WO2022085584A1 - Polyamide resin composition, molded body formed from same, and component for in-vehicle cameras - Google Patents
Polyamide resin composition, molded body formed from same, and component for in-vehicle cameras Download PDFInfo
- Publication number
- WO2022085584A1 WO2022085584A1 PCT/JP2021/038212 JP2021038212W WO2022085584A1 WO 2022085584 A1 WO2022085584 A1 WO 2022085584A1 JP 2021038212 W JP2021038212 W JP 2021038212W WO 2022085584 A1 WO2022085584 A1 WO 2022085584A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- resin composition
- filler
- polyamide resin
- mass
- polyamide
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G69/00—Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
- C08G69/02—Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
- C08G69/26—Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K13/00—Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
- C08K13/04—Ingredients characterised by their shape and organic or inorganic ingredients
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/01—Use of inorganic substances as compounding ingredients characterized by their specific function
- C08K3/013—Fillers, pigments or reinforcing additives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K7/00—Use of ingredients characterised by shape
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K7/00—Use of ingredients characterised by shape
- C08K7/02—Fibres or whiskers
- C08K7/04—Fibres or whiskers inorganic
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K7/00—Use of ingredients characterised by shape
- C08K7/02—Fibres or whiskers
- C08K7/04—Fibres or whiskers inorganic
- C08K7/06—Elements
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K7/00—Use of ingredients characterised by shape
- C08K7/02—Fibres or whiskers
- C08K7/04—Fibres or whiskers inorganic
- C08K7/14—Glass
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L71/00—Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
- C08L71/08—Polyethers derived from hydroxy compounds or from their metallic derivatives
- C08L71/10—Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
- C08L71/12—Polyphenylene oxides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L77/00—Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
- C08L77/06—Polyamides derived from polyamines and polycarboxylic acids
Definitions
- the present invention relates to a polyamide resin composition, a molded product made of the polyamide resin composition, and parts for an in-vehicle camera.
- the camera housing is a case part that houses the structural parts of the camera equipment.
- the camera barrel is a holder component that exists inside the camera housing and holds the lens for the camera. All parts are required to have excellent mechanical properties in order to protect and hold the camera and lens. Further, all the parts are required to have excellent dimensional stability so that the assembled lens is not distorted even when exposed to a high temperature.
- Patent Document 1 a plate-shaped filler is contained in a polyamide resin in an amount of 0.002 to 0.5% by mass based on the entire polyamide resin composition, so that a molded product obtained can be obtained in a flow direction of the resin at the time of molding. It is disclosed that the coefficient of linear expansion of (MD) becomes smaller.
- the polyamide resin composition described in Patent Document 1 uses polyamide 66, the obtained molded product is insufficiently improved in dimensional stability, and in particular, the flow direction (MD) of the resin during molding is insufficient. There is a problem that the linear expansion coefficient in the direction orthogonal to (TD) is large. In a molded body used for an in-vehicle camera component or the like, not only the flow direction (MD) of the resin at the time of molding but also the linear expansion coefficient in the orthogonal direction (TD) is required to be small.
- the present invention provides a polyamide resin composition capable of obtaining a molded product having excellent mechanical properties and excellent dimensional stability in both the flow direction (MD) and the orthogonal direction (TD). The purpose is.
- the present inventors have found that the above object can be achieved by blending a specific amount of a filler with a semi-aromatic polyamide, and have reached the present invention.
- the injection-molded article is characterized by having a linear expansion coefficient of 70 ⁇ 10-6 (1 / ° C.) or less at 80 ° C. in a direction orthogonal to the flow direction of the resin during injection molding.
- the length of burrs generated at the position corresponding to the gas vent portion of the mold during injection molding is preferably 150 ⁇ m or less.
- the filler (B) is composed of a plate-shaped filler and a fibrous filler.
- the mass ratio of the plate-like filler to the fibrous filler is preferably 50/50 to 90/10.
- the plate-shaped filler is glass flakes and the fibrous filler is glass fiber.
- the plate-shaped filler is glass flakes and the fibrous filler is carbon fiber.
- the molded product of the present invention is a molded product of the above-mentioned polyamide resin composition.
- the in-vehicle camera component of the present invention is made of the above-mentioned molded body.
- a polyamide resin composition capable of obtaining a molded product having excellent mechanical properties and excellent dimensional stability in both the flow direction (MD) and the orthogonal direction (TD) can be obtained. Can be provided.
- the polyamide resin composition of the present invention contains a semi-aromatic polyamide (A) and a filler (B).
- the semi-aromatic polyamide (A) used in the present invention is composed of an aromatic dicarboxylic acid component and an aliphatic diamine component.
- the aromatic dicarboxylic acid component preferably contains terephthalic acid as a main component.
- "containing terephthalic acid as a main component” means that the aromatic dicarboxylic acid component contains 90 mol% or more of terephthalic acid.
- the content of terephthalic acid in the aromatic dicarboxylic acid component is preferably 95 mol% or more, more preferably 100 mol%. If the aromatic dicarboxylic acid component does not contain terephthalic acid as a main component, the obtained molded product may have poor dimensional stability.
- the aromatic dicarboxylic acid component may contain an aromatic dicarboxylic acid other than terephthalic acid.
- aromatic dicarboxylic acids include isophthalic acid and naphthalenedicarboxylic acid.
- the aliphatic diamine component preferably contains an aliphatic diamine having 8 or more carbon atoms as a main component.
- "mainly composed of an aliphatic diamine having 8 or more carbon atoms” means that the aliphatic diamine component contains 90 mol% or more of the aliphatic diamine having 8 or more carbon atoms.
- the content of the aliphatic diamine having 8 or more carbon atoms in the aliphatic diamine component is preferably 95 mol% or more, more preferably 100 mol%. If the aliphatic diamine component does not contain an aliphatic diamine having 8 or more carbon atoms as a main component, the semi-aromatic polyamide (A) may have reduced processability.
- Examples of the aliphatic diamine having 8 or more carbon atoms include 1,8-octanediamine, 1,9-nonanediamine, 2-methyl-1,8-octanediamine, 1,10-decanediamine, and 1,12-undecanediamine.
- the semi-aromatic polyamide (A) is more preferable because it has an excellent balance between heat resistance and processability and suppresses water absorption and moisture permeability.
- the aliphatic diamine component may contain an aliphatic diamine other than the aliphatic diamine having 8 or more carbon atoms.
- examples of other aliphatic diamines include 1,2-ethanediamine, 1,3-propanediamine, 1,4-butanediamine, 1,5-pentanediamine, 2-methyl-1,5-pentanediamine, and 1 , 6-Hexanediamine, 1,7-heptanediamine and the like.
- the semi-aromatic polyamide (A) may contain a dicarboxylic acid other than the aromatic dicarboxylic acid; a diamine other than the aliphatic diamine; lactams; ⁇ -aminocarboxylic acid as long as the effect of the present invention is not impaired.
- the dicarboxylic acid other than the aromatic dicarboxylic acid include fats such as oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid and dodecanedioic acid.
- Group dicarboxylic acids examples thereof include alicyclic dicarboxylic acids such as 1,4-cyclohexanedicarboxylic acid.
- diamines other than aliphatic diamines include alicyclic diamines such as 1,4-cyclohexanediamine; and aromatic diamines such as m-xylylenediamine and paraxylylenediamine.
- lactams include caprolactam and laurolactam.
- Examples of the ⁇ -aminocarboxylic acid include aminocaproic acid and 11-aminoundecanoic acid.
- the semi-aromatic polyamide (A) may contain a monocarboxylic acid component in addition to the dicarboxylic acid component and the diamine component.
- a monocarboxylic acid component examples include aliphatic monocarboxylic acids such as stearate, octanoic acid, nonanoic acid, decanoic acid, lauric acid, myristic acid, palmitic acid, and behenic acid; 4-ethylcyclohexanecarboxylic acid, 4-to.
- Alicyclic monocarboxylic acids such as xylcyclohexanecarboxylic acid and 4-laurylcyclohexanecarboxylic acid; 4-ethylbenzoic acid, 4-hexylbenzoic acid, 4-laurylbenzoic acid, alkylbenzoic acids, 1-naphthoic acid, 2- Examples include aromatic monocarboxylic acids such as naphthoic acid.
- a molcarboxylic acid having a molecular weight of 140 or more is preferable because the molding processability of the semi-aromatic polyamide (A) is improved, and stearic acid is more preferable because of its high versatility.
- the molecular weight of the monocarboxylic acid is the molecular weight of the raw material monocarboxylic acid used in the polymerization.
- the content of the monocarboxylic acid component is preferably 0.3 to 5.0 mol%, preferably 0.6 to 4.0 mol%, based on all the monomers constituting the semi-aromatic polyamide. More preferably, it is more preferably 1.0 to 3.5 mol%.
- the semi-aromatic polyamide (A) has improved molding processability without significantly reducing the molecular weight.
- the semi-aromatic polyamide (A) can be produced by using a conventionally known method of heat polymerization method or solution polymerization method.
- the heat polymerization method is preferably used because it is industrially advantageous.
- the heat polymerization method include a method including a step (i) of obtaining a reaction product from a dicarboxylic acid component and a diamine component, and a step (ii) of polymerizing the obtained reaction product.
- the dicarboxylic acid powder is preheated to a temperature equal to or higher than the melting point of the diamine and lower than the melting point of the dicarboxylic acid, and the dicarboxylic acid powder at this temperature is kept in the state of the powdered dicarboxylic acid.
- a method of adding a diamine without substantially containing water can be mentioned.
- a suspension consisting of a molten diamine and a solid dicarboxylic acid is stirred and mixed to obtain a mixed solution, and then at a temperature below the melting point of the semi-aromatic polyamide finally produced.
- a method of obtaining a mixture of a salt and a low polymer by carrying out a reaction of producing a salt by a reaction of a dicarboxylic acid and a diamine and a reaction of forming a low polymer by polymerizing the produced salt.
- crushing may be carried out while allowing the reaction, or crushing may be carried out after taking out the reaction once after the reaction.
- the former is preferable because the shape of the reaction product can be easily controlled.
- the reaction product obtained in the step (i) is solid-phase polymerized at a temperature lower than the melting point of the finally produced semi-aromatic polyamide to increase the molecular weight to a predetermined molecular weight.
- the solid phase polymerization is preferably carried out at a polymerization temperature of 180 to 270 ° C. and a reaction time of 0.5 to 10 hours in a stream of an inert gas such as nitrogen.
- the reaction apparatus for the step (i) and the step (ii) is not particularly limited, and a known apparatus may be used.
- the step (i) and the step (ii) may be performed by the same device or may be performed by different devices.
- the heating method in the heat polymerization method is not particularly limited, but for example, a method of heating the reaction vessel with a medium such as water, steam, or a heat medium oil, a method of heating the reaction vessel with an electric heater, or stirring heat generated by stirring.
- a method of utilizing the frictional heat associated with the movement of the equal contents can be mentioned. Moreover, you may combine these methods.
- a polymerization catalyst may be used in order to increase the efficiency of polymerization.
- the polymerization catalyst include phosphoric acid, phosphorous acid, hypophosphorous acid or salts thereof.
- the amount of the polymerization catalyst added is usually preferably 2 mol% or less with respect to all the monomers constituting the semi-aromatic polyamide (A).
- the filler (B) used in the present invention may be made of an organic compound or an inorganic compound.
- Examples of the form of the filler (B) include plate-like, fibrous, granular, and amorphous, and among them, plate-like, fibrous, and granular are preferable because a molded product having excellent dimensional stability can be obtained. ..
- the filler (B) may be used alone or in combination of two or more.
- the content of the filler (B) needs to be 70 to 250 parts by mass with respect to 100 parts by mass of the semi-aromatic polyamide (A), and 80 to 200 parts by mass. It is preferably present, and more preferably 90 to 150 parts by mass.
- the content of the filler (B) in the resin composition is 70 to 250 parts by mass, the obtained molded product can suppress shrinkage due to a temperature change of the semi-aromatic polyamide, so that the coefficient of linear expansion can be reduced. Further, it is possible to suppress burrs generated at the positions corresponding to the gas vent portion of the mold.
- the obtained molded product has a large linear expansion coefficient, while when the content of the filler (B) exceeds 250 parts by mass, the fragrance is fragrant. It may be difficult to melt-knead with the group polyamide resin, and it may not be possible to produce pellets of the resin composition.
- Examples of the plate-shaped filler include glass flakes, talc, mica, and scaly graphite.
- examples of mica include muscovite, phlogopite fluorine, and phlogopite four silicon. Among them, glass flakes and mica are preferable because of their high versatility.
- the fibrous filler examples include carbon fiber, glass fiber, silica fiber, silica / alumina fiber, zirconia fiber, alumina fiber, silicon carbide fiber, metal fiber (stainless fiber, aluminum oxide fiber, etc.), ceramic fiber, and boron whisker. , Zinc oxide whisker, asbestos, wallastnite, potassium titanate whisker, calcium carbonate whisker, aluminum borate whisker, magnesium sulfate whisker, acicular titanium oxide, sepiolite, zonotrite, milled fiber, cut fiber. Among them, glass fiber and wallastnite are preferable because of their high versatility.
- the surface of the fibrous filler is preferably surface-treated with an aminosilane-based coupling agent or an epoxy resin in order to enhance the dispersibility in the semi-aromatic polyamide (A), and above all, the mechanical properties and the epoxy resin.
- an aminosilane-based coupling agent or an epoxy resin in order to enhance the dispersibility in the semi-aromatic polyamide (A), and above all, the mechanical properties and the epoxy resin.
- the surface is treated with an aminosilane-based coupling agent.
- Examples of the granular filler include alumina, titanium oxide, boron nitride, silicon carbide, and calcium carbonate. Of these, calcium carbonate is preferable because of its high versatility.
- the filler (B) is preferably composed of a plate-shaped filler and a fibrous filler.
- the mass ratio of the plate-like filler to the fibrous filler is preferably 50/50 to 90/10, preferably 55/45 to 85/15. More preferred.
- the mass ratio is 50/50 to 90/10, the obtained molded product can further reduce the coefficient of linear expansion and improve the mechanical properties.
- the filler (B) is composed of a plate-shaped filler and a fibrous filler, it is a flow direction (MD) that glass flakes are used as the plate-shaped filler and glass fibers or carbon fibers are used as the fibrous filler.
- the content of the carbon fibers is preferably less than 100 parts by mass with respect to 100 parts by mass of the semi-aromatic polyamide (A).
- the content of carbon fibers in the polyamide resin composition is 100 parts by mass or more, pellets may not be obtained.
- the polyamide resin composition of the present invention preferably further contains polyphenylene ether (C).
- the resin composition contains the polyphenylene ether (C)
- the obtained molded product can further shorten the burr length generated at the position corresponding to the gas vent portion of the mold during injection molding, and is permeable to water vapor. The amount can also be reduced.
- the polyamide resin composition of the present invention contains polyphenylene ether (C)
- the content thereof is preferably 20 to 110 parts by mass, preferably 25 to 110 parts by mass with respect to 100 parts by mass of the semi-aromatic polyamide (A). More preferably, it is 100 parts by mass.
- Examples of commercially available products of polyphenylene ether (C) include Noril PPO640 (manufactured by SABIC) and Upiece PX-100F (manufactured by Mitsubishi Engineering Plastics).
- the polyamide resin composition of the present invention is a filler other than the filler (B), an ultraviolet absorber, a light stabilizer, a heat stabilizer, an antioxidant, and a mold release agent, as long as the effects of the present invention are not impaired.
- Additives such as lubricants, colorants, antioxidants, crystal nucleating agents, and other thermoplastic resins such as amorphous polyamides other than semi-aromatic polyamides (A) and polyphenylene ethers (C). May be good.
- the content thereof is preferably 2% by mass or less of the polyamide resin composition.
- the other thermoplastic resin is contained, the content thereof is preferably 50% by mass or less of the polyamide resin composition.
- the bending strength of the obtained molded product can be 100 MPa or more, preferably 120 MPa or more, and more preferably 140 MPa or more.
- the flexural modulus can be 10 GPa or more, preferably 12 GPa or more.
- the injection molded product obtained from the polyamide resin composition of the present invention is excellent in dimensional stability in both the flow direction (MD) and the orthogonal direction (TD) of the resin during injection molding. Therefore, the coefficient of linear expansion at 80 ° C. in either the MD or TD direction can be 70 ⁇ 10-6 (1 / ° C.) or less, preferably 60 ⁇ 10-6 (1 / ° C.) or less. It can be more preferably 45 ⁇ 10 -6 (1 / ° C.) or less. The coefficient of linear expansion of 70 ⁇ 10 -6 (1 / ° C.) or less at 80 ° C.
- the resin composition constituting the molded product has glass flakes or glass flakes.
- This can be achieved by containing a plate-shaped filler such as mica, a granular filler, or a plate-shaped filler and a fibrous filler in a specific mass ratio.
- the burr length generated at the position corresponding to the gas vent portion of the mold during injection molding can be 180 ⁇ m or less, preferably 150 ⁇ m or less. It can be more preferably 135 ⁇ m or less. Generally, if burrs are generated during molding, the production efficiency is lowered, so that the length of the burrs is preferably short.
- the polyamide resin composition of the present invention is also excellent in low water absorption and low moisture permeability.
- Water absorption and moisture permeability greatly affect dimensional stability, and in general, the lower the water absorption and moisture permeability, the better the dimensional stability. Further, when used as an in-vehicle camera component material, the lower the water absorption and moisture permeability, the more the lens fogging can be suppressed.
- the permeated water vapor amount of the plate-shaped molded product obtained by molding the resin composition to a thickness of 1 mm in an atmosphere of 65 ° C. can be 150 mg or less, preferably 130 mg or less, more preferably. Can be 120 mg or less.
- the method for producing the resin composition by blending each component constituting the resin composition is not particularly limited, but it is preferably produced by the melt-kneading method.
- the melt-kneading method include a method using a batch type kneader such as lavender, a Banbury mixer, a Henschel mixer, a helical rotor, a roll, a single-screw extruder, a twin-screw extruder and the like.
- the melt-kneading temperature is selected from the region where the semi-aromatic polyamide (A) does not melt and decompose, and is usually (Tm-20 ° C.) to (Tm + 50 ° C.) with the melting point of the semi-aromatic polyamide (A) as Tm. Is preferable.
- a method for processing the polyamide resin composition of the present invention for example, a method of extruding a molten mixture into a strand shape into a pellet shape; a method of hot-cutting or underwater cutting the molten mixture into a pellet shape; Method; A method of extruding into a block shape and crushing into a powder shape can be mentioned.
- Examples of the method for molding the polyamide resin composition of the present invention include an injection molding method, an extrusion molding method, a blow molding method, and a sintering molding method, which have a large effect of improving mechanical properties and moldability.
- the molding method is preferable.
- the injection molding machine is not particularly limited, and examples thereof include a screw in-line type injection molding machine and a plunger type injection molding machine.
- the polyamide resin composition heated and melted in the cylinder of the injection molding machine is weighed for each shot, injected into the mold in a molten state, cooled and solidified in a predetermined shape, and then from the mold as a molded body. Taken out.
- the resin temperature at the time of injection molding is preferably Tm or more, more preferably less than (Tm + 50 ° C.), with the melting point of the semi-aromatic polyamide (A) as Tm. It is preferable that the polyamide resin composition pellets used when the polyamide resin composition is heated and melted are sufficiently dried. If the amount of water contained in the polyamide resin composition pellets is large, the resin may foam in the cylinder of the injection molding machine, making it difficult to obtain an optimum molded product.
- the water content of the polyamide resin composition pellets used for injection molding is preferably less than 0.3 parts by mass and more preferably less than 0.1 parts by mass with respect to 100 parts by mass of the polyamide resin composition.
- the molded product obtained from the polyamide resin composition of the present invention has excellent mechanical properties and is also excellent in dimensional stability in both the flow direction (MD) and the orthogonal direction (TD), and thus is an in-vehicle camera. It can be suitably used for parts, and above all, it can be more preferably used for a lens barrel or a housing. In addition, it can also be used for electrical and electronic connectors, switches, aluminum electrolytic capacitor terminal blocks, actuator parts, LED reflectors, sensors, sockets, jacks, fuse holders, relays, coil bobbins, resistors, ICs, LED housings, etc. ..
- Measurement method (1) Melt point of semi-aromatic polyamide (A) Shave a pellet of semi-aromatic polyamide (A) that has been sufficiently dried, and use 10 mg of the shavings with a differential scanning calorimeter DSC-7 manufactured by PerkinElmer. The measurement was performed under the following conditions under a nitrogen atmosphere.
- a prismatic test piece (length 10 mm ⁇ width) so that the length direction of the test piece is the resin flow direction (MD) from the central portion of the dumbbell piece obtained in (3) above.
- a prismatic test piece (length 10 mm x width 5 mm x) is cut out so that the length direction of the test piece is orthogonal to the resin flow direction (MD) (TD). (Thickness 4 mm) was cut out. The measurement was performed under the following conditions under a nitrogen atmosphere using a thermomechanical analyzer (“TMA Q400” manufactured by TA Instruments).
- a disk-shaped test piece having a diameter of 60 mm and a thickness of 3 mm was produced under the condition of a mold temperature (Tm-190 ° C.).
- a mold having a gas vent having a thickness of 50 ⁇ m at the end of the flow was used.
- the length of the burr generated at the position corresponding to the gas vent portion of the mold of the obtained disc-shaped test piece was measured using a microscope.
- Dicarboxylic acid component ⁇ TPA Terephthalic acid
- Diamine component ⁇ DDA 1,10-decanediamine
- NDA 1,9-nonandiamine
- MODEA 2-methyl-1,8-octanediamine
- Mono Carboxylic acid component ⁇ STA Steric acid
- Polymerization catalyst ⁇ SHP Sodium hypophosphate monohydrate
- Step (i) 4560 parts by mass of TPA powder as a dicarboxylic component, 9 parts by mass of SHP as a polymerization catalyst, and 490 parts by mass of STA as a terminal sealant are placed in a ribbon blender type reactor, and the number of revolutions is increased using a double helical type stirring blade under nitrogen sealing. The mixture was heated to 170 ° C. with stirring at 30 rpm. Then, while keeping the temperature at 170 ° C. and the rotation speed at 30 rpm, the DDA 4950 parts by mass heated to 100 ° C. was heated to 100 ° C. at a rate of 33 parts by mass / minute for 2.5 hours.
- Step (ii) The reactant obtained in step (i) was subsequently heated to 230 ° C. under a nitrogen stream in the ribbon blender type reactor used in step (i) and heated at 230 ° C. for 5 hours for polymerization. Polyamide 10T was obtained. The obtained polyamide 10T had a melting point of 317 ° C. and a relative viscosity of 2.25.
- the obtained polyamide 9T had a melting point of 300 ° C. and a relative viscosity of 2.31.
- Example 1 100 parts by mass of semi-aromatic polyamide (polyamide 10T) is supplied to the main supply port of a twin-screw extruder (TEM37BS manufactured by Toshiba Machine Co., Ltd.) having a screw diameter of 37 mm and L / D40, and a plate-like filler (plate-like filler) is supplied from a side feeder. Glass flakes A) 100 parts by mass were supplied and melt-kneaded. The cylinder temperature was (melting point of polyamide 10T + 10 ° C.), screw rotation speed was 250 rpm, and discharge rate was 35 kg / hour. Then, after taking it into a strand shape, it was cooled and solidified by passing it through a water tank, and it was cut with a pelletizer to obtain a polyamide resin composition pellet.
- TEM37BS manufactured by Toshiba Machine Co., Ltd.
- Comparative Examples 1 to 8 The same operation as in Example 1 was carried out except that the composition of the resin composition was changed as shown in Tables 1 and 2, to obtain polyamide resin composition pellets. In Comparative Example 7, pellets could not be obtained because the content of the filler was high.
- Example 18 A mixture was obtained by dry blending 100 parts by mass of a semi-aromatic polyamide (polyamide 10T) and 25 parts by mass of polyphenylene ether.
- the above mixture is supplied to the main supply port of a twin-screw extruder (TEM37BS manufactured by Toshiba Machine Co., Ltd.) having a screw diameter of 37 mm and L / D40, and 125 parts by mass of a plate-shaped filler (glass flake A) is supplied from a side feeder. Then, melt kneading was performed.
- the cylinder temperature was (melting point of polyamide 10T + 10 ° C.), screw rotation speed was 250 rpm, and discharge rate was 35 kg / hour.
- After taking it into a strand shape it was cooled and solidified by passing it through a water tank, and it was cut with a pelletizer to obtain a polyamide resin composition pellet.
- Examples 19-29, Comparative Example 9 The same operation as in Example 18 was carried out except that the resin composition was changed as shown in Table 1, to obtain polyamide resin composition pellets.
- Tables 1 and 2 show the resin composition of the polyamide resin compositions obtained in Examples and Comparative Examples and their characteristic values.
- the polyamide resin compositions of Examples 1 to 41 had a bending strength of 100 MPa or more, a flexural modulus of 10 GPa or more, and were excellent in mechanical properties. Further, the obtained molded product has a linear expansion coefficient of 70 ⁇ 10-6 (1 / ° C.) or less at 80 ° C. in either the flow direction (MD) or the orthogonal direction (TD), and is excellent in dimensional stability. Was there. Further, the burr length was 150 ⁇ m or less, and the moldability was excellent. In addition, the amount of water vapor permeation was 150 mg or less, and it was excellent in low moisture permeability.
- the filler can be used as a filler. Even if the content is the same, when the plate-shaped filler and the fibrous filler are used together, the obtained molded product is dimensionally stable in both the flow direction (MD) and the orthogonal direction (TD). It can be seen that the sex is improved.
- Examples 1, 2, 4, 5, 11, 13 to 17 with Examples 18 to 27 when a part of the polyamide 10T is changed to polyphenylene ether, the bending strength is increased and the mechanical properties are improved. It can be seen that the coefficient of linear expansion is lowered and the dimensional stability is improved.
- the polyamide resin compositions of Comparative Examples 1 to 3 and 6 had a low bending strength because the content of the filler was small, the molded product had a high coefficient of linear expansion, and the burr length was long. Since the polyamide resin compositions of Comparative Examples 4 to 5 used only the fibrous filler, the molded product had a high coefficient of linear expansion of TD and a long burr length. In the polyamide resin compositions of Comparative Examples 8 and 9, the mass ratio of the plate-like filler to the fibrous filler was not in the preferable range, so that the molded product had a high coefficient of linear expansion of TD.
- Test piece 2 Packing 3 Test jig 4 Test liquid
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
A polyamide resin composition which contains 100 parts by mass of (A) a semiaromatic polyamide and from 70 parts by mass to 250 parts by mass of (B) a filler, and which is characterized in that the linear expansion coefficient of an injection molded body thereof is 70 × 10-6 (1/°C) or less at 80°C in a direction that is perpendicular to the flowing direction of the resin during the injection molding.
Description
本発明は、ポリアミド樹脂組成物およびそれからなる成形体、車載カメラ用部品に関するものである。
The present invention relates to a polyamide resin composition, a molded product made of the polyamide resin composition, and parts for an in-vehicle camera.
近年、車両は、走行安全性を高めるために、車載カメラを設置することが多くなっている。車載カメラの構成部品のうち、カメラ筐体とカメラ鏡筒には主に樹脂材料が用いられている。カメラ筐体は、カメラ機器の構造部品を収納するケース部品である。また、カメラ鏡筒は、カメラ筐体の中に存在し、カメラ用のレンズを保持するホルダー部品である。いずれの部品も、カメラやレンズの保護や保持のため、機械特性に優れることが求められている。また、いずれの部品も、高い温度に晒された場合であっても、組み付けたレンズが歪まないように、寸法安定性に優れていることが求められている。
In recent years, vehicles are often equipped with in-vehicle cameras in order to improve driving safety. Of the components of the in-vehicle camera, resin materials are mainly used for the camera housing and the camera barrel. The camera housing is a case part that houses the structural parts of the camera equipment. The camera barrel is a holder component that exists inside the camera housing and holds the lens for the camera. All parts are required to have excellent mechanical properties in order to protect and hold the camera and lens. Further, all the parts are required to have excellent dimensional stability so that the assembled lens is not distorted even when exposed to a high temperature.
特許文献1には、ポリアミド樹脂に、板状フィラーを、ポリアミド樹脂組成物全体に対して0.002~0.5質量%含有することによって、得られる成形体は、成形時の樹脂の流動方向(MD)の線膨張係数が小さくなることが開示されている。
In Patent Document 1, a plate-shaped filler is contained in a polyamide resin in an amount of 0.002 to 0.5% by mass based on the entire polyamide resin composition, so that a molded product obtained can be obtained in a flow direction of the resin at the time of molding. It is disclosed that the coefficient of linear expansion of (MD) becomes smaller.
しかしながら、特許文献1に記載のポリアミド樹脂組成物は、ポリアミド66を用いているため、得られる成形体は、寸法安定性の向上が不十分で、特に、成形時の樹脂の流動方向(MD)と直交する方向(TD)の線膨張係数が大きいという問題があった。
車載用カメラ部品等に用いる成形体においては、成形時の樹脂の流動方向(MD)だけでなく、直交方向(TD)の線膨張係数も小さいことが求められている。 However, since the polyamide resin composition described inPatent Document 1 uses polyamide 66, the obtained molded product is insufficiently improved in dimensional stability, and in particular, the flow direction (MD) of the resin during molding is insufficient. There is a problem that the linear expansion coefficient in the direction orthogonal to (TD) is large.
In a molded body used for an in-vehicle camera component or the like, not only the flow direction (MD) of the resin at the time of molding but also the linear expansion coefficient in the orthogonal direction (TD) is required to be small.
車載用カメラ部品等に用いる成形体においては、成形時の樹脂の流動方向(MD)だけでなく、直交方向(TD)の線膨張係数も小さいことが求められている。 However, since the polyamide resin composition described in
In a molded body used for an in-vehicle camera component or the like, not only the flow direction (MD) of the resin at the time of molding but also the linear expansion coefficient in the orthogonal direction (TD) is required to be small.
本発明は、機械特性に優れつつも、流動方向(MD)および直交方向(TD)のいずれの方向に対しても寸法安定性に優れた成形体を得ることができるポリアミド樹脂組成物を提供することを目的とする。
The present invention provides a polyamide resin composition capable of obtaining a molded product having excellent mechanical properties and excellent dimensional stability in both the flow direction (MD) and the orthogonal direction (TD). The purpose is.
本発明者らは、前記課題を解決するため鋭意研究を重ねた結果、半芳香族ポリアミドに充填材を特定量配合することにより、上記目的が達成されることを見出し、本発明に到達した。
As a result of diligent research to solve the above problems, the present inventors have found that the above object can be achieved by blending a specific amount of a filler with a semi-aromatic polyamide, and have reached the present invention.
本発明の、半芳香族ポリアミド(A)100質量部と充填材(B)70~250質量部とを含有するポリアミド樹脂組成物は、
射出成形体の、射出成形時の樹脂の流動方向と直交する方向における、80℃での線膨張係数が70×10-6(1/℃)以下であることを特徴とする。
本発明のポリアミド樹脂組成物によれば、射出成形体の、射出成形時の金型のガスベント部に対応する位置において発生するバリの長さが150μm以下であることが好ましい。
本発明のポリアミド樹脂組成物によれば、充填材(B)が、板状充填材と繊維状充填材とからなることが好ましい。
本発明のポリアミド樹脂組成物によれば、板状充填材と繊維状充填材の質量比(板状充填材/繊維状充填材)が50/50~90/10であることが好ましい。
本発明のポリアミド樹脂組成物によれば、板状充填材がガラスフレークであり、繊維状充填材がガラス繊維であることが好ましい。
本発明のポリアミド樹脂組成物によれば、板状充填材がガラスフレークであり、繊維状充填材が炭素繊維であることが好ましい。
本発明のポリアミド樹脂組成物によれば、さらにポリフェニレンエーテル(C)20~110質量部を含有することが好ましい。
本発明の成形体は、上記のポリアミド樹脂組成物を成形したものである。
本発明の車載カメラ用部品は、上記の成形体からなるものである。 The polyamide resin composition containing 100 parts by mass of a semi-aromatic polyamide (A) and 70 to 250 parts by mass of a filler (B) according to the present invention.
The injection-molded article is characterized by having a linear expansion coefficient of 70 × 10-6 (1 / ° C.) or less at 80 ° C. in a direction orthogonal to the flow direction of the resin during injection molding.
According to the polyamide resin composition of the present invention, the length of burrs generated at the position corresponding to the gas vent portion of the mold during injection molding is preferably 150 μm or less.
According to the polyamide resin composition of the present invention, it is preferable that the filler (B) is composed of a plate-shaped filler and a fibrous filler.
According to the polyamide resin composition of the present invention, the mass ratio of the plate-like filler to the fibrous filler (plate-like filler / fibrous filler) is preferably 50/50 to 90/10.
According to the polyamide resin composition of the present invention, it is preferable that the plate-shaped filler is glass flakes and the fibrous filler is glass fiber.
According to the polyamide resin composition of the present invention, it is preferable that the plate-shaped filler is glass flakes and the fibrous filler is carbon fiber.
According to the polyamide resin composition of the present invention, it is preferable to further contain 20 to 110 parts by mass of the polyphenylene ether (C).
The molded product of the present invention is a molded product of the above-mentioned polyamide resin composition.
The in-vehicle camera component of the present invention is made of the above-mentioned molded body.
射出成形体の、射出成形時の樹脂の流動方向と直交する方向における、80℃での線膨張係数が70×10-6(1/℃)以下であることを特徴とする。
本発明のポリアミド樹脂組成物によれば、射出成形体の、射出成形時の金型のガスベント部に対応する位置において発生するバリの長さが150μm以下であることが好ましい。
本発明のポリアミド樹脂組成物によれば、充填材(B)が、板状充填材と繊維状充填材とからなることが好ましい。
本発明のポリアミド樹脂組成物によれば、板状充填材と繊維状充填材の質量比(板状充填材/繊維状充填材)が50/50~90/10であることが好ましい。
本発明のポリアミド樹脂組成物によれば、板状充填材がガラスフレークであり、繊維状充填材がガラス繊維であることが好ましい。
本発明のポリアミド樹脂組成物によれば、板状充填材がガラスフレークであり、繊維状充填材が炭素繊維であることが好ましい。
本発明のポリアミド樹脂組成物によれば、さらにポリフェニレンエーテル(C)20~110質量部を含有することが好ましい。
本発明の成形体は、上記のポリアミド樹脂組成物を成形したものである。
本発明の車載カメラ用部品は、上記の成形体からなるものである。 The polyamide resin composition containing 100 parts by mass of a semi-aromatic polyamide (A) and 70 to 250 parts by mass of a filler (B) according to the present invention.
The injection-molded article is characterized by having a linear expansion coefficient of 70 × 10-6 (1 / ° C.) or less at 80 ° C. in a direction orthogonal to the flow direction of the resin during injection molding.
According to the polyamide resin composition of the present invention, the length of burrs generated at the position corresponding to the gas vent portion of the mold during injection molding is preferably 150 μm or less.
According to the polyamide resin composition of the present invention, it is preferable that the filler (B) is composed of a plate-shaped filler and a fibrous filler.
According to the polyamide resin composition of the present invention, the mass ratio of the plate-like filler to the fibrous filler (plate-like filler / fibrous filler) is preferably 50/50 to 90/10.
According to the polyamide resin composition of the present invention, it is preferable that the plate-shaped filler is glass flakes and the fibrous filler is glass fiber.
According to the polyamide resin composition of the present invention, it is preferable that the plate-shaped filler is glass flakes and the fibrous filler is carbon fiber.
According to the polyamide resin composition of the present invention, it is preferable to further contain 20 to 110 parts by mass of the polyphenylene ether (C).
The molded product of the present invention is a molded product of the above-mentioned polyamide resin composition.
The in-vehicle camera component of the present invention is made of the above-mentioned molded body.
本発明によれば、機械特性に優れつつも、流動方向(MD)および直交方向(TD)のいずれの方向に対しても寸法安定性に優れた成形体を得ることができるポリアミド樹脂組成物を提供することができる。
According to the present invention, a polyamide resin composition capable of obtaining a molded product having excellent mechanical properties and excellent dimensional stability in both the flow direction (MD) and the orthogonal direction (TD) can be obtained. Can be provided.
本発明のポリアミド樹脂組成物は、半芳香族ポリアミド(A)と充填材(B)とを含有する。
The polyamide resin composition of the present invention contains a semi-aromatic polyamide (A) and a filler (B).
(半芳香族ポリアミド(A))
本発明に用いる半芳香族ポリアミド(A)は、芳香族ジカルボン酸成分と脂肪族ジアミン成分とから構成される。 (Semi-aromatic polyamide (A))
The semi-aromatic polyamide (A) used in the present invention is composed of an aromatic dicarboxylic acid component and an aliphatic diamine component.
本発明に用いる半芳香族ポリアミド(A)は、芳香族ジカルボン酸成分と脂肪族ジアミン成分とから構成される。 (Semi-aromatic polyamide (A))
The semi-aromatic polyamide (A) used in the present invention is composed of an aromatic dicarboxylic acid component and an aliphatic diamine component.
芳香族ジカルボン酸成分は、テレフタル酸を主成分として含有することが好ましい。本発明において、「テレフタル酸を主成分とする」とは、芳香族ジカルボン酸成分において、テレフタル酸を90モル%以上含有することを意味する。芳香族ジカルボン酸成分中のテレフタル酸の含有量は、95モル%以上であることが好ましく、100モル%であることがより好ましい。芳香族ジカルボン酸成分が、テレフタル酸を主成分として含有しないと、得られる成形体は、寸法安定性が劣ったものとなることがある。
The aromatic dicarboxylic acid component preferably contains terephthalic acid as a main component. In the present invention, "containing terephthalic acid as a main component" means that the aromatic dicarboxylic acid component contains 90 mol% or more of terephthalic acid. The content of terephthalic acid in the aromatic dicarboxylic acid component is preferably 95 mol% or more, more preferably 100 mol%. If the aromatic dicarboxylic acid component does not contain terephthalic acid as a main component, the obtained molded product may have poor dimensional stability.
芳香族ジカルボン酸成分は、テレフタル酸以外の他の芳香族ジカルボン酸を含有してもよい。他の芳香族ジカルボン酸としては、例えば、イソフタル酸、ナフタレンジカルボン酸が挙げられる。
The aromatic dicarboxylic acid component may contain an aromatic dicarboxylic acid other than terephthalic acid. Examples of other aromatic dicarboxylic acids include isophthalic acid and naphthalenedicarboxylic acid.
脂肪族ジアミン成分は、炭素数8以上の脂肪族ジアミンを主成分として含有することが好ましい。本発明において、「炭素数8以上の脂肪族ジアミンを主成分とする」とは、脂肪族ジアミン成分において、炭素数8以上の脂肪族ジアミンを90モル%以上含有することを意味する。脂肪族ジアミン成分中の炭素数8以上の脂肪族ジアミンの含有量は、95モル%以上であることが好ましく、100モル%であることがより好ましい。脂肪族ジアミン成分が、炭素数8以上の脂肪族ジアミンを主成分として含有しないと、半芳香族ポリアミド(A)は、加工性が低下することがある。炭素数8以上の脂肪族ジアミンとしては、例えば、1,8-オクタンジアミン、1,9-ノナンジアミン、2-メチル-1,8-オクタンジアミン、1,10-デカンジアミン、1,12-ウンデカンジアミンが挙げられる、中でも、半芳香族ポリアミド(A)が、耐熱性と加工性とのバランスに優れ、吸水性と透湿性とが抑制されることから、1,10-デカンジアミンがより好ましい。
The aliphatic diamine component preferably contains an aliphatic diamine having 8 or more carbon atoms as a main component. In the present invention, "mainly composed of an aliphatic diamine having 8 or more carbon atoms" means that the aliphatic diamine component contains 90 mol% or more of the aliphatic diamine having 8 or more carbon atoms. The content of the aliphatic diamine having 8 or more carbon atoms in the aliphatic diamine component is preferably 95 mol% or more, more preferably 100 mol%. If the aliphatic diamine component does not contain an aliphatic diamine having 8 or more carbon atoms as a main component, the semi-aromatic polyamide (A) may have reduced processability. Examples of the aliphatic diamine having 8 or more carbon atoms include 1,8-octanediamine, 1,9-nonanediamine, 2-methyl-1,8-octanediamine, 1,10-decanediamine, and 1,12-undecanediamine. Among them, the semi-aromatic polyamide (A) is more preferable because it has an excellent balance between heat resistance and processability and suppresses water absorption and moisture permeability.
脂肪族ジアミン成分は、炭素数8以上の脂肪族ジアミン以外の他の脂肪族ジアミンを含有してもよい。他の脂肪族ジアミンとしては、例えば、1,2-エタンジアミン、1,3-プロパンジアミン、1,4-ブタンジアミン、1,5-ペンタンジアミン、2-メチル-1,5-ペンタンジアミン、1,6-ヘキサンジアミン、1,7-ヘプタンジアミンが挙げられる。
The aliphatic diamine component may contain an aliphatic diamine other than the aliphatic diamine having 8 or more carbon atoms. Examples of other aliphatic diamines include 1,2-ethanediamine, 1,3-propanediamine, 1,4-butanediamine, 1,5-pentanediamine, 2-methyl-1,5-pentanediamine, and 1 , 6-Hexanediamine, 1,7-heptanediamine and the like.
半芳香族ポリアミド(A)は、本発明の効果を損なわない限りにおいて、芳香族ジカルボン酸以外のジカルボン酸;脂肪族ジアミン以外のジアミン;ラクタム類;ω-アミノカルボン酸を含有してもよい。芳香族ジカルボン酸以外のジカルボン酸としては、例えば、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカン二酸、ドデカン二酸等の脂肪族ジカルボン酸;1,4-シクロヘキサンジカルボン酸等の脂環式ジカルボン酸が挙げられる。脂肪族ジアミン以外のジアミンとしては、例えば、1,4-シクロヘキサンジアミン等の脂環式ジアミン;メタキシリレンジアミン、パラキシリレンジアミン等の芳香族ジアミンが挙げられる。ラクタム類としては、例えば、カプロラクタム、ラウロラクタムが挙げられる。ω-アミノカルボン酸としては、例えば、アミノカプロン酸、11-アミノウンデカン酸が挙げられる。
The semi-aromatic polyamide (A) may contain a dicarboxylic acid other than the aromatic dicarboxylic acid; a diamine other than the aliphatic diamine; lactams; ω-aminocarboxylic acid as long as the effect of the present invention is not impaired. Examples of the dicarboxylic acid other than the aromatic dicarboxylic acid include fats such as oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid and dodecanedioic acid. Group dicarboxylic acids; examples thereof include alicyclic dicarboxylic acids such as 1,4-cyclohexanedicarboxylic acid. Examples of diamines other than aliphatic diamines include alicyclic diamines such as 1,4-cyclohexanediamine; and aromatic diamines such as m-xylylenediamine and paraxylylenediamine. Examples of lactams include caprolactam and laurolactam. Examples of the ω-aminocarboxylic acid include aminocaproic acid and 11-aminoundecanoic acid.
半芳香族ポリアミド(A)は、ジカルボン酸成分やジアミン成分の他に、モノカルボン酸成分を含有してもよい。モノカルボン酸成分としては、例えば、ステアリン酸、オクタン酸、ノナン酸、デカン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ベヘン酸等の脂肪族モノカルボン酸;4-エチルシクロヘキサンカルボン酸、4-へキシルシクロヘキサンカルボン酸、4-ラウリルシクロヘキサンカルボン酸等の脂環式モノカルボン酸;4-エチル安息香酸、4-へキシル安息香酸、4-ラウリル安息香酸、アルキル安息香酸類、1-ナフトエ酸、2-ナフトエ酸等の芳香族モノカルボン酸が挙げられる。中でも、半芳香族ポリアミド(A)の成形加工性が向上することから、分子量が140以上であるモルカルボン酸が好ましく、汎用性が高いことから、ステアリン酸がより好ましい。なお、モノカルボン酸の分子量は、重合時に用いる原料のモノカルボン酸の分子量とする。
モノカルボン酸成分の含有量は、半芳香族ポリアミドを構成する全モノマーに対して、0.3~5.0モル%であることが好ましく、0.6~4.0モル%であることがより好ましく、1.0~3.5モル%であることがさらに好ましい。モノカルボン酸成分の含有量が0.3~5.0モル%であると、半芳香族ポリアミド(A)は、分子量を大きく低下させなくても、成形加工性が向上する。 The semi-aromatic polyamide (A) may contain a monocarboxylic acid component in addition to the dicarboxylic acid component and the diamine component. Examples of the monocarboxylic acid component include aliphatic monocarboxylic acids such as stearate, octanoic acid, nonanoic acid, decanoic acid, lauric acid, myristic acid, palmitic acid, and behenic acid; 4-ethylcyclohexanecarboxylic acid, 4-to. Alicyclic monocarboxylic acids such as xylcyclohexanecarboxylic acid and 4-laurylcyclohexanecarboxylic acid; 4-ethylbenzoic acid, 4-hexylbenzoic acid, 4-laurylbenzoic acid, alkylbenzoic acids, 1-naphthoic acid, 2- Examples include aromatic monocarboxylic acids such as naphthoic acid. Among them, a molcarboxylic acid having a molecular weight of 140 or more is preferable because the molding processability of the semi-aromatic polyamide (A) is improved, and stearic acid is more preferable because of its high versatility. The molecular weight of the monocarboxylic acid is the molecular weight of the raw material monocarboxylic acid used in the polymerization.
The content of the monocarboxylic acid component is preferably 0.3 to 5.0 mol%, preferably 0.6 to 4.0 mol%, based on all the monomers constituting the semi-aromatic polyamide. More preferably, it is more preferably 1.0 to 3.5 mol%. When the content of the monocarboxylic acid component is 0.3 to 5.0 mol%, the semi-aromatic polyamide (A) has improved molding processability without significantly reducing the molecular weight.
モノカルボン酸成分の含有量は、半芳香族ポリアミドを構成する全モノマーに対して、0.3~5.0モル%であることが好ましく、0.6~4.0モル%であることがより好ましく、1.0~3.5モル%であることがさらに好ましい。モノカルボン酸成分の含有量が0.3~5.0モル%であると、半芳香族ポリアミド(A)は、分子量を大きく低下させなくても、成形加工性が向上する。 The semi-aromatic polyamide (A) may contain a monocarboxylic acid component in addition to the dicarboxylic acid component and the diamine component. Examples of the monocarboxylic acid component include aliphatic monocarboxylic acids such as stearate, octanoic acid, nonanoic acid, decanoic acid, lauric acid, myristic acid, palmitic acid, and behenic acid; 4-ethylcyclohexanecarboxylic acid, 4-to. Alicyclic monocarboxylic acids such as xylcyclohexanecarboxylic acid and 4-laurylcyclohexanecarboxylic acid; 4-ethylbenzoic acid, 4-hexylbenzoic acid, 4-laurylbenzoic acid, alkylbenzoic acids, 1-naphthoic acid, 2- Examples include aromatic monocarboxylic acids such as naphthoic acid. Among them, a molcarboxylic acid having a molecular weight of 140 or more is preferable because the molding processability of the semi-aromatic polyamide (A) is improved, and stearic acid is more preferable because of its high versatility. The molecular weight of the monocarboxylic acid is the molecular weight of the raw material monocarboxylic acid used in the polymerization.
The content of the monocarboxylic acid component is preferably 0.3 to 5.0 mol%, preferably 0.6 to 4.0 mol%, based on all the monomers constituting the semi-aromatic polyamide. More preferably, it is more preferably 1.0 to 3.5 mol%. When the content of the monocarboxylic acid component is 0.3 to 5.0 mol%, the semi-aromatic polyamide (A) has improved molding processability without significantly reducing the molecular weight.
半芳香族ポリアミド(A)は、従来から知られている加熱重合法や溶液重合法の方法を用いて製造することができる。中でも、工業的に有利であることから、加熱重合法が好ましく用いられる。加熱重合法としては、ジカルボン酸成分とジアミン成分とから反応生成物を得る工程(i)と、得られた反応生成物を重合する工程(ii)とからなる方法が挙げられる。
The semi-aromatic polyamide (A) can be produced by using a conventionally known method of heat polymerization method or solution polymerization method. Among them, the heat polymerization method is preferably used because it is industrially advantageous. Examples of the heat polymerization method include a method including a step (i) of obtaining a reaction product from a dicarboxylic acid component and a diamine component, and a step (ii) of polymerizing the obtained reaction product.
工程(i)としては、例えば、ジカルボン酸粉末を、予めジアミンの融点以上かつジカルボン酸の融点以下の温度に加熱し、この温度のジカルボン酸粉末に、ジカルボン酸の粉末の状態を保つように、実質的に水を含まずに、ジアミンを添加する方法が挙げられる。または、別の方法としては、溶融状態のジアミンと固体のジカルボン酸とからなる懸濁液を攪拌混合し、混合液を得た後、最終的に生成する半芳香族ポリアミドの融点未満の温度で、ジカルボン酸とジアミンの反応による塩の生成反応と、生成した塩の重合による低重合物の生成反応とをおこない、塩および低重合物の混合物を得る方法が挙げられる。この場合、反応をさせながら破砕をおこなってもよいし、反応後に一旦取り出してから破砕をおこなってもよい。工程(i)としては、反応生成物の形状の制御が容易な前者の方が好ましい。
In the step (i), for example, the dicarboxylic acid powder is preheated to a temperature equal to or higher than the melting point of the diamine and lower than the melting point of the dicarboxylic acid, and the dicarboxylic acid powder at this temperature is kept in the state of the powdered dicarboxylic acid. A method of adding a diamine without substantially containing water can be mentioned. Alternatively, as another method, a suspension consisting of a molten diamine and a solid dicarboxylic acid is stirred and mixed to obtain a mixed solution, and then at a temperature below the melting point of the semi-aromatic polyamide finally produced. , A method of obtaining a mixture of a salt and a low polymer by carrying out a reaction of producing a salt by a reaction of a dicarboxylic acid and a diamine and a reaction of forming a low polymer by polymerizing the produced salt. In this case, crushing may be carried out while allowing the reaction, or crushing may be carried out after taking out the reaction once after the reaction. As the step (i), the former is preferable because the shape of the reaction product can be easily controlled.
工程(ii)としては、例えば、工程(i)で得られた反応生成物を、最終的に生成する半芳香族ポリアミドの融点未満の温度で固相重合し、所定の分子量まで高分子量化させ、半芳香族ポリアミドを得る方法が挙げられる。固相重合は、重合温度180~270℃、反応時間0.5~10時間で、窒素等の不活性ガス気流中でおこなうことが好ましい。
In the step (ii), for example, the reaction product obtained in the step (i) is solid-phase polymerized at a temperature lower than the melting point of the finally produced semi-aromatic polyamide to increase the molecular weight to a predetermined molecular weight. , A method of obtaining a semi-aromatic polyamide. The solid phase polymerization is preferably carried out at a polymerization temperature of 180 to 270 ° C. and a reaction time of 0.5 to 10 hours in a stream of an inert gas such as nitrogen.
工程(i)および工程(ii)の反応装置としては、特に限定されず、公知の装置を用いればよい。工程(i)と工程(ii)を同じ装置でおこなってもよいし、異なる装置でおこなってもよい。
The reaction apparatus for the step (i) and the step (ii) is not particularly limited, and a known apparatus may be used. The step (i) and the step (ii) may be performed by the same device or may be performed by different devices.
加熱重合法における加熱の方法は特に限定されないが、例えば、水、蒸気、熱媒油等の媒体にて反応容器を加熱する方法、電気ヒーターで反応容器を加熱する方法、攪拌により発生する攪拌熱等内容物の運動に伴う摩擦熱を利用する方法が挙げられる。また、これらの方法を組み合わせてもよい。
The heating method in the heat polymerization method is not particularly limited, but for example, a method of heating the reaction vessel with a medium such as water, steam, or a heat medium oil, a method of heating the reaction vessel with an electric heater, or stirring heat generated by stirring. A method of utilizing the frictional heat associated with the movement of the equal contents can be mentioned. Moreover, you may combine these methods.
半芳香族ポリアミド(A)の製造において、重合の効率を高めるため重合触媒を用いてもよい。重合触媒としては、例えば、リン酸、亜リン酸、次亜リン酸またはそれらの塩が挙げられる。重合触媒の添加量は、通常、半芳香族ポリアミド(A)を構成する全モノマーに対して、2モル%以下であることが好ましい。
In the production of the semi-aromatic polyamide (A), a polymerization catalyst may be used in order to increase the efficiency of polymerization. Examples of the polymerization catalyst include phosphoric acid, phosphorous acid, hypophosphorous acid or salts thereof. The amount of the polymerization catalyst added is usually preferably 2 mol% or less with respect to all the monomers constituting the semi-aromatic polyamide (A).
(充填材(B))
本発明に用いる充填材(B)は、有機化合物からなるものであっても、無機化合物からなるものであってもよい。
充填材(B)の形態としては、例えば、板状、繊維状、粒状、無定形状が挙げられ、中でも寸法安定性に優れる成形体が得られることから、板状、繊維状、粒状が好ましい。充填材(B)は、単独で用いてもよいし、複数種を併用してもよい。 (Filler (B))
The filler (B) used in the present invention may be made of an organic compound or an inorganic compound.
Examples of the form of the filler (B) include plate-like, fibrous, granular, and amorphous, and among them, plate-like, fibrous, and granular are preferable because a molded product having excellent dimensional stability can be obtained. .. The filler (B) may be used alone or in combination of two or more.
本発明に用いる充填材(B)は、有機化合物からなるものであっても、無機化合物からなるものであってもよい。
充填材(B)の形態としては、例えば、板状、繊維状、粒状、無定形状が挙げられ、中でも寸法安定性に優れる成形体が得られることから、板状、繊維状、粒状が好ましい。充填材(B)は、単独で用いてもよいし、複数種を併用してもよい。 (Filler (B))
The filler (B) used in the present invention may be made of an organic compound or an inorganic compound.
Examples of the form of the filler (B) include plate-like, fibrous, granular, and amorphous, and among them, plate-like, fibrous, and granular are preferable because a molded product having excellent dimensional stability can be obtained. .. The filler (B) may be used alone or in combination of two or more.
本発明の樹脂組成物において、充填材(B)の含有量は、半芳香族ポリアミド(A)100質量部に対して70~250質量部であることが必要であり、80~200質量部であることが好ましく、90~150質量部であることがより好ましい。樹脂組成物における充填材(B)の含有量が70~250質量部であると、得られる成形体は、半芳香族ポリアミドの温度変化による収縮が抑えられるため、線膨張係数を小さくすることができ、さらに金型のガスベント部に対応する位置に発生するバリを抑制することができる。充填材(B)の含有量が70質量部未満であると、得られる成形体は、線膨張係数が大きくなり、一方、充填材(B)は、含有量が250質量部を超えると、芳香族ポリアミド樹脂との溶融混練が困難となり、樹脂組成物のペレットを製造することができないことがある。
In the resin composition of the present invention, the content of the filler (B) needs to be 70 to 250 parts by mass with respect to 100 parts by mass of the semi-aromatic polyamide (A), and 80 to 200 parts by mass. It is preferably present, and more preferably 90 to 150 parts by mass. When the content of the filler (B) in the resin composition is 70 to 250 parts by mass, the obtained molded product can suppress shrinkage due to a temperature change of the semi-aromatic polyamide, so that the coefficient of linear expansion can be reduced. Further, it is possible to suppress burrs generated at the positions corresponding to the gas vent portion of the mold. When the content of the filler (B) is less than 70 parts by mass, the obtained molded product has a large linear expansion coefficient, while when the content of the filler (B) exceeds 250 parts by mass, the fragrance is fragrant. It may be difficult to melt-knead with the group polyamide resin, and it may not be possible to produce pellets of the resin composition.
板状充填材としては、例えば、ガラスフレーク、タルク、マイカ、鱗片状グラファイトが挙げられる。マイカとしては、白雲母、フッ素金雲母、四ケイ素雲母が挙げられる。中でも、汎用性が高いことから、ガラスフレーク、マイカが好ましい。
Examples of the plate-shaped filler include glass flakes, talc, mica, and scaly graphite. Examples of mica include muscovite, phlogopite fluorine, and phlogopite four silicon. Among them, glass flakes and mica are preferable because of their high versatility.
繊維状充填材としては、例えば、炭素繊維、ガラス繊維、シリカ繊維、シリカ・アルミナ繊維、ジルコニア繊維、アルミナ繊維、炭化ケイ素繊維、金属繊維(ステンレス繊維、酸化アルミニウム繊維等)、セラミック繊維、ボロンウイスカー、酸化亜鉛ウイスカー、アスベスト、ワラストナイト、チタン酸カリウムウィスカー、炭酸カルシウムウィスカー、ホウ酸アルミニウムウィスカー、硫酸マグネシウムウィスカー、針状酸化チタン、セピオライト、ゾノトライト、ミルドファイバー、カットファイバーが挙げられる。中でも、汎用性が高いことから、ガラス繊維、ワラストナイトが好ましい。繊維状充填材の表面は、半芳香族ポリアミド(A)中への分散性を高めるため、アミノシラン系カップリング剤やエポキシ樹脂によって表面処理されていることが好ましく、中でも、機械特性や、エポキシ樹脂等の接着剤に対する接着性を向上させるため、アミノシラン系カップリング剤によって表面処理されていることがより好ましい。
Examples of the fibrous filler include carbon fiber, glass fiber, silica fiber, silica / alumina fiber, zirconia fiber, alumina fiber, silicon carbide fiber, metal fiber (stainless fiber, aluminum oxide fiber, etc.), ceramic fiber, and boron whisker. , Zinc oxide whisker, asbestos, wallastnite, potassium titanate whisker, calcium carbonate whisker, aluminum borate whisker, magnesium sulfate whisker, acicular titanium oxide, sepiolite, zonotrite, milled fiber, cut fiber. Among them, glass fiber and wallastnite are preferable because of their high versatility. The surface of the fibrous filler is preferably surface-treated with an aminosilane-based coupling agent or an epoxy resin in order to enhance the dispersibility in the semi-aromatic polyamide (A), and above all, the mechanical properties and the epoxy resin. In order to improve the adhesiveness to such adhesives, it is more preferable that the surface is treated with an aminosilane-based coupling agent.
粒状充填材としては、例えば、アルミナ、酸化チタン、窒化ホウ素、炭化ケイ素、炭酸カルシウムが挙げられる。中でも、汎用性が高いことから、炭酸カルシウムが好ましい。
Examples of the granular filler include alumina, titanium oxide, boron nitride, silicon carbide, and calcium carbonate. Of these, calcium carbonate is preferable because of its high versatility.
本発明において、充填材(B)は、板状充填材と繊維状充填材とからなることが好ましい。板状充填材と繊維状充填材の質量比(板状充填材/繊維状無充填材)は、50/50~90/10であることが好ましく、55/45~85/15であることがさらに好ましい。前記質量比が50/50~90/10であることにより、得られる成形体は、線膨張係数をさらに小さくすることができ、機械特性を向上させることができる。
充填材(B)を、板状充填材と繊維状充填材とから構成する場合、板状充填材としてガラスフレークを用い、繊維状充填材としてガラス繊維または炭素繊維を用いることが流動方向(MD)および直交方向(TD)のいずれの方向に対する寸法安定性向上の点で好ましい。
また、充填材(B)の一部または全部を炭素繊維で構成する場合、炭素繊維の含有量は、半芳香族ポリアミド(A)100質量部に対して100質量部未満であることが好ましい。ポリアミド樹脂組成物は、炭素繊維の含有量が100質量部以上であると、ペレットが得られないことがある。 In the present invention, the filler (B) is preferably composed of a plate-shaped filler and a fibrous filler. The mass ratio of the plate-like filler to the fibrous filler (plate-like filler / fibrous non-filler) is preferably 50/50 to 90/10, preferably 55/45 to 85/15. More preferred. When the mass ratio is 50/50 to 90/10, the obtained molded product can further reduce the coefficient of linear expansion and improve the mechanical properties.
When the filler (B) is composed of a plate-shaped filler and a fibrous filler, it is a flow direction (MD) that glass flakes are used as the plate-shaped filler and glass fibers or carbon fibers are used as the fibrous filler. ) And the orthogonal direction (TD), which is preferable in terms of improving dimensional stability.
When a part or all of the filler (B) is composed of carbon fibers, the content of the carbon fibers is preferably less than 100 parts by mass with respect to 100 parts by mass of the semi-aromatic polyamide (A). When the content of carbon fibers in the polyamide resin composition is 100 parts by mass or more, pellets may not be obtained.
充填材(B)を、板状充填材と繊維状充填材とから構成する場合、板状充填材としてガラスフレークを用い、繊維状充填材としてガラス繊維または炭素繊維を用いることが流動方向(MD)および直交方向(TD)のいずれの方向に対する寸法安定性向上の点で好ましい。
また、充填材(B)の一部または全部を炭素繊維で構成する場合、炭素繊維の含有量は、半芳香族ポリアミド(A)100質量部に対して100質量部未満であることが好ましい。ポリアミド樹脂組成物は、炭素繊維の含有量が100質量部以上であると、ペレットが得られないことがある。 In the present invention, the filler (B) is preferably composed of a plate-shaped filler and a fibrous filler. The mass ratio of the plate-like filler to the fibrous filler (plate-like filler / fibrous non-filler) is preferably 50/50 to 90/10, preferably 55/45 to 85/15. More preferred. When the mass ratio is 50/50 to 90/10, the obtained molded product can further reduce the coefficient of linear expansion and improve the mechanical properties.
When the filler (B) is composed of a plate-shaped filler and a fibrous filler, it is a flow direction (MD) that glass flakes are used as the plate-shaped filler and glass fibers or carbon fibers are used as the fibrous filler. ) And the orthogonal direction (TD), which is preferable in terms of improving dimensional stability.
When a part or all of the filler (B) is composed of carbon fibers, the content of the carbon fibers is preferably less than 100 parts by mass with respect to 100 parts by mass of the semi-aromatic polyamide (A). When the content of carbon fibers in the polyamide resin composition is 100 parts by mass or more, pellets may not be obtained.
(ポリフェニレンエーテル(C))
本発明のポリアミド樹脂組成物は、さらに、ポリフェニレンエーテル(C)を含有することが好ましい。樹脂組成物がポリフェニレンエーテル(C)を含有することにより、得られる成形体は、射出成形時の金型のガスベント部に対応する位置において発生するバリ長さをさらに短くすることができ、水蒸気透過量も低下させることができる。
本発明のポリアミド樹脂組成物がポリフェニレンエーテル(C)を含有する場合、その含有量は、半芳香族ポリアミド(A)100質量部に対して、20~110質量部であることが好ましく、25~100質量部であることがより好ましい。
ポリフェニレンエーテル(C)の市販品としては、例えば、ノリルPPO640(SABIC社製)、ユピエースPX-100F(三菱エンジニアリングプラスチック社製)が挙げられる。 (Polyphenylene ether (C))
The polyamide resin composition of the present invention preferably further contains polyphenylene ether (C). When the resin composition contains the polyphenylene ether (C), the obtained molded product can further shorten the burr length generated at the position corresponding to the gas vent portion of the mold during injection molding, and is permeable to water vapor. The amount can also be reduced.
When the polyamide resin composition of the present invention contains polyphenylene ether (C), the content thereof is preferably 20 to 110 parts by mass, preferably 25 to 110 parts by mass with respect to 100 parts by mass of the semi-aromatic polyamide (A). More preferably, it is 100 parts by mass.
Examples of commercially available products of polyphenylene ether (C) include Noril PPO640 (manufactured by SABIC) and Upiece PX-100F (manufactured by Mitsubishi Engineering Plastics).
本発明のポリアミド樹脂組成物は、さらに、ポリフェニレンエーテル(C)を含有することが好ましい。樹脂組成物がポリフェニレンエーテル(C)を含有することにより、得られる成形体は、射出成形時の金型のガスベント部に対応する位置において発生するバリ長さをさらに短くすることができ、水蒸気透過量も低下させることができる。
本発明のポリアミド樹脂組成物がポリフェニレンエーテル(C)を含有する場合、その含有量は、半芳香族ポリアミド(A)100質量部に対して、20~110質量部であることが好ましく、25~100質量部であることがより好ましい。
ポリフェニレンエーテル(C)の市販品としては、例えば、ノリルPPO640(SABIC社製)、ユピエースPX-100F(三菱エンジニアリングプラスチック社製)が挙げられる。 (Polyphenylene ether (C))
The polyamide resin composition of the present invention preferably further contains polyphenylene ether (C). When the resin composition contains the polyphenylene ether (C), the obtained molded product can further shorten the burr length generated at the position corresponding to the gas vent portion of the mold during injection molding, and is permeable to water vapor. The amount can also be reduced.
When the polyamide resin composition of the present invention contains polyphenylene ether (C), the content thereof is preferably 20 to 110 parts by mass, preferably 25 to 110 parts by mass with respect to 100 parts by mass of the semi-aromatic polyamide (A). More preferably, it is 100 parts by mass.
Examples of commercially available products of polyphenylene ether (C) include Noril PPO640 (manufactured by SABIC) and Upiece PX-100F (manufactured by Mitsubishi Engineering Plastics).
(添加剤、その他の樹脂)
本発明のポリアミド樹脂組成物は、本発明の効果を損なわない限りにおいて、充填材(B)以外の他の充填材、紫外線吸収剤、光安定剤、熱安定剤、酸化防止剤、離型剤、滑剤、着色剤、帯電防止剤、結晶核剤等の添加剤や、半芳香族ポリアミド(A)やポリフェニレンエーテル(C)以外の、非晶性ポリアミド等の他の熱可塑性樹脂を含有してもよい。添加剤を含有する場合、その含有量は、ポリアミド樹脂組成物の2質量%以下であることが好ましい。前記他の熱可塑性樹脂を含有する場合、その含有量は、ポリアミド樹脂組成物の50質量%以下であることが好ましい。 (Additives, other resins)
The polyamide resin composition of the present invention is a filler other than the filler (B), an ultraviolet absorber, a light stabilizer, a heat stabilizer, an antioxidant, and a mold release agent, as long as the effects of the present invention are not impaired. , Additives such as lubricants, colorants, antioxidants, crystal nucleating agents, and other thermoplastic resins such as amorphous polyamides other than semi-aromatic polyamides (A) and polyphenylene ethers (C). May be good. When the additive is contained, the content thereof is preferably 2% by mass or less of the polyamide resin composition. When the other thermoplastic resin is contained, the content thereof is preferably 50% by mass or less of the polyamide resin composition.
本発明のポリアミド樹脂組成物は、本発明の効果を損なわない限りにおいて、充填材(B)以外の他の充填材、紫外線吸収剤、光安定剤、熱安定剤、酸化防止剤、離型剤、滑剤、着色剤、帯電防止剤、結晶核剤等の添加剤や、半芳香族ポリアミド(A)やポリフェニレンエーテル(C)以外の、非晶性ポリアミド等の他の熱可塑性樹脂を含有してもよい。添加剤を含有する場合、その含有量は、ポリアミド樹脂組成物の2質量%以下であることが好ましい。前記他の熱可塑性樹脂を含有する場合、その含有量は、ポリアミド樹脂組成物の50質量%以下であることが好ましい。 (Additives, other resins)
The polyamide resin composition of the present invention is a filler other than the filler (B), an ultraviolet absorber, a light stabilizer, a heat stabilizer, an antioxidant, and a mold release agent, as long as the effects of the present invention are not impaired. , Additives such as lubricants, colorants, antioxidants, crystal nucleating agents, and other thermoplastic resins such as amorphous polyamides other than semi-aromatic polyamides (A) and polyphenylene ethers (C). May be good. When the additive is contained, the content thereof is preferably 2% by mass or less of the polyamide resin composition. When the other thermoplastic resin is contained, the content thereof is preferably 50% by mass or less of the polyamide resin composition.
(特性)
本発明のポリアミド樹脂組成物は、機械特性に優れているため、得られる成形体の曲げ強度を100MPa以上とすることができ、好ましくは120MPa以上とすることができ、より好ましくは140MPa以上とすることができ、また、曲げ弾性率を10GPa以上とすることができ、好ましくは12GPa以上とすることができる。 (Characteristic)
Since the polyamide resin composition of the present invention has excellent mechanical properties, the bending strength of the obtained molded product can be 100 MPa or more, preferably 120 MPa or more, and more preferably 140 MPa or more. In addition, the flexural modulus can be 10 GPa or more, preferably 12 GPa or more.
本発明のポリアミド樹脂組成物は、機械特性に優れているため、得られる成形体の曲げ強度を100MPa以上とすることができ、好ましくは120MPa以上とすることができ、より好ましくは140MPa以上とすることができ、また、曲げ弾性率を10GPa以上とすることができ、好ましくは12GPa以上とすることができる。 (Characteristic)
Since the polyamide resin composition of the present invention has excellent mechanical properties, the bending strength of the obtained molded product can be 100 MPa or more, preferably 120 MPa or more, and more preferably 140 MPa or more. In addition, the flexural modulus can be 10 GPa or more, preferably 12 GPa or more.
また、本発明のポリアミド樹脂組成物から得られる射出成形体は、射出成形時の樹脂の流動方向(MD)および直交する方向(TD)のいずれの方向に対しても、寸法安定性に優れているため、MD、TDいずれの方向の80℃での線膨張係数を、70×10-6(1/℃)以下とすることができ、好ましくは60×10-6(1/℃)以下とすることができ、より好ましくは45×10-6(1/℃)以下とすることができる。流動方向(MD)および直交方向(TD)のいずれの方向の80℃における、70×10-6(1/℃)以下の線膨張係数は、成形体を構成する樹脂組成物が、ガラスフレークやマイカ等の板状充填材を含有したり、粒状充填材を含有したり、板状充填材と繊維状充填材とを特定質量比で含有することにより、達成することができる。
Further, the injection molded product obtained from the polyamide resin composition of the present invention is excellent in dimensional stability in both the flow direction (MD) and the orthogonal direction (TD) of the resin during injection molding. Therefore, the coefficient of linear expansion at 80 ° C. in either the MD or TD direction can be 70 × 10-6 (1 / ° C.) or less, preferably 60 × 10-6 (1 / ° C.) or less. It can be more preferably 45 × 10 -6 (1 / ° C.) or less. The coefficient of linear expansion of 70 × 10 -6 (1 / ° C.) or less at 80 ° C. in either the flow direction (MD) or the orthogonal direction (TD) is such that the resin composition constituting the molded product has glass flakes or glass flakes. This can be achieved by containing a plate-shaped filler such as mica, a granular filler, or a plate-shaped filler and a fibrous filler in a specific mass ratio.
また、本発明のポリアミド樹脂組成物から得られる射出成形体は、射出成形時の金型のガスベント部に対応する位置において発生するバリ長さを、180μm以下とすることができ、好ましくは150μm以下とすることができ、より好ましくは135μm以下とすることができる。一般に、成形時にバリが発生すると生産効率が低くなることから、バリの長さは、短いほうが好ましい。
Further, in the injection molded product obtained from the polyamide resin composition of the present invention, the burr length generated at the position corresponding to the gas vent portion of the mold during injection molding can be 180 μm or less, preferably 150 μm or less. It can be more preferably 135 μm or less. Generally, if burrs are generated during molding, the production efficiency is lowered, so that the length of the burrs is preferably short.
また、本発明のポリアミド樹脂組成物は、低吸水性と低透湿性にも優れる。吸水性や透湿性は、寸法安定性に大きく影響し、一般に、吸水性や透湿性が低いほど、寸法安定性を優れたものとすることができる。また、車載カメラ部品材として用いた際に、吸水性や透湿性が低いほどレンズの曇りを抑制することができる。本発明においては、前記樹脂組成物を厚み1mmに成形した板状成形体の65℃雰囲気下での透過水蒸気量を150mg以下とすることができ、好ましくは130mg以下とすることができ、より好ましくは120mg以下とすることができる。
Further, the polyamide resin composition of the present invention is also excellent in low water absorption and low moisture permeability. Water absorption and moisture permeability greatly affect dimensional stability, and in general, the lower the water absorption and moisture permeability, the better the dimensional stability. Further, when used as an in-vehicle camera component material, the lower the water absorption and moisture permeability, the more the lens fogging can be suppressed. In the present invention, the permeated water vapor amount of the plate-shaped molded product obtained by molding the resin composition to a thickness of 1 mm in an atmosphere of 65 ° C. can be 150 mg or less, preferably 130 mg or less, more preferably. Can be 120 mg or less.
(製造方法)
本発明において、樹脂組成物を構成する各成分を配合して樹脂組成物を製造する方法は特に限定されないが、溶融混練法で製造することが好ましい。溶融混練法としては、ブラベンダー等のバッチ式ニーダー、バンバリーミキサー、ヘンシェルミキサー、ヘリカルローター、ロール、一軸押出機、二軸押出機等を用いる方法が挙げられる。溶融混練温度は、半芳香族ポリアミド(A)が溶融し分解しない領域から選ばれ、通常、半芳香族ポリアミド(A)の融点をTmとして、(Tm-20℃)~(Tm+50℃)であることが好ましい。 (Production method)
In the present invention, the method for producing the resin composition by blending each component constituting the resin composition is not particularly limited, but it is preferably produced by the melt-kneading method. Examples of the melt-kneading method include a method using a batch type kneader such as lavender, a Banbury mixer, a Henschel mixer, a helical rotor, a roll, a single-screw extruder, a twin-screw extruder and the like. The melt-kneading temperature is selected from the region where the semi-aromatic polyamide (A) does not melt and decompose, and is usually (Tm-20 ° C.) to (Tm + 50 ° C.) with the melting point of the semi-aromatic polyamide (A) as Tm. Is preferable.
本発明において、樹脂組成物を構成する各成分を配合して樹脂組成物を製造する方法は特に限定されないが、溶融混練法で製造することが好ましい。溶融混練法としては、ブラベンダー等のバッチ式ニーダー、バンバリーミキサー、ヘンシェルミキサー、ヘリカルローター、ロール、一軸押出機、二軸押出機等を用いる方法が挙げられる。溶融混練温度は、半芳香族ポリアミド(A)が溶融し分解しない領域から選ばれ、通常、半芳香族ポリアミド(A)の融点をTmとして、(Tm-20℃)~(Tm+50℃)であることが好ましい。 (Production method)
In the present invention, the method for producing the resin composition by blending each component constituting the resin composition is not particularly limited, but it is preferably produced by the melt-kneading method. Examples of the melt-kneading method include a method using a batch type kneader such as lavender, a Banbury mixer, a Henschel mixer, a helical rotor, a roll, a single-screw extruder, a twin-screw extruder and the like. The melt-kneading temperature is selected from the region where the semi-aromatic polyamide (A) does not melt and decompose, and is usually (Tm-20 ° C.) to (Tm + 50 ° C.) with the melting point of the semi-aromatic polyamide (A) as Tm. Is preferable.
本発明のポリアミド樹脂組成物の加工方法としては、例えば、溶融混合物をストランド状に押出しペレット形状にする方法;溶融混合物をホットカットやアンダーウォーターカットしてペレット形状にする方法;シート状に押出しカッティングする方法;ブロック状に押出し粉砕してパウダー形状にする方法が挙げられる。
As a method for processing the polyamide resin composition of the present invention, for example, a method of extruding a molten mixture into a strand shape into a pellet shape; a method of hot-cutting or underwater cutting the molten mixture into a pellet shape; Method; A method of extruding into a block shape and crushing into a powder shape can be mentioned.
(成形体)
本発明のポリアミド樹脂組成物を成形する方法としては、例えば、射出成形法、押出成形法、ブロー成形法、焼結成形法が挙げられ、機械特性、成形性の向上効果が大きいことから、射出成形法が好ましい。射出成形機は特に限定されないが、例えば、スクリューインライン式射出成形機またはプランジャ式射出成形機が挙げられる。射出成形機のシリンダー内で加熱溶融されたポリアミド樹脂組成物は、ショットごとに計量され、金型内に溶融状態で射出され、所定の形状で冷却、固化された後、成形体として金型から取り出される。射出成形時の樹脂温度は、半芳香族ポリアミド(A)の融点をTmとして、Tm以上であることが好ましく、(Tm+50℃)未満であることがより好ましい。なお、ポリアミド樹脂組成物の加熱溶融時に用いるポリアミド樹脂組成物ペレットは、十分に乾燥されていることが好ましい。ポリアミド樹脂組成物ペレットが含有する水分量が多いと、射出成形機のシリンダー内で樹脂が発泡し、最適な成形体を得ることが困難となることがある。射出成形に用いるポリアミド樹脂組成物ペレットの水分率は、ポリアミド樹脂組成物100質量部に対して、0.3質量部未満であることが好ましく、0.1質量部未満であることがより好ましい。 (Molded body)
Examples of the method for molding the polyamide resin composition of the present invention include an injection molding method, an extrusion molding method, a blow molding method, and a sintering molding method, which have a large effect of improving mechanical properties and moldability. The molding method is preferable. The injection molding machine is not particularly limited, and examples thereof include a screw in-line type injection molding machine and a plunger type injection molding machine. The polyamide resin composition heated and melted in the cylinder of the injection molding machine is weighed for each shot, injected into the mold in a molten state, cooled and solidified in a predetermined shape, and then from the mold as a molded body. Taken out. The resin temperature at the time of injection molding is preferably Tm or more, more preferably less than (Tm + 50 ° C.), with the melting point of the semi-aromatic polyamide (A) as Tm. It is preferable that the polyamide resin composition pellets used when the polyamide resin composition is heated and melted are sufficiently dried. If the amount of water contained in the polyamide resin composition pellets is large, the resin may foam in the cylinder of the injection molding machine, making it difficult to obtain an optimum molded product. The water content of the polyamide resin composition pellets used for injection molding is preferably less than 0.3 parts by mass and more preferably less than 0.1 parts by mass with respect to 100 parts by mass of the polyamide resin composition.
本発明のポリアミド樹脂組成物を成形する方法としては、例えば、射出成形法、押出成形法、ブロー成形法、焼結成形法が挙げられ、機械特性、成形性の向上効果が大きいことから、射出成形法が好ましい。射出成形機は特に限定されないが、例えば、スクリューインライン式射出成形機またはプランジャ式射出成形機が挙げられる。射出成形機のシリンダー内で加熱溶融されたポリアミド樹脂組成物は、ショットごとに計量され、金型内に溶融状態で射出され、所定の形状で冷却、固化された後、成形体として金型から取り出される。射出成形時の樹脂温度は、半芳香族ポリアミド(A)の融点をTmとして、Tm以上であることが好ましく、(Tm+50℃)未満であることがより好ましい。なお、ポリアミド樹脂組成物の加熱溶融時に用いるポリアミド樹脂組成物ペレットは、十分に乾燥されていることが好ましい。ポリアミド樹脂組成物ペレットが含有する水分量が多いと、射出成形機のシリンダー内で樹脂が発泡し、最適な成形体を得ることが困難となることがある。射出成形に用いるポリアミド樹脂組成物ペレットの水分率は、ポリアミド樹脂組成物100質量部に対して、0.3質量部未満であることが好ましく、0.1質量部未満であることがより好ましい。 (Molded body)
Examples of the method for molding the polyamide resin composition of the present invention include an injection molding method, an extrusion molding method, a blow molding method, and a sintering molding method, which have a large effect of improving mechanical properties and moldability. The molding method is preferable. The injection molding machine is not particularly limited, and examples thereof include a screw in-line type injection molding machine and a plunger type injection molding machine. The polyamide resin composition heated and melted in the cylinder of the injection molding machine is weighed for each shot, injected into the mold in a molten state, cooled and solidified in a predetermined shape, and then from the mold as a molded body. Taken out. The resin temperature at the time of injection molding is preferably Tm or more, more preferably less than (Tm + 50 ° C.), with the melting point of the semi-aromatic polyamide (A) as Tm. It is preferable that the polyamide resin composition pellets used when the polyamide resin composition is heated and melted are sufficiently dried. If the amount of water contained in the polyamide resin composition pellets is large, the resin may foam in the cylinder of the injection molding machine, making it difficult to obtain an optimum molded product. The water content of the polyamide resin composition pellets used for injection molding is preferably less than 0.3 parts by mass and more preferably less than 0.1 parts by mass with respect to 100 parts by mass of the polyamide resin composition.
本発明のポリアミド樹脂組成物から得られる成形体は、機械特性に優れつつも、流動方向(MD)および直交方向(TD)いずれの方向に対しても寸法安定性に優れているため、車載カメラ用部品に好適に用いることができ、中でも、鏡筒や筐体により好適に用いることができる。また、その他、電気電子コネクタ、スイッチ、アルミ電解コンデンサ端子台、アクチュエータ部品、LEDリフレクタ、センサー、ソケット、ジャック、ヒューズホルダー、リレー、コイルボビン、抵抗器、IC、LEDのハウジング等にも用いることができる。
The molded product obtained from the polyamide resin composition of the present invention has excellent mechanical properties and is also excellent in dimensional stability in both the flow direction (MD) and the orthogonal direction (TD), and thus is an in-vehicle camera. It can be suitably used for parts, and above all, it can be more preferably used for a lens barrel or a housing. In addition, it can also be used for electrical and electronic connectors, switches, aluminum electrolytic capacitor terminal blocks, actuator parts, LED reflectors, sensors, sockets, jacks, fuse holders, relays, coil bobbins, resistors, ICs, LED housings, etc. ..
以下、本発明を実施例によって具体的に説明するが、本発明はこれらによって限定されるものではない。
Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited thereto.
A.測定方法
(1)半芳香族ポリアミド(A)の融点
十分に乾燥した半芳香族ポリアミド(A)のペレットを削り、その削り屑10mgを、パーキンエルマー社製示差走査型熱量計DSC-7を用いて、窒素雰囲気下、下記の条件で測定した。
昇温速度20℃/分で350℃まで昇温(1st scan)→350℃で5分間保持→降温速度20℃/分で25℃まで降温→25℃で5分間保持→再び昇温速度20℃/分で昇温(2nd scan)
2nd scanの吸熱ピークのトップを融点(Tm)とした。 A. Measurement method (1) Melt point of semi-aromatic polyamide (A) Shave a pellet of semi-aromatic polyamide (A) that has been sufficiently dried, and use 10 mg of the shavings with a differential scanning calorimeter DSC-7 manufactured by PerkinElmer. The measurement was performed under the following conditions under a nitrogen atmosphere.
Raise to 350 ° C at a temperature rise rate of 20 ° C / min (1st scan) → Hold at 350 ° C for 5 minutes → Decrease to 25 ° C at a temperature drop rate of 20 ° C / min → Hold at 25 ° C for 5 minutes → Raise rate again at 20 ° C Temperature rise at / min (2nd scan)
The top of the endothermic peak of 2nd scanner was defined as the melting point (Tm).
(1)半芳香族ポリアミド(A)の融点
十分に乾燥した半芳香族ポリアミド(A)のペレットを削り、その削り屑10mgを、パーキンエルマー社製示差走査型熱量計DSC-7を用いて、窒素雰囲気下、下記の条件で測定した。
昇温速度20℃/分で350℃まで昇温(1st scan)→350℃で5分間保持→降温速度20℃/分で25℃まで降温→25℃で5分間保持→再び昇温速度20℃/分で昇温(2nd scan)
2nd scanの吸熱ピークのトップを融点(Tm)とした。 A. Measurement method (1) Melt point of semi-aromatic polyamide (A) Shave a pellet of semi-aromatic polyamide (A) that has been sufficiently dried, and use 10 mg of the shavings with a differential scanning calorimeter DSC-7 manufactured by PerkinElmer. The measurement was performed under the following conditions under a nitrogen atmosphere.
Raise to 350 ° C at a temperature rise rate of 20 ° C / min (1st scan) → Hold at 350 ° C for 5 minutes → Decrease to 25 ° C at a temperature drop rate of 20 ° C / min → Hold at 25 ° C for 5 minutes → Raise rate again at 20 ° C Temperature rise at / min (2nd scan)
The top of the endothermic peak of 2nd scanner was defined as the melting point (Tm).
(2)半芳香族ポリアミド(A)の相対粘度
上記(1)で得られた削り屑を96質量%硫酸に溶解し、濃度1g/dL、25℃の条件で測定した。 (2) Relative Viscosity of Semi-Aromatic Polyamide (A) The shavings obtained in (1) above were dissolved in 96% by mass sulfuric acid and measured at a concentration of 1 g / dL and 25 ° C.
上記(1)で得られた削り屑を96質量%硫酸に溶解し、濃度1g/dL、25℃の条件で測定した。 (2) Relative Viscosity of Semi-Aromatic Polyamide (A) The shavings obtained in (1) above were dissolved in 96% by mass sulfuric acid and measured at a concentration of 1 g / dL and 25 ° C.
(3)曲げ強度、曲げ弾性率
得られたポリアミド樹脂組成物のペレットを十分に乾燥した後、ファナック社製射出成形機(α-100iA)を用いて、用いた半芳香族ポリアミド(A)の融点をTmとして、シリンダー温度(Tm+15℃)、金型温度(Tm-190℃)の条件で、ダンベル片を作製した。
得られたダンベル片を用いて、ISO178に準拠して、曲げ強度や曲げ弾性率を測定した。 (3) Bending strength and flexural modulus After the pellets of the obtained polyamide resin composition were sufficiently dried, the semi-aromatic polyamide (A) used was used in an injection molding machine (α-100iA) manufactured by FANUC Corporation. A dumbbell piece was produced under the conditions of a cylinder temperature (Tm + 15 ° C.) and a mold temperature (Tm-190 ° C.) with the melting point as Tm.
Using the obtained dumbbell pieces, bending strength and flexural modulus were measured according to ISO178.
得られたポリアミド樹脂組成物のペレットを十分に乾燥した後、ファナック社製射出成形機(α-100iA)を用いて、用いた半芳香族ポリアミド(A)の融点をTmとして、シリンダー温度(Tm+15℃)、金型温度(Tm-190℃)の条件で、ダンベル片を作製した。
得られたダンベル片を用いて、ISO178に準拠して、曲げ強度や曲げ弾性率を測定した。 (3) Bending strength and flexural modulus After the pellets of the obtained polyamide resin composition were sufficiently dried, the semi-aromatic polyamide (A) used was used in an injection molding machine (α-100iA) manufactured by FANUC Corporation. A dumbbell piece was produced under the conditions of a cylinder temperature (Tm + 15 ° C.) and a mold temperature (Tm-190 ° C.) with the melting point as Tm.
Using the obtained dumbbell pieces, bending strength and flexural modulus were measured according to ISO178.
(4)線膨張係数
上記(3)で得られたダンベル片の中央部から、試験片の長さ方向が樹脂の流動方向(MD)となるように、角柱状試験片(長さ10mm×幅5mm×厚さ4mm)を切出し、また、試験片の長さ方向が、樹脂の流動方向(MD)と直交する方向(TD)となるように、角柱状試験片(長さ10mm×幅5mm×厚さ4mm)を切出した。
熱機械分析装置(TAインスツルメント製「TMA Q400」)を用いて、窒素雰囲気下、下記の条件で測定した。
昇温速度5℃/分で-50℃から200℃まで昇温(1st scan)→200℃で5分間保持→降温速度5℃/分で-50℃まで降温→-50℃で5分間保持→再び昇温速度5℃/分で200℃まで昇温(2nd scan)
2nd scanの80℃における線膨張係数を求めた。 (4) Linear expansion coefficient A prismatic test piece (length 10 mm × width) so that the length direction of the test piece is the resin flow direction (MD) from the central portion of the dumbbell piece obtained in (3) above. A prismatic test piece (length 10 mm x width 5 mm x) is cut out so that the length direction of the test piece is orthogonal to the resin flow direction (MD) (TD). (Thickness 4 mm) was cut out.
The measurement was performed under the following conditions under a nitrogen atmosphere using a thermomechanical analyzer (“TMA Q400” manufactured by TA Instruments).
Raise from -50 ° C to 200 ° C at a temperature rise rate of 5 ° C / min (1st scan) → Hold at 200 ° C for 5 minutes → Decrease to -50 ° C at a temperature drop rate of 5 ° C / min → Hold at -50 ° C for 5 minutes → The temperature rises to 200 ° C again at a heating rate of 5 ° C / min (2nd scan).
The coefficient of linear expansion of 2nd scanner at 80 ° C. was determined.
上記(3)で得られたダンベル片の中央部から、試験片の長さ方向が樹脂の流動方向(MD)となるように、角柱状試験片(長さ10mm×幅5mm×厚さ4mm)を切出し、また、試験片の長さ方向が、樹脂の流動方向(MD)と直交する方向(TD)となるように、角柱状試験片(長さ10mm×幅5mm×厚さ4mm)を切出した。
熱機械分析装置(TAインスツルメント製「TMA Q400」)を用いて、窒素雰囲気下、下記の条件で測定した。
昇温速度5℃/分で-50℃から200℃まで昇温(1st scan)→200℃で5分間保持→降温速度5℃/分で-50℃まで降温→-50℃で5分間保持→再び昇温速度5℃/分で200℃まで昇温(2nd scan)
2nd scanの80℃における線膨張係数を求めた。 (4) Linear expansion coefficient A prismatic test piece (length 10 mm × width) so that the length direction of the test piece is the resin flow direction (MD) from the central portion of the dumbbell piece obtained in (3) above. A prismatic test piece (length 10 mm x width 5 mm x) is cut out so that the length direction of the test piece is orthogonal to the resin flow direction (MD) (TD). (
The measurement was performed under the following conditions under a nitrogen atmosphere using a thermomechanical analyzer (“TMA Q400” manufactured by TA Instruments).
Raise from -50 ° C to 200 ° C at a temperature rise rate of 5 ° C / min (1st scan) → Hold at 200 ° C for 5 minutes → Decrease to -50 ° C at a temperature drop rate of 5 ° C / min → Hold at -50 ° C for 5 minutes → The temperature rises to 200 ° C again at a heating rate of 5 ° C / min (2nd scan).
The coefficient of linear expansion of 2nd scanner at 80 ° C. was determined.
(5)バリ長さ
十分に乾燥した樹脂組成物のペレットを、ファナック社製射出成形機(α-100iA)を用いて、用いた半芳香族ポリアミドの融点をTmとして、シリンダー温度(Tm+15℃)、金型温度(Tm-190℃)の条件で、直径60mm×厚み3mmの円板状試験片を作製した。金型は、流動末端に厚み50μmのガスベントを有するものを用いた。
得られた円板状試験片の、金型のガスベント部に対応する位置に生じたバリの長さを、マイクロスコープを用いて測定した。 (5) Burr length Cylinder temperature (Tm + 15 ° C.) of sufficiently dried resin composition pellets using a FANUC injection molding machine (α-100iA) with the melting point of the semi-aromatic polyamide used as Tm. , A disk-shaped test piece having a diameter of 60 mm and a thickness of 3 mm was produced under the condition of a mold temperature (Tm-190 ° C.). A mold having a gas vent having a thickness of 50 μm at the end of the flow was used.
The length of the burr generated at the position corresponding to the gas vent portion of the mold of the obtained disc-shaped test piece was measured using a microscope.
十分に乾燥した樹脂組成物のペレットを、ファナック社製射出成形機(α-100iA)を用いて、用いた半芳香族ポリアミドの融点をTmとして、シリンダー温度(Tm+15℃)、金型温度(Tm-190℃)の条件で、直径60mm×厚み3mmの円板状試験片を作製した。金型は、流動末端に厚み50μmのガスベントを有するものを用いた。
得られた円板状試験片の、金型のガスベント部に対応する位置に生じたバリの長さを、マイクロスコープを用いて測定した。 (5) Burr length Cylinder temperature (Tm + 15 ° C.) of sufficiently dried resin composition pellets using a FANUC injection molding machine (α-100iA) with the melting point of the semi-aromatic polyamide used as Tm. , A disk-shaped test piece having a diameter of 60 mm and a thickness of 3 mm was produced under the condition of a mold temperature (Tm-190 ° C.). A mold having a gas vent having a thickness of 50 μm at the end of the flow was used.
The length of the burr generated at the position corresponding to the gas vent portion of the mold of the obtained disc-shaped test piece was measured using a microscope.
(6)水蒸気透過量
十分に乾燥した樹脂組成物のペレットを、ファナック社製射出成形機(α-100iA)を用いて、用いた半芳香族ポリアミドの融点をTmとして、シリンダー温度(Tm+15℃)、金型温度(Tm-190℃)の条件で、縦60mm×横60mm×厚み1mmの板状試験片を作製した。
得られた板状試験片を用いて図1のように、試験液として純水を入れたカップ状の試験治具の開口部、直径40mmの蓋部分となるように試験片を取り付け、窒素流入、65℃雰囲気下で1000時間静置した後、試験前、試験後の質量を測定し、水蒸気透過量を求めた。 (6) Amount of water vapor permeation Cylinder temperature (Tm + 15 ° C.) of sufficiently dried resin composition pellets using an injection molding machine (α-100iA) manufactured by FANUC, with the melting point of the semi-aromatic polyamide used as Tm. , A plate-shaped test piece having a length of 60 mm, a width of 60 mm, and a thickness of 1 mm was produced under the condition of a mold temperature (Tm-190 ° C.).
Using the obtained plate-shaped test piece, as shown in FIG. 1, attach the test piece so as to form an opening of a cup-shaped test jig containing pure water as a test solution and a lid portion having a diameter of 40 mm, and nitrogen inflow. After allowing to stand for 1000 hours in an atmosphere of 65 ° C., the mass before and after the test was measured to determine the amount of water vapor permeation.
十分に乾燥した樹脂組成物のペレットを、ファナック社製射出成形機(α-100iA)を用いて、用いた半芳香族ポリアミドの融点をTmとして、シリンダー温度(Tm+15℃)、金型温度(Tm-190℃)の条件で、縦60mm×横60mm×厚み1mmの板状試験片を作製した。
得られた板状試験片を用いて図1のように、試験液として純水を入れたカップ状の試験治具の開口部、直径40mmの蓋部分となるように試験片を取り付け、窒素流入、65℃雰囲気下で1000時間静置した後、試験前、試験後の質量を測定し、水蒸気透過量を求めた。 (6) Amount of water vapor permeation Cylinder temperature (Tm + 15 ° C.) of sufficiently dried resin composition pellets using an injection molding machine (α-100iA) manufactured by FANUC, with the melting point of the semi-aromatic polyamide used as Tm. , A plate-shaped test piece having a length of 60 mm, a width of 60 mm, and a thickness of 1 mm was produced under the condition of a mold temperature (Tm-190 ° C.).
Using the obtained plate-shaped test piece, as shown in FIG. 1, attach the test piece so as to form an opening of a cup-shaped test jig containing pure water as a test solution and a lid portion having a diameter of 40 mm, and nitrogen inflow. After allowing to stand for 1000 hours in an atmosphere of 65 ° C., the mass before and after the test was measured to determine the amount of water vapor permeation.
B.原料
実施例および比較例で用いた原料を以下に示す。 B. Raw Materials The raw materials used in Examples and Comparative Examples are shown below.
実施例および比較例で用いた原料を以下に示す。 B. Raw Materials The raw materials used in Examples and Comparative Examples are shown below.
(1)ジカルボン酸成分
・TPA:テレフタル酸
(2)ジアミン成分
・DDA:1,10-デカンジアミン
・NDA:1,9-ノナンジアミン
・MODA:2-メチル-1,8-オクタンジアミン
(3)モノカルボン酸成分
・STA:ステアリン酸
(4)重合触媒
・SHP:次亜リン酸ナトリウム一水和物 (1) Dicarboxylic acid component ・ TPA: Terephthalic acid (2) Diamine component ・ DDA: 1,10-decanediamine ・ NDA: 1,9-nonandiamine ・ MODEA: 2-methyl-1,8-octanediamine (3) Mono Carboxylic acid component ・ STA: Steric acid (4) Polymerization catalyst ・ SHP: Sodium hypophosphate monohydrate
・TPA:テレフタル酸
(2)ジアミン成分
・DDA:1,10-デカンジアミン
・NDA:1,9-ノナンジアミン
・MODA:2-メチル-1,8-オクタンジアミン
(3)モノカルボン酸成分
・STA:ステアリン酸
(4)重合触媒
・SHP:次亜リン酸ナトリウム一水和物 (1) Dicarboxylic acid component ・ TPA: Terephthalic acid (2) Diamine component ・ DDA: 1,10-decanediamine ・ NDA: 1,9-nonandiamine ・ MODEA: 2-methyl-1,8-octanediamine (3) Mono Carboxylic acid component ・ STA: Steric acid (4) Polymerization catalyst ・ SHP: Sodium hypophosphate monohydrate
(5)半芳香族ポリアミド
・ポリアミド10T
[工程(i)]
ジカルボン成分としてTPA粉末4560質量部、重合触媒としてSHP9質量部、末端封鎖剤としてのSTA490質量部を、リボンブレンダー式の反応装置に入れ、窒素密閉下、ダブルヘリカル型の攪拌翼を用いて回転数30rpmで撹拌しながら170℃に加熱した。その後、温度を170℃に保ち、かつ回転数を30rpmに保ったまま、液注装置を用いて、100℃に加温したDDA4950質量部を、33質量部/分の速度で、2.5時間かけて連続的(連続液注方式)にTPA粉末に添加し反応物を得た。原料モノマーのモル比は、DDA:TPA:STA=49.6:47.4:3.0(原料モノマーの末端基の当量比率はDDA:TPA:STA=50.4:48.1:1.5)であった。
[工程(ii)]
工程(i)で得られた反応物を、引き続き工程(i)で用いたリボンブレンダー式の反応装置内で、窒素気流下、230℃に昇温し、230℃で5時間加熱して重合しポリアミド10Tを得た。
得られたポリアミド10Tの融点は317℃であり、相対粘度は2.25であった。 (5) Semi-aromatic polyamide / polyamide 10T
[Step (i)]
4560 parts by mass of TPA powder as a dicarboxylic component, 9 parts by mass of SHP as a polymerization catalyst, and 490 parts by mass of STA as a terminal sealant are placed in a ribbon blender type reactor, and the number of revolutions is increased using a double helical type stirring blade under nitrogen sealing. The mixture was heated to 170 ° C. with stirring at 30 rpm. Then, while keeping the temperature at 170 ° C. and the rotation speed at 30 rpm, the DDA 4950 parts by mass heated to 100 ° C. was heated to 100 ° C. at a rate of 33 parts by mass / minute for 2.5 hours. It was continuously added to the TPA powder (continuous liquid injection method) to obtain a reaction product. The molar ratio of the raw material monomer is DDA: TPA: STA = 49.6: 47.4: 3.0 (the equivalent ratio of the terminal groups of the raw material monomer is DDA: TPA: STA = 50.4: 48.1: 1. It was 5).
[Step (ii)]
The reactant obtained in step (i) was subsequently heated to 230 ° C. under a nitrogen stream in the ribbon blender type reactor used in step (i) and heated at 230 ° C. for 5 hours for polymerization. Polyamide 10T was obtained.
The obtained polyamide 10T had a melting point of 317 ° C. and a relative viscosity of 2.25.
・ポリアミド10T
[工程(i)]
ジカルボン成分としてTPA粉末4560質量部、重合触媒としてSHP9質量部、末端封鎖剤としてのSTA490質量部を、リボンブレンダー式の反応装置に入れ、窒素密閉下、ダブルヘリカル型の攪拌翼を用いて回転数30rpmで撹拌しながら170℃に加熱した。その後、温度を170℃に保ち、かつ回転数を30rpmに保ったまま、液注装置を用いて、100℃に加温したDDA4950質量部を、33質量部/分の速度で、2.5時間かけて連続的(連続液注方式)にTPA粉末に添加し反応物を得た。原料モノマーのモル比は、DDA:TPA:STA=49.6:47.4:3.0(原料モノマーの末端基の当量比率はDDA:TPA:STA=50.4:48.1:1.5)であった。
[工程(ii)]
工程(i)で得られた反応物を、引き続き工程(i)で用いたリボンブレンダー式の反応装置内で、窒素気流下、230℃に昇温し、230℃で5時間加熱して重合しポリアミド10Tを得た。
得られたポリアミド10Tの融点は317℃であり、相対粘度は2.25であった。 (5) Semi-aromatic polyamide / polyamide 10T
[Step (i)]
4560 parts by mass of TPA powder as a dicarboxylic component, 9 parts by mass of SHP as a polymerization catalyst, and 490 parts by mass of STA as a terminal sealant are placed in a ribbon blender type reactor, and the number of revolutions is increased using a double helical type stirring blade under nitrogen sealing. The mixture was heated to 170 ° C. with stirring at 30 rpm. Then, while keeping the temperature at 170 ° C. and the rotation speed at 30 rpm, the DDA 4950 parts by mass heated to 100 ° C. was heated to 100 ° C. at a rate of 33 parts by mass / minute for 2.5 hours. It was continuously added to the TPA powder (continuous liquid injection method) to obtain a reaction product. The molar ratio of the raw material monomer is DDA: TPA: STA = 49.6: 47.4: 3.0 (the equivalent ratio of the terminal groups of the raw material monomer is DDA: TPA: STA = 50.4: 48.1: 1. It was 5).
[Step (ii)]
The reactant obtained in step (i) was subsequently heated to 230 ° C. under a nitrogen stream in the ribbon blender type reactor used in step (i) and heated at 230 ° C. for 5 hours for polymerization. Polyamide 10T was obtained.
The obtained polyamide 10T had a melting point of 317 ° C. and a relative viscosity of 2.25.
・ポリアミド9T
ジアミン成分をNDA/MODA=85/15(モル比)に変更する以外はポリアミド10Tを製造した場合と同様の操作をおこなって、ポリアミド9Tを得た。
得られたポリアミド9Tの融点は300℃であり、相対粘度は2.31であった。 ・ Polyamide 9T
Polyamide 9T was obtained by performing the same operation as in the case of producing polyamide 10T except that the diamine component was changed to NDA / MODE = 85/15 (molar ratio).
The obtained polyamide 9T had a melting point of 300 ° C. and a relative viscosity of 2.31.
ジアミン成分をNDA/MODA=85/15(モル比)に変更する以外はポリアミド10Tを製造した場合と同様の操作をおこなって、ポリアミド9Tを得た。
得られたポリアミド9Tの融点は300℃であり、相対粘度は2.31であった。 ・ Polyamide 9T
Polyamide 9T was obtained by performing the same operation as in the case of producing polyamide 10T except that the diamine component was changed to NDA / MODE = 85/15 (molar ratio).
The obtained polyamide 9T had a melting point of 300 ° C. and a relative viscosity of 2.31.
(6)充填材(B)
・ガラスフレークA:日本板硝子社製REFG-315、平均粒径0.5mm、平均厚さ5μm
・ガラスフレークB:日本板硝子社製MEG160FY-M06、平均粒径0.16mm、平均厚さ0.7μm
・マイカ(白雲母):クラレ社製300-D
・ガラス繊維:日本電気硝子社製T-262H、アミノシラン処理品、繊維径11μm×繊維長3mm
・炭素繊維:三菱ケミカル社製TR06NLB5K、繊維径7μm×繊維長6mm
・ワラストナイト:キンセイマテック社製SH-1250S、アミノシラン処理品、繊維径8μm、アスペクト比15
・炭酸カルシウム:東洋ファインケミカル社製P-70 (6) Filler (B)
-Glass flake A: REFG-315 manufactured by Nippon Sheet Glass, average particle size 0.5 mm, average thickness 5 μm
-Glass flakes B: MEG160FY-M06 manufactured by Nippon Sheet Glass, average particle size 0.16 mm, average thickness 0.7 μm
・ Mica (Muscovite): Kuraray 300-D
-Glass fiber: T-262H manufactured by Nippon Electric Glass Co., Ltd., aminosilane treated product, fiber diameter 11 μm xfiber length 3 mm
-Carbon fiber: TR06NLB5K manufactured by Mitsubishi Chemical Corporation, fiber diameter 7 μm x fiber length 6 mm
-Wallast Night: SH-1250S manufactured by Kinsei Matek, aminosilane treated product, fiber diameter 8 μm, aspect ratio 15
-Calcium carbonate: P-70 manufactured by Toyo Fine Chemicals Co., Ltd.
・ガラスフレークA:日本板硝子社製REFG-315、平均粒径0.5mm、平均厚さ5μm
・ガラスフレークB:日本板硝子社製MEG160FY-M06、平均粒径0.16mm、平均厚さ0.7μm
・マイカ(白雲母):クラレ社製300-D
・ガラス繊維:日本電気硝子社製T-262H、アミノシラン処理品、繊維径11μm×繊維長3mm
・炭素繊維:三菱ケミカル社製TR06NLB5K、繊維径7μm×繊維長6mm
・ワラストナイト:キンセイマテック社製SH-1250S、アミノシラン処理品、繊維径8μm、アスペクト比15
・炭酸カルシウム:東洋ファインケミカル社製P-70 (6) Filler (B)
-Glass flake A: REFG-315 manufactured by Nippon Sheet Glass, average particle size 0.5 mm, average thickness 5 μm
-Glass flakes B: MEG160FY-M06 manufactured by Nippon Sheet Glass, average particle size 0.16 mm, average thickness 0.7 μm
・ Mica (Muscovite): Kuraray 300-D
-Glass fiber: T-262H manufactured by Nippon Electric Glass Co., Ltd., aminosilane treated product, fiber diameter 11 μm x
-Carbon fiber: TR06NLB5K manufactured by Mitsubishi Chemical Corporation, fiber diameter 7 μm x fiber length 6 mm
-Wallast Night: SH-1250S manufactured by Kinsei Matek, aminosilane treated product, fiber diameter 8 μm, aspect ratio 15
-Calcium carbonate: P-70 manufactured by Toyo Fine Chemicals Co., Ltd.
(7)ポリフェニレンエーテル(C)
・SABIC社製PPE PPO640 (7) Polyphenylene ether (C)
・ SABIC PPE PPO640
・SABIC社製PPE PPO640 (7) Polyphenylene ether (C)
・ SABIC PPE PPO640
(8)非晶性ポリアミド
・エムスケミージャパン社製GrivoryG21 (8) Amorphous polyamide, Grivory G21 manufactured by Ems-Chemie Japan Co., Ltd.
・エムスケミージャパン社製GrivoryG21 (8) Amorphous polyamide, Grivory G21 manufactured by Ems-Chemie Japan Co., Ltd.
実施例1
半芳香族ポリアミド(ポリアミド10T)100質量部を、スクリュー径37mm、L/D40の同方向二軸押出機(東芝機械社製TEM37BS)の主供給口に供給し、サイドフィーダーより板状充填材(ガラスフレークA)100質量部を供給し、溶融混練をおこなった。シリンダー温度は(ポリアミド10Tの融点+10℃)、スクリュー回転数250rpm、吐出量35kg/時間であった。その後、ストランド状に引き取った後、水槽に通して冷却固化し、それをペレタイザーでカッティングしてポリアミド樹脂組成物ペレットを得た。 Example 1
100 parts by mass of semi-aromatic polyamide (polyamide 10T) is supplied to the main supply port of a twin-screw extruder (TEM37BS manufactured by Toshiba Machine Co., Ltd.) having a screw diameter of 37 mm and L / D40, and a plate-like filler (plate-like filler) is supplied from a side feeder. Glass flakes A) 100 parts by mass were supplied and melt-kneaded. The cylinder temperature was (melting point of polyamide 10T + 10 ° C.), screw rotation speed was 250 rpm, and discharge rate was 35 kg / hour. Then, after taking it into a strand shape, it was cooled and solidified by passing it through a water tank, and it was cut with a pelletizer to obtain a polyamide resin composition pellet.
半芳香族ポリアミド(ポリアミド10T)100質量部を、スクリュー径37mm、L/D40の同方向二軸押出機(東芝機械社製TEM37BS)の主供給口に供給し、サイドフィーダーより板状充填材(ガラスフレークA)100質量部を供給し、溶融混練をおこなった。シリンダー温度は(ポリアミド10Tの融点+10℃)、スクリュー回転数250rpm、吐出量35kg/時間であった。その後、ストランド状に引き取った後、水槽に通して冷却固化し、それをペレタイザーでカッティングしてポリアミド樹脂組成物ペレットを得た。 Example 1
100 parts by mass of semi-aromatic polyamide (polyamide 10T) is supplied to the main supply port of a twin-screw extruder (TEM37BS manufactured by Toshiba Machine Co., Ltd.) having a screw diameter of 37 mm and L / D40, and a plate-like filler (plate-like filler) is supplied from a side feeder. Glass flakes A) 100 parts by mass were supplied and melt-kneaded. The cylinder temperature was (melting point of polyamide 10T + 10 ° C.), screw rotation speed was 250 rpm, and discharge rate was 35 kg / hour. Then, after taking it into a strand shape, it was cooled and solidified by passing it through a water tank, and it was cut with a pelletizer to obtain a polyamide resin composition pellet.
実施例2~17、30~41、比較例1~8
樹脂組成物の組成を表1、2に示すように変更した以外は、実施例1と同様の操作をおこなって、ポリアミド樹脂組成物ペレットを得た。
なお、比較例7では、充填材の含有量が多かったため、ペレットを得ることができなかった。 Examples 2 to 17, 30 to 41, Comparative Examples 1 to 8
The same operation as in Example 1 was carried out except that the composition of the resin composition was changed as shown in Tables 1 and 2, to obtain polyamide resin composition pellets.
In Comparative Example 7, pellets could not be obtained because the content of the filler was high.
樹脂組成物の組成を表1、2に示すように変更した以外は、実施例1と同様の操作をおこなって、ポリアミド樹脂組成物ペレットを得た。
なお、比較例7では、充填材の含有量が多かったため、ペレットを得ることができなかった。 Examples 2 to 17, 30 to 41, Comparative Examples 1 to 8
The same operation as in Example 1 was carried out except that the composition of the resin composition was changed as shown in Tables 1 and 2, to obtain polyamide resin composition pellets.
In Comparative Example 7, pellets could not be obtained because the content of the filler was high.
実施例18
半芳香族ポリアミド(ポリアミド10T)100質量部とポリフェニレンエーテル25質量部をドライブレンドし、混合物を得た。
上記混合物を、スクリュー径37mm、L/D40の同方向二軸押出機(東芝機械社製TEM37BS)の主供給口に供給し、サイドフィーダーより板状充填材(ガラスフレークA)125質量部を供給し、溶融混練をおこなった。シリンダー温度は(ポリアミド10Tの融点+10℃)、スクリュー回転数250rpm、吐出量35kg/時間であった。その後、ストランド状に引き取った後、水槽に通して冷却固化し、それをペレタイザーでカッティングしてポリアミド樹脂組成物ペレットを得た。 Example 18
A mixture was obtained by dry blending 100 parts by mass of a semi-aromatic polyamide (polyamide 10T) and 25 parts by mass of polyphenylene ether.
The above mixture is supplied to the main supply port of a twin-screw extruder (TEM37BS manufactured by Toshiba Machine Co., Ltd.) having a screw diameter of 37 mm and L / D40, and 125 parts by mass of a plate-shaped filler (glass flake A) is supplied from a side feeder. Then, melt kneading was performed. The cylinder temperature was (melting point of polyamide 10T + 10 ° C.), screw rotation speed was 250 rpm, and discharge rate was 35 kg / hour. Then, after taking it into a strand shape, it was cooled and solidified by passing it through a water tank, and it was cut with a pelletizer to obtain a polyamide resin composition pellet.
半芳香族ポリアミド(ポリアミド10T)100質量部とポリフェニレンエーテル25質量部をドライブレンドし、混合物を得た。
上記混合物を、スクリュー径37mm、L/D40の同方向二軸押出機(東芝機械社製TEM37BS)の主供給口に供給し、サイドフィーダーより板状充填材(ガラスフレークA)125質量部を供給し、溶融混練をおこなった。シリンダー温度は(ポリアミド10Tの融点+10℃)、スクリュー回転数250rpm、吐出量35kg/時間であった。その後、ストランド状に引き取った後、水槽に通して冷却固化し、それをペレタイザーでカッティングしてポリアミド樹脂組成物ペレットを得た。 Example 18
A mixture was obtained by dry blending 100 parts by mass of a semi-aromatic polyamide (polyamide 10T) and 25 parts by mass of polyphenylene ether.
The above mixture is supplied to the main supply port of a twin-screw extruder (TEM37BS manufactured by Toshiba Machine Co., Ltd.) having a screw diameter of 37 mm and L / D40, and 125 parts by mass of a plate-shaped filler (glass flake A) is supplied from a side feeder. Then, melt kneading was performed. The cylinder temperature was (melting point of polyamide 10T + 10 ° C.), screw rotation speed was 250 rpm, and discharge rate was 35 kg / hour. Then, after taking it into a strand shape, it was cooled and solidified by passing it through a water tank, and it was cut with a pelletizer to obtain a polyamide resin composition pellet.
実施例19~29、比較例9
樹脂組成を表1に示すように変更した以外は、実施例18と同様の操作をおこなって、ポリアミド樹脂組成物ペレットを得た。 Examples 19-29, Comparative Example 9
The same operation as in Example 18 was carried out except that the resin composition was changed as shown in Table 1, to obtain polyamide resin composition pellets.
樹脂組成を表1に示すように変更した以外は、実施例18と同様の操作をおこなって、ポリアミド樹脂組成物ペレットを得た。 Examples 19-29, Comparative Example 9
The same operation as in Example 18 was carried out except that the resin composition was changed as shown in Table 1, to obtain polyamide resin composition pellets.
実施例、比較例で得られたポリアミド樹脂組成物の樹脂組成およびその特性値を表1、2に示す。
Tables 1 and 2 show the resin composition of the polyamide resin compositions obtained in Examples and Comparative Examples and their characteristic values.
実施例1~41のポリアミド樹脂組成物は、曲げ強度が100MPa以上であり、曲げ弾性率が10GPa以上であり、機械特性に優れていた。また、得られた成形体は、流動方向(MD)および直交方向(TD)いずれの方向の80℃の線膨張係数が70×10-6(1/℃)以下であり、寸法安定性に優れていた。さらに、バリ長さも150μm以下であり、成形性に優れていた。その上、水蒸気透過量も150mg以下であり、低透湿性に優れていた。
実施例6~9のポリアミド樹脂組成物と比較例4のポリアミド樹脂組成物、および、実施例10~13のポリアミド樹脂組成物と比較例5のポリアミド樹脂組成物を対比することにより、充填材の含有量が同一であっても、板状充填材と繊維状充填材を併用すると、得られる成形体は、流動方向(MD)および直交方向(TD)のいずれの方向に対しても、寸法安定性が向上することがわかる。
実施例1、2、4、5、11、13~17と実施例18~27を対比することにより、ポリアミド10Tの一部をポリフェニレンエーテルに変更すると、曲げ強度が高くなり機械特性が向上し、線膨張係数が低くなり寸法安定性が向上することがわかる。 The polyamide resin compositions of Examples 1 to 41 had a bending strength of 100 MPa or more, a flexural modulus of 10 GPa or more, and were excellent in mechanical properties. Further, the obtained molded product has a linear expansion coefficient of 70 × 10-6 (1 / ° C.) or less at 80 ° C. in either the flow direction (MD) or the orthogonal direction (TD), and is excellent in dimensional stability. Was there. Further, the burr length was 150 μm or less, and the moldability was excellent. In addition, the amount of water vapor permeation was 150 mg or less, and it was excellent in low moisture permeability.
By comparing the polyamide resin composition of Examples 6 to 9 with the polyamide resin composition of Comparative Example 4, and the polyamide resin composition of Examples 10 to 13 with the polyamide resin composition of Comparative Example 5, the filler can be used as a filler. Even if the content is the same, when the plate-shaped filler and the fibrous filler are used together, the obtained molded product is dimensionally stable in both the flow direction (MD) and the orthogonal direction (TD). It can be seen that the sex is improved.
By comparing Examples 1, 2, 4, 5, 11, 13 to 17 with Examples 18 to 27, when a part of the polyamide 10T is changed to polyphenylene ether, the bending strength is increased and the mechanical properties are improved. It can be seen that the coefficient of linear expansion is lowered and the dimensional stability is improved.
実施例6~9のポリアミド樹脂組成物と比較例4のポリアミド樹脂組成物、および、実施例10~13のポリアミド樹脂組成物と比較例5のポリアミド樹脂組成物を対比することにより、充填材の含有量が同一であっても、板状充填材と繊維状充填材を併用すると、得られる成形体は、流動方向(MD)および直交方向(TD)のいずれの方向に対しても、寸法安定性が向上することがわかる。
実施例1、2、4、5、11、13~17と実施例18~27を対比することにより、ポリアミド10Tの一部をポリフェニレンエーテルに変更すると、曲げ強度が高くなり機械特性が向上し、線膨張係数が低くなり寸法安定性が向上することがわかる。 The polyamide resin compositions of Examples 1 to 41 had a bending strength of 100 MPa or more, a flexural modulus of 10 GPa or more, and were excellent in mechanical properties. Further, the obtained molded product has a linear expansion coefficient of 70 × 10-6 (1 / ° C.) or less at 80 ° C. in either the flow direction (MD) or the orthogonal direction (TD), and is excellent in dimensional stability. Was there. Further, the burr length was 150 μm or less, and the moldability was excellent. In addition, the amount of water vapor permeation was 150 mg or less, and it was excellent in low moisture permeability.
By comparing the polyamide resin composition of Examples 6 to 9 with the polyamide resin composition of Comparative Example 4, and the polyamide resin composition of Examples 10 to 13 with the polyamide resin composition of Comparative Example 5, the filler can be used as a filler. Even if the content is the same, when the plate-shaped filler and the fibrous filler are used together, the obtained molded product is dimensionally stable in both the flow direction (MD) and the orthogonal direction (TD). It can be seen that the sex is improved.
By comparing Examples 1, 2, 4, 5, 11, 13 to 17 with Examples 18 to 27, when a part of the polyamide 10T is changed to polyphenylene ether, the bending strength is increased and the mechanical properties are improved. It can be seen that the coefficient of linear expansion is lowered and the dimensional stability is improved.
比較例1~3、6のポリアミド樹脂組成物は、充填材の含有量が少なかったため、曲げ強度が低く、成形体は線膨張係数が高くなり、バリ長さが長かった。
比較例4~5のポリアミド樹脂組成物は、繊維状充填材のみを用いたため、成形体はTDの線膨張係数が高く、バリ長さが長かった。
比較例8、9のポリアミド樹脂組成物は、板状充填材と繊維状充填材の質量比が好ましい範囲でなかったため、成形体はTDの線膨張係数が高かった。 The polyamide resin compositions of Comparative Examples 1 to 3 and 6 had a low bending strength because the content of the filler was small, the molded product had a high coefficient of linear expansion, and the burr length was long.
Since the polyamide resin compositions of Comparative Examples 4 to 5 used only the fibrous filler, the molded product had a high coefficient of linear expansion of TD and a long burr length.
In the polyamide resin compositions of Comparative Examples 8 and 9, the mass ratio of the plate-like filler to the fibrous filler was not in the preferable range, so that the molded product had a high coefficient of linear expansion of TD.
比較例4~5のポリアミド樹脂組成物は、繊維状充填材のみを用いたため、成形体はTDの線膨張係数が高く、バリ長さが長かった。
比較例8、9のポリアミド樹脂組成物は、板状充填材と繊維状充填材の質量比が好ましい範囲でなかったため、成形体はTDの線膨張係数が高かった。 The polyamide resin compositions of Comparative Examples 1 to 3 and 6 had a low bending strength because the content of the filler was small, the molded product had a high coefficient of linear expansion, and the burr length was long.
Since the polyamide resin compositions of Comparative Examples 4 to 5 used only the fibrous filler, the molded product had a high coefficient of linear expansion of TD and a long burr length.
In the polyamide resin compositions of Comparative Examples 8 and 9, the mass ratio of the plate-like filler to the fibrous filler was not in the preferable range, so that the molded product had a high coefficient of linear expansion of TD.
1 試験片
2 パッキン
3 試験治具
4 試験液 1Test piece 2 Packing 3 Test jig 4 Test liquid
2 パッキン
3 試験治具
4 試験液 1
Claims (9)
- 半芳香族ポリアミド(A)100質量部と、充填材(B)70~250質量部とを含有する樹脂組成物であって、
射出成形体の、射出成形時の樹脂の流動方向と直交する方向における、80℃での線膨張係数が70×10-6(1/℃)以下であることを特徴とするポリアミド樹脂組成物。 A resin composition containing 100 parts by mass of a semi-aromatic polyamide (A) and 70 to 250 parts by mass of a filler (B).
A polyamide resin composition characterized by having a linear expansion coefficient at 80 ° C. of 70 × 10 -6 (1 / ° C.) or less in a direction orthogonal to the flow direction of the resin at the time of injection molding of the injection molded product. - 射出成形体の、射出成形時の金型のガスベント部に対応する位置において発生するバリの長さが150μm以下であることを特徴とする請求項1に記載のポリアミド樹脂組成物。 The polyamide resin composition according to claim 1, wherein the length of the burr generated at the position corresponding to the gas vent portion of the mold during injection molding of the injection molded product is 150 μm or less.
- 充填材(B)が、板状充填材と繊維状充填材とからなることを特徴とする請求項1または2に記載のポリアミド樹脂組成物。 The polyamide resin composition according to claim 1 or 2, wherein the filler (B) is composed of a plate-shaped filler and a fibrous filler.
- 板状充填材と繊維状充填材の質量比(板状充填材/繊維状充填材)が50/50~90/10であることを特徴とする請求項3に記載のポリアミド樹脂組成物。 The polyamide resin composition according to claim 3, wherein the mass ratio of the plate-shaped filler to the fibrous filler (plate-shaped filler / fibrous filler) is 50/50 to 90/10.
- 板状充填材がガラスフレークであり、繊維状充填材がガラス繊維であることを特徴とする請求項3または4に記載のポリアミド樹脂組成物。 The polyamide resin composition according to claim 3 or 4, wherein the plate-shaped filler is glass flakes and the fibrous filler is glass fiber.
- 板状充填材がガラスフレークであり、繊維状充填材が炭素繊維であることを特徴とする請求項3または4に記載のポリアミド樹脂組成物。 The polyamide resin composition according to claim 3 or 4, wherein the plate-shaped filler is glass flakes and the fibrous filler is carbon fiber.
- さらにポリフェニレンエーテル(C)20~110質量部を含有することを特徴とする請求項1~6のいずれかに記載のポリアミド樹脂組成物。 The polyamide resin composition according to any one of claims 1 to 6, further containing 20 to 110 parts by mass of polyphenylene ether (C).
- 請求項1~7のいずれかに記載のポリアミド樹脂組成物を成形してなる成形体。 A molded product obtained by molding the polyamide resin composition according to any one of claims 1 to 7.
- 請求項8に記載の成形体からなる車載カメラ用部品。 A component for an in-vehicle camera made of the molded body according to claim 8.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202180071575.0A CN116323758A (en) | 2020-10-20 | 2021-10-15 | Polyamide resin composition, molded article comprising same, and in-vehicle camera component |
JP2022557477A JPWO2022085584A1 (en) | 2020-10-20 | 2021-10-15 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-176137 | 2020-10-20 | ||
JP2020176137 | 2020-10-20 | ||
JP2021-130424 | 2021-08-10 | ||
JP2021130424 | 2021-08-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022085584A1 true WO2022085584A1 (en) | 2022-04-28 |
Family
ID=81290523
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/038212 WO2022085584A1 (en) | 2020-10-20 | 2021-10-15 | Polyamide resin composition, molded body formed from same, and component for in-vehicle cameras |
Country Status (4)
Country | Link |
---|---|
JP (1) | JPWO2022085584A1 (en) |
CN (1) | CN116323758A (en) |
TW (1) | TW202227556A (en) |
WO (1) | WO2022085584A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024069817A1 (en) * | 2022-09-28 | 2024-04-04 | 住友電工ウインテック株式会社 | Winding bobbin |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06240132A (en) * | 1993-02-18 | 1994-08-30 | Fujitsu Ltd | Polyamide resin composition and casing body for electronic equipment |
JP2001106908A (en) * | 1999-08-02 | 2001-04-17 | E I Du Pont De Nemours & Co | Aromatic polyamide composition for molding |
JP2006193727A (en) * | 2004-12-13 | 2006-07-27 | Toray Ind Inc | Polyamide resin composition, molded product, and casing |
JP2010168559A (en) * | 2008-12-26 | 2010-08-05 | Toray Ind Inc | Polyamide resin composition and molded article comprising the same |
JP2010534728A (en) * | 2007-07-23 | 2010-11-11 | ディーエスエム アイピー アセッツ ビー.ブイ. | Polyamide composition and bobbin produced therefrom |
JP2011148997A (en) * | 2009-12-25 | 2011-08-04 | Toray Ind Inc | Polyamide resin composition |
JP2011236443A (en) * | 2005-09-22 | 2011-11-24 | Fujitsu Ltd | Plant-based resin-containing composition and plant-based resin-containing molded body using the same |
JP2018051911A (en) * | 2016-09-28 | 2018-04-05 | 富士ゼロックス株式会社 | Resin composition and resin molding |
WO2019069805A1 (en) * | 2017-10-03 | 2019-04-11 | 三菱エンジニアリングプラスチックス株式会社 | Thermoplastic resin composition, resin molded article, method for manufacturing plated resin molded article, and method for manufacturing portable electronic device component |
JP2020180280A (en) * | 2019-04-16 | 2020-11-05 | エーエムエス−パテント アクチェンゲゼルシャフト | Reinforced thermoplastic molding composition |
WO2021149674A1 (en) * | 2020-01-24 | 2021-07-29 | 東洋紡株式会社 | Method for producing polyamide resin composition |
-
2021
- 2021-10-15 WO PCT/JP2021/038212 patent/WO2022085584A1/en active Application Filing
- 2021-10-15 CN CN202180071575.0A patent/CN116323758A/en active Pending
- 2021-10-15 JP JP2022557477A patent/JPWO2022085584A1/ja active Pending
- 2021-10-20 TW TW110138899A patent/TW202227556A/en unknown
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06240132A (en) * | 1993-02-18 | 1994-08-30 | Fujitsu Ltd | Polyamide resin composition and casing body for electronic equipment |
JP2001106908A (en) * | 1999-08-02 | 2001-04-17 | E I Du Pont De Nemours & Co | Aromatic polyamide composition for molding |
JP2006193727A (en) * | 2004-12-13 | 2006-07-27 | Toray Ind Inc | Polyamide resin composition, molded product, and casing |
JP2011236443A (en) * | 2005-09-22 | 2011-11-24 | Fujitsu Ltd | Plant-based resin-containing composition and plant-based resin-containing molded body using the same |
JP2010534728A (en) * | 2007-07-23 | 2010-11-11 | ディーエスエム アイピー アセッツ ビー.ブイ. | Polyamide composition and bobbin produced therefrom |
JP2010168559A (en) * | 2008-12-26 | 2010-08-05 | Toray Ind Inc | Polyamide resin composition and molded article comprising the same |
JP2011148997A (en) * | 2009-12-25 | 2011-08-04 | Toray Ind Inc | Polyamide resin composition |
JP2018051911A (en) * | 2016-09-28 | 2018-04-05 | 富士ゼロックス株式会社 | Resin composition and resin molding |
WO2019069805A1 (en) * | 2017-10-03 | 2019-04-11 | 三菱エンジニアリングプラスチックス株式会社 | Thermoplastic resin composition, resin molded article, method for manufacturing plated resin molded article, and method for manufacturing portable electronic device component |
JP2020180280A (en) * | 2019-04-16 | 2020-11-05 | エーエムエス−パテント アクチェンゲゼルシャフト | Reinforced thermoplastic molding composition |
WO2021149674A1 (en) * | 2020-01-24 | 2021-07-29 | 東洋紡株式会社 | Method for producing polyamide resin composition |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024069817A1 (en) * | 2022-09-28 | 2024-04-04 | 住友電工ウインテック株式会社 | Winding bobbin |
Also Published As
Publication number | Publication date |
---|---|
CN116323758A (en) | 2023-06-23 |
JPWO2022085584A1 (en) | 2022-04-28 |
TW202227556A (en) | 2022-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3409713B1 (en) | Molded article and method for production thereof | |
KR102396033B1 (en) | Polyamide moulding compound, moulded article produced herefrom and also purposes of use | |
JP5800096B2 (en) | Flame retardant polyamide resin composition | |
WO2010056489A2 (en) | Thermoplastic composition including thermally conductive filler and hyperbranched polyesteramide | |
JP5625668B2 (en) | Polyamide resin composition and molding method thereof | |
JP6490980B2 (en) | Polyamide resin composition | |
JP2004059638A (en) | Polyamide composition | |
WO2022085584A1 (en) | Polyamide resin composition, molded body formed from same, and component for in-vehicle cameras | |
JP2012507602A (en) | Thermoplastic composition containing highly branched aromatic polyamide | |
JP2015209521A (en) | Component for onboard camera | |
JP2015129243A (en) | Polyamide composition and molded product | |
JP2014101494A (en) | Half aromatic polyamide resin composition and compact obtained by molding the same | |
TW200804514A (en) | Polyamide resin composition | |
JP6461549B2 (en) | Polyamide resin composition and lens unit parts using the same | |
JP6854032B1 (en) | Polyamide resin composition and molded articles and parts for in-vehicle cameras | |
JP7194447B2 (en) | Thermoplastic resin composition and molded article obtained by molding the same | |
JP2013053188A (en) | Polyamide resin composition, and molding thereof | |
TWI851835B (en) | Thermal stabilizer for polyester | |
JP2000212437A (en) | Polyamide composition and molded article made therefrom | |
JPH09241505A (en) | Polyamide resin composition | |
CN112592582B (en) | Polyamide resin composition, molded article comprising same, and in-vehicle camera component | |
JP2018145292A (en) | Polyamide resin composition and molded article thereof | |
WO2020230805A1 (en) | Polyamide resin composition | |
JP2021055032A (en) | Semi-aromatic polyamide resin compositions and molded article comprising the same | |
TW202438586A (en) | Polyamide composition and molded product |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21882725 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022557477 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21882725 Country of ref document: EP Kind code of ref document: A1 |