WO2022085677A1 - 電子写真感光体、電子写真感光体カートリッジ及び画像形成装置 - Google Patents
電子写真感光体、電子写真感光体カートリッジ及び画像形成装置 Download PDFInfo
- Publication number
- WO2022085677A1 WO2022085677A1 PCT/JP2021/038593 JP2021038593W WO2022085677A1 WO 2022085677 A1 WO2022085677 A1 WO 2022085677A1 JP 2021038593 W JP2021038593 W JP 2021038593W WO 2022085677 A1 WO2022085677 A1 WO 2022085677A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- transporting substance
- layer
- molecular weight
- photosensitive member
- electrophotographic photosensitive
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G5/00—Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
- G03G5/14—Inert intermediate or cover layers for charge-receiving layers
- G03G5/147—Cover layers
- G03G5/14708—Cover layers comprising organic material
- G03G5/14713—Macromolecular material
- G03G5/14795—Macromolecular compounds characterised by their physical properties
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G5/00—Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
- G03G5/14—Inert intermediate or cover layers for charge-receiving layers
- G03G5/147—Cover layers
- G03G5/14704—Cover layers comprising inorganic material
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G5/00—Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
- G03G5/14—Inert intermediate or cover layers for charge-receiving layers
- G03G5/147—Cover layers
- G03G5/14708—Cover layers comprising organic material
- G03G5/14713—Macromolecular material
- G03G5/14747—Macromolecular material obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- G03G5/14769—Other polycondensates comprising nitrogen atoms with or without oxygen atoms in the main chain
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G5/00—Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
- G03G5/14—Inert intermediate or cover layers for charge-receiving layers
- G03G5/147—Cover layers
- G03G5/14708—Cover layers comprising organic material
- G03G5/14713—Macromolecular material
- G03G5/14786—Macromolecular compounds characterised by specific side-chain substituents or end groups
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G5/00—Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
- G03G5/14—Inert intermediate or cover layers for charge-receiving layers
- G03G5/147—Cover layers
- G03G5/14708—Cover layers comprising organic material
- G03G5/14713—Macromolecular material
- G03G5/14791—Macromolecular compounds characterised by their structure, e.g. block polymers, reticulated polymers, or by their chemical properties, e.g. by molecular weight or acidity
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G5/00—Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
- G03G5/02—Charge-receiving layers
- G03G5/04—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
- G03G5/043—Photoconductive layers characterised by having two or more layers or characterised by their composite structure
- G03G5/047—Photoconductive layers characterised by having two or more layers or characterised by their composite structure characterised by the charge-generation layers or charge transport layers
Definitions
- the present invention relates to an electrophotographic photosensitive member and an image forming apparatus used in a copying machine, a printer, or the like. More specifically, the present invention relates to an electrophotographic photosensitive member having excellent mechanical properties and adhesiveness, and an electrophotographic photosensitive member cartridge and an image forming apparatus provided with the photoconductor.
- Electrophotographic technology is widely used in the fields of copiers, printers, multifunction devices, digital printing, etc. because it can obtain high-speed, high-quality images.
- electrophotographic photosensitive member hereinafter, also simply referred to as “photoreceptor”
- photoreceptor an organic photoconducting substance having advantages such as pollution-free, easy film formation, and easy production is used.
- the photoconductor used is mainly used.
- the organic electrophotographic photosensitive member includes a single-layer type electrophotographic photosensitive member (hereinafter referred to as a single-layer type photosensitive member) having a charge generating substance and a charge transporting substance in the same layer, and an electric charge.
- a laminated electrophotographic photosensitive member (hereinafter referred to as a laminated photosensitive member) in which a generating substance and a charge transporting substance are separated and laminated in separate layers (charge generating layer and charge transporting layer) is known.
- the laminated photoconductor is usually used in a negative charging method in which a charge generation layer and a charge transport layer are laminated in this order on a substrate, and the surface of the photoconductor is charged with a negative charge.
- the amount of ozone generated from the charger is larger than that in the positive charging method in which the surface of the photoconductor is charged to a positive charge, so that deterioration of the photoconductor may be a problem.
- the single-layer type photoconductor can be used by either the negative charge method or the positive charge method in principle, but the positive charge method causes a problem in the above-mentioned laminated photoconductor in the amount of ozone generated. It is advantageous because it is possible to suppress the problem and it is generally easier to increase the sensitivity than the negative charging method. Further, the single-layer type photoconductor has an advantage that the number of coating steps is small and is advantageous in terms of resolution, and although it is inferior to the negatively charged laminated type photoconductor in terms of electrical characteristics, it has been partially put into practical use. , Various improvements have been studied up to the present (Patent Documents 1 and 2).
- the electrophotographic photosensitive member is repeatedly used in the electrophotographic process, that is, the cycle of charging, exposure, development, transfer, cleaning, static elimination, etc., it is deteriorated by receiving various stresses during that period.
- damage due to mechanical deterioration such as abrasion of the surface of the photosensitive layer due to rubbing of cleaning blades, magnetic brushes, developer, contact with paper, generation of scratches, peeling of film, etc. is likely to appear on the image directly. Since it impairs quality, it is a major factor that limits the life of the photoconductor.
- a layer containing a compound having a chain-growth functional group as a binder resin is formed on the outermost layer of the photoconductor, and heat, light, or radiation is formed on the layer.
- a photoconductor having a cured resin layer formed by polymerizing by applying energy such as the above is disclosed. (See, for example, Patent Documents 3 and 4).
- the photoconductor In order to improve the electrical characteristics of the photoconductor, it is considered effective to increase the contents of the hole transporting substance (HTM) and the electron transporting substance (ETM) in the photosensitive layer.
- HTM hole transporting substance
- ETM electron transporting substance
- the hole transporting substance and the electron transporting substance tend to be concentrated on the surface of the photosensitive layer.
- the protective layer containing the cured resin when it is formed (particularly when it is formed as the outermost layer), the adhesiveness between the protective layer (outermost layer) and the photosensitive layer in contact with the protective layer is significantly deteriorated.
- the protective layer (outermost layer) is formed. It turned out that it may come off. Further, there are problems that the Martens hardness of the surface of the photoconductor is lowered and the elastic deformation rate of the surface of the photoconductor is lowered.
- an object of the present invention is an electrophotographic photosensitive member having a high maltens hardness, a high elastic deformation rate, and excellent adhesion between a photosensitive layer and a protective layer (outermost layer), the electrophotographic photosensitive member. It is an object of the present invention to provide an electrophotographic photosensitive member cartridge and an image forming apparatus.
- the present inventors have conducted intensive research on the molecular weight, the ratio of the substance amount (molar amount), or the molecular weight ratio of the hole transporting substance and the electron transporting substance in the photosensitive layer.
- the above-mentioned problems can be solved if the above-mentioned problem is within a specific range, and have reached the present invention.
- the gist of the present invention lies in the following [1] to [19].
- An electrophotographic photosensitive member having at least a photosensitive layer and a protective layer on a conductive support.
- the protective layer contains a structure formed by polymerizing a compound having a chain-growth functional group.
- An electrophotographic photosensitive member, wherein the photosensitive layer in contact with the protective layer contains a hole transporting substance satisfying the following formula (1) and an electron transporting substance satisfying the following formula (2). 600 ⁇ a (1) 400 ⁇ b (2) (In formula (1), a is the molecular weight of the hole transporting substance. In formula (2), b is the molecular weight of the electron transporting substance.)
- An electrophotographic photosensitive member having at least a photosensitive layer and a superficial layer on a conductive support.
- the outermost layer contains a structure formed by polymerizing a compound having a chain-growth functional group.
- An electrophotographic photosensitive member, wherein the photosensitive layer in contact with the outermost surface layer contains a hole transporting substance satisfying the following formula (1) and an electron transporting substance satisfying the following formula (2). 600 ⁇ a (1) 400 ⁇ b (2) (In formula (1), a is the molecular weight of the hole transporting substance. In formula (2), b is the molecular weight of the electron transporting substance.)
- the photosensitive layer in contact with the outermost surface layer or the protective layer is a single layer containing at least a binder resin, a charge generating substance, a hole transporting substance, and an electron transporting substance.
- the ratio (a / b) of the molecular weight a of the hole transporting substance to the molecular weight b of the electron transporting substance is 1.40 or more and 1.90 or less.
- the electrophotographic photosensitive member according to any one of 1. [10] The electrophotographic photosensitive member according to any one of [1] to [9] above, which is a positively charged type. [11] The above-mentioned one of [1] to [10], wherein the outermost layer or the protective layer contains a structure obtained by radically polymerizing a compound having a chain-polymerizable functional group. Electrophotophotoconductor.
- R 61 to R 64 are each independently a hydrogen atom, an alkyl group having 1 or more and 20 or less carbon atoms which may be substituted, or an alkyl group having 2 or more and 20 or less carbon atoms which may be substituted. Representing an alkenyl group, R 61 and R 62 may be bonded to each other, or R 63 and R 64 may be bonded to each other to form a cyclic structure.
- X represents an organic residue having a molecular weight of 120 or more and 250 or less.
- An electrophotographic photosensitive member having at least a photosensitive layer and a protective layer on a conductive support.
- the protective layer contains a structure formed by polymerizing a compound having a chain-growth functional group.
- the photosensitive layer in contact with the protective layer contains at least a binder resin, a hole transporting substance, and an electron transporting substance.
- An electrophotographic photosensitive member in which the photosensitive layer in contact with the protective layer satisfies the following formula (5).
- A is the content (parts by mass) of the hole transporting substance with respect to the content of the binder resin 100
- a is the molecular weight of the hole transporting substance
- B is the electron transporting substance with respect to the content of the binder resin 100.
- b is the molecular weight of the electron transporting substance
- An electrophotographic photosensitive member having at least a photosensitive layer and a protective layer on a conductive support.
- the protective layer contains a structure formed by polymerizing a compound having a chain-growth functional group.
- the photosensitive layer in contact with the protective layer contains at least a hole transporting substance and an electron transporting substance, and the photosensitive layer contains at least a hole transporting substance and an electron transporting substance.
- an electrophotographic photosensitive member having high Martens hardness, high elastic deformation rate, and excellent adhesiveness (also simply referred to as "adhesiveness") between the photosensitive layer and the outermost layer or the protective layer. It is possible to provide an electrophotographic photosensitive member cartridge and an image forming apparatus using the electrophotographic photosensitive member.
- the electrophotographic photosensitive member of the present invention has at least a photosensitive layer on a conductive support and a protective layer containing a structure formed by polymerizing a compound having a chain-growth functional group. From the viewpoint of further obtaining the effects of the present invention, the protective layer is preferably the outermost layer.
- the charging method for the electrophotographic photosensitive member of the present invention may be either a negative charging method for charging the surface of the photoconductor with a negative charge or a positive charging method for charging the surface of the photoconductor with a positive charge. From the viewpoint of further enjoying the effects of the present invention, a positively charged electrophotographic photosensitive member is preferable.
- a "protection layer (the outermost layer)" means a protective layer or the outermost layer.
- the conductive support is not particularly limited as long as it supports a single-layer type photosensitive layer and a protective layer (outermost layer), which will be described later, and exhibits conductivity.
- the conductive support include metal materials such as aluminum, aluminum alloys, stainless steel, copper, and nickel, resin materials in which conductive powders such as metal, carbon, and tin oxide coexist to impart conductivity. Resin, glass, paper, etc., in which a conductive material such as aluminum, nickel, ITO (indium oxide tin oxide alloy) is vapor-deposited or coated on the surface thereof are mainly used.
- a drum shape, a sheet shape, a belt shape, or the like is used as the form of the conductive support.
- a conductive material having an appropriate resistance value may be coated on a conductive support made of a metal material for controlling conductivity, surface properties, etc., or for covering defects.
- the metal material may be coated with an anodic oxide film before use.
- the average film thickness of the anodic oxide film is usually 20 ⁇ m or less, particularly preferably 7 ⁇ m or less.
- the surface of the conductive support may be smooth, or may be roughened by using a special cutting method or by applying a polishing treatment. Further, the surface may be roughened by mixing particles having an appropriate particle size with the material constituting the support.
- an undercoat layer which will be described later, may be provided between the conductive support and the photosensitive layer in order to improve adhesiveness, blocking property, and the like.
- the photosensitive layer in the electrophotographic photosensitive member of the present invention may be a single layer type or a laminated type, and the photosensitive layer in contact with the protective layer (outermost layer) may have a configuration as described below. Above all, it is preferable that the photosensitive layer in contact with the protective layer (outermost layer) is a single-layer type photosensitive layer containing at least a binder resin, a charge generating substance, a hole transporting substance and an electron transporting substance in the same layer.
- the "photosensitive layer surface” means an interface on the side where the photosensitive layer is in contact with the protective layer (outermost layer).
- the hole transporting substance when the hole transporting substance is concentrated on the surface of the photosensitive layer, it becomes a steric obstacle and hinders the entanglement between the cured film of the protective layer (outermost layer) and the binder resin of the photosensitive layer. , It is presumed that the adhesiveness deteriorates as described above. Further, when the electron transporting substance is concentrated on the surface of the photosensitive layer, the electron transporting substance traps radicals generated in the curing reaction of the protective layer (outermost layer) and causes a chain polymerization reaction, that is, a curing reaction in the protective layer (outermost layer). It is presumed that the maltens hardness of the surface of the photoconductor and the elastic deformation rate of the surface of the photoconductor are reduced because of the inhibition.
- the first embodiment of the present invention is to set the molecular weights of the hole-transporting substance and the electron-transporting substance to a predetermined value or more, and the motion of the hole-transporting substance and the electron-transporting substance in the photosensitive layer. Since the property is suppressed, the transferability to the surface of the photosensitive layer can be suppressed, the concentration on the surface of the photosensitive layer can be suppressed, and the adhesiveness, the Martens hardness and the elastic deformation rate can be preferable.
- the ratio of the substance amount (molar amount) of the hole transporting substance and the substance amount (molar amount) of the electron transporting substance in the photosensitive layer is adjusted within a predetermined range.
- the concentration of the hole-transporting substance and the concentration of the electron-transporting substance are suppressed in a well-balanced manner, and the adhesiveness, the Martens hardness and the elastic deformation rate can be improved.
- the third embodiment of the present invention is to adjust the ratio of the molecular weight of the hole transporting substance to the molecular weight of the electron transporting substance within a predetermined range, and enriches the hole transporting substance and the electron transporting substance. Is suppressed in a well-balanced manner, and the adhesiveness, the Martens hardness and the elastic deformation rate can be improved.
- the materials charge generating substance, hole transporting substance, electron transporting substance, binder resin, etc. used for the photosensitive layer in contact with the protective layer (outermost layer), for example, the single layer type photosensitive layer will be described.
- charge generator As the charge generating substance used for the photosensitive layer, for example, various photoconductive materials such as selenium and its alloy, cadmium sulfide, and other inorganic photoconductive materials; organic pigments such as phthalocyanine pigments, azo pigments, and perylene pigments; can be used. Among them, organic pigments are preferable, phthalocyanine pigments and azo pigments are more preferable, and phthalocyanine pigments are even more preferable.
- a metal such as metal-free phthalocyanine, copper, indium, gallium, tin, titanium, zinc, vanadium, silicon, germanium, or an oxide or halide thereof.
- Phthalocyanines coordinated with are used.
- particularly sensitive X-type, ⁇ -type metal-free phthalocyanine, A-type, B-type, D-type and the like titanyl phthalocyanine, vanadyl phthalocyanine, chloroindium phthalocyanine, chlorogallium phthalocyanine, hydroxygallium phthalocyanine and the like are preferable.
- the D type is a crystal type characterized by showing a clear peak at a diffraction angle of 2 ⁇ ⁇ 0.2 ° at 27.3 ° in powder X-ray diffraction using CuK ⁇ rays.
- azo pigment various known bisazo pigments and trisazo pigments are preferably used.
- charge generating substance one kind may be used alone, or two or more kinds may be used in any combination and ratio. Further, when two or more kinds of charge generating substances are used in combination, as a method of mixing the combined charge generating substances, each charge generating substance may be mixed and used later, or synthesis, pigmentation, crystallization, etc. may be used. They may be mixed and used in the process of manufacturing and processing the charge generating substance.
- the particle size of the charge generating substance is small. Specifically, it is usually preferably 1 ⁇ m or less, and more preferably 0.5 ⁇ m or less. The lower limit is 0.01 ⁇ m.
- the particle size of the charge generating substance means the particle size in a state of being contained in the photosensitive layer.
- the amount of the charge generating substance in the photosensitive layer in contact with the protective layer (outermost layer), for example, the single-layer type photosensitive layer is preferably 0.1% by mass or more, more preferably 0.5% by mass or more from the viewpoint of sensitivity. preferable. Further, from the viewpoint of sensitivity and chargeability, it is preferably 50% by mass or less, more preferably 20% by mass or less.
- the charge transporting substance is mainly classified into a hole transporting substance having a hole transporting ability and an electron transporting substance mainly having an electron transporting ability.
- the photosensitive layer in contact with the protective layer (outermost layer) used in the present invention for example, a single-layer photosensitive layer contains both a hole transporting substance and an electron transporting substance.
- the hole transporting substance (HTM) can be selected and used from known materials.
- heterocyclic compounds such as carbazole derivatives, indol derivatives, imidazole derivatives, oxazole derivatives, pyrazole derivatives, thiadiazol derivatives, benzofuran derivatives, aniline derivatives, hydrazone derivatives, arylamine derivatives, stilben derivatives, butadiene derivatives and enamine derivatives, and compounds thereof.
- Examples thereof include those in which a plurality of types of the above are bonded, and electron-donating substances such as polymers having a group composed of these compounds in the main chain or the side chain.
- carbazole derivatives Among these, carbazole derivatives, arylamine derivatives, stylben derivatives, butadiene derivatives and enamine derivatives, and those in which a plurality of these compounds are bound are preferable, and arylamine derivatives and enamine derivatives are more preferable.
- the larger the molecular weight of the hole transporting substance the lower the transferability to the surface of the photosensitive layer, so that the hole transporting substance is photosensitive. It is possible to suppress the thickening on the layer surface, and it is possible to suppress the deterioration of the adhesiveness between the photosensitive layer and the protective layer (outermost layer).
- the molecular weight of the hole transporting substance is too large, the solubility in the solvent used for the coating liquid tends to decrease, and the compatibility with the binder resin tends to decrease, which is not preferable.
- the molecular weight a of the hole transporting substance preferably satisfies the following formula (1), and more preferably satisfies the following formula (1').
- the molecular weight of the hole transporting substance is preferably 600 or more, more preferably 650 or more, further preferably 700 or more, and particularly preferably 750 or more.
- 1200 or less is preferable, 1000 or less is more preferable, and 900 or less is further preferable.
- a photosensitive layer in contact with the protective layer (outermost layer), for example, a single-layer photosensitive layer further has the above formula (1). It is preferable to satisfy, and it is more preferable to satisfy the above formula (1'). That is, the molecular weight a of the hole transporting substance is preferably 600 or more, more preferably 650 or more, further preferably 700 or more, and particularly preferably 750 or more. On the other hand, 1200 or less is preferable, 1000 or less is more preferable, and 900 or less is further preferable.
- the hole transporting substance only one kind may be used alone, or two or more kinds may be used in any ratio and combination.
- the molecular weight of the hole transporting substance having the maximum content (part by mass) in the photosensitive layer is 600 or more among the two or more kinds of hole transporting substances. More preferred.
- the following is an example of the structure of a preferable hole transporting substance.
- HTM12, HTM31, HTM32, HTM33, HTM34, HTM35, HTM36, HTM38, HTM39, HTM40, HTM41, HTM42, HTM43, HTM48 are preferable, and HTM31, HTM32, HTM33 are preferable from the viewpoint of electrical characteristics.
- HTM34, HTM35, HTM36, HTM38, HTM39, HTM40, HTM41, HTM42, HTM43, HTM48 are more preferred, and HTM39, HTM40, HTM41, HTM42, HTM43, HTM48 are even more preferred.
- the hole transporting substance is at least one aromatic group bonded to a nitrogen (N) atom from the viewpoint of further enhancing the adhesion between the photosensitive layer and the protective layer (outermost layer).
- a structure having a substituent at one ortho position is preferable, and a structure having a substituent at each of the two ortho positions of at least one aromatic group bonded to the nitrogen (N) atom is more preferable.
- the aromatic group repels sterically with other substituents bonded to the nitrogen atom, and the nitrogen atom and other substituents bonded to the nitrogen atom are formed. It is considered to take a three-dimensional arrangement rotated with respect to a plane. With such a three-dimensional arrangement, it is presumed that the aromatic group exerts an anchoring effect on the binder resin, so that the hole transporting substance is less likely to be concentrated on the surface of the photosensitive layer.
- Examples of the aromatic group include a benzene ring, a naphthyl group, an anthracene group, a phenanthrene group, a biphenyl group, a pyrene group, a carbazole group and the like.
- a benzene ring, a naphthyl group, and a biphenyl group are preferable, and a benzene ring is more preferable, from the viewpoint of solubility.
- Examples of the substituent at the ortho position include a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, a sec-butyl group, an i-butyl group, a tert-butyl group and an n-pentyl group.
- a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, a sec-butyl group and an i-butyl group are preferable, and a methyl group is preferable.
- Ethyl group, n-propyl group and i-propyl group are more preferable.
- HTM48, HTM42, HTM40, HTM43, and HTM41 are preferable, and among them, HTM40 and HTM43 are more preferable.
- a hole transporting substance having a molecular weight of 600 or more may be used in combination with a hole transporting substance outside the molecular weight range (referred to as “other hole transporting substance”). However, in that case, it is preferable that the amount of the hole transporting substance having a molecular weight of 600 or more is larger than the amount of other hole transporting substances.
- the amount of the hole transporting substance is preferably 80 parts by mass or less, more preferably 60 parts by mass or less, and further preferably 40 parts by mass or less.
- a hole transporting substance having the following structure can be exemplified. However, it is not limited to these.
- the electron transporting substance (ETM) can be selected and used from known materials.
- an aromatic nitro compound such as 2,4,7-trinitrofluorenone, a cyano compound such as tetracyanoquinodimethane, an electron-withdrawing substance such as a quinone compound such as diphenoquinone, a known cyclic ketone compound or a perylene pigment ( Perylene derivative) and the like.
- the larger the molecular weight of the electron-transporting substance the lower the transferability to the surface, so that the electron-transporting substance is concentrated on the surface of the photosensitive layer. Since it is possible to suppress the conversion to the outermost layer side, the electron transporting substance traps the radicals generated in the curing reaction of the protective layer (outermost layer) and inhibits the curing reaction. It can be suppressed. Therefore, it is possible to suppress a decrease in the Martens hardness of the surface of the photoconductor and a decrease in the elastic deformation rate of the surface of the photoconductor.
- the molecular weight b of the electron transporting substance preferably satisfies the following formula (2), and more preferably satisfies the following formula (2').
- the molecular weight of the electron transporting substance is preferably 400 or more, more preferably 410 or more, and further preferably 420 or more.
- 1000 or less is preferable, 800 or less is more preferable, and 600 or less is further preferable.
- a photosensitive layer in contact with the protective layer (outermost layer), for example, a single-layer photosensitive layer further has the above formula (2). It is preferable to satisfy, and it is more preferable to satisfy the above formula (2'). That is, the molecular weight b of the electron transporting substance is preferably 400 or more, more preferably 410 or more, and even more preferably 420 or more. On the other hand, 1000 or less is preferable, 800 or less is more preferable, and 600 or less is further preferable.
- the molecular weight a of the hole transporting substance is larger than the molecular weight b of the electron transporting substance. That is, the ratio (a / b) of the molecular weight a of the hole transporting substance to the molecular weight b of the electron transporting substance is preferably 1.00 or more, more preferably 1.40 or more, and more preferably 1.50 or more.
- 1.60 or more is more preferable, 1.70 or more is further preferable, and 1.80 or more is particularly preferable.
- it is preferably 3.00 or less, more preferably 2.00 or less, and more preferably 1.90 or less, and among them, 1.85 or less. Is more preferable.
- the ratio (a / b) of the molecular weight a of the hole transporting substance to the molecular weight b of the electron transporting substance is 1.40 or more and 1.90 or less.
- the concentration of the electron transporting substance and the concentration of the electron transporting substance are suppressed in a well-balanced manner, and the adhesiveness, the Martens hardness and the elastic deformation rate can be improved.
- a / b is 1.40 or more, the molecular weight of the hole transporting substance is adjusted to be relatively large, and the transferability of the hole transporting substance to the surface side of the photosensitive layer is low, so that the adhesiveness is poor. It will be good.
- a / b is preferably 1.50 or more, more preferably 1.60 or more, further preferably 1.70 or more, and particularly preferably 1.80 or more.
- a / b is 1.90 or less, the molecular weight of the electron-transporting substance is adjusted to be relatively large, and the transferability of the electron-transporting substance to the surface side of the photosensitive layer is lowered, so that the Martens hardness and elasticity are reduced. The deformation rate is good. Further, when the transferability of the electron transporting substance to the surface side of the photosensitive layer becomes low, the movement of the hole transporting substance to the surface side of the photosensitive layer is also hindered, so that the hole transporting substance moves to the surface side of the photosensitive layer. The migration property is also low, and the adhesiveness is also good. Therefore, a / b is preferably 1.90 or less, and more preferably 1.85 or less.
- the electron transporting substance only one kind may be used alone, or two or more kinds may be used in any ratio and combination.
- the molecular weight of the electron transporting substance having the maximum content (part by mass) in the photosensitive layer is 400 or more among the two or more kinds of electron transporting substances. ..
- a compound represented by the following formula (6) can be exemplified.
- R 61 to R 64 are each independently a hydrogen atom, an alkyl group having 1 or more and 20 or less carbon atoms which may be substituted, or an alkyl group having 2 or more and 20 or less carbon atoms which may be substituted. Representing an alkenyl group, R 61 and R 62 may be bonded to each other, or R 63 and R 64 may be bonded to each other to form a cyclic structure.
- X represents an organic residue having a molecular weight of 120 or more and 250 or less.
- R 61 to R 64 each independently represent a hydrogen atom, an alkyl group having 1 to 20 carbon atoms which may be substituted, or an alkenyl group having 2 to 20 carbon atoms.
- alkyl group having 1 to 20 carbon atoms which may be substituted include a linear alkyl group, a branched alkyl group and a cyclic alkyl group, and a linear alkyl group or a branched alkyl group is preferable from the viewpoint of electron transport capacity. ..
- the carbon number of these alkyl groups is usually 1 or more, preferably 4 or more, usually 20 or less, preferably 15 or less from the viewpoint of versatility of the raw material, more preferably 10 or less, and more preferably 5 or less from the viewpoint of handleability at the time of manufacture. More preferred. Specific examples thereof include a methyl group, an ethyl group, a hexyl group, an iso-propyl group, a tert-butyl group, a tert-amyl group, a cyclohexyl group and a cyclopentyl group.
- a methyl group, a tert-butyl group or a tert-amyl group is preferable, and a tert-butyl group or a tert-amyl group is more preferable from the viewpoint of solubility in an organic solvent used in a coating liquid.
- alkenyl group having 2 or more and 20 or less carbon atoms which may be substituted examples include a linear alkenyl group, a branched alkenyl group and a cyclic alkenyl group.
- the carbon number of these alkenyl groups is usually 2 or more, preferably 4 or more, usually 20 or less, and preferably 10 or less in terms of the light attenuation characteristics of the photoconductor.
- Specific examples thereof include an ethenyl group, a 2-methyl-1-propenyl group and a cyclohexenyl group.
- the substituents R 61 to R 64 may form a cyclic structure by binding R 61 and R 62 to each other or R 63 and R 64 to each other. From the viewpoint of electron mobility, when both R 61 and R 62 are alkenyl groups, it is preferable to bond them to each other to form an aromatic ring, and both R 61 and R 62 are ethenyl groups and bond to each other. It is more preferable to have a benzene ring structure.
- X represents an organic residue having a molecular weight of 120 or more and 250 or less
- the compound represented by the formula (6) is represented by the following formulas (7) to (10) from the viewpoint of the light attenuation characteristics of the photoconductor. It is preferable that it is a compound represented by any of the above.
- R 71 to R 73 independently represent a hydrogen atom, a halogen atom, or an alkyl group having 1 or more and 6 or less carbon atoms.
- R 81 to R 84 independently represent a hydrogen atom, a halogen atom, or an alkyl group having 1 or more and 6 or less carbon atoms.
- R 91 represents a hydrogen atom, an alkyl group having 1 or more carbon atoms and 6 or less carbon atoms, or a halogen atom.
- R 101 and R 102 independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 or more and 6 or less carbon atoms, or an aryl group having 6 or more and 12 or less carbon atoms, respectively.
- Examples of the alkyl group having 1 or more and 6 or less carbon atoms in R 71 to R 102 include a linear alkyl group, a branched alkyl group, and a cyclic alkyl group.
- the number of carbon atoms of these alkyl groups is usually 1 or more and usually 6 or less.
- Specific examples thereof include a methyl group, an ethyl group, a hexyl group, an iso-propyl group, a tert-butyl group, a tert-amyl group and a cyclohexyl group.
- a methyl group, a tert-butyl group or a tert-amyl group is preferable from the viewpoint of electron transport capacity.
- halogen atom examples include fluorine, chlorine, bromine and iodine, and chlorine is preferable from the viewpoint of electron transport capacity.
- the number of carbon atoms of an aryl group having 6 or more and 12 or less carbon atoms is usually 6 or more and usually 12 or less. Specific examples thereof include a phenyl group and a naphthyl group, and a phenyl group is preferable from the viewpoint of film physical characteristics of the photosensitive layer. These aryl groups may be further substituted.
- the formula (6) is preferably the formula (7) or the formula (8) from the viewpoint of image quality stability when repeatedly forming an image, and the formula (7) is preferable. Is more preferable.
- the compound represented by the formula (6) may be used alone, a compound represented by the formula (6) having a different structure may be used in combination, or a compound represented by another electron transporting substance may be used in combination. ..
- the following is an example of the structure of a preferable electron transporting substance.
- ET-2, ET-5, ET-15, ET-16, and ET-17 are preferable, and ET-2 and ET-5 are more preferable, and ET-2 is preferable from the viewpoint of electrical characteristics. Is even more preferable.
- ET-2, ET-5, ET-9, ET- 13, ET-14, ET-15, ET-16, and ET-17 are preferable, and ET-2 and ET-5 are more preferable.
- the amount of the electron-transporting substance is larger than the amount of the other electron-transporting substance, and in particular, the amount of the other electron-transporting substance is 80 parts by mass with respect to 100 parts by mass of the electron-transporting substance. It is preferably 60 parts by mass or less, and more preferably 40 parts by mass or less.
- an electron transporting substance having the following structure can be exemplified. However, it is not limited to these.
- the photosensitive layer in contact with the protective layer (outermost layer), for example, the single-layer type photosensitive layer satisfies the formula (3) in the photosensitive layer.
- the absolute amount of the charge transporting substance required for charge transporting in the photosensitive layer can be secured. Therefore, it is preferable. 0.15 ⁇ (A / a) + (B / b) (3)
- A is the content of the binder resin contained in the photosensitive layer in contact with the protective layer (outermost layer), for example, the single-layer type photosensitive layer.
- B indicates the content (parts by mass) of the electron transporting substance
- a is the molecular weight of the hole transporting substance.
- b indicates the molecular weight of the electron transporting substance.
- (A / a) or (B / b) is obtained by dividing the content of the hole transporting substance or the electron transporting substance by the molecular weight, and represents the amount of substance, that is, the quantity of molecules, that is, the molar amount.
- (A / a) + (B / b) is preferably 0.15 or more, and more preferably 0.17 or more. Is more preferable, and more preferably 0.20 or more. On the other hand, it is preferably 0.60 or less, more preferably 0.40 or less, and even more preferably 0.30 or less.
- the photosensitive layer in contact with the protective layer for example, a single-layer photosensitive layer satisfies the formula (4). 0.80 ⁇ A / B ⁇ 3.00 (4)
- a / B in the formula (4) means the content ratio of the hole transporting substance and the electron transporting substance contained in the photosensitive layer, and if the A / B is 0.80 or more, good electron transporting is performed. It is preferable from the viewpoint of obtaining properties, and when it is 3.00 or less, it is preferable from the viewpoint of obtaining good hole transportability. From this point of view, "A / B" is preferably 0.80 or more, more preferably 1.00 or more, and even more preferably 1.10 or more. On the other hand, it is preferably 3.00 or less, more preferably 2.00 or less, and even more preferably 1.80 or less.
- a photosensitive layer in contact with the protective layer (outermost layer), for example, a single-layer type photosensitive layer is further represented by the formula (5). ) Is preferable.
- (B / b) / (A / a) is preferably 1.20 or more, more preferably 1.40 or more, and even more preferably 1.50 or more. On the other hand, it is preferably 1.60 or less, more preferably 1.58 or less, and even more preferably 1.55 or less.
- the hole transporting substance contained in the photosensitive layer so that the photosensitive layer in contact with the protective layer (outermost layer), for example, the single-layer type photosensitive layer satisfies the above formula (5).
- the ratio of the amount of substance (mol) and the amount of substance (mol) of the electron transporting substance is adjusted, the concentration of the hole transporting substance and the concentration of the electron transporting substance are suppressed in a well-balanced manner, and the Martens hardness and the elasticity are suppressed.
- the deformation rate and the adhesiveness can be improved.
- / (A / a) is preferably 1.20 or more, more preferably 1.40 or more, and even more preferably 1.50 or more. On the other hand, it is preferably 1.60 or less, more preferably 1.58 or less, and even more preferably 1.55 or less.
- binder resin used for the photosensitive layer
- examples of the binder resin used for the photosensitive layer include vinyl polymers such as polymethylmethacrylate, polystyrene and polyvinyl chloride or copolymers thereof; butadiene resin; styrene resin; vinyl acetate resin; vinyl chloride resin and acrylic acid ester resin.
- Methacrylic acid ester resin vinyl alcohol resin; Polymers and copolymers of vinyl compounds such as ethyl vinyl ether; Polyvinyl butyral resin; Polyvinylformal resin; Partially modified polyvinyl acetal resin; Polyallylate resin; Polyamide resin; Polyurethane resin; Cellulous ester Resins; silicone-alkyd resin; poly-N-vinylcarbazole resin; polycarbonate resin; polyester resin; polyester carbonate resin; polysulfone resin; polyimide resin; phenoxy resin; epoxy resin; silicone resin; and partially cross-linked cured products thereof. Be done. Further, the resin may be modified with a silicon reagent or the like. In addition, one of these may be used alone, or two or more thereof may be used in any ratio and combination.
- binder resin it is particularly preferable to contain one kind or two or more kinds of polymers obtained by interfacial polymerization as the binder resin.
- the binder resin obtained by the above-mentioned interfacial polymerization a polycarbonate resin and a polyester resin are preferable, and a polycarbonate resin or a polyarylate resin is particularly preferable. Further, it is particularly preferable that the polymer is made from an aromatic diol as a raw material, and examples of the preferable aromatic diol compound include a compound represented by the following formula (11).
- X 111 represents a linking group represented by any of the following formulas or a single bond.
- R 111 and R 112 each independently represent a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an optionally substituted aryl group, or an alkyl halide group.
- Z represents a substituted or unsubstituted carbon ring having 4 to 20 carbon atoms.
- Y 111 to Y 118 each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group which may be substituted, or an alkyl halide group.
- antioxidants In addition to the above materials, there are well-known antioxidants, plasticizers, and ultraviolet absorbers in the photosensitive layer to improve film formation property, flexibility, coating property, stain resistance, gas resistance, light resistance, and the like. Additives such as agents, electron-withdrawing compounds, leveling agents, and visible light shading agents may be contained. In addition, various additives such as sensitizers, dyes, pigments (excluding the above-mentioned charge generating substances, hole transporting substances, and electron transporting substances), and surfactants are added to the photosensitive layer as needed. It may be included. Examples of the surfactant include silicone oil, a fluorine-based compound and the like. In the present invention, these can be appropriately used alone or in any ratio and combination of two or more.
- the photosensitive layer may contain a fluororesin, a silicone resin or the like, or may contain particles made of these resins or particles of an inorganic compound such as aluminum oxide. ..
- the antioxidant is a kind of stabilizer used for preventing the oxidation of the electrophotographic photosensitive member of the present invention.
- the antioxidant may be any as long as it has a function as a radical supplement, and specific examples thereof include phenol derivatives, amine compounds, phosphonate esters, sulfur compounds, vitamins and vitamin derivatives.
- the amount of the antioxidant used is not particularly limited, but is 0.1 part by mass or more, preferably 1 part by mass or more per 100 parts by mass of the binder resin in the photosensitive layer. Further, in order to obtain good electrical characteristics and printing resistance, it is preferably 25 parts by mass or less, more preferably 20 parts by mass or less.
- the photosensitive layer may have an electron-withdrawing compound.
- the electron-withdrawing compound include a sulfonic acid ester compound, a carboxylic acid ester compound, an organic cyano compound, a nitro compound, an aromatic halogen derivative and the like, and a sulfonic acid ester compound and an organic cyano compound are preferable. Yes, and particularly preferably a sulfonic acid ester compound. Only one kind of the electron-withdrawing compound may be used alone, or two or more kinds may be used in any ratio and combination.
- the amount of the electron-withdrawing compound used in the electrophotographic photosensitive member of the present invention is not particularly limited.
- the electron-withdrawing compound is used in the photosensitive layer, it is preferably 0.01 part by mass or more, and more preferably 0.05 part by mass or more per 100 parts by mass of the binder resin contained in the photosensitive layer. Further, in order to obtain good electrical characteristics, it is usually preferably 50 parts by mass or less, more preferably 40 parts by mass or less, and further preferably 30 parts by mass or less.
- the charge generating substance is dispersed in a coating liquid in which a hole transporting substance, an electron transporting substance, a binder resin, and other substances are dissolved (or dispersed) in a solvent (or a dispersion medium), and the charge generating substance is dispersed on a conductive support (or a dispersion medium).
- a coating liquid in which a hole transporting substance, an electron transporting substance, a binder resin, and other substances are dissolved (or dispersed) in a solvent (or a dispersion medium), and the charge generating substance is dispersed on a conductive support (or a dispersion medium).
- an intermediate layer such as an undercoat layer, which will be described later, it, it can be formed by applying it on these intermediate layers).
- a solvent or dispersion medium used for forming a photosensitive layer in contact with a protective layer (outermost layer), for example, a single-layer type photosensitive layer, and a coating method will be described.
- solvent or dispersion medium examples include alcohols such as methanol, ethanol, propanol and 2-methoxyethanol; ethers such as tetrahydrofuran, 1,4-dioxane and dimethoxyethane; esters; acetone.
- Methyl ethyl ketone Methyl ethyl ketone, cyclohexanone and other ketones; benzene, toluene, xylene, anisole and other aromatic hydrocarbons; dichloromethane, chloroform, 1,2-dichloroethane and other chlorinated hydrocarbons; nitrogen-containing compounds; acetonitrile, N- Examples thereof include aprotic polar solvents such as methylpyrrolidone, N, N-dimethylformamide, and dimethylsulfoxide. One of these may be used alone, or two or more thereof may be used in combination at any ratio and combination.
- Examples of the coating method for forming a photosensitive layer in contact with the protective layer (outermost layer), for example, a single-layer photosensitive layer, include a spray coating method, a spiral coating method, a ring coating method, and a dip coating method. be able to.
- the total solid content concentration of the coating liquid or the dispersion liquid is preferably 5% by mass or more, more preferably 10% by mass or more. Further, it is preferably 50% by mass or less, more preferably 35% by mass or less.
- the viscosity of the coating liquid or the dispersion liquid is preferably 50 mPa ⁇ s or more, more preferably 100 mPa ⁇ s or more. Further, it is preferably 700 mPa ⁇ s or less, and more preferably 500 mPa ⁇ s or less. This makes it possible to obtain a photosensitive layer having excellent film thickness uniformity.
- the coating film is dried, and it is preferable to adjust the drying temperature time so that necessary and sufficient drying is performed.
- the drying temperature is usually 80 ° C. or higher, preferably 100 ° C. or higher, from the viewpoint of suppressing residual solvent. Further, from the viewpoint of preventing the generation of bubbles and electrical characteristics, the temperature is usually 250 ° C. or lower, preferably 170 ° C. or lower, more preferably 140 ° C. or lower, and the temperature may be changed stepwise.
- a hot air dryer, a steam dryer, an infrared dryer, a far infrared dryer and the like can be used.
- the protective layer (outermost layer) is provided, only air drying at room temperature may be carried out after the application of the photosensitive layer, and heat drying by the above method may be carried out after the application.
- the optimum thickness of the photosensitive layer is appropriately selected depending on the material used. From the viewpoint of electrical characteristics and dielectric breakdown resistance, 5 ⁇ m or more is preferable, 10 ⁇ m or more is more preferable, and 15 ⁇ m or more is particularly preferable. Further, from the viewpoint of electrical characteristics, 100 ⁇ m or less is preferable, 50 ⁇ m or less is more preferable, and 30 ⁇ m or less is particularly preferable.
- the protective layer (outermost layer) of the photoconductor of the present invention has a structure formed by polymerizing a compound having a chain-growth functional group. Above all, the effect of the present invention is more effectively exhibited when a compound having a chain-polymerizable functional group is radically polymerized to form a protective layer (outermost layer).
- a predetermined electron transporting substance it is possible to suppress the concentration of the electron transporting substance on the surface of the photosensitive layer, so that the electron transporting substance is a protective layer (outermost layer).
- Examples of the chain-growth functional group of the compound having a chain-growth functional group include an acryloyl group, a methacryloyl group, a vinyl group and an epoxy group.
- examples of the chain polymerizable functional group capable of radical polymerization include an acryloyl group, a methacryloyl group and a vinyl group, and an acryloyl group and a methacryloyl group are preferable from the viewpoint of curing rate.
- the compound having a chain-growth functional group is not particularly limited as long as it is a known material, but from the viewpoint of curability, a monomer, an oligomer or a polymer having an acryloyl group or a methacryloyl group is preferable.
- Examples of the monomer having an acryloyl group or a methacryloyl group include trimethylol propanetriacrylate (A-TMPT), trimethylol propanetrimethacrylate, HPA-modified trimethylol propanetriacrylate, EO-modified trimethylol propanetriacrylate, and PO-modified trimethylol propanetriacrylate.
- A-TMPT trimethylol propanetriacrylate
- HPA-modified trimethylol propanetriacrylate HPA-modified trimethylol propanetriacrylate
- EO-modified trimethylol propanetriacrylate EO-modified trimethylol propanetriacrylate
- PO-modified trimethylol propanetriacrylate PO-modified trimethylol propanetriacrylate
- urethane acrylates As the oligomer or polymer having an acryloyl group or a methacryloyl group, known urethane acrylates, ester acrylates, acrylic acrylates, epoxy acrylates and the like can be used.
- the urethane acrylate include "EBECRYL8301”, “EBECRYL1290”, “EBECRYL1830”, “KRM8200” (Dycel Ornex Co., Ltd.), "UV1700B”, “UV7640B”, “UV7605B”, “UV6300B”, “UV7550B” (Mitsubishi). Chemical Corporation) and the like.
- ester acrylate examples include “M-7100”, “M-7300K”, “M-8030”, “M-8060”, “M-8100”, “M-8530”, “M-8560”, and “M”. -9050 ”(Toagosei Co., Ltd.) and the like.
- acrylic acrylate examples include "8BR-600”, “8BR-930MB”, “8KX-078”, “8KX-089”, “8KX-168” (Taisei Fine Chemical Co., Ltd.) and the like.
- urethane acrylate is preferably contained from the viewpoint of electrical characteristics.
- the protective layer (outermost layer) of the electrophotographic photosensitive member according to the present invention contains metal oxide particles and a charge-transporting substance for the purpose of imparting charge-transporting ability, in addition to the compound having a chain-growth-polymerizable functional group. May be good. Further, in order to promote the polymerization reaction, a polymerization initiator may be contained.
- the materials (metal oxide particles, charge transport material, polymerization initiator) used for the protective layer (outermost layer) will be described in detail below.
- the protective layer (outermost layer) of the present invention contains metal oxide particles from the viewpoint of imparting charge transporting ability and from the viewpoint of improving mechanical strength.
- the metal oxide particles usually any metal oxide particles that can be used for an electrophotographic photosensitive member can be used. More specifically, the metal oxide particles include metal oxide particles containing one kind of metal element such as titanium oxide, tin oxide, aluminum oxide, indium oxide, silicon oxide, zirconium oxide, zinc oxide, and iron oxide, and oxidation. Examples thereof include metal oxide particles containing a plurality of metal elements such as indium tin, calcium titanate, strontium titanate, and barium titanate. Among these, metal oxide particles having a bandgap of 2 to 4 eV are preferable. As the metal oxide particles, only one type of particles may be used, or a plurality of types of particles may be mixed and used.
- metal oxide particles only one type of particles may be used, or a plurality of types of particles may be mixed and used.
- titanium oxide, tin oxide, indium tin oxide, aluminum oxide, silicon oxide, and zinc oxide are preferable, and titanium oxide and tin oxide are more preferable, from the viewpoint of electron transportability. Titanium oxide is particularly preferable.
- any of rutile, anatase, brookite, and amorphous can be used. Further, from those having different crystal states, those having a plurality of crystal states may be included.
- the surface of the metal oxide particles may be subjected to various surface treatments. For example, it may be treated with an inorganic substance such as tin oxide, aluminum oxide, antimony oxide, zirconium oxide or silicon oxide, or an organic substance such as stearic acid, a polyol or an organic silicon compound. In particular, when titanium oxide particles are used, it is preferably surface-treated with an organic silicon compound.
- an inorganic substance such as tin oxide, aluminum oxide, antimony oxide, zirconium oxide or silicon oxide
- an organic substance such as stearic acid, a polyol or an organic silicon compound.
- titanium oxide particles it is preferably surface-treated with an organic silicon compound.
- organic silicon compound examples include silicone oils such as dimethylpolysiloxane and methylhydrogenpolysiloxane, organosilanes such as methyldimethoxysilane and diphenyldidimethoxysilane, sirazan such as hexamethyldisilazane, and 3-methacryloyloxypropyltrimethoxysilane, 3 -A silane coupling agent such as acryloyloxypropyltrimethoxysilane and vinyltrimethoxysilane can be mentioned.
- silicone oils such as dimethylpolysiloxane and methylhydrogenpolysiloxane
- organosilanes such as methyldimethoxysilane and diphenyldidimethoxysilane
- sirazan such as hexamethyldisilazane
- 3 -A silane coupling agent such as acryloyloxypropyltrimethoxysilane and vinyltrimethoxysilane
- 3-methacryloyloxypropyltrimethoxysilane, 3-acryloyloxypropyltrimethoxysilane, and vinyltrimethoxysilane having a chain-growth functional group are preferable. ..
- the metal oxide particles may be treated with an insulating substance such as aluminum oxide, silicon oxide or zirconium oxide in advance before the outermost surface is treated with such a treatment agent.
- an insulating substance such as aluminum oxide, silicon oxide or zirconium oxide
- the metal oxide particles only one type of particles may be used, or a plurality of types of particles may be mixed and used.
- metal oxide particles those having an average primary particle diameter of 500 nm or less are usually preferably used, those having an average primary particle diameter of 1 nm to 100 nm are more preferably used, and those having an average primary particle diameter of 5 to 50 nm are more preferably used.
- This average primary particle size can be determined by the arithmetic mean value of the particle size directly observed by a transmission electron microscope (hereinafter, also referred to as TEM).
- titanium oxide particles include ultrafine titanium oxide "TTO-55 (N)” and “TTO-51 (N)” which have not been surface-treated. , Al 2 O 3 coated ultrafine titanium oxide “TTO-55 (A)”, “TTO-55 (B)”, ultrafine titanium oxide surface treated with stearic acid “TTO-55 (C)” , Ultrafine titanium oxide “TTO-55 (S)” surface-treated with Al2O3 and organosiloxane, high-purity titanium oxide "C-EL”, sulfuric acid titanium oxide "R-550”, “R-580” , “R-630", “R-670”, “R-680”, “R-780", "A-100", “A-220", “W-10”, Chlorine Titanium Oxide "CR-” 50 ”,“ CR-58 ”,“ CR-60 ”,“ CR-60-2 ”,“ CR-67 ”, Conductive Titanium Oxide“ ET-300W ”(all manufactured by Ishi
- Al oxide particles As a specific product name of the aluminum oxide particles, "Aluminium Oxide C” (manufactured by Nippon Aerosil Co., Ltd.) and the like can be mentioned.
- silicon oxide particles include “200CF”, “R972” (manufactured by Nippon Aerosil Co., Ltd.), “KEP-30” (manufactured by Nippon Shokubai Co., Ltd.) and the like.
- tin oxide particles include "SN-100P", “SN-100D” (manufactured by Ishihara Sangyo Co., Ltd.), “SnO2” (manufactured by CIK Nanotech Co., Ltd.), and “S-2000". Examples thereof include phosphorus-doped tin oxide “SP-2”, antimony-doped tin oxide “T-1”, and indium-doped tin oxide "E-ITO” (manufactured by Mitsubishi Materials Corporation).
- zinc oxide particles include “MZ-305S” (manufactured by TAYCA Corporation), but the metal oxide particles that can be used in the present invention are not limited thereto.
- the content of the metal oxide particles in the protective layer (outermost layer) of the electrophotographic photosensitive member according to the present invention is not particularly limited. From the viewpoint of electrical characteristics, it is preferably 10 parts by mass or more, more preferably 20 parts by mass or more, and particularly preferably 30 parts by mass or more with respect to 100 parts by mass of the binder resin. Further, from the viewpoint of maintaining good surface resistance, it is preferably 300 parts by mass or less, more preferably 200 parts by mass or less, and particularly preferably 120 parts by mass or less.
- Charge transport material As the charge transporting substance contained in the protective layer (outermost layer), the same charge transporting substance as that used for the photosensitive layer can be used.
- the protective layer may contain a structure formed by polymerizing a charge transporting substance having a chain-growth functional group.
- the chain-growth functional group of the charge transporting substance having a chain-growth functional group include an acryloyl group, a methacryloyl group, a vinyl group and an epoxy group. Of these, an acryloyl group or a methacryloyl group is preferable from the viewpoint of curability.
- the structure of the charge-transporting substance portion of the charge-transporting substance having a chain-polymerizable functional group includes heterocyclic compounds such as carbazole derivatives, indol derivatives, imidazole derivatives, oxazole derivatives, pyrazole derivatives, thiadiazol derivatives, and benzofuran derivatives, aniline derivatives, and hydrazone.
- Electron-donating substances such as derivatives, arylamine derivatives, stilben derivatives, butadiene derivatives and enamine derivatives, those in which multiple types of these compounds are bonded, and polymers having a group consisting of these compounds in the main chain or side chain Can be mentioned.
- carbazole derivatives, arylamine derivatives, stilbene derivatives, butadiene derivatives and enamine derivatives, and those to which a plurality of these compounds are bound are preferable.
- the amount of the charge transporting substance used in the protective layer (outermost layer) of the electrophotographic photosensitive member according to the present invention is not particularly limited. From the viewpoint of electrical characteristics, it is preferably 10 parts by mass or more, more preferably 30 parts by mass or more, and particularly preferably 50 parts by mass or more with respect to 100 parts by mass of the binder resin. Further, from the viewpoint of maintaining good surface resistance, it is preferably 300 parts by mass or less, more preferably 20 parts by mass or less, and particularly preferably 150 parts by mass or less.
- the polymerization initiator includes a thermal polymerization initiator, a photopolymerization initiator and the like.
- thermal polymerization initiator examples include peroxide compounds such as 2,5-dimethylhexane-2,5-dihydroperoxide and azo compounds such as 2,2'-azobis (isobutyronitrile).
- Photopolymerization initiators can be classified into direct cleavage type and hydrogen extraction type depending on the radical generation mechanism.
- direct cleavage type photopolymerization initiator absorbs light energy, a part of the covalent bond in the molecule is cleaved to generate a radical.
- hydrogen extraction type photopolymerization initiator a molecule excited by absorbing light energy generates a radical by extracting hydrogen from a hydrogen donor.
- acetophenone, 2-benzoyl-2-propanol, 1-benzoylcyclohexanol, 2,2-diethoxyacetophenone, benzyldimethylketal, 2-methyl-4'-(methylthio)- Acetphenone or ketal compounds such as 2-morpholinopropiophenone, benzoin ether compounds such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isobutyl ether, benzoin isopropyl ether, O-tosylbenzoin, diphenyl (2, Acylphosphine oxides such as 4,6-trimethylbenzoyl) phosphine oxide, phenylbis (2,4,6-trimethylbenzoyl) phosphinoxide, lithium phenyl (2,4,6-trimethylbenzoyl) phosphonate, etc.
- examples include compounds.
- Examples of the hydrogen abstraction type photopolymerization initiator include benzophenone, 4-benzoylbenzoic acid, 2-benzoylbenzoic acid, methyl 2-benzoylbenzoate, methyl benzoylate, benzyl, p-anisyl, 2-benzoylnaphthalene, 4, Benzophenone compounds such as 4'-bis (dimethylamino) benzophenone, 4,4'-dichlorobenzophenone, 1,4-dibenzoylbenzene, 2-ethylanthraquinone, 2-isopropylthioxanthone, 2-chlorothioxanthone, 2,4 -Anthraquinone-based or thioxanthone-based compounds such as dimethylthioxanthone, 2,4-diethylthioxanthone, 2,4-dichlorothioxanthone, and the like can be mentioned.
- photopolymerization initiators examples include camphorquinone, 1-phenyl-1,2-propanedione-2- (o-ethoxycarbonyl) oxime, an acridine-based compound, a triazine-based compound, and an imidazole-based compound.
- the photopolymerization initiator preferably has an absorption wavelength in the wavelength region of the light source used for light irradiation in order to efficiently absorb light energy and generate radicals.
- the photopolymerization initiator cannot absorb sufficient light energy and the radical generation efficiency. May decrease. Since general binder resins, charge transport substances, and metal oxide particles have an absorption wavelength in the ultraviolet region (UV), this effect is remarkable especially when the light source used for light irradiation is ultraviolet light (UV). Is.
- an acylphosphine oxide-based compound having an absorption wavelength on the relatively long wavelength side among the photopolymerization initiators it is preferable to contain an acylphosphine oxide-based compound having an absorption wavelength on the relatively long wavelength side among the photopolymerization initiators.
- the acylphosphine oxide-based compound has a photobleaching effect in which the absorption wavelength region changes to the low wavelength side due to self-cleavage, so that light can be transmitted to the inside of the protective layer (outermost layer) and has internal curability. Is also preferable because it is good.
- the content ratio of the hydrogen abstraction type initiator to the acylphosphine oxide-based compound is not particularly limited, but from the viewpoint of supplementing the surface curability, 0.1 part by mass with respect to 1 part by mass of the acylphosphine oxide-based compound. The above is preferable, and from the viewpoint of maintaining the internal curability, 5 parts by mass or less is preferable.
- a substance having a photopolymerization promoting effect can be used alone or in combination with the above-mentioned photopolymerization initiator.
- triethanolamine, methyldiethanolamine, ethyl 4-dimethylaminobenzoate, isoamyl 4-dimethylaminobenzoate, ethyl benzoate (2-dimethylamino), 4,4'-dimethylaminobenzophenone, and the like can be mentioned.
- polymerization initiators may be used alone or in admixture of two or more.
- the content of the polymerization initiator is 0.5 to 40 parts by mass, preferably 1 to 20 parts by mass with respect to 100 parts by mass of the total content having radical polymerization property.
- the method for forming the protective layer (outermost layer) is not particularly limited. For example, it can be formed by applying a coating solution in which a binder resin, a charge transporting substance, a metal oxide particle, and other substances are dissolved in a solvent or a coating solution in which a dispersion medium is dispersed.
- solvent used for coating liquid for forming protective layer (outermost layer) any organic solvent that can dissolve the substance according to the present invention can be used. Specifically, alcohols such as methanol, ethanol, propanol and 2-methoxyethanol; ethers such as tetrahydrofuran, 1,4-dioxane and dimethoxyethane; esters such as methyl formate and ethyl acetate; acetone, methyl ethyl ketone and cyclohexanone.
- alcohols such as methanol, ethanol, propanol and 2-methoxyethanol
- ethers such as tetrahydrofuran, 1,4-dioxane and dimethoxyethane
- esters such as methyl formate and ethyl acetate
- acetone methyl ethyl ketone and cyclohexanone.
- Ketones such as; aromatic hydrocarbons such as benzene, toluene, xylene, anisole; dichloromethane, chloroform, 1,2-dichloroethane, 1,1,2-trichloroethane, 1,1,1-trichloroethane, tetrachloroethane, etc.
- 2-Dichloropropane chlorinated hydrocarbons such as trichloroethylene; nitrogen-containing compounds such as n-butylamine, isopropanolamine, diethylamine, triethanolamine, ethylenediamine, triethylenediamine; acetonitrile, N-methylpyrrolidone, N, N- Examples thereof include aprotic polar solvents such as dimethylformamide and dimethylsulfoxide. Any combination of these and any ratio of mixed solvents can also be used. Further, even if the organic solvent alone does not dissolve the substance for the protective layer (outermost layer) according to the present invention, for example, if it can be dissolved by using a mixed solvent with the above organic solvent, it should be used. Can be done.
- the dip coating method is used in the coating method described later, it is preferable to select a solvent that does not dissolve the lower layer. From this point of view, it is preferable to contain polycarbonate, which is preferably used for the photosensitive layer, and alcohols, which have low solubility in polyarylate.
- the ratio of the amount of the organic solvent used in the coating liquid for forming the protective layer (outermost layer) of the present invention to the solid content differs depending on the coating method of the coating liquid for forming the protective layer (outermost layer), and the coating method is uniform. It may be appropriately modified and used so that a film is formed.
- the method of applying the coating liquid for forming the protective layer (outermost layer) is not particularly limited, and examples thereof include a spray coating method, a spiral coating method, a ring coating method, and a dip coating method.
- the coating film After forming the coating film by the above coating method, the coating film is dried. At this time, the temperature and time of drying do not matter as long as necessary and sufficient drying can be obtained. However, when the protective layer (outermost layer) is applied only by air drying after the photosensitive layer is applied, it is preferable to sufficiently dry the photosensitive layer by the method described in [Applying method].
- the optimum thickness of the protective layer is appropriately selected depending on the material used. From the viewpoint of life, 0.1 ⁇ m or more is preferable, 0.2 ⁇ m or more is more preferable, and 0.5 ⁇ m or more is particularly preferable. From the viewpoint of electrical characteristics, 10 ⁇ m or less is preferable, 5 ⁇ m or less is more preferable, and 3 ⁇ m or less is particularly preferable.
- the protective layer (outermost layer) is formed by applying such a coating liquid and then applying energy from the outside to cure it.
- the external energy used at this time includes heat, light, and radiation.
- heating may be performed from the coating surface side or the support side using air, a gas such as nitrogen, steam, various heat media, infrared rays, or electromagnetic waves.
- the heating temperature is preferably 100 ° C. or higher and 170 ° C. or lower, and if it is the lower limit temperature or higher, the reaction rate is sufficient and the reaction proceeds completely.
- the reaction proceeds uniformly, and it is possible to suppress the occurrence of large strain in the protective layer (outermost layer).
- it is also effective to heat the product at a relatively low temperature of less than 100 ° C. and then heat it to 100 ° C. or higher to complete the reaction.
- UV irradiation light sources such as high-pressure mercury lamps, metal halide lamps, electrodeless lamp valves, and light emitting diodes having an emission wavelength of ultraviolet light (UV) can be mainly used. It is also possible to select a visible light source according to the absorption wavelength of the chain-growth-polymerizable compound or the photopolymerization initiator.
- the light irradiation amount (integrated light amount) is preferably 0.1 J / cm 2 or more, more preferably 0.5 J / cm 2 or more, and particularly preferably 1 J / cm 2 or more from the viewpoint of curability. Further, from the viewpoint of electrical characteristics, 150 J / cm 2 or less is preferable, 100 J / cm 2 or less is further preferable, and 50 J / cm 2 or less is particularly preferable.
- the energy of radiation include those using an electron beam (EB).
- those using light energy are preferable from the viewpoints of ease of reaction rate control, convenience of equipment, and length of pot life.
- a heating step may be added from the viewpoints of relaxation of residual stress, relaxation of residual radicals, and improvement of electrical characteristics.
- the heating temperature is preferably 60 ° C. or higher, more preferably 100 ° C. or higher, preferably 200 ° C. or lower, and more preferably 150 ° C. or lower.
- the first, second and third embodiments of the present invention include the molecular weights of the hole-transporting substance and the electron-transporting substance in the photosensitive layer in contact with the protective layer (outermost layer), for example, the single-layer type photosensitive layer.
- the ratio of the substance amount (molar amount) or the molecular weight to a specific range, it is possible to suppress the concentration of the hole transporting substance and the electron transporting substance on the surface of the photosensitive layer, and as a result, the surface of the photoconductor. It is possible to suppress a decrease in Martens hardness.
- the Martens hardness of the surface of the photoconductor is preferably 300 N / mm 2 or more, more preferably 350 N / mm 2 or more, and even more preferably 400 N / mm 2 or more.
- the Martens hardness of the surface of the photoconductor is preferably 600 N / mm 2 or less, more preferably 450 N / mm 2 or less, from the viewpoint of suppressing the generation of residual stress and cracks.
- the Martens hardness of the photoconductor means the Martens hardness measured from the surface side of the photoconductor. The Martens hardness can be measured by the method described in Examples described later.
- the first, second and third embodiments of the present invention include the molecular weights of the hole-transporting substance and the electron-transporting substance in the photosensitive layer in contact with the protective layer (outermost layer), for example, the single-layer type photosensitive layer.
- the ratio of the substance amount (molar amount) or the molecular weight to a specific range, it is possible to suppress the concentration of the hole transporting substance and the electron transporting substance on the surface of the photosensitive layer, and as a result, the surface of the photoconductor. It is possible to suppress a decrease in the elastic deformation rate of.
- the elastic deformation rate of the surface of the photoconductor is preferably 30% or more, more preferably 35% or more, still more preferably 40% or more.
- the elastic deformation rate of the surface of the photoconductor is preferably 60% or less, more preferably 55% or less, from the viewpoint of suppressing the generation of residual stress and cracks.
- the elastic deformation rate of the photoconductor means the elastic deformation rate measured from the surface side of the photoconductor. The elastic deformation rate can be measured by the method described in Examples described later.
- the electrophotographic photosensitive member of the present invention may have an undercoat layer between the photosensitive layer and the conductive support.
- the undercoat layer for example, a resin or a resin in which particles such as an organic pigment or a metal oxide are dispersed can be used.
- the organic pigment used for the undercoat layer include phthalocyanine pigments, azo pigments, perylene pigments and the like. Among them, phthalocyanine pigments and azo pigments, specifically, phthalocyanine pigments and azo pigments when used as the above-mentioned charge generating substance can be mentioned.
- metal oxide particles used for the undercoat layer include metal oxide particles containing one kind of metal element such as titanium oxide, aluminum oxide, silicon oxide, zirconium oxide, and zinc oxide, and a plurality of metals such as strontium titanate.
- metal oxide particles containing elements Only one kind of particles may be used for the undercoat layer, or a plurality of kinds of particles may be mixed and used in any ratio and combination.
- titanium oxide and aluminum oxide are preferable, and titanium oxide is particularly preferable.
- the surface of the titanium oxide particles may be treated with an inorganic substance, an organic substance, or the like.
- any of rutile, anatase, brookite and amorphous can be used. Further, a plurality of crystalline states may be included.
- the particle size of the metal oxide particles used in the undercoat layer is not particularly limited. From the viewpoint of the characteristics of the undercoat layer and the stability of the solution for forming the undercoat layer, the average primary particle size is preferably 10 nm or more, and more preferably 100 nm or less, more preferably 50 nm or less.
- the undercoat layer is formed in a form in which particles are dispersed in a binder resin.
- the binder resin used for the undercoat layer include polyvinyl butyral resin, polyvinyl formal resin, polyvinyl acetal resin, polyarylate resin, polycarbonate resin, polyester resin, modified ether polyester resin, phenoxy resin, and polyvinyl chloride resin.
- Polyvinylidene chloride resin polyvinyl acetate resin, polystyrene resin, acrylic resin, methacrylic resin, polyacrylamide resin, polyamide resin, polyvinylpyridine resin, cellulose resin, polyurethane resin, epoxy resin, silicone resin, polyvinyl alcohol resin, polyvinylpyrrolidone resin , Casein, insulating resins such as vinyl chloride-vinyl acetate copolymers, styrene-butadiene copolymers, vinylidene chloride-acrylonitrile copolymers, silicone-alkyd resins, and organic light such as poly-N-vinylcarbazole. It can be selected from conductive polymers and used, but is not limited to these polymers.
- binder resins may be used alone, in combination of two or more, or in a cured form together with a curing agent.
- polyvinyl butyral resin, polyvinyl formal resin, polyvinyl acetal resin, alcohol-soluble copolymerized polyamide, modified polyamide and the like are preferable because they show good dispersibility and coatability.
- the mixing ratio of the particles to the binder resin can be selected arbitrarily. It is preferable to use it in the range of 10% by mass to 500% by mass in terms of stability and coatability of the dispersion liquid.
- the film thickness of the undercoat layer can be arbitrarily selected, but is usually preferably 0.1 ⁇ m or more and 20 ⁇ m or less in view of the characteristics of the electrophotographic photosensitive member and the coatability of the dispersion liquid. Further, the undercoat layer may contain a known antioxidant or the like.
- the electrophotographic photosensitive member of the present invention may have other layers as appropriate, in addition to the above-mentioned conductive support, photosensitive layer, protective layer (outermost layer) and undercoat layer.
- THF tetrahydrofuran
- TL toluene
- UV light was irradiated so that the integrated light amount was 25.5 J / cm 2 using a UV light irradiation device equipped with a UV-LED lamp having a peak at a wavelength of 385 nm. Further, after heating at 125 ° C. for 10 minutes, the mixture was allowed to cool to 25 ° C. to form a protective layer (outermost layer).
- Example 1 shows the hole transporting substance and the electron transporting substance used for the single-layer photosensitive layer and their contents, and the compounds having a chain-growth functional group used for the protective layer (outermost layer). The structure of each compound used is shown below. Except for this, the photoconductors of Examples 2 to 5 and Comparative Examples 1 to 4 were prepared by the same procedure as in Example 1.
- the Martens hardness and elastic deformation rate of the surface of the photoconductor were measured using a micro hardness tester FISCHERSCOPEHM2000 manufactured by Fisher Co., Ltd. in an environment of a temperature of 25 ° C. and a relative humidity of 50%.
- a Vickers quadrangular pyramid diamond indenter with a facing angle of 136 ° was used for the measurement.
- the measurement conditions were set as follows, and the load applied to the indenter and the pushing depth under the load were continuously read, and the profiles as shown in FIG. 1 plotted on the Y-axis and the X-axis, respectively, were obtained.
- the total work amount Wt (nJ) indicates the area surrounded by ABDA in FIG. 1
- the elastic deformation work amount We (nJ) is the area surrounded by CBD. Is shown. The larger the elastic deformation rate, the less likely it is that the deformation with respect to the load remains, and when the elastic deformation rate is 100, it means that no deformation remains.
- ⁇ Adhesion test> Using an NT cutter (manufactured by NT), make 6 vertical and 6 horizontal cuts at 2 mm intervals on the single-layer type photoconductors produced in the examples and comparative examples, and make 25 squares of 5 ⁇ 5. Made. A cellophane tape (manufactured by 3M) was closely attached from above, and the adhesive surface was pulled up to 90 ° to test the adhesiveness between the photosensitive layer and the protective layer (outermost layer). The ratio (%) of the number of cells of the protective layer (outermost layer) remaining on the photosensitive layer was evaluated as the residual rate (%). The larger the number of remaining cells, the higher the residual rate and the better the adhesiveness. In any of the tests, no peeling was observed between the aluminum plate as a support and the photosensitive layer, and in all cases of peeling, the peeling occurred near the interface between the photosensitive layer and the protective layer (outermost layer). The results are shown in Table 1.
- Examples 1 to 5 had high maltens hardness, high elastic deformation rate, and excellent adhesiveness between the photosensitive layer and the protective layer (outermost layer). .. This is because the molecular weight a of the hole transporting substance (HTM) and the molecular weight b of the electron transporting substance (ETM) in the photosensitive layer are both within a predetermined range, and the following formulas (1) and (2) are satisfied. Is considered to be. 600 ⁇ a (1) 400 ⁇ b (2) (In formula (1), a is the molecular weight of the hole transporting substance. In formula (2), b is the molecular weight of the electron transporting substance.)
- an electrophotographic photosensitive member having at least a photosensitive layer and a protective layer (outermost layer) on the conductive support, wherein the protective layer (outermost layer) polymerizes a compound having a chain-growth functional group. If the photosensitive layer in contact with the protective layer (outermost layer) contains a hole-transporting substance satisfying the above formula (1) and an electron-transporting substance satisfying the above-mentioned formula (2), the degree of hardness of the skin can be increased. It can be considered that an electrophotographic photosensitive member having a high elastic deformation rate and excellent adhesion between the photosensitive layer and the protective layer (outermost layer) can be obtained.
- the amount of substance (mol) of the hole transporting substance and the amount of substance of the electron transporting substance (mol) contained in the photosensitive layer (the amount of substance of the electron transporting substance (mol)).
- the ratio of mol) is in an appropriate range, the concentration of the hole-transporting substance and the concentration of the electron-transporting substance are suppressed in a well-balanced manner, and the maltens hardness, the elastic deformation rate and the adhesiveness are further improved. It turned out to be good.
- A is the content (parts by mass) of the hole transporting substance with respect to the content of the binder resin 100
- a is the molecular weight of the hole transporting substance
- B is the electron transporting substance with respect to the content of the binder resin 100.
- b is the molecular weight of the electron transporting substance
- an electrophotographic photosensitive member having at least a photosensitive layer and a protective layer (outermost layer) on the conductive support, wherein the protective layer (outermost layer) polymerizes a compound having a chain-growth functional group.
- the photosensitive layer containing the above-mentioned structure and in contact with the protective layer (outermost layer) contains at least a binder resin, a hole transporting substance and an electron transporting substance, and the photosensitive layer in contact with the protective layer (outermost layer) is the above formula. If (5) is satisfied, it can be considered that an electrophotographic photosensitive member having a high chain hardness, a high elastic deformation rate, and excellent adhesion between the photosensitive layer and the protective layer (outermost layer) can be obtained. ..
- / b) is 1.40 or more and 1.90 or less, the concentration of the hole transporting substance and the enrichment of the electron transporting substance are suppressed in a well-balanced manner, and the Martens hardness, the elastic deformation rate and the above. It was found that the adhesiveness was further improved.
- an electrophotographic photosensitive member having at least a photosensitive layer and a protective layer (outermost layer) on the conductive support, wherein the protective layer (outermost layer) polymerizes a compound having a chain polymerizable functional group.
- the photosensitive layer in contact with the protective layer (outermost layer) contains at least a hole-transporting substance and an electron-transporting substance, and the ratio of the molecular weight a of the hole-transporting substance to the molecular weight b of the electron-transporting substance ( When a / b) satisfies 1.40 or more and 1.90 or less, the Martens hardness is high, the elastic deformation rate is high, and the photosensitivity is excellent in the adhesiveness between the photosensitive layer and the protective layer (outermost layer). You can think of it as a body.
- the hole transporting substance is a substance.
- a structure having a substituent at at least one ortho position of at least one aromatic group bonded to the nitrogen (N) atom is preferable, and among them, two of the at least one aromatic group bonded to the nitrogen (N) atom. It was found that a structure having a substituent at each ortho position is more preferable.
- the results with even better adhesiveness have been shown. This is because an aromatic group having a substituent at the two ortho positions has a stronger steric repulsion with another substituent bonded to the N atom, so that another substituent bonded to the N atom and the N atom are formed.
- the three-dimensional arrangement is rotated with respect to the plane to be formed. It is considered that the aromatic group having a rotated three-dimensional arrangement exerts an anchor effect on the binder resin and thus has an effect of suppressing the concentration of the hole transporting substance on the surface of the photosensitive layer. ..
- the photoconductors of the above examples are all positively charged single-layer electrophotographic photosensitive members, but as described above, the present invention is made by improving the configuration of the photosensitive layer in contact with the protective layer (outermost layer). Therefore, if such a configuration is provided, even a photoconductor other than the positively charged single-layer electrophotographic photosensitive member can solve the problem as in the embodiment. You can understand that you can.
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Photoreceptors In Electrophotography (AREA)
Abstract
保護層(最表層)を有する電子写真感光体に関し、マルテンス硬さが高く、弾性変形率が高く、かつ感光層と保護層(最表層)間の接着性に優れたものとして、導電性支持体上に、少なくとも感光層と保護層(最表層)を有する電子写真感光体であって、前記保護層(最表層)が、連鎖重合性官能基を有する化合物を重合させてなる構造を含有し、前記保護層(最表層)に接する感光層が、下記式(1)を満たす正孔輸送物質および下記式(2)を満たす電子輸送物質を含有することを特徴とする電子写真感光体を提供する。 600 ≦ a (1) 400 ≦ b (2) (式(1)中、aは正孔輸送物質の分子量。式(2)中、bは電子輸送物質の分子量。)
Description
本発明は、複写機やプリンター等に用いられる電子写真感光体及び画像形成装置に関する。詳しくは、機械的特性、接着性に優れた電子写真感光体、及び該感光体を備えた電子写真感光体カートリッジ及び画像形成装置に関するものである。
電子写真技術は、高速で高品質な画像が得られること等から、複写機、プリンター、複合機、デジタル印刷等の分野で広く使われている。電子写真技術の中核となる電子写真感光体(以下、単に「感光体」ともいう)については、無公害で成膜が容易、製造が容易である等の利点を有する有機系の光導電物質を使用した感光体が主に使用されている。
有機系電子写真感光体は、層構成の観点からは、電荷発生物質と電荷輸送物質を同一の層中に有する単層型の電子写真感光体(以下、単層型感光体という)と、電荷発生物質と電荷輸送物質を別々の層(電荷発生層と電荷輸送層)中に分離、積層する積層型の電子写真感光体(以下、積層型感光体という)が知られている。
このうち積層型感光体は、感光体設計上からは、層ごとに機能の最適化が図り易く、特性の制御も容易なことから、現行感光体の大部分はこのタイプになっている。積層型感光体のほとんどのものは、基体上に電荷発生層、電荷輸送層をこの順序で有している。
電荷輸送層においては、好適な電子輸送物質が極めて少ないのに対して、正孔輸送物質は特性良好な材料が数多く知られている。このことから、積層型感光体は通常、基体上に電荷発生層、電荷輸送層がこの順で積層され、感光体表面を負電荷に帯電させる負帯電方式で使用される。
負帯電方式では、感光体表面を正電荷に帯電させる正帯電方式に比べて、帯電器から発生するオゾンの発生量が多いため、感光体を劣化させることが課題となる場合がある。
電荷輸送層においては、好適な電子輸送物質が極めて少ないのに対して、正孔輸送物質は特性良好な材料が数多く知られている。このことから、積層型感光体は通常、基体上に電荷発生層、電荷輸送層がこの順で積層され、感光体表面を負電荷に帯電させる負帯電方式で使用される。
負帯電方式では、感光体表面を正電荷に帯電させる正帯電方式に比べて、帯電器から発生するオゾンの発生量が多いため、感光体を劣化させることが課題となる場合がある。
一方、単層型感光体は、原理的には負帯電方式及び正帯電方式のいずれでも利用可能であるが、正帯電方式の方が、前述の積層型感光体において問題となるオゾンの発生量を抑制することができ、かつ負帯電方式より一般に高感度にし易いことから有利である。また、単層型感光体は塗布工程が少なく、解像度面で有利である利点も有しており、電気特性面では負帯電の積層型感光体よりも劣る点を有するものの、一部実用化され、現在に至るまで様々な改良検討がなされている(特許文献1、2)。
また、電子写真感光体は、電子写真プロセス、即ち、帯電・露光・現像・転写・クリーニング・除電等のサイクルで繰返し使用されるため、その間の様々なストレスを受けて劣化する。特に、クリーニングブレード、磁気ブラシ等の摺擦、現像剤、紙との接触等による感光層表面の摩耗、傷の発生、膜の剥がれ等の機械的劣化による損傷は、画像上に現れやすく直接画像品質を損なうため、感光体の寿命を制限する大きな要因となっている。
感光体表面の機械的強度ないし耐摩耗性を改良する技術としては、感光体の最表層にバインダー樹脂として連鎖重合性官能基を有する化合物を含有する層を形成し、これに熱や光、放射線などのエネルギーを与えることで重合させて硬化樹脂層を形成した感光体が開示されている。(例えば特許文献3、4を参照)。
感光体の電気特性を改良するには、感光層中の正孔輸送物質(HTM)及び電子輸送物質(ETM)の含有量を増量することが効果的であると考えられる。
しかしながら、感光層中の正孔輸送物質及び電子輸送物質の含有量を増量すると、正孔輸送物質及び電子輸送物質が感光層表面に濃化する傾向がある。本発明者らの検討の結果、硬化樹脂を含有する保護層を形成した場合(特に最表層として形成した場合)に、保護層(最表層)とこれに接する感光層との接着性が著しく悪化して、電子写真プロセス内で感光体に接触して配置された帯電ローラー、現像ローラー、転写ローラー及びクリーニングブレードなどの部材ないし印刷紙との摺動などのストレスにより、保護層(最表層)が剥がれることがあることが分かった。また、感光体表面のマルテンス硬さが低下したり、感光体表面の弾性変形率が低くなったりするなどの課題もあった。
しかしながら、感光層中の正孔輸送物質及び電子輸送物質の含有量を増量すると、正孔輸送物質及び電子輸送物質が感光層表面に濃化する傾向がある。本発明者らの検討の結果、硬化樹脂を含有する保護層を形成した場合(特に最表層として形成した場合)に、保護層(最表層)とこれに接する感光層との接着性が著しく悪化して、電子写真プロセス内で感光体に接触して配置された帯電ローラー、現像ローラー、転写ローラー及びクリーニングブレードなどの部材ないし印刷紙との摺動などのストレスにより、保護層(最表層)が剥がれることがあることが分かった。また、感光体表面のマルテンス硬さが低下したり、感光体表面の弾性変形率が低くなったりするなどの課題もあった。
本発明は上述の課題に鑑みてなされたものである。即ち、本発明の目的は、マルテンス硬さが高く、弾性変形率が高く、かつ感光層と保護層(最表層)間の接着性に優れた電子写真感光体、該電子写真感光体を用いた電子写真感光体カートリッジ及び画像形成装置を提供することにある。
本発明者らは、上記の目的を満足し得る電子写真感光体について鋭意研究したところ、感光層中の正孔輸送物質及び電子輸送物質の分子量、物質量(モル量)の比ないし分子量の比が特定範囲であれば、上記課題を解決できることを見いだし、本発明に至った。
本発明の要旨は、以下[1]~[19]に存する。
[1]導電性支持体上に、少なくとも感光層と保護層を有する電子写真感光体であって、
前記保護層が、連鎖重合性官能基を有する化合物を重合させてなる構造を含有し、
前記保護層に接する感光層が、下記式(1)を満たす正孔輸送物質および下記式(2)を満たす電子輸送物質を含有することを特徴とする電子写真感光体。
600 ≦ a (1)
400 ≦ b (2)
(式(1)中、aは正孔輸送物質の分子量。式(2)中、bは電子輸送物質の分子量。)
前記保護層が、連鎖重合性官能基を有する化合物を重合させてなる構造を含有し、
前記保護層に接する感光層が、下記式(1)を満たす正孔輸送物質および下記式(2)を満たす電子輸送物質を含有することを特徴とする電子写真感光体。
600 ≦ a (1)
400 ≦ b (2)
(式(1)中、aは正孔輸送物質の分子量。式(2)中、bは電子輸送物質の分子量。)
[2]導電性支持体上に、少なくとも感光層と最表層を有する電子写真感光体であって、
前記最表層が、連鎖重合性官能基を有する化合物を重合させてなる構造を含有し、
前記最表層に接する感光層が、下記式(1)を満たす正孔輸送物質および下記式(2)を満たす電子輸送物質を含有することを特徴とする電子写真感光体。
600 ≦ a (1)
400 ≦ b (2)
(式(1)中、aは正孔輸送物質の分子量。式(2)中、bは電子輸送物質の分子量。)
前記最表層が、連鎖重合性官能基を有する化合物を重合させてなる構造を含有し、
前記最表層に接する感光層が、下記式(1)を満たす正孔輸送物質および下記式(2)を満たす電子輸送物質を含有することを特徴とする電子写真感光体。
600 ≦ a (1)
400 ≦ b (2)
(式(1)中、aは正孔輸送物質の分子量。式(2)中、bは電子輸送物質の分子量。)
[3]前記最表層又は前記保護層に接する感光層が、少なくともバインダー樹脂、電荷発生物質、正孔輸送物質及び電子輸送物質を含有する単層であることを特徴とする、前記[1] 又は[2]に記載の電子写真感光体。
[4]前記正孔輸送物質が下記式(1´)を満たすことを特徴とする、前記[1]~[3]のいずれか1に記載の電子写真感光体。
600 ≦ a ≦ 1200 (1´)
(式(1´)中、aは正孔輸送物質の分子量。)
600 ≦ a ≦ 1200 (1´)
(式(1´)中、aは正孔輸送物質の分子量。)
[5]前記電子輸送物質が下記式(2´)を満たすことを特徴とする、前記[1]~[4]のいずれか1に記載の電子写真感光体。
400 ≦ b ≦ 1000 (2´)
(式(2´)中、bは電子輸送物質の分子量。)
400 ≦ b ≦ 1000 (2´)
(式(2´)中、bは電子輸送物質の分子量。)
[6]前記感光層が、下記式(3)を満たすことを特徴とする、前記[1]~[5]のいずれか1に記載の電子写真感光体。
0.15≦(A/a)+(B/b) (3)
(式(3)中、Aはバインダー樹脂の含有量100に対する正孔輸送物質の含有量(質量部)、aは正孔輸送物質の分子量、Bはバインダー樹脂の含有量100に対する電子輸送物質の含有量(質量部)、bは電子輸送物質の分子量。)
0.15≦(A/a)+(B/b) (3)
(式(3)中、Aはバインダー樹脂の含有量100に対する正孔輸送物質の含有量(質量部)、aは正孔輸送物質の分子量、Bはバインダー樹脂の含有量100に対する電子輸送物質の含有量(質量部)、bは電子輸送物質の分子量。)
[7]前記感光層が、下記式(4)を満たすことを特徴とする、前記[1]~[6]のいずれか1に記載の電子写真感光体。
0.80≦ A/B ≦3.00 (4)
(式(4)中、Aはバインダー樹脂の含有量100に対する正孔輸送物質の含有量(質量部)、Bはバインダー樹脂の含有量100に対する電子輸送物質の含有量(質量部)。)
0.80≦ A/B ≦3.00 (4)
(式(4)中、Aはバインダー樹脂の含有量100に対する正孔輸送物質の含有量(質量部)、Bはバインダー樹脂の含有量100に対する電子輸送物質の含有量(質量部)。)
[8]前記感光層が、下記式(5)を満たすことを特徴とする、前記[1]~[7]のいずれか1に記載の電子写真感光体。
1.20≦(B/b)/(A/a)≦1.60 (5)
(式(5)中、Aはバインダー樹脂の含有量100に対する正孔輸送物質の含有量(質量部)、aは正孔輸送物質の分子量、Bはバインダー樹脂の含有量100に対する電子輸送物質の含有量(質量部)、bは電子輸送物質の分子量)
1.20≦(B/b)/(A/a)≦1.60 (5)
(式(5)中、Aはバインダー樹脂の含有量100に対する正孔輸送物質の含有量(質量部)、aは正孔輸送物質の分子量、Bはバインダー樹脂の含有量100に対する電子輸送物質の含有量(質量部)、bは電子輸送物質の分子量)
[9]前記電子輸送物質の分子量bに対する正孔輸送物質の分子量aの比率(a/b)が、1.40以上1.90以下であることを特徴とする、前記[1]~[8]のいずれか1に記載の電子写真感光体。
[10]正帯電型であることを特徴とする、前記[1]~[9]のいずれか1に記載の電子写真感光体。
[11]前記最表層又は前記保護層が、連鎖重合性官能基を有する化合物をラジカル重合させてなる構造を含有することを特徴とする、前記[1]~[10]のいずれか1に記載の電子写真感光体。
[10]正帯電型であることを特徴とする、前記[1]~[9]のいずれか1に記載の電子写真感光体。
[11]前記最表層又は前記保護層が、連鎖重合性官能基を有する化合物をラジカル重合させてなる構造を含有することを特徴とする、前記[1]~[10]のいずれか1に記載の電子写真感光体。
[12]前記最表層又は前記保護層が、金属酸化物微粒子を含有することを特徴とする、前記[1]~[11]のいずれか1に記載の電子写真感光体。
[13]前記金属酸化物微粒子が、重合性官能基を有する表面処理剤で表面処理されていることを特徴とする、前記[12]に記載の電子写真感光体。
[13]前記金属酸化物微粒子が、重合性官能基を有する表面処理剤で表面処理されていることを特徴とする、前記[12]に記載の電子写真感光体。
[14]前記連鎖重合性官能基を有する化合物が、ウレタンアクリレートであることを特徴とする、前記[1]~[13]のいずれか1に記載の電子写真感光体。
[15]前記感光層が含有する電子輸送物質が、下記式(6)で表される構造であることを特徴とする、前記[1]~[14]のいずれか1に記載の電子写真感光体。
式(6)中、R61~R64はそれぞれ独立して、水素原子、置換されていてもよい炭素数1以上20以下のアルキル基、又は置換されていてもよい炭素数2以上20以下のアルケニル基を表し、R61とR62同士、またはR63とR64同士は互いに結合して環状構造を形成してもよい。Xは分子量120以上250以下の有機残基を表す。
[16]導電性支持体上に、少なくとも感光層と保護層を有する電子写真感光体であって、
前記保護層が、連鎖重合性官能基を有する化合物を重合させてなる構造を含有し、
前記保護層に接する感光層が、少なくともバインダー樹脂、正孔輸送物質及び電子輸送物質を含有し、
前記保護層に接する感光層が、下記式(5)を満たすことを特徴とする電子写真感光体。
1.20≦(B/b)/(A/a)≦1.60 (5)
(式(5)中、Aはバインダー樹脂の含有量100に対する正孔輸送物質の含有量(質量部)、aは正孔輸送物質の分子量、Bはバインダー樹脂の含有量100に対する電子輸送物質の含有量(質量部)、bは電子輸送物質の分子量)
前記保護層が、連鎖重合性官能基を有する化合物を重合させてなる構造を含有し、
前記保護層に接する感光層が、少なくともバインダー樹脂、正孔輸送物質及び電子輸送物質を含有し、
前記保護層に接する感光層が、下記式(5)を満たすことを特徴とする電子写真感光体。
1.20≦(B/b)/(A/a)≦1.60 (5)
(式(5)中、Aはバインダー樹脂の含有量100に対する正孔輸送物質の含有量(質量部)、aは正孔輸送物質の分子量、Bはバインダー樹脂の含有量100に対する電子輸送物質の含有量(質量部)、bは電子輸送物質の分子量)
[17]導電性支持体上に、少なくとも感光層と保護層を有する電子写真感光体であって、
前記保護層が、連鎖重合性官能基を有する化合物を重合させてなる構造を含有し、
前記保護層に接する感光層が、少なくとも正孔輸送物質及び電子輸送物質を含有し、
前記電子輸送物質の分子量bに対する正孔輸送物質の分子量aの比率(a/b)が、1.40以上1.90以下であることを特徴とする電子写真感光体。
前記保護層が、連鎖重合性官能基を有する化合物を重合させてなる構造を含有し、
前記保護層に接する感光層が、少なくとも正孔輸送物質及び電子輸送物質を含有し、
前記電子輸送物質の分子量bに対する正孔輸送物質の分子量aの比率(a/b)が、1.40以上1.90以下であることを特徴とする電子写真感光体。
[18]前記[1]~[17]のいずれか1に記載の電子写真感光体を有する電子写真感光体カートリッジ。
[19]前記[1]~[17]のいずれか1に記載の電子写真感光体を有する画像形成装置。
[19]前記[1]~[17]のいずれか1に記載の電子写真感光体を有する画像形成装置。
本発明によれば、マルテンス硬さが高く、弾性変形率が高く、かつ感光層と前記最表層又は前記保護層との接着性(単に「接着性」とも称する)に優れた電子写真感光体、該電子写真感光体を用いた電子写真感光体カートリッジ及び画像形成装置を提供することができる。
以下、本発明を実施するための形態(以下、発明の実施の形態)について詳細に説明する。尚、本発明は、以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することが出来る。
<<電子写真感光体>>
本発明の電子写真感光体は、導電性支持体上に少なくとも感光層と、連鎖重合性官能基を有する化合物を重合させてなる構造を含有する保護層とを有する。本発明の効果がより得られる観点から、前記保護層は最表層であることが好ましい。
本発明の電子写真感光体は、導電性支持体上に少なくとも感光層と、連鎖重合性官能基を有する化合物を重合させてなる構造を含有する保護層とを有する。本発明の効果がより得られる観点から、前記保護層は最表層であることが好ましい。
本発明の電子写真感光体の帯電方式は、感光体表面を負電荷に帯電させる負帯電方式、感光体表面を正電荷に帯電させる正帯電方式のいずれであってもよい。本発明の効果をより享受できる観点から、正帯電型電子写真感光体であるのが好ましい。
以下、本発明の電子写真感光体を構成する導電性支持体、感光層、保護層(最表層)などについて順次説明する。なお、本明細書において「保護層(最表層)」は、保護層又は最表層の意味である。
<導電性支持体>
まず、本発明の感光体に用いられる導電性支持体について説明する。
まず、本発明の感光体に用いられる導電性支持体について説明する。
導電性支持体としては、後述する単層型感光層、保護層(最表層)を支持し、導電性を示すものであれば、特に限定されない。導電性支持体としては、例えば、アルミニウム、アルミニウム合金、ステンレス鋼、銅、ニッケル等の金属材料や金属、カーボン、酸化錫などの導電性粉体を共存させて導電性を付与した樹脂材料や、アルミニウム、ニッケル、ITO(酸化インジウム酸化錫合金)等の導電性材料をその表面に蒸着または塗布した樹脂、ガラス、紙等を主として使用する。
導電性支持体の形態としては、ドラム状、シート状、ベルト状などのものが用いられる。例えば、金属材料の導電性支持体の上に、導電性・表面性などの制御のためや欠陥被覆のため、適当な抵抗値を持つ導電性材料を塗布したものでもよい。
導電性支持体としてアルミニウム合金等の金属材料を用いる場合、金属材料に陽極酸化被膜を施してから用いてもよい。
陽極酸化被膜の平均膜厚は、通常20μm以下、特に7μm以下とされることが好ましい。
導電性支持体としてアルミニウム合金等の金属材料を用いる場合、金属材料に陽極酸化被膜を施してから用いてもよい。
陽極酸化被膜の平均膜厚は、通常20μm以下、特に7μm以下とされることが好ましい。
上記導電性支持体の表面は、平滑であってもよく、また特別な切削方法を用いたり、研磨処理を施したりすることにより、粗面化されていてもよい。また、当該表面は、支持体を構成する材料に適当な粒径の粒子を混合することによって、粗面化されたものであってもよい。
なお、上記導電性支持体と感光層との間には、接着性・ブロッキング性等の改善のために、後述する下引き層を設けてもよい。
<感光層>
本発明の電子写真感光体における感光層は、単層型であっても、積層型であってもよく、前記保護層(最表層)に接する感光層が次に説明する構成であればよい。中でも、前記保護層(最表層)に接する感光層が、少なくともバインダー樹脂、電荷発生物質、正孔輸送物質及び電子輸送物質を同一の層内に含む単層型感光層であるのが好ましい。
本発明の電子写真感光体における感光層は、単層型であっても、積層型であってもよく、前記保護層(最表層)に接する感光層が次に説明する構成であればよい。中でも、前記保護層(最表層)に接する感光層が、少なくともバインダー樹脂、電荷発生物質、正孔輸送物質及び電子輸送物質を同一の層内に含む単層型感光層であるのが好ましい。
前述のように、保護層(最表層)とこれに接する感光層との接着性が悪化したり、感光体表面のマルテンス硬さ、感光体表面の弾性変形率が低下したりする原因は、正孔輸送物質及び電子輸送物質が感光層表面に濃化することによるものと考えられる。ここで「感光層表面」とは、感光層が保護層(最表層)に接する側の界面を意味する。より詳細には、正孔輸送物質が感光層表面に濃化すると、それが立体的な障害になって、保護層(最表層)の硬化膜と感光層のバインダー樹脂との絡み合いを阻害するため、前記のように接着性が悪化すると推定される。また、電子輸送物質が感光層表面に濃化すると、電子輸送物質が、保護層(最表層)の硬化反応で発生するラジカルをトラップし、保護層(最表層)における連鎖重合反応すなわち硬化反応を阻害するため、感光体表面のマルテンス硬さ、感光体表面の弾性変形率が低下すると推定される。
かかる課題に対し、本発明の第一の実施態様は、正孔輸送物質及び電子輸送物質の分子量を所定値以上とするものであり、感光層中での正孔輸送物質及び電子輸送物質の運動性が抑えられるため、感光層表面への移行性を抑えることができ、感光層表面に濃化するのを抑えることができ、接着性、マルテンス硬さ及び弾性変形率を好ましくすることができる。
また、本発明の第二の実施態様は、感光層中の正孔輸送物質の物質量(モル量)と電子輸送物質の物質量(モル量)の比を所定範囲に調整するものであり、正孔輸送物質の濃化と電子輸送物質の濃化がバランスよく抑制されて、接着性、マルテンス硬さ及び弾性変形率を好ましくすることができる。
さらに、本発明の第三の実施態様は、電子輸送物質の分子量に対する正孔輸送物質の分子量の比率を所定範囲に調整するものであり、正孔輸送物質の濃化と電子輸送物質の濃化がバランスよく抑制されて、接着性、マルテンス硬さ及び弾性変形率を好ましくすることができる。
以下、保護層(最表層)に接する感光層、例えば単層型感光層に用いられる材料(電荷発生物質、正孔輸送物質、電子輸送物質、バインダー樹脂など)について説明する。
(電荷発生物質)
感光層に用いる電荷発生物質としては、例えば、セレン及びその合金、硫化カドミウム、その他無機系光導電材料;フタロシアニン顔料、アゾ顔料、ペリレン顔料などの有機顔料;などの各種光導電材料が使用できる。中でも、有機顔料が好ましく、フタロシアニン顔料、アゾ顔料がより好ましく、フタロシアニン顔料がさらに好ましい。
感光層に用いる電荷発生物質としては、例えば、セレン及びその合金、硫化カドミウム、その他無機系光導電材料;フタロシアニン顔料、アゾ顔料、ペリレン顔料などの有機顔料;などの各種光導電材料が使用できる。中でも、有機顔料が好ましく、フタロシアニン顔料、アゾ顔料がより好ましく、フタロシアニン顔料がさらに好ましい。
特に、電荷発生物質としてフタロシアニン顔料を用いる場合、具体的には、無金属フタロシアニン、銅、インジウム、ガリウム、錫、チタン、亜鉛、バナジウム、シリコン、ゲルマニウム等の金属、またはその酸化物、ハロゲン化物等の配位したフタロシアニン類などが使用される。中でも、特に感度の高いX型、τ型無金属フタロシアニン、A型、B型、D型等のチタニルフタロシアニン、バナジルフタロシアニン、クロロインジウムフタロシアニン、クロロガリウムフタロシアニン、ヒドロキシガリウムフタロシアニン等が好適である。
なお、ここで挙げたチタニルフタロシアニンの結晶型のうち、A型、B型については、W.HellerらによってそれぞれI相、II相として示されており(Zeit.Kristallogr.159(1982)173)、そのうちのA型は安定型として知られているものである。D型は、CuKα線を用いた粉末X線回折において、回折角2θ±0.2°が27.3°に明瞭なピークを示すことを特徴とする結晶型である。
またアゾ顔料を使用する場合には、各種公知のビスアゾ顔料、トリスアゾ顔料が好適に用いられる。
また、電荷発生物質は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。さらに、電荷発生物質を2種以上併用する場合、併用する電荷発生物質の混合方法としては、それぞれの電荷発生物質を後から混合して用いてもよいし、合成、顔料化、結晶化等の電荷発生物質の製造・処理工程において混合して用いてもよい。
電気特性の観点から、電荷発生物質の粒子径は小さいことが望ましい。具体的には、通常、1μm以下が好ましく、より好ましくは0.5μm以下である。下限は0.01μmである。ここで電荷発生物質の粒子径とは、感光層に含有された状態での粒子径を意味する。
さらに、保護層(最表層)に接する感光層、例えば単層型感光層内の電荷発生物質の量は、感度の観点から、0.1質量%以上が好ましく、0.5質量%以上がより好ましい。また、感度及び帯電性の観点から、50質量%以下が好ましく、より好ましくは20質量%以下とする。
(電荷輸送物質)
電荷輸送物質は、主に正孔輸送能を有する正孔輸送物質と、主に電子輸送能を有する電子輸送物質に分類される。本発明に用いられる保護層(最表層)に接する感光層、例えば単層型感光層は、正孔輸送物質と電子輸送物質の両方を含有する。
電荷輸送物質は、主に正孔輸送能を有する正孔輸送物質と、主に電子輸送能を有する電子輸送物質に分類される。本発明に用いられる保護層(最表層)に接する感光層、例えば単層型感光層は、正孔輸送物質と電子輸送物質の両方を含有する。
[正孔輸送物質]
正孔輸送物質(HTM)は、公知の材料の中から選択して用いることができる。例えば、カルバゾール誘導体、インドール誘導体、イミダゾール誘導体、オキサゾール誘導体、ピラゾール誘導体、チアジアゾール誘導体、ベンゾフラン誘導体等の複素環化合物、アニリン誘導体、ヒドラゾン誘導体、アリールアミン誘導体、スチルベン誘導体、ブタジエン誘導体及びエナミン誘導体並びにこれらの化合物の複数種が結合したもの、及びこれらの化合物からなる基を主鎖若しくは側鎖に有する重合体等の電子供与性物質等を挙げることができる。
正孔輸送物質(HTM)は、公知の材料の中から選択して用いることができる。例えば、カルバゾール誘導体、インドール誘導体、イミダゾール誘導体、オキサゾール誘導体、ピラゾール誘導体、チアジアゾール誘導体、ベンゾフラン誘導体等の複素環化合物、アニリン誘導体、ヒドラゾン誘導体、アリールアミン誘導体、スチルベン誘導体、ブタジエン誘導体及びエナミン誘導体並びにこれらの化合物の複数種が結合したもの、及びこれらの化合物からなる基を主鎖若しくは側鎖に有する重合体等の電子供与性物質等を挙げることができる。
これらの中でも、カルバゾール誘導体、アリールアミン誘導体、スチルベン誘導体、ブタジエン誘導体及びエナミン誘導体並びにこれらの化合物の複数種が結合したものが好ましく、アリールアミン誘導体、エナミン誘導体がより好ましい。
本発明の第一の実施態様においては、正孔輸送物質(HTM)の分子量に関しては、正孔輸送物質の分子量が大きい方が感光層表面への移行性が低いため、正孔輸送物質が感光層表面に濃化するのを抑えることができ、感光層と保護層(最表層)との接着性が悪化するのを抑制することができる。但し、正孔輸送物質の分子量が大き過ぎると、塗工液に使用する溶媒への溶解性が低下したり、バインダー樹脂との相溶性が低下し析出したりする傾向があるため好ましくない。
かかる観点から、正孔輸送物質の分子量aは下記式(1)を満足するのが好ましく、下記式(1´)を満足するのがさらに好ましい。
600 ≦ a (1)
600 ≦ a ≦ 1200 (1´)
このように、正孔輸送物質の分子量は600以上が好ましく、650以上がより好ましく、700以上がさらに好ましく、750以上が特に好ましい。他方、1200以下が好ましく、1000以下がより好ましく、900以下がさらに好ましい。
かかる観点から、正孔輸送物質の分子量aは下記式(1)を満足するのが好ましく、下記式(1´)を満足するのがさらに好ましい。
600 ≦ a (1)
600 ≦ a ≦ 1200 (1´)
このように、正孔輸送物質の分子量は600以上が好ましく、650以上がより好ましく、700以上がさらに好ましく、750以上が特に好ましい。他方、1200以下が好ましく、1000以下がより好ましく、900以下がさらに好ましい。
本発明の第二及び第三の実施態様においては、マルテンス硬さ及び弾性変形率の観点から、保護層(最表層)に接する感光層、例えば単層型感光層がさらに前記式(1)を満たすのが好ましく、前記式(1´)を満たすのがさらに好ましい。
すなわち、正孔輸送物質の分子量aは600以上が好ましく、650以上がより好ましく、700以上がさらに好ましく、750以上が特に好ましい。他方、1200以下が好ましく、1000以下がより好ましく、900以下がさらに好ましい。
すなわち、正孔輸送物質の分子量aは600以上が好ましく、650以上がより好ましく、700以上がさらに好ましく、750以上が特に好ましい。他方、1200以下が好ましく、1000以下がより好ましく、900以下がさらに好ましい。
正孔輸送物質は、1種のみを単独で用いてもよく、また2種以上を任意の比率及び組み合わせで用いてもよい。正孔輸送物質を2種以上用いる場合は、2種以上の正孔輸送物質のうち、感光層中の含有量(質量部)が最大である正孔輸送物質の分子量が600以上であることがさらに好ましい。
以下に好ましい正孔輸送物質の構造を例示する。
上記の正孔輸送物質の中でも、電気特性の点から、HTM12、HTM31、HTM32、HTM33、HTM34、HTM35、HTM36、HTM38、HTM39、HTM40、HTM41、HTM42,HTM43、HTM48が好ましく、HTM31、HTM32、HTM33、HTM34、HTM35、HTM36、HTM38、HTM39、HTM40、HTM41、HTM42,HTM43、HTM48がより好ましく、HTM39,HTM40,HTM41,HTM42,HTM43,HTM48がさらに好ましい。
上記の正孔輸送物質の中でも、感光層と保護層(最表層)間の接着性をさらに高める観点から、正孔輸送物質は、窒素(N)原子に結合する少なくとも1つの芳香族基の少なくとも一方のオルト位に置換基を有する構造のものが好ましく、中でも、窒素(N)原子に結合する少なくとも1つの芳香族基の2つのオルト位にそれぞれ置換基を有する構造のものがさらに好ましい。正孔輸送物質が前記の構造であると、前記芳香族基が、窒素原子に結合する他の置換基との間で立体反発し、窒素原子及び窒素原子に結合する他の置換基が形成する平面に対して回転した立体配置をとると考えられる。このような立体配置であると、前記芳香族基がバインダー樹脂に対してアンカー効果を発揮するため、正孔輸送物質が感光層表面に濃化しにくくなると推察される。
前記芳香族基としては、ベンゼン環の他、ナフチル基、アントラセン基、フェナントレン基、ビフェニル基、ピレン基、カルバゾール基などを挙げることができる。この中でも、溶解性の観点から、ベンゼン環、ナフチル基、ビフェニル基が好ましく、ベンゼン環がより好ましい。
前記オルト位の置換基としては、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、sec-ブチル基、i-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、sec-ペンチル基、ネオペンチル基、1-メチルブチル基、2-メチルブチル基、1,1-ジメチルプロピル基、1,2-ジメチルプロピル基、ビニル基、1-プロペニル基、2-プロペニル基、イソプロペニル基、1-ブテニル基、2-ブテニル基、3-ブテニル基、1-ペンテニル基、2-ペンテニル基、3-ペンテニル基、4-ペンテニル基、エチニル基、1-プロピニル基、2-プロピニル基、1-ブチニル基、2-ブチニル基、3-ブチニル基、1-ペンチニル基、2-ペンチニル基、3-ペンチニル基、4-ペンチニル基などを挙げることができる。この中でも、置換基の導入の容易さの観点から、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、sec-ブチル基、i-ブチル基が好ましく、メチル基、エチル基、n-プロピル基、i-プロピル基がより好ましい。
かかる観点から、上記の正孔輸送物質の中でも、HTM48、HTM42、HTM40、HTM43、HTM41が好ましく、中でも、HTM40、HTM43がさらに好ましい。
なお、上記分子量600以上の正孔輸送物質に、当該分子量範囲から外れる正孔輸送物質(「その他の正孔輸送物質」と称する)を併用してもよい。
但しその際は、分子量600以上の正孔輸送物質の量が、その他の正孔輸送物質の量よりも多いことが好ましく、中でも、分子量600以上の正孔輸送物質100質量部に対して、その他の正孔輸送物質の量は80質量部以下であるのが好ましく、中でも60質量部以下、その中でも40質量部以下であるのがさらに好ましい。
但しその際は、分子量600以上の正孔輸送物質の量が、その他の正孔輸送物質の量よりも多いことが好ましく、中でも、分子量600以上の正孔輸送物質100質量部に対して、その他の正孔輸送物質の量は80質量部以下であるのが好ましく、中でも60質量部以下、その中でも40質量部以下であるのがさらに好ましい。
当該その他の正孔輸送物質としては、次に示す構造を有する正孔輸送物質を例示することができる。但し、これらに限定するものではない。
[電子輸送物質]
電子輸送物質(ETM)は、公知の材料の中から選択して用いることができる。例えば、2,4,7-トリニトロフルオレノン等の芳香族ニトロ化合物、テトラシアノキノジメタン等のシアノ化合物、ジフェノキノン等のキノン化合物等の電子吸引性物質や、公知の環状ケトン化合物やペリレン顔料(ペリレン誘導体)などを挙げることができる。
電子輸送物質(ETM)は、公知の材料の中から選択して用いることができる。例えば、2,4,7-トリニトロフルオレノン等の芳香族ニトロ化合物、テトラシアノキノジメタン等のシアノ化合物、ジフェノキノン等のキノン化合物等の電子吸引性物質や、公知の環状ケトン化合物やペリレン顔料(ペリレン誘導体)などを挙げることができる。
本発明の第一の実施態様においては、電子輸送物質(ETM)の分子量に関しては、電子輸送物質の分子量が大きい方が、表面への移行性が低いため、電子輸送物質が感光層表面に濃化すること、さらには最表層側に移行することを抑えることができるから、該電子輸送物質が、保護層(最表層)の硬化反応で発生するラジカルをトラップして硬化反応を阻害することを抑えることができる。したがって、感光体表面のマルテンス硬さの低下、並びに、感光体表面の弾性変形率の低下を抑えることができる。但し、電子輸送物質の分子量が大き過ぎると、塗工液に使用する溶媒への溶解性が低下したり、バインダー樹脂との相溶性が低下し析出したりする傾向があるため好ましくない。
かかる観点から、電子輸送物質の分子量bは、下記式(2)を満足するのが好ましく、下記式(2´)を満足するのがさらに好ましい。
400 ≦ b (2)
400 ≦ b ≦ 1000 (2´)
このように、電子輸送物質の分子量は400以上が好ましく、410以上がより好ましく、420以上がさらに好ましい。他方、1000以下が好ましく、800以下がより好ましく、600以下がさらに好ましい。
かかる観点から、電子輸送物質の分子量bは、下記式(2)を満足するのが好ましく、下記式(2´)を満足するのがさらに好ましい。
400 ≦ b (2)
400 ≦ b ≦ 1000 (2´)
このように、電子輸送物質の分子量は400以上が好ましく、410以上がより好ましく、420以上がさらに好ましい。他方、1000以下が好ましく、800以下がより好ましく、600以下がさらに好ましい。
本発明の第二及び第三の実施態様においては、マルテンス硬さ及び弾性変形率の観点から、保護層(最表層)に接する感光層、例えば単層型感光層がさらに前記式(2)を満たすのが好ましく、前記式(2´)を満たすのがさらに好ましい。
すなわち、電子輸送物質の分子量bは400以上が好ましく、410以上がより好ましく、420以上がさらに好ましい。他方、1000以下が好ましく、800以下がより好ましく、600以下がさらに好ましい。
すなわち、電子輸送物質の分子量bは400以上が好ましく、410以上がより好ましく、420以上がさらに好ましい。他方、1000以下が好ましく、800以下がより好ましく、600以下がさらに好ましい。
本発明の第一及び第二の実施態様においては、正孔輸送物質の分子量と電子輸送物質の分子量の関係について、マルテンス硬さ、弾性変形率及び感光層と保護層(最表層)間の接着性の観点から、電子輸送物質の分子量bよりも正孔輸送物質の分子量aの方が大きい方が好ましい。
すなわち、電子輸送物質の分子量bに対する正孔輸送物質の分子量aの比率(a/b)は、1.00以上、中でも1.40以上であるのが好ましく、1.50以上であるのがより好ましく、中でも1.60以上であるのがより好ましく、1.70以上であるのがさらに好ましく、1.80以上であるのが特に好ましい。他方、電気特性の観点から、3.00以下であるのが好ましく、その中でも2.00以下であるのがより好ましく、その中でも1.90以下であるのがより好ましく、その中でも1.85以下であるのがさらに好ましい。
すなわち、電子輸送物質の分子量bに対する正孔輸送物質の分子量aの比率(a/b)は、1.00以上、中でも1.40以上であるのが好ましく、1.50以上であるのがより好ましく、中でも1.60以上であるのがより好ましく、1.70以上であるのがさらに好ましく、1.80以上であるのが特に好ましい。他方、電気特性の観点から、3.00以下であるのが好ましく、その中でも2.00以下であるのがより好ましく、その中でも1.90以下であるのがより好ましく、その中でも1.85以下であるのがさらに好ましい。
本発明の第三の実施態様においては、電子輸送物質の分子量bに対する正孔輸送物質の分子量aの比率(a/b)を1.40以上1.90以下とすることで、正孔輸送物質の濃化と電子輸送物質の濃化がバランスよく抑制されて、接着性、マルテンス硬さ及び弾性変形率を好ましくすることができる。
a/bが1.40以上であれば、相対的に正孔輸送物質の分子量が大きくなる方向に調整され、正孔輸送物質の感光層表面側への移行性が低くなるため、接着性が良好となる。また、正孔輸送物質の感光層表面側への移行性が低くなると、それに伴って電子輸送物質が感光層表面側へ移行する動きも阻害されるため、電子輸送物質の感光層表面側への移行性も低くなり、マルテンス硬さ及び弾性変形率も良好となる。a/bは、その中でも1.50以上であるのが好ましく、1.60以上であるのがより好ましく、1.70以上であるのがさらに好ましく、1.80以上であるのが特に好ましい。
a/bが1.90以下であれば、相対的に電子輸送物質の分子量が大きくなる方向に調整され、電子輸送物質の感光層表面側への移行性が低くなるため、マルテンス硬さ及び弾性変形率が良好となる。また、電子輸送物質の感光層表面側への移行性が低くなると、それに伴って正孔輸送物質が感光層表面側へ移行する動きも阻害されるため、正孔輸送物質の感光層表面側への移行性も低くなり、接着性も良好となる。よって、a/bは、1.90以下であるのが好ましく、1.85以下であるのがより好ましい。
a/bが1.40以上であれば、相対的に正孔輸送物質の分子量が大きくなる方向に調整され、正孔輸送物質の感光層表面側への移行性が低くなるため、接着性が良好となる。また、正孔輸送物質の感光層表面側への移行性が低くなると、それに伴って電子輸送物質が感光層表面側へ移行する動きも阻害されるため、電子輸送物質の感光層表面側への移行性も低くなり、マルテンス硬さ及び弾性変形率も良好となる。a/bは、その中でも1.50以上であるのが好ましく、1.60以上であるのがより好ましく、1.70以上であるのがさらに好ましく、1.80以上であるのが特に好ましい。
a/bが1.90以下であれば、相対的に電子輸送物質の分子量が大きくなる方向に調整され、電子輸送物質の感光層表面側への移行性が低くなるため、マルテンス硬さ及び弾性変形率が良好となる。また、電子輸送物質の感光層表面側への移行性が低くなると、それに伴って正孔輸送物質が感光層表面側へ移行する動きも阻害されるため、正孔輸送物質の感光層表面側への移行性も低くなり、接着性も良好となる。よって、a/bは、1.90以下であるのが好ましく、1.85以下であるのがより好ましい。
電子輸送物質は、1種のみを単独で用いてもよく、また2種以上を任意の比率及び組み合わせで用いてもよい。正孔輸送物質を2種以上用いる場合は、2種以上の電子輸送物質のうち、感光層中の含有量(質量部)が最大である電子輸送物質の分子量が400以上であることがさらに好ましい。
電子輸送物質として特に好ましい化合物として、下記式(6)で表される化合物を例示することができる。
式(6)中、R61~R64はそれぞれ独立して、水素原子、置換されていてもよい炭素数1以上20以下のアルキル基、又は置換されていてもよい炭素数2以上20以下のアルケニル基を表し、R61とR62同士、またはR63とR64同士は互いに結合して環状構造を形成してもよい。Xは分子量120以上250以下の有機残基を表す。
R61~R64はそれぞれ独立して水素原子、置換されていてもよい炭素数1以上20以下のアルキル基、又は炭素数2以上20以下のアルケニル基を表す。
置換されていてもよい炭素数1以上20以下のアルキル基としては、直鎖アルキル基、分岐アルキル基及び環状アルキル基が挙げられ、電子輸送能力の面から直鎖アルキル基又は分岐アルキル基が好ましい。これらのアルキル基の炭素数としては、通常1以上、好ましくは4以上、通常20以下、原料の汎用性の面から15以下が好ましく、製造時の取り扱い性から10以下がより好ましく、5以下が更に好ましい。具体的には、メチル基、エチル基、ヘキシル基、iso-プロピル基、tert-ブチル基、tert-アミル基、シクロヘキシル基及びシクロペンチル基が挙げられる。この中でも、メチル基、tert-ブチル基又はtert-アミル基が好ましく、塗布液に用いる有機溶剤への溶解性の面から、tert-ブチル基又はtert-アミル基がより好ましい。
置換されていてもよい炭素数1以上20以下のアルキル基としては、直鎖アルキル基、分岐アルキル基及び環状アルキル基が挙げられ、電子輸送能力の面から直鎖アルキル基又は分岐アルキル基が好ましい。これらのアルキル基の炭素数としては、通常1以上、好ましくは4以上、通常20以下、原料の汎用性の面から15以下が好ましく、製造時の取り扱い性から10以下がより好ましく、5以下が更に好ましい。具体的には、メチル基、エチル基、ヘキシル基、iso-プロピル基、tert-ブチル基、tert-アミル基、シクロヘキシル基及びシクロペンチル基が挙げられる。この中でも、メチル基、tert-ブチル基又はtert-アミル基が好ましく、塗布液に用いる有機溶剤への溶解性の面から、tert-ブチル基又はtert-アミル基がより好ましい。
置換されていてもよい炭素数2以上20以下のアルケニル基としては、直鎖アルケニル基、分岐アルケニル基及び環状アルケニル基が挙げられる。これらのアルケニル基の炭素数としては、通常2以上、好ましくは4以上であり、通常20以下、感光体の光減衰特性の面から10以下が好ましい。具体的には、エテニル基、2-メチル-1-プロペニル基及びシクロヘキセニル基が挙げられる。
前記置換基R61~R64は、R61とR62同士、またはR63とR64同士が互いに結合して環状構造を形成してもよい。電子移動度の観点から、R61とR62が共にアルケニル基である場合、お互いに結合して芳香環を形成することが好ましく、R61とR62が共にエテニル基で、お互いに結合し、ベンゼン環構造を有することがより好ましい。
前記式(6)中、Xは分子量120以上250以下の有機残基を表し、感光体の光減衰特性の観点から、式(6)で表される化合物は下記式(7)~(10)のいずれかで表される化合物であることが好ましい。
式(7)中、R71~R73はそれぞれ独立して水素原子、ハロゲン原子、又は炭素数1以上6以下のアルキル基を表す。
式(8)中、R81~R84はそれぞれ独立して水素原子、ハロゲン原子、又は炭素数1以上6以下のアルキル基を表す。
前記式(9)中、R91は水素原子、炭素数1以上6以下のアルキル基、又はハロゲン原子を表す。
前記式(10)中、R101及びR102はそれぞれ独立して水素原子、ハロゲン原子、炭素数1以上6以下のアルキル基、又は炭素数6以上12以下のアリール基を表す。
R71~R102における、炭素数1以上6以下のアルキル基としては、直鎖アルキル基、分岐アルキル基、及び環状アルキル基が挙げられる。これらのアルキル基の炭素数としては、通常1以上、通常6以下である。具体的には、メチル基、エチル基、ヘキシル基、iso-プロピル基、tert-ブチル基、tert-アミル基及びシクロヘキシル基が挙げられる。この中でも、電子輸送能力の面から、メチル基、tert-ブチル基又はtert-アミル基が好ましい。
ハロゲン原子としては、例えば、フッ素、塩素、臭素及びヨウ素が挙げられ、電子輸送能力の面から、塩素が好ましい。
炭素原子6以上12以下のアリール基の炭素数としては、通常6以上、通常12以下である。具体的には、フェニル基及びナフチル基が挙げられ、感光層の膜物性の観点から、フェニル基が好ましい。これらのアリール基は、さらに置換されていてもよい。
式(6)は、前記式(7)~(10)の中でも、繰り返し画像形成した際の画質安定性の観点から、式(7)又は式(8)であることが好ましく、式(7)であることがより好ましい。また、式(6)で表される化合物を単独で用いてもよいし、構造の異なる式(6)で表される化合物を併用してもよく、その他の電子輸送物質と併用することもできる。
以下に好ましい電子輸送物質の構造を例示する。
上記の電子輸送物質の中でも、電気特性の点から、ET-2、ET-5、ET-15、ET-16、ET-17が好ましく、ET-2、ET-5がより好ましく、ET-2がさらに好ましい。
他方、上記の電子輸送物質の中でも、感光体表面のマルテンス硬さの低下抑制及び感光体表面の弾性変形率の低下抑制の観点からは、ET-2、ET-5、ET-9、ET-13、ET-14、ET-15、ET-16、ET-17が好ましく、中でも、ET-2、ET-5がさらに好ましい。
他方、上記の電子輸送物質の中でも、感光体表面のマルテンス硬さの低下抑制及び感光体表面の弾性変形率の低下抑制の観点からは、ET-2、ET-5、ET-9、ET-13、ET-14、ET-15、ET-16、ET-17が好ましく、中でも、ET-2、ET-5がさらに好ましい。
なお、上記で例示した好ましい電子輸送物質に、その他の電子輸送物質を併用してもよい。
但しその際は、好ましい電子輸送物質の量が、その他の電子輸送物質の量よりも多いことが好ましく、中でも、電子輸送物質100質量部に対して、その他の電子輸送物質の量が80質量部以下であるのが好ましく、中でも60質量部以下、その中でも40質量部以下であるのがさらに好ましい。
但しその際は、好ましい電子輸送物質の量が、その他の電子輸送物質の量よりも多いことが好ましく、中でも、電子輸送物質100質量部に対して、その他の電子輸送物質の量が80質量部以下であるのが好ましく、中でも60質量部以下、その中でも40質量部以下であるのがさらに好ましい。
当該その他の電子輸送物質としては、次に示す構造を有する電子輸送物質を例示することができる。但し、これらに限定するものではない。
[正孔輸送物質と電子輸送物質の含有量]
本発明の第一、第二及び第三の実施態様においては、さらに、保護層(最表層)に接する感光層、例えば単層型感光層が式(3)を満たすように、感光層中に含有する正孔輸送物質の物質量(mol)と電子輸送物質の物質量(mol)の合計量を調整すると、感光層中の電荷輸送に必要な電荷輸送物質の絶対量を確保することができるため、好ましい。
0.15≦(A/a)+(B/b) (3)
本発明の第一、第二及び第三の実施態様においては、さらに、保護層(最表層)に接する感光層、例えば単層型感光層が式(3)を満たすように、感光層中に含有する正孔輸送物質の物質量(mol)と電子輸送物質の物質量(mol)の合計量を調整すると、感光層中の電荷輸送に必要な電荷輸送物質の絶対量を確保することができるため、好ましい。
0.15≦(A/a)+(B/b) (3)
なお、式(3)、並びに、後述の式(4)及び式(5)中、Aは、保護層(最表層)に接する感光層、例えば単層型感光層が含有するバインダー樹脂の含有量を100(質量部)としたときの、正孔輸送物質の含有量(質量部)を示し、Bは、電子輸送物質の含有量(質量部)を示し、aは、正孔輸送物質の分子量を示し、bは、電子輸送物質の分子量を示す。
また、(A/a)又は(B/b)は、正孔輸送物質又は電子輸送物質の含有量を分子量で除したものであり、物質量すなわち分子の数量すなわちモル量を表す。
また、(A/a)又は(B/b)は、正孔輸送物質又は電子輸送物質の含有量を分子量で除したものであり、物質量すなわち分子の数量すなわちモル量を表す。
感光層中の電荷輸送に必要な電荷輸送物質の絶対量を確保する観点から、(A/a)+(B/b)は0.15以上であるのが好ましく、中でも0.17以上であるのがより好ましく、その中でも0.20以上であるのがさらに好ましい。他方、0.60以下であるのが好ましく、中でも0.40以下であるのがより好ましく、その中も0.30以下であるのがさらに好ましい。
また、本発明の第一、第二及び第三の実施態様においては、さらに、保護層(最表層)に接する感光層、例えば単層型感光層が式(4)を満たすのが好ましい。
0.80≦ A/B ≦3.00 (4)
0.80≦ A/B ≦3.00 (4)
式(4)中の「A/B」は、感光層中に含有する正孔輸送物質と電子輸送物質の含有比率を意味し、A/Bが0.80以上であれば、良好な電子輸送性が得られる点から好ましく、3.00以下であれば、良好な正孔輸送性が得られる点から好ましい。
かかる観点から、「A/B」は0.80以上であるのが好ましく、中でも1.00以上、その中でも1.10以上であるのがさらに好ましい。他方、3.00以下であるのが好ましく、中でも2.00以下、その中でも1.80以下であるのがさらに好ましい。
かかる観点から、「A/B」は0.80以上であるのが好ましく、中でも1.00以上、その中でも1.10以上であるのがさらに好ましい。他方、3.00以下であるのが好ましく、中でも2.00以下、その中でも1.80以下であるのがさらに好ましい。
本発明の第一及び第三の実施態様においては、マルテンス硬さ、弾性変形率及び接着性の観点から、保護層(最表層)に接する感光層、例えば単層型感光層がさらに式(5)を満たすのが好ましい。
1.20≦(B/b)/(A/a)≦1.60 (5)
すなわち、(B/b)/(A/a)は1.20以上であるのが好ましく、中でも1.40以上、その中でも1.50以上であるのがさらに好ましい。他方、1.60以下であるのが好ましく、中でも1.58以下、その中でも1.55以下であるのがさらに好ましい。
本発明の第二の実施態様においては、保護層(最表層)に接する感光層、例えば単層型感光層が前記式(5)を満たすように、感光層中に含有する正孔輸送物質の物質量(mol)と電子輸送物質の物質量(mol)の比を調整すると、正孔輸送物質の濃化と電子輸送物質の濃化とがバランスよく抑制されて、前記マルテンス硬さ、前記弾性変形率及び前記接着性を良好にすることができる。
前述のように、正孔輸送物質の濃化と電子輸送物質の濃化をバランスよく抑制して、接着性とマルテンス硬さ及び弾性変形率の両方をさらに好ましくする観点から、(B/b)/(A/a)は1.20以上であるのが好ましく、中でも1.40以上、その中でも1.50以上であるのがさらに好ましい。他方、1.60以下であるのが好ましく、中でも1.58以下、その中でも1.55以下であるのがさらに好ましい。
感光層中に正孔輸送物質と電子輸送物質の両方を含有する場合、正孔輸送物質から電子輸送物質への電子移動が起こり、正電荷を帯びた正孔輸送物質及び負電荷を帯びた電子輸送物質となり、これらが電荷移動錯体を形成することが考えられる。電荷移動錯体を形成すると、前記正電荷を帯びた正孔輸送物質と前記負電荷を帯びた電子輸送物質との間には静電引力が働くため、双方が感光層表面に濃化しにくくなると推察される。
(B/b)/(A/a)が1.20以上であれば、正孔輸送物質に対して電子輸送物質の分子の数量が少な過ぎることがなく、電荷移動錯体を形成できない正孔輸送物質を抑制できるため、感光層表面に濃化するのをより効果的に抑制することができる。
(B/b)/(A/a)が1.60以下であれば、電子輸送物質に対して正孔輸送物質の分子の数量が少な過ぎることがなく、電荷移動錯体を形成できない電子輸送物質を抑制できるため、感光層表面に濃化するのをより効果的に抑制することができる。
すなわち、(B/b)/(A/a)が1.20以上1.60以下であれば、正孔輸送物質と電子輸送物質が十分に電荷移動錯体を形成できると考えられる。
感光層中に正孔輸送物質と電子輸送物質の両方を含有する場合、正孔輸送物質から電子輸送物質への電子移動が起こり、正電荷を帯びた正孔輸送物質及び負電荷を帯びた電子輸送物質となり、これらが電荷移動錯体を形成することが考えられる。電荷移動錯体を形成すると、前記正電荷を帯びた正孔輸送物質と前記負電荷を帯びた電子輸送物質との間には静電引力が働くため、双方が感光層表面に濃化しにくくなると推察される。
(B/b)/(A/a)が1.20以上であれば、正孔輸送物質に対して電子輸送物質の分子の数量が少な過ぎることがなく、電荷移動錯体を形成できない正孔輸送物質を抑制できるため、感光層表面に濃化するのをより効果的に抑制することができる。
(B/b)/(A/a)が1.60以下であれば、電子輸送物質に対して正孔輸送物質の分子の数量が少な過ぎることがなく、電荷移動錯体を形成できない電子輸送物質を抑制できるため、感光層表面に濃化するのをより効果的に抑制することができる。
すなわち、(B/b)/(A/a)が1.20以上1.60以下であれば、正孔輸送物質と電子輸送物質が十分に電荷移動錯体を形成できると考えられる。
(バインダー樹脂)
次に、上記感光層に用いるバインダー樹脂について説明する。
上記感光層に用いるバインダー樹脂としては、例えば、ポリメチルメタクリレート、ポリスチレン、ポリ塩化ビニル等のビニル重合体またはその共重合体;ブタジエン樹脂;スチレン樹脂;酢酸ビニル樹脂;塩化ビニル樹脂、アクリル酸エステル樹脂;メタクリル酸エステル樹脂;ビニルアルコール樹脂;エチルビニルエーテル等のビニル化合物の重合体及び共重合体;ポリビニルブチラール樹脂;ポリビニルホルマール樹脂;部分変性ポリビニルアセタール樹脂;ポリアリレート樹脂;ポリアミド樹脂;ポリウレタン樹脂;セルロースエステル樹脂;シリコーン-アルキッド樹脂;ポリ-N-ビニルカルバゾール樹脂;ポリカーボネート樹脂;ポリエステル樹脂;ポリエステルカーボネート樹脂;ポリスルホン樹脂;ポリイミド樹脂;フェノキシ樹脂;エポキシ樹脂;シリコーン樹脂;及びこれらの部分的架橋硬化物が挙げられる。また上記樹脂は珪素試薬等で修飾されていてもよい。またこれらは1種を単独で用いてもよく、また2種以上を任意の比率及び組み合わせで用いることもできる。
次に、上記感光層に用いるバインダー樹脂について説明する。
上記感光層に用いるバインダー樹脂としては、例えば、ポリメチルメタクリレート、ポリスチレン、ポリ塩化ビニル等のビニル重合体またはその共重合体;ブタジエン樹脂;スチレン樹脂;酢酸ビニル樹脂;塩化ビニル樹脂、アクリル酸エステル樹脂;メタクリル酸エステル樹脂;ビニルアルコール樹脂;エチルビニルエーテル等のビニル化合物の重合体及び共重合体;ポリビニルブチラール樹脂;ポリビニルホルマール樹脂;部分変性ポリビニルアセタール樹脂;ポリアリレート樹脂;ポリアミド樹脂;ポリウレタン樹脂;セルロースエステル樹脂;シリコーン-アルキッド樹脂;ポリ-N-ビニルカルバゾール樹脂;ポリカーボネート樹脂;ポリエステル樹脂;ポリエステルカーボネート樹脂;ポリスルホン樹脂;ポリイミド樹脂;フェノキシ樹脂;エポキシ樹脂;シリコーン樹脂;及びこれらの部分的架橋硬化物が挙げられる。また上記樹脂は珪素試薬等で修飾されていてもよい。またこれらは1種を単独で用いてもよく、また2種以上を任意の比率及び組み合わせで用いることもできる。
また、特にバインダー樹脂として、界面重合で得られた1種、または2種類以上のポリマーを含有することが好ましい。
上記界面重合により得られるバインダー樹脂としては、ポリカーボネート樹脂、ポリエステル樹脂が好ましく、特にポリカーボネート樹脂、またはポリアリレート樹脂が好ましい。また、特に芳香族ジオールを原料とするポリマーであることが好ましく、好ましい芳香族ジオール化合物としては、下記式(11)で表される化合物が挙げられる。
上記式(11)中、X111は下記の式のいずれかで表される連結基、または単結合を示す。
上記式中、R111及びR112は、それぞれ独立に、水素原子、炭素数1~20のアルキル基、置換されていてもよいアリール基、またはハロゲン化アルキル基を示す。Zは、炭素数4~20の置換または非置換の炭素環を示す。
式(11)中、Y111ないしY118は、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~20のアルキル基、置換されていてもよいアリール基、または、ハロゲン化アルキル基を示す。
(その他の物質)
上記材料以外にも、感光層中には、成膜性、可撓性、塗布性、耐汚染性、耐ガス性、耐光性等を向上させるために周知の酸化防止剤、可塑剤、紫外線吸収剤、電子吸引性化合物、レベリング剤、可視光遮光剤などの添加物を含有させてもよい。また、感光層には必要に応じて増感剤、染料、顔料(但し、前記した電荷発生物質、正孔輸送物質、電子輸送物質であるものを除く)、界面活性剤等の各種添加剤を含んでいてもよい。界面活性剤の例としては、シリコ-ンオイル、フッ素系化合物などが挙げられる。本発明では、これらを適宜、1種単独で、または2種以上を任意の比率及び組み合わせで用いることができる。
上記材料以外にも、感光層中には、成膜性、可撓性、塗布性、耐汚染性、耐ガス性、耐光性等を向上させるために周知の酸化防止剤、可塑剤、紫外線吸収剤、電子吸引性化合物、レベリング剤、可視光遮光剤などの添加物を含有させてもよい。また、感光層には必要に応じて増感剤、染料、顔料(但し、前記した電荷発生物質、正孔輸送物質、電子輸送物質であるものを除く)、界面活性剤等の各種添加剤を含んでいてもよい。界面活性剤の例としては、シリコ-ンオイル、フッ素系化合物などが挙げられる。本発明では、これらを適宜、1種単独で、または2種以上を任意の比率及び組み合わせで用いることができる。
また、感光層表面の摩擦抵抗を軽減する目的で、感光層にフッ素系樹脂、シリコーン樹脂等を含んでもよく、これらの樹脂からなる粒子や酸化アルミニウム等の無機化合物の粒子を含有させてもよい。
(酸化防止剤)
酸化防止剤は、本発明の電子写真感光体の酸化を防止するために用いられる安定剤の一種である。
酸化防止剤は、本発明の電子写真感光体の酸化を防止するために用いられる安定剤の一種である。
酸化防止剤は、ラジカル補足剤としての機能があるものであればよく、具体的には、フェノール誘導体、アミン化合物、ホスホン酸エステル、硫黄化合物、ビタミン、ビタミン誘導体等を挙げることができる。
上記酸化防止剤の使用量は、特に制限されないが、感光層中のバインダー樹脂100質量部当り0.1質量部以上、好ましくは1質量部以上である。また良好な電気特性および耐刷性を得るため、好ましくは25質量部以下、より好ましくは20質量部以下である。
(電子吸引性化合物)
また、感光層中には電子吸引性化合物を有してもよい。
電子吸引性化合物の例として具体的には、スルホン酸エステル化合物、カルボン酸エステル化合物、有機シアノ化合物、ニトロ化合物、芳香族ハロゲン誘導体等が挙げられ、好ましくは、スルホン酸エステル化合物、有機シアノ化合物であり、特に好ましくはスルホン酸エステル化合物である。上記電子吸引性化合物は1種のみを単独で用いてもよく、また2種以上を任意の比率及び組み合わせで用いてもよい。
また、感光層中には電子吸引性化合物を有してもよい。
電子吸引性化合物の例として具体的には、スルホン酸エステル化合物、カルボン酸エステル化合物、有機シアノ化合物、ニトロ化合物、芳香族ハロゲン誘導体等が挙げられ、好ましくは、スルホン酸エステル化合物、有機シアノ化合物であり、特に好ましくはスルホン酸エステル化合物である。上記電子吸引性化合物は1種のみを単独で用いてもよく、また2種以上を任意の比率及び組み合わせで用いてもよい。
本発明における電子写真感光体に用いられる上記電子吸引性化合物の量は、特に制限されない。上記電子吸引性化合物が感光層に使用される場合、感光層に含まれるバインダー樹脂100質量部当り0.01質量部以上が好ましく、より好ましくは0.05質量部以上である。また良好な電気特性を得るため、通常50質量部以下が好ましく、より好ましくは40質量部以下、さらに好ましくは30質量部以下である。
(感光層の形成方法)
次に、保護層(最表層)に接する感光層、例えば単層型感光層の形成方法について説明する。但し、本発明の感光層の形成方法を特に限定するものではない。
例えば、正孔輸送物質、電子輸送物質、バインダー樹脂、及びその他の物質を溶媒(または分散媒)に溶解(または分散)した塗布液中に上記電荷発生物質を分散させ、導電性支持体上(後述する下引き層等の中間層を設ける場合は、これらの中間層上)に塗布することにより形成することができる。
次に、保護層(最表層)に接する感光層、例えば単層型感光層の形成方法について説明する。但し、本発明の感光層の形成方法を特に限定するものではない。
例えば、正孔輸送物質、電子輸送物質、バインダー樹脂、及びその他の物質を溶媒(または分散媒)に溶解(または分散)した塗布液中に上記電荷発生物質を分散させ、導電性支持体上(後述する下引き層等の中間層を設ける場合は、これらの中間層上)に塗布することにより形成することができる。
以下、保護層(最表層)に接する感光層、例えば単層型感光層の形成に用いられる溶媒または分散媒、及び塗布方法を説明する。
[溶媒または分散媒]
感光層の形成に用いられる溶媒または分散媒としては、例えば、メタノール、エタノール、プロパノール、2-メトキシエタノール等のアルコール類;テトラヒドロフラン、1,4-ジオキサン、ジメトキシエタン等のエーテル類;エステル類;アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類;ベンゼン、トルエン、キシレン、アニソール等の芳香族炭化水素類;ジクロロメタン、クロロホルム、1,2-ジクロロエタン等の塩素化炭化水素類;含窒素化合物類;アセトニトリル、N-メチルピロリドン、N,N-ジメチルホルムアミド、ジメチルスルホキシド等の非プロトン性極性溶剤類等を挙げることができる。これらは1種を単独で用いてもよく、また2種以上を任意の比率及び組み合わせで併用して用いてもよい。
感光層の形成に用いられる溶媒または分散媒としては、例えば、メタノール、エタノール、プロパノール、2-メトキシエタノール等のアルコール類;テトラヒドロフラン、1,4-ジオキサン、ジメトキシエタン等のエーテル類;エステル類;アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類;ベンゼン、トルエン、キシレン、アニソール等の芳香族炭化水素類;ジクロロメタン、クロロホルム、1,2-ジクロロエタン等の塩素化炭化水素類;含窒素化合物類;アセトニトリル、N-メチルピロリドン、N,N-ジメチルホルムアミド、ジメチルスルホキシド等の非プロトン性極性溶剤類等を挙げることができる。これらは1種を単独で用いてもよく、また2種以上を任意の比率及び組み合わせで併用して用いてもよい。
[塗布方法]
保護層(最表層)に接する感光層、例えば単層型感光層を形成するための塗布液の塗布方法としては、例えば、スプレー塗布法、スパイラル塗布法、リング塗布法、浸漬塗布法等を挙げることができる。
保護層(最表層)に接する感光層、例えば単層型感光層を形成するための塗布液の塗布方法としては、例えば、スプレー塗布法、スパイラル塗布法、リング塗布法、浸漬塗布法等を挙げることができる。
浸漬塗布法では、塗布液または分散液の全固形分濃度を好ましくは5質量%以上、さらに好ましくは10質量%以上とする。また好ましくは50質量%以下、さらに好ましくは35質量%以下とする。
また、塗布液または分散液の粘度を、好ましくは50mPa・s以上、より好ましくは100mPa・s以上とする。また、好ましくは700mPa・s以下、より好ましくは500mPa・s以下とする。これにより膜厚の均一性に優れた感光層とすることができる。
上記塗布法により塗布膜を形成した後、塗膜を乾燥させるが、必要且つ充分な乾燥が行われる様に乾燥温度時間を調整することが好ましい。
乾燥温度は、残留溶媒抑制の観点から、通常80℃以上、好ましくは100℃以上である。また、気泡の発生防止、電気特性の観点から、通常250℃以下、好ましくは170℃以下、さらに好ましくは140℃以下であり、段階的に温度を変更してもよい。
乾燥方法としては、熱風乾燥機、蒸気乾燥機、赤外線乾燥機および遠赤外線乾燥機等を用いることができる。
乾燥温度は、残留溶媒抑制の観点から、通常80℃以上、好ましくは100℃以上である。また、気泡の発生防止、電気特性の観点から、通常250℃以下、好ましくは170℃以下、さらに好ましくは140℃以下であり、段階的に温度を変更してもよい。
乾燥方法としては、熱風乾燥機、蒸気乾燥機、赤外線乾燥機および遠赤外線乾燥機等を用いることができる。
また、本発明では保護層(最表層)を設けるため、感光層の塗布後は室温での風乾のみを実施し、塗布後に上記方法での熱乾燥を実施してもよい。
感光層の厚みは、使用される材料などにより適宜最適な厚みが選択される。電気特性、耐絶縁破壊性の観点より、5μm以上が好ましく、10μm以上がより好ましく、15μm以上が特に好ましい。また、電気特性の観点より、100μm以下が好ましく、50μm以下がより好ましく、30μm以下が特に好ましい。
<保護層(最表層)>
本発明の感光体の保護層(最表層)は、連鎖重合性官能基を有する化合物を重合させてなる構造を有する。
中でも、連鎖重合性官能基を有する化合物をラジカル重合させて保護層(最表層)を形成する場合に、本発明の効果が一層有効に発揮される。上述のように、本発明によれば、所定の電子輸送物質を使用することにより、電子輸送物質が感光層表面に濃化するのを抑えることができるため、電子輸送物質が保護層(最表層)の硬化反応で発生するラジカルをトラップして、ラジカル重合による硬化反応を阻害するのを抑えることができる。したがって、感光体表面のマルテンス硬さ及び弾性変形率の低下を抑えることができる。
本発明の感光体の保護層(最表層)は、連鎖重合性官能基を有する化合物を重合させてなる構造を有する。
中でも、連鎖重合性官能基を有する化合物をラジカル重合させて保護層(最表層)を形成する場合に、本発明の効果が一層有効に発揮される。上述のように、本発明によれば、所定の電子輸送物質を使用することにより、電子輸送物質が感光層表面に濃化するのを抑えることができるため、電子輸送物質が保護層(最表層)の硬化反応で発生するラジカルをトラップして、ラジカル重合による硬化反応を阻害するのを抑えることができる。したがって、感光体表面のマルテンス硬さ及び弾性変形率の低下を抑えることができる。
連鎖重合性官能基を有する化合物の連鎖重合性官能基としては、アクリロイル基、メタクリロイル基、ビニル基、エポキシ基が挙げられる。中でも、ラジカル重合し得る連鎖重合性官能基として、アクリロイル基、メタクリロイル基、ビニル基を挙げることができ、硬化速度の観点から、アクリロイル基、メタクリロイル基が好ましい。
連鎖重合性官能基を有する化合物としては、公知の材料であれば特に限定はされないが、硬化性の観点から、アクリロイル基またはメタクリロイル基を有するモノマー、オリゴマー、ポリマーが好ましい。
連鎖重合性官能基を有する化合物としては、公知の材料であれば特に限定はされないが、硬化性の観点から、アクリロイル基またはメタクリロイル基を有するモノマー、オリゴマー、ポリマーが好ましい。
以下に好ましい化合物を例示する。
アクリロイル基またはメタクリロイル基を有するモノマーとしては、トリメチロールプロパントリアクリレート(A-TMPT)、トリメチロールプロパントリメタクリレート、HPA変性トリメチロールプロパントリアクリレート、EO変性トリメチロールプロパントリアクリレート、PO変性トリメチロールプロパントリアクリレート、カプロラクトン変性トリメチロールプロパントリアクリレート、HPA変性トリメチロールプロパントリメタクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、グリセロールトリアクリレート、ECH変性グリセロールトリアクリレート、EO変性グリセロールトリアクリレート、PO変性グリセロールトリアクリレート、トリス(アクリロキシエチル)イソシアヌレート、カプロラクトン変性トリス(アクリロキシエチル)イソシアヌレート、EO変性トリス(アクリロキシエチル)イソシアヌレート、PO変性トリス(アクリロキシエチル)イソシアヌレート、ジペンタエリスリトールヘキサアクリレート(A-DPH)、カプロラクトン変性ジペンタエリスリトールヘキサアクリレート、ジペンタエリスリトールヒドロキシペンタアクリレート、アルキル変性ジペンタエリスリトールペンタアクリレート、アルキル変性ジペンタエリスリトールテトラアクリレート、アルキル変性ジペンタエリスリトールトリアクリレート、ジメチロールプロパンテトラアクリレート、ペンタエリスリトールエトキシテトラアクリレート、EO変性リン酸トリアクリレート、2,2,5,5,-テトラヒドロキシメチルシクロペンタノンテトラアクリレート、2-ヒドロキシ-3-アクリロイロキシプロピルメタクリレート、ポリエチレングリコールジアクリレート、ポリプロピレングリコールジアクリレート、ポリテトラメチレングリコールジアクリレート、EO変性ビスフェノールAジアクリレート、PO変性ビスフェノールAジアクリレート、9,9-ビス[4-(2-アクリロイルオキシエトキシ)フェニル]フルオレン、トリシクロデカンジメタノールジアクリレート、デカンジオールジアクリレート、ヘキサンジオールジアクリレート、エチレングリコールジメタクリレート、ポリエチレングリコールジメタクリレート、EO変性ビスフェノールAジメタクリレート、PO変性ビスフェノールAジメタクリレート、トリシクロデカンジメタノールジメタクリレート、デカンジオールジメタクリレート、ヘキサンジオールジメタクリレート等を挙げることができる。
アクリロイル基またはメタクリロイル基を有するモノマーとしては、トリメチロールプロパントリアクリレート(A-TMPT)、トリメチロールプロパントリメタクリレート、HPA変性トリメチロールプロパントリアクリレート、EO変性トリメチロールプロパントリアクリレート、PO変性トリメチロールプロパントリアクリレート、カプロラクトン変性トリメチロールプロパントリアクリレート、HPA変性トリメチロールプロパントリメタクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、グリセロールトリアクリレート、ECH変性グリセロールトリアクリレート、EO変性グリセロールトリアクリレート、PO変性グリセロールトリアクリレート、トリス(アクリロキシエチル)イソシアヌレート、カプロラクトン変性トリス(アクリロキシエチル)イソシアヌレート、EO変性トリス(アクリロキシエチル)イソシアヌレート、PO変性トリス(アクリロキシエチル)イソシアヌレート、ジペンタエリスリトールヘキサアクリレート(A-DPH)、カプロラクトン変性ジペンタエリスリトールヘキサアクリレート、ジペンタエリスリトールヒドロキシペンタアクリレート、アルキル変性ジペンタエリスリトールペンタアクリレート、アルキル変性ジペンタエリスリトールテトラアクリレート、アルキル変性ジペンタエリスリトールトリアクリレート、ジメチロールプロパンテトラアクリレート、ペンタエリスリトールエトキシテトラアクリレート、EO変性リン酸トリアクリレート、2,2,5,5,-テトラヒドロキシメチルシクロペンタノンテトラアクリレート、2-ヒドロキシ-3-アクリロイロキシプロピルメタクリレート、ポリエチレングリコールジアクリレート、ポリプロピレングリコールジアクリレート、ポリテトラメチレングリコールジアクリレート、EO変性ビスフェノールAジアクリレート、PO変性ビスフェノールAジアクリレート、9,9-ビス[4-(2-アクリロイルオキシエトキシ)フェニル]フルオレン、トリシクロデカンジメタノールジアクリレート、デカンジオールジアクリレート、ヘキサンジオールジアクリレート、エチレングリコールジメタクリレート、ポリエチレングリコールジメタクリレート、EO変性ビスフェノールAジメタクリレート、PO変性ビスフェノールAジメタクリレート、トリシクロデカンジメタノールジメタクリレート、デカンジオールジメタクリレート、ヘキサンジオールジメタクリレート等を挙げることができる。
アクリロイル基またはメタクリロイル基を有するオリゴマー、ポリマーとしては、公知のウレタンアクリレート、エステルアクリレート、アクリルアクリレート、エポキシアクリレート等を使用できる。
前記ウレタンアクリレートとしては、「EBECRYL8301」、「EBECRYL1290」、「EBECRYL1830」、「KRM8200」(ダイセル・オルネクス株式会社)、「UV1700B」、「UV7640B」、「UV7605B」、「UV6300B」、「UV7550B」(三菱ケミカル株式会社)等を挙げることができる。
前記エステルアクリレートとしては、「M-7100」、「M-7300K」、「M-8030」、「M-8060」、「M-8100」、「M-8530」、「M-8560」、「M-9050」(東亜合成株式会社)等を挙げることができる。
前記アクリルアクリレートとしては、「8BR-600」、「8BR-930MB」、「8KX―078」、「8KX-089」、「8KX-168」(大成ファインケミカル株式会社)等を挙げることができる。
前記ウレタンアクリレートとしては、「EBECRYL8301」、「EBECRYL1290」、「EBECRYL1830」、「KRM8200」(ダイセル・オルネクス株式会社)、「UV1700B」、「UV7640B」、「UV7605B」、「UV6300B」、「UV7550B」(三菱ケミカル株式会社)等を挙げることができる。
前記エステルアクリレートとしては、「M-7100」、「M-7300K」、「M-8030」、「M-8060」、「M-8100」、「M-8530」、「M-8560」、「M-9050」(東亜合成株式会社)等を挙げることができる。
前記アクリルアクリレートとしては、「8BR-600」、「8BR-930MB」、「8KX―078」、「8KX-089」、「8KX-168」(大成ファインケミカル株式会社)等を挙げることができる。
これらは、単独又は2種類以上を併用しても差し支えない。これらの中でも、電気特性の観点から、ウレタンアクリレートを含有することが好ましい。
本発明に係る電子写真感光体の保護層(最表層)は、連鎖重合性官能基を有する化合物の他に、電荷輸送能を付与する目的で、金属酸化物粒子や電荷輸送物質を含有させてもよい。また、重合反応を促進するため、重合開始剤を含有させてもよい。
以下に、保護層(最表層)に用いられる材料(金属酸化物粒子、電荷輸送物質、重合開始剤)について詳述する。
(金属酸化物粒子)
本発明の保護層(最表層)には電荷輸送能を付与する観点から、また、機械的強度を向上させる観点から、金属酸化物粒子を含有させることが好ましい。
本発明の保護層(最表層)には電荷輸送能を付与する観点から、また、機械的強度を向上させる観点から、金属酸化物粒子を含有させることが好ましい。
金属酸化物粒子としては、通常、電子写真感光体に使用可能な如何なる金属酸化物粒子も使用することができる。
金属酸化物粒子として、より具体的には、酸化チタン、酸化スズ、酸化アルミニウム、酸化インジウム、酸化珪素、酸化ジルコニウム、酸化亜鉛、酸化鉄等の1種の金属元素を含む金属酸化物粒子、酸化インジウムスズ、チタン酸カルシウム、チタン酸ストロンチウム、チタン酸バリウム等の複数の金属元素を含む金属酸化物粒子が挙げられる。これらの中でもバンドギャップが2~4eVの金属酸化物粒子が好ましい。金属酸化物粒子は、一種類の粒子のみを用いてもよいし、複数の種類の粒子を混合して用いてもよい。
これらの金属酸化物粒子の中でも、電子輸送性の観点から、酸化チタン、酸化スズ、酸化インジウムスズ、酸化アルミニウム、酸化珪素、酸化亜鉛が好ましく、より好ましくは酸化チタンおよび酸化スズである。特には酸化チタンが好ましい。
金属酸化物粒子として、より具体的には、酸化チタン、酸化スズ、酸化アルミニウム、酸化インジウム、酸化珪素、酸化ジルコニウム、酸化亜鉛、酸化鉄等の1種の金属元素を含む金属酸化物粒子、酸化インジウムスズ、チタン酸カルシウム、チタン酸ストロンチウム、チタン酸バリウム等の複数の金属元素を含む金属酸化物粒子が挙げられる。これらの中でもバンドギャップが2~4eVの金属酸化物粒子が好ましい。金属酸化物粒子は、一種類の粒子のみを用いてもよいし、複数の種類の粒子を混合して用いてもよい。
これらの金属酸化物粒子の中でも、電子輸送性の観点から、酸化チタン、酸化スズ、酸化インジウムスズ、酸化アルミニウム、酸化珪素、酸化亜鉛が好ましく、より好ましくは酸化チタンおよび酸化スズである。特には酸化チタンが好ましい。
前記酸化チタン粒子の結晶型としては、ルチル、アナターゼ、ブルッカイト、アモルファスのいずれも用いることができる。また、これらの結晶状態の異なるものから、複数の結晶状態のものが含まれていてもよい。
金属酸化物粒子は、その表面に種々の表面処理を行ってもよい。例えば、酸化スズ、酸化アルミニウム、酸化アンチモン、酸化ジルコニウム、酸化珪素等の無機物、またはステアリン酸、ポリオール、有機珪素化合物等の有機物による処理を施していてもよい。特に、酸化チタン粒子を用いる場合には、有機珪素化合物により表面処理されていることが好ましい。有機珪素化合物としては、ジメチルポリシロキサン、メチル水素ポリシロキサン等のシリコーンオイル、メチルジメトキシシラン、ジフェニルジジメトキシシラン等のオルガノシラン、ヘキサメチルジシラザン等のシラザン、3-メタクリロイルオキシプロピルトリメトキシシラン、3-アクリロイルオキシプロピルトリメトキシシラン、ビニルトリメトキシシラン等のシランカップリング剤等を挙げることができる。特に、保護層(最表層)の機械的強度を向上させる観点から、連鎖重合性官能基を有する、3-メタクリロイルオキシプロピルトリメトキシシラン、3-アクリロイルオキシプロピルトリメトキシシラン、ビニルトリメトキシシランが好ましい。
なお、金属酸化物粒子は、最表面をこのような処理剤で処理する前に、酸化アルミニウム、酸化珪素または酸化ジルコニウム等の絶縁性物質で予め処理されていても構わない。
金属酸化物粒子は、一種類の粒子のみを用いてもよいし、複数の種類の粒子を混合して用いてもよい。
金属酸化物粒子は、一種類の粒子のみを用いてもよいし、複数の種類の粒子を混合して用いてもよい。
金属酸化物粒子は、通常、平均一次粒子径が500nm以下のものが好ましく用いられ、より好ましくは1nm~100nmのものが用いられ、さらに好ましくは5~50nmのものが用いられる。
この平均一次粒子径は、透過型電子顕微鏡(Transmission electron microscope 以下、TEMとも称する)により直接観察される粒子の径の算術平均値によって求めることが可能である。
この平均一次粒子径は、透過型電子顕微鏡(Transmission electron microscope 以下、TEMとも称する)により直接観察される粒子の径の算術平均値によって求めることが可能である。
本発明に係る金属酸化物粒子のうち、酸化チタン粒子の具体的な商品名としては、表面処理を施していない超微粒子酸化チタン「TTO-55(N)」、「TTO-51(N)」、Al2O3被覆を施した超微粒子酸化チタン「TTO-55(A)」、「TTO-55(B)」、ステアリン酸で表面処理を施した超微粒子酸化チタン「TTO-55(C)」、Al2O3とオルガノシロキサンで表面処理を施した超微粒子酸化チタン「TTO-55(S)」、高純度酸化チタン「C-EL」、硫酸法酸化チタン「R-550」、「R-580」、「R-630」、「R-670」、「R-680」、「R-780」、「A-100」、「A-220」、「W-10」、塩素法酸化チタン「CR-50」、「CR-58」、「CR-60」、「CR-60-2」、「CR-67」、導電性酸化チタン「ET-300W」(以上、石原産業株式会社製)や、「R-60」、「A-110」、「A-150」などの酸化チタンをはじめ、Al2O3被覆を施した「SR-1」、「R-GL」、「R-5N」、「R-5N-2」、「R-52N」、「RK-1」、「A-SP」、SiO2、Al2O3被覆を施した「R-GX」、「R-7E」、ZnO、SiO2、Al2O3被覆を施した「R-650」、ZrO2、Al2O3被覆を施した「R-61N」(以上、堺化学工業株式会社製)、また、SiO2、Al2O3で表面処理された「TR-700」、ZnO、SiO2、Al2O3で表面処理された「TR-840」、「TA-500」の他、「TA-100」、「TA-200」、「TA-300」など表面未処理の酸化チタン、Al2O3で表面処理を施した「TA-400」(以上、富士チタン工業株式会社製)、表面処理を施していない「MT-150W」、「MT-500B」、SiO2、Al2O3で表面処理された「MT-100SA」、「MT-500SA」、SiO2,Al2O3とオルガノシロキサンで表面処理された「MT-100SAS」、「MT-500SAS」(テイカ株式会社製)等を挙げることができる。
また、酸化アルミニウム粒子の具体的な商品名としては、「Aluminium Oxide C」(日本アエロジル社製)等を挙げることができる。
また、酸化珪素粒子の具体的な商品名としては、「200CF」、「R972」(日本アエロジル社製)、「KEP-30」(日本触媒株式会社製)等を挙げることができる。
また、酸化スズ粒子の具体的な商品名としては、「SN-100P」、「SN-100D」(石原産業株式会社製)、「SnO2」(CIKナノテック株式会社製)、「S-2000」、リンドープ酸化スズ「SP-2」、アンチモンドープ酸化スズ「T-1」、インジウムドープ酸化スズ「E-ITO」(三菱マテリアル株式会社製)等を挙げることができる。
酸化亜鉛粒子の具体的な商品名としては「MZ-305S」(テイカ株式会社製)が挙げられるが、本発明において使用可能な金属酸化物粒子は、これらに限定されるものではない。
本発明に係る電子写真感光体の保護層(最表層)中での金属酸化物粒子の含有量は、特に限定されない。電気特性の観点から、バインダー樹脂100質量部に対して、好ましくは10質量部以上、より好ましくは、20質量部以上、特に好ましくは30質量部以上である。また、表面抵抗を良好に保持する観点から、好ましくは300質量部以下、より好ましくは200質量部以下、特に好ましくは120質量部以下である。
(電荷輸送物質)
保護層(最表層)に含有させる電荷輸送物質は、前記感光層に用いられる電荷輸送物質と同様のものを用いることができる。
保護層(最表層)に含有させる電荷輸送物質は、前記感光層に用いられる電荷輸送物質と同様のものを用いることができる。
また、感光体表面のマルテンス硬さを向上させる観点から、保護層(最表層)には、連鎖重合性官能基を有する電荷輸送物質を重合させてなる構造を含有させてもよい。
連鎖重合性官能基を有する電荷輸送物質の連鎖重合性官能基としては、アクリロイル基、メタクリロイル基、ビニル基及びエポキシ基が挙げられる。この中でも硬化性の観点から、アクリロイル基またはメタクリロイル基が好ましい。連鎖重合性官能基を有する電荷輸送物質の電荷輸送物質部分の構造としては、カルバゾール誘導体、インドール誘導体、イミダゾール誘導体、オキサゾール誘導体、ピラゾール誘導体、チアジアゾール誘導体、ベンゾフラン誘導体等の複素環化合物、アニリン誘導体、ヒドラゾン誘導体、アリールアミン誘導体、スチルベン誘導体、ブタジエン誘導体及びエナミン誘導体並びにこれらの化合物の複数種が結合したもの、及びこれらの化合物からなる基を主鎖若しくは側鎖に有する重合体等の電子供与性物質が挙げられる。これらの中でも、電気特性の観点から、カルバゾール誘導体、アリールアミン誘導体、スチルベン誘導体、ブタジエン誘導体及びエナミン誘導体並びにこれらの化合物の複数種が結合したものが好ましい。
連鎖重合性官能基を有する電荷輸送物質の連鎖重合性官能基としては、アクリロイル基、メタクリロイル基、ビニル基及びエポキシ基が挙げられる。この中でも硬化性の観点から、アクリロイル基またはメタクリロイル基が好ましい。連鎖重合性官能基を有する電荷輸送物質の電荷輸送物質部分の構造としては、カルバゾール誘導体、インドール誘導体、イミダゾール誘導体、オキサゾール誘導体、ピラゾール誘導体、チアジアゾール誘導体、ベンゾフラン誘導体等の複素環化合物、アニリン誘導体、ヒドラゾン誘導体、アリールアミン誘導体、スチルベン誘導体、ブタジエン誘導体及びエナミン誘導体並びにこれらの化合物の複数種が結合したもの、及びこれらの化合物からなる基を主鎖若しくは側鎖に有する重合体等の電子供与性物質が挙げられる。これらの中でも、電気特性の観点から、カルバゾール誘導体、アリールアミン誘導体、スチルベン誘導体、ブタジエン誘導体及びエナミン誘導体並びにこれらの化合物の複数種が結合したものが好ましい。
本発明に係る電子写真感光体の保護層(最表層)中での電荷輸送物質の使用量は、特に限定されない。電気特性の観点から、バインダー樹脂100質量部に対して、好ましくは10質量部以上、より好ましくは30質量部以上、特に好ましくは50質量部以上である。また、表面抵抗を良好に保持する観点から、好ましくは300質量部以下、より好ましくは20質量部以下、特に好ましくは150質量部以下である。
(重合開始剤)
重合開始剤には、熱重合開始剤、光重合開始剤等が含まれる。
重合開始剤には、熱重合開始剤、光重合開始剤等が含まれる。
熱重合開始剤としては、2,5-ジメチルヘキサン-2,5-ジヒドロパーオキサイドなどの過酸化物系化合物、2,2’-アゾビス(イソブチロニトリル)などのアゾ系化合物が挙げられる。
光重合開始剤は、ラジカル発生機構の違いにより、直接開裂型と水素引き抜き型に分類できる。直接開裂型の光重合開始剤は、光エネルギーを吸収すると、分子内の共有結合の一部が開裂することでラジカルを発生する。一方、水素引き抜き型の光重合開始剤は、光エネルギーを吸収することで励起状態となった分子が、水素供与体から水素を引き抜くことでラジカルを発生する。
直接開裂型の光重合開始剤としては、アセトフェノン、2-ベンゾイル-2-プロパノール、1-ベンゾイルシクロヘキサノール、2,2-ジエトキシアセトフェノン、ベンジルジメチルケタール、2-メチル-4’-(メチルチオ)-2-モルフォリノプロピオフェノン、などのアセトフェノン系またはケタール系化合物、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソブチルエーテル、ベンゾインイソプロピルエーテル、O-トシルベンゾイン、などのベンゾインエーテル系化合物、ジフェニル(2,4,6-トリメチルベンゾイル)フォスフィンオキサイド、フェニルビス(2,4,6-トリメチルベンゾイル)フォスフィンオキサイド、リチウムフェニル(2,4,6-トリメチルベンゾイル)フォスフォネート、などのアシルフォスフィンオキサイド系化合物が挙げられる。
水素引き抜き型の光重合開始剤としては、ベンゾフェノン、4-ベンゾイル安息香酸、2-ベンゾイル安息香酸、2-ベンゾイル安息香酸メチル、ベンゾイルぎ酸メチル、ベンジル、p-アニシル、2-ベンゾイルナフタレン、4,4’-ビス(ジメチルアミノ)ベンゾフェノン、4,4’-ジクロロベンゾフェノン、1,4-ジベンゾイルベンゼン、などのベンゾフェノン系化合物、2-エチルアントラキノン、2-イソプロピルチオキサントン、2-クロロチオキサントン、2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン、2,4-ジクロロチオキサントン、などのアントラキノン系またはチオキサントン系化合物等を挙げることができる。その他の光重合開始剤としては、カンファーキノン、1-フェニル-1,2-プロパンジオン-2-(o-エトキシカルボニル)オキシム、アクリジン系化合物、トリアジン系化合物、イミダゾール系化合物、が挙げられる。
光重合開始剤は、効率的に光エネルギーを吸収してラジカルを発生させるために、光照射に用いられる光源の波長領域に、吸収波長を有することが好ましい。一方、保護層(最表層)に含まれる化合物の内、光重合開始剤以外の成分が、この波長領域に吸収を持つ場合、光重合開始剤が十分な光エネルギーを吸収できず、ラジカル発生効率が低下する場合がある。一般的なバインダー樹脂や電荷輸送物質、金属酸化物粒子は、紫外域(UV)に吸収波長を有するため、光照射に用いる光源が紫外光(UV)である場合には特に、この効果が顕著である。このような不具合を防止する観点から、光重合開始剤の中でも比較的長波長側に吸収波長を有する、アシルフォスフィンオキサイド系化合物を含有することが好ましい。また、アシルフォスフィンオキサイド系化合物は、自己開裂により吸収波長領域が低波長側に変化する、フォトブリーチ効果を有するため、保護層(最表層)内部まで光を透過させることができ、内部硬化性が良好である点からも好ましい。この場合、保護層(最表層)表面の硬化性を補う観点から、水素引き抜き型開始剤を併用することがさらに好ましい。アシルフォスフィンオキサイド系化合物に対する水素引き抜き型開始剤の含有割合は特に限定されるものではないが、表面硬化性を補う観点から、アシルフォスフィンオキサイド系化合物1質量部に対し、0.1質量部以上が好ましく、内部硬化性を維持する観点から、5質量部以下が好ましい。
また、光重合促進効果を有するものを単独または上記光重合開始剤と併用して用いることもできる。例えば、トリエタノールアミン、メチルジエタノールアミン、4-ジメチルアミノ安息香酸エチル、4-ジメチルアミノ安息香酸イソアミル、安息香酸(2-ジメチルアミノ)エチル、4,4’-ジメチルアミノベンゾフェノン、などが挙げられる。
これらの重合開始剤は1種又は2種以上を混合して用いてもよい。重合開始剤の含有量は、ラジカル重合性を有する総含有物100質量部に対し、0.5~40質量部、好ましくは1~20質量部である。
(保護層(最表層)の形成方法)
次に、保護層(最表層)の形成方法について説明する。
上記保護層(最表層)の形成方法は、特に限定されない。例えば、バインダー樹脂、電荷輸送物質、金属酸化物粒子、及びその他の物質を溶媒に溶解した塗布液または分散媒に分散した塗布液を塗布することにより形成することができる。
次に、保護層(最表層)の形成方法について説明する。
上記保護層(最表層)の形成方法は、特に限定されない。例えば、バインダー樹脂、電荷輸送物質、金属酸化物粒子、及びその他の物質を溶媒に溶解した塗布液または分散媒に分散した塗布液を塗布することにより形成することができる。
以下、保護層(最表層)の形成に用いられる溶媒または分散媒、及び塗布方法を説明する。
[保護層(最表層)形成用塗布液に用いる溶媒]
本発明の保護層(最表層)形成用塗布液に用いる有機溶媒としては、本発明に係る物質を溶解することができる有機溶媒であれば、どのようなものでも使用することができる。具体的には、メタノール、エタノール、プロパノール、2-メトキシエタノール等のアルコール類;テトラヒドロフラン、1,4-ジオキサン、ジメトキシエタン等のエーテル類;ギ酸メチル、酢酸エチル等のエステル類;アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類;ベンゼン、トルエン、キシレン、アニソール等の芳香族炭化水素類;ジクロロメタン、クロロホルム、1,2-ジクロロエタン、1,1,2-トリクロロエタン、1,1,1-トリクロロエタン、テトラクロロエタン、1,2-ジクロロプロパン、トリクロロエチレン等の塩素化炭化水素類;n-ブチルアミン、イソプロパノールアミン、ジエチルアミン、トリエタノールアミン、エチレンジアミン、トリエチレンジアミン等の含窒素化合物類;アセトニトリル、N-メチルピロリドン、N,N-ジメチルホルムアミド、ジメチルスルホキシド等の非プロトン性極性溶剤類等を挙げることができる。これらの中から任意の組み合わせ及び任意の割合の混合溶媒を用いることもできる。また、単独では本発明に係る保護層(最表層)用の物質を溶解しない有機溶媒であっても、例えば、上記の有機溶媒との混合溶媒とすることで溶解可能であれば、使用することができる。一般に、混合溶媒を用いた方が塗布ムラを少なくすることができる。後述の塗布方法において浸漬塗布法を用いる場合、下層を溶解しない溶媒を選択することが好ましい。この観点から、感光層に好適に用いられるポリカーボネート、ポリアリレートへの溶解性が低い、アルコール類を含有させることが好ましい。
本発明の保護層(最表層)形成用塗布液に用いる有機溶媒としては、本発明に係る物質を溶解することができる有機溶媒であれば、どのようなものでも使用することができる。具体的には、メタノール、エタノール、プロパノール、2-メトキシエタノール等のアルコール類;テトラヒドロフラン、1,4-ジオキサン、ジメトキシエタン等のエーテル類;ギ酸メチル、酢酸エチル等のエステル類;アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類;ベンゼン、トルエン、キシレン、アニソール等の芳香族炭化水素類;ジクロロメタン、クロロホルム、1,2-ジクロロエタン、1,1,2-トリクロロエタン、1,1,1-トリクロロエタン、テトラクロロエタン、1,2-ジクロロプロパン、トリクロロエチレン等の塩素化炭化水素類;n-ブチルアミン、イソプロパノールアミン、ジエチルアミン、トリエタノールアミン、エチレンジアミン、トリエチレンジアミン等の含窒素化合物類;アセトニトリル、N-メチルピロリドン、N,N-ジメチルホルムアミド、ジメチルスルホキシド等の非プロトン性極性溶剤類等を挙げることができる。これらの中から任意の組み合わせ及び任意の割合の混合溶媒を用いることもできる。また、単独では本発明に係る保護層(最表層)用の物質を溶解しない有機溶媒であっても、例えば、上記の有機溶媒との混合溶媒とすることで溶解可能であれば、使用することができる。一般に、混合溶媒を用いた方が塗布ムラを少なくすることができる。後述の塗布方法において浸漬塗布法を用いる場合、下層を溶解しない溶媒を選択することが好ましい。この観点から、感光層に好適に用いられるポリカーボネート、ポリアリレートへの溶解性が低い、アルコール類を含有させることが好ましい。
本発明の保護層(最表層)形成用塗布液に用いる有機溶媒と、固形分の量比は、保護層(最表層)形成用塗布液の塗布方法により異なり、適用する塗布方法において均一な塗膜が形成されるように適宜変更して用いればよい。
[塗布方法]
保護層(最表層)を形成するための塗布液の塗布方法は特に限定されず、例えば、スプレー塗布法、スパイラル塗布法、リング塗布法、浸漬塗布法等を挙げることができる。
保護層(最表層)を形成するための塗布液の塗布方法は特に限定されず、例えば、スプレー塗布法、スパイラル塗布法、リング塗布法、浸漬塗布法等を挙げることができる。
上記塗布法により塗布膜を形成した後、塗膜を乾燥させる。この際、必要且つ充分な乾燥が得られれば、乾燥の温度、時間は問わない。ただし、感光層塗布後に風乾のみで保護層(最表層)の塗布を行った場合は、前述の感光層の[塗布方法]に記載の方法で、充分な乾燥を行うことが好ましい。
保護層(最表層)の厚みは、使用される材料などにより適宜最適な厚みが選択される。寿命の観点より、0.1μm以上が好ましく、0.2μm以上がより好ましく、0.5μm以上が特に好ましい。電気特性の観点より、10μm以下が好ましく、5μm以下がより好ましく、3μm以下が特に好ましい。
[保護層(最表層)の硬化方法]
該保護層(最表層)は、かかる塗工液を塗布後、外部からエネルギーを与え硬化させて形成するものである。このとき用いられる外部エネルギーとしては熱、光、放射線がある。
熱のエネルギーを加える方法としては、空気、窒素などの気体、蒸気、あるいは各種熱媒体、赤外線、電磁波を用いて、塗工表面側あるいは支持体側から加熱すればよい。加熱温度は100℃以上、170℃以下が好ましく、前記下限温度以上であれば、充分な反応速度となり、完全に反応が進行する。前記上限温度以下であれば、反応が均一に進行し、保護層(最表層)中に大きな歪みが発生するのを抑制できる。硬化反応を均一に進めるために、100℃未満の比較的低温で加熱後、さらに100℃以上に加温し反応を完結させる方法も有効である。
該保護層(最表層)は、かかる塗工液を塗布後、外部からエネルギーを与え硬化させて形成するものである。このとき用いられる外部エネルギーとしては熱、光、放射線がある。
熱のエネルギーを加える方法としては、空気、窒素などの気体、蒸気、あるいは各種熱媒体、赤外線、電磁波を用いて、塗工表面側あるいは支持体側から加熱すればよい。加熱温度は100℃以上、170℃以下が好ましく、前記下限温度以上であれば、充分な反応速度となり、完全に反応が進行する。前記上限温度以下であれば、反応が均一に進行し、保護層(最表層)中に大きな歪みが発生するのを抑制できる。硬化反応を均一に進めるために、100℃未満の比較的低温で加熱後、さらに100℃以上に加温し反応を完結させる方法も有効である。
光のエネルギーとしては、主に紫外光(UV)に発光波長をもつ高圧水銀灯やメタルハライドランプ、無電極ランプバルブ、発光ダイオードなどのUV照射光源が利用できる。また、連鎖重合性化合物や光重合開始剤の吸収波長に合わせ可視光光源の選択も可能である。
光照射量(積算光量)は、硬化性の観点から0.1J/cm2以上が好ましく、0.5J/cm2以上がさらに好ましく、1J/cm2以上が特に好ましい。また、電気特性の観点から、150J/cm2以下が好ましく、100J/cm2以下がさらに好ましく、50J/cm2以下が特に好ましい。
放射線のエネルギーとしては、電子線(EB)を用いるものが挙げられる。
光照射量(積算光量)は、硬化性の観点から0.1J/cm2以上が好ましく、0.5J/cm2以上がさらに好ましく、1J/cm2以上が特に好ましい。また、電気特性の観点から、150J/cm2以下が好ましく、100J/cm2以下がさらに好ましく、50J/cm2以下が特に好ましい。
放射線のエネルギーとしては、電子線(EB)を用いるものが挙げられる。
これらのエネルギーの中で、反応速度制御の容易さ、装置の簡便さ、ポットライフの長さの観点から、光のエネルギーを用いたものが好ましい。
該保護層(最表層)を硬化した後、残留応力の緩和、残留ラジカルの緩和、電気特性改良の観点から、加熱工程を加えてもよい。加熱温度としては、好ましくは60℃以上、より好ましくは100℃以上であり、好ましくは200℃以下、より好ましくは150℃以下である。
[マルテンス硬さ]
本発明の第一、第二及び第三の実施態様は、前述の通り、保護層(最表層)に接する感光層、例えば単層型感光層中の正孔輸送物質及び電子輸送物質の分子量、物質量(モル量)の比ないし分子量の比を特定範囲とすることで、正孔輸送物質及び電子輸送物質が感光層表面に濃化するのを抑制することができ、その結果、感光体表面のマルテンス硬さの低下を抑制することができる。
本発明の第一、第二及び第三の実施態様は、前述の通り、保護層(最表層)に接する感光層、例えば単層型感光層中の正孔輸送物質及び電子輸送物質の分子量、物質量(モル量)の比ないし分子量の比を特定範囲とすることで、正孔輸送物質及び電子輸送物質が感光層表面に濃化するのを抑制することができ、その結果、感光体表面のマルテンス硬さの低下を抑制することができる。
感光体表面のマルテンス硬さは、耐摩耗性の観点から、300N/mm2以上が好ましく、350N/mm2以上がより好ましく、400N/mm2以上がさらに好ましい。感光体表面のマルテンス硬さは、残留応力、クラックの発生を抑制する観点から、600N/mm2以下が好ましく、450N/mm2以下がより好ましい。
本発明において、感光体のマルテンス硬さとは、感光体の表面側から測定したマルテンス硬さを意味する。
前記マルテンス硬さは、後述の実施例に記載の方法で測定することができる。
本発明において、感光体のマルテンス硬さとは、感光体の表面側から測定したマルテンス硬さを意味する。
前記マルテンス硬さは、後述の実施例に記載の方法で測定することができる。
[弾性変形率]
本発明の第一、第二及び第三の実施態様は、前述の通り、保護層(最表層)に接する感光層、例えば単層型感光層中の正孔輸送物質及び電子輸送物質の分子量、物質量(モル量)の比ないし分子量の比を特定範囲とすることで、正孔輸送物質及び電子輸送物質が感光層表面に濃化するのを抑制することができ、その結果、感光体表面の弾性変形率の低下を抑制することができる。
本発明の第一、第二及び第三の実施態様は、前述の通り、保護層(最表層)に接する感光層、例えば単層型感光層中の正孔輸送物質及び電子輸送物質の分子量、物質量(モル量)の比ないし分子量の比を特定範囲とすることで、正孔輸送物質及び電子輸送物質が感光層表面に濃化するのを抑制することができ、その結果、感光体表面の弾性変形率の低下を抑制することができる。
感光体表面の弾性変形率は、耐摩耗性の観点から、30%以上が好ましく、35%以上がより好ましく、40%以上がさらに好ましい。感光体表面の弾性変形率は、残留応力、クラックの発生を抑制する観点から、60%以下が好ましく、55%以下がより好ましい。
本発明において、感光体の弾性変形率とは、感光体の表面側から測定した弾性変形率を意味する。
前記弾性変形率は、後述の実施例に記載の方法で測定することができる。
本発明において、感光体の弾性変形率とは、感光体の表面側から測定した弾性変形率を意味する。
前記弾性変形率は、後述の実施例に記載の方法で測定することができる。
<下引き層>
本発明の電子写真感光体は、上記感光層と導電性支持体との間に下引き層を有していてもよい。
本発明の電子写真感光体は、上記感光層と導電性支持体との間に下引き層を有していてもよい。
下引き層としては、例えば、樹脂、樹脂に有機顔料や金属酸化物等の粒子を分散したもの等を用いることができる。
下引き層に用いる有機顔料の例としては、フタロシアニン顔料、アゾ顔料、ペリレン顔料などが挙げられる。中でも、フタロシアニン顔料、アゾ顔料、具体的には、前述した電荷発生物質として用いる場合のフタロシアニン顔料やアゾ顔料が挙げられる。
下引き層に用いる有機顔料の例としては、フタロシアニン顔料、アゾ顔料、ペリレン顔料などが挙げられる。中でも、フタロシアニン顔料、アゾ顔料、具体的には、前述した電荷発生物質として用いる場合のフタロシアニン顔料やアゾ顔料が挙げられる。
下引き層に用いる金属酸化物粒子の例としては、酸化チタン、酸化アルミニウム、酸化珪素、酸化ジルコニウム、酸化亜鉛等の1種の金属元素を含む金属酸化物粒子、チタン酸ストロンチウム等の複数の金属元素を含む金属酸化物粒子が挙げられる。下引き層には、上記1種類の粒子のみを用いてもよく、複数の種類の粒子を任意の比率及び組み合わせで混合して用いてもよい。
上記金属酸化物粒子の中でも、酸化チタンおよび酸化アルミニウムが好ましく、特に酸化チタンが好ましい。なお、酸化チタン粒子は、例えば、その表面が無機物または有機物等によって処理されていてもよい。また酸化チタン粒子の結晶型としては、ルチル、アナターゼ、ブルッカイト、アモルファスのいずれも用いることができる。また複数の結晶状態のものが含まれていてもよい。
下引き層に用いられる金属酸化物粒子の粒径としては、特に限定されない。下引き層の特性、および下引き層を形成するための溶液の安定性の面から、平均一次粒径として10nm以上であることが好ましく、また100nm以下、より好ましくは50nm以下である。
ここで、下引き層は粒子をバインダー樹脂に分散した形で形成することが望ましい。
下引き層に用いられるバインダー樹脂としては、例えば、ポリビニルブチラール樹脂、ポリビニルホルマール樹脂、ポリビニルアセタール系樹脂、ポリアリレート樹脂、ポリカーボネート樹脂、ポリエステル樹脂、変性エーテル系ポリエステル樹脂、フェノキシ樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリ酢酸ビニル樹脂、ポリスチレン樹脂、アクリル樹脂、メタクリル樹脂、ポリアクリルアミド樹脂、ポリアミド樹脂、ポリビニルピリジン樹脂、セルロース系樹脂、ポリウレタン樹脂、エポキシ樹脂、シリコーン樹脂、ポリビニルアルコール樹脂、ポリビニルピロリドン樹脂、カゼインや、塩化ビニル-酢酸ビニル系共重合体、スチレン-ブタジエン共重合体、塩化ビニリデン-アクリロニトリル共重合体、シリコーン-アルキッド樹脂等の絶縁性樹脂や、ポリ-N-ビニルカルバゾール等の有機光導電性ポリマーの中から選択し、用いることができるが、これらポリマーに限定されるものではない。また、これら結着樹脂は単独で用いても、2種類以上を混合して用いてもよく、硬化剤とともに硬化した形でも使用してもよい。なかでも、ポリビニルブチラール樹脂、ポリビニルホルマール樹脂、ポリビニルアセタール系樹脂や、アルコール可溶性の共重合ポリアミド、変性ポリアミド等が良好な分散性及び塗布性を示すことから好ましい。
下引き層に用いられるバインダー樹脂としては、例えば、ポリビニルブチラール樹脂、ポリビニルホルマール樹脂、ポリビニルアセタール系樹脂、ポリアリレート樹脂、ポリカーボネート樹脂、ポリエステル樹脂、変性エーテル系ポリエステル樹脂、フェノキシ樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリ酢酸ビニル樹脂、ポリスチレン樹脂、アクリル樹脂、メタクリル樹脂、ポリアクリルアミド樹脂、ポリアミド樹脂、ポリビニルピリジン樹脂、セルロース系樹脂、ポリウレタン樹脂、エポキシ樹脂、シリコーン樹脂、ポリビニルアルコール樹脂、ポリビニルピロリドン樹脂、カゼインや、塩化ビニル-酢酸ビニル系共重合体、スチレン-ブタジエン共重合体、塩化ビニリデン-アクリロニトリル共重合体、シリコーン-アルキッド樹脂等の絶縁性樹脂や、ポリ-N-ビニルカルバゾール等の有機光導電性ポリマーの中から選択し、用いることができるが、これらポリマーに限定されるものではない。また、これら結着樹脂は単独で用いても、2種類以上を混合して用いてもよく、硬化剤とともに硬化した形でも使用してもよい。なかでも、ポリビニルブチラール樹脂、ポリビニルホルマール樹脂、ポリビニルアセタール系樹脂や、アルコール可溶性の共重合ポリアミド、変性ポリアミド等が良好な分散性及び塗布性を示すことから好ましい。
上記バインダー樹脂に対する粒子の混合比は、任意に選べる。10質量%から500質量%の範囲で使用することが、分散液の安定性及び塗布性の面で好ましい。また下引き層の膜厚は、任意に選ぶことができるが、電子写真感光体の特性、および上記分散液の塗布性から通常0.1μm以上、20μm以下とすることが好ましい。また下引き層には、公知の酸化防止剤等を含んでいてもよい。
<その他の層>
また本発明の電子写真感光体は、上述した導電性支持体、感光層、保護層(最表層)及び下引き層以外に、必要に応じて適宜他の層を有していてもよい。
また本発明の電子写真感光体は、上述した導電性支持体、感光層、保護層(最表層)及び下引き層以外に、必要に応じて適宜他の層を有していてもよい。
<語句の説明>
本発明において「X~Y」(X,Yは任意の数字)と表現する場合、特にことわらない限り「X以上Y以下」の意と共に、「好ましくはXより大きい」或いは「好ましくはYより小さい」の意も包含する。
また、「X以上」(Xは任意の数字)或いは「Y以下」(Yは任意の数字)と表現した場合、「Xより大きいことが好ましい」或いは「Y未満であることが好ましい」旨の意図も包含する。
本発明において「X~Y」(X,Yは任意の数字)と表現する場合、特にことわらない限り「X以上Y以下」の意と共に、「好ましくはXより大きい」或いは「好ましくはYより小さい」の意も包含する。
また、「X以上」(Xは任意の数字)或いは「Y以下」(Yは任意の数字)と表現した場合、「Xより大きいことが好ましい」或いは「Y未満であることが好ましい」旨の意図も包含する。
以下、実施例を示して本発明の実施の形態をさらに具体的に説明する。ただし、以下の実施例は本発明を詳細に説明するために示すものであり、本発明はその要旨を逸脱しない限り、以下に示した実施例に限定されるものではなく任意に変形して実施することができる。また、以下の実施例、及び比較例中の「部」の記載は、特に指定しない限り「質量部」を示す。
[実施例1]
<感光体の作製>
以下の手順により、感光体を作製した。
<感光体の作製>
以下の手順により、感光体を作製した。
(下引き層の形成)
CuKα線を用いた粉末X線回折において、回折角2θ±0.2°が27.3°に明瞭なピークを示すD型チタニルフタロシアニン20部と、1,2-ジメトキシエタン280部を混合し、サンドグラインドミルで2時間粉砕して微粒化分散処理を行った。ここにさらにポリビニルブチラール(電気化学工業(株)製、商品名「デンカブチラール」#6000C)の2.5%1,2-ジメトキシエタン溶液400部と、170部の1,2-ジメトキシエタンを混合して下引き層用塗布液を作製した。この塗布液を、厚さ0.3mmのアルミ板上に、乾燥後の膜厚が0.4μmとなるようにワイヤーバーで塗布、風乾して下引き層を形成した。
CuKα線を用いた粉末X線回折において、回折角2θ±0.2°が27.3°に明瞭なピークを示すD型チタニルフタロシアニン20部と、1,2-ジメトキシエタン280部を混合し、サンドグラインドミルで2時間粉砕して微粒化分散処理を行った。ここにさらにポリビニルブチラール(電気化学工業(株)製、商品名「デンカブチラール」#6000C)の2.5%1,2-ジメトキシエタン溶液400部と、170部の1,2-ジメトキシエタンを混合して下引き層用塗布液を作製した。この塗布液を、厚さ0.3mmのアルミ板上に、乾燥後の膜厚が0.4μmとなるようにワイヤーバーで塗布、風乾して下引き層を形成した。
(単層型感光層の形成)
CuKα線を用いた粉末X線回折において、回折角2θ±0.2°が27.3°に明瞭なピークを示すD型チタニルフタロシアニンを2.6部、下記構造のペリレン顔料1を1.3部、下記正孔輸送物質(HTM48、分子量748)を60部、下記電子輸送物質(ET-2、分子量424.2)を50部、下記のバインダー樹脂1を100部、レベリング剤としてシリコーンオイル(信越シリコーン社製:商品名KF-96)0.05部を、テトラヒドロフラン(以下適宜THFと略)とトルエン(以下適宜TLと略)の混合溶媒(THF80質量%、TL20質量%)974部と混合し、単層型感光層用塗布液を作製した。この塗布液を、上記下引き層上に、乾燥後の膜厚が約20μmになるようにバーコーターで塗布し、100℃で20分間乾燥させ、単層型感光層を形成した。
CuKα線を用いた粉末X線回折において、回折角2θ±0.2°が27.3°に明瞭なピークを示すD型チタニルフタロシアニンを2.6部、下記構造のペリレン顔料1を1.3部、下記正孔輸送物質(HTM48、分子量748)を60部、下記電子輸送物質(ET-2、分子量424.2)を50部、下記のバインダー樹脂1を100部、レベリング剤としてシリコーンオイル(信越シリコーン社製:商品名KF-96)0.05部を、テトラヒドロフラン(以下適宜THFと略)とトルエン(以下適宜TLと略)の混合溶媒(THF80質量%、TL20質量%)974部と混合し、単層型感光層用塗布液を作製した。この塗布液を、上記下引き層上に、乾燥後の膜厚が約20μmになるようにバーコーターで塗布し、100℃で20分間乾燥させ、単層型感光層を形成した。
(保護層(最表層)の形成)
ウレタンアクリレートUV6300B(三菱ケミカル株式会社)を100部、粒子に対し7質量%の3-メタクリロイルオキシプロピルトリメトキシシランで表面処理した酸化チタン粒子を55部(TTO55N、石原産業株式会社)、光重合開始剤として、ベンゾフェノンを1部、ジフェニル(2,4,6-トリメチルベンゾイル)フォスフィンオキサイドを2部、メタノール、1-プロパノール、トルエンの混合溶媒(メタノール 70質量%、1-プロパノール 10質量%、トルエン 20質量%)745部を混合し、保護層(最表層)用塗布液を作製した。この塗布液を、上記単層型感光層上に、硬化後の膜厚が1μmになるようにワイヤーバーで塗布し、115℃で20分加熱した。この塗膜の表面側から、波長385nmにピークを有するUV-LEDランプを搭載したUV光照射装置を用いて、積算光量25.5J/cm2となるようにUV光を照射した。さらに、125℃で10分間加熱した後、25℃まで放冷し、保護層(最表層)を形成した。
ウレタンアクリレートUV6300B(三菱ケミカル株式会社)を100部、粒子に対し7質量%の3-メタクリロイルオキシプロピルトリメトキシシランで表面処理した酸化チタン粒子を55部(TTO55N、石原産業株式会社)、光重合開始剤として、ベンゾフェノンを1部、ジフェニル(2,4,6-トリメチルベンゾイル)フォスフィンオキサイドを2部、メタノール、1-プロパノール、トルエンの混合溶媒(メタノール 70質量%、1-プロパノール 10質量%、トルエン 20質量%)745部を混合し、保護層(最表層)用塗布液を作製した。この塗布液を、上記単層型感光層上に、硬化後の膜厚が1μmになるようにワイヤーバーで塗布し、115℃で20分加熱した。この塗膜の表面側から、波長385nmにピークを有するUV-LEDランプを搭載したUV光照射装置を用いて、積算光量25.5J/cm2となるようにUV光を照射した。さらに、125℃で10分間加熱した後、25℃まで放冷し、保護層(最表層)を形成した。
[実施例2~5、比較例1~4]
単層型感光層に用いた正孔輸送物質および電子輸送物質とその含有量、また、保護層(最表層)に用いた連鎖重合性官能基を有する化合物を表1のとおりとした。用いた各化合物の構造を次に示した。これ以外の点は、実施例1と同様の手順により、実施例2~5および比較例1~4の感光体を作製した。
単層型感光層に用いた正孔輸送物質および電子輸送物質とその含有量、また、保護層(最表層)に用いた連鎖重合性官能基を有する化合物を表1のとおりとした。用いた各化合物の構造を次に示した。これ以外の点は、実施例1と同様の手順により、実施例2~5および比較例1~4の感光体を作製した。
<感光体表面のマルテンス硬さ・弾性変形率>
感光体表面のマルテンス硬さ、弾性変形率を、Fischer社製微小硬度計FISCHERSCOPEHM2000を用いて、温度25℃、相対湿度50%の環境下で測定した。測定には対面角136°のビッカース四角錐ダイヤモンド圧子を用いた。測定条件は以下の通りに設定して行い、圧子にかかる荷重とその荷重下における押し込み深さとを連続的に読み取り、それぞれY軸、X軸にプロットした図1に示すようなプロファイルを取得した。圧子に負荷をかけることで、図1中のAからBへ移行し、負荷を除くことで図1中のBからCへ移行する。結果を表1に示す。
・測定条件
最大押込み加重 0.2mN
負荷所要時間 10秒
除荷所要時間 10秒
感光体表面のマルテンス硬さ、弾性変形率を、Fischer社製微小硬度計FISCHERSCOPEHM2000を用いて、温度25℃、相対湿度50%の環境下で測定した。測定には対面角136°のビッカース四角錐ダイヤモンド圧子を用いた。測定条件は以下の通りに設定して行い、圧子にかかる荷重とその荷重下における押し込み深さとを連続的に読み取り、それぞれY軸、X軸にプロットした図1に示すようなプロファイルを取得した。圧子に負荷をかけることで、図1中のAからBへ移行し、負荷を除くことで図1中のBからCへ移行する。結果を表1に示す。
・測定条件
最大押込み加重 0.2mN
負荷所要時間 10秒
除荷所要時間 10秒
マルテンス硬さは、その時の押込み深さから以下の式により定義される値である。
マルテンス硬さ(N/mm2)=試験荷重(N)/試験荷重下でのビッカース圧子の表面積(mm2)
弾性変形率は下記式により定義される値であり、押し込みに要した全仕事量に対して、除荷の際に膜が弾性によって行う仕事の割合である。
弾性変形率(%)=(We/Wt)×100
マルテンス硬さ(N/mm2)=試験荷重(N)/試験荷重下でのビッカース圧子の表面積(mm2)
弾性変形率は下記式により定義される値であり、押し込みに要した全仕事量に対して、除荷の際に膜が弾性によって行う仕事の割合である。
弾性変形率(%)=(We/Wt)×100
上記式中、全仕事量Wt(nJ)は図1中のA-B-D-Aで囲まれる面積を示し、弾性変形仕事量We(nJ)はC-B-D-Cで囲まれる面積を示す。弾性変形率が大きいほど、負荷に対する変形が残留しにくく、弾性変形率が100の場合には変形が残らないことを意味する。
<接着性試験>
実施例及び比較例で作製した単層型感光体上に、NTカッター(エヌティー社製)を用いて、2mm間隔で縦に6本、横に6本切り込みを入れ、5×5の25マスを作製した。その上からセロハンテープ(3M社製)を密着して貼り付け、接着面に対し90゜に引き上げることで、感光層と保護層(最表層)の接着性を試験した。感光層上に残留した保護層(最表層)のマス数の割合(%)を残存率(%)として評価した。残存したマス数が多いほど残存率は高く、接着性は良好である。なお、いずれの試験においても、支持体であるアルミ板と感光層との間に剥離は見られず、剥離した場合はすべて感光層と保護層(最表層)との界面付近で剥離した。結果を表1に示す。
実施例及び比較例で作製した単層型感光体上に、NTカッター(エヌティー社製)を用いて、2mm間隔で縦に6本、横に6本切り込みを入れ、5×5の25マスを作製した。その上からセロハンテープ(3M社製)を密着して貼り付け、接着面に対し90゜に引き上げることで、感光層と保護層(最表層)の接着性を試験した。感光層上に残留した保護層(最表層)のマス数の割合(%)を残存率(%)として評価した。残存したマス数が多いほど残存率は高く、接着性は良好である。なお、いずれの試験においても、支持体であるアルミ板と感光層との間に剥離は見られず、剥離した場合はすべて感光層と保護層(最表層)との界面付近で剥離した。結果を表1に示す。
<測定結果>
比較例1,2は、接着性が顕著に低い結果であった。これは、比較例1,2で使用した正孔輸送物質(HTM)の分子量が小さいため、正孔輸送物質(HTM)が表層側に濃化して立体障害となり、最表面の硬化膜と感光層のバインダー樹脂との絡み合いが阻害されたことが原因であると考えられる。
他方、比較例3、4は、保護層(最表層)のマルテンス硬さ及び弾性変形率が顕著に低いものであり、硬化が十分に進んでいないことが確認された。これは、比較例3、4で使用した電子輸送物質(ETM)の分子量が小さいため、電子輸送物質(ETM)が保護層(最表層)側に濃化すると共に、さらに保護層(最表層)側に移行して、保護層(最表層)における硬化反応を阻害した結果であると考えられる。
比較例1,2は、接着性が顕著に低い結果であった。これは、比較例1,2で使用した正孔輸送物質(HTM)の分子量が小さいため、正孔輸送物質(HTM)が表層側に濃化して立体障害となり、最表面の硬化膜と感光層のバインダー樹脂との絡み合いが阻害されたことが原因であると考えられる。
他方、比較例3、4は、保護層(最表層)のマルテンス硬さ及び弾性変形率が顕著に低いものであり、硬化が十分に進んでいないことが確認された。これは、比較例3、4で使用した電子輸送物質(ETM)の分子量が小さいため、電子輸送物質(ETM)が保護層(最表層)側に濃化すると共に、さらに保護層(最表層)側に移行して、保護層(最表層)における硬化反応を阻害した結果であると考えられる。
これら比較例1~4に対して、実施例1~5は、マルテンス硬さが高く、弾性変形率が高く、かつ感光層と保護層(最表層)間の接着性に優れたものであった。これは、感光層中の正孔輸送物質(HTM)の分子量a及び電子輸送物質(ETM)の分子量bがいずれも所定範囲内であり、下記式(1)及び式(2)を満足するためであると考えられる。
600 ≦ a (1)
400 ≦ b (2)
(式(1)中、aは正孔輸送物質の分子量。式(2)中、bは電子輸送物質の分子量。)
600 ≦ a (1)
400 ≦ b (2)
(式(1)中、aは正孔輸送物質の分子量。式(2)中、bは電子輸送物質の分子量。)
よって、導電性支持体上に、少なくとも感光層と保護層(最表層)を有する電子写真感光体であって、前記保護層(最表層)が、連鎖重合性官能基を有する化合物を重合させてなる構造を含有し、前記保護層(最表層)に接する感光層が、上記式(1)を満たす正孔輸送物質および上記式(2)を満たす電子輸送物質を含有すれば、マルテンス硬さが高く、弾性変形率が高く、かつ感光層と保護層(最表層)間の接着性に優れた電子写真感光体とすることができると考えることができる。
また、上記実施例・比較例の結果、並びに、これまで本発明者が行ってきた試験結果から、感光層中に含有する正孔輸送物質の物質量(mol)と電子輸送物質の物質量(mol)の比が適切な範囲であるときに、正孔輸送物質の濃化と電子輸送物質の濃化とがバランスよく抑制されて、前記マルテンス硬さ、前記弾性変形率及び前記接着性がさらに良好になることが分かった。これは、感光層中に正孔輸送物質と電子輸送物質が両方含有されている場合、正孔輸送物質から電子輸送物質への電子移動が起こる結果、正電荷を帯びた正孔輸送物質と負電荷を帯びた電子輸送物質が電荷移動錯体を形成することが考えられる。電荷移動錯体を形成している正孔輸送物質と電子輸送物質の間には静電引力が働くため、双方の感光体表面への濃化を抑制する効果があるためであると考えられる。
1.20≦(B/b)/(A/a)≦1.60 (5)
(式(5)中、Aはバインダー樹脂の含有量100に対する正孔輸送物質の含有量(質量部)、aは正孔輸送物質の分子量、Bはバインダー樹脂の含有量100に対する電子輸送物質の含有量(質量部)、bは電子輸送物質の分子量)
1.20≦(B/b)/(A/a)≦1.60 (5)
(式(5)中、Aはバインダー樹脂の含有量100に対する正孔輸送物質の含有量(質量部)、aは正孔輸送物質の分子量、Bはバインダー樹脂の含有量100に対する電子輸送物質の含有量(質量部)、bは電子輸送物質の分子量)
よって、導電性支持体上に、少なくとも感光層と保護層(最表層)を有する電子写真感光体であって、前記保護層(最表層)が、連鎖重合性官能基を有する化合物を重合させてなる構造を含有し、前記保護層(最表層)に接する感光層が、少なくともバインダー樹脂、正孔輸送物質及び電子輸送物質を含有し、前記保護層(最表層)に接する感光層が、上記式(5)を満たせば、マルテンス硬さが高く、弾性変形率が高く、かつ感光層と保護層(最表層)間の接着性に優れた電子写真感光体とすることができると考えることができる。
さらに、上記実施例・比較例の結果、並びに、これまで本発明者が行ってきた試験結果から、感光層中に含有する電子輸送物質の分子量bに対する正孔輸送物質の分子量aの比率(a/b)が1.40以上1.90以下であるときに、正孔輸送物質の濃化と電子輸送物質の濃化とがバランスよく抑制されて、前記マルテンス硬さ、前記弾性変形率及び前記接着性がさらに良好になることが分かった。これは、a/bが1.40以上であれば、正孔輸送物質の感光層表面側への移行性が低くなり、それに伴って電子輸送物質が感光層表面側へ移行する動きも阻害されるため、電子輸送物質の感光層表面側への移行性も低くなり、一方でa/bが1.90以下であれば、電子輸送物質の感光層表面側への移行性が低くなり、それに伴って正孔輸送物質が感光層表面側へ移行する動きも阻害されるため、正孔輸送物質の感光層表面側への移行性も低くなることによると考えられる。
よって、導電性支持体上に、少なくとも感光層と保護層(最表層)を有する電子写真感光体であって、前記保護層(最表層)が、連鎖重合性官能基を有する化合物を重合させてなる構造を含有し、前記保護層(最表層)に接する感光層が、少なくとも正孔輸送物質及び電子輸送物質を含有し、前記電子輸送物質の分子量bに対する正孔輸送物質の分子量aの比率(a/b)が、1.40以上1.90以下を満たせば、マルテンス硬さが高く、弾性変形率が高く、かつ感光層と保護層(最表層)間の接着性に優れた電子写真感光体とすることができると考えることができる。
よって、導電性支持体上に、少なくとも感光層と保護層(最表層)を有する電子写真感光体であって、前記保護層(最表層)が、連鎖重合性官能基を有する化合物を重合させてなる構造を含有し、前記保護層(最表層)に接する感光層が、少なくとも正孔輸送物質及び電子輸送物質を含有し、前記電子輸送物質の分子量bに対する正孔輸送物質の分子量aの比率(a/b)が、1.40以上1.90以下を満たせば、マルテンス硬さが高く、弾性変形率が高く、かつ感光層と保護層(最表層)間の接着性に優れた電子写真感光体とすることができると考えることができる。
さらにこれまで本発明者が行ってきた試験結果、並びに、上記実施例・比較例の結果から、感光層と保護層(最表層)間の接着性をさらに高める観点から、正孔輸送物質は、窒素(N)原子に結合する少なくとも1つの芳香族基の少なくとも一方のオルト位に置換基を有する構造のものが好ましく、中でも、窒素(N)原子に結合する少なくとも1つの芳香族基の2つのオルト位にそれぞれ置換基を有する構造のものがさらに好ましいことが分かった。
例えば上記実施例をみると、実施例1、3でそれぞれ使用されている正孔輸送物質(HTM48、HTM42)は、窒素(N)原子に結合する芳香族基の1つのオルト位に置換基を有している。他方、実施例2、4でそれぞれ使用されている正孔輸送物質(HTM40、HTM43)は、窒素(N)原子に結合する1つの芳香族基の2つのオルト位に置換基を有しており、より一層接着性に優れた結果が示されている。これは、2つのオルト位に置換基を有する芳香族基は、N原子に結合する他の置換基との間の立体反発が強まるため、N原子とN原子に結合する他の置換基が形成する平面に対して回転した立体配置をとると考えられる。そして、回転した立体配置をとった芳香族基は、バインダー樹脂に対してアンカー効果を発揮するため、正孔輸送物質の感光層表面への濃化を抑制する効果があるためであると考えられる。
例えば上記実施例をみると、実施例1、3でそれぞれ使用されている正孔輸送物質(HTM48、HTM42)は、窒素(N)原子に結合する芳香族基の1つのオルト位に置換基を有している。他方、実施例2、4でそれぞれ使用されている正孔輸送物質(HTM40、HTM43)は、窒素(N)原子に結合する1つの芳香族基の2つのオルト位に置換基を有しており、より一層接着性に優れた結果が示されている。これは、2つのオルト位に置換基を有する芳香族基は、N原子に結合する他の置換基との間の立体反発が強まるため、N原子とN原子に結合する他の置換基が形成する平面に対して回転した立体配置をとると考えられる。そして、回転した立体配置をとった芳香族基は、バインダー樹脂に対してアンカー効果を発揮するため、正孔輸送物質の感光層表面への濃化を抑制する効果があるためであると考えられる。
なお、上記実施例の感光体はいずれも、正帯電単層型電子写真感光体であるが、前述のように、保護層(最表層)に接する感光層の構成を改善することにより、本発明の課題を解決することができるから、そのような構成を備えていれば、正帯電単層型電子写真感光体以外の感光体であっても、実施例と同様に当該課題を解決することができると理解することができる。
Claims (19)
- 導電性支持体上に、少なくとも感光層と保護層を有する電子写真感光体であって、
前記保護層が、連鎖重合性官能基を有する化合物を重合させてなる構造を含有し、
前記保護層に接する感光層が、下記式(1)を満たす正孔輸送物質および下記式(2)を満たす電子輸送物質を含有することを特徴とする電子写真感光体。
600 ≦ a (1)
400 ≦ b (2)
(式(1)中、aは正孔輸送物質の分子量。式(2)中、bは電子輸送物質の分子量。) - 導電性支持体上に、少なくとも感光層と最表層を有する電子写真感光体であって、
前記最表層が、連鎖重合性官能基を有する化合物を重合させてなる構造を含有し、
前記最表層に接する感光層が、下記式(1)を満たす正孔輸送物質および下記式(2)を満たす電子輸送物質を含有することを特徴とする電子写真感光体。
600 ≦ a (1)
400 ≦ b (2)
(式(1)中、aは正孔輸送物質の分子量。式(2)中、bは電子輸送物質の分子量。) - 前記最表層又は前記保護層に接する感光層が、少なくともバインダー樹脂、電荷発生物質、正孔輸送物質及び電子輸送物質を含有する単層であることを特徴とする、請求項1又は2に記載の電子写真感光体。
- 前記正孔輸送物質が下記式(1´)を満たすことを特徴とする、請求項1~3のいずれか1項に記載の電子写真感光体。
600 ≦ a ≦ 1200 (1´)
(式(1´)中、aは正孔輸送物質の分子量。) - 前記電子輸送物質が下記式(2´)を満たすことを特徴とする、請求項1~4のいずれか1項に記載の電子写真感光体。
400 ≦ b ≦ 1000 (2´)
(式(2´)中、bは電子輸送物質の分子量。) - 前記感光層が、下記式(3)を満たすことを特徴とする、請求項1~5のいずれか1項に記載の電子写真感光体。
0.15≦(A/a)+(B/b) (3)
(式(3)中、Aはバインダー樹脂の含有量100に対する正孔輸送物質の含有量(質量部)、aは正孔輸送物質の分子量、Bはバインダー樹脂の含有量100に対する電子輸送物質の含有量(質量部)、bは電子輸送物質の分子量。) - 前記感光層が、下記式(4)を満たすことを特徴とする、請求項1~6のいずれか1項に記載の電子写真感光体。
0.80≦ A/B ≦3.00 (4)
(式(4)中、Aはバインダー樹脂の含有量100に対する正孔輸送物質の含有量(質量部)、Bはバインダー樹脂の含有量100に対する電子輸送物質の含有量(質量部)。) - 前記感光層が、下記式(5)を満たすことを特徴とする、請求項1~7のいずれか1項に記載の電子写真感光体。
1.20≦(B/b)/(A/a)≦1.60 (5)
(式(5)中、Aはバインダー樹脂の含有量100に対する正孔輸送物質の含有量(質量部)、aは正孔輸送物質の分子量、Bはバインダー樹脂の含有量100に対する電子輸送物質の含有量(質量部)、bは電子輸送物質の分子量) - 前記電子輸送物質の分子量bに対する正孔輸送物質の分子量aの比率(a/b)が、1.40以上1.90以下であることを特徴とする、請求項1~8のいずれか1項に記載の電子写真感光体。
- 正帯電型であることを特徴とする、請求項1~9のいずれか1項に記載の電子写真感光体。
- 前記最表層又は前記保護層が、連鎖重合性官能基を有する化合物をラジカル重合させてなる構造を含有することを特徴とする、請求項1~10のいずれか1項に記載の電子写真感光体。
- 前記最表層又は前記保護層が、金属酸化物微粒子を含有することを特徴とする、請求項1~11のいずれか1項に記載の電子写真感光体。
- 前記金属酸化物微粒子が、重合性官能基を有する表面処理剤で表面処理されていることを特徴とする、請求項12に記載の電子写真感光体。
- 前記連鎖重合性官能基を有する化合物が、ウレタンアクリレートであることを特徴とする、請求項1~13のいずれか1項に記載の電子写真感光体。
- 導電性支持体上に、少なくとも感光層と保護層を有する電子写真感光体であって、
前記保護層が、連鎖重合性官能基を有する化合物を重合させてなる構造を含有し、
前記保護層に接する感光層が、少なくともバインダー樹脂、正孔輸送物質及び電子輸送物質を含有し、
前記保護層に接する感光層が、下記式(5)を満たすことを特徴とする電子写真感光体。
1.20≦(B/b)/(A/a)≦1.60 (5)
(式(5)中、Aはバインダー樹脂の含有量100に対する正孔輸送物質の含有量(質量部)、aは正孔輸送物質の分子量、Bはバインダー樹脂の含有量100に対する電子輸送物質の含有量(質量部)、bは電子輸送物質の分子量) - 導電性支持体上に、少なくとも感光層と保護層を有する電子写真感光体であって、
前記保護層が、連鎖重合性官能基を有する化合物を重合させてなる構造を含有し、
前記保護層に接する感光層が、少なくとも正孔輸送物質及び電子輸送物質を含有し、
前記電子輸送物質の分子量bに対する正孔輸送物質の分子量aの比率(a/b)が、1.40以上1.90以下であることを特徴とする電子写真感光体。 - 請求項1~17のいずれか1項に記載の電子写真感光体を有する電子写真感光体カートリッジ。
- 請求項1~17のいずれか1項に記載の電子写真感光体を有する画像形成装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202180071314.9A CN116368437A (zh) | 2020-10-20 | 2021-10-19 | 电子照相感光体、电子照相感光体盒及图像形成装置 |
JP2022557556A JPWO2022085677A1 (ja) | 2020-10-20 | 2021-10-19 | |
US18/135,815 US20230273535A1 (en) | 2020-10-20 | 2023-04-18 | Electrophotographic photoreceptor, electrophotographic photoreceptor cartridge, and image forming device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-176132 | 2020-10-20 | ||
JP2020176132 | 2020-10-20 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/135,815 Continuation US20230273535A1 (en) | 2020-10-20 | 2023-04-18 | Electrophotographic photoreceptor, electrophotographic photoreceptor cartridge, and image forming device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022085677A1 true WO2022085677A1 (ja) | 2022-04-28 |
Family
ID=81290611
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/038593 WO2022085677A1 (ja) | 2020-10-20 | 2021-10-19 | 電子写真感光体、電子写真感光体カートリッジ及び画像形成装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20230273535A1 (ja) |
JP (1) | JPWO2022085677A1 (ja) |
CN (1) | CN116368437A (ja) |
WO (1) | WO2022085677A1 (ja) |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10221874A (ja) * | 1997-02-05 | 1998-08-21 | Showa Denko Kk | 電子写真感光体 |
JP2007293247A (ja) * | 2006-03-29 | 2007-11-08 | Ricoh Co Ltd | 電子写真感光体、並びに画像形成方法、画像形成装置及びプロセスカートリッジ |
JP2011242574A (ja) * | 2010-05-18 | 2011-12-01 | Konica Minolta Business Technologies Inc | 有機感光体、画像形成装置及びプロセスカートリッジ |
JP2012098500A (ja) * | 2010-11-02 | 2012-05-24 | Konica Minolta Business Technologies Inc | 電子写真感光体 |
JP2012123238A (ja) * | 2010-12-09 | 2012-06-28 | Konica Minolta Business Technologies Inc | 電子写真感光体 |
JP2013041259A (ja) * | 2011-07-19 | 2013-02-28 | Ricoh Co Ltd | 電子写真感光体、画像形成方法、画像形成装置及びプロセスカートリッジ |
JP2015114647A (ja) * | 2013-12-16 | 2015-06-22 | コニカミノルタ株式会社 | 画像形成装置および画像形成方法 |
JP2015132640A (ja) * | 2014-01-09 | 2015-07-23 | 三星電子株式会社Samsung Electronics Co.,Ltd. | 有機感光体、電子写真装置、及びプロセスカート |
JP2017107004A (ja) * | 2015-12-08 | 2017-06-15 | サムスン エレクトロニクス カンパニー リミテッド | 電子写真感光体及び電子写真装置 |
WO2018198590A1 (ja) * | 2017-04-28 | 2018-11-01 | 京セラドキュメントソリューションズ株式会社 | 電子写真感光体、プロセスカートリッジ及び画像形成装置 |
JP2021021941A (ja) * | 2019-07-25 | 2021-02-18 | キヤノン株式会社 | プロセスカートリッジおよび電子写真装置 |
WO2021193678A1 (ja) * | 2020-03-25 | 2021-09-30 | 三菱ケミカル株式会社 | 電子写真感光体、電子写真感光体カートリッジ及び画像形成装置 |
-
2021
- 2021-10-19 WO PCT/JP2021/038593 patent/WO2022085677A1/ja active Application Filing
- 2021-10-19 CN CN202180071314.9A patent/CN116368437A/zh active Pending
- 2021-10-19 JP JP2022557556A patent/JPWO2022085677A1/ja active Pending
-
2023
- 2023-04-18 US US18/135,815 patent/US20230273535A1/en active Pending
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10221874A (ja) * | 1997-02-05 | 1998-08-21 | Showa Denko Kk | 電子写真感光体 |
JP2007293247A (ja) * | 2006-03-29 | 2007-11-08 | Ricoh Co Ltd | 電子写真感光体、並びに画像形成方法、画像形成装置及びプロセスカートリッジ |
JP2011242574A (ja) * | 2010-05-18 | 2011-12-01 | Konica Minolta Business Technologies Inc | 有機感光体、画像形成装置及びプロセスカートリッジ |
JP2012098500A (ja) * | 2010-11-02 | 2012-05-24 | Konica Minolta Business Technologies Inc | 電子写真感光体 |
JP2012123238A (ja) * | 2010-12-09 | 2012-06-28 | Konica Minolta Business Technologies Inc | 電子写真感光体 |
JP2013041259A (ja) * | 2011-07-19 | 2013-02-28 | Ricoh Co Ltd | 電子写真感光体、画像形成方法、画像形成装置及びプロセスカートリッジ |
JP2015114647A (ja) * | 2013-12-16 | 2015-06-22 | コニカミノルタ株式会社 | 画像形成装置および画像形成方法 |
JP2015132640A (ja) * | 2014-01-09 | 2015-07-23 | 三星電子株式会社Samsung Electronics Co.,Ltd. | 有機感光体、電子写真装置、及びプロセスカート |
JP2017107004A (ja) * | 2015-12-08 | 2017-06-15 | サムスン エレクトロニクス カンパニー リミテッド | 電子写真感光体及び電子写真装置 |
WO2018198590A1 (ja) * | 2017-04-28 | 2018-11-01 | 京セラドキュメントソリューションズ株式会社 | 電子写真感光体、プロセスカートリッジ及び画像形成装置 |
JP2021021941A (ja) * | 2019-07-25 | 2021-02-18 | キヤノン株式会社 | プロセスカートリッジおよび電子写真装置 |
WO2021193678A1 (ja) * | 2020-03-25 | 2021-09-30 | 三菱ケミカル株式会社 | 電子写真感光体、電子写真感光体カートリッジ及び画像形成装置 |
Also Published As
Publication number | Publication date |
---|---|
US20230273535A1 (en) | 2023-08-31 |
JPWO2022085677A1 (ja) | 2022-04-28 |
CN116368437A (zh) | 2023-06-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10670979B2 (en) | Electrophotographic photosensitive member, electrophotographic apparatus, process cartridge, and method of manufacturing electrophotographic photosensitive member | |
US10310395B2 (en) | Electrophotographic photosensitive member, electrophotographic apparatus, and process cartridge | |
JP7034829B2 (ja) | 電子写真感光体、その製造方法、プロセスカートリッジおよび電子写真画像形成装置 | |
EP2600200B1 (en) | Electrophotographic photosensitive member, method of producing electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus | |
JP2010009043A (ja) | オーバーコート層に使用するマイクロカプセルを処理する方法および画像形成部材 | |
EP2733537B1 (en) | Electrophotographic photosensitive member, method for producing electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus | |
JP2020201467A (ja) | 電子写真感光体、プロセスカートリッジおよび電子写真装置 | |
JP6983543B2 (ja) | 電子写真感光体、プロセスカートリッジおよび電子写真装置 | |
WO2021193678A1 (ja) | 電子写真感光体、電子写真感光体カートリッジ及び画像形成装置 | |
US20230296995A1 (en) | Electrophotographic photoreceptor, electrophotographic photoreceptor cartridge, and image forming device | |
WO2022085677A1 (ja) | 電子写真感光体、電子写真感光体カートリッジ及び画像形成装置 | |
WO2022260157A1 (ja) | 電子写真感光体、電子写真感光体カートリッジ及び画像形成装置 | |
JP3777184B2 (ja) | 電子写真用の正帯電型有機感光体、電子写真カートリッジ、電子写真ドラム、電子写真式画像形成装置、画像形成方法 | |
WO2020218259A1 (ja) | 電子写真感光体及びその製造方法、電子写真感光体カートリッジ並びに画像形成装置 | |
WO2022210315A1 (ja) | 電子写真感光体、電子写真感光体カートリッジ及び画像形成装置 | |
JP2022154942A (ja) | 電子写真感光体、電子写真感光体カートリッジ及び画像形成装置 | |
EP2600196B1 (en) | Electrophotographic photosensitive member, method of producing electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus | |
JP6821441B2 (ja) | フッ素原子含有樹脂粒子の分散液、および電子写真感光体の製造方法 | |
WO2021201007A1 (ja) | 電子写真感光体、電子写真感光体カートリッジ及び画像形成装置 | |
WO2024204543A1 (ja) | 電子写真感光体、電子写真感光体カートリッジ及び画像形成装置 | |
WO2024204542A1 (ja) | 電子写真感光体、電子写真感光体カートリッジ及び画像形成装置 | |
JP2022188852A (ja) | 電子写真感光体、電子写真感光体カートリッジ及び画像形成装置 | |
WO2022085728A1 (ja) | 電子写真感光体、これを用いたカートリッジ及び画像形成装置 | |
WO2023095834A1 (ja) | 電子写真感光体、電子写真感光体カートリッジ及び画像形成装置 | |
JPH05323632A (ja) | 電子写真感光体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21882818 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022557556 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21882818 Country of ref document: EP Kind code of ref document: A1 |