as in the case of the lower limit of ΣLR / WR, ΣLB / WB and ΣLG / WG, respectively.
 ΣLvR/WvR、ΣLvB/WvB及びΣLvG/WvGの上限値は、ΣLR/WR、ΣLB/WB及びΣLG/WGの上限値の場合と同様に、それぞれ3である。 The upper limit values of ΣLvR / WvR, ΣLvB / WvB and ΣLvG / WvG are 3 as in the case of the upper limit values of ΣLR / WR, ΣLB / WB and ΣLG / WG, respectively.
 なお、表示領域の垂直方向の色度ずれをより効率的に抑制する観点からは、上記したΣLvB/WvB、ΣLvG/WvG、ΣLvR/WvRの値は、下記数式15又は数式16を満たすことがより好ましい。 From the viewpoint of more efficiently suppressing the vertical chromaticity shift of the display area, the above-mentioned values of ΣLvB / WvB, ΣLvG / WvG, and ΣLvR / WvR may satisfy the following formula 15 or formula 16. preferable.
 0.01 <(ΣLvB/WvB-ΣLvR/WvR)< 0.3  ・・・(数式15) 0.01 <(ΣLvB / WvB-ΣLvR / WvR) <0.3 ... (Formula 15)
 0.01 <(ΣLvB/WvB-ΣLvG/WvG)< 0.3  ・・・(数式16) 0.01 <(ΣLvB / WvB-ΣLvG / WvG) <0.3 ... (Formula 16)
 また、表示装置10は、下記の数式17又は数式18の少なくとも一方が満たされている、ことが好ましい。 Further, it is preferable that the display device 10 is satisfied with at least one of the following formula 17 or formula 18.
LvB/LvR≦2   ・・・(数式17) LvB / LvR≤2 ... (Formula 17)
LvB/LvG≦2   ・・・(数式18) LvB / LvG≤2 ... (Formula 18)
 ただし、数式17及び数式18において、LvBは、上記したように赤色の副画素100Rに対応して形成されたレンズ18の底面18Aの垂直方向の幅を示す。LvGは、緑色の副画素100Gに対応して形成されたレンズ18の底面18Aの垂直方向の幅を示す。LvBは、青色の副画素100Bに対応して形成されたレンズ18の底面18Aの垂直方向の幅を示す。 However, in Equation 17 and Equation 18, LvB indicates the vertical width of the bottom surface 18A of the lens 18 formed corresponding to the red sub-pixel 100R as described above. LvG indicates the vertical width of the bottom surface 18A of the lens 18 formed corresponding to the green subpixel 100G. LvB indicates the vertical width of the bottom surface 18A of the lens 18 formed corresponding to the blue sub-pixel 100B.
 表示装置10が、上記数式17又は数式18の少なくとも一方を満たすことで、赤色の副画素100R又は緑色の副画素100Gの少なくとも一方の発光素子13からの光が、青色の副画素100Bに対応したレンズ18に入り込んでくることを抑制することができる。この効果を高める観点からは、数式11及び数式12の両方が満たされていることが好ましい。数式11及び数式12の両方が満たされていることで、赤色の副画素100R及び緑色の副画素100Gの発光素子13からの光が、青色の副画素100Bに対応したレンズ18に入り込んでくることを効果的に抑制することができる。 When the display device 10 satisfies at least one of the above formula 17 or 18, the light from at least one light emitting element 13 of the red sub-pixel 100R or the green sub-pixel 100G corresponds to the blue sub-pixel 100B. It is possible to suppress the entry into the lens 18. From the viewpoint of enhancing this effect, it is preferable that both the formula 11 and the formula 12 are satisfied. When both the formula 11 and the formula 12 are satisfied, the light from the light emitting element 13 of the red sub-pixel 100R and the green sub-pixel 100G enters the lens 18 corresponding to the blue sub-pixel 100B. Can be effectively suppressed.
(第1垂直配置数、第2垂直配置数及び第3垂直配置数)
 レンズ18は、上記したように各色種の副画素100(副画素100R、100G、100B)それぞれに対応して少なくとも1つ形成されることから、上記した第1垂直配置数、第2垂直配置数、第3垂直配置数は、1以上の値である。図1の例では、副画素100Rに対応するレンズ18についての第1垂直配置数は1である。副画素100Gに対応するレンズ18についての第2垂直配置数は1である。また、副画素100Bに対応するレンズ18についての後述する第3垂直配置数は1である。
(Number of first vertical arrangements, number of second vertical arrangements and number of third vertical arrangements)
Since at least one lens 18 is formed corresponding to each of the sub-pixels 100 (sub-pixels 100R, 100G, 100B) of each color type as described above, the first vertical arrangement number and the second vertical arrangement number described above are formed. , The third vertical arrangement number is a value of 1 or more. In the example of FIG. 1, the number of first vertical arrangements for the lens 18 corresponding to the sub-pixel 100R is 1. The number of second vertical arrangements for the lens 18 corresponding to the sub-pixel 100G is 1. Further, the number of third vertical arrangements of the lens 18 corresponding to the sub-pixel 100B, which will be described later, is 1.
 上記したようにレンズ18は、1つの副画素100に対して3つ以下であることが好ましい点を考慮すれば、第1垂直配置数、第2垂直配置数及び第3垂直配置数は、3以下であることが好ましい。 Considering that it is preferable that the number of lenses 18 is 3 or less with respect to one sub-pixel 100 as described above, the number of first vertical arrangements, the number of second vertical arrangements, and the number of third vertical arrangements are three. The following is preferable.
 例えば、図5Bには、第1垂直配置数、第2垂直配置数及び第3垂直配置数が3であるの例が示されている。この場合、垂直方向に並ぶ3つのレンズ18について、それぞれの底面18Aの幅の合計と、開口部14Aの幅との関係が、上記数式13及び数式14の条件を満たす。 For example, FIG. 5B shows an example in which the number of first vertical arrangements, the number of second vertical arrangements, and the number of third vertical arrangements are three. In this case, for the three lenses 18 arranged in the vertical direction, the relationship between the total width of the bottom surface 18A and the width of the opening 14A satisfies the conditions of the above formulas 13 and 14.
 変形例1にかかる表示装置10によれば、表示領域110Aの垂直方向(Y軸方向)に関して、正面方向に対する傾斜角度が大きい方向を視線方向としても色度ずれが生じにくくなることから、垂直方向について視野角特性を向上させることができ、垂直方向の広視野角化を実現することができる。 According to the display device 10 according to the first modification, the chromaticity shift is less likely to occur in the vertical direction (Y-axis direction) of the display area 110A even when the direction in which the tilt angle with respect to the front direction is large is the line-of-sight direction. It is possible to improve the viewing angle characteristics and realize a wide viewing angle in the vertical direction.
(変形例2)
 上記第1の実施形態にかかる表示装置10の副画素100のレイアウトについて、図1の例では水平方向に並ぶ副画素100R、100B、100Gで画素の単位を形成していたが、これは副画素100の一例である。副画素100のレイアウトは、これに限定されない。
(Modification 2)
Regarding the layout of the sub-pixel 100 of the display device 10 according to the first embodiment, in the example of FIG. 1, the sub-pixels 100R, 100B, and 100G arranged in the horizontal direction form a pixel unit, but this is a sub-pixel. It is an example of 100. The layout of the sub-pixel 100 is not limited to this.
 副画素100のレイアウトとしては、図6Bに示すように、2つの副画素100Bと、それぞれ1つの副画素100R、100Gの組み合わせ、それぞれの副画素100が正方配置されていてもよい。この場合、副画素100Bの配置は、図6Bに示すように隣り合わせでもよいし、図7Aに示すように、隣り合わせとなる位置を避けた位置であってもよい。また、図6Aに示すように、副画素100R、100Gを正方形状とし、副画素100Bを長方形状としこれらを組み合わせてもよい。また、図7B、図7Cに示すように、副画素100R、100G、100Bをデルタ状に配置してもよい。 As the layout of the sub-pixel 100, as shown in FIG. 6B, two sub-pixels 100B, a combination of one sub-pixel 100R and 100G, respectively, and each sub-pixel 100 may be arranged squarely. In this case, the sub-pixels 100B may be arranged side by side as shown in FIG. 6B, or may be arranged so as to avoid the positions where they are next to each other as shown in FIG. 7A. Further, as shown in FIG. 6A, the sub-pixels 100R and 100G may be shaped like a square, and the sub-pixels 100B may be shaped like a rectangle, and these may be combined. Further, as shown in FIGS. 7B and 7C, the sub-pixels 100R, 100G, and 100B may be arranged in a delta shape.
 このような副画素100のレイアウトであっても、水平方向、垂直方向いずれについても、レンズ18の底面18Aの幅と開口部14Aの幅を上記した所定の条件を満たすようにすることで、視野角特性を良好にすることができる。 Even in such a layout of the sub-pixel 100, the field of view is set so that the width of the bottom surface 18A of the lens 18 and the width of the opening 14A satisfy the above-mentioned predetermined conditions in both the horizontal direction and the vertical direction. The angle characteristics can be improved.
 図6A、図7Bでは、レンズ18の底面18Aの幅LBを、幅LR、LGよりも大きな値とし、レンズ18の底面18Aの幅LvBを、幅LvR、LvGよりも大きな値とすることで、水平方向、垂直方向いずれについても、上記した所定の条件(数式7,8,13,14)が満たされている。 In FIGS. 6A and 7B, the width LB of the bottom surface 18A of the lens 18 is set to a value larger than the width LR and LG, and the width LvB of the bottom surface 18A of the lens 18 is set to a value larger than the width LvR and LvG. The above-mentioned predetermined conditions (mathematical expressions 7, 8, 13, 14) are satisfied in both the horizontal direction and the vertical direction.
 図6B、図7A、図7Cでは、開口部14Aの幅WBを、幅WR、WGよりも小さな値とし、レンズ18の底面18Aの幅WvBを、幅WvR、WvGよりも小さな値とすることで、水平方向、垂直方向いずれについても、上記した条件(数式7,8,13,14)が満たされている。 In FIGS. 6B, 7A, and 7C, the width WB of the opening 14A is set to a value smaller than the width WR and WG, and the width WvB of the bottom surface 18A of the lens 18 is set to a value smaller than the width WvR and WvG. , The above conditions (formulas 7, 8, 13, 14) are satisfied in both the horizontal direction and the vertical direction.
 このような表示装置では、水平方向、垂直方向の両方について視野角特性が良好になる。 With such a display device, the viewing angle characteristics are good in both the horizontal direction and the vertical direction.
(変形例3)
 表示装置10においては、図8Aに示すように、カラーフィルタ17は、レンズ18よりも第1電極13Aに対して遠い位置に設けられていてもよい。なお、図8A中、符号20は、平坦化層である。平坦化層20は、樹脂等で形成することができる。このことは、図8Bについても同様である。
(Modification 3)
In the display device 10, as shown in FIG. 8A, the color filter 17 may be provided at a position farther from the first electrode 13A than the lens 18. In FIG. 8A, reference numeral 20 is a flattening layer. The flattening layer 20 can be formed of a resin or the like. This also applies to FIG. 8B.
(変形例4)
 表示装置10においては、それぞれの副画素100において、カラーフィルタ17が複数設けられてもよい。この場合、図8Bに示すように、それぞれの副画素100において、カラーフィルタ17が、レンズ18よりも第1電極13Aに対して遠い位置と近い位置の両方の位置に設けられていてもよい。
(Modification example 4)
In the display device 10, a plurality of color filters 17 may be provided in each sub-pixel 100. In this case, as shown in FIG. 8B, in each sub-pixel 100, the color filter 17 may be provided at both positions farther and closer to the first electrode 13A than the lens 18.
(変形例5)
 図1の例に示す表示装置10においては、それぞれの色種に対応する前記副画素に応じたカラーフィルタ17として形成された赤色フィルタ17Rと緑色フィルタ17Gと青色フィルタ17Bの寸法がおおむね同じとなっている。この例は、副画素100の一例であり、第1の実施形態にかかる表示装置10はこれに限定されるものではない。表示装置10においては、図12に示すように、異なる色種の副画素100間で、赤色フィルタ17Rと緑色フィルタ17Gと青色フィルタ17Bの寸法が異なっていてもよい。色度ずれを低減する観点からは、青色フィルタ17Bの水平方向の幅が、赤色フィルタ17Rの水平方向の幅及び緑色フィルタ17Gの水平方向の幅よりも狭いことが好ましい。表示装置10のカラーフィルタ17がこのような構成を有することで、青色光について正面方向の光に対する斜め方向の光の強度が相対的に弱められ、青色光の視野角特性が赤色光と緑色光の視野角特性と近接しやすくなるという効果が得られる。
(Modification 5)
In the display device 10 shown in the example of FIG. 1, the dimensions of the red filter 17R, the green filter 17G, and the blue filter 17B formed as the color filter 17 corresponding to the sub-pixels corresponding to the respective color types are substantially the same. ing. This example is an example of the sub-pixel 100, and the display device 10 according to the first embodiment is not limited to this. In the display device 10, as shown in FIG. 12, the dimensions of the red filter 17R, the green filter 17G, and the blue filter 17B may be different between the sub-pixels 100 of different color types. From the viewpoint of reducing the chromaticity deviation, it is preferable that the horizontal width of the blue filter 17B is narrower than the horizontal width of the red filter 17R and the horizontal width of the green filter 17G. When the color filter 17 of the display device 10 has such a configuration, the intensity of the light in the diagonal direction with respect to the light in the front direction is relatively weakened with respect to the blue light, and the viewing angle characteristics of the blue light are red light and green light. The effect of facilitating close proximity to the viewing angle characteristics of is obtained.
(変形例6)
 第1の実施形態にかかる表示装置10においては、図13に示すように、それぞれの色種に対応する副画素100に応じたカラーフィルタ17として互いに異なる複数色種のフィルタを備え、隣り合う互いに異なる色種のフィルタの間又は境界にブラックマトリクス層19が設けられていてもよい。図13の例では、表示装置10においては、異なる色種の副画素100に対応して赤色フィルタ17Rと緑色フィルタ17Gと青色フィルタ17Bが互い異なる色種のフィルタとして設けられている。そして、表示装置10においては、少なくとも赤色フィルタ17Rと青色フィルタ17Bの境界上、及び緑色フィルタ17Gと青色フィルタ17Bの境界上に、ブラックマトリクス層19が設けられている。ブラックマトリクス層19は、例えば、黒色の着色剤を混入した光学濃度が1以上の黒色の樹脂膜であってよい。具体的にブラックマトリクス層19の材料として、黒色のポリイミド樹脂などを例示することができる。
(Modification 6)
As shown in FIG. 13, the display device 10 according to the first embodiment includes filters of a plurality of different color types as color filters 17 corresponding to the sub-pixels 100 corresponding to the respective color types, and adjacent to each other. The black matrix layer 19 may be provided between or at the boundary between filters of different color types. In the example of FIG. 13, in the display device 10, the red filter 17R, the green filter 17G, and the blue filter 17B are provided as filters of different color types corresponding to the sub-pixels 100 of different color types. In the display device 10, the black matrix layer 19 is provided at least on the boundary between the red filter 17R and the blue filter 17B and on the boundary between the green filter 17G and the blue filter 17B. The black matrix layer 19 may be, for example, a black resin film having an optical density of 1 or more mixed with a black colorant. Specifically, as the material of the black matrix layer 19, a black polyimide resin or the like can be exemplified.
 このように、変形例8の表示装置10によれば、さらにブラックマトリクス層19が設けられていることで、斜め方向に向かう青色光が調整され、視野角特性を良好にすることができる。 As described above, according to the display device 10 of the modified example 8, by further providing the black matrix layer 19, the blue light directed in the oblique direction is adjusted, and the viewing angle characteristic can be improved.
(変形例7)
 図1に例示する表示装置10においては、赤色の副画素100R、緑色の副画素100G及び青色の副画素100Bに設けられたレンズ18の屈折力はおおむね互いに同じとなっている。表示装置10は、この例に限定されない。表示装置10においては、青色の副画素100Bに対応して形成されるレンズ18が、赤色の副画素100Rに対応して形成されるレンズ18及び緑色の副画素100Gに対応して形成されるレンズ18よりも屈折力が大きくてもよい。このようなレンズ18が用いられることで、青色光についての視野角特性を、赤色光と緑色光についての視野角特性に近接した状態とすることができる。また、変形例9にかかる表示装置10によれば、正面輝度を向上させることができる。ここで、レンズ18の屈折力とは、光を正面方向へ導く度合いを示す。したがってレンズ18の屈折力が高いほど、光がより正面方向に導かれやすくなる。青色の副画素100Bに対応して形成されるレンズ18を、赤色の副画素100Rに対応して形成されるレンズ18及び緑色の副画素100Gに対応して形成されるレンズ18よりも、屈折力について相対的に高くする方法は特に限定されない。例えば、その方法としては、青色の副画素100Bに対応して形成されるレンズ18を、赤色の副画素100Rに対応して形成されるレンズ18及び緑色の副画素100Gに対応して形成されるレンズ18よりも高さを高めることを挙げることができる(図14)。
(Modification 7)
In the display device 10 illustrated in FIG. 1, the refractive powers of the lenses 18 provided in the red sub-pixel 100R, the green sub-pixel 100G, and the blue sub-pixel 100B are substantially the same as each other. The display device 10 is not limited to this example. In the display device 10, the lens 18 formed corresponding to the blue sub-pixel 100B corresponds to the lens 18 formed corresponding to the red sub-pixel 100R and the lens 18 formed corresponding to the green sub-pixel 100G. The refractive power may be larger than 18. By using such a lens 18, the viewing angle characteristic for blue light can be brought into a state close to the viewing angle characteristic for red light and green light. Further, according to the display device 10 according to the modification 9, the front luminance can be improved. Here, the refractive power of the lens 18 indicates the degree to which light is guided in the front direction. Therefore, the higher the refractive power of the lens 18, the easier it is for light to be guided in the front direction. The lens 18 formed corresponding to the blue sub-pixel 100B has a higher refractive power than the lens 18 formed corresponding to the red sub-pixel 100R and the lens 18 formed corresponding to the green sub-pixel 100G. The method of making the relative height is not particularly limited. For example, as the method, the lens 18 formed corresponding to the blue sub-pixel 100B is formed corresponding to the lens 18 formed corresponding to the red sub-pixel 100R and the green sub-pixel 100G. It can be mentioned that the height is higher than that of the lens 18 (FIG. 14).
[2 第2の実施形態]
[2-1 表示装置の構成]
 図9は、第2の実施形態にかかる表示装置10の一構成例を示す断面図である。第2の実施形態にかかる表示装置10は、基板11と、複数の発光素子13と、反射壁21と、保護層15と、複数のカラーフィルタ17と、レンズ18とを備える。図9の例に示す第2の実施形態にかかる表示装置10は、絶縁層14を省略して反射壁21を設けた他は、第1の実施形態にかかる表示装置10と同様の構成を備える。
[2 Second Embodiment]
[2-1 Display device configuration]
FIG. 9 is a cross-sectional view showing a configuration example of the display device 10 according to the second embodiment. The display device 10 according to the second embodiment includes a substrate 11, a plurality of light emitting elements 13, a reflection wall 21, a protective layer 15, a plurality of color filters 17, and a lens 18. The display device 10 according to the second embodiment shown in the example of FIG. 9 has the same configuration as the display device 10 according to the first embodiment, except that the insulating layer 14 is omitted and the reflection wall 21 is provided. ..
(反射壁)
 反射壁21は、基板11の第1の主面を基端として隣り合う発光素子13の間から発光素子13の厚み方向(+Z方向)に延び出ている。反射壁21は、絶縁層14と同様に第1電極13Aを発光素子13毎(すなわち副画素毎)に電気的に分離する。また、反射壁21は、絶縁層14と同様に、分離された第1電極13Aの第1の面の周縁部から側面(端面)にかけて覆っていてもよい。
(Reflective wall)
The reflective wall 21 extends from between the light emitting elements 13 adjacent to each other with the first main surface of the substrate 11 as the base end in the thickness direction (+ Z direction) of the light emitting element 13. Similar to the insulating layer 14, the reflective wall 21 electrically separates the first electrode 13A for each light emitting element 13 (that is, for each sub-pixel). Further, the reflective wall 21 may be covered from the peripheral edge portion of the first surface of the separated first electrode 13A to the side surface (end surface), similarly to the insulating layer 14.
 反射壁21は、それぞれの副画素100に対応してそれぞれの発光素子13の発光領域の周囲に壁面22を形成する。反射壁21は、隣り合う赤色の副画素100Rと青色の副画素100Bとの間に形成された場合には、赤色の副画素100R側に位置する面で壁面22R、青色の副画素100B側に位置する面で壁面22Bを形成する。また反射壁21は、隣り合う青色の副画素100Bと緑色の副画素100Gとの間に形成された場合には、青色の副画素100B側に位置する面で壁面22B、緑色の副画素100G側に位置する面で壁面22Gを形成する。反射壁21は、隣り合う赤色の副画素100Rと緑色の副画素100Gとの間に形成された場合には、赤色の副画素100R側に位置する面で壁面22R、緑色の副画素100G側に位置する面で壁面22Gを形成する。なお、色種を特に区別しない場合には、壁面22R、22G、22Bをまとめて壁面22と記載することがある。 The reflective wall 21 forms a wall surface 22 around the light emitting region of each light emitting element 13 corresponding to each sub-pixel 100. When the reflective wall 21 is formed between the adjacent red sub-pixels 100R and the blue sub-pixels 100B, the reflective wall 21 is located on the surface located on the red sub-pixel 100R side and on the wall surface 22R and the blue sub-pixel 100B side. The wall surface 22B is formed on the surface to be located. Further, when the reflective wall 21 is formed between the adjacent blue sub-pixels 100B and the green sub-pixels 100G, the reflective wall 21 is a surface located on the blue sub-pixel 100B side and is located on the wall surface 22B and the green sub-pixel 100G side. The wall surface 22G is formed on the surface located at. When the reflective wall 21 is formed between the adjacent red sub-pixel 100R and the green sub-pixel 100G, the reflective wall 21 is located on the surface located on the red sub-pixel 100R side and is located on the wall surface 22R and the green sub-pixel 100G side. The wall surface 22G is formed on the surface to be located. When the color types are not particularly distinguished, the wall surface 22R, 22G, and 22B may be collectively referred to as the wall surface 22.
 壁面22Bは、緑色の副画素100Bに対応する発光素子13の発光領域SBの周囲(図9の例では、発光領域SBの水平方向に離れた両側縁)に形成される。これと同様に、壁面22R、22Gは、それぞれ赤色、緑色の副画素100R、100Gに対応する発光素子13の発光領域SR、SGの周囲(図9の例では、それぞれ発光領域SR、SGの水平方向に離れた両側縁)に形成される。 The wall surface 22B is formed around the light emitting region SB of the light emitting element 13 corresponding to the green sub-pixel 100B (in the example of FIG. 9, both side edges of the light emitting region SB separated in the horizontal direction). Similarly, the wall surfaces 22R and 22G are around the light emitting regions SR and SG of the light emitting element 13 corresponding to the red and green subpixels 100R and 100G, respectively (in the example of FIG. 9, the light emitting regions SR and SG are horizontal, respectively). Formed on both sides separated in the direction).
 反射壁21の形状は、図9の例では、水平断面(XZ平面での断面)が台形となるような形状に形成されているが、このことは、反射壁21の形状を特に限定するものではない。反射壁21の形状は、水平断面が長方形状などの形状とされていてもよい。 In the example of FIG. 9, the shape of the reflective wall 21 is formed so that the horizontal cross section (cross section in the XZ plane) is trapezoidal, but this particularly limits the shape of the reflective wall 21. is not. The shape of the reflective wall 21 may be such that the horizontal cross section is rectangular.
 反射壁21は、光反射性と絶縁性を有するものであれば素材を特に限定されるものではなく、酸化シリコン(SiO)、酸窒化シリコン(SiON)等を例示することができる。 The material of the reflective wall 21 is not particularly limited as long as it has light reflection and insulating properties, and silicon oxide (SiO), silicon oxynitride (SiON), and the like can be exemplified.
 表示装置10においては、レンズ18の底面18Aが、発光素子13の第2電極13Cの表面側(第1の面側)に向けられており、それぞれの副画素100における発光素子13で生じた光の一部は壁面22で反射してレンズ18に向かうことができる。 In the display device 10, the bottom surface 18A of the lens 18 is directed to the surface side (first surface side) of the second electrode 13C of the light emitting element 13, and the light generated by the light emitting element 13 in each sub-pixel 100. A part of the light can be reflected by the wall surface 22 and directed toward the lens 18.
(レンズの底面と壁面の先端部の幅の関係)
 表示装置10においては、レンズ18の底面18Aと壁面22の先端部24の幅に関して、下記の数式19及び数式20が満たされている。
(Relationship between the width of the bottom of the lens and the width of the tip of the wall surface)
In the display device 10, the following mathematical formulas 19 and 20 are satisfied with respect to the widths of the bottom surface 18A of the lens 18 and the tip end portion 24 of the wall surface 22.
ΣLR/WrR<ΣLB/WrB   ・・・(数式19) ΣLR / WrR <ΣLB / WrB ... (Formula 19)
ΣLG/WrG<ΣLB/WrB   ・・・(数式20) ΣLG / WrG <ΣLB / WrB ... (Formula 20)
 ただし、数式19及び数式20において、WrRは、赤色の副画素100Rに対応した壁面22Rの先端部24の水平方向の幅である。WrGは、緑色の副画素100Gに対応した壁面22Gの先端部24の水平方向の幅である。WrBは、青色の副画素100Bに対応した壁面22Bの先端部24の水平方向の幅である。壁面22Rの先端部24の水平方向の幅とは、発光領域SRの中心を通り、表示装置10の水平断面(XZ平面での断面)における幅を示す。これは、赤色の副画素100Rのほか、緑色の副画素100G、青色の副画素100Bに対応した開口部14Aについても同様である。 However, in Equation 19 and Equation 20, WrR is the horizontal width of the tip portion 24 of the wall surface 22R corresponding to the red sub-pixel 100R. WrG is the horizontal width of the tip portion 24 of the wall surface 22G corresponding to the green sub-pixel 100G. WrB is the horizontal width of the tip portion 24 of the wall surface 22B corresponding to the blue sub-pixel 100B. The horizontal width of the tip portion 24 of the wall surface 22R means the width in the horizontal cross section (cross section in the XZ plane) of the display device 10 passing through the center of the light emitting region SR. This also applies to the opening 14A corresponding to the green sub-pixel 100G and the blue sub-pixel 100B, in addition to the red sub-pixel 100R.
 数式19及び数式20におけるΣLR、ΣLG及びΣLBは、それぞれ第1の実施形態において説明したΣLR、ΣLG及びΣLBと同じである。 The ΣLR, ΣLG and ΣLB in the formulas 19 and 20 are the same as the ΣLR, ΣLG and ΣLB described in the first embodiment, respectively.
 図9に示す第2の実施形態の例では、絶縁層14が省略されていたが、第1の実施形態と同様に絶縁層14がさらに形成されてもよい。この場合、表示装置10が第1の実施形態と第2の実施形態を組み合わせたものであってもよい。 In the example of the second embodiment shown in FIG. 9, the insulating layer 14 is omitted, but the insulating layer 14 may be further formed as in the first embodiment. In this case, the display device 10 may be a combination of the first embodiment and the second embodiment.
 上記では、レンズ18の底面18Aと壁面22の先端部24に関する水平方向の幅について上記の数式19、20が規定されたが、レンズ18の底面18Aと壁面22の先端部24に関する垂直方向の幅についても同様に規定されてよい。 In the above, the above equations 19 and 20 are defined for the horizontal width of the bottom surface 18A of the lens 18 and the tip portion 24 of the wall surface 22, but the vertical width of the bottom surface 18A of the lens 18 and the tip end portion 24 of the wall surface 22. May be specified in the same manner.
[2-2 作用効果]
 第2の実施形態にかかる表示装置10によれば、数式19及び数式20が満たされることで、第1の実施形態にかかる表示装置10と同様に、青色光の視野角特性が、赤色光と緑色光の視野角特性に近接し、色度ずれが低減される。第2の実施形態にかかる表示装置10によれば、第1の実施形態と同様に、水平方向について視野角特性を向上させることができ、水平方向の広視野角化を実現することができる。
[2-2 action effect]
According to the display device 10 according to the second embodiment, when the equation 19 and the equation 20 are satisfied, the viewing angle characteristic of the blue light becomes red light as in the display device 10 according to the first embodiment. It is close to the viewing angle characteristics of green light and the chromaticity deviation is reduced. According to the display device 10 according to the second embodiment, the viewing angle characteristic in the horizontal direction can be improved and the wide viewing angle in the horizontal direction can be realized, as in the first embodiment.
[3 第3の実施形態]
[3-1 表示装置の構成]
 図10は、第3の実施形態にかかる表示装置10の一構成例を示す断面図である。第3の実施形態にかかる表示装置10は、基板11と、反射板23と、複数の発光素子13と、絶縁層14と、保護層15と、複数のカラーフィルタ17と、レンズ18とを備える。図10の例に示す第3の実施形態にかかる表示装置10は、発光素子13の下方に反射板23を設けた他は、第1の実施形態にかかる表示装置10と同様の構成を備える。
[3 Third Embodiment]
[3-1 Display device configuration]
FIG. 10 is a cross-sectional view showing a configuration example of the display device 10 according to the third embodiment. The display device 10 according to the third embodiment includes a substrate 11, a reflector 23, a plurality of light emitting elements 13, an insulating layer 14, a protective layer 15, a plurality of color filters 17, and a lens 18. .. The display device 10 according to the third embodiment shown in the example of FIG. 10 has the same configuration as the display device 10 according to the first embodiment, except that the reflector 23 is provided below the light emitting element 13.
(反射板23)
 反射板23は、副画素100に応じて発光素子13の下方の所定の位置に設けられる。図10の例では基板11内に設けられている。反射板23は、光反射性を有する素材から形成される。
(Reflector 23)
The reflector 23 is provided at a predetermined position below the light emitting element 13 according to the sub-pixel 100. In the example of FIG. 10, it is provided in the substrate 11. The reflector 23 is formed of a material having light reflectivity.
 第3の実施形態では、それぞれの副画素100において反射板23と第2電極13Cが、共振器構造を構成している。共振器構造は、規定波長の光を共振させ強調し、出射する。具体的には、副画素100Rでは、共振器構造は、有機化合物層13Bで発生された白色光に含まれる赤色光を共振させ強調し、外部に放出する。副画素100Gでは、共振器構造は、有機化合物層13Bで発生された白色光に含まれる緑色光を共振させ強調し、外部に放出する。副画素100Gでは、共振器構造は、有機化合物層13Bで発生された白色光に含まれる青色光を共振させ強調し、外部に放出する。 In the third embodiment, the reflector 23 and the second electrode 13C form a resonator structure in each sub-pixel 100. The resonator structure resonates, emphasizes, and emits light having a specified wavelength. Specifically, in the sub-pixel 100R, the resonator structure resonates and emphasizes the red light contained in the white light generated in the organic compound layer 13B, and emits it to the outside. In the sub-pixel 100G, the resonator structure resonates and emphasizes the green light contained in the white light generated in the organic compound layer 13B, and emits it to the outside. In the sub-pixel 100G, the resonator structure resonates and emphasizes the blue light contained in the white light generated in the organic compound layer 13B, and emits it to the outside.
 反射板23と第2電極13Cとの間の光路長(光学的距離)は、共振させる規定波長の光に応じて設定されている。より具体的には、副画素100Rにおける共振器構造では、反射板23と第2電極13Cとの間の光路長は、赤色光が共振するように設定されている。副画素100Gにおける共振器構造では、反射板23と第2電極13Cとの間の光路長は、緑色光が共振するように設定されている。共振器構造102Bでは、反射板23と第2電極13Cとの間の光路長は、青色光が共振するように設定されている。 The optical path length (optical distance) between the reflector 23 and the second electrode 13C is set according to the light of the specified wavelength to be resonated. More specifically, in the resonator structure of the sub-pixel 100R, the optical path length between the reflector 23 and the second electrode 13C is set so that red light resonates. In the resonator structure of the sub-pixel 100G, the optical path length between the reflector 23 and the second electrode 13C is set so that green light resonates. In the resonator structure 102B, the optical path length between the reflector 23 and the second electrode 13C is set so that blue light resonates.
 表示装置10においては、レンズ18の底面18Aと反射板23の幅に関して、下記の数式21及び数式22が満たされている。 In the display device 10, the following mathematical formulas 21 and 22 are satisfied with respect to the widths of the bottom surface 18A of the lens 18 and the reflector 23.
ΣLR/WbR<ΣLB/WbB   ・・・(数式21) ΣLR / WbR <ΣLB / WbB ... (Formula 21)
ΣLG/WbG<ΣLB/WbB   ・・・(数式22) ΣLG / WbG <ΣLB / WbB ... (Formula 22)
 ただし、数式21及び数式22において、WbRは、赤色の副画素100Rに対応した反射板23の水平方向の幅であり、WbGは、緑色の副画素100Gに対応した反射板23の水平方向の幅であり、WbBは、青色の副画素100Bに対応した反射板23の水平方向の幅である。なお、赤色の副画素100Rに対応した反射板23の水平方向の幅とは、発光領域SRの中心を通り、表示装置10の水平断面(XZ平面での断面)における幅を示す。これは、赤色の副画素100Rのほか、緑色の副画素100G、青色の副画素100Bに対応した反射板23についても同様である。 However, in Equations 21 and 22, WbR is the horizontal width of the reflector 23 corresponding to the red sub-pixel 100R, and WbG is the horizontal width of the reflector 23 corresponding to the green sub-pixel 100G. WbB is the horizontal width of the reflector 23 corresponding to the blue sub-pixel 100B. The horizontal width of the reflector 23 corresponding to the red sub-pixel 100R indicates the width in the horizontal cross section (cross section in the XZ plane) of the display device 10 passing through the center of the light emitting region SR. This also applies to the reflector 23 corresponding to the green sub-pixel 100G and the blue sub-pixel 100B, in addition to the red sub-pixel 100R.
 数式19及び数式20におけるΣLR、ΣLG及びΣLBは、それぞれ第1の実施形態において説明したΣLR、ΣLG及びΣLBと同じである。 The ΣLR, ΣLG and ΣLB in the formulas 19 and 20 are the same as the ΣLR, ΣLG and ΣLB described in the first embodiment, respectively.
(レンズと反射板の離間距離)
 表示装置10においては、それぞれの副画素100に対応した反射板23の表面23Aから、レンズ18の底面18Aまでの離間距離BHが、0.5μm以上5.0μm以下であることが好ましく、0.5μm以上2.0μm以下であることがより好ましい。離間距離BHがこのような範囲であると、表示装置10をマイクロディスプレイとすることが容易となる。また、このことは、第1の実施形態と同様に、離間距離BHがこのような範囲である場合に色度ずれを抑制されることがより強く要請されることを示すものである。
(Distance between lens and reflector)
In the display device 10, the separation distance BH from the surface 23A of the reflector 23 corresponding to each sub-pixel 100 to the bottom surface 18A of the lens 18 is preferably 0.5 μm or more and 5.0 μm or less. It is more preferably 5 μm or more and 2.0 μm or less. When the separation distance BH is in such a range, it becomes easy to use the display device 10 as a micro display. Further, this indicates that, as in the first embodiment, it is more strongly required to suppress the chromaticity shift when the separation distance BH is in such a range.
 上記では、レンズ18の底面18Aと反射板23に関する水平方向の幅について上記の数式21、22が規定されたが、レンズ18の底面と反射板23に関する垂直方向の幅についても同様に規定されてよい。 In the above, the above equations 21 and 22 are defined for the horizontal width of the bottom surface 18A of the lens 18 and the reflector 23, but the vertical width of the bottom surface of the lens 18 and the reflector 23 is also defined in the same manner. good.
[3-2 作用効果]
 第3の実施形態にかかる表示装置10によれば、数式21及び数式22が満たされることで、第1の実施形態にかかる表示装置10と同様に、青色光の視野角特性が、赤色光と緑色光の視野角特性に近接し、色度ずれが低減される。第3の実施形態にかかる表示装置10によれば、第1の実施形態と同様に、水平方向について視野角特性を向上させることができ、水平方向の広視野角化を実現することができる。
[3-2 Action / Effect]
According to the display device 10 according to the third embodiment, when the formula 21 and the formula 22 are satisfied, the viewing angle characteristic of the blue light becomes the red light as in the display device 10 according to the first embodiment. It is close to the viewing angle characteristics of green light and the chromaticity deviation is reduced. According to the display device 10 according to the third embodiment, the viewing angle characteristic in the horizontal direction can be improved and the wide viewing angle in the horizontal direction can be realized, as in the first embodiment.
[4 第4の実施形態]
[4-1 表示装置の構成]
 図11は、第4の実施形態にかかる表示装置10の一構成例を示す断面図である。第4の実施形態にかかる表示装置10は、第1電極の形状を湾曲形状とした他は、第1の実施形態にかかる表示装置10と同様の構成を備える。第4の実施形態にかかる表示装置10では、第1電極13Aの第1の主面側の面が凹状湾曲面を形成している。また、この場合、第1電極13Aは、光反射性を有する層であることが好ましい。
[4 Fourth Embodiment]
[4-1 Display device configuration]
FIG. 11 is a cross-sectional view showing a configuration example of the display device 10 according to the fourth embodiment. The display device 10 according to the fourth embodiment has the same configuration as the display device 10 according to the first embodiment, except that the shape of the first electrode is curved. In the display device 10 according to the fourth embodiment, the surface of the first electrode 13A on the first main surface side forms a concave curved surface. Further, in this case, the first electrode 13A is preferably a layer having light reflectivity.
[4-2 作用効果]
 第4の実施形態にかかる表示装置10によれば、第1電極13Aの第1の主面側の面が凹状湾曲面を形成していることで、発光素子13から生じた光のうち第1電極13Aで反射した光が集められやすくなり、赤色、青色及び緑色の視野角特性の相違を小さくすることができる。また、第4の実施形態にかかる表示装置10によれば、正面輝度を向上することができる。
[4-2 Action / Effect]
According to the display device 10 according to the fourth embodiment, the surface of the first electrode 13A on the first main surface side forms a concave curved surface, so that the first of the light generated from the light emitting element 13 is formed. The light reflected by the electrode 13A can be easily collected, and the difference in viewing angle characteristics of red, blue, and green can be reduced. Further, according to the display device 10 according to the fourth embodiment, the front luminance can be improved.
[5 シミュレーション例]
[5-1 レンズの底面の幅と開口部の幅の例(第1のシミュレーション)]
 表示装置10におけるレンズ18の底面の幅と開口部14Aの幅との関係を規定したシミュレーション例について、図15A、図15Bを用いて説明する。図15Aは、第1の実施形態にかかる表示装置10におけるレンズ18の底面の水平方向の幅と開口部14Aの水平方向の幅との関係が数式1及び数式2を満たす条件でのシミュレーションの結果を示す図である。図15Bは、各色の副画素100についてレンズ18の底面の幅と開口部14Aの幅を同じくした他は上記第1の実施形態にかかる表示装置10と同様の構成とした表示装置(比較用表示装置と呼ぶ)でのシミュレーションの結果を示す図である。なお、表示装置10について、副画素100(100R、100B、100G)のレイアウトのパターンが、図7Bに示すバターン(デルタ状)となっており、レンズ18は、ドーム状の形状を呈し、レンズ18の平面図で円形状となる形状で形成されており、開口部14Aが円形状となっている場合が、採用された。
[5 Simulation example]
[5-1 Example of lens bottom width and opening width (first simulation)]
A simulation example defining the relationship between the width of the bottom surface of the lens 18 and the width of the opening 14A in the display device 10 will be described with reference to FIGS. 15A and 15B. FIG. 15A shows the results of simulation under the condition that the relationship between the horizontal width of the bottom surface of the lens 18 and the horizontal width of the opening 14A in the display device 10 according to the first embodiment satisfies Equations 1 and 2. It is a figure which shows. FIG. 15B shows a display device (comparative display) having the same configuration as the display device 10 according to the first embodiment, except that the width of the bottom surface of the lens 18 and the width of the opening 14A are the same for the sub-pixels 100 of each color. It is a figure which shows the result of the simulation in (called a device). Regarding the display device 10, the layout pattern of the sub-pixels 100 (100R, 100B, 100G) is a pattern (delta shape) shown in FIG. 7B, and the lens 18 has a dome shape, and the lens 18 has a dome shape. It is formed in a circular shape in the plan view of the above, and the case where the opening 14A has a circular shape is adopted.
 シミュレーションは、表示装置10において赤色、青色及び緑色のそれぞれの色種について水平方向の視野角[degree]と光強度の関係を定め、さらに視野角0°(0[degree])の位置での光強度を基準として各視野角[degree]での相対的な光強度(規格化強度)を定めることで実施された。 In the simulation, the relationship between the horizontal viewing angle [degree] and the light intensity is determined for each of the red, blue, and green color types on the display device 10, and the light at the viewing angle of 0 ° (0 [degree]) is determined. It was carried out by determining the relative light intensity (standardized intensity) at each viewing angle [degree] with the intensity as a reference.
 シミュレーションの結果は、図15A、図15Bに示すとおりである。図15A、図15Bのグラフは、視野角と規格化強度の関係に基づく、視野角を横軸とし且つ規格化強度を縦軸としたグラフである。図15A、図15Bに示すグラフでは、横軸については、視野角0°(0[degree])の位置を横軸の中心として、左右方向に視野角が大きくなるように座標が規定されている。図15A、図15Bにおいて、実線で示すグラフE(B)は、青色光についての視野角と規格化強度の関係を示すグラフである。一点鎖線で示すグラフE(R)は、赤色光についての視野角と規格化強度の関係を示すグラフである。破線で示すグラフE(G)は、緑色光についての視野角と規格化強度の関係を示すグラフである。なお、このことは、後述する第2のシミュレーションの結果を示す図16A、図16B及び図17についても同じである。 The results of the simulation are as shown in FIGS. 15A and 15B. The graphs of FIGS. 15A and 15B are graphs based on the relationship between the viewing angle and the normalized intensity, with the viewing angle as the horizontal axis and the normalized intensity as the vertical axis. In the graphs shown in FIGS. 15A and 15B, with respect to the horizontal axis, the coordinates are defined so that the viewing angle increases in the left-right direction with the position of the viewing angle 0 ° (0 [degree]) as the center of the horizontal axis. .. In FIGS. 15A and 15B, the graph E (B) shown by the solid line is a graph showing the relationship between the viewing angle and the normalized intensity of blue light. The graph E (R) shown by the alternate long and short dash line is a graph showing the relationship between the viewing angle and the normalized intensity of red light. The graph E (G) shown by the broken line is a graph showing the relationship between the viewing angle and the normalized intensity of green light. This also applies to FIGS. 16A, 16B and 17 showing the results of the second simulation described later.
 図15A、図15Bに示すシミュレーションの結果から、青色光についてのグラフ(実線で示すグラフE(B))と赤色光についてのグラフ(一点鎖線で示すグラフE(R))と青色光についてのグラフ(破線で示すグラフE(B))との一致性を比較した場合に、
第1の実施形態にかかる表示装置10においては、比較用表示装置に比べ、グラフE(B)が、グラフE(R)、E(G)に近接していることから、第1の実施形態にかかる表示装置10は、比較用表示装置よりも、赤色、青色及び緑色の視野角特性が近接していることが確認された。すなわち、第1の実施形態にかかる表示装置10は、斜め方向から表示装置を見た場合と正面方向から表示装置を見た場合とで、色度ずれを抑制することができることが確認された。
From the simulation results shown in FIGS. 15A and 15B, a graph for blue light (graph E (B) shown by a solid line), a graph for red light (graph E (R) shown by a alternate long and short dash line), and a graph for blue light. When comparing the consistency with (graph E (B) shown by a broken line),
In the display device 10 according to the first embodiment, since the graph E (B) is closer to the graphs E (R) and E (G) than the comparison display device, the first embodiment It was confirmed that the display device 10 according to the above has the viewing angle characteristics of red, blue, and green closer to those of the display device for comparison. That is, it was confirmed that the display device 10 according to the first embodiment can suppress the color shift between the case where the display device is viewed from an oblique direction and the case where the display device is viewed from the front direction.
[5-2 レンズの底面の幅と第1電極の離間距離の例(第2のシミュレーション)]
 レンズ18の底面と第1電極13Aの離間距離WHは、保護層15の厚みの相違に応じて相違を生じる。そこで保護層15の厚みの相違に応じた赤色、青色及び緑色の視野角特性の相違についてシミュレーションを行った。表示装置10としては、レンズ18を省略した他は上記第1のシミュレーションに用いた比較用表示装置と同様のものが採用された。また保護層15としては、SiNを材料とする層が採用された。保護層15の厚みについては、0.5μm、1.0μm、2.0μmが採用された。
[5-2 Example of the width of the bottom surface of the lens and the separation distance of the first electrode (second simulation)]
The separation distance WH between the bottom surface of the lens 18 and the first electrode 13A varies depending on the thickness of the protective layer 15. Therefore, a simulation was performed for the difference in viewing angle characteristics of red, blue, and green according to the difference in the thickness of the protective layer 15. As the display device 10, the same display device as the comparative display device used in the first simulation was adopted except that the lens 18 was omitted. Further, as the protective layer 15, a layer made of SiN was adopted. As the thickness of the protective layer 15, 0.5 μm, 1.0 μm, and 2.0 μm were adopted.
 シミュレーションは、第1のシミュレーションと同様に、赤色、青色及び緑色について視野角と規格化強度の関係を定めることで実施された。シミュレーションの結果は、図16A、図16B、図17に示すとおりである。なお、図16Aは、保護層15の厚みが0.5μmの場合のシミュレーションの結果を示す図である。図16Bは、保護層15の厚みが1.0μmの場合のシミュレーションの結果を示す図である。図17は、保護層15の厚みが2.0μmの場合のシミュレーションの結果を示す図である。 Similar to the first simulation, the simulation was carried out by defining the relationship between the viewing angle and the normalized intensity for red, blue and green. The results of the simulation are as shown in FIGS. 16A, 16B, and 17. Note that FIG. 16A is a diagram showing the results of simulation when the thickness of the protective layer 15 is 0.5 μm. FIG. 16B is a diagram showing the results of simulation when the thickness of the protective layer 15 is 1.0 μm. FIG. 17 is a diagram showing the results of simulation when the thickness of the protective layer 15 is 2.0 μm.
 図16A、図16B、図17のシミュレーションの結果から、保護層15の厚みが小さい場合に、グラフE(B)が、グラフE(R)、E(G)と大きく相違するようになることから、赤色、青色及び緑色の視野角特性の相違が大きくなることが確認された。そして、このことから、レンズ18の底面と第1電極13Aの離間距離WHが小さい場合ほど色度ずれに対する考慮が強く要請されることが確認された。 From the simulation results of FIGS. 16A, 16B, and 17, when the thickness of the protective layer 15 is small, the graph E (B) is significantly different from the graphs E (R) and E (G). , Red, blue and green were confirmed to have a large difference in viewing angle characteristics. From this, it was confirmed that the smaller the separation distance WH between the bottom surface of the lens 18 and the first electrode 13A, the stronger the consideration for chromaticity deviation is required.
[6 応用例]
(電子機器)
 上述の第1の実施形態から第4の実施形態および第1の実施形態における各変形例に係る表示装置10は、種々の電子機器に備えられてもよい。特にビデオカメラや一眼レフカメラの電子ビューファインダまたはヘッドマウント型ディスプレイ等の高解像度が要求され、目の近くで拡大して使用されるものに備えられることが好ましい。
[6 Application example]
(Electronics)
The display device 10 according to each modification from the first embodiment to the fourth embodiment and the first embodiment described above may be provided in various electronic devices. In particular, high resolution is required such as an electronic viewfinder or a head-mounted display of a video camera or a single-lens reflex camera, and it is preferable to prepare for a magnified use near the eyes.
(具体例1)
 図18Aは、デジタルスチルカメラ310の外観の一例を示す正面図である。図18Bは、デジタルスチルカメラ310の外観の一例を示す背面図である。このデジタルスチルカメラ310は、レンズ交換式一眼レフレックスタイプのものであり、カメラ本体部(カメラボディ)311の正面略中央に交換式の撮影レンズユニット(交換レンズ)312を有し、正面左側に撮影者が把持するためのグリップ部313を有している。
(Specific example 1)
FIG. 18A is a front view showing an example of the appearance of the digital still camera 310. FIG. 18B is a rear view showing an example of the appearance of the digital still camera 310. This digital still camera 310 is of an interchangeable lens type single-lens reflex type, has an interchangeable shooting lens unit (interchangeable lens) 312 in the center of the front of the camera body (camera body) 311 and is on the left side of the front. It has a grip portion 313 for the photographer to grip.
 カメラ本体部311の背面中央から左側にずれた位置には、モニタ314が設けられている。モニタ314の上部には、電子ビューファインダ(接眼窓)315が設けられている。撮影者は、電子ビューファインダ315を覗くことによって、撮影レンズユニット312から導かれた被写体の光像を視認して構図決定を行うことが可能である。電子ビューファインダ315としては、上述の一実施形態および変形例に係る表示装置10のいずれかを用いることができる。 A monitor 314 is provided at a position shifted to the left from the center of the back of the camera body 311. An electronic viewfinder (eyepiece window) 315 is provided on the upper part of the monitor 314. By looking into the electronic viewfinder 315, the photographer can visually recognize the optical image of the subject guided from the photographing lens unit 312 and determine the composition. As the electronic viewfinder 315, any one of the display devices 10 according to the above-described embodiment and modification can be used.
(具体例2)
 図19は、ヘッドマウントディスプレイ320の外観の一例を示す斜視図である。ヘッドマウントディスプレイ320は、例えば、眼鏡形の表示部321の両側に、使用者の頭部に装着するための耳掛け部322を有している。表示部321としては、上述の一実施形態および変形例に係る表示装置10のいずれかを用いることができる。
(Specific example 2)
FIG. 19 is a perspective view showing an example of the appearance of the head-mounted display 320. The head-mounted display 320 has, for example, ear hooks 322 for being worn on the user's head on both sides of the eyeglass-shaped display unit 321. As the display unit 321, any one of the display devices 10 according to the above-described embodiment and modification can be used.
(具体例3)
 図20は、テレビジョン装置330の外観の一例を示す斜視図である。このテレビジョン装置330は、例えば、フロントパネル332およびフィルターガラス333を含む映像表示画面部331を有しており、この映像表示画面部331は、上述の一実施形態および変形例に係る表示装置10のいずれかにより構成される。
(Specific example 3)
FIG. 20 is a perspective view showing an example of the appearance of the television device 330. The television device 330 has, for example, a video display screen unit 331 including a front panel 332 and a filter glass 333, and the video display screen unit 331 is a display device 10 according to the above-described embodiment and modification. It is composed of any of.
 以上、本開示の第1の実施形態から第3の実施形態およびそれらの変形例について具体的に説明したが、本開示は、上述の第1の実施形態から第3の実施形態およびそれらの変形例に限定されるものではなく、本開示の技術的思想に基づく各種の変形が可能である。 Although the first to third embodiments and variations thereof of the present disclosure have been specifically described above, the present disclosure describes the above-mentioned first to third embodiments and modifications thereof. Not limited to examples, various modifications based on the technical idea of the present disclosure are possible.
 例えば、上述の第1の実施形態から第3の実施形態およびそれらの変形例において挙げた構成、方法、工程、形状、材料および数値等はあくまでも例に過ぎず、必要に応じてこれと異なる構成、方法、工程、形状、材料および数値等を用いてもよい。 For example, the configurations, methods, processes, shapes, materials, numerical values, etc. given in the above-mentioned first to third embodiments and variations thereof are merely examples, and different configurations are required as necessary. , Methods, processes, shapes, materials, numerical values, etc. may be used.
 上述の第1の実施形態から第3の実施形態およびそれらの変形例の構成、方法、工程、形状、材料および数値等は、本開示の主旨を逸脱しない限り、互いに組み合わせることが可能である。 The configurations, methods, processes, shapes, materials, numerical values, etc. of the above-mentioned first to third embodiments and their modifications can be combined with each other as long as they do not deviate from the gist of the present disclosure.
 上述の第1の実施形態から第3の実施形態およびそれらの変形例に例示した材料は、特に断らない限り、1種を単独でまたは2種以上を組み合わせて用いることができる。 Unless otherwise specified, the materials exemplified in the above-mentioned first to third embodiments and their modifications can be used alone or in combination of two or more.
 また、本開示は以下の構成を採用することもできる。
(1)画素の単位を形成し少なくとも赤色、緑色と青色の色種に対応した複数の副画素と、
 それぞれの前記副画素に対応して形成され、且つ有機化合物層を挟んで第1電極と第2電極とを積層した構造を有する複数の発光素子と、
 それぞれの前記副画素に対応して少なくとも1つ形成されるレンズと、を備え、
 それぞれの前記発光素子には、前記第1電極の周縁部を覆い且つ前記第1電極上にそれぞれの前記副画素に対応した開口部を形成している絶縁層が設けられており、
 下記の数式23及び数式24が満たされている、
 表示装置。
The present disclosure may also adopt the following configuration.
(1) A plurality of sub-pixels that form a pixel unit and correspond to at least red, green, and blue color types.
A plurality of light emitting elements formed corresponding to each of the sub-pixels and having a structure in which a first electrode and a second electrode are laminated with an organic compound layer interposed therebetween.
A lens formed at least one corresponding to each of the sub-pixels is provided.
Each of the light emitting elements is provided with an insulating layer that covers the peripheral edge of the first electrode and forms an opening corresponding to each of the sub-pixels on the first electrode.
The following formulas 23 and 24 are satisfied.
Display device.
ΣLR/WR<ΣLB/WB   ・・・(数式23) ΣLR / WR <ΣLB / WB ... (Formula 23)
ΣLG/WG<ΣLB/WB   ・・・(数式24) ΣLG / WG <ΣLB / WB ... (Formula 24)
 ただし、前記数式23及び前記数式24において、前記WRは、赤色の前記副画素に対応した前記開口部の水平方向の幅であり、赤色の前記副画素に対応した前記レンズの水平方向に沿った形成数を第1水平配置数とした場合に、前記ΣLRは、前記第1水平配置数が1であれば赤色の前記副画素に対応して形成された前記レンズの底面の水平方向の幅、前記第1水平配置数が2以上であれば赤色の前記副画素に対応して水平方向に並んだ状態で形成された前記レンズのそれぞれの底面の水平方向の幅の合計を示し、
 前記WGは、緑色の前記副画素に対応した前記開口部の水平方向の幅であり、緑色の前記副画素に対応した前記レンズの水平方向に沿った形成数を第2水平配置数とした場合に、前記ΣLGは、前第2水平配置数が1であれば緑色の前記副画素に対応して形成された前記レンズの底面の水平方向の幅、前記第2水平配置数が2以上であれば緑色の前記副画素に対応して水平方向に並んだ状態で形成された前記レンズのそれぞれの底面の水平方向の幅の合計を示し、
 前記WBは、青色の前記副画素に対応した前記開口部の水平方向の幅であり、青色の前記副画素に対応した前記レンズの水平方向に沿った形成数を第3水平配置数とした場合に、前記ΣLBは、前記第3水平配置数が1であれば青色の前記副画素に対応して形成された前記レンズの底面の水平方向の幅、前記第3水平配置数が2以上であれば青色の前記副画素に対応して水平方向に並んだ状態で形成された前記レンズのそれぞれの底面の水平方向の幅の合計を示す。
However, in the formula 23 and the formula 24, the WR is the horizontal width of the opening corresponding to the red sub-pixel, and is along the horizontal direction of the lens corresponding to the red sub-pixel. When the number of formations is the first horizontal arrangement number, the ΣLR is the horizontal width of the bottom surface of the lens formed corresponding to the red sub-pixel if the first horizontal arrangement number is 1. When the number of the first horizontal arrangements is 2 or more, the total horizontal width of each bottom surface of the lenses formed in a state of being arranged horizontally corresponding to the red sub-pixels is shown.
The WG is the horizontal width of the opening corresponding to the green sub-pixel, and the number of formations of the lens corresponding to the green sub-pixel along the horizontal direction is defined as the second horizontal arrangement number. In addition, if the number of front second horizontal arrangements is 1, the ΣLG has a horizontal width of the bottom surface of the lens formed corresponding to the green sub-pixels, and the number of second horizontal arrangements is 2 or more. For example, the total horizontal width of the bottom surface of each of the lenses formed in a horizontally aligned state corresponding to the green sub-pixel is shown.
The WB is the horizontal width of the opening corresponding to the blue sub-pixel, and the number of formations of the lens corresponding to the blue sub-pixel along the horizontal direction is defined as the third horizontal arrangement number. In addition, if the third horizontal arrangement number is 1, the ΣLB has a horizontal width of the bottom surface of the lens formed corresponding to the blue sub-pixel, and the third horizontal arrangement number is 2 or more. For example, the sum of the horizontal widths of the bottom surfaces of the lenses formed in a horizontally aligned state corresponding to the blue sub-pixels is shown.
(2)下記の数式25及び数式26が満たされている、
 上記(1)に記載の表示装置。
(2) The following formulas 25 and 26 are satisfied.
The display device according to (1) above.
ΣLvR/WvR<ΣLvB/WvB   ・・・(数式25) ΣLvR / WvR <ΣLvB / WvB ... (Formula 25)
ΣLvG/WvG<ΣLvB/WvB   ・・・(数式26) ΣLvG / WvG <ΣLvB / WvB ... (Formula 26)
 ただし、前記数式3及び前記数式4において、前記WvRは、赤色の前記副画素に対応した前記開口部の垂直方向の幅であり、赤色の前記副画素に対応した前記レンズの垂直方向に沿った形成数を第1垂直配置数とした場合に、前記ΣLvRは、前記第1垂直配置数が1であれば赤色の前記副画素に対応して形成された前記レンズの底面の垂直方向の幅、前記第1垂直配置数が2以上であれば赤色の前記副画素に対応して垂直方向に並んだ状態で形成された前記レンズのそれぞれの底面の垂直方向の幅の合計を示し、
 前記WvGは、緑色の前記副画素に対応した前記開口部の垂直方向の幅であり、緑色の前記副画素に対応した前記レンズの垂直方向に沿った形成数を第2垂直配置数とした場合に、前記ΣLvGは、前第2垂直配置数が1であれば緑色の前記副画素に対応して形成された前記レンズの底面の垂直方向の幅、前記第2垂直配置数が2以上であれば緑色の前記副画素に対応して垂直方向に並んだ状態で形成された前記レンズのそれぞれの底面の垂直方向の幅の合計を示し、
 前記WvBは、青色の前記副画素に対応した前記開口部の垂直方向の幅であり、青色の前記副画素に対応した前記レンズの垂直方向に沿った形成数を第3垂直配置数とした場合に、前記ΣLvBは、前記第3垂直配置数が1であれば青色の前記副画素に対応して形成された前記レンズの底面の垂直方向の幅、前記第3垂直配置数が2以上であれば青色の前記副画素に対応して垂直方向に並んだ状態で形成された前記レンズのそれぞれの底面の垂直方向の幅の合計を示す。
However, in the formula 3 and the formula 4, the WvR is the vertical width of the opening corresponding to the red sub-pixel, and is along the vertical direction of the lens corresponding to the red sub-pixel. When the number of formations is the number of first vertical arrangements, the ΣLvR is the vertical width of the bottom surface of the lens formed corresponding to the red sub-pixels if the number of first vertical arrangements is 1. When the number of the first vertical arrangements is 2 or more, the total vertical width of each bottom surface of the lenses formed in a vertically aligned state corresponding to the red sub-pixels is shown.
The WvG is the vertical width of the opening corresponding to the green sub-pixel, and the number of formations of the lens corresponding to the green sub-pixel along the vertical direction is defined as the second vertical arrangement number. In addition, if the number of front second vertical arrangements is 1, the ΣLvG has a vertical width of the bottom surface of the lens formed corresponding to the green sub-pixels, and the number of second vertical arrangements is 2 or more. For example, the total vertical width of the bottom surface of each of the lenses formed in a vertically aligned state corresponding to the green sub-pixel is shown.
The WvB is the vertical width of the opening corresponding to the blue sub-pixel, and the number of formations of the lens corresponding to the blue sub-pixel along the vertical direction is defined as the third vertical arrangement number. In addition, if the third vertical arrangement number is 1, the ΣLvB has a vertical width of the bottom surface of the lens formed corresponding to the blue sub-pixel, and the third vertical arrangement number is 2 or more. For example, the total of the vertical widths of the bottom surfaces of the lenses formed in a vertically aligned state corresponding to the blue sub-pixels is shown.
(3)下記の数式27又は数式28の少なくとも一方が満たされている、
 上記(1)又は(2)に記載の表示装置。
(3) At least one of the following formula 27 or formula 28 is satisfied.
The display device according to (1) or (2) above.
LB/LR≦2   ・・・(数式27) LB / LR≤2 ... (Formula 27)
LB/LG≦2   ・・・(数式28) LB / LG ≤ 2 ... (Formula 28)
 ただし、前記数式5及び前記数式6において、LBは、赤色の前記副画素に対応して形成された前記レンズの底面の水平方向の幅を示し、
 LGは、緑色の前記副画素に対応して形成された前記レンズの底面の水平方向の幅を示し、
 LBは、青色の前記副画素に対応して形成された前記レンズの底面の水平方向の幅を示す。
However, in the formula 5 and the formula 6, LB indicates the horizontal width of the bottom surface of the lens formed corresponding to the red sub-pixel.
LG indicates the horizontal width of the bottom surface of the lens formed corresponding to the green sub-pixel.
LB indicates the horizontal width of the bottom surface of the lens formed corresponding to the blue sub-pixel.
(4)下記の数式29又は数式30の少なくとも一方が満たされている、
 上記(2)に記載の表示装置。
(4) At least one of the following formula 29 or formula 30 is satisfied.
The display device according to (2) above.
LvB/LvR≦2   ・・・(数式29) LvB / LvR≤2 ... (Formula 29)
LvB/LvG≦2   ・・・(数式30) LvB / LvG≤2 ... (Formula 30)
 ただし、前記数式29及び前記数式30において、LvBは、赤色の前記副画素に対応して形成された前記レンズの底面の垂直方向の幅を示し、
 LvGは、緑色の前記副画素に対応して形成された前記レンズの底面の垂直方向の幅を示し、
 LvBは、青色の前記副画素に対応して形成された前記レンズの底面の垂直方向の幅を示す。
However, in the formula 29 and the formula 30, LvB indicates the vertical width of the bottom surface of the lens formed corresponding to the red sub-pixel.
LvG indicates the vertical width of the bottom surface of the lens formed corresponding to the green sub-pixel.
LvB indicates the vertical width of the bottom surface of the lens formed corresponding to the blue sub-pixel.
(5)前記第1水平配置数、前記第2水平配置数及び前記第3水平配置数は、3以下である、
 上記(1)から(4)のいずれか1項に記載の表示装置。
(6)前記第1垂直配置数、前記第2垂直配置数及び前記第3垂直配置数は、3以下である、
 上記(2)又は(4)に記載の表示装置。
(7)それぞれの前記副画素に対応した、前記第1電極の表面と前記レンズの底面との離間距離が、0.5μm以上5.0μm以下である、
 上記(1)から(6)のいずれか1項に記載の表示装置。
(8)カラーフィルタを備え、
 前記カラーフィルタは、前記レンズよりも前記第1電極に対して近い位置に設けられている、
 上記(1)から(7)のいずれか1項に記載の表示装置。
(9)カラーフィルタを備え、
 前記カラーフィルタは、前記レンズよりも前記第1電極に対して遠い位置に設けられている、
 上記(1)から(8)のいずれか1項に記載の表示装置。
(10)複数のカラーフィルタを備え、
 前記カラーフィルタは、前記レンズよりも前記第1電極に対して遠い位置と近い位置の両方の位置に設けられている、
 上記(1)から(9)のいずれか1項に記載の表示装置。
(11)それぞれの色種に対応する前記副画素に応じたカラーフィルタとして赤色フィルタと緑色フィルタと青色フィルタとを備え、
前記青色フィルタの水平方向の幅が、前記赤色フィルタの水平方向の幅又は前記緑色フィルタの水平方向の幅の少なくとも一方よりも狭い、
 上記(1)から(10)のいずれか1項に記載の表示装置。
(12)それぞれの色種に対応する前記副画素に応じたカラーフィルタとして互いに異なる複数色種のフィルタを備え、
 隣り合う互いに異なる色種の前記フィルタの間又は境界にブラックマトリクスが設けられている、
 上記(1)から(11)のいずれか1項に記載の表示装置。
(13)青色の前記副画素に対応して形成される前記レンズは、赤色の前記副画素に対応して形成される前記レンズ又は緑色の前記副画素に対応して形成される前記レンズの少なくとも一方よりも屈折力が大きい、
 上記(1)から(12)のいずれか1項に記載の表示装置。
(14)少なくとも赤色、緑色と青色の色種に対応した複数の副画素と、
 それぞれの前記副画素に対応して形成され、且つ有機化合物層を挟んで第1電極と第2電極とを積層した構造を有する複数の発光素子と、
 それぞれの前記副画素に対応して少なくとも1つ形成されるレンズと
 それぞれの前記副画素に対応してそれぞれの前記発光素子の発光領域の周囲に壁面を形成し、且つ前記発光素子の厚み方向に延び出た反射壁と、を備え
 下記の数式31及び数式32が満たされている、
 表示装置。
(5) The number of the first horizontal arrangement, the number of the second horizontal arrangement, and the number of the third horizontal arrangement are 3 or less.
The display device according to any one of (1) to (4) above.
(6) The number of the first vertical arrangement, the number of the second vertical arrangement, and the number of the third vertical arrangement are 3 or less.
The display device according to (2) or (4) above.
(7) The separation distance between the surface of the first electrode and the bottom surface of the lens corresponding to each of the sub-pixels is 0.5 μm or more and 5.0 μm or less.
The display device according to any one of (1) to (6) above.
(8) Equipped with a color filter
The color filter is provided at a position closer to the first electrode than the lens.
The display device according to any one of (1) to (7) above.
(9) Equipped with a color filter
The color filter is provided at a position farther from the first electrode than the lens.
The display device according to any one of (1) to (8) above.
(10) Equipped with multiple color filters
The color filter is provided at both a position farther and a position closer to the first electrode than the lens.
The display device according to any one of (1) to (9) above.
(11) A red filter, a green filter, and a blue filter are provided as color filters corresponding to the sub-pixels corresponding to each color type.
The horizontal width of the blue filter is narrower than at least one of the horizontal width of the red filter and the horizontal width of the green filter.
The display device according to any one of (1) to (10) above.
(12) A plurality of different color types are provided as color filters corresponding to the sub-pixels corresponding to each color type.
A black matrix is provided between or at the boundaries of adjacent filters of different color types.
The display device according to any one of (1) to (11) above.
(13) The lens formed corresponding to the blue sub-pixel is at least the lens formed corresponding to the red sub-pixel or the lens formed corresponding to the green sub-pixel. Greater refractive power than one,
The display device according to any one of (1) to (12) above.
(14) A plurality of sub-pixels corresponding to at least red, green, and blue color types, and
A plurality of light emitting elements formed corresponding to each of the sub-pixels and having a structure in which a first electrode and a second electrode are laminated with an organic compound layer interposed therebetween.
A wall surface is formed around a lens formed at least one corresponding to each of the sub-pixels and a light emitting region of each of the light emitting elements corresponding to each of the sub-pixels, and in the thickness direction of the light emitting element. With an extended reflective wall, the following equations 31 and 32 are satisfied.
Display device.
ΣLR/WrR<ΣLB/WrB   ・・・(数式31) ΣLR / WrR <ΣLB / WrB ... (Formula 31)
ΣLG/WrG<ΣLB/WrB   ・・・(数式32) ΣLG / WrG <ΣLB / WrB ... (Formula 32)
 ただし、前記数式31及び前記数式32において、前記WrRは、赤色の前記副画素に対応した前記壁面の先端部の水平方向の幅であり、赤色の前記副画素に対応した前記レンズの水平方向に沿った形成数を第1水平配置数とした場合に、前記ΣLRは、前記第1水平配置数が1であれば赤色の前記副画素に対応して形成された前記レンズの底面の水平方向の幅、前記第1水平配置数が2以上であれば赤色の前記副画素に対応して水平方向に並んだ状態で形成された前記レンズのそれぞれの底面の水平方向の幅の合計を示し、
 前記WrGは、緑色の前記副画素に対応した前記壁面の先端部の水平方向の幅であり、緑色の前記副画素に対応した前記レンズの水平方向に沿った形成数を第2水平配置数とした場合に、前記ΣLGは、前第2水平配置数が1であれば緑色の前記副画素に対応して形成された前記レンズの底面の水平方向の幅、前記第2水平配置数が2以上であれば緑色の前記副画素に対応して水平方向に並んだ状態で形成された前記レンズのそれぞれの底面の水平方向の幅の合計を示し、
 前記WrBは、青色の前記副画素に対応した前記壁面の先端部の水平方向の幅であり、青色の前記副画素に対応した前記レンズの水平方向に沿った形成数を第3水平配置数とした場合に、前記ΣLBは、前記第3水平配置数が1であれば青色の前記副画素に対応して形成された前記レンズの底面の水平方向の幅、前記第3水平配置数が2以上であれば青色の前記副画素に対応して水平方向に並んだ状態で形成された前記レンズのそれぞれの底面の水平方向の幅の合計を示す。
However, in the formula 31 and the formula 32, the WrR is the horizontal width of the tip of the wall surface corresponding to the red sub-pixel, and is in the horizontal direction of the lens corresponding to the red sub-pixel. When the number of formations along the line is the first horizontal arrangement number, the ΣLR is the horizontal direction of the bottom surface of the lens formed corresponding to the red sub-pixel if the first horizontal arrangement number is 1. The width, if the first horizontal arrangement number is 2 or more, indicates the total horizontal width of each bottom surface of the lenses formed in a state of being arranged horizontally corresponding to the red sub-pixels.
The WrG is the horizontal width of the tip of the wall surface corresponding to the green sub-pixel, and the number of formations of the lens corresponding to the green sub-pixel along the horizontal direction is defined as the second horizontal arrangement number. In this case, if the number of front second horizontal arrangements is 1, the width of the bottom surface of the lens formed corresponding to the green sub-pixels and the number of second horizontal arrangements are 2 or more. If, then the sum of the horizontal widths of the bottom surfaces of the lenses formed in a horizontally aligned state corresponding to the green sub-pixels is shown.
The WrB is the horizontal width of the tip of the wall surface corresponding to the blue sub-pixel, and the number of formations of the lens corresponding to the blue sub-pixel along the horizontal direction is defined as the third horizontal arrangement number. If the third horizontal arrangement number is 1, the ΣLB has a horizontal width of the bottom surface of the lens formed corresponding to the blue sub-pixel, and the third horizontal arrangement number is 2 or more. If, the total horizontal width of each bottom surface of the lenses formed in a state of being arranged horizontally corresponding to the blue sub-pixels is shown.
(15)少なくとも赤色、緑色と青色の色種に対応した複数の副画素と、
 それぞれの前記副画素に対応して形成され、且つ有機化合物層を挟んで第1電極と第2電極とを積層した構造を有する複数の発光素子と、
 それぞれの前記副画素に対応して少なくとも1つ形成されるレンズと、
 それぞれの前記副画素に対応して前記発光素子の前記第1電極の形成面側の所定位置に形成される反射板と、を備え、
 下記の数式33及び数式34が満たされている、
 表示装置。
(15) A plurality of sub-pixels corresponding to at least red, green, and blue color types, and
A plurality of light emitting elements formed corresponding to each of the sub-pixels and having a structure in which a first electrode and a second electrode are laminated with an organic compound layer interposed therebetween.
A lens formed at least one corresponding to each of the sub-pixels,
A reflector plate formed at a predetermined position on the formation surface side of the first electrode of the light emitting element corresponding to each of the sub-pixels is provided.
The following formulas 33 and 34 are satisfied.
Display device.
ΣLR/WbR<ΣLB/WbB   ・・・(数式33) ΣLR / WbR <ΣLB / WbB ... (Formula 33)
ΣLG/WbG<ΣLB/WbB   ・・・(数式34) ΣLG / WbG <ΣLB / WbB ... (Formula 34)
 ただし、前記数式11及び前記数式12において、前記WbRは、赤色の前記副画素に対応した前記反射板の水平方向の幅であり、赤色の前記副画素に対応した前記レンズの水平方向に沿った形成数を第1水平配置数とした場合に、前記ΣLRは、前記第1水平配置数が1であれば赤色の前記副画素に対応して形成された前記レンズの底面の水平方向の幅、前記第1水平配置数が2以上であれば赤色の前記副画素に対応して水平方向に並んだ状態で形成された前記レンズのそれぞれの底面の水平方向の幅の合計を示し、
 前記WbGは、緑色の前記副画素に対応した前記反射板の水平方向の幅であり、緑色の前記副画素に対応した前記レンズの水平方向に沿った形成数を第2水平配置数とした場合に、前記ΣLGは、前第2水平配置数が1であれば緑色の前記副画素に対応して形成された前記レンズの底面の水平方向の幅、前記第2水平配置数が2以上であれば緑色の前記副画素に対応して水平方向に並んだ状態で形成された前記レンズのそれぞれの底面の水平方向の幅の合計を示し、
 前記WbBは、青色の前記副画素に対応した前記反射板の水平方向の幅であり、青色の前記副画素に対応した前記レンズの水平方向に沿った形成数を第3水平配置数とした場合に、前記ΣLBは、前記第3水平配置数が1であれば青色の前記副画素に対応して形成された前記レンズの底面の水平方向の幅、前記第3水平配置数が2以上であれば青色の前記副画素に対応して水平方向に並んだ状態で形成された前記レンズのそれぞれの底面の水平方向の幅の合計を示す。
However, in the formula 11 and the formula 12, the WbR is the horizontal width of the reflector corresponding to the red sub-pixel, and is along the horizontal direction of the lens corresponding to the red sub-pixel. When the number of formations is the first horizontal arrangement number, the ΣLR is the horizontal width of the bottom surface of the lens formed corresponding to the red sub-pixel if the first horizontal arrangement number is 1. When the number of the first horizontal arrangements is 2 or more, the total horizontal width of each bottom surface of the lenses formed in a state of being arranged horizontally corresponding to the red sub-pixels is shown.
The WbG is the horizontal width of the reflector corresponding to the green sub-pixel, and the number of formations of the lens corresponding to the green sub-pixel along the horizontal direction is defined as the second horizontal arrangement number. In addition, if the number of front second horizontal arrangements is 1, the ΣLG has a horizontal width of the bottom surface of the lens formed corresponding to the green sub-pixels, and the number of second horizontal arrangements is 2 or more. For example, the total horizontal width of the bottom surface of each of the lenses formed in a horizontally aligned state corresponding to the green sub-pixel is shown.
The WbB is the horizontal width of the reflector corresponding to the blue sub-pixel, and the number of formations of the lens corresponding to the blue sub-pixel along the horizontal direction is defined as the third horizontal arrangement number. In addition, if the third horizontal arrangement number is 1, the ΣLB has a horizontal width of the bottom surface of the lens formed corresponding to the blue sub-pixel, and the third horizontal arrangement number is 2 or more. For example, the sum of the horizontal widths of the bottom surfaces of the lenses formed in a horizontally aligned state corresponding to the blue sub-pixels is shown.
(16)それぞれの前記副画素に対応した、前記反射板の表面と前記レンズの底面との離間距離が、0.5μm以上5.0μm以下である、
 上記(15)に記載の表示装置。
(17)
 上記(1)から(16)のいずれか1項に記載の表示装置を備えた、
電子機器。
(16) The separation distance between the surface of the reflector and the bottom surface of the lens corresponding to each of the sub-pixels is 0.5 μm or more and 5.0 μm or less.
The display device according to (15) above.
(17)
The display device according to any one of (1) to (16) above is provided.
Electronics.
 10 表示装置
 11  基板
 13A  第1電極
 13B  有機化合物層
 13C  第2電極
 14  絶縁層
 14A 開口部
 15  保護層
 17  カラーフィルタ
 18  レンズ
 19  ブラックマトリクス層
 21  反射壁
 22  壁面
 23  反射板
 310  デジタルスチルカメラ(電子機器)
 320  ヘッドマウントディスプレイ(電子機器)
 330  テレビジョン装置(電子機器)
10 Display device 11 Substrate 13A 1st electrode 13B Organic compound layer 13C 2nd electrode 14 Insulation layer 14A Opening 15 Protective layer 17 Color filter 18 Lens 19 Black matrix layer 21 Reflective wall 22 Wall surface 23 Reflector 310 Digital still camera (electronic equipment) )
320 Head-mounted display (electronic device)
330 Television equipment (electronic equipment)

Claims (17)

  1.  画素の単位を形成し少なくとも赤色、緑色と青色の色種に対応した複数の副画素と、
     それぞれの前記副画素に対応して形成され、且つ有機化合物層を挟んで第1電極と第2電極とを積層した構造を有する複数の発光素子と、
     それぞれの前記副画素に対応して少なくとも1つ形成されるレンズと、を備え、
     それぞれの前記発光素子には、前記第1電極の周縁部を覆い且つ前記第1電極上にそれぞれの前記副画素に対応した開口部を形成している絶縁層が設けられており、
     下記の数式1及び数式2が満たされている、
     表示装置。
    ΣLR/WR<ΣLB/WB   ・・・(数式1)
    ΣLG/WG<ΣLB/WB   ・・・(数式2)
    (ただし、前記数式1及び前記数式2において、前記WRは、赤色の前記副画素に対応した前記開口部の水平方向の幅であり、赤色の前記副画素に対応した前記レンズの水平方向に沿った形成数を第1水平配置数とした場合に、前記ΣLRは、前記第1水平配置数が1であれば赤色の前記副画素に対応して形成された前記レンズの底面の水平方向の幅、前記第1水平配置数が2以上であれば赤色の前記副画素に対応して水平方向に並んだ状態で形成された前記レンズのそれぞれの底面の水平方向の幅の合計を示し、
     前記WGは、緑色の前記副画素に対応した前記開口部の水平方向の幅であり、緑色の前記副画素に対応した前記レンズの水平方向に沿った形成数を第2水平配置数とした場合に、前記ΣLGは、前第2水平配置数が1であれば緑色の前記副画素に対応して形成された前記レンズの底面の水平方向の幅、前記第2水平配置数が2以上であれば緑色の前記副画素に対応して水平方向に並んだ状態で形成された前記レンズのそれぞれの底面の水平方向の幅の合計を示し、
     前記WBは、青色の前記副画素に対応した前記開口部の水平方向の幅であり、青色の前記副画素に対応した前記レンズの水平方向に沿った形成数を第3水平配置数とした場合に、前記ΣLBは、前記第3水平配置数が1であれば青色の前記副画素に対応して形成された前記レンズの底面の水平方向の幅、前記第3水平配置数が2以上であれば青色の前記副画素に対応して水平方向に並んだ状態で形成された前記レンズのそれぞれの底面の水平方向の幅の合計を示す。)
    Multiple sub-pixels that form a pixel unit and correspond to at least red, green, and blue color types,
    A plurality of light emitting elements formed corresponding to each of the sub-pixels and having a structure in which a first electrode and a second electrode are laminated with an organic compound layer interposed therebetween.
    A lens formed at least one corresponding to each of the sub-pixels is provided.
    Each of the light emitting elements is provided with an insulating layer that covers the peripheral edge of the first electrode and forms an opening corresponding to each of the sub-pixels on the first electrode.
    The following formulas 1 and 2 are satisfied.
    Display device.
    ΣLR / WR <ΣLB / WB ... (Formula 1)
    ΣLG / WG <ΣLB / WB ... (Formula 2)
    (However, in the formula 1 and the formula 2, the WR is the horizontal width of the opening corresponding to the red sub-pixel, and is along the horizontal direction of the lens corresponding to the red sub-pixel. When the number of formations is the first horizontal arrangement number, the ΣLR is the horizontal width of the bottom surface of the lens formed corresponding to the red sub-pixel if the first horizontal arrangement number is 1. If the number of the first horizontal arrangements is 2 or more, the total horizontal widths of the bottom surfaces of the lenses formed in a state of being arranged horizontally corresponding to the red sub-pixels are shown.
    The WG is the horizontal width of the opening corresponding to the green sub-pixel, and the number of formations of the lens corresponding to the green sub-pixel along the horizontal direction is defined as the second horizontal arrangement number. In addition, if the number of front second horizontal arrangements is 1, the ΣLG has a horizontal width of the bottom surface of the lens formed corresponding to the green sub-pixels, and the number of second horizontal arrangements is 2 or more. For example, the total horizontal width of the bottom surface of each of the lenses formed in a horizontally aligned state corresponding to the green sub-pixel is shown.
    The WB is the horizontal width of the opening corresponding to the blue sub-pixel, and the number of formations of the lens corresponding to the blue sub-pixel along the horizontal direction is defined as the third horizontal arrangement number. In addition, if the third horizontal arrangement number is 1, the ΣLB has a horizontal width of the bottom surface of the lens formed corresponding to the blue sub-pixel, and the third horizontal arrangement number is 2 or more. For example, the sum of the horizontal widths of the bottom surfaces of the lenses formed in a horizontally aligned state corresponding to the blue sub-pixels is shown. )
  2.  下記の数式3及び数式4が満たされている、
     請求項1に記載の表示装置。
    ΣLvR/WvR<ΣLvB/WvB   ・・・(数式3)
    ΣLvG/WvG<ΣLvB/WvB   ・・・(数式4)
    (ただし、前記数式3及び前記数式4において、前記WvRは、赤色の前記副画素に対応した前記開口部の垂直方向の幅であり、赤色の前記副画素に対応した前記レンズの垂直方向に沿った形成数を第1垂直配置数とした場合に、前記ΣLvRは、前記第1垂直配置数が1であれば赤色の前記副画素に対応して形成された前記レンズの底面の垂直方向の幅、前記第1垂直配置数が2以上であれば赤色の前記副画素に対応して垂直方向に並んだ状態で形成された前記レンズのそれぞれの底面の垂直方向の幅の合計を示し、
     前記WvGは、緑色の前記副画素に対応した前記開口部の垂直方向の幅であり、緑色の前記副画素に対応した前記レンズの垂直方向に沿った形成数を第2垂直配置数とした場合に、前記ΣLvGは、前第2垂直配置数が1であれば緑色の前記副画素に対応して形成された前記レンズの底面の垂直方向の幅、前記第2垂直配置数が2以上であれば緑色の前記副画素に対応して垂直方向に並んだ状態で形成された前記レンズのそれぞれの底面の垂直方向の幅の合計を示し、
     前記WvBは、青色の前記副画素に対応した前記開口部の垂直方向の幅であり、青色の前記副画素に対応した前記レンズの垂直方向に沿った形成数を第3垂直配置数とした場合に、前記ΣLvBは、前記第3垂直配置数が1であれば青色の前記副画素に対応して形成された前記レンズの底面の垂直方向の幅、前記第3垂直配置数が2以上であれば青色の前記副画素に対応して垂直方向に並んだ状態で形成された前記レンズのそれぞれの底面の垂直方向の幅の合計を示す。)
    The following formulas 3 and 4 are satisfied.
    The display device according to claim 1.
    ΣLvR / WvR <ΣLvB / WvB ... (Formula 3)
    ΣLvG / WvG <ΣLvB / WvB ... (Formula 4)
    (However, in the formula 3 and the formula 4, the WvR is the vertical width of the opening corresponding to the red sub-pixel, and is along the vertical direction of the lens corresponding to the red sub-pixel. When the number of formations is the first vertical arrangement number, the ΣLvR is the vertical width of the bottom surface of the lens formed corresponding to the red sub-pixel if the first vertical arrangement number is 1. If the number of the first vertical arrangements is 2 or more, the total vertical width of each bottom surface of the lenses formed in a vertically aligned state corresponding to the red sub-pixels is shown.
    The WvG is the vertical width of the opening corresponding to the green sub-pixel, and the number of formations of the lens corresponding to the green sub-pixel along the vertical direction is defined as the second vertical arrangement number. In addition, if the number of front second vertical arrangements is 1, the ΣLvG has a vertical width of the bottom surface of the lens formed corresponding to the green sub-pixels, and the number of second vertical arrangements is 2 or more. For example, the total vertical width of the bottom surface of each of the lenses formed in a vertically aligned state corresponding to the green sub-pixel is shown.
    The WvB is the vertical width of the opening corresponding to the blue sub-pixel, and the number of formations of the lens corresponding to the blue sub-pixel along the vertical direction is defined as the third vertical arrangement number. In addition, if the third vertical arrangement number is 1, the ΣLvB has a vertical width of the bottom surface of the lens formed corresponding to the blue sub-pixel, and the third vertical arrangement number is 2 or more. For example, the total of the vertical widths of the bottom surfaces of the lenses formed in a vertically aligned state corresponding to the blue sub-pixels is shown. )
  3.  下記の数式5又は数式6の少なくとも一方が満たされている、
     請求項1に記載の表示装置。
    LB/LR≦2   ・・・(数式5)
    LB/LG≦2   ・・・(数式6)
    (ただし、前記数式5及び前記数式6において、LBは、赤色の前記副画素に対応して形成された前記レンズの底面の水平方向の幅を示し、
     LGは、緑色の前記副画素に対応して形成された前記レンズの底面の水平方向の幅を示し、
     LBは、青色の前記副画素に対応して形成された前記レンズの底面の水平方向の幅を示す。)
    At least one of Equation 5 or Equation 6 below is satisfied.
    The display device according to claim 1.
    LB / LR≤2 ... (Formula 5)
    LB / LG ≦ 2 ・ ・ ・ (Formula 6)
    (However, in the formula 5 and the formula 6, LB indicates the horizontal width of the bottom surface of the lens formed corresponding to the red sub-pixel.
    LG indicates the horizontal width of the bottom surface of the lens formed corresponding to the green sub-pixel.
    LB indicates the horizontal width of the bottom surface of the lens formed corresponding to the blue sub-pixel. )
  4.  下記の数式7又は数式8の少なくとも一方が満たされている、
     請求項2に記載の表示装置。
    LvB/LvR≦2   ・・・(数式7)
    LvB/LvG≦2   ・・・(数式8)
    (ただし、前記数式7及び前記数式8において、LvBは、赤色の前記副画素に対応して形成された前記レンズの底面の垂直方向の幅を示し、
     LvGは、緑色の前記副画素に対応して形成された前記レンズの底面の垂直方向の幅を示し、
     LvBは、青色の前記副画素に対応して形成された前記レンズの底面の垂直方向の幅を示す。)
    At least one of Equation 7 or Equation 8 below is satisfied.
    The display device according to claim 2.
    LvB / LvR ≦ 2 ・ ・ ・ (Formula 7)
    LvB / LvG ≦ 2 ・ ・ ・ (Formula 8)
    (However, in the formula 7 and the formula 8, LvB indicates the vertical width of the bottom surface of the lens formed corresponding to the red sub-pixel.
    LvG indicates the vertical width of the bottom surface of the lens formed corresponding to the green sub-pixel.
    LvB indicates the vertical width of the bottom surface of the lens formed corresponding to the blue sub-pixel. )
  5.  前記第1水平配置数、前記第2水平配置数及び前記第3水平配置数は、3以下である、
     請求項1に記載の表示装置。
    The number of the first horizontal arrangement, the number of the second horizontal arrangement, and the number of the third horizontal arrangement are 3 or less.
    The display device according to claim 1.
  6.  前記第1垂直配置数、前記第2垂直配置数及び前記第3垂直配置数は、3以下である、
     請求項2に記載の表示装置。
    The number of the first vertical arrangement, the number of the second vertical arrangement, and the number of the third vertical arrangement are 3 or less.
    The display device according to claim 2.
  7.  それぞれの前記副画素に対応した、前記第1電極の表面と前記レンズの底面との離間距離が、0.5μm以上5.0μm以下である、
     請求項1に記載の表示装置。
    The separation distance between the surface of the first electrode and the bottom surface of the lens corresponding to each of the sub-pixels is 0.5 μm or more and 5.0 μm or less.
    The display device according to claim 1.
  8.  カラーフィルタを備え、
     前記カラーフィルタは、前記レンズよりも前記第1電極に対して近い位置に設けられている、
     請求項1に記載の表示装置。
    Equipped with color filters,
    The color filter is provided at a position closer to the first electrode than the lens.
    The display device according to claim 1.
  9.  カラーフィルタを備え、
     前記カラーフィルタは、前記レンズよりも前記第1電極に対して遠い位置に設けられている、
     請求項1に記載の表示装置。
    Equipped with color filters,
    The color filter is provided at a position farther from the first electrode than the lens.
    The display device according to claim 1.
  10.  複数のカラーフィルタを備え、
     前記カラーフィルタは、前記レンズよりも前記第1電極に対して遠い位置と近い位置の両方の位置に設けられている、
     請求項1に記載の表示装置。
    Equipped with multiple color filters,
    The color filter is provided at both a position farther and a position closer to the first electrode than the lens.
    The display device according to claim 1.
  11.  それぞれの色種に対応する前記副画素に応じたカラーフィルタとして赤色フィルタと緑色フィルタと青色フィルタとを備え、
    前記青色フィルタの水平方向の幅が、前記赤色フィルタの水平方向の幅又は前記緑色フィルタの水平方向の幅の少なくとも一方よりも狭い、
     請求項1に記載の表示装置。
    A red filter, a green filter, and a blue filter are provided as color filters corresponding to the sub-pixels corresponding to each color type.
    The horizontal width of the blue filter is narrower than at least one of the horizontal width of the red filter and the horizontal width of the green filter.
    The display device according to claim 1.
  12.  それぞれの色種に対応する前記副画素に応じたカラーフィルタとして互いに異なる複数色種のフィルタを備え、
     隣り合う互いに異なる色種の前記フィルタの間又は境界にブラックマトリクスが設けられている、
     請求項1に記載の表示装置。
    As a color filter corresponding to the sub-pixel corresponding to each color type, filters of a plurality of different color types are provided.
    A black matrix is provided between or at the boundaries of adjacent filters of different color types.
    The display device according to claim 1.
  13.  青色の前記副画素に対応して形成される前記レンズは、赤色の前記副画素に対応して形成される前記レンズ又は緑色の前記副画素に対応して形成される前記レンズの少なくとも一方よりも屈折力が大きい、
     請求項1に記載の表示装置。
    The lens formed corresponding to the blue sub-pixel is more than the lens formed corresponding to the red sub-pixel or the lens formed corresponding to the green sub-pixel. Large refractive power,
    The display device according to claim 1.
  14.  少なくとも赤色、緑色と青色の色種に対応した複数の副画素と、
     それぞれの前記副画素に対応して形成され、且つ有機化合物層を挟んで第1電極と第2電極とを積層した構造を有する複数の発光素子と、
     それぞれの前記副画素に対応して少なくとも1つ形成されるレンズと
     それぞれの前記副画素に対応してそれぞれの前記発光素子の発光領域の周囲に壁面を形成し、且つ前記発光素子の厚み方向に延び出た反射壁と、を備え
     下記の数式9及び数式10が満たされている、
     表示装置。
    ΣLR/WrR<ΣLB/WrB   ・・・(数式9)
    ΣLG/WrG<ΣLB/WrB   ・・・(数式10)
    (ただし、前記数式9及び前記数式10において、前記WrRは、赤色の前記副画素に対応した前記壁面の先端部の水平方向の幅であり、赤色の前記副画素に対応した前記レンズの水平方向に沿った形成数を第1水平配置数とした場合に、前記ΣLRは、前記第1水平配置数が1であれば赤色の前記副画素に対応して形成された前記レンズの底面の水平方向の幅、前記第1水平配置数が2以上であれば赤色の前記副画素に対応して水平方向に並んだ状態で形成された前記レンズのそれぞれの底面の水平方向の幅の合計を示し、
     前記WrGは、緑色の前記副画素に対応した前記壁面の先端部の水平方向の幅であり、緑色の前記副画素に対応した前記レンズの水平方向に沿った形成数を第2水平配置数とした場合に、前記ΣLGは、前第2水平配置数が1であれば緑色の前記副画素に対応して形成された前記レンズの底面の水平方向の幅、前記第2水平配置数が2以上であれば緑色の前記副画素に対応して水平方向に並んだ状態で形成された前記レンズのそれぞれの底面の水平方向の幅の合計を示し、
     前記WrBは、青色の前記副画素に対応した前記壁面の先端部の水平方向の幅であり、青色の前記副画素に対応した前記レンズの水平方向に沿った形成数を第3水平配置数とした場合に、前記ΣLBは、前記第3水平配置数が1であれば青色の前記副画素に対応して形成された前記レンズの底面の水平方向の幅、前記第3水平配置数が2以上であれば青色の前記副画素に対応して水平方向に並んだ状態で形成された前記レンズのそれぞれの底面の水平方向の幅の合計を示す。)
    With multiple sub-pixels corresponding to at least red, green and blue color types,
    A plurality of light emitting elements formed corresponding to each of the sub-pixels and having a structure in which a first electrode and a second electrode are laminated with an organic compound layer interposed therebetween.
    A wall surface is formed around a lens formed at least one corresponding to each of the sub-pixels and a light emitting region of each of the light emitting elements corresponding to each of the sub-pixels, and in the thickness direction of the light emitting element. With an extended reflective wall, the following equations 9 and 10 are satisfied.
    Display device.
    ΣLR / WrR <ΣLB / WrB ... (Formula 9)
    ΣLG / WrG <ΣLB / WrB ... (Formula 10)
    (However, in the formula 9 and the formula 10, the WrR is the horizontal width of the tip of the wall surface corresponding to the red sub-pixel, and the horizontal direction of the lens corresponding to the red sub-pixel. When the number of formations along the above is the first horizontal arrangement number, the ΣLR is the horizontal direction of the bottom surface of the lens formed corresponding to the red sub-pixel if the first horizontal arrangement number is 1. If the number of first horizontal arrangements is 2 or more, the total horizontal width of the bottom surface of each of the lenses formed in a state of being arranged horizontally corresponding to the red sub-pixels is shown.
    The WrG is the horizontal width of the tip of the wall surface corresponding to the green sub-pixel, and the number of formations of the lens corresponding to the green sub-pixel along the horizontal direction is defined as the second horizontal arrangement number. In this case, if the number of front second horizontal arrangements is 1, the width of the bottom surface of the lens formed corresponding to the green sub-pixels and the number of second horizontal arrangements are 2 or more. If, then the sum of the horizontal widths of the bottom surfaces of the lenses formed in a horizontally aligned state corresponding to the green sub-pixels is shown.
    The WrB is the horizontal width of the tip of the wall surface corresponding to the blue sub-pixel, and the number of formations of the lens corresponding to the blue sub-pixel along the horizontal direction is defined as the third horizontal arrangement number. If the third horizontal arrangement number is 1, the ΣLB has a horizontal width of the bottom surface of the lens formed corresponding to the blue sub-pixel, and the third horizontal arrangement number is 2 or more. If, the total horizontal width of each bottom surface of the lenses formed in a state of being arranged horizontally corresponding to the blue sub-pixels is shown. )
  15.  少なくとも赤色、緑色と青色の色種に対応した複数の副画素と、
     それぞれの前記副画素に対応して形成され、且つ有機化合物層を挟んで第1電極と第2電極とを積層した構造を有する複数の発光素子と、
     それぞれの前記副画素に対応して少なくとも1つ形成されるレンズと、
     それぞれの前記副画素に対応して前記発光素子の前記第1電極の形成面側の所定位置に形成される反射板と、を備え、
     下記の数式11及び数式12が満たされている、
     表示装置。
    ΣLR/WbR<ΣLB/WbB   ・・・(数式11)
    ΣLG/WbG<ΣLB/WbB   ・・・(数式12)
    (ただし、前記数式11及び前記数式12において、前記WbRは、赤色の前記副画素に対応した前記反射板の水平方向の幅であり、赤色の前記副画素に対応した前記レンズの水平方向に沿った形成数を第1水平配置数とした場合に、前記ΣLRは、前記第1水平配置数が1であれば赤色の前記副画素に対応して形成された前記レンズの底面の水平方向の幅、前記第1水平配置数が2以上であれば赤色の前記副画素に対応して水平方向に並んだ状態で形成された前記レンズのそれぞれの底面の水平方向の幅の合計を示し、
     前記WbGは、緑色の前記副画素に対応した前記反射板の水平方向の幅であり、緑色の前記副画素に対応した前記レンズの水平方向に沿った形成数を第2水平配置数とした場合に、前記ΣLGは、前第2水平配置数が1であれば緑色の前記副画素に対応して形成された前記レンズの底面の水平方向の幅、前記第2水平配置数が2以上であれば緑色の前記副画素に対応して水平方向に並んだ状態で形成された前記レンズのそれぞれの底面の水平方向の幅の合計を示し、
     前記WbBは、青色の前記副画素に対応した前記反射板の水平方向の幅であり、青色の前記副画素に対応した前記レンズの水平方向に沿った形成数を第3水平配置数とした場合に、前記ΣLBは、前記第3水平配置数が1であれば青色の前記副画素に対応して形成された前記レンズの底面の水平方向の幅、前記第3水平配置数が2以上であれば青色の前記副画素に対応して水平方向に並んだ状態で形成された前記レンズのそれぞれの底面の水平方向の幅の合計を示す。)
    With multiple sub-pixels corresponding to at least red, green and blue color types,
    A plurality of light emitting elements formed corresponding to each of the sub-pixels and having a structure in which a first electrode and a second electrode are laminated with an organic compound layer interposed therebetween.
    A lens formed at least one corresponding to each of the sub-pixels,
    A reflector plate formed at a predetermined position on the formation surface side of the first electrode of the light emitting element corresponding to each of the sub-pixels is provided.
    The following formulas 11 and 12 are satisfied.
    Display device.
    ΣLR / WbR <ΣLB / WbB ... (Formula 11)
    ΣLG / WbG <ΣLB / WbB ... (Formula 12)
    (However, in the formula 11 and the formula 12, the WbR is the horizontal width of the reflector corresponding to the red sub-pixel, and is along the horizontal direction of the lens corresponding to the red sub-pixel. When the number of formations is the first horizontal arrangement number, the ΣLR is the horizontal width of the bottom surface of the lens formed corresponding to the red sub-pixel if the first horizontal arrangement number is 1. If the number of the first horizontal arrangements is 2 or more, the total horizontal widths of the bottom surfaces of the lenses formed in a state of being arranged horizontally corresponding to the red sub-pixels are shown.
    The WbG is the horizontal width of the reflector corresponding to the green sub-pixel, and the number of formations of the lens corresponding to the green sub-pixel along the horizontal direction is defined as the second horizontal arrangement number. In addition, if the number of front second horizontal arrangements is 1, the ΣLG has a horizontal width of the bottom surface of the lens formed corresponding to the green sub-pixels, and the number of second horizontal arrangements is 2 or more. For example, the total horizontal width of the bottom surface of each of the lenses formed in a horizontally aligned state corresponding to the green sub-pixel is shown.
    The WbB is the horizontal width of the reflector corresponding to the blue sub-pixel, and the number of formations of the lens corresponding to the blue sub-pixel along the horizontal direction is defined as the third horizontal arrangement number. In addition, if the third horizontal arrangement number is 1, the ΣLB has a horizontal width of the bottom surface of the lens formed corresponding to the blue sub-pixel, and the third horizontal arrangement number is 2 or more. For example, the sum of the horizontal widths of the bottom surfaces of the lenses formed in a horizontally aligned state corresponding to the blue sub-pixels is shown. )
  16.  それぞれの前記副画素に対応した、前記反射板の表面と前記レンズの底面との離間距離が、0.5μm以上5.0μm以下である、
     請求項15に記載の表示装置。
    The distance between the surface of the reflector and the bottom surface of the lens corresponding to each of the sub-pixels is 0.5 μm or more and 5.0 μm or less.
    The display device according to claim 15.
  17.  請求項1に記載の表示装置を備えた、
    電子機器。
    The display device according to claim 1 is provided.
    Electronics.
PCT/JP2021/038862 2020-10-23 2021-10-21 Display device, and electronic instrument WO2022085749A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180070820.6A CN116507948A (en) 2020-10-23 2021-10-21 Display device and electronic apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020178296 2020-10-23
JP2020-178296 2020-10-23

Publications (1)

Publication Number Publication Date
WO2022085749A1 true WO2022085749A1 (en) 2022-04-28

Family

ID=81289805

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/038862 WO2022085749A1 (en) 2020-10-23 2021-10-21 Display device, and electronic instrument

Country Status (2)

Country Link
CN (1) CN116507948A (en)
WO (1) WO2022085749A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI843597B (en) * 2023-06-09 2024-05-21 友達光電股份有限公司 Anti-peeping self-emissive display

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009031571A1 (en) * 2007-09-06 2009-03-12 Sony Corporation Optical extraction element, method for manufacturing the optical extraction element, and display device
JP2011054488A (en) * 2009-09-03 2011-03-17 Fujifilm Corp Organic electroluminescent display device and method for manufacturing the same
JP2013120731A (en) * 2011-12-08 2013-06-17 Canon Inc Display device
JP2013196854A (en) * 2012-03-16 2013-09-30 Sharp Corp Fluorescent substrate and display device including the same
JP2015128027A (en) * 2013-12-27 2015-07-09 シャープ株式会社 Organic el device and display device
WO2018135189A1 (en) * 2017-01-20 2018-07-26 ソニーセミコンダクタソリューションズ株式会社 Display device, electronic apparatus, and method for producing display device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009031571A1 (en) * 2007-09-06 2009-03-12 Sony Corporation Optical extraction element, method for manufacturing the optical extraction element, and display device
JP2011054488A (en) * 2009-09-03 2011-03-17 Fujifilm Corp Organic electroluminescent display device and method for manufacturing the same
JP2013120731A (en) * 2011-12-08 2013-06-17 Canon Inc Display device
JP2013196854A (en) * 2012-03-16 2013-09-30 Sharp Corp Fluorescent substrate and display device including the same
JP2015128027A (en) * 2013-12-27 2015-07-09 シャープ株式会社 Organic el device and display device
WO2018135189A1 (en) * 2017-01-20 2018-07-26 ソニーセミコンダクタソリューションズ株式会社 Display device, electronic apparatus, and method for producing display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI843597B (en) * 2023-06-09 2024-05-21 友達光電股份有限公司 Anti-peeping self-emissive display

Also Published As

Publication number Publication date
CN116507948A (en) 2023-07-28

Similar Documents

Publication Publication Date Title
US11968754B2 (en) Display unit, method of manufacturing the same, and electronic apparatus
US11871637B2 (en) Display device having lens corresponding to pixel, and electronic apparatus
CN104821327B (en) Display device and electronic apparatus
JP6111643B2 (en) ORGANIC ELECTROLUMINESCENCE DEVICE AND ELECTRONIC DEVICE
US11552274B2 (en) Display device having pixel electrode and color filter, and electronic apparatus
WO2022149554A1 (en) Display device and electronic apparatus
US11539034B2 (en) Display device and electronic apparatus having lenses disposed correspondingly to respective pixel electrodes
JP2022046696A (en) Display device and electronic device
WO2022085749A1 (en) Display device, and electronic instrument
US20210359017A1 (en) Electro-optical device and electronic apparatus
US11342538B2 (en) Organic EL display device having reflection transmission portion, and electronic apparatus
WO2022054831A1 (en) Display device and electronic apparatus
US20220352261A1 (en) Electro-optical device and electronic apparatus
US11641771B2 (en) Electro-optical device and electronic apparatus
WO2022239576A1 (en) Display device and electronic apparatus
WO2022198374A1 (en) Display substrate and preparation method therefor, display device, and color filter substrate
WO2024018322A1 (en) Electronic apparatus
WO2024090153A1 (en) Display device, electronic device, and method for manufacturing display device
US12133440B2 (en) Electro-optical device and electronic apparatus
JP2023145605A (en) Display device and electronic device
CN113658983A (en) Electro-optical device and electronic apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21882889

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180070820.6

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21882889

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP