[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022080373A1 - Optical sorting machine - Google Patents

Optical sorting machine Download PDF

Info

Publication number
WO2022080373A1
WO2022080373A1 PCT/JP2021/037754 JP2021037754W WO2022080373A1 WO 2022080373 A1 WO2022080373 A1 WO 2022080373A1 JP 2021037754 W JP2021037754 W JP 2021037754W WO 2022080373 A1 WO2022080373 A1 WO 2022080373A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical sensor
light source
sorted
marking
Prior art date
Application number
PCT/JP2021/037754
Other languages
French (fr)
Japanese (ja)
Inventor
雅明 定丸
知幸 宮本
Original Assignee
株式会社サタケ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社サタケ filed Critical 株式会社サタケ
Priority to CN202180069876.XA priority Critical patent/CN116368373A/en
Priority to JP2022502298A priority patent/JP7188638B2/en
Priority to GB2304656.8A priority patent/GB2614190A/en
Publication of WO2022080373A1 publication Critical patent/WO2022080373A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C5/00Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
    • B07C5/34Sorting according to other particular properties
    • B07C5/342Sorting according to other particular properties according to optical properties, e.g. colour
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C5/00Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
    • B07C5/36Sorting apparatus characterised by the means used for distribution
    • B07C5/363Sorting apparatus characterised by the means used for distribution by means of air
    • B07C5/365Sorting apparatus characterised by the means used for distribution by means of air using a single separation means
    • B07C5/366Sorting apparatus characterised by the means used for distribution by means of air using a single separation means during free fall of the articles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/94Investigating contamination, e.g. dust
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids
    • G01N2021/8592Grain or other flowing solid samples

Definitions

  • This disclosure relates to an optical sorter.
  • An optical sorter that uses optical information obtained by an optical sensor when the object to be sorted is irradiated with light from a light source to identify and remove foreign substances and defective products contained in the object to be sorted has been conventionally known.
  • the optical information for example, the color gradation value
  • the optical information obtained by the optical sensor is compared with the threshold value, and based on the comparison result, it is determined whether the object to be sorted is a good product, a foreign substance, or a defective product.
  • the object to be sorted which is determined to be a foreign substance or a defective product, is typically blown off by air injection, whereby the object to be sorted is sorted into a non-defective product, a foreign substance and a defective product.
  • the conventional optical sorter leaves room for improvement in order to improve the sorting accuracy.
  • an optical sorter configured to detect a light source configured to illuminate the object being transferred on the transfer path and light emitted from the light source and associated with the object to be sorted.
  • An optical sensor a determination unit configured to determine foreign matter and / or defective products for the object to be sorted, and a light source based on the signal acquired by the optical sensor with respect to the light associated with the object to be sorted.
  • An intermediate member which is located between the light source and the transfer path in the direction of irradiation of light from the object to be sorted and does not affect the detection of light associated with the object to be sorted, and has markings. I have.
  • the optical sensor is further configured to detect marking-related light emitted from a light source and obtained through marking.
  • the "light associated with the object to be sorted" may be reflected light which is light reflected by the object to be sorted, may be transmitted light which is light transmitted through the object to be sorted, or may be. , Both reflected light and transmitted light may be used.
  • the optical sorter it is possible to carry out various processes for improving the sorting accuracy based on the marking-related light detected by the optical sensor. For example, the amount of light from the light source can be detected based on the marking-related light, and it can be determined whether or not the amount of light is within an appropriate range. Further, since the intermediate member is arranged at a position where the optical sensor does not affect the detection of the light associated with the object to be sorted, the marking-related light can be detected during the sorting operation of the optical sorter. Moreover, since the optical sensor can be shared for the detection of the light associated with the object to be sorted and the detection of the marking-related light, it is not necessary to provide an additional optical sensor only for the detection of the marking-related light.
  • the optical sorter comprises a detector configured to detect the state of the optical sensor based on the detection result of the marking-related light. ..
  • various processes for suppressing deterioration of sorting accuracy due to the state of the optical sensor can be performed based on the detected state of the optical sensor. For example, by notifying an abnormality regarding the state of the optical sensor, it is possible to suppress the operation of the optical sorter in a state where the sorting accuracy is deteriorated due to the state of the optical sensor.
  • the detected state of the optical sensor can be used as information for clarifying the cause of the deterioration.
  • the detected state of the optical sensor may include, for example, a state related to the installation position of the optical sensor.
  • the state of the optical sensor detected by the detection unit is the presence / absence of misalignment of the optical sensor, the amount of misalignment, the direction of misalignment, and the optics. Includes at least one of the presence or absence of out-of-focus of the sensor. According to this embodiment, various processes for suppressing deterioration of sorting accuracy due to positional deviation or focus deviation of the optical sensor can be performed.
  • the state of the optical sensor detected by the detection unit includes the amount and direction of misalignment
  • the user can easily grasp in which direction and by what distance the installation position of the optical sensor should be moved when performing the adjustment work for eliminating the misalignment.
  • the optical sorter may notify the user when a focus shift is detected.
  • the optical sorter injects air toward a specific object to be sorted, which is determined based on the judgment result by the judgment unit, to deviate the specific object to be sorted from the transfer path, and removes foreign matter and / or defective products. It may be provided with a sorting unit for sorting. When the transfer path extends in the first direction and the object to be sorted is transferred in the first direction with a predetermined width in the second direction orthogonal to the first direction, the sorting unit is in the second direction. In the right place for a particular object to be sorted, based on a predetermined correspondence between the position where the light associated with the object to be sorted in is detected and the position where the air should be ejected in the second direction. It may be configured to inject air from. In this case, the optical sorter may further include a first correction unit that corrects a predetermined correspondence relationship based on the amount of misalignment of the optical sensor in the second direction.
  • the sorting unit may be configured to inject air at a predetermined timing based on a predetermined delayed injection time.
  • the delayed injection time is the time from the detection of the light associated with a specific object to be selected until the injection of air.
  • the optical sorter may include a second correction unit that corrects a predetermined delay injection time based on the amount of misalignment of the optical sensor in the first direction.
  • the optical sorter is based on the detection result of the marking-related light, and the detection result of the light associated with the object to be sorted. It is provided with a color correction unit configured to perform color correction on the light. According to this form, the hue of the image represented by the detection result of the optical sensor can be adjusted.
  • the marking is monochrome marking
  • at least one of linear white balance correction and dark correction may be performed as color correction. If the marking is color marking, non-linear color correction may be performed.
  • the optical sorter is a calibration unit configured to be able to perform calibration based on the detection result of marking-related light. It is equipped with. According to this embodiment, it is possible to satisfactorily compensate for fluctuations in the amount of light from the light source in real time during the sorting operation of the optical sorter.
  • the calibration includes adjusting the amount of light of the light source based on the detection result of the marking-related light. According to this form, it is possible to compensate for fluctuations in the amount of light from the light source without amplifying noise.
  • the calibration includes adjusting the gain of the signal acquired by the optical sensor based on the detection result of the marking-related light. According to this form, it is possible to compensate for fluctuations in the amount of light of the light source regardless of the ability of the light source to adjust the amount of light.
  • the light source is a first light source arranged on the first side with respect to the transfer path of the object to be sorted, and the first light source. It comprises a second light source, which is located on the second side opposite to the side.
  • the optical sensor includes at least one of a first optical sensor arranged on the first side and a second optical sensor arranged on the second side.
  • the intermediate member has light non-transparency and substantially prevents light from passing through the intermediate member from the transfer path side and reaching the optical sensor. According to this embodiment, when the optical sensor includes the first optical sensor, the intermediate member is arranged on the first side, and the light emitted from the second light source located on the second side is intermediate.
  • the optical sensor includes a second optical sensor, the intermediate member is arranged on the second side, and the light emitted from the first light source located on the first side is transmitted through the intermediate member. Therefore, it does not reach the second optical sensor located on the second side. Therefore, when the light amount of the light source is detected based on the marking-related light, the light amount can be detected more accurately.
  • the state of the optical sensor can be detected more accurately. Further, when combined with the fifth embodiment, more accurate calibration can be performed based on the amount of light of the light source detected accurately. Further, if the optical sensor includes both the first optical sensor and the second optical sensor, the light amount of the first light source and the light amount of the second light source can be balanced.
  • the markings have at least one first unit area having a first color and a certain size, and a second. It has at least one second unit region having a second color different from that of one color and having a certain size.
  • the marking is configured such that the first unit area and the second unit area are arranged one-dimensionally or two-dimensionally in a predetermined appearance pattern.
  • a unit region is a region having a predetermined size and shape.
  • the optical sensor is based on, for example, whether or not a predetermined appearance pattern can be detected, or at what position a predetermined appearance pattern can be detected.
  • the state of can be easily detected.
  • the amount of light can be detected.
  • the first unit area and the second unit area are arranged two-dimensionally, based on which of the plurality of appearance patterns is detected and at which position the appearance pattern is located. The amount of misalignment and the direction of misalignment can be detected based on whether it is detected in.
  • the first unit region and the second When the transfer path extends in the first direction and the object to be sorted is transferred in the first direction with a predetermined width in the second direction orthogonal to the first direction, the first unit region and the second.
  • the unit areas of may be arranged one-dimensionally in the second direction.
  • the first unit area and the second unit area may be two-dimensionally arranged in the first direction and the second direction. In this case, even if the appearance patterns of the first unit area and the second unit area in the second direction are different from each other for each arrangement position of the first unit area and the second unit area in the first direction. good. According to this configuration, the amount of misalignment and the direction of misalignment can be easily detected based on the position and type of the detected appearance pattern.
  • the marking is a one-dimensional or two-dimensional code. That is, the marking is a mark created based on a predetermined system in order to represent some information.
  • the state of the optical sensor for example, the presence / absence of misalignment, the presence / absence of focus shift
  • the marking is a two-dimensional code
  • the amount of misalignment can be detected based on what kind of information is read.
  • an optical sorter is provided.
  • This optical sorter is irradiated from a light source instead of the optical sensor of the first embodiment, and is irradiated from a first optical sensor configured to detect light associated with the object to be sorted and a light source.
  • a second optical sensor configured to detect marking-related light obtained through marking.
  • This form also has the same effect as the first form. It is also possible to combine any of the second to tenth forms with the eleventh form.
  • the detection unit is configured to detect the state of the second optical sensor.
  • an optical sorter configured to illuminate the object being transferred on the transfer path, an optical sensor configured to detect the light emitted from the light source and associated with the object to be sorted, and the object to be sorted.
  • a determination unit configured to determine the quality of the object to be sorted based on the signal acquired by the optical sensor with respect to the light associated with the object, and a light source in the direction of light irradiation from the light source to the object to be sorted. It comprises an intermediate member, located between and the transfer path, which is located at a position that does not affect the detection of light associated with the object to be sorted and has markings.
  • the optical sensor is further configured to detect marking-related light emitted from a light source and obtained through marking.
  • the marking comprises multiple areas.
  • Each of the plurality of regions is configured to provide at least one or more functions for ensuring the determination performance of the determination unit based on the marking-related light. According to this optical sorter, it is possible to carry out various processes for improving the determination performance of the determination unit and, by extension, the sorting accuracy, depending on each of the plurality of regions.
  • At least one function is a light amount detection function of a light source, a position shift detection function of an optical sensor, a focus shift detection function of an optical sensor, and an optical sensor. Includes at least one of the white balance confirmation functions.
  • the optical sensor includes a plurality of light receiving elements arranged linearly.
  • Such an optical sensor may be a line sensor or an area sensor.
  • At least a portion of the plurality of regions includes a first region configured to provide the misalignment detection function of the optical sensor.
  • the first region comprises a small region that can be identified by the difference in color.
  • the width of the small region in the arrangement direction of the plurality of optical elements is uniquely set according to the position in the direction intersecting the arrangement direction.
  • the "direction intersecting the arrangement direction" may be a direction orthogonal to the arrangement direction. According to this form, the positional deviation of the optical sensor can be easily detected based on the marking-related light.
  • the direction and amount of the deviation can be grasped based on the width of the small region detected by the optical sensor. Further, when the optical sensor is displaced in the arrangement direction, the direction and amount of the deviation can be grasped based on the positions of the start point and / or the end point of the small region detected by the optical sensor.
  • the fourteenth embodiment can also be implemented independently of the twelfth embodiment. For example, as marking, only the above small area may be used alone.
  • At least a part of the plurality of regions includes a second region configured to provide a focus shift detection function.
  • the second region comprises a small region that can be identified by the difference in color.
  • the focus shift of the optical sensor can be easily detected.
  • the focus shift of the optical sensor may be detected based on the detection status of the edge representing the boundary of the small region in the image data of the marking-related light corresponding to the second region. In this case, if a predetermined degree of sharp edge is detected, it may be determined that the focus shift has not occurred, and if the sharp edge is not detected, the focus shift has occurred. May be determined.
  • the focus shift of the optical sensor may be detected based on the detection status of a small region in the image data of the marking-related light corresponding to the second region.
  • a small area having a small size for example, width
  • the small area may be determined that no focus shift has occurred, and the small area is detected. If this is not the case, it may be determined that a focus shift has occurred.
  • the small area may be in the form of a line.
  • the second region may have a first line and a second line thinner than the first line.
  • the first line and the second line can detect the first line by the optical sensor when the optical sensor is in focus at the detection position of the object to be sorted, but detect the second line. It may not be possible and may be set to a thickness that allows the optical sensor to detect both the first line and the second line when the optical sensor is in focus at the marking position.
  • the fifteenth embodiment can also be implemented independently of the twelfth embodiment. For example, as marking, only the second region may be used alone.
  • the optical sensor is a line sensor or an area sensor having a plurality of light receiving elements arranged in a straight line.
  • the intermediate member is arranged at a position that does not overlap with the transfer path when viewed in an arbitrary direction orthogonal to the direction in which the plurality of light receiving elements are arranged.
  • the plurality of light receiving elements detect the light associated with the object to be sorted in transit but do not detect the marking-related light, and the light receiving element does not detect the light associated with the object to be sorted in transfer but are related to marking. Includes a light receiving element that detects light.
  • FIG. 1 is a schematic diagram showing a schematic configuration of an optical sorter (hereinafter, simply referred to as a sorter) 10 as a first embodiment.
  • the sorter 10 uses rice grains (more specifically, brown rice or polished rice) as the object to be sorted 90 to foreign substances (for example, pebbles, mud, glass pieces, etc.) and defective products (for example, immature grains). , Colored grains, etc.) are used to sort out.
  • the material to be sorted 90 is not limited to brown rice or polished rice, and may be any granular material.
  • the material to be sorted 90 may be paddy, wheat grains, beans (soybeans, chickpeas, green soybeans, etc.), resin (pellets, etc.), rubber pieces, or the like.
  • the sorting machine 10 includes an optical detection unit 20, a storage tank 71, a feeder 72, a chute 73, a non-defective product discharge gutter 74, a defective product discharge gutter 75, a sorting unit 76, and a controller. It is equipped with 80 and.
  • the controller 80 controls the overall operation of the sorter 10.
  • the controller 80 also functions as a determination unit 81, a detection unit 82, a first correction unit 83, a second correction unit 84, a color correction unit 85, and a calibration unit 86.
  • the function of the controller 80 may be realized by the CPU executing a predetermined program, may be realized by a dedicated circuit, or may be realized by a combination thereof.
  • Each function of the controller 80 may be realized by one integrated device. For example, each function of the controller 80 may be realized by one CPU. Alternatively, each function of the controller 80 may be distributed in at least two devices. The details of the function of the controller 80 will be described later.
  • the storage tank 71 temporarily stores the object to be sorted 90.
  • the feeder 72 supplies the sorted object 90 stored in the storage tank 71 onto the chute 73 as an example of the sorted object transfer means.
  • the object 90 supplied onto the chute 73 slides downward on the chute 73 and falls from the lower end of the chute 73.
  • the chute 73 has a predetermined width that allows a large number of objects to be sorted 90 to be dropped at the same time.
  • the direction in which the transfer path 95 of the object to be sorted 90 (in other words, the fall trajectory of the object to be sorted 90) after falling from the chute 73 extends is also referred to as the first direction D1.
  • the width direction of the chute 73 (in other words, the direction orthogonal to the falling direction of the object to be sorted 90 on the bottom surface of the chute 73) is also referred to as a second direction D2.
  • the second direction D2 is orthogonal to the first direction D1.
  • the optical detection unit 20 irradiates the object to be sorted 90 that has slipped off the chute 73 with light, and the light associated with the object to be sorted 90 (specifically, the transmitted light transmitted through the object to be sorted 90 and the transmitted light). , The reflected light reflected by the object to be sorted 90) is detected.
  • the output from the optical detection unit 20, that is, the analog signal representing the detected light intensity, is amplified by an AC / DC converter (not shown) with a predetermined gain, and further converted into a digital signal. This digital signal (in other words, the gradation value corresponding to the analog signal) is input to the controller 80.
  • the controller 80 determines whether the object to be sorted 90 is a non-defective product (that is, rice grains with relatively high quality) or a foreign substance as a process of the determination unit 81. It is determined whether the product is (that is, not a grain of rice) or a defective product (that is, a grain of rice with relatively low quality). This determination is made for each of the objects to be sorted 90. Any known determination method can be adopted for this determination. This determination is typically made by comparing the gradation value of the image data with a predetermined threshold value.
  • the object to be sorted 90 determined to be a foreign substance or a defective product is sorted by the sorting unit 76.
  • the sorting unit 76 includes an ejector 77 that injects air 78 toward the object to be sorted 90.
  • the object 90 determined to be a foreign substance or a defective product is blown off by the air 78, deviates from the drop trajectory from the chute 73 (that is, the transfer path 95), and is guided to the defective product discharge gutter 75 (FIG. 1).
  • the air 78 is not injected into the object to be sorted 90, which is determined to be a non-defective product. Therefore, the object to be sorted 90 determined to be a non-defective product is guided to the non-defective product discharge gutter 74 without changing the fall trajectory (shown as the product to be sorted 92 in FIG. 1).
  • the optical detection unit 20 includes a first light source 30a, a first optical sensor 40a, a second light source 30b, and a second optical sensor 40b.
  • the first light source 30a and the first optical sensor 40a are arranged on one side (also referred to as the front side) with respect to the transfer path 95 of the object 90 to be sorted.
  • the second light source 30b and the second optical sensor 40b are arranged on the other side (also referred to as the rear side) with respect to the transfer path 95 of the object 90 to be sorted.
  • the "front side” may be regarded as an example of the "first side” in the claims, and the “rear side” may be regarded as an example of the “second side” in the claims. Conversely, the “front side” may be regarded as an example of the “second side” in the claims, and the “rear side” may be regarded as an example of the "first side” in the claims. ..
  • the first light source 30a irradiates the object 90 being transferred (that is, falling from the chute 73) on the transfer path 95 with light 31a.
  • the second light source 30b irradiates the object 90 being transferred with light 31b.
  • the first light source 30a is a light source unit in which a plurality of light emitting elements 32a are mounted on a single substrate.
  • the LED is used as the light emitting element 32a. Therefore, the light emitting element 32a is also referred to as an LED 32a.
  • the plurality of LEDs 32a include an LED that emits red light, an LED that emits blue light, and an LED that emits green light.
  • the second light source 30b has the same configuration as the first light source 30a, and includes a plurality of LEDs 32b.
  • the number of each of the first light source 30a and the second light source 30b is shown to be one, but at least one of the first light source 30a and the second light source 30b is plural. There may be.
  • two first light sources 30a may be arranged on the upper side and the lower side of the detection position on the transfer path 95, respectively.
  • two second light sources 30b may be arranged on the upper side and the lower side of the detection position on the transfer path 95, respectively.
  • the first optical sensor 40a and the second optical sensor 40b are irradiated from the first light source 30a and the second light source 30b, and detect the light associated with the object 90 to be sorted.
  • the first optical sensor 40a on the front side is irradiated from the first light source 30a on the front side and is irradiated from the light 31a reflected by the object 90 to be sorted and from the second light source 30b on the rear side.
  • the light 31b transmitted through the object to be sorted 90, and the light 31b can be detected.
  • the second optical sensor 40b on the rear side is irradiated from the second light source 30b on the rear side and reflected by the object 90 to be sorted, and is irradiated from the first light source 30a on the front side to be sorted 90.
  • the light 31a transmitted through the light source can be detected.
  • the first optical sensor 40a is, in the present embodiment, a line sensor having a plurality of light receiving elements 41a arranged in a straight line.
  • the first optical sensor 40a may be an area sensor.
  • the plurality of light receiving elements 41a are arranged in the second direction D2 (that is, the width direction of the chute 73). Therefore, the first optical sensor 40a can simultaneously image a large number of objects to be sorted 90 transferred over a predetermined width of the chute 73.
  • the first optical sensor 40a is a color CCD sensor in the present embodiment, and can detect red light, green light, and blue light individually.
  • the first optical sensor 40a may be another type of sensor such as a color CMOS sensor.
  • the second optical sensor 40b has the same configuration as the first optical sensor 40a, and includes a plurality of light receiving elements 41b arranged in the second direction D2.
  • the first optical sensor 40a and the second optical sensor 40b may have different configurations from each other.
  • the optical detection unit 20 further includes transparent members 21a and 21b.
  • the transparent member 21a partitions the first light source 30a, the first optical sensor 40a, and the transfer path 95 on the front side.
  • the first light source 30a, the first optical sensor 40a, and the transfer path 95 are isolated from each other, and dust scattered from the transfer path 95 adheres to the first light source 30a and the first optical sensor 40a. Is prevented.
  • the transparent member 21b partitions the second light source 30b, the second optical sensor 40b, and the transfer path 95 on the rear side.
  • the optical detection unit 20 further includes intermediate members 50 on the front side and the rear side, respectively.
  • the intermediate member 50 on the front side is arranged at a position between the first light source 30a and the transfer path 95 in the irradiation direction of the light 31a from the first light source 30a to the object 90 to be sorted.
  • the intermediate member 50 on the rear side is arranged between the second light source 30b and the transfer path 95 in the irradiation direction of the light 31b from the second light source 30b to the object 90 to be sorted.
  • FIG. 2 is a schematic view showing the positional relationship between the first light source 30a and the second light source 30b, the intermediate member 50, and the first optical sensor 40a and the second optical sensor 40b in the second direction D2. Is. Since the positional relationship shown is the same on the front side and the rear side, the front side will be mainly described below. As shown in FIG. 2, on the front side, a plurality of (18 in the illustrated example) light emitting elements 32a are arranged in the second direction D2 in which the plurality of light receiving elements 41a of the first optical sensor 40a are arranged. ing.
  • V1 shown in FIG. 2 represents the total field of view of the first optical sensor 40a in the second direction D2.
  • V2 shown in FIG. 2 indicates a raw material field of view, that is, a range in which the object to be sorted 90 can be imaged.
  • the width of the raw material field of view V2 corresponds to the width of the chute 73 (in other words, the width of the transfer path 95).
  • the plurality of light receiving elements 41a are arranged so as to extend outward from the raw material field of view V2 in the second direction D2. As a result, the non-raw material field of view V3 of the first optical sensor 40a is secured on both sides of the raw material field of view V2 in the second direction D2.
  • the intermediate member 50 is arranged in the region of the transparent member 21a corresponding to the non-raw material field of view V3. That is, the intermediate member 50 is arranged at a position that does not affect the detection of the light associated with the object to be sorted 90 by the first optical sensor 40a. In other words, this position is a position that does not overlap with the transfer path 95 when viewed in any direction orthogonal to the second direction D2. In this embodiment, the intermediate member 50 is arranged on both sides of the transfer path 95 in the second direction D2.
  • This intermediate member 50 on the front side reflects the light 31a emitted from the first light source 30a on the front side.
  • the light 31a reflected by the intermediate member 50 is detected by the first optical sensor 40a (more specifically, the light receiving element 41a corresponding to the non-raw material field of view V3). Since the intermediate member 50 is located outside the second direction D2 from the boundary between the raw material field of view V2 and the non-raw material field of view V3, the reflected light in the intermediate member 50 is a light receiving element corresponding to the raw material field of view V2. It is not detected by 41a. On the contrary, the light associated with the object to be sorted 90 is not detected by the light receiving element 41a corresponding to the non-raw material field of view V3.
  • the intermediate member 50 on the rear side reflects the light 31b emitted from the second light source 30b on the rear side.
  • the light 31b reflected by the intermediate member 50 is detected by the second optical sensor 40b (more specifically, the light receiving element 41b corresponding to the non-raw material field of view V3).
  • the first optical sensor 40a is shared with the detection of the light associated with the object 90 to be sorted and the detection of the light 31a reflected by the intermediate member 50.
  • the second optical sensor 40b is shared with the detection of the light associated with the object 90 to be sorted and the detection of the light 31b reflected by the intermediate member 50.
  • the intermediate member 50 is in the form of a sheet-like member that can be attached to the transparent members 21a and 21b. That is, the intermediate member 50 is a sheet-like member having an adhesive on one side. Therefore, the device configuration of the sorter 10 can be simplified. In addition, it is easy to manufacture and the manufacturing cost is low.
  • the intermediate member 50 can be realized in any form.
  • the intermediate member 50 may be a plate-shaped member. In this case, the intermediate member 50 may be arranged apart from the transparent members 21a and 21b.
  • FIG. 3 is a cross-sectional view of the intermediate member 50.
  • FIG. 3 shows an intermediate member 50 on the rear side attached to the transparent member 21b.
  • the intermediate member 50 on the rear side has a two-layer structure.
  • the intermediate member 50 includes a first layer 51 located on the transfer path 95 side and a second layer 52 located on the opposite side of the transfer path 95.
  • the first layer 51 has a light impermeable property. Therefore, in the first layer 51 of the intermediate member 50 on the rear side, the light 31a from the first light source 30a on the front side passes through the intermediate member 50 from the transfer path 95 side and reaches the second optical sensor 40b. Substantially prevent you from doing so.
  • the intermediate member 50 on the front side attached to the transparent member 21a is also opposite to the first layer 51, which is located on the transfer path 95 side and has light translucency, and the transfer path 95. It has a second layer 52 located on the side. Therefore, in the first layer 51 of the intermediate member 50 on the front side, the light 31b from the second light source 30b on the rear side passes through the intermediate member 50 from the transfer path 95 side and reaches the first optical sensor 40a. Substantially prevent you from doing so.
  • the second layer 52 is at least partially formed of a light-reflecting material.
  • the second layer 52 of the intermediate member 50 on the front side reflects the light 31a emitted from the first light source 30a, and the second layer 52 of the intermediate member 50 on the rear side irradiates from the second light source 30b.
  • the light 31b to be generated is reflected.
  • the intermediate member 50 is arranged on the side opposite to the transfer path 95 with respect to the transparent members 21a and 21b. Therefore, the intermediate member 50 is not affected by the dust generated by the transfer of the object to be sorted 90. Moreover, the exposed surface of the first layer 51 (that is, the surface opposite to the second layer 52) becomes an adhesive surface with the transparent members 21a and 21b of the intermediate member 50, and the exposed surface of the second layer 52 (that is, that is). , The reflective surface that reflects the light 31b) does not have an adhesive. Therefore, there is no possibility that the adhesive impairs the reflective performance of the second layer 52. However, the intermediate member 50 may be arranged on the transfer path 95 side with respect to the transparent members 21a and 21b. Even in this case, the reflective surface of the second layer 52 is in close contact with the transparent members 21a and 21b, so that it is not affected by dust.
  • the intermediate member 50 (more specifically, the second layer 52) has a marking 53 on its surface (specifically, the surface opposite to the transfer path 95). Therefore, each of the light 31a reflected by the intermediate member 50 and detected by the first optical sensor 40a and the light 31b reflected by the intermediate member 50 and detected by the second optical sensor 40b are marked 53. It can be said that it is the light obtained through the above (in other words, the reflected light at the marking 53). Such light obtained via the marking 53 is also referred to as marking-related light.
  • the marking 53 may be printed on the surface of the second layer 52, for example.
  • FIG. 4 is a diagram showing an example of the marking 53.
  • FIG. 4 shows a marking 53 viewed in a direction orthogonal to the first direction D1 and the second direction D2.
  • the marking 53 is composed of a plurality of unit regions UA.
  • the unit area UA has a predetermined size and shape. In FIG. 4, the size and shape of the unit area UA are shown in the lower right.
  • the unit area UA is a square in the example shown in FIG. 4, but can have any shape.
  • the marking 53 includes a first unit region 54 having a first color and a second unit region 55 having a second color. In this embodiment, the first color is black and the second color is white.
  • the first unit region 54 and the second unit region 55 are configured to be two-dimensionally arranged in the first direction D1 and the second direction D2 in a predetermined appearance pattern.
  • the appearance pattern of the first unit region 54 and the second unit region 55 in the second direction D2 is the first unit region 54 and the first unit region 54 in the first direction D1. It differs depending on the arrangement position of the unit areas 55 of 2 (shown as positions P1 to P19 in FIG. 4).
  • the controller 80 is configured to detect the states of the first optical sensor 40a and the second optical sensor 40b based on the detection result of the marking-related light as a process of the detection unit 82.
  • the state of the first optical sensor 40a on the front side is detected based on the marking-related light obtained through the marking 53 of the intermediate member 50 attached to the transparent member 21a on the front side.
  • the state of the second optical sensor 40b on the rear side is detected based on the marking-related light obtained through the marking 53 of the intermediate member 50 attached to the transparent member 21b on the rear side.
  • the states of the first optical sensor 40a and the second optical sensor 40b detected by the detection unit 82 include the states related to the installation positions of the first optical sensor 40a and the second optical sensor 40b.
  • the state related to such an installation position includes the presence / absence of misalignment of the first optical sensor 40a and the second optical sensor 40b, the amount of misalignment, the direction of misalignment, and the presence / absence of focus misalignment. At least one may be included.
  • the presence or absence of misalignment, the amount and direction of misalignment can be detected, for example, as follows.
  • the first optical sensor 40a is arranged at a normal position, the region on the line L1 is imaged by the first optical sensor 40a.
  • the appearance pattern detected based on the marking-related light is the appearance pattern of the arrangement position P10, it can be detected that the first optical sensor 40a is not deviated from the first direction D1.
  • the appearance pattern detected based on the marking-related light is the appearance pattern of the alignment position P12
  • the first optical sensor 40a is aligned from the first direction D1 (more specifically, the alignment position P1).
  • the amount of deviation at this time may be about two sizes of the unit region UA (more accurately, a distance larger than the length of one side of the unit region UA and smaller than twice the length). Detected.
  • any of the plurality of light receiving elements 41a (which are arranged in the second direction D2) of the first optical sensor 40a detects the appearance pattern of any of the arrangement positions P1 to P19. Based on the above, it is possible to detect to which side and how much the first optical sensor 40a is deviated in the second direction D2.
  • Each appearance pattern of the arrangement positions P1 to P19 may be stored in the memory of the controller 80 at the time of manufacturing the sorter 10. Further, it is detected from the marking-related light detected by the first optical sensor 40a and the second optical sensor 40b after the first optical sensor 40a and the second optical sensor 40b are attached in place in the manufacturing stage of the sorter 10.
  • the appearance pattern to be performed may be stored in the memory of the controller 80 as an appearance pattern corresponding to the first optical sensor 40a and the second optical sensor 40b in the normal positions.
  • the position of the light receiving element that has detected the appearance pattern may be stored in the memory of the controller 80 as the detection position corresponding to the first optical sensor 40a and the second optical sensor 40b at the normal positions. ..
  • the presence or absence of focus shift can be detected, for example, as follows.
  • the image data (RAW data) of the marking-related light is binarized.
  • the pixel value corresponding to gray generated due to the focus shift is converted into the pixel value corresponding to white.
  • pattern matching it is determined whether or not the appearance pattern represented by the binarized image matches any of the plurality of appearance patterns stored in advance (that is, the appearance patterns of the arrangement positions P1 to P19). Will be done.
  • the out-of-focus may be detected based on whether or not a predetermined degree of sharp edge is detected in the image data of the marking-related light.
  • the intermediate member 50 is arranged on both sides of the transfer path 95 in the second direction D2, the first optical sensor 40a or the second optical sensor 40b is in the second direction D2. Even if the arrangement is slightly offset on one side to the extent that it does not affect the sorting accuracy, and the displacement is large enough to affect the sorting accuracy on the other side, the misalignment is caused. It can be detected reliably.
  • the controller 80 may notify the user of the detected content via the notification unit 88. good.
  • the notification unit 88 may be in the form of a screen, a speaker, a light, or the like of the operation panel of the sorting machine 10. That is, the notification may be performed in the form of a display on the screen, a warning sound, lighting of a light, or the like. According to this configuration, the user can notice an abnormality in the position or focus state of the first optical sensor 40a or the second optical sensor 40b at an early stage, and can perform work for eliminating the abnormality.
  • the controller 80 when the controller 80 is configured to notify the direction and amount of the misalignment, the user may use the first optical sensor 40a or the second optical sensor 40a when performing the adjustment work for eliminating the misalignment. It is easy to grasp in which direction and how much the installation position of the optical sensor 40b should be moved. When the first optical sensor 40a and the second optical sensor 40b have an autofocus function, the focus shift may be automatically eliminated when the focus shift is detected.
  • the controller 80 when the misalignment of the first optical sensor 40a or the second optical sensor 40b is detected, the controller 80 further performs a process for suppressing deterioration of sorting accuracy due to the misalignment. It can be done automatically. This process is executed as at least one of the first correction unit 83 and the second correction unit 84.
  • the processing of the first correction unit 83 will be described.
  • a plurality of valves (not shown) controlling the injection of the air 78 are arranged in the second direction D2 in order to simultaneously sort the plurality of objects 90 to be simultaneously transferred over the width of the chute 73.
  • one of the valves is assigned to each of the detection positions of the object to be sorted 90 in the second direction D2 of the first optical sensor 40a and the second optical sensor 40b.
  • the position where the light associated with the object 90 to be sorted in the second direction D2 is detected (hereinafter, also referred to as the detection position) and the position where the air 78 in the second direction D2 should be ejected (hereinafter, also referred to as the detection position).
  • the injection position Also called the injection position
  • air 78 is injected from the injection position corresponding to the detection position of the one object to be sorted 90.
  • the controller 80 corresponds to the detection position and the injection position based on the amount of the positional deviation of the first optical sensor 40a or the second optical sensor 40b in the second direction D2 as the processing of the first correction unit 83. Correct the relationship. More specifically, when the positional deviation of the first optical sensor 40a or the second optical sensor 40b occurs in the second direction D2, the detection position in the correspondence between the detection position and the injection position is the position. It will be displaced in the direction of displacement by the amount of displacement. Therefore, correction is performed to shift the injection position corresponding to the detection position by the amount of the misalignment in the direction opposite to the direction of the misalignment. As a result, the correspondence will return to the original normal state. According to the first correction unit 83, even if the position of the first optical sensor 40a or the second optical sensor 40b is displaced in the second direction D2, the sorting accuracy is deteriorated due to the positional deviation. Can be automatically suppressed.
  • the processing of the second correction unit 84 will be described.
  • the position where the trajectory of the object to be sorted 90 is changed by the air 78 from the ejector 77 (hereinafter, also referred to as the trajectory change position) is detected by the first optical sensor 40a and the second optical sensor 40b.
  • the sorting unit 76 detects the foreign matter or the defective product by the first optical sensor 40a or the second optical sensor 40b, and then airs the foreign matter or the defective product toward the foreign matter or the defective product at a timing delayed by a predetermined time. It is configured to inject 78. This time difference is also commonly referred to as the delayed injection time.
  • the delayed injection time is predetermined.
  • the delayed irradiation time may be predetermined as a constant value, or may be variable based on arbitrary parameters (for example, the type of the object to be sorted 90, the actually measured drop speed of the object to be sorted 90, etc.). It may be predetermined.
  • the controller 80 corrects the delay injection time described above based on the amount of misalignment of the first optical sensor 40a or the second optical sensor 40b in the first direction D1. ..
  • the controller 80 shortens the delayed injection time according to the amount of deviation in the first direction D1.
  • the controller 80 adjusts to the deviation amount in the first direction D1. The delayed injection time is extended accordingly.
  • the delayed injection time may be corrected by using a function whose variable is the amount of misalignment of the first optical sensor 40a or the second optical sensor 40b in the first direction D1.
  • This function may be predetermined experimentally and stored in the memory of the controller 80.
  • the distance between the normal detection position of the object 90 to be sorted by the first optical sensor 40a or the second optical sensor 40b and the trajectory change position, the tilt angle of the chute 73, and the transfer speed of the object 90 to be sorted this is It may be actually measured or predetermined by an experiment), and it is physically based on the amount of misalignment of the first optical sensor 40a or the second optical sensor 40b in the first direction D1. It may be calculated by various calculations.
  • the second correction unit 84 even if the position of the first optical sensor 40a or the second optical sensor 40b is displaced in the first direction D1, the sorting accuracy is deteriorated due to the positional deviation. Can be automatically suppressed.
  • the amount of misalignment is detected on both sides of the transfer path 95 in the second direction D2. Therefore, when the detection amount on one side and the detection amount on the other side are different, for example, the processing of the first correction unit 83 and the second correction unit 84 is performed using the average value of the detection amounts on both sides. It may be done.
  • the processing of the detection unit 82, the first correction unit 83, and the second correction unit 84 described above may be executed as initial adjustment at the time of manufacturing or initial use of the sorter 10. Alternatively, these processes may be performed at predetermined timings when the sorter 10 is used (that is, during the sorting operation).
  • the installation positions of the first optical sensor 40a and the second optical sensor 40b may shift due to an impact received during transportation of the sorter 10, but in the latter case, such post-shipment position may occur. It can also cope with misalignment.
  • the processing of the first correction unit 83 and the second correction unit 84 may be automatically executed when the misalignment is detected, may be executed manually, or may be executed manually. It may be executed when the user operation is not performed for a predetermined period after notifying the occurrence of the misalignment.
  • the controller 80 performs color correction on the detection result of the light associated with the object to be sorted 90 based on the detection result of the marking-related light. It is composed. Specifically, the controller 80 can perform dark correction based on the image pickup result of the black first unit region 54. Specifically, a representative value of the color gradation value of the image data in the first unit region 54 (for example, the average value of the color gradation value) can be used as the black level.
  • the controller 80 can perform white balance correction based on the image pickup result of the white second unit region 55. For example, when the image is represented by 256 gradations, the representative value of the color gradation value of the image data in the first unit area 54 corresponds to the gradation value 0, and the image data in the second unit area 55.
  • a linear white balance correction may be performed so that the representative value of the color gradation value of is corresponding to the gradation value 255.
  • Such a color correction process may be performed, for example, at the start of the sorting operation of the sorting machine 10.
  • the color correction unit 85 when the first optical sensor 40a and the second optical sensor 40b, or the first light source 30a and the second light source 30b are replaced, the light detection performance before the replacement is brought closer. Can be done. This point is particularly effective when the model number of the part before replacement has been discontinued and a substitute is newly installed.
  • the amount of light of the first light source 30a and the second light source 30b is detected based on the marking-related light (more specifically, the image pickup result of the second unit region 55). can. Since the intermediate member 50 having the marking 53 is arranged at a position that does not affect the detection of the light associated with the object to be sorted 90, the first light source 30a and the second light source 30b are arranged during the sorting operation of the sorting machine 10. The amount of light can be detected in real time. Moreover, no additional optical sensor is required to detect the amount of light of the first light source 30a and the second light source 30b.
  • the first layer 51 of the intermediate member 50 has light translucency. Therefore, when the marking-related light is detected by the first optical sensor 40a on the front side, the light 31b from the second light source 30b on the rear side is combined with the light 31a from the first light source 30a on the front side. Is not detected by the first optical sensor 40a. Therefore, the amount of light of the first light source 30a can be accurately detected without being affected by the light 31b emitted from the second light source 30b. Similarly, the amount of light of the second light source 30b can be accurately detected without being affected by the light 31a emitted from the first light source 30a.
  • the light amount of the first light source 30a and the light amount of the second light source 30b are separately accurate. Can be detected.
  • the light translucency of the first layer 51 also enables more accurate detection of the shape of the marking 53 and, by extension, more accurate detection of the states of the first optical sensor 40a and the second optical sensor 40b. To contribute.
  • the light amounts of the first light source 30a and the second light source 30b can be detected by using the intermediate member 50 on both sides of the transfer path 95 in the second direction D2. Therefore, it is easier to grasp the local tendency of the light amount of the first light source 30a and the second light source 30b as compared with the case where the light amount is detected only on one side. For example, when an abnormality in the amount of light occurs on only one side in the second direction D2, it is easy to grasp the abnormality.
  • the calibration is repeatedly executed during the sorting operation of the sorting machine 10 as a process of the calibration unit 86 of the controller 80. Specifically, the calibration unit 86 first acquires the light amounts of the first light source 30a and the second light source 30b acquired by using the marking-related light as described above. This amount of light is acquired for each RGB color component. Further, this amount of light is acquired for each of one side and the other side of the second direction D2.
  • the acquired light amount is a statistical value (for example, average value, center) of the detection result of the white second unit region 55 among the detection results of the plurality of light receiving elements 41a or the light receiving element 41b corresponding to the non-raw material field of view V3. Value, etc.).
  • the calibration unit 86 determines whether or not the acquired light amount is within the first range.
  • the first range may be preset for each RGB color component. This first range is a range bounded by the first threshold value TH1 and the second threshold value TH2, and a reference value representing an ideal amount of light is included in this first range.
  • the first threshold value TH1 may be set as a value of minus 30% with respect to the reference value
  • the second threshold value TH2 may be set as a value of plus 30% with respect to the reference value.
  • the controller 80 notifies the user of the light amount abnormality via the notification unit 88.
  • the notification unit 88 it is possible to notify the light amount abnormality of the first light source 30a or the second light source 30b in real time during the sorting operation of the sorting machine 10. Therefore, the user can notice the light intensity abnormality of the first light source 30a or the second light source 30b at an early stage. As a result, even though the light source abnormality has occurred, the sorting operation of the sorting machine 10 is continued, and the deterioration of the sorting accuracy is suppressed.
  • the calibration unit 86 determines whether or not the acquired amount of light is within the second range.
  • the second range may be preset for each RGB color component. This second range is a range bounded by the third threshold TH3 (TH1 ⁇ TH3) and the fourth threshold TH4 (TH4 ⁇ TH2), and the reference value is included in this second range. Then, as a result of the determination, if the acquired light amount is not within the second range, the calibration unit 86 executes the calibration.
  • the calibration here is a process of adjusting the amount of light of the first light source 30a and the second light source 30b according to the detected amount of light.
  • the calibration unit 86 adjusts the amount of light of the corresponding light emitting elements 32a and 32b based on the detection results of the corresponding light receiving elements 41a and 41b for each color component. Further, in the present embodiment, the light amount is detected on both sides of the transfer path 95 in the second direction D2, so that the light amount is located on one side based on the light amount detection result on one side in the second direction D2. The light amount of the light emitting elements 32a and 32b is adjusted, and similarly, the light amount of the light emitting elements 32a and 32b located on the other side is adjusted based on the light amount detection result on the other side in the second direction D2. If calibration is performed by adjusting the amount of light, it is possible to compensate for fluctuations in the amount of light of the first light source 30a and the second light source 30b without amplifying noise.
  • the controller 80 adjusts the amount of light of the light emitting elements 32a and 32b by PWM control. More specifically, at the time of shipment of the sorter 10, the controller 80 is set to apply a voltage to the light emitting elements 32a and 32b at a duty ratio of 50%. Then, the calibration unit 86 compensates for fluctuations in the amount of light of the light emitting elements 32a and 32b by increasing or decreasing the duty ratio. That is, when the light amount of the light emitting elements 32a and 32b is larger than the reference value, the calibration unit 86 reduces the duty ratio so that the light amount becomes the reference value, and the light amount of the light emitting elements 32a and 32b is smaller than the reference value.
  • the duty ratio is increased so that the amount of light becomes a reference value.
  • the default duty ratio By setting the default duty ratio to less than 100%, it is possible to cope with both when the amount of light is higher than the reference value and when the amount of light is lower than the reference value. If the amount of light does not reach the reference value even if the duty ratio is changed, the controller 80 notifies via the notification unit 88.
  • the calibration unit 86 determines that the calibration is not executed. That is, when the fluctuation of the amount of light is small enough that it is not necessary to perform the calibration, the execution of the calibration is refrained. According to this form, the load on the controller 80 can be reduced.
  • the calibration unit 86 even if the amount of light of at least one of the first light source 30a and the second light source 30b fluctuates during the sorting operation of the sorting machine 10, the fluctuation can be compensated for in real time. Moreover, since the above-mentioned intermediate member 50 can accurately detect the light amounts of the first light source 30a and the second light source 30b separately, the calibration accuracy is also improved. Then, calibration can be performed so that the intensity of the signal acquired by the first optical sensor 40a and the intensity of the signal acquired by the second optical sensor 40b are within the same reference range. Therefore, the determination accuracy by the determination unit 81 is improved.
  • the calibration unit 86 if the degree of fluctuation in the amount of light of the first light source 30a and the second light source 30b is such that the determination accuracy can be appropriately ensured by the calibration, the calibration is executed and the determination is made. If the accuracy cannot be properly ensured, an abnormality in the amount of light is notified. Therefore, appropriate measures can be taken according to the degree of fluctuation in the amount of light.
  • the calibration unit 86 executes the calibration if the detected light amount is within the first range. That is, if the difference between the detected light amount and the reference value is such that it is not necessary to notify the light amount abnormality, calibration is performed even when the difference is very small. According to this embodiment, fluctuations in the amount of light of the first light source 30a and the first optical sensor 40a can be compensated more strictly.
  • the calibration unit 86 adjusts the gain for the signal acquired by the light receiving elements 41a, 41b corresponding to the raw material field of view V2, instead of adjusting the light amount of the light emitting elements 32a, 32b.
  • the calibration unit 86 reduces the gain by the ratio, and when the light amount of the light emitting elements 32a and 32b is less than the reference value, the ratio is reduced. Only increase the gain.
  • the gain is changed by changing the gain in the AC / DC converter, but when the first optical sensor 40a and the second optical sensor 40b have an amplifier circuit built-in, the gain is changed.
  • the gain of the amplifier circuit may be changed. According to this embodiment, it is possible to compensate for fluctuations in the amount of light of the first light source 30a and the second light source 30b regardless of the light amount adjusting ability of the first light source 30a and the second light source 30b.
  • the calibration unit 86 performs calibration by combining an aspect of adjusting the amount of light of the light emitting elements 32a and 32b and an aspect of adjusting the gain.
  • the default duty ratio may be set to 100%.
  • the calibration unit 86 reduces the duty ratio so that the light amount becomes the reference value, and the light amount of the light emitting elements 32a and 32b is larger than the reference value.
  • the gain is increased by the ratio.
  • a sufficient amount of light can be secured when the amount of light of the light emitting elements 32a and 32b is within an appropriate range.
  • the default duty ratio is set to less than 100% (for example, 90%) and the amount of light does not reach the reference value even if the duty ratio is increased to 100%, the gain is adjusted with respect to the amount of insufficient light. May be done.
  • the calibration process and notification process described above can be performed at any time. For example, these processes may be performed instead of or in addition to the sorting operation of the sorting machine 10 before the start of the operation of the sorting machine 10. Further, when the sorting machine 10 is configured to be able to clean the transparent members 21a and 21b by the wiper and is configured to temporarily interrupt the sorting process for cleaning, the calibration process is performed. And the notification process may be performed at the time of the cleaning.
  • the size of the unit region UA of the marking 53 may be set to be about the same as the size of the visual field of each of the plurality of light receiving elements 41a and 41b. By doing so, the positional deviation of the first optical sensor 40a and the second optical sensor 40b can be detected with high accuracy.
  • the size of the unit region UA may be set to about half of the minimum dimension (for example, grain thickness in the case of rice) of the object to be sorted 90 (for example, about 1.5 mm in the case of rice). .. By doing so, it is possible to detect only the positional deviation that greatly affects the sorting accuracy.
  • the size of the unit region UA may be set to be equal to or more than the size of the visual field of each of the plurality of light receiving elements 41a and 41b and to be about half or less of the minimum dimension of the object to be sorted 90.
  • the marking replaces or in addition to at least one of the black first unit area 54 and the white second unit area 55 shown in FIG. 4, and other colors other than white and black. It may include a unit area.
  • the other unit regions may include two or more types of unit regions having different colors from each other.
  • the marking may be a color marking having two or more colors other than white and black.
  • the marking may have white, black, red, green, blue, cyan, magenta, and yellow unit regions, respectively.
  • the color correction unit 85 may be configured to perform non-linear color correction so that each gradation value of the marking image approaches a predetermined color.
  • unit regions of the same color or different colors may be spaced apart from each other, or may be adjacent to each other without a gap as in the example shown in FIG.
  • the unit regions do not necessarily have to be arranged two-dimensionally, and may be arranged one-dimensionally only in the second direction D2. In this way, the amount of misalignment in the second direction D2 can be detected.
  • a two-dimensional code may be used as a marking. Even in this way, the same effect as that of the above-described embodiment can be obtained.
  • the two-dimensional code may be a standardized and known code, for example, a stack type (PDF417, CODE49, etc.) or a matrix type (QR code (registered trademark), DataMatrix, VeriCode (registered trademark), etc.). There may be. Alternatively, the two-dimensional code may be independently developed.
  • a one-dimensional code (for example, a barcode) may be used as a marking.
  • the markings are arranged so that the bars are lined up in the second direction D2, the amount of misalignment in the second direction D2 can be detected.
  • the state of the optical sensor eg, misalignment, misalignment
  • the marking is a two-dimensional code, the amount of misalignment in the first direction D1 can be detected based on what kind of information is read.
  • the marking is not limited to the above-mentioned example, and may be a single or multiple markings of any shape.
  • the marking may be a mark such as "+”, “-”, “ ⁇ ", “ ⁇ ”.
  • the second embodiment is different from the first embodiment only in that the marking 153 is provided instead of the marking 53, and the apparatus configuration of the sorting machine 10 of the second embodiment is the same as that of the first embodiment. ..
  • the marking 153 includes a first region 154, a second region 155, and a third region 156.
  • Each of these regions 154 to 156 provides at least one or more functions for ensuring the determination performance of the determination unit 81 based on the marking-related light.
  • each of the regions 154 to 156 provides different functions from each other.
  • regions 154 to 156 will be specifically described.
  • the first region 154 provides a misalignment detection function for the optical sensors 40a and 40b.
  • the first region 154 comprises a small black region 157.
  • the small region 157 has a trapezoidal shape with an upper base and a lower base parallel to the second direction D2.
  • a white left small region 158 and a right small region 159 are located on both sides of the small region 157 in the second direction D2. That is, the boundaries of the small area 157 are identified by the difference in color.
  • the width W1 of the small region 157 in the second direction D2 is uniquely determined according to the position of the first direction D1 (that is, the direction orthogonal to the second direction D2) due to the trapezoidal shape.
  • the marking-related light obtained based on this first region 154 it is possible to detect the presence / absence, direction, and amount of misalignment of the optical sensors 40a and 40b.
  • a specific example will be described below assuming that the intermediate linear region A1 is imaged by the first optical sensor 40a when the first optical sensor 40a is arranged at a normal position.
  • the position of the first optical sensor 40a shifts to one side of the first direction D1 and the upper linear region A2 is imaged by the first optical sensor 40a, the small area detected by the first optical sensor 40a is detected.
  • the width W1 of the region 157 becomes larger in proportion to the amount of deviation as compared with the normal position (intermediate linear region A1).
  • the position of the first optical sensor 40a shifts to the other side in the first direction D1 and the lower linear region A3 is imaged by the first optical sensor 40a, it is detected by the first optical sensor 40a.
  • the width W1 of the small region 157 becomes smaller in proportion to the amount of deviation as compared with the normal position (intermediate linear region A1). Therefore, the direction and amount of the positional deviation in the first direction D1 can be detected based on the width W1.
  • the boundary between the small area 157 and the left small area 158 is orthogonal to the second direction D2 (in other words, parallel to the first direction D1). Therefore, even if the position of the first optical sensor 40a shifts to the first direction D1, the detection position of the boundary in the second direction D2 does not change.
  • the boundary in other words, the starting point of the small region 157 in the second direction D2 corresponds to the direction of the shift and the amount of the shift. The detection position of is changed. Therefore, the direction and amount of deviation in the second direction D2 can be detected based on the detection position of the boundary.
  • the boundary between the small area 157 and the right side small area 159 is orthogonal to the second direction D2
  • the boundary between the small area 157 and the right side small area 159 (in other words, the second direction D2).
  • the direction and amount of deviation in the second direction D2 can be detected based on the detection position of the small region 157).
  • the boundary between the small area 157 and the left side small area 158 is not orthogonal to the second direction D2
  • the boundary between the small area 157 and the right side small area 159 is not orthogonal to the second direction D2.
  • the direction and amount of deviation in the second direction D2 can be detected based on the detection positions of both the start point and the end point of the small region 157 in the second direction D2.
  • the misalignment detection function can be provided by the same principle by using other portions of the first region 154 (parts other than the small regions 157 to 159). Further, in another alternative embodiment, the width W1 of the small region 157 may be set to be uniquely determined according to the position of the direction intersecting the second direction D2 (hereinafter, also referred to as the intersecting direction).
  • the second region 155 provides a focus shift detection function for the optical sensors 40a and 40b.
  • the second region 155 includes a plurality of white first lines 161 and a plurality of white second lines 162. Each of the second lines 162 is thinner than any of the plurality of first lines 161.
  • Each of the optical sensors 40a and 40b is initially set to be in focus at the detection position of the object to be sorted 90 (that is, the position on the transfer path 95) at any position in the second direction D2. Further, regarding the marking 153 on the front side, the thickness of the first line 161 and the second line 162 is the first when the first optical sensor 40a is in focus at the detection position of the object to be sorted 90.
  • the first line 161 can be detected by the optical sensor 40a of the above, but the second line 162 cannot be detected due to blurring, and the first optical sensor 40a is in focus at the position of the marking 153.
  • the optical sensor 40a of the above is set so that both the first line 161 and the second line 162 can be detected.
  • the relationship between the marking 153 on the rear side and the second optical sensor 40b is also the same.
  • the focus shift has occurred with respect to the detection position of the object to be sorted 90.
  • Whether or not the first line 161 and the second line 162 can be detected may be determined, for example, by binarization processing using a threshold value based on the signals acquired by the optical sensors 40a and 40b. Alternatively, it may be performed by an edge detection process.
  • the third area 156 provides a white balance confirmation function.
  • the third region 156 is a white region, and the current white balance setting can be confirmed from the gradation value of the marking-related light obtained based on the third region 156. Further, if necessary, the white balance is corrected so that the gradation value of the marking-related light obtained based on the third region 156 becomes an arbitrary reference value (for example, the reference value of the gradation value 255). You may. Since the third region 156 is a white region as a whole, even if the positions of the optical sensors 40a and 40b are displaced, the white balance confirmation function can be provided without being affected by the position.
  • At least one of the regions 154 to 156 may provide a light amount detecting function of the light sources 30a and 30b. That is, the amount of light of the light sources 30a and 30b may be detected based on the marking-related light obtained through at least one of the regions 154 to 156.
  • the processing of the calibration unit 86 may be executed as in the first embodiment based on the detected amount of light.
  • the calibration unit 86 may adjust the amount of light by the aperture of the lenses of the optical sensors 40a and 40b.
  • the calibration unit 86 may detect that at least a part of the light emitting elements 32a and 32b is in a non-lighting state due to a failure, deterioration, or the like as a light amount abnormality based on the detected light amount.
  • FIG. 6 shows examples of various markings that can be used in place of marking 153.
  • Examples 1 to 4 are examples of markings that can provide a misalignment detection function and a white balance confirmation function
  • Examples 5 to 8 provide a focus shift detection function in addition to the misalignment detection function and the white balance confirmation function.
  • the focus shift detection function is added by the combination of the relatively thick line and the relatively thin line.
  • Examples 1 to 3, 5 to 8 are monochrome markings in which only black and white are used, and Example 4 is color marking having a plurality of colors other than black and white.
  • the marking color is not particularly limited, and any number and type of colors may be used for marking. This point is the same for the marking 153 shown in FIG. Further, the outer and inner shapes of the marking are not limited to the various examples shown in FIGS. 5 and 6, and can be arbitrarily set as long as they can provide at least a part of the above-mentioned functions.
  • the first light source 30a and the second light source 30b may be configured by any type of light emitting element instead of the LED.
  • the light emitting element may be, for example, a fluorescent lamp, EL, or the like.
  • the sorter 10 may include a light source that irradiates near infrared rays in place of or in addition to the first light sources 30a and 30b.
  • an additional intermediate member having the same function as the intermediate member 50 may be provided for the near-infrared light source, and calibration processing and notification processing may be performed on the near-infrared light source.
  • an additional optical sensor for detecting near-infrared light may be provided.
  • the detection unit 82, the first correction unit 83, and the second correction unit 84 may be processed with respect to the additional optical sensor.
  • the light source used in the sorter 10 is not limited to the configuration that emits visible light or near-infrared light exemplified above, but emits electromagnetic waves of arbitrary wavelengths (in other words, light in a broad sense). It may be configured to do so.
  • any type of sensor may be employed to detect the electromagnetic waves emitted by the light source, and for at least one of the light source and the sensor, an intermediate having the same function as the intermediate member 50. Members may be provided.
  • the first layer 51 of the intermediate member 50 may be omitted.
  • the intermediate member 50 may include a single-layer region and a multi-layer region.
  • at least a part of the detection unit 82, the first correction unit 83, the second correction unit 84, the color correction unit 85, and the calibration unit 86 may be omitted.
  • at least a part of the above-mentioned notification process may be omitted.
  • one of the first optical sensor 40a and the second optical sensor 40b may be omitted, or one of the first light source 30a and the second light source 30b may be omitted. With such omission, the light associated with the object to be sorted 90 may be one of the reflected light and the transmitted light.
  • the number of light sources may be any number of 2 or more on the front side and may be any number of 2 or more on the rear side.
  • the number of optical sensors may be any number of 2 or more on the front side and may be any number of 2 or more on the rear side.
  • the number of each of the light source and the optical sensor may be the same on the front side and the number on the rear side, or may be different from each other.
  • the total number of light sources on the front side and the rear side and the total number of optical sensors on the front side and the rear side may be the same number or different from each other.
  • the number of intermediate members 50 installed can be any number of 1 or more.
  • the sorter 10 may include an additional optical sensor for detecting marking-related light in addition to the first optical sensor 40a and the second optical sensor 40b.
  • the first optical sensor 40a and the second optical sensor 40b are used only for detecting the light associated with the object 90 to be sorted.
  • Optical sorter 20 ... Optical detection unit 21a, 21b ... Transparent member 30a ... First light source 30b ... Second light source 31a, 31b ... Light 32a, 32b. .. Light source 40a ... First optical sensor 40b ... Second optical sensor 41a, 41b ... Light receiving element 50 ... Intermediate member 51 ... First layer 52 ... Second Layer 53 ... Marking 54 ... First unit area 55 ... Second unit area 71 ... Storage tank 72 ... Feeder 73 ... Shoot 74 ... Good product discharge gutter 75. .. Defective product discharge gutter 76 ... Sorting unit 77 ... Ejector 78 ... Air 80 ... Controller 81 ... Judgment unit 82 ...
  • Detection unit 83 ... First correction unit 84. .. 2nd correction unit 85 ... color correction unit 86 ... calibration unit 88 ... notification unit 90, 91, 92 ... object to be sorted 95 ... transfer path 153 ... marking 154 ... first area 155 ... second area 156 ... third area 157 ... small area 158 ... left side small area 159 ... right side small area 161 ... first Line 162 ... 2nd line D1 ... 1st direction D2 ... 2nd direction V1 ... Total field of view of the 1st optical sensor and the 2nd optical sensor V2 ... 1st Raw material field of view of optical sensor and second optical sensor V3 ... Non-raw material field of view of first optical sensor and second optical sensor

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Sorting Of Articles (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

This optical sorting machine comprises: a light source configured to irradiate, with light, a to-be-sorted object being transferred on a transfer path; an optical sensor configured to detect the light irradiated from the light source and associated with the to-be-sorted object; a determination unit configured to determine foreign matter and/or defective products for the to-be-sorted object on the basis of a signal obtained by the optical sensor with respect to the light associated with the to-be-sorted object; and an intermediate member that is placed at a position between the light source and the transfer path in a light irradiation direction from the light source to the to-be-sorted object, and at a position in which the detection of the light associated with the to-be-sorted object is not affected, the intermediate member having a marking. The optical sensor is further configured to detect a marking-related light irradiated from the light source and obtained through the marking.

Description

光学式選別機Optical sorter
 本開示は光学式選別機に関する。 This disclosure relates to an optical sorter.
 被選別物に光源から光を照射した際に光学センサによって得られる光情報を使用して、被選別物に含まれる異物や不良品を判別して除去する光学式選別機が従来から知られている(例えば、特開昭61-212734号公報)。光学センサによって得られた光情報(例えば、色階調値)は閾値と比較され、その比較結果に基づいて、被選別物が良品であるか、それとも、異物または不良品であるかが判定される。異物または不良品であると判定された被選別物は、典型的には、エア噴射によって吹き飛ばされ、それによって、被選別物は、良品と、異物および不良品と、に選別される。 An optical sorter that uses optical information obtained by an optical sensor when the object to be sorted is irradiated with light from a light source to identify and remove foreign substances and defective products contained in the object to be sorted has been conventionally known. (For example, Japanese Patent Application Laid-Open No. 61-212734). The optical information (for example, the color gradation value) obtained by the optical sensor is compared with the threshold value, and based on the comparison result, it is determined whether the object to be sorted is a good product, a foreign substance, or a defective product. To. The object to be sorted, which is determined to be a foreign substance or a defective product, is typically blown off by air injection, whereby the object to be sorted is sorted into a non-defective product, a foreign substance and a defective product.
 しかしながら、従来の光学式選別機は、選別精度の向上のために改良の余地を残している。 However, the conventional optical sorter leaves room for improvement in order to improve the sorting accuracy.
 本開示は、上述の課題を解決するためになされたものであり、例えば、以下の形態として実現することが可能である。 This disclosure has been made to solve the above-mentioned problems, and can be realized, for example, in the following form.
 本開示の第1の形態によれば、光学式選別機が提供される。この光学式選別機は、移送経路上を移送中の被選別物に光を照射するように構成された光源と、光源から照射され、被選別物に関連付けられた光を検出するように構成された光学センサと、被選別物に関連付けられた光に関して光学センサによって取得される信号に基づいて、被選別物についての異物および/または不良品の判定を行うように構成された判定部と、光源から被選別物への光の照射方向における光源と移送経路との間の位置であって、被選別物に関連付けられた光の検出に影響しない位置に配置され、マーキングを有する中間部材と、を備えている。光学センサは、さらに、光源から照射され、マーキングを介して得られるマーキング関連光を検出するように構成される。 According to the first aspect of the present disclosure, an optical sorter is provided. This optical sorter is configured to detect a light source configured to illuminate the object being transferred on the transfer path and light emitted from the light source and associated with the object to be sorted. An optical sensor, a determination unit configured to determine foreign matter and / or defective products for the object to be sorted, and a light source based on the signal acquired by the optical sensor with respect to the light associated with the object to be sorted. An intermediate member, which is located between the light source and the transfer path in the direction of irradiation of light from the object to be sorted and does not affect the detection of light associated with the object to be sorted, and has markings. I have. The optical sensor is further configured to detect marking-related light emitted from a light source and obtained through marking.
 「被選別物に関連付けられた光」とは、被選別物で反射した光である反射光であってもよいし、被選別物を透過した光である透過光であってもよいし、あるいは、反射光と透過光との両方であってもよい。 The "light associated with the object to be sorted" may be reflected light which is light reflected by the object to be sorted, may be transmitted light which is light transmitted through the object to be sorted, or may be. , Both reflected light and transmitted light may be used.
 この光学式選別機によれば、光学センサによって検出されるマーキング関連光に基づいて、選別精度を向上させるための種々の処理を実施することが可能になる。例えば、マーキング関連光に基づいて光源の光量を検出し、光量が適正範囲内にあるか否かを判定することができる。さらに、中間部材は、光学センサが被選別物に関連付けられた光の検出に影響しない位置に配置されるので、光学式選別機の選別運転中にマーキング関連光を検出することができる。しかも、光学センサは、被選別物に関連付けられた光の検出と、マーキング関連光の検出と、に共用できるので、マーキング関連光の検出のためだけに追加的な光学センサを設ける必要が無い。 According to this optical sorter, it is possible to carry out various processes for improving the sorting accuracy based on the marking-related light detected by the optical sensor. For example, the amount of light from the light source can be detected based on the marking-related light, and it can be determined whether or not the amount of light is within an appropriate range. Further, since the intermediate member is arranged at a position where the optical sensor does not affect the detection of the light associated with the object to be sorted, the marking-related light can be detected during the sorting operation of the optical sorter. Moreover, since the optical sensor can be shared for the detection of the light associated with the object to be sorted and the detection of the marking-related light, it is not necessary to provide an additional optical sensor only for the detection of the marking-related light.
 本開示の第2の形態によれば、第1の形態において、光学式選別機は、マーキング関連光の検出結果に基づいて光学センサの状態を検出するように構成された検出部を備えている。この形態によれば、検出された光学センサの状態に基づいて、光学センサの状態に起因する選別精度の悪化を抑制するための種々の処理を実施することができる。例えば、光学センサの状態に関する異常を報知することによって、光学センサの状態に起因して選別精度が悪化した状態で光学式選別機が運転されることを抑制できる。あるいは、選別精度の悪化が把握された場合に、悪化の原因を解明するための情報として、検出された光学センサの状態を利用できる。検出される光学センサの状態は、例えば、光学センサの設置位置に関連する状態を含んでいてもよい。 According to the second aspect of the present disclosure, in the first aspect, the optical sorter comprises a detector configured to detect the state of the optical sensor based on the detection result of the marking-related light. .. According to this embodiment, various processes for suppressing deterioration of sorting accuracy due to the state of the optical sensor can be performed based on the detected state of the optical sensor. For example, by notifying an abnormality regarding the state of the optical sensor, it is possible to suppress the operation of the optical sorter in a state where the sorting accuracy is deteriorated due to the state of the optical sensor. Alternatively, when the deterioration of the sorting accuracy is grasped, the detected state of the optical sensor can be used as information for clarifying the cause of the deterioration. The detected state of the optical sensor may include, for example, a state related to the installation position of the optical sensor.
 本開示の第3の形態によれば、第2の形態において、検出部によって検出される光学センサの状態は、光学センサの位置ずれの有無、位置ずれの量、位置ずれの方向、および、光学センサのフォーカスずれの有無のうちの少なくとも一つを含む。この形態によれば、光学センサの位置ずれまたはフォーカスずれに起因する選別精度の悪化を抑制するための種々の処理を実施することができる。 According to the third aspect of the present disclosure, in the second embodiment, the state of the optical sensor detected by the detection unit is the presence / absence of misalignment of the optical sensor, the amount of misalignment, the direction of misalignment, and the optics. Includes at least one of the presence or absence of out-of-focus of the sensor. According to this embodiment, various processes for suppressing deterioration of sorting accuracy due to positional deviation or focus deviation of the optical sensor can be performed.
 検出部によって検出される光学センサの状態が位置ずれの量および方向を含む場合には、位置ずれに起因して選別精度が悪化することを抑制するための処理または措置を実施しやすい。例えば、ユーザは、位置ずれを解消するための調整作業を行う際に、光学センサの設置位置をどの方向にどの程度の距離だけ移動させればよいかを把握しやすい。 When the state of the optical sensor detected by the detection unit includes the amount and direction of misalignment, it is easy to carry out processing or measures to prevent deterioration of sorting accuracy due to misalignment. For example, the user can easily grasp in which direction and by what distance the installation position of the optical sensor should be moved when performing the adjustment work for eliminating the misalignment.
 検出部によって検出される光学センサの状態が光学センサのフォーカスずれ(つまり、被選別物に対する合焦状態が得られない状態)の有無を含む場合には、フォーカスずれに起因する選別精度の悪化を抑制するための種々の処理を実施することができる。例えば、光学式選別機は、フォーカスずれが検出された場合に、ユーザへの報知を行ってもよい。 When the state of the optical sensor detected by the detection unit includes the presence or absence of the focus shift of the optical sensor (that is, the state in which the focused state with respect to the object to be sorted cannot be obtained), the sorting accuracy deteriorates due to the focus shift. Various processes for suppressing can be carried out. For example, the optical sorter may notify the user when a focus shift is detected.
 光学式選別機は、判定部による判定結果に基づいて決定される特定の被選別物に向けてエアを噴射して特定の被選別物を移送経路から逸脱させて、異物および/または不良品を選別する選別部を備えていてもよい。移送経路が第1の方向に延在し、被選別物が、第1の方向と直交する第2の方向の所定幅で第1の方向に移送される場合、選別部は、第2の方向における被選別物に関連付けられた光が検出される位置と、第2の方向におけるエアが噴射されるべき位置と、の予め定められた対応関係に基づいて、特定の被選別物に向けて適所からエアを噴射するように構成されてもよい。この場合、光学式選別機は、さらに、第2の方向における光学センサの位置ずれの量に基づいて、予め定められた対応関係を補正する第1の補正部を備えていてもよい。 The optical sorter injects air toward a specific object to be sorted, which is determined based on the judgment result by the judgment unit, to deviate the specific object to be sorted from the transfer path, and removes foreign matter and / or defective products. It may be provided with a sorting unit for sorting. When the transfer path extends in the first direction and the object to be sorted is transferred in the first direction with a predetermined width in the second direction orthogonal to the first direction, the sorting unit is in the second direction. In the right place for a particular object to be sorted, based on a predetermined correspondence between the position where the light associated with the object to be sorted in is detected and the position where the air should be ejected in the second direction. It may be configured to inject air from. In this case, the optical sorter may further include a first correction unit that corrects a predetermined correspondence relationship based on the amount of misalignment of the optical sensor in the second direction.
 さらに、選別部は、予め定められた遅れ噴射時間に基づいて定まるタイミングでエアを噴射するように構成されてもよい。遅れ噴射時間とは、特定の被選別物に関連付けられた光を検出してからエアを噴射するまでの時間である。この場合、光学式選別機は、第1の方向における光学センサの位置ずれの量に基づいて、予め定められた遅れ噴射時間を補正する第2の補正部を備えていてもよい。 Further, the sorting unit may be configured to inject air at a predetermined timing based on a predetermined delayed injection time. The delayed injection time is the time from the detection of the light associated with a specific object to be selected until the injection of air. In this case, the optical sorter may include a second correction unit that corrects a predetermined delay injection time based on the amount of misalignment of the optical sensor in the first direction.
 本開示の第4の形態によれば、第1ないし第3のいずれかの形態において、光学式選別機は、マーキング関連光の検出結果に基づいて、被選別物に関連付けられた光の検出結果に対して色補正を行うように構成された色補正部を備えている。この形態によれば、光学センサの検出結果が表す画像の色合いを調節することができる。マーキングがモノクロマーキングの場合は、色補正として、線形的なホワイトバランス補正およびダーク補正の少なくとも一方が行われてもよい。マーキングがカラーマーキングである場合は、非線形のカラー補正が行われてもよい。 According to the fourth aspect of the present disclosure, in any one of the first to third embodiments, the optical sorter is based on the detection result of the marking-related light, and the detection result of the light associated with the object to be sorted. It is provided with a color correction unit configured to perform color correction on the light. According to this form, the hue of the image represented by the detection result of the optical sensor can be adjusted. When the marking is monochrome marking, at least one of linear white balance correction and dark correction may be performed as color correction. If the marking is color marking, non-linear color correction may be performed.
 本開示の第5の形態によれば、第1ないし第4のいずれかの形態において、光学式選別機は、マーキング関連光の検出結果に基づいてキャリブレーションを実行可能に構成されたキャリブレーション部を備えている。この形態によれば、光学式選別機の選別運転中にリアルタイムで光源の光量の変動を良好に補償することができる。 According to the fifth aspect of the present disclosure, in any one of the first to fourth embodiments, the optical sorter is a calibration unit configured to be able to perform calibration based on the detection result of marking-related light. It is equipped with. According to this embodiment, it is possible to satisfactorily compensate for fluctuations in the amount of light from the light source in real time during the sorting operation of the optical sorter.
 本開示の第6の形態によれば、第5の形態において、キャリブレーションは、マーキング関連光の検出結果に基づいて光源の光量を調節することを含む。この形態によれば、ノイズを増幅することなく、光源の光量の変動を補償できる。 According to the sixth aspect of the present disclosure, in the fifth aspect, the calibration includes adjusting the amount of light of the light source based on the detection result of the marking-related light. According to this form, it is possible to compensate for fluctuations in the amount of light from the light source without amplifying noise.
 本開示の第7の形態によれば、第5または第6の形態において、キャリブレーションは、光学センサによって取得される信号についてのゲインをマーキング関連光の検出結果に基づいて調節することを含む。この形態によれば、光源の光量調節能力に関係なく、光源の光量の変動を補償できる。 According to the seventh aspect of the present disclosure, in the fifth or sixth embodiment, the calibration includes adjusting the gain of the signal acquired by the optical sensor based on the detection result of the marking-related light. According to this form, it is possible to compensate for fluctuations in the amount of light of the light source regardless of the ability of the light source to adjust the amount of light.
 本開示の第8の形態によれば、第1ないし第7のいずれかの形態において、光源は、被選別物の移送経路に対する第1の側に配置される第1の光源と、第1の側と反対の第2の側に配置される第2の光源と、を備えている。光学センサは、第1の側に配置される第1の光学センサと、第2の側に配置される第2の光学センサと、のうちの少なくとも一方を備えている。中間部材は、光非透過性を有し、光が移送経路側から中間部材を透過して光学センサに到達することを実質的に防止する。この形態によれば、光学センサが第1の光学センサを備えている場合、中間部材が第1の側に配置され、第2の側に位置する第2の光源から照射される光は、中間部材を透過して第1の側に位置する第1の光学センサに到達することがない。このため、第1の光源から照射され、マーキングを介して得られるマーキング関連光を第1の光学センサで検出する際に、当該マーキング関連光と一緒に、第2の光源から照射される光が第1の光学センサで検出されることがない。同様に、光学センサが第2の光学センサを備えている場合、中間部材が第2の側に配置され、第1の側に位置する第1の光源から照射される光は、中間部材を透過して第2の側に位置する第2の光学センサに到達することがない。したがって、マーキング関連光に基づいて光源の光量を検出する場合、光量をより正確に検出することができる。また、第8の形態を第2の形態と組み合わせれば、光学センサの状態をより正確に検出することができる。また、第5の形態と組み合わせる場合、正確に検出された光源の光量に基づいて、より精度の高いキャリブレーションを行うことができる。さらに、光学センサが第1の光学センサおよび第2の光学センサの両方を備えていれば、第1の光源の光量と、第2の光源の光量と、のバランスを図ることもできる。 According to the eighth aspect of the present disclosure, in any one of the first to seventh forms, the light source is a first light source arranged on the first side with respect to the transfer path of the object to be sorted, and the first light source. It comprises a second light source, which is located on the second side opposite to the side. The optical sensor includes at least one of a first optical sensor arranged on the first side and a second optical sensor arranged on the second side. The intermediate member has light non-transparency and substantially prevents light from passing through the intermediate member from the transfer path side and reaching the optical sensor. According to this embodiment, when the optical sensor includes the first optical sensor, the intermediate member is arranged on the first side, and the light emitted from the second light source located on the second side is intermediate. It does not pass through the member and reach the first optical sensor located on the first side. Therefore, when the marking-related light emitted from the first light source and obtained through the marking is detected by the first optical sensor, the light emitted from the second light source together with the marking-related light is emitted. It is not detected by the first optical sensor. Similarly, when the optical sensor includes a second optical sensor, the intermediate member is arranged on the second side, and the light emitted from the first light source located on the first side is transmitted through the intermediate member. Therefore, it does not reach the second optical sensor located on the second side. Therefore, when the light amount of the light source is detected based on the marking-related light, the light amount can be detected more accurately. Further, if the eighth form is combined with the second form, the state of the optical sensor can be detected more accurately. Further, when combined with the fifth embodiment, more accurate calibration can be performed based on the amount of light of the light source detected accurately. Further, if the optical sensor includes both the first optical sensor and the second optical sensor, the light amount of the first light source and the light amount of the second light source can be balanced.
 本開示の第9の形態によれば、第1ないし第8のいずれかの形態において、マーキングは、第1の色を有するとともに一定の大きさを有する少なくとも一つの第1の単位領域と、第1の色とは異なる第2の色を有するとともに、一定の大きさを有する少なくとも一つの第2の単位領域と、を少なくとも含む。マーキングは、第1の単位領域と第2の単位領域とが、予め定められた出現パターンで、一次元的または二次元的に並ぶように構成される。単位領域とは、予め定められた一定の大きさおよび形状を有する領域である。 According to a ninth aspect of the present disclosure, in any one of the first to eighth forms, the markings have at least one first unit area having a first color and a certain size, and a second. It has at least one second unit region having a second color different from that of one color and having a certain size. The marking is configured such that the first unit area and the second unit area are arranged one-dimensionally or two-dimensionally in a predetermined appearance pattern. A unit region is a region having a predetermined size and shape.
 第9の形態が第2の形態と組み合わせられる場合、例えば、予め定められた出現パターンを検出できるか否か、または、予め定められた出現パターンをどの位置で検出できるかに基づいて、光学センサの状態を容易に検出することができる。第1の単位領域と第2の単位領域とが一次元的に並ぶ場合には、マーキング関連光に基づいて、第1の単位領域と第2の単位領域との並び方向における光学センサの位置ずれの量を検出することができる。第1の単位領域と第2の単位領域とが二次元的に並ぶ場合には、複数の出現パターンのうちのいずれの出現パターンが検出されるかに基づいて、および、当該出現パターンがどの位置で検出されるかに基づいて、位置ずれの量と、位置ずれの方向と、を検出することができる。 When the ninth embodiment is combined with the second embodiment, the optical sensor is based on, for example, whether or not a predetermined appearance pattern can be detected, or at what position a predetermined appearance pattern can be detected. The state of can be easily detected. When the first unit area and the second unit area are arranged one-dimensionally, the position shift of the optical sensor in the arrangement direction of the first unit area and the second unit area based on the marking-related light. The amount of light can be detected. When the first unit area and the second unit area are arranged two-dimensionally, based on which of the plurality of appearance patterns is detected and at which position the appearance pattern is located. The amount of misalignment and the direction of misalignment can be detected based on whether it is detected in.
 移送経路が第1の方向に延在し、被選別物が、第1の方向と直交する第2の方向の所定幅で第1の方向に移送される場合、第1の単位領域と第2の単位領域とは、第2の方向に一次元的に並んでいてもよい。あるいは、第1の単位領域と第2の単位領域とは、第1の方向および第2の方向に二次元的に並んでいてもよい。この場合、第2の方向における第1の単位領域および第2の単位領域の出現パターンは、第1の方向における第1の単位領域および第2の単位領域の並び位置ごとに互いに異なっていてもよい。この構成によれば、検出される出現パターンの位置および種類に基づいて、位置ずれの量と、位置ずれの方向と、を容易に検出することができる。 When the transfer path extends in the first direction and the object to be sorted is transferred in the first direction with a predetermined width in the second direction orthogonal to the first direction, the first unit region and the second. The unit areas of may be arranged one-dimensionally in the second direction. Alternatively, the first unit area and the second unit area may be two-dimensionally arranged in the first direction and the second direction. In this case, even if the appearance patterns of the first unit area and the second unit area in the second direction are different from each other for each arrangement position of the first unit area and the second unit area in the first direction. good. According to this configuration, the amount of misalignment and the direction of misalignment can be easily detected based on the position and type of the detected appearance pattern.
 本開示の第10の形態によれば、第9の形態において、マーキングは、一次元または二次元のコードである。つまり、マーキングは、何らかの情報を表すために、予め定められた体系に基づいて作成された印である。この形態によれば、第10の形態が第2の形態と組み合わせられる場合、コードが表す情報を読み取れるか否かに基づいて、光学センサの状態(例えば、位置ずれの有無、フォーカスずれの有無)を容易に検出できる。さらに、マーキングが二次元のコードである場合には、どのような情報が読み取れたかに基づいて、位置ずれの量を検出できる。 According to the tenth form of the present disclosure, in the ninth form, the marking is a one-dimensional or two-dimensional code. That is, the marking is a mark created based on a predetermined system in order to represent some information. According to this embodiment, when the tenth embodiment is combined with the second embodiment, the state of the optical sensor (for example, the presence / absence of misalignment, the presence / absence of focus shift) is based on whether or not the information represented by the code can be read. Can be easily detected. Further, when the marking is a two-dimensional code, the amount of misalignment can be detected based on what kind of information is read.
 本開示の第11の形態によれば、光学式選別機が提供される。この光学式選別機は、第1の形態の光学センサに代えて、光源から照射され、被選別物に関連付けられた光を検出するように構成された第1の光学センサと、光源から照射され、マーキングを介して得られるマーキング関連光を検出するように構成された第2の光学センサと、を備えている。この形態によっても、第1の形態と同様の効果が得られる。第2ないし第10のいずれかの形態を第11の形態と組み合わせることも可能である。第2の形態を第11の形態と組み合わせる場合には、検出部は、第2の光学センサの状態を検出するように構成される。 According to the eleventh aspect of the present disclosure, an optical sorter is provided. This optical sorter is irradiated from a light source instead of the optical sensor of the first embodiment, and is irradiated from a first optical sensor configured to detect light associated with the object to be sorted and a light source. , A second optical sensor configured to detect marking-related light obtained through marking. This form also has the same effect as the first form. It is also possible to combine any of the second to tenth forms with the eleventh form. When the second embodiment is combined with the eleventh embodiment, the detection unit is configured to detect the state of the second optical sensor.
 本開示の第12の形態によれば、光学式選別機が提供される。この光学式選別機は、
移送経路上を移送中の被選別物に光を照射するように構成された光源と、光源から照射され、被選別物に関連付けられた光を検出するように構成された光学センサと、被選別物に関連付けられた光に関して光学センサによって取得される信号に基づいて、被選別物についての品質の判定を行うように構成された判定部と、光源から被選別物への光の照射方向における光源と移送経路との間の位置であって、被選別物に関連付けられた光の検出に影響しない位置に配置され、マーキングを有する中間部材と、を備えている。光学センサは、さらに、光源から照射され、マーキングを介して得られるマーキング関連光を検出するように構成される。マーキングは、複数の領域を備えている。複数の領域の各々は、マーキング関連光に基づいて判定部の判定性能を確保するための少なくとも一つ以上の機能を提供するように構成される。この光学式選別機によれば、複数の領域の各々によって、判定部の判定性能、ひいては選別精度を向上させるための種々の処理を実施することが可能になる。
According to the twelfth aspect of the present disclosure, an optical sorter is provided. This optical sorter
A light source configured to illuminate the object being transferred on the transfer path, an optical sensor configured to detect the light emitted from the light source and associated with the object to be sorted, and the object to be sorted. A determination unit configured to determine the quality of the object to be sorted based on the signal acquired by the optical sensor with respect to the light associated with the object, and a light source in the direction of light irradiation from the light source to the object to be sorted. It comprises an intermediate member, located between and the transfer path, which is located at a position that does not affect the detection of light associated with the object to be sorted and has markings. The optical sensor is further configured to detect marking-related light emitted from a light source and obtained through marking. The marking comprises multiple areas. Each of the plurality of regions is configured to provide at least one or more functions for ensuring the determination performance of the determination unit based on the marking-related light. According to this optical sorter, it is possible to carry out various processes for improving the determination performance of the determination unit and, by extension, the sorting accuracy, depending on each of the plurality of regions.
 本開示の第13の形態によれば、第12の形態において、少なくとも一つの機能は、光源の光量検出機能、光学センサの位置ずれ検出機能、光学センサのフォーカスずれ検出機能、および、光学センサのホワイトバランス確認機能のうちの少なくとも一つを含む。 According to the thirteenth aspect of the present disclosure, in the twelfth aspect, at least one function is a light amount detection function of a light source, a position shift detection function of an optical sensor, a focus shift detection function of an optical sensor, and an optical sensor. Includes at least one of the white balance confirmation functions.
 本開示の第14の形態によれば、第13の形態において、光学センサは、直線状に配列された複数の受光素子を備えている。そのような光学センサは、ラインセンサであってもよいし、エリアセンサであってもよい。複数の領域の少なくとも一部は、光学センサの位置ずれ検出機能を提供するように構成された第1の領域を含む。第1の領域は、色の違いによって識別可能な小領域を備えている。複数の光学素子の配列方向における小領域の幅は、配列方向と交差する方向の位置に応じて一意に設定される。「配列方向と交差する方向」は、配列方向と直交する方向であってもよい。この形態によれば、マーキング関連光に基づいて光学センサの位置ずれを容易に検出できる。具体的には、光学センサが配列方向と交差する方向にずれた場合には、光学センサによって検出される小領域の幅に基づいて、ずれの方向および量を把握できる。また、光学センサが配列方向にずれた場合には、光学センサによって検出される小領域の始点および/または終点の位置に基づいて、ずれの方向および量を把握できる。第14の形態は、第12の形態とは独立して実施することも可能である。例えば、マーキングとして、上記の小領域のみが単独で使用されてもよい。 According to the fourteenth aspect of the present disclosure, in the thirteenth aspect, the optical sensor includes a plurality of light receiving elements arranged linearly. Such an optical sensor may be a line sensor or an area sensor. At least a portion of the plurality of regions includes a first region configured to provide the misalignment detection function of the optical sensor. The first region comprises a small region that can be identified by the difference in color. The width of the small region in the arrangement direction of the plurality of optical elements is uniquely set according to the position in the direction intersecting the arrangement direction. The "direction intersecting the arrangement direction" may be a direction orthogonal to the arrangement direction. According to this form, the positional deviation of the optical sensor can be easily detected based on the marking-related light. Specifically, when the optical sensor is displaced in a direction intersecting the arrangement direction, the direction and amount of the deviation can be grasped based on the width of the small region detected by the optical sensor. Further, when the optical sensor is displaced in the arrangement direction, the direction and amount of the deviation can be grasped based on the positions of the start point and / or the end point of the small region detected by the optical sensor. The fourteenth embodiment can also be implemented independently of the twelfth embodiment. For example, as marking, only the above small area may be used alone.
 本開示の第15の形態によれば、第13または第14の形態において、複数の領域の少なくとも一部は、フォーカスずれ検出機能を提供するように構成された第2の領域を含む。第2の領域は、色の違いによって識別可能な小領域を備えている。この形態によれば、光学センサのフォーカスずれを容易に検出できる。例えば、第2の領域に対応するマーキング関連光の画像データにおける、小領域の境界を表すエッジの検出状況に基づいて、光学センサのフォーカスずれが検出されてもよい。この場合、予め定められた程度のシャープなエッジが検出された場合は、フォーカスずれが発生していないと判断されてもよく、当該シャープなエッジが検出されない場合は、フォーカスずれが発生していると判断されてもよい。あるいは、第2の領域に対応するマーキング関連光の画像データにおける、小領域の検出状況に基づいて、光学センサのフォーカスずれが検出されてもよい。この場合、例えば、サイズ(例えば、幅)が小さい小領域を設定しておき、当該小領域が検出された場合は、フォーカスずれが発生していないと判断されてもよく、当該小領域が検出されない場合は、フォーカスずれが発生していると判断されてもよい。また、当該小領域は、線の形態であってもよい。例えば、第2の領域は、第1の線と、第1の線よりも細い第2の線と、を有していてもよい。この場合、第1の線および第2の線は、光学センサが被選別物の検出位置で合焦しているときに、光学センサで第1の線を検出できるが、第2の線を検出できず、光学センサがマーキングの位置で合焦しているときに、光学センサで第1の線および第2の線の両方を検出できる太さに設定されてもよい。第15の形態は、第12の形態とは独立して実施することも可能である。例えば、マーキングとして、第2の領域のみが単独で使用されてもよい。 According to the fifteenth aspect of the present disclosure, in the thirteenth or fourteenth aspect, at least a part of the plurality of regions includes a second region configured to provide a focus shift detection function. The second region comprises a small region that can be identified by the difference in color. According to this form, the focus shift of the optical sensor can be easily detected. For example, the focus shift of the optical sensor may be detected based on the detection status of the edge representing the boundary of the small region in the image data of the marking-related light corresponding to the second region. In this case, if a predetermined degree of sharp edge is detected, it may be determined that the focus shift has not occurred, and if the sharp edge is not detected, the focus shift has occurred. May be determined. Alternatively, the focus shift of the optical sensor may be detected based on the detection status of a small region in the image data of the marking-related light corresponding to the second region. In this case, for example, if a small area having a small size (for example, width) is set and the small area is detected, it may be determined that no focus shift has occurred, and the small area is detected. If this is not the case, it may be determined that a focus shift has occurred. Further, the small area may be in the form of a line. For example, the second region may have a first line and a second line thinner than the first line. In this case, the first line and the second line can detect the first line by the optical sensor when the optical sensor is in focus at the detection position of the object to be sorted, but detect the second line. It may not be possible and may be set to a thickness that allows the optical sensor to detect both the first line and the second line when the optical sensor is in focus at the marking position. The fifteenth embodiment can also be implemented independently of the twelfth embodiment. For example, as marking, only the second region may be used alone.
 本開示の一形態によれば、光学センサは、直線状に配列された複数の受光素子を有するラインセンサまたはエリアセンサである。中間部材は、複数の受光素子が配列される方向と直交する任意の方向に見て、移送経路と重複しない位置に配置される。複数の受光素子は、移送中の被選別物に関連付けられた光を検出するが、マーキング関連光を検出しない受光素子と、移送中の被選別物に関連付けられた光を検出しないが、マーキング関連光を検出する受光素子と、を含む。 According to one embodiment of the present disclosure, the optical sensor is a line sensor or an area sensor having a plurality of light receiving elements arranged in a straight line. The intermediate member is arranged at a position that does not overlap with the transfer path when viewed in an arbitrary direction orthogonal to the direction in which the plurality of light receiving elements are arranged. The plurality of light receiving elements detect the light associated with the object to be sorted in transit but do not detect the marking-related light, and the light receiving element does not detect the light associated with the object to be sorted in transfer but are related to marking. Includes a light receiving element that detects light.
第1実施形態による光学式選別機の概略構成を示す模式図である。It is a schematic diagram which shows the schematic structure of the optical sorter according to 1st Embodiment. 光源と中間部材と光学センサとの位置関係を示す模式図である。It is a schematic diagram which shows the positional relationship between a light source, an intermediate member, and an optical sensor. 中間部材の断面図である。It is sectional drawing of the intermediate member. 中間部材が有するマーキングの一例を示す図である。It is a figure which shows an example of the marking which an intermediate member has. 第2実施形態によるマーキングを示す図である。It is a figure which shows the marking by 2nd Embodiment. 様々なマーキングの例を示す図表である。It is a chart which shows the example of various markings.
 図1は、第1実施形態としての光学式選別機(以下、単に選別機と呼ぶ)10の概略構成を示す模式図である。本実施形態では、選別機10は、被選別物90としての米粒(より具体的には、玄米または精白米)から異物(例えば、小石、泥、ガラス片など)および不良品(例えば、未熟粒、着色粒など)を選別するために使用される。ただし、被選別物90は、玄米または精白米に限られるものではなく、任意の粒状物であってもよい。例えば、被選別物90は、籾、麦粒、豆類(大豆、ひよこ豆、枝豆など)、樹脂(ペレット等)、ゴム片等であってもよい。 FIG. 1 is a schematic diagram showing a schematic configuration of an optical sorter (hereinafter, simply referred to as a sorter) 10 as a first embodiment. In the present embodiment, the sorter 10 uses rice grains (more specifically, brown rice or polished rice) as the object to be sorted 90 to foreign substances (for example, pebbles, mud, glass pieces, etc.) and defective products (for example, immature grains). , Colored grains, etc.) are used to sort out. However, the material to be sorted 90 is not limited to brown rice or polished rice, and may be any granular material. For example, the material to be sorted 90 may be paddy, wheat grains, beans (soybeans, chickpeas, green soybeans, etc.), resin (pellets, etc.), rubber pieces, or the like.
 図1に示すように、選別機10は、光学検出部20と、貯留タンク71と、フィーダ72と、シュート73と、良品排出樋74と、不良品排出樋75と、選別部76と、コントローラ80と、を備えている。コントローラ80は、選別機10の動作全般を制御する。コントローラ80は、判定部81、検出部82、第1の補正部83、第2の補正部84、色補正部85およびキャリブレーション部86としても機能する。コントローラ80の機能は、所定のプログラムをCPUが実行することによって実現されてもよいし、専用回路によって実現されてもよいし、これらの組み合わせによって実現されてもよい。コントローラ80の各機能は、一体的な一つの装置によって実現されてもよい。例えば、コントローラ80の各機能が、一つのCPUによって実現されてもよい。あるいは、コントローラ80の各機能は、少なくとも二つの装置に分散配置されてもよい。コントローラ80の機能の詳細については後述する。 As shown in FIG. 1, the sorting machine 10 includes an optical detection unit 20, a storage tank 71, a feeder 72, a chute 73, a non-defective product discharge gutter 74, a defective product discharge gutter 75, a sorting unit 76, and a controller. It is equipped with 80 and. The controller 80 controls the overall operation of the sorter 10. The controller 80 also functions as a determination unit 81, a detection unit 82, a first correction unit 83, a second correction unit 84, a color correction unit 85, and a calibration unit 86. The function of the controller 80 may be realized by the CPU executing a predetermined program, may be realized by a dedicated circuit, or may be realized by a combination thereof. Each function of the controller 80 may be realized by one integrated device. For example, each function of the controller 80 may be realized by one CPU. Alternatively, each function of the controller 80 may be distributed in at least two devices. The details of the function of the controller 80 will be described later.
 貯留タンク71は、被選別物90を一時的に貯留する。フィーダ72は、貯留タンク71に貯留された被選別物90を、被選別物移送手段の一例としてのシュート73上に供給する。シュート73上に供給された被選別物90は、シュート73上を下方に向けて滑走し、シュート73下端から落下する。シュート73は、多数の被選別物90を同時に落下させることができる所定幅を有している。以下の説明では、シュート73から落下した後の被選別物90の移送経路95(換言すれば、被選別物90の落下軌道)が延在する方向を第1の方向D1とも呼ぶ。また、シュート73の幅方向(換言すれば、シュート73の底面上における被選別物90の落下方向に直交する方向)を第2の方向D2とも呼ぶ。第2の方向D2は、第1の方向D1と直交している。 The storage tank 71 temporarily stores the object to be sorted 90. The feeder 72 supplies the sorted object 90 stored in the storage tank 71 onto the chute 73 as an example of the sorted object transfer means. The object 90 supplied onto the chute 73 slides downward on the chute 73 and falls from the lower end of the chute 73. The chute 73 has a predetermined width that allows a large number of objects to be sorted 90 to be dropped at the same time. In the following description, the direction in which the transfer path 95 of the object to be sorted 90 (in other words, the fall trajectory of the object to be sorted 90) after falling from the chute 73 extends is also referred to as the first direction D1. Further, the width direction of the chute 73 (in other words, the direction orthogonal to the falling direction of the object to be sorted 90 on the bottom surface of the chute 73) is also referred to as a second direction D2. The second direction D2 is orthogonal to the first direction D1.
 光学検出部20は、シュート73から滑り落ちた被選別物90に対して光を照射し、被選別物90に関連付けられた光(具体的には、被選別物90を透過した透過光、および、被選別物90で反射した反射光)を検出する。光学検出部20からの出力、すなわち、検出された光の強度を表すアナログ信号は、AC/DCコンバータ(図示省略)によって、所定のゲインで増幅され、さらに、デジタル信号に変換される。このデジタル信号(換言すれば、アナログ信号に対応する階調値)は、コントローラ80に入力される。コントローラ80は、入力された光の検出結果(つまり画像)に基づいて、判定部81の処理として、被選別物90が良品(つまり、品質が相対的に高い米粒)であるか、それとも、異物(つまり、米粒ではないもの)ないし不良品(つまり、品質が相対的に低い米粒)であるかを判定する。この判定は、被選別物90の各々について行われる。この判定には、公知の任意の判定手法を採用可能である。この判定は、典型的には、画像データの階調値と、予め定められた閾値と、を比較することによって行われる。 The optical detection unit 20 irradiates the object to be sorted 90 that has slipped off the chute 73 with light, and the light associated with the object to be sorted 90 (specifically, the transmitted light transmitted through the object to be sorted 90 and the transmitted light). , The reflected light reflected by the object to be sorted 90) is detected. The output from the optical detection unit 20, that is, the analog signal representing the detected light intensity, is amplified by an AC / DC converter (not shown) with a predetermined gain, and further converted into a digital signal. This digital signal (in other words, the gradation value corresponding to the analog signal) is input to the controller 80. Based on the input light detection result (that is, an image), the controller 80 determines whether the object to be sorted 90 is a non-defective product (that is, rice grains with relatively high quality) or a foreign substance as a process of the determination unit 81. It is determined whether the product is (that is, not a grain of rice) or a defective product (that is, a grain of rice with relatively low quality). This determination is made for each of the objects to be sorted 90. Any known determination method can be adopted for this determination. This determination is typically made by comparing the gradation value of the image data with a predetermined threshold value.
 異物または不良品であると判定された被選別物90は、選別部76によって選別される。具体的には、選別部76は、被選別物90に向けてエア78を噴射するエジェクタ77を備えている。異物または不良品であると判定された被選別物90は、エア78によって吹き飛ばされ、シュート73からの落下軌道(つまり、移送経路95)から逸脱して不良品排出樋75に導かれる(図1に被選別物91として示す)。一方、良品であると判定された被選別物90には、エア78は噴射されない。このため、良品であると判定された被選別物90は、落下軌道を変えることなく、良品排出樋74に導かれる(図1に被選別物92として示す)。 The object to be sorted 90 determined to be a foreign substance or a defective product is sorted by the sorting unit 76. Specifically, the sorting unit 76 includes an ejector 77 that injects air 78 toward the object to be sorted 90. The object 90 determined to be a foreign substance or a defective product is blown off by the air 78, deviates from the drop trajectory from the chute 73 (that is, the transfer path 95), and is guided to the defective product discharge gutter 75 (FIG. 1). As the object to be sorted 91). On the other hand, the air 78 is not injected into the object to be sorted 90, which is determined to be a non-defective product. Therefore, the object to be sorted 90 determined to be a non-defective product is guided to the non-defective product discharge gutter 74 without changing the fall trajectory (shown as the product to be sorted 92 in FIG. 1).
 以下、光学検出部20およびコントローラ80の機能の詳細について説明する。図1に示すように、光学検出部20は、第1の光源30aと第1の光学センサ40aと第2の光源30bと第2の光学センサ40bとを備えている。第1の光源30aおよび第1の光学センサ40aは、被選別物90の移送経路95に対して一方側(フロント側とも呼ぶ)に配置されている。第2の光源30bおよび第2の光学センサ40bは、被選別物90の移送経路95に対して他方側(リア側とも呼ぶ)に配置されている。「フロント側」は、特許請求の範囲における「第1の側」の一例として捉えてもよく、「リア側」は、特許請求の範囲における「第2の側」の一例として捉えてもよい。逆に、「フロント側」を特許請求の範囲における「第2の側」の一例として捉えてもよく、「リア側」を特許請求の範囲における「第1の側」の一例として捉えてもよい。 Hereinafter, the details of the functions of the optical detection unit 20 and the controller 80 will be described. As shown in FIG. 1, the optical detection unit 20 includes a first light source 30a, a first optical sensor 40a, a second light source 30b, and a second optical sensor 40b. The first light source 30a and the first optical sensor 40a are arranged on one side (also referred to as the front side) with respect to the transfer path 95 of the object 90 to be sorted. The second light source 30b and the second optical sensor 40b are arranged on the other side (also referred to as the rear side) with respect to the transfer path 95 of the object 90 to be sorted. The "front side" may be regarded as an example of the "first side" in the claims, and the "rear side" may be regarded as an example of the "second side" in the claims. Conversely, the "front side" may be regarded as an example of the "second side" in the claims, and the "rear side" may be regarded as an example of the "first side" in the claims. ..
 第1の光源30aは、移送経路95上を移送中の(つまり、シュート73から落下中の)被選別物90に光31aを照射する。同様に、第2の光源30bは、移送中の被選別物90に光31bを照射する。第1の光源30aは、単一の基板上に複数の発光素子32aが搭載された光源ユニットである。本実施形態では、発光素子32aとしてLEDが使用される。このため、発光素子32aをLED32aとも呼ぶ。複数のLED32aは、赤色の光を放出するLEDと、青色の光を放出するLEDと、緑色の光を放出するLEDと、を含んでいる。第2の光源30bは、第1の光源30aと同一の構成を有しており、複数のLED32bを備えている。 The first light source 30a irradiates the object 90 being transferred (that is, falling from the chute 73) on the transfer path 95 with light 31a. Similarly, the second light source 30b irradiates the object 90 being transferred with light 31b. The first light source 30a is a light source unit in which a plurality of light emitting elements 32a are mounted on a single substrate. In this embodiment, the LED is used as the light emitting element 32a. Therefore, the light emitting element 32a is also referred to as an LED 32a. The plurality of LEDs 32a include an LED that emits red light, an LED that emits blue light, and an LED that emits green light. The second light source 30b has the same configuration as the first light source 30a, and includes a plurality of LEDs 32b.
 図1では、第1の光源30aおよび第2の光源30bの各々の数は一つであるものとして示されているが、第1の光源30aおよび第2の光源30bの少なくとも一方は、複数であってもよい。例えば、二つの第1の光源30aが、移送経路95上の検出位置に対する上側と下側とにそれぞれ配置されてもよい。同様に、二つの第2の光源30bが、移送経路95上の検出位置に対する上側と下側とにそれぞれ配置されてもよい。 In FIG. 1, the number of each of the first light source 30a and the second light source 30b is shown to be one, but at least one of the first light source 30a and the second light source 30b is plural. There may be. For example, two first light sources 30a may be arranged on the upper side and the lower side of the detection position on the transfer path 95, respectively. Similarly, two second light sources 30b may be arranged on the upper side and the lower side of the detection position on the transfer path 95, respectively.
 第1の光学センサ40aおよび第2の光学センサ40bは、第1の光源30aおよび第2の光源30bから照射され、被選別物90に関連付けられた光を検出する。具体的には、フロント側の第1の光学センサ40aは、フロント側の第1の光源30aから照射され、被選別物90で反射した光31aと、リア側の第2の光源30bから照射され、被選別物90を透過した光31bと、を検出可能である。リア側の第2の光学センサ40bは、リア側の第2の光源30bから照射され、被選別物90で反射した光31bと、フロント側の第1の光源30aから照射され、被選別物90を透過した光31aと、を検出可能である。 The first optical sensor 40a and the second optical sensor 40b are irradiated from the first light source 30a and the second light source 30b, and detect the light associated with the object 90 to be sorted. Specifically, the first optical sensor 40a on the front side is irradiated from the first light source 30a on the front side and is irradiated from the light 31a reflected by the object 90 to be sorted and from the second light source 30b on the rear side. , The light 31b transmitted through the object to be sorted 90, and the light 31b can be detected. The second optical sensor 40b on the rear side is irradiated from the second light source 30b on the rear side and reflected by the object 90 to be sorted, and is irradiated from the first light source 30a on the front side to be sorted 90. The light 31a transmitted through the light source can be detected.
 第1の光学センサ40aは、本実施形態では、直線状に配列された複数の受光素子41aを有するラインセンサである。ただし、第1の光学センサ40aは、エリアセンサであってもよい。複数の受光素子41aは、第2の方向D2(つまり、シュート73の幅方向)に配列されている。このため、第1の光学センサ40aは、シュート73の所定幅にわたって移送される多数の被選別物90を同時に撮像することができる。また、第1の光学センサ40aは、本実施形態では、カラーCCDセンサであり、赤色光、緑色光および青色光をそれぞれ個別に検出可能である。ただし、第1の光学センサ40aは、カラーCMOSセンサなどの他の形式のセンサであってもよい。本実施形態では、第2の光学センサ40bは、第1の光学センサ40aと同一の構成を有しており、第2の方向D2に配列された複数の受光素子41bを備えている。ただし、第1の光学センサ40aと第2の光学センサ40bとは互いに異なる構成を有していてもよい。 The first optical sensor 40a is, in the present embodiment, a line sensor having a plurality of light receiving elements 41a arranged in a straight line. However, the first optical sensor 40a may be an area sensor. The plurality of light receiving elements 41a are arranged in the second direction D2 (that is, the width direction of the chute 73). Therefore, the first optical sensor 40a can simultaneously image a large number of objects to be sorted 90 transferred over a predetermined width of the chute 73. Further, the first optical sensor 40a is a color CCD sensor in the present embodiment, and can detect red light, green light, and blue light individually. However, the first optical sensor 40a may be another type of sensor such as a color CMOS sensor. In the present embodiment, the second optical sensor 40b has the same configuration as the first optical sensor 40a, and includes a plurality of light receiving elements 41b arranged in the second direction D2. However, the first optical sensor 40a and the second optical sensor 40b may have different configurations from each other.
 光学検出部20は、さらに、透明部材21a,21bを備えている。透明部材21aは、フロント側において、第1の光源30aおよび第1の光学センサ40aと、移送経路95と、を仕切っている。これにより、第1の光源30aおよび第1の光学センサ40aと、移送経路95と、が互いに隔離され、移送経路95から飛散する粉塵が第1の光源30aおよび第1の光学センサ40aへ付着することが防止される。同様に、透明部材21bは、リア側において、第2の光源30bおよび第2の光学センサ40bと、移送経路95と、を仕切っている。 The optical detection unit 20 further includes transparent members 21a and 21b. The transparent member 21a partitions the first light source 30a, the first optical sensor 40a, and the transfer path 95 on the front side. As a result, the first light source 30a, the first optical sensor 40a, and the transfer path 95 are isolated from each other, and dust scattered from the transfer path 95 adheres to the first light source 30a and the first optical sensor 40a. Is prevented. Similarly, the transparent member 21b partitions the second light source 30b, the second optical sensor 40b, and the transfer path 95 on the rear side.
 光学検出部20は、さらに、フロント側およびリア側に中間部材50をそれぞれ備えている。フロント側の中間部材50は、第1の光源30aから被選別物90への光31aの照射方向における第1の光源30aと移送経路95との間の位置に配置される。リア側の中間部材50は、第2の光源30bから被選別物90への光31bの照射方向における第2の光源30bと移送経路95との間に配置される。 The optical detection unit 20 further includes intermediate members 50 on the front side and the rear side, respectively. The intermediate member 50 on the front side is arranged at a position between the first light source 30a and the transfer path 95 in the irradiation direction of the light 31a from the first light source 30a to the object 90 to be sorted. The intermediate member 50 on the rear side is arranged between the second light source 30b and the transfer path 95 in the irradiation direction of the light 31b from the second light source 30b to the object 90 to be sorted.
 図2は、第1の光源30aおよび第2の光源30bと、中間部材50と、第1の光学センサ40aおよび第2の光学センサ40bと、の第2の方向D2における位置関係を示す模式図である。図示する位置関係は、フロント側とリア側とで同じであるから、以下では、主にフロント側について説明する。図2に示すように、フロント側では、第1の光学センサ40aの複数の受光素子41aが配列される第2の方向D2に、複数(図示する例では18個)の発光素子32aが配列されている。 FIG. 2 is a schematic view showing the positional relationship between the first light source 30a and the second light source 30b, the intermediate member 50, and the first optical sensor 40a and the second optical sensor 40b in the second direction D2. Is. Since the positional relationship shown is the same on the front side and the rear side, the front side will be mainly described below. As shown in FIG. 2, on the front side, a plurality of (18 in the illustrated example) light emitting elements 32a are arranged in the second direction D2 in which the plurality of light receiving elements 41a of the first optical sensor 40a are arranged. ing.
 図2に示す「V1」は、第1の光学センサ40aの第2の方向D2の総視野を表している。また、図2に示す「V2」は、原料視野、すなわち、被選別物90が撮像され得る範囲を示している。原料視野V2の幅は、シュート73の幅(換言すれば、移送経路95の幅)に相当する。複数の受光素子41aは、第2の方向D2において原料視野V2よりも外側に延在するように配列されている。これによって、第2の方向D2における原料視野V2の両脇には、第1の光学センサ40aの非原料視野V3が確保されている。 “V1” shown in FIG. 2 represents the total field of view of the first optical sensor 40a in the second direction D2. Further, "V2" shown in FIG. 2 indicates a raw material field of view, that is, a range in which the object to be sorted 90 can be imaged. The width of the raw material field of view V2 corresponds to the width of the chute 73 (in other words, the width of the transfer path 95). The plurality of light receiving elements 41a are arranged so as to extend outward from the raw material field of view V2 in the second direction D2. As a result, the non-raw material field of view V3 of the first optical sensor 40a is secured on both sides of the raw material field of view V2 in the second direction D2.
 中間部材50は、透明部材21aのうちの、非原料視野V3に相当する領域に配置されている。つまり、中間部材50は、被選別物90に関連付けられた光を第1の光学センサ40aが検出することに影響しない位置に配置されている。この位置は、換言すれば、第2の方向D2と直交する任意の方向に見て、移送経路95と重複しない位置である。本実施形態では、中間部材50は、第2の方向D2における移送経路95の両脇に配置されている。 The intermediate member 50 is arranged in the region of the transparent member 21a corresponding to the non-raw material field of view V3. That is, the intermediate member 50 is arranged at a position that does not affect the detection of the light associated with the object to be sorted 90 by the first optical sensor 40a. In other words, this position is a position that does not overlap with the transfer path 95 when viewed in any direction orthogonal to the second direction D2. In this embodiment, the intermediate member 50 is arranged on both sides of the transfer path 95 in the second direction D2.
 フロント側のこの中間部材50は、フロント側の第1の光源30aから照射される光31aを反射する。中間部材50で反射した光31aは、第1の光学センサ40a(より具体的には、非原料視野V3に相当する受光素子41a)によって検出される。中間部材50は、原料視野V2と非原料視野V3との境界よりも、第2の方向D2の外側に位置しているので、中間部材50での反射光は、原料視野V2に相当する受光素子41aによって検出されることはない。逆に、被選別物90に関連付けられた光は、非原料視野V3に相当する受光素子41aによって検出されることはない。同様に、リア側の中間部材50は、リア側の第2の光源30bから照射される光31bを反射する。中間部材50で反射した光31bは、第2の光学センサ40b(より具体的には、非原料視野V3に相当する受光素子41b)によって検出される。 This intermediate member 50 on the front side reflects the light 31a emitted from the first light source 30a on the front side. The light 31a reflected by the intermediate member 50 is detected by the first optical sensor 40a (more specifically, the light receiving element 41a corresponding to the non-raw material field of view V3). Since the intermediate member 50 is located outside the second direction D2 from the boundary between the raw material field of view V2 and the non-raw material field of view V3, the reflected light in the intermediate member 50 is a light receiving element corresponding to the raw material field of view V2. It is not detected by 41a. On the contrary, the light associated with the object to be sorted 90 is not detected by the light receiving element 41a corresponding to the non-raw material field of view V3. Similarly, the intermediate member 50 on the rear side reflects the light 31b emitted from the second light source 30b on the rear side. The light 31b reflected by the intermediate member 50 is detected by the second optical sensor 40b (more specifically, the light receiving element 41b corresponding to the non-raw material field of view V3).
 この説明から明らかなように、第1の光学センサ40aは、被選別物90に関連付けられた光の検出と、中間部材50で反射した光31aの検出と、に共用される。同様に、第2の光学センサ40bは、被選別物90に関連付けられた光の検出と、中間部材50で反射した光31bの検出と、に共用される。 As is clear from this description, the first optical sensor 40a is shared with the detection of the light associated with the object 90 to be sorted and the detection of the light 31a reflected by the intermediate member 50. Similarly, the second optical sensor 40b is shared with the detection of the light associated with the object 90 to be sorted and the detection of the light 31b reflected by the intermediate member 50.
 本実施形態では、中間部材50は、透明部材21a,21bに貼り付け可能なシート状部材の形態である。つまり、中間部材50は、片面に接着剤を有するシート状部材である。このため、選別機10の装置構成を簡素化できる。また、製造も容易であり、製造コストも安価となる。ただし、中間部材50は、任意の形態で実現可能である。例えば、中間部材50は、板状部材であってもよい。この場合、中間部材50は、透明部材21a,21bから離間して配置されてもよい。 In the present embodiment, the intermediate member 50 is in the form of a sheet-like member that can be attached to the transparent members 21a and 21b. That is, the intermediate member 50 is a sheet-like member having an adhesive on one side. Therefore, the device configuration of the sorter 10 can be simplified. In addition, it is easy to manufacture and the manufacturing cost is low. However, the intermediate member 50 can be realized in any form. For example, the intermediate member 50 may be a plate-shaped member. In this case, the intermediate member 50 may be arranged apart from the transparent members 21a and 21b.
 図3は中間部材50の断面図である。図3では、透明部材21bに貼り付けたリア側の中間部材50を示している。図示するように、リア側の中間部材50は2層構造を有している。具体的には、この中間部材50は、移送経路95側に位置する第1の層51と、移送経路95と反対側に位置する第2の層52と、を備えている。第1の層51は、光非透過性を有している。このため、リア側の中間部材50の第1の層51は、フロント側の第1の光源30aからの光31aが移送経路95側から中間部材50を透過して第2の光学センサ40bに到達することを実質的に防止する。図示は省略するが、同様に、透明部材21aに貼り付けたフロント側の中間部材50も、移送経路95側に位置するとともに光非透過性を有する第1の層51と、移送経路95と反対側に位置する第2の層52と、を有している。このため、フロント側の中間部材50の第1の層51は、リア側の第2の光源30bからの光31bが移送経路95側から中間部材50を透過して第1の光学センサ40aに到達することを実質的に防止する。 FIG. 3 is a cross-sectional view of the intermediate member 50. FIG. 3 shows an intermediate member 50 on the rear side attached to the transparent member 21b. As shown in the figure, the intermediate member 50 on the rear side has a two-layer structure. Specifically, the intermediate member 50 includes a first layer 51 located on the transfer path 95 side and a second layer 52 located on the opposite side of the transfer path 95. The first layer 51 has a light impermeable property. Therefore, in the first layer 51 of the intermediate member 50 on the rear side, the light 31a from the first light source 30a on the front side passes through the intermediate member 50 from the transfer path 95 side and reaches the second optical sensor 40b. Substantially prevent you from doing so. Although not shown, similarly, the intermediate member 50 on the front side attached to the transparent member 21a is also opposite to the first layer 51, which is located on the transfer path 95 side and has light translucency, and the transfer path 95. It has a second layer 52 located on the side. Therefore, in the first layer 51 of the intermediate member 50 on the front side, the light 31b from the second light source 30b on the rear side passes through the intermediate member 50 from the transfer path 95 side and reaches the first optical sensor 40a. Substantially prevent you from doing so.
 第2の層52は、少なくとも部分的に、光反射性を有する材料から形成されている。フロント側の中間部材50の第2の層52は、第1の光源30aから照射される光31aを反射し、リア側の中間部材50の第2の層52は、第2の光源30bから照射される光31bを反射する。 The second layer 52 is at least partially formed of a light-reflecting material. The second layer 52 of the intermediate member 50 on the front side reflects the light 31a emitted from the first light source 30a, and the second layer 52 of the intermediate member 50 on the rear side irradiates from the second light source 30b. The light 31b to be generated is reflected.
 本実施形態では、図3に示すように、中間部材50は、透明部材21a,21bに対して移送経路95と反対側に配置される。このため、中間部材50は、被選別物90の移送に伴って発生する粉塵の影響を受けない。しかも、第1の層51の露出面(つまり、第2の層52と反対側の面)が中間部材50の透明部材21a,21bとの接着面となり、第2の層52の露出面(つまり、光31bを反射する反射面)は、接着剤を有さない。このため、接着剤が第2の層52の反射性能を阻害するおそれがない。ただし、中間部材50は、透明部材21a,21bに対して移送経路95側に配置されてもよい。この場合であっても、第2の層52の反射面は、透明部材21a,21bに密着することになるので、粉塵の影響を受けない。 In the present embodiment, as shown in FIG. 3, the intermediate member 50 is arranged on the side opposite to the transfer path 95 with respect to the transparent members 21a and 21b. Therefore, the intermediate member 50 is not affected by the dust generated by the transfer of the object to be sorted 90. Moreover, the exposed surface of the first layer 51 (that is, the surface opposite to the second layer 52) becomes an adhesive surface with the transparent members 21a and 21b of the intermediate member 50, and the exposed surface of the second layer 52 (that is, that is). , The reflective surface that reflects the light 31b) does not have an adhesive. Therefore, there is no possibility that the adhesive impairs the reflective performance of the second layer 52. However, the intermediate member 50 may be arranged on the transfer path 95 side with respect to the transparent members 21a and 21b. Even in this case, the reflective surface of the second layer 52 is in close contact with the transparent members 21a and 21b, so that it is not affected by dust.
 中間部材50(より具体的には、第2の層52)は、その表面(具体的には、移送経路95と反対側の表面)にマーキング53を有している。このため、中間部材50で反射して第1の光学センサ40aによって検出される光31a、および、中間部材50で反射して第2の光学センサ40bによって検出される光31bの各々は、マーキング53を介して得られる光(換言すれば、マーキング53での反射光)であるとも言える。マーキング53を介して得られるこのような光をマーキング関連光とも呼ぶ。マーキング53は、例えば、第2の層52の表面に印刷されていてもよい。 The intermediate member 50 (more specifically, the second layer 52) has a marking 53 on its surface (specifically, the surface opposite to the transfer path 95). Therefore, each of the light 31a reflected by the intermediate member 50 and detected by the first optical sensor 40a and the light 31b reflected by the intermediate member 50 and detected by the second optical sensor 40b are marked 53. It can be said that it is the light obtained through the above (in other words, the reflected light at the marking 53). Such light obtained via the marking 53 is also referred to as marking-related light. The marking 53 may be printed on the surface of the second layer 52, for example.
 図4は、マーキング53の一例を示す図である。図4は、第1の方向D1と第2の方向D2とに直交する方向に見たマーキング53を示している。図4に示す例では、マーキング53は、複数の単位領域UAによって構成されている。単位領域UAは、予め定められた一定の大きさおよび形状を有している。図4では、単位領域UAの大きさおよび形状を右下に示している。単位領域UAは、図4に示す例では正方形であるが、任意の形状とすることができる。マーキング53は、第1の色を有する第1の単位領域54と、第2の色を有する第2の単位領域55と、を含んでいる。本実施形態では、第1の色は黒であり、第2の色は白である。第1の単位領域54および第2の単位領域55は、予め定められた出現パターンで、第1の方向D1および第2の方向D2に二次元的に並ぶように構成される。 FIG. 4 is a diagram showing an example of the marking 53. FIG. 4 shows a marking 53 viewed in a direction orthogonal to the first direction D1 and the second direction D2. In the example shown in FIG. 4, the marking 53 is composed of a plurality of unit regions UA. The unit area UA has a predetermined size and shape. In FIG. 4, the size and shape of the unit area UA are shown in the lower right. The unit area UA is a square in the example shown in FIG. 4, but can have any shape. The marking 53 includes a first unit region 54 having a first color and a second unit region 55 having a second color. In this embodiment, the first color is black and the second color is white. The first unit region 54 and the second unit region 55 are configured to be two-dimensionally arranged in the first direction D1 and the second direction D2 in a predetermined appearance pattern.
 本実施形態では、図4に示すように、第1の単位領域54および第2の単位領域55の第2の方向D2における出現パターンは、第1の方向D1における第1の単位領域54および第2の単位領域55の並び位置(図4に位置P1~P19として示す)ごとに異なっている。 In the present embodiment, as shown in FIG. 4, the appearance pattern of the first unit region 54 and the second unit region 55 in the second direction D2 is the first unit region 54 and the first unit region 54 in the first direction D1. It differs depending on the arrangement position of the unit areas 55 of 2 (shown as positions P1 to P19 in FIG. 4).
 上述した選別機10によれば、マーキング関連光を利用して、選別精度を向上させるための種々の処理を実施することが可能である。以下、そのような処理について説明する。まず、コントローラ80は、検出部82の処理として、マーキング関連光の検出結果に基づいて、第1の光学センサ40aおよび第2の光学センサ40bの状態を検出するように構成される。フロント側の第1の光学センサ40aの状態は、フロント側の透明部材21aに貼り付けられた中間部材50のマーキング53を介して得られるマーキング関連光に基づいて検出される。リア側の第2の光学センサ40bの状態は、リア側の透明部材21bに貼り付けられた中間部材50のマーキング53を介して得られるマーキング関連光に基づいて検出される。 According to the above-mentioned sorting machine 10, it is possible to carry out various processes for improving the sorting accuracy by using the marking-related light. Hereinafter, such processing will be described. First, the controller 80 is configured to detect the states of the first optical sensor 40a and the second optical sensor 40b based on the detection result of the marking-related light as a process of the detection unit 82. The state of the first optical sensor 40a on the front side is detected based on the marking-related light obtained through the marking 53 of the intermediate member 50 attached to the transparent member 21a on the front side. The state of the second optical sensor 40b on the rear side is detected based on the marking-related light obtained through the marking 53 of the intermediate member 50 attached to the transparent member 21b on the rear side.
 検出部82によって検出される第1の光学センサ40aおよび第2の光学センサ40bの状態には、第1の光学センサ40aおよび第2の光学センサ40bの設置位置に関連する状態が含まれる。このような設置位置に関連する状態には、第1の光学センサ40aおよび第2の光学センサ40bの位置ずれの有無、位置ずれの量、位置ずれの方向、および、フォーカスずれの有無のうちの少なくとも一つが含まれ得る。 The states of the first optical sensor 40a and the second optical sensor 40b detected by the detection unit 82 include the states related to the installation positions of the first optical sensor 40a and the second optical sensor 40b. The state related to such an installation position includes the presence / absence of misalignment of the first optical sensor 40a and the second optical sensor 40b, the amount of misalignment, the direction of misalignment, and the presence / absence of focus misalignment. At least one may be included.
 位置ずれの有無、位置ずれの量および方向は、例えば、以下のようにして検出できる。具体例として、第1の光学センサ40aが正常な位置に配置されている場合に、この第1の光学センサ40aによってラインL1上の領域が撮像されると仮定する。この場合、マーキング関連光に基づいて検出された出現パターンが、並び位置P10の出現パターンであるときには、第1の光学センサ40aは、第1の方向D1にずれていないことが検出できる。一方、マーキング関連光に基づいて検出された出現パターンが、並び位置P12の出現パターンであるときには、第1の光学センサ40aが、第1の方向D1(より具体的には、並び位置P1から並び位置P19に向かう方向)にラインL2の位置までずれていることが分かる。このときのずれ量は、単位領域UAの大きさの約2個分(より正確には、単位領域UAの一辺の長さよりも大きく、当該長さの2倍よりも小さい距離)であることが検出される。 The presence or absence of misalignment, the amount and direction of misalignment can be detected, for example, as follows. As a specific example, it is assumed that when the first optical sensor 40a is arranged at a normal position, the region on the line L1 is imaged by the first optical sensor 40a. In this case, when the appearance pattern detected based on the marking-related light is the appearance pattern of the arrangement position P10, it can be detected that the first optical sensor 40a is not deviated from the first direction D1. On the other hand, when the appearance pattern detected based on the marking-related light is the appearance pattern of the alignment position P12, the first optical sensor 40a is aligned from the first direction D1 (more specifically, the alignment position P1). It can be seen that the line L2 is displaced in the direction toward the position P19). The amount of deviation at this time may be about two sizes of the unit region UA (more accurately, a distance larger than the length of one side of the unit region UA and smaller than twice the length). Detected.
 さらに、第1の光学センサ40aの複数の受光素子41a(これは、第2の方向D2に配列されている)のうちのいずれで、並び位置P1~P19のいずれかの出現パターンが検出されるかに基づいて、第1の光学センサ40aが、第2の方向D2において、どちら側にどれだけずれているかを検出できる。 Further, any of the plurality of light receiving elements 41a (which are arranged in the second direction D2) of the first optical sensor 40a detects the appearance pattern of any of the arrangement positions P1 to P19. Based on the above, it is possible to detect to which side and how much the first optical sensor 40a is deviated in the second direction D2.
 並び位置P1~P19の各々の出現パターンは、選別機10の製造時に、コントローラ80のメモリに記憶されてもよい。また、選別機10の製造段階において第1の光学センサ40aおよび第2の光学センサ40bを適所に取付けた後に第1の光学センサ40aおよび第2の光学センサ40bによって検出されるマーキング関連光から検出される出現パターンを、正常な位置にある第1の光学センサ40aおよび第2の光学センサ40bに対応する出現パターンとして、コントローラ80のメモリに記憶されてもよい。同様に、当該出現パターンを検出した受光素子の位置が、正常な位置にある第1の光学センサ40aおよび第2の光学センサ40bに対応する検出位置として、コントローラ80のメモリに記憶されてもよい。 Each appearance pattern of the arrangement positions P1 to P19 may be stored in the memory of the controller 80 at the time of manufacturing the sorter 10. Further, it is detected from the marking-related light detected by the first optical sensor 40a and the second optical sensor 40b after the first optical sensor 40a and the second optical sensor 40b are attached in place in the manufacturing stage of the sorter 10. The appearance pattern to be performed may be stored in the memory of the controller 80 as an appearance pattern corresponding to the first optical sensor 40a and the second optical sensor 40b in the normal positions. Similarly, the position of the light receiving element that has detected the appearance pattern may be stored in the memory of the controller 80 as the detection position corresponding to the first optical sensor 40a and the second optical sensor 40b at the normal positions. ..
 また、フォーカスずれの有無は、例えば、以下のようにして検出できる。一実施形態では、まず、マーキング関連光の画像データ(RAWデータ)が2値化される。この2値化では、フォーカスずれに起因して発生するグレーに対応する画素値が、白に対応する画素値に変換される。そして、パターンマッチングによって、2値化後の画像が表す出現パターンと、予め記憶された複数の出現パターン(つまり、並び位置P1~P19の出現パターン)のいずれかと、が一致するか否かが判断される。2値化によって得られる画像が表す出現パターンが、予め記憶された出現パターンのいずれとも一致しない場合には、フォーカスずれが発生していることを検出できる。代替実施形態では、マーキング関連光の画像データにおいて、予め定められた程度のシャープなエッジが検出されるか否かに基づいて、フォーカスずれが検出されてもよい。 The presence or absence of focus shift can be detected, for example, as follows. In one embodiment, first, the image data (RAW data) of the marking-related light is binarized. In this binarization, the pixel value corresponding to gray generated due to the focus shift is converted into the pixel value corresponding to white. Then, by pattern matching, it is determined whether or not the appearance pattern represented by the binarized image matches any of the plurality of appearance patterns stored in advance (that is, the appearance patterns of the arrangement positions P1 to P19). Will be done. When the appearance pattern represented by the image obtained by binarization does not match any of the appearance patterns stored in advance, it can be detected that the focus shift has occurred. In the alternative embodiment, the out-of-focus may be detected based on whether or not a predetermined degree of sharp edge is detected in the image data of the marking-related light.
 本実施形態では、中間部材50は、第2の方向D2における移送経路95の両脇に配置されているので、第1の光学センサ40aまたは第2の光学センサ40bが、第2の方向D2の一方側で、選別精度に影響を与えない程度に僅かにずれて配置されており、他方側で、選別精度に影響を与える程度に大きくずれて配置されている場合であっても、位置ずれを確実に検出できる。 In the present embodiment, since the intermediate member 50 is arranged on both sides of the transfer path 95 in the second direction D2, the first optical sensor 40a or the second optical sensor 40b is in the second direction D2. Even if the arrangement is slightly offset on one side to the extent that it does not affect the sorting accuracy, and the displacement is large enough to affect the sorting accuracy on the other side, the misalignment is caused. It can be detected reliably.
 第1の光学センサ40aまたは第2の光学センサ40bの位置ずれまたはフォーカスずれが検出部82によって検出された場合、コントローラ80は、検出した内容を、報知部88を介してユーザに報知してもよい。報知部88は、選別機10の操作盤のスクリーン、スピーカ、ライトなどの形態であってもよい。つまり、報知は、スクリーン上での表示、警告音、ライト点灯などの形態で行われ得る。この構成によれば、ユーザは、第1の光学センサ40aまたは第2の光学センサ40bの位置または合焦状態の異常に早期に気付き、異常を解消するための作業を行うことができる。その結果、異常が発生しているにもかかわらず、選別機10の選別運転が継続されて、選別精度が悪化することが抑制される。さらに、コントローラ80が位置ずれの方向や量を報知するように構成される場合には、ユーザは、位置ずれを解消するための調整作業を行う際に、第1の光学センサ40aまたは第2の光学センサ40bの設置位置をどの方向にどの程度移動させればよいかを把握しやすい。第1の光学センサ40aおよび第2の光学センサ40bがオートフォーカス機能を有している場合には、フォーカスずれが検出されたときに、フォーカスずれが自動的に解消されてもよい。 When the position shift or the focus shift of the first optical sensor 40a or the second optical sensor 40b is detected by the detection unit 82, the controller 80 may notify the user of the detected content via the notification unit 88. good. The notification unit 88 may be in the form of a screen, a speaker, a light, or the like of the operation panel of the sorting machine 10. That is, the notification may be performed in the form of a display on the screen, a warning sound, lighting of a light, or the like. According to this configuration, the user can notice an abnormality in the position or focus state of the first optical sensor 40a or the second optical sensor 40b at an early stage, and can perform work for eliminating the abnormality. As a result, even though the abnormality has occurred, the sorting operation of the sorting machine 10 is continued, and the deterioration of the sorting accuracy is suppressed. Further, when the controller 80 is configured to notify the direction and amount of the misalignment, the user may use the first optical sensor 40a or the second optical sensor 40a when performing the adjustment work for eliminating the misalignment. It is easy to grasp in which direction and how much the installation position of the optical sensor 40b should be moved. When the first optical sensor 40a and the second optical sensor 40b have an autofocus function, the focus shift may be automatically eliminated when the focus shift is detected.
 本実施形態では、第1の光学センサ40aまたは第2の光学センサ40bの位置ずれが検出された場合、コントローラ80は、さらに、当該位置ずれに起因する選別精度の悪化を抑制するための処理を自動的に行うことができる。この処理は、第1の補正部83および第2の補正部84の少なくとも一方の処理として実行される。 In the present embodiment, when the misalignment of the first optical sensor 40a or the second optical sensor 40b is detected, the controller 80 further performs a process for suppressing deterioration of sorting accuracy due to the misalignment. It can be done automatically. This process is executed as at least one of the first correction unit 83 and the second correction unit 84.
 まず、第1の補正部83の処理について説明する。選別部76では、シュート73の幅にわたって同時に移送される複数の被選別物90を同時に選別するために、エア78の噴射を制御する複数のバルブ(図示せず)が第2の方向D2に配列されている。そして、第1の光学センサ40aおよび第2の光学センサ40bの第2の方向D2における被選別物90の検出位置ごとに、いずれかのバルブが割り当てられている。換言すれば、第2の方向D2における被選別物90に関連付けられた光が検出される位置(以下、検出位置とも呼ぶ)と、第2の方向D2におけるエア78が噴射されるべき位置(以下、噴射位置とも呼ぶ)と、の対応関係が予め定められている。一つの被選別物90が異物または不良品であると判定されると、当該一つの被選別物90の検出位置に対応する噴射位置からエア78が噴射されることになる。 First, the processing of the first correction unit 83 will be described. In the sorting unit 76, a plurality of valves (not shown) controlling the injection of the air 78 are arranged in the second direction D2 in order to simultaneously sort the plurality of objects 90 to be simultaneously transferred over the width of the chute 73. Has been done. Then, one of the valves is assigned to each of the detection positions of the object to be sorted 90 in the second direction D2 of the first optical sensor 40a and the second optical sensor 40b. In other words, the position where the light associated with the object 90 to be sorted in the second direction D2 is detected (hereinafter, also referred to as the detection position) and the position where the air 78 in the second direction D2 should be ejected (hereinafter, also referred to as the detection position). , Also called the injection position) and the correspondence relationship is predetermined. When it is determined that one object to be sorted 90 is a foreign substance or a defective product, air 78 is injected from the injection position corresponding to the detection position of the one object to be sorted 90.
 コントローラ80は、第1の補正部83の処理として、第2の方向D2における第1の光学センサ40aまたは第2の光学センサ40bの位置ずれの量に基づいて、検出位置と噴射位置との対応関係を補正する。より具体的には、第1の光学センサ40aまたは第2の光学センサ40bの位置ずれが第2の方向D2に生じると、検出位置と噴射位置との対応関係のうちの検出位置が、当該位置ずれの量だけ位置ずれの方向にずれることになる。そこで、位置ずれの方向と反対の方向に、位置ずれの量だけ、検出位置に対応する噴射位置をずらす補正が行われる。これによって、対応関係は元の正常な状態に戻ることになる。第1の補正部83によれば、第1の光学センサ40aまたは第2の光学センサ40bの位置が第2の方向D2にずれたとしても、当該位置ずれに起因して選別精度が悪化することを自動的に抑制できる。 The controller 80 corresponds to the detection position and the injection position based on the amount of the positional deviation of the first optical sensor 40a or the second optical sensor 40b in the second direction D2 as the processing of the first correction unit 83. Correct the relationship. More specifically, when the positional deviation of the first optical sensor 40a or the second optical sensor 40b occurs in the second direction D2, the detection position in the correspondence between the detection position and the injection position is the position. It will be displaced in the direction of displacement by the amount of displacement. Therefore, correction is performed to shift the injection position corresponding to the detection position by the amount of the misalignment in the direction opposite to the direction of the misalignment. As a result, the correspondence will return to the original normal state. According to the first correction unit 83, even if the position of the first optical sensor 40a or the second optical sensor 40b is displaced in the second direction D2, the sorting accuracy is deteriorated due to the positional deviation. Can be automatically suppressed.
 次いで、第2の補正部84の処理について説明する。第1の方向D1において、エジェクタ77からのエア78によって被選別物90の軌道を変更する位置(以下、軌道変更位置とも呼ぶ)は、第1の光学センサ40aおよび第2の光学センサ40bの検出位置よりも下方にある。このため、選別部76は、異物または不良品を第1の光学センサ40aまたは第2の光学センサ40bによって検出してから、所定の時間だけ遅れたタイミングで、当該異物または不良品に向けてエア78を噴射するように構成される。この時間差は、一般的に、遅れ噴射時間とも称される。遅れ噴射時間は、予め定められている。遅れ照射時間は、一定値として予め定められていてもよいし、任意のパラメータ(例えば、被選別物90の種類、被選別物90の実測された落下速度など)に基づいて可変となるように予め定められていてもよい。 Next, the processing of the second correction unit 84 will be described. In the first direction D1, the position where the trajectory of the object to be sorted 90 is changed by the air 78 from the ejector 77 (hereinafter, also referred to as the trajectory change position) is detected by the first optical sensor 40a and the second optical sensor 40b. Below the position. Therefore, the sorting unit 76 detects the foreign matter or the defective product by the first optical sensor 40a or the second optical sensor 40b, and then airs the foreign matter or the defective product toward the foreign matter or the defective product at a timing delayed by a predetermined time. It is configured to inject 78. This time difference is also commonly referred to as the delayed injection time. The delayed injection time is predetermined. The delayed irradiation time may be predetermined as a constant value, or may be variable based on arbitrary parameters (for example, the type of the object to be sorted 90, the actually measured drop speed of the object to be sorted 90, etc.). It may be predetermined.
 コントローラ80は、第2の補正部84の処理として、第1の方向D1における第1の光学センサ40aまたは第2の光学センサ40bの位置ずれの量に基づいて、上述の遅れ噴射時間を補正する。例えば、第1の光学センサ40aまたは第2の光学センサ40bが、正常な位置から第1の方向D1の下方にずれている場合には、位置ずれが生じていない場合と比べて、第1の光学センサ40aまたは第2の光学センサ40bによる被選別物90の検出位置と、軌道変更位置と、の距離が小さくなる。このため、コントローラ80は、第1の方向D1のずれ量に応じて、遅れ噴射時間を短縮する。逆に、第1の光学センサ40aまたは第2の光学センサ40bが、正常な位置から第1の方向D1の上方にずれている場合には、コントローラ80は、第1の方向D1のずれ量に応じて、遅れ噴射時間を延長する。 As a process of the second correction unit 84, the controller 80 corrects the delay injection time described above based on the amount of misalignment of the first optical sensor 40a or the second optical sensor 40b in the first direction D1. .. For example, when the first optical sensor 40a or the second optical sensor 40b is displaced downward in the first direction D1 from the normal position, the first is compared with the case where the positional deviation does not occur. The distance between the detection position of the object to be sorted 90 by the optical sensor 40a or the second optical sensor 40b and the trajectory change position becomes small. Therefore, the controller 80 shortens the delayed injection time according to the amount of deviation in the first direction D1. On the contrary, when the first optical sensor 40a or the second optical sensor 40b is displaced upward in the first direction D1 from the normal position, the controller 80 adjusts to the deviation amount in the first direction D1. The delayed injection time is extended accordingly.
 遅れ噴射時間は、第1の方向D1における第1の光学センサ40aまたは第2の光学センサ40bの位置ずれの量を変数とする関数を用いて、補正されてもよい。この関数は、実験によって予め定められ、コントローラ80のメモリに記憶されていてもよい。あるいは、第1の光学センサ40aまたは第2の光学センサ40bによる被選別物90の正常な検出位置と軌道変更位置との距離、シュート73の傾斜角度、被選別物90の移送速度(これは、実測されてもよいし、実験によって予め定められていてもよい)、第1の方向D1における第1の光学センサ40aまたは第2の光学センサ40bの位置ずれの量などに基づいて、物理学的な計算によって算出されてもよい。第2の補正部84によれば、第1の光学センサ40aまたは第2の光学センサ40bの位置が第1の方向D1にずれたとしても、当該位置ずれに起因して選別精度が悪化することを自動的に抑制できる。 The delayed injection time may be corrected by using a function whose variable is the amount of misalignment of the first optical sensor 40a or the second optical sensor 40b in the first direction D1. This function may be predetermined experimentally and stored in the memory of the controller 80. Alternatively, the distance between the normal detection position of the object 90 to be sorted by the first optical sensor 40a or the second optical sensor 40b and the trajectory change position, the tilt angle of the chute 73, and the transfer speed of the object 90 to be sorted (this is It may be actually measured or predetermined by an experiment), and it is physically based on the amount of misalignment of the first optical sensor 40a or the second optical sensor 40b in the first direction D1. It may be calculated by various calculations. According to the second correction unit 84, even if the position of the first optical sensor 40a or the second optical sensor 40b is displaced in the first direction D1, the sorting accuracy is deteriorated due to the positional deviation. Can be automatically suppressed.
 本実施形態では、位置ずれ量は、第2の方向D2における移送経路95の両脇で検出される。そこで、一方側の検出量と他方側の検出量とが異なる場合には、例えば、両側の検出量の平均値を使用して、第1の補正部83および第2の補正部84の処理が行われてもよい。 In the present embodiment, the amount of misalignment is detected on both sides of the transfer path 95 in the second direction D2. Therefore, when the detection amount on one side and the detection amount on the other side are different, for example, the processing of the first correction unit 83 and the second correction unit 84 is performed using the average value of the detection amounts on both sides. It may be done.
 上述した検出部82、第1の補正部83および第2の補正部84の処理は、選別機10の製造時または初期使用時に、初期調整として実行されてもよい。あるいは、これらの処理は、選別機10の使用時(つまり、選別運転時)に所定のタイミングで行われてもよい。第1の光学センサ40aおよび第2の光学センサ40bの設置位置は、選別機10の運搬時に受ける衝撃などに起因してずれる可能性があるが、後者の場合には、このような出荷後の位置ずれにも好適に対応できる。また、第1の補正部83および第2の補正部84の処理は、位置ずれを検出したときに自動的に実行されてもよいし、あるいは、手動操作で実行されてもよいし、あるいは、位置ずれの発生を報知した後、所定の期間、ユーザ操作がなされないときに実行されてもよい。 The processing of the detection unit 82, the first correction unit 83, and the second correction unit 84 described above may be executed as initial adjustment at the time of manufacturing or initial use of the sorter 10. Alternatively, these processes may be performed at predetermined timings when the sorter 10 is used (that is, during the sorting operation). The installation positions of the first optical sensor 40a and the second optical sensor 40b may shift due to an impact received during transportation of the sorter 10, but in the latter case, such post-shipment position may occur. It can also cope with misalignment. Further, the processing of the first correction unit 83 and the second correction unit 84 may be automatically executed when the misalignment is detected, may be executed manually, or may be executed manually. It may be executed when the user operation is not performed for a predetermined period after notifying the occurrence of the misalignment.
 さらに、本実施形態では、コントローラ80は、色補正部85の処理として、マーキング関連光の検出結果に基づいて、被選別物90に関連付けられた光の検出結果に対して色補正を行うように構成される。具体的には、コントローラ80は、黒色の第1の単位領域54の撮像結果に基づいて、ダーク補正を行うことができる。具体的には、第1の単位領域54の画像データの色階調値の代表値(例えば、色階調値の平均値)が黒レベルとして利用され得る。 Further, in the present embodiment, as a process of the color correction unit 85, the controller 80 performs color correction on the detection result of the light associated with the object to be sorted 90 based on the detection result of the marking-related light. It is composed. Specifically, the controller 80 can perform dark correction based on the image pickup result of the black first unit region 54. Specifically, a representative value of the color gradation value of the image data in the first unit region 54 (for example, the average value of the color gradation value) can be used as the black level.
 さらに、コントローラ80は、白色の第2の単位領域55の撮像結果に基づいて、ホワイトバランス補正を行うことができる。例えば、画像が256階調で表現される場合には、第1の単位領域54の画像データの色階調値の代表値が階調値0に対応し、第2の単位領域55の画像データの色階調値の代表値が階調値255に対応するように、線形的なホワイトバランス補正が行われてもよい。このような色補正処理は、例えば、選別機10の選別運転開始時に行われてもよい。色補正部85によれば、第1の光学センサ40aおよび第2の光学センサ40b、または、第1の光源30aおよび第2の光源30bを交換したときに、交換前の光検出性能に近づけることができる。この点は、交換前の部品の型番が生産中止になっており、代用品を新たに取り付ける場合には、特に有効である。 Further, the controller 80 can perform white balance correction based on the image pickup result of the white second unit region 55. For example, when the image is represented by 256 gradations, the representative value of the color gradation value of the image data in the first unit area 54 corresponds to the gradation value 0, and the image data in the second unit area 55. A linear white balance correction may be performed so that the representative value of the color gradation value of is corresponding to the gradation value 255. Such a color correction process may be performed, for example, at the start of the sorting operation of the sorting machine 10. According to the color correction unit 85, when the first optical sensor 40a and the second optical sensor 40b, or the first light source 30a and the second light source 30b are replaced, the light detection performance before the replacement is brought closer. Can be done. This point is particularly effective when the model number of the part before replacement has been discontinued and a substitute is newly installed.
 さらに、上述の選別機10によれば、マーキング関連光(より具体的には、第2の単位領域55の撮像結果)に基づいて、第1の光源30aおよび第2の光源30bの光量を検出できる。マーキング53を有する中間部材50は、被選別物90に関連付けられた光の検出に影響しない位置に配置されるので、選別機10の選別運転中に第1の光源30aおよび第2の光源30bの光量をリアルタイムで検出することができる。しかも、第1の光源30aおよび第2の光源30bの光量を検出するための追加的な光学センサを必要としない。 Further, according to the above-mentioned sorter 10, the amount of light of the first light source 30a and the second light source 30b is detected based on the marking-related light (more specifically, the image pickup result of the second unit region 55). can. Since the intermediate member 50 having the marking 53 is arranged at a position that does not affect the detection of the light associated with the object to be sorted 90, the first light source 30a and the second light source 30b are arranged during the sorting operation of the sorting machine 10. The amount of light can be detected in real time. Moreover, no additional optical sensor is required to detect the amount of light of the first light source 30a and the second light source 30b.
 中間部材50の第1の層51は、上述の通り、光非透過性を有している。このため、フロント側の第1の光学センサ40aでマーキング関連光を検出する際に、フロント側の第1の光源30aからの光31aと一緒に、リア側の第2の光源30bからの光31bが第1の光学センサ40aで検出されることがない。したがって、第2の光源30bから照射される光31bの影響を受けることなく、第1の光源30aの光量を正確に検出することができる。同様に、第1の光源30aから照射される光31aの影響を受けることなく、第2の光源30bの光量を正確に検出することができる。換言すれば、第1の光源30aおよび第2の光源30bのうちの一方のみに光量変動が生じても、第1の光源30aの光量と、第2の光源30bの光量と、を別々に正確に検出できる。第1の層51の光非透過性は、マーキング53の形状をより正確に検出すること、ひいては、第1の光学センサ40aおよび第2の光学センサ40bの状態をより正確に検出することにも貢献する。 As described above, the first layer 51 of the intermediate member 50 has light translucency. Therefore, when the marking-related light is detected by the first optical sensor 40a on the front side, the light 31b from the second light source 30b on the rear side is combined with the light 31a from the first light source 30a on the front side. Is not detected by the first optical sensor 40a. Therefore, the amount of light of the first light source 30a can be accurately detected without being affected by the light 31b emitted from the second light source 30b. Similarly, the amount of light of the second light source 30b can be accurately detected without being affected by the light 31a emitted from the first light source 30a. In other words, even if the light amount fluctuates in only one of the first light source 30a and the second light source 30b, the light amount of the first light source 30a and the light amount of the second light source 30b are separately accurate. Can be detected. The light translucency of the first layer 51 also enables more accurate detection of the shape of the marking 53 and, by extension, more accurate detection of the states of the first optical sensor 40a and the second optical sensor 40b. To contribute.
 選別機10によれば、第2の方向D2における移送経路95の両脇で、中間部材50を利用して、第1の光源30aおよび第2の光源30bの光量を検出できる。したがって、片側のみで光量を検出する場合と比べて、第1の光源30aおよび第2の光源30bの光量の局所的な傾向を把握しやすい。例えば、第2の方向D2における一方側のみに光量異常が発生した場合に、当該異常を把握しやすい。 According to the sorter 10, the light amounts of the first light source 30a and the second light source 30b can be detected by using the intermediate member 50 on both sides of the transfer path 95 in the second direction D2. Therefore, it is easier to grasp the local tendency of the light amount of the first light source 30a and the second light source 30b as compared with the case where the light amount is detected only on one side. For example, when an abnormality in the amount of light occurs on only one side in the second direction D2, it is easy to grasp the abnormality.
 本実施形態では、選別機10では、さらに、選別精度を向上するために、マーキング関連光を利用して検出される第1の光源30aおよび第2の光源30bの光量に基づいて、キャリブレーションおよび報知を行うことができる。以下、その構成について説明する。本実施形態では、キャリブレーションは、コントローラ80のキャリブレーション部86の処理として、選別機10の選別運転中に繰り返し実行される。具体的には、キャリブレーション部86は、まず、上述のようにマーキング関連光を利用して取得された第1の光源30aおよび第2の光源30bの光量を取得する。この光量は、RGB色成分ごとに取得される。また、この光量は、第2の方向D2の一方側および他方側のそれぞれについて取得される。取得される光量は、非原料視野V3に相当する複数の受光素子41aまたは受光素子41bでの検出結果のうち、白色の第2の単位領域55の検出結果の統計値(例えば、平均値、中央値など)であってもよい。 In the present embodiment, in the sorting machine 10, in order to further improve the sorting accuracy, calibration and calibration are performed based on the light amounts of the first light source 30a and the second light source 30b detected by using the marking-related light. Notification can be performed. The configuration will be described below. In the present embodiment, the calibration is repeatedly executed during the sorting operation of the sorting machine 10 as a process of the calibration unit 86 of the controller 80. Specifically, the calibration unit 86 first acquires the light amounts of the first light source 30a and the second light source 30b acquired by using the marking-related light as described above. This amount of light is acquired for each RGB color component. Further, this amount of light is acquired for each of one side and the other side of the second direction D2. The acquired light amount is a statistical value (for example, average value, center) of the detection result of the white second unit region 55 among the detection results of the plurality of light receiving elements 41a or the light receiving element 41b corresponding to the non-raw material field of view V3. Value, etc.).
 次いで、キャリブレーション部86は、取得された光量が第1の範囲内にあるか否かを判断する。第1の範囲は、RGB色成分ごとに予め設定されてもよい。この第1の範囲は、第1の閾値TH1と第2の閾値TH2とによって境界付けられる範囲であり、理想の光量を表す基準値がこの第1の範囲内に含まれる。例えば、第1の閾値TH1は、基準値に対してマイナス30%の値として設定されてもよく、第2の閾値TH2は、基準値に対してプラス30%の値として設定されてもよい。 Next, the calibration unit 86 determines whether or not the acquired light amount is within the first range. The first range may be preset for each RGB color component. This first range is a range bounded by the first threshold value TH1 and the second threshold value TH2, and a reference value representing an ideal amount of light is included in this first range. For example, the first threshold value TH1 may be set as a value of minus 30% with respect to the reference value, and the second threshold value TH2 may be set as a value of plus 30% with respect to the reference value.
 判断の結果、光量が第1の範囲から外れた色成分が存在するときは、コントローラ80は、報知部88を介してユーザに光量異常を報知する。この構成によれば、選別機10の選別運転中にリアルタイムで第1の光源30aまたは第2の光源30bの光量異常を報知できる。したがって、ユーザは、第1の光源30aまたは第2の光源30bの光量異常に早期に気付くことができる。その結果、光源異常が発生しているにもかかわらず、選別機10の選別運転が継続されて、選別精度が悪化することが抑制される。 As a result of the determination, when there is a color component whose light amount is out of the first range, the controller 80 notifies the user of the light amount abnormality via the notification unit 88. According to this configuration, it is possible to notify the light amount abnormality of the first light source 30a or the second light source 30b in real time during the sorting operation of the sorting machine 10. Therefore, the user can notice the light intensity abnormality of the first light source 30a or the second light source 30b at an early stage. As a result, even though the light source abnormality has occurred, the sorting operation of the sorting machine 10 is continued, and the deterioration of the sorting accuracy is suppressed.
 一方、RGB色成分の全てについて光量が第1の範囲内であれば、次いで、キャリブレーション部86は、取得された光量が第2の範囲内にあるか否かを判断する。第2の範囲は、RGB色成分ごとに予め設定されてもよい。この第2の範囲は、第3の閾値TH3(TH1<TH3)と第4の閾値TH4(TH4<TH2)とによって境界付けられる範囲であり、基準値がこの第2の範囲内に含まれる。そして、判断の結果、取得された光量が第2の範囲内になければ、キャリブレーション部86は、キャリブレーションを実行する。ここでのキャリブレーションとは、検出された光量に応じて第1の光源30a,第2の光源30bの光量を調節する処理である。具体的には、キャリブレーション部86は、色成分ごとに、対応する受光素子41a,41bによる検出結果に基づいて、対応する発光素子32a,32bの光量を調節する。また、本実施形態では、光量は、第2の方向D2における移送経路95の両脇で検出されるので、第2の方向D2における一方側での光量検出結果に基づいて、当該一方側に位置する発光素子32a,32bの光量が調節され、同様に、第2の方向D2における他方側での光量検出結果に基づいて、当該他方側に位置する発光素子32a,32bの光量が調節される。光量の調節によってキャリブレーションを行えば、ノイズを増幅することなく、第1の光源30a,第2の光源30bの光量の変動を補償できる。 On the other hand, if the amount of light for all the RGB color components is within the first range, then the calibration unit 86 determines whether or not the acquired amount of light is within the second range. The second range may be preset for each RGB color component. This second range is a range bounded by the third threshold TH3 (TH1 <TH3) and the fourth threshold TH4 (TH4 <TH2), and the reference value is included in this second range. Then, as a result of the determination, if the acquired light amount is not within the second range, the calibration unit 86 executes the calibration. The calibration here is a process of adjusting the amount of light of the first light source 30a and the second light source 30b according to the detected amount of light. Specifically, the calibration unit 86 adjusts the amount of light of the corresponding light emitting elements 32a and 32b based on the detection results of the corresponding light receiving elements 41a and 41b for each color component. Further, in the present embodiment, the light amount is detected on both sides of the transfer path 95 in the second direction D2, so that the light amount is located on one side based on the light amount detection result on one side in the second direction D2. The light amount of the light emitting elements 32a and 32b is adjusted, and similarly, the light amount of the light emitting elements 32a and 32b located on the other side is adjusted based on the light amount detection result on the other side in the second direction D2. If calibration is performed by adjusting the amount of light, it is possible to compensate for fluctuations in the amount of light of the first light source 30a and the second light source 30b without amplifying noise.
 本実施形態では、コントローラ80は、PWM制御によって、発光素子32a,32bの光量を調節する。より具体的には、選別機10の出荷時には、コントローラ80は、デューティ比50%で発光素子32a,32bに電圧を印加するように設定されている。そして、キャリブレーション部86は、デューティ比を増減させることによって、発光素子32a,32bの光量の変動を補償する。つまり、キャリブレーション部86は、発光素子32a,32bの光量が基準値よりも多いときには、光量が基準値となるようにデューティ比を低減し、発光素子32a,32bの光量が基準値よりも少ないときには、光量が基準値となるようにデューティ比を増大させる。デフォルトのデューティ比を100%未満とすることによって、光量が基準値よりも多いとき、および、基準値よりも少ないときの両方に対応できる。なお、デューティ比を変更しても、光量が基準値に達しないときは、コントローラ80は、報知部88を介して報知を行う。 In the present embodiment, the controller 80 adjusts the amount of light of the light emitting elements 32a and 32b by PWM control. More specifically, at the time of shipment of the sorter 10, the controller 80 is set to apply a voltage to the light emitting elements 32a and 32b at a duty ratio of 50%. Then, the calibration unit 86 compensates for fluctuations in the amount of light of the light emitting elements 32a and 32b by increasing or decreasing the duty ratio. That is, when the light amount of the light emitting elements 32a and 32b is larger than the reference value, the calibration unit 86 reduces the duty ratio so that the light amount becomes the reference value, and the light amount of the light emitting elements 32a and 32b is smaller than the reference value. Occasionally, the duty ratio is increased so that the amount of light becomes a reference value. By setting the default duty ratio to less than 100%, it is possible to cope with both when the amount of light is higher than the reference value and when the amount of light is lower than the reference value. If the amount of light does not reach the reference value even if the duty ratio is changed, the controller 80 notifies via the notification unit 88.
 一方、取得された光量が第2の範囲内にあれば、キャリブレーション部86は、キャリブレーションを実行しないと決定する。つまり、光量の変動が、キャリブレーションを行う必要が無い程度に小さい場合には、キャリブレーションの実行は控えられる。この形態によれば、コントローラ80の負荷を低減できる。 On the other hand, if the acquired light amount is within the second range, the calibration unit 86 determines that the calibration is not executed. That is, when the fluctuation of the amount of light is small enough that it is not necessary to perform the calibration, the execution of the calibration is refrained. According to this form, the load on the controller 80 can be reduced.
 キャリブレーション部86によれば、選別機10の選別運転中に第1の光源30aおよび第2の光源30bの少なくとも一方の光量の変動が生じても、当該変動をリアルタイムで補償できる。しかも、上述した中間部材50によって、第1の光源30aおよび第2の光源30bの各々の光量を別々に正確に検出できるので、キャリブレーションの精度も高くなる。そして、第1の光学センサ40aによって取得される信号の強度と、第2の光学センサ40bによって取得される信号の強度とが、同一の基準範囲内に収まるようにキャリブレーションを行うことができる。このため、判定部81による判定精度が向上する。 According to the calibration unit 86, even if the amount of light of at least one of the first light source 30a and the second light source 30b fluctuates during the sorting operation of the sorting machine 10, the fluctuation can be compensated for in real time. Moreover, since the above-mentioned intermediate member 50 can accurately detect the light amounts of the first light source 30a and the second light source 30b separately, the calibration accuracy is also improved. Then, calibration can be performed so that the intensity of the signal acquired by the first optical sensor 40a and the intensity of the signal acquired by the second optical sensor 40b are within the same reference range. Therefore, the determination accuracy by the determination unit 81 is improved.
 さらに、キャリブレーション部86によれば、第1の光源30aおよび第2の光源30bの光量変動の程度が、キャリブレーションによって判定精度を適正に確保できる程度であれば、キャリブレーションが実行され、判定精度を適正に確保できない程度であれば、光量異常が報知される。このため、光量変動の程度に応じて、適切な措置をとることができる。 Further, according to the calibration unit 86, if the degree of fluctuation in the amount of light of the first light source 30a and the second light source 30b is such that the determination accuracy can be appropriately ensured by the calibration, the calibration is executed and the determination is made. If the accuracy cannot be properly ensured, an abnormality in the amount of light is notified. Therefore, appropriate measures can be taken according to the degree of fluctuation in the amount of light.
 代替実施形態では、キャリブレーション部86は、検出された光量が第1の範囲内であれば、キャリブレーションを実行する。つまり、検出された光量と基準値との差が、光量異常を報知する必要が無い程度であれば、当該差が非常に小さい場合であっても、キャリブレーションが行われる。この形態によれば、第1の光源30aおよび第1の光学センサ40aの光量の変動を、より厳密に補償することができる。 In the alternative embodiment, the calibration unit 86 executes the calibration if the detected light amount is within the first range. That is, if the difference between the detected light amount and the reference value is such that it is not necessary to notify the light amount abnormality, calibration is performed even when the difference is very small. According to this embodiment, fluctuations in the amount of light of the first light source 30a and the first optical sensor 40a can be compensated more strictly.
 さらなる代替実施形態では、キャリブレーション部86は、発光素子32a,32bの光量を調節する態様に代えて、原料視野V2に相当する受光素子41a,41bによって取得される信号についてのゲインを調節することによって、キャリブレーションを実行する。つまり、キャリブレーション部86は、発光素子32a,32bの光量が基準値よりも多いときには、その比率分だけゲインを低減し、発光素子32a,32bの光量が基準値よりも少ないときには、その比率分だけゲインを増大させる。ゲインの変更は、本実施形態では、AC/DCコンバータでのゲインを変更することによって行われるが、第1の光学センサ40aおよび第2の光学センサ40bが増幅回路を内蔵している場合は、当該増幅回路のゲインが変更されてもよい。この形態によれば、第1の光源30aおよび第2の光源30bの光量調節能力に関係なく、第1の光源30aおよび第2の光源30bの光量の変動を補償できる。 In a further alternative embodiment, the calibration unit 86 adjusts the gain for the signal acquired by the light receiving elements 41a, 41b corresponding to the raw material field of view V2, instead of adjusting the light amount of the light emitting elements 32a, 32b. To perform calibration. That is, when the light amount of the light emitting elements 32a and 32b is larger than the reference value, the calibration unit 86 reduces the gain by the ratio, and when the light amount of the light emitting elements 32a and 32b is less than the reference value, the ratio is reduced. Only increase the gain. In this embodiment, the gain is changed by changing the gain in the AC / DC converter, but when the first optical sensor 40a and the second optical sensor 40b have an amplifier circuit built-in, the gain is changed. The gain of the amplifier circuit may be changed. According to this embodiment, it is possible to compensate for fluctuations in the amount of light of the first light source 30a and the second light source 30b regardless of the light amount adjusting ability of the first light source 30a and the second light source 30b.
 さらなる代替実施形態では、キャリブレーション部86は、発光素子32a,32bの光量を調節する態様と、ゲインを調節する態様と、を組み合わせて、キャリブレーションを実行する。例えば、デフォルトのデューティ比を100%に設定しておいてもよい。この場合、キャリブレーション部86は、発光素子32a,32bの光量が基準値よりも多いときには、光量が基準値となるようにデューティ比を低減させ、発光素子32a,32bの光量が基準値よりも少ないときには、その比率分だけゲインを増大させる。この形態によれば、発光素子32a,32bの光量が適正な範囲内であるときに、光量を十分に確保できる。あるいは、デフォルトのデューティ比を100%未満(例えば、90%)に設定しておき、デューティ比を100%に増大させても光量が基準値に達しないときに、不足分の光量に関してゲインの調節が行われてもよい。 In a further alternative embodiment, the calibration unit 86 performs calibration by combining an aspect of adjusting the amount of light of the light emitting elements 32a and 32b and an aspect of adjusting the gain. For example, the default duty ratio may be set to 100%. In this case, when the light amount of the light emitting elements 32a and 32b is larger than the reference value, the calibration unit 86 reduces the duty ratio so that the light amount becomes the reference value, and the light amount of the light emitting elements 32a and 32b is larger than the reference value. When it is small, the gain is increased by the ratio. According to this embodiment, a sufficient amount of light can be secured when the amount of light of the light emitting elements 32a and 32b is within an appropriate range. Alternatively, if the default duty ratio is set to less than 100% (for example, 90%) and the amount of light does not reach the reference value even if the duty ratio is increased to 100%, the gain is adjusted with respect to the amount of insufficient light. May be done.
 上述したキャリブレーション処理および報知処理は、任意のタイミングで実施可能である。例えば、これらの処理は、選別機10の選別運転中に代えて、または、加えて、選別機10の運転開始前に行われてもよい。さらに、選別機10が、ワイパーによって透明部材21a,21bを清掃可能に構成されており、かつ、選別処理を一時的に中断して清掃を行うように構成されている場合には、キャリブレーション処理および報知処理が当該清掃時に行われてもよい。 The calibration process and notification process described above can be performed at any time. For example, these processes may be performed instead of or in addition to the sorting operation of the sorting machine 10 before the start of the operation of the sorting machine 10. Further, when the sorting machine 10 is configured to be able to clean the transparent members 21a and 21b by the wiper and is configured to temporarily interrupt the sorting process for cleaning, the calibration process is performed. And the notification process may be performed at the time of the cleaning.
 上述した選別機10において、マーキング53の単位領域UAの大きさは、複数の受光素子41a,41bの各々の視野の大きさと同程度に設定されてもよい。こうすれば、第1の光学センサ40aおよび第2の光学センサ40bの位置ずれを高精度に検出できる。あるいは、単位領域UAの大きさは、被選別物90の最小寸法(例えば、米であれば、粒厚)の半分程度(例えば、米であれば、1.5mm程度)に設定されてもよい。こうすれば、選別精度への影響が大きくなる位置ずれのみを検出できる。あるいは、単位領域UAの大きさは、複数の受光素子41a,41bの各々の視野の大きさと同程度以上、かつ、被選別物90の最小寸法の半分程度以下に設定されてもよい。 In the sorter 10 described above, the size of the unit region UA of the marking 53 may be set to be about the same as the size of the visual field of each of the plurality of light receiving elements 41a and 41b. By doing so, the positional deviation of the first optical sensor 40a and the second optical sensor 40b can be detected with high accuracy. Alternatively, the size of the unit region UA may be set to about half of the minimum dimension (for example, grain thickness in the case of rice) of the object to be sorted 90 (for example, about 1.5 mm in the case of rice). .. By doing so, it is possible to detect only the positional deviation that greatly affects the sorting accuracy. Alternatively, the size of the unit region UA may be set to be equal to or more than the size of the visual field of each of the plurality of light receiving elements 41a and 41b and to be about half or less of the minimum dimension of the object to be sorted 90.
 代替実施形態では、図4に例示したマーキング53に代えて、種々のマーキングが使用され得る。例えば、マーキングは、図4に示した黒色の第1の単位領域54および白色の第2の単位領域55の少なくとも一方に代えて、または、加えて、白および黒以外の任意の色の他の単位領域を含んでいてもよい。この他の単位領域は、互いに色が異なる二種類以上の単位領域を含んでいてもよい。さらに、マーキングは、白および黒以外の色を二つ以上有するカラーマーキングであってもよい。例えば、マーキングは、白、黒、赤、緑、青、シアン、マゼンダ、黄の単位領域をそれぞれ有していてもよい。このようなカラーマーキングが使用される場合、色補正部85は、マーキングの画像の各階調値が予め定められた色に近づくように、非線形のカラー補正を行うように構成されてもよい。さらに、同一色または異色の単位領域同士は、互いに間隔が空いていてもよいし、あるいは、図4に示した例のように間隔無しで隣接していてもよい。 In the alternative embodiment, various markings can be used instead of the marking 53 illustrated in FIG. For example, the marking replaces or in addition to at least one of the black first unit area 54 and the white second unit area 55 shown in FIG. 4, and other colors other than white and black. It may include a unit area. The other unit regions may include two or more types of unit regions having different colors from each other. Further, the marking may be a color marking having two or more colors other than white and black. For example, the marking may have white, black, red, green, blue, cyan, magenta, and yellow unit regions, respectively. When such color marking is used, the color correction unit 85 may be configured to perform non-linear color correction so that each gradation value of the marking image approaches a predetermined color. Further, unit regions of the same color or different colors may be spaced apart from each other, or may be adjacent to each other without a gap as in the example shown in FIG.
 さらに、単位領域は、必ずしも2次元的に配列される必要は無く、第2の方向D2のみに一次元的に配列されてもよい。こうすれば、第2の方向D2における位置ずれ量を検出可能である。 Further, the unit regions do not necessarily have to be arranged two-dimensionally, and may be arranged one-dimensionally only in the second direction D2. In this way, the amount of misalignment in the second direction D2 can be detected.
 さらに、二次元コードがマーキングとして使用されてもよい。こうしても、上述の実施形態と同様の効果が得られる。二次元コードは、規格化された公知のコードであってもよく、例えば、スタック型(PDF417、CODE49など)またはマトリクス型(QRコード(登録商標)、Data Matrix、VeriCode(登録商標)など)であってもよい。あるいは、二次元コードは、独自開発されたものであってもよい。 Furthermore, a two-dimensional code may be used as a marking. Even in this way, the same effect as that of the above-described embodiment can be obtained. The two-dimensional code may be a standardized and known code, for example, a stack type (PDF417, CODE49, etc.) or a matrix type (QR code (registered trademark), DataMatrix, VeriCode (registered trademark), etc.). There may be. Alternatively, the two-dimensional code may be independently developed.
 さらに、一次元コード(例えば、バーコード)がマーキングとして使用されてもよい。この場合、第2の方向D2にバーが並ぶようにマーキングを配置すれば、第2の方向D2における位置ずれ量を検出可能である。一次元または二次元のコードがマーキングとして使用される場合、コードが表す情報を読み取れるか否かに基づいて、光学センサの状態(例えば、位置ずれの有無、フォーカスずれの有無)を容易に検出できる。さらに、マーキングが二次元のコードである場合には、どのような情報が読み取れたかに基づいて、第1の方向D1の位置ずれの量を検出できる。 Further, a one-dimensional code (for example, a barcode) may be used as a marking. In this case, if the markings are arranged so that the bars are lined up in the second direction D2, the amount of misalignment in the second direction D2 can be detected. When a one-dimensional or two-dimensional code is used as a marking, the state of the optical sensor (eg, misalignment, misalignment) can be easily detected based on whether the information represented by the code can be read. .. Further, when the marking is a two-dimensional code, the amount of misalignment in the first direction D1 can be detected based on what kind of information is read.
 ただし、マーキングは、上述した例に限られず、任意の形状の単一または複数の印とすることができる。例えば、マーキングは、「+」、「-」、「■」、「▲」などの印であってもよい。 However, the marking is not limited to the above-mentioned example, and may be a single or multiple markings of any shape. For example, the marking may be a mark such as "+", "-", "■", "▲".
 以下、第2実施形態について説明する。第2実施形態は、マーキング53に代えてマーキング153を備えている点のみが第1実施形態と異なっており、第2実施形態の選別機10の装置構成は、第1実施形態と同じである。図5に示すように、マーキング153は、第1の領域154と第2の領域155と第3の領域156とを備えている。これらの領域154~156の各々は、マーキング関連光に基づいて判定部81の判定性能を確保するための少なくとも一つ以上の機能を提供する。本実施形態では、領域154~156の各々は互いに異なる機能を提供する。以下、領域154~156について具体的に説明する。 Hereinafter, the second embodiment will be described. The second embodiment is different from the first embodiment only in that the marking 153 is provided instead of the marking 53, and the apparatus configuration of the sorting machine 10 of the second embodiment is the same as that of the first embodiment. .. As shown in FIG. 5, the marking 153 includes a first region 154, a second region 155, and a third region 156. Each of these regions 154 to 156 provides at least one or more functions for ensuring the determination performance of the determination unit 81 based on the marking-related light. In this embodiment, each of the regions 154 to 156 provides different functions from each other. Hereinafter, regions 154 to 156 will be specifically described.
 第1の領域154は、光学センサ40a,40bの位置ずれ検出機能を提供する。この第1の領域154は、黒色の小領域157を備えている。小領域157は、第2の方向D2に平行な上底および下底を有する台形形状を有している。第2の方向D2における小領域157の両脇には、白色の左側小領域158および右側小領域159が位置している。つまり、小領域157の境界は、色の違いによって識別される。第2の方向D2における小領域157の幅W1は、台形形状に起因して、第1の方向D1(つまり、第2の方向D2に直交する方向)の位置に応じて一意に定まる。 The first region 154 provides a misalignment detection function for the optical sensors 40a and 40b. The first region 154 comprises a small black region 157. The small region 157 has a trapezoidal shape with an upper base and a lower base parallel to the second direction D2. A white left small region 158 and a right small region 159 are located on both sides of the small region 157 in the second direction D2. That is, the boundaries of the small area 157 are identified by the difference in color. The width W1 of the small region 157 in the second direction D2 is uniquely determined according to the position of the first direction D1 (that is, the direction orthogonal to the second direction D2) due to the trapezoidal shape.
 この第1の領域154に基づいて得られるマーキング関連光に基づけば、光学センサ40a,40bの位置ずれの有無、方向、および、ずれ量を検出可能である。第1の光学センサ40aが正常な位置に配置されている場合に、この第1の光学センサ40aによって中間線状領域A1が撮像されると仮定して、以下に具体例を説明する。第1の光学センサ40aの位置が第1の方向D1の一方側にずれて、第1の光学センサ40aによって上側線状領域A2が撮像されると、第1の光学センサ40aによって検出される小領域157の幅W1は、正常位置(中間線状領域A1)と比べて、ずれ量に比例して大きくなる。一方、第1の光学センサ40aの位置が第1の方向D1の他方側にずれて、第1の光学センサ40aによって下側線状領域A3が撮像されると、第1の光学センサ40aによって検出される小領域157の幅W1は、正常位置(中間線状領域A1)と比べて、ずれ量に比例して小さくなる。このため、幅W1に基づいて、第1の方向D1における位置ずれの方向および量を検知できる。 Based on the marking-related light obtained based on this first region 154, it is possible to detect the presence / absence, direction, and amount of misalignment of the optical sensors 40a and 40b. A specific example will be described below assuming that the intermediate linear region A1 is imaged by the first optical sensor 40a when the first optical sensor 40a is arranged at a normal position. When the position of the first optical sensor 40a shifts to one side of the first direction D1 and the upper linear region A2 is imaged by the first optical sensor 40a, the small area detected by the first optical sensor 40a is detected. The width W1 of the region 157 becomes larger in proportion to the amount of deviation as compared with the normal position (intermediate linear region A1). On the other hand, when the position of the first optical sensor 40a shifts to the other side in the first direction D1 and the lower linear region A3 is imaged by the first optical sensor 40a, it is detected by the first optical sensor 40a. The width W1 of the small region 157 becomes smaller in proportion to the amount of deviation as compared with the normal position (intermediate linear region A1). Therefore, the direction and amount of the positional deviation in the first direction D1 can be detected based on the width W1.
 さらに、小領域157と左側小領域158との境界は、第2の方向D2に直交している(換言すれば、第1の方向D1に平行である)。このため、第1の光学センサ40aの位置が第1の方向D1にずれても、第2の方向D2における当該境界の検出位置は変化しない。一方、第1の光学センサ40aの位置が第2の方向D2にずれると、そのずれの方向およびずれ量に応じて、当該境界(換言すれば、第2の方向D2における小領域157の始点)の検出位置が変化する。このため、当該境界の検出位置に基づいて、第2の方向D2におけるずれの方向および量を検知できる。 Further, the boundary between the small area 157 and the left small area 158 is orthogonal to the second direction D2 (in other words, parallel to the first direction D1). Therefore, even if the position of the first optical sensor 40a shifts to the first direction D1, the detection position of the boundary in the second direction D2 does not change. On the other hand, when the position of the first optical sensor 40a shifts in the second direction D2, the boundary (in other words, the starting point of the small region 157 in the second direction D2) corresponds to the direction of the shift and the amount of the shift. The detection position of is changed. Therefore, the direction and amount of deviation in the second direction D2 can be detected based on the detection position of the boundary.
 なお、小領域157と右側小領域159との境界が第2の方向D2に直交している代替実施形態では、小領域157と右側小領域159との境界(換言すれば、第2の方向D2における小領域157の終点)の検出位置に基づいて、第2の方向D2におけるずれの方向および量を検知できる。さらに、小領域157と左側小領域158との境界が第2の方向D2に直交しておらず、かつ、小領域157と右側小領域159との境界が第2の方向D2に直交していない代替実施形態では、第2の方向D2における小領域157の始点および終点の両方の検出位置に基づいて、第2の方向D2におけるずれの方向および量を検知できる。詳しい説明は省略するが、第1の領域154の他の部分(小領域157~159以外の部分)を利用しても、同様の原理によって位置ずれ検出機能を提供できる。さらに、他の代替実施形態では、小領域157の幅W1は、第2の方向D2に交差する方向(以下、交差方向とも呼ぶ)の位置に応じて一意に定まるように設定されてもよい。 In the alternative embodiment in which the boundary between the small area 157 and the right side small area 159 is orthogonal to the second direction D2, the boundary between the small area 157 and the right side small area 159 (in other words, the second direction D2). The direction and amount of deviation in the second direction D2 can be detected based on the detection position of the small region 157). Further, the boundary between the small area 157 and the left side small area 158 is not orthogonal to the second direction D2, and the boundary between the small area 157 and the right side small area 159 is not orthogonal to the second direction D2. In an alternative embodiment, the direction and amount of deviation in the second direction D2 can be detected based on the detection positions of both the start point and the end point of the small region 157 in the second direction D2. Although detailed description will be omitted, the misalignment detection function can be provided by the same principle by using other portions of the first region 154 (parts other than the small regions 157 to 159). Further, in another alternative embodiment, the width W1 of the small region 157 may be set to be uniquely determined according to the position of the direction intersecting the second direction D2 (hereinafter, also referred to as the intersecting direction).
 第2の領域155は、光学センサ40a,40bのフォーカスずれ検出機能を提供する。この第2の領域155は、白色の複数の第1の線161と、白色の複数の第2の線162と、を備えている。第2の線162の各々は、複数の第1の線161のいずれよりも細い。 The second region 155 provides a focus shift detection function for the optical sensors 40a and 40b. The second region 155 includes a plurality of white first lines 161 and a plurality of white second lines 162. Each of the second lines 162 is thinner than any of the plurality of first lines 161.
 光学センサ40a,40bの各々は、第2の方向D2のいずれの位置においても、被選別物90の検出位置(つまり、移送経路95上の位置)で合焦するように初期設定される。また、フロント側のマーキング153に関して、第1の線161および第2の線162の太さは、第1の光学センサ40aが被選別物90の検出位置で合焦しているときに、第1の光学センサ40aで第1の線161を検出できるが、ぼやけによって第2の線162を検出できず、第1の光学センサ40aが、マーキング153の位置で合焦しているときに、第1の光学センサ40aで第1の線161および第2の線162の両方を検出できるように設定される。リア側のマーキング153と第2の光学センサ40bとの関係も同様である。 Each of the optical sensors 40a and 40b is initially set to be in focus at the detection position of the object to be sorted 90 (that is, the position on the transfer path 95) at any position in the second direction D2. Further, regarding the marking 153 on the front side, the thickness of the first line 161 and the second line 162 is the first when the first optical sensor 40a is in focus at the detection position of the object to be sorted 90. The first line 161 can be detected by the optical sensor 40a of the above, but the second line 162 cannot be detected due to blurring, and the first optical sensor 40a is in focus at the position of the marking 153. The optical sensor 40a of the above is set so that both the first line 161 and the second line 162 can be detected. The relationship between the marking 153 on the rear side and the second optical sensor 40b is also the same.
 このような第2の領域155に基づいて得られるマーキング関連光に基づけば、第1の線161および第2の線162の両方が検出されないとき、および、第1の線161および第2の線162の両方が検出されるときには、被選別物90の検出位置に対してフォーカスずれが生じていると判断できる。第1の線161および第2の線162を検出できるか否かの判断は、例えば、光学センサ40a,40bによって取得される信号に基づいて、閾値を用いた2値化処理によって行われてもよいし、あるいは、エッジ検出処理によって行われてもよい。 Based on the marking-related light obtained based on such a second region 155, when both the first line 161 and the second line 162 are not detected, and the first line 161 and the second line When both 162 are detected, it can be determined that the focus shift has occurred with respect to the detection position of the object to be sorted 90. Whether or not the first line 161 and the second line 162 can be detected may be determined, for example, by binarization processing using a threshold value based on the signals acquired by the optical sensors 40a and 40b. Alternatively, it may be performed by an edge detection process.
 第3の領域156は、ホワイトバランス確認機能を提供する。具体的には、第3の領域156は、白色の領域であり、第3の領域156に基づいて得られるマーキング関連光の階調値から、現在のホワイトバランス設定を確認できる。また、必要に応じて、第3の領域156に基づいて得られるマーキング関連光の階調値が任意の基準値(例えば、階調値255の基準値)となるように、ホワイトバランスが補正されてもよい。第3の領域156は、全体的に白色の領域であるから、光学センサ40a,40bの位置がずれていても、その影響を受けること無く、ホワイトバランス確認機能を提供できる。 The third area 156 provides a white balance confirmation function. Specifically, the third region 156 is a white region, and the current white balance setting can be confirmed from the gradation value of the marking-related light obtained based on the third region 156. Further, if necessary, the white balance is corrected so that the gradation value of the marking-related light obtained based on the third region 156 becomes an arbitrary reference value (for example, the reference value of the gradation value 255). You may. Since the third region 156 is a white region as a whole, even if the positions of the optical sensors 40a and 40b are displaced, the white balance confirmation function can be provided without being affected by the position.
 領域154~156の少なくとも一つは、光源30a,30bの光量検出機能を提供してもよい。つまり、領域154~156の少なくとも一つを介して得られるマーキング関連光に基づいて、光源30a,30bの光量が検出されてもよい。この場合、検出された光量に基づいて、第1実施形態と同様にキャリブレーション部86の処理が実行されてもよい。この場合、キャリブレーション部86は、光学センサ40a,40bのレンズの絞りによる光量調整を実施してもよい。あるいは、キャリブレーション部86は、検出された光量に基づいて、光量異常として、発光素子32a,32bの少なくとも一部が故障、劣化などによって点灯不能状態になっていることを検出してもよい。 At least one of the regions 154 to 156 may provide a light amount detecting function of the light sources 30a and 30b. That is, the amount of light of the light sources 30a and 30b may be detected based on the marking-related light obtained through at least one of the regions 154 to 156. In this case, the processing of the calibration unit 86 may be executed as in the first embodiment based on the detected amount of light. In this case, the calibration unit 86 may adjust the amount of light by the aperture of the lenses of the optical sensors 40a and 40b. Alternatively, the calibration unit 86 may detect that at least a part of the light emitting elements 32a and 32b is in a non-lighting state due to a failure, deterioration, or the like as a light amount abnormality based on the detected light amount.
 図6は、マーキング153に代えて使用され得る様々なマーキングの例を示している。例1~4は、位置ずれ検出機能とホワイトバランス確認機能とを提供可能なマーキングの例であり、例5~8は、位置ずれ検出機能およびホワイトバランス確認機能に加えて、フォーカスずれ検出機能を提供可能なマーキングの例である。例5~8では、上述したように、相対的に太い線と相対的に細い線との組み合わせによって、フォーカスずれ検出機能が追加されている。例1~3,5~8は、黒および白のみが使用されたモノクロマーキングであり、例4は、黒および白以外の複数の色を有するカラーマーキングである。ただし、図6に示した例1~8に関して、マーキングの色は、特に限定されるものではなく、任意の数および種類の色がマーキングに使用され得る。この点は、図5に示したマーキング153についても同様である。さらに、マーキングの外郭および内部の形状は、図5および図6に示した様々な例に限定されるものではなく、上述した機能の少なくとも一部を提供できる限りにおいて、任意に設定可能である。 FIG. 6 shows examples of various markings that can be used in place of marking 153. Examples 1 to 4 are examples of markings that can provide a misalignment detection function and a white balance confirmation function, and Examples 5 to 8 provide a focus shift detection function in addition to the misalignment detection function and the white balance confirmation function. An example of markings that can be provided. In Examples 5 to 8, as described above, the focus shift detection function is added by the combination of the relatively thick line and the relatively thin line. Examples 1 to 3, 5 to 8 are monochrome markings in which only black and white are used, and Example 4 is color marking having a plurality of colors other than black and white. However, with respect to Examples 1 to 8 shown in FIG. 6, the marking color is not particularly limited, and any number and type of colors may be used for marking. This point is the same for the marking 153 shown in FIG. Further, the outer and inner shapes of the marking are not limited to the various examples shown in FIGS. 5 and 6, and can be arbitrarily set as long as they can provide at least a part of the above-mentioned functions.
 以上、本開示の実施形態について説明してきたが、上記した実施形態は、本教示の理解を容易にするためのものであり、本発明を限定するものではない。本発明は、その趣旨を逸脱することなく、変更、改良され得るとともに、本発明にはその均等物が含まれる。また、上述した課題の少なくとも一部を解決できる範囲、または、効果の少なくとも一部を奏する範囲において、請求の範囲および明細書に記載された各構成要素の任意の組み合わせ、または、任意の省略が可能である。 Although the embodiments of the present disclosure have been described above, the above-described embodiments are for facilitating the understanding of the present teaching and do not limit the present invention. The present invention can be modified and improved without departing from the spirit thereof, and the present invention includes equivalents thereof. In addition, any combination of claims and any combination of each component described in the specification, or any omission may be made to the extent that at least a part of the above-mentioned problems can be solved or at least a part of the effect is exhibited. It is possible.
 例えば、第1の光源30aおよび第2の光源30bは、LEDに代えて、任意の形式の発光素子によって構成されてもよい。発光素子は、例えば、蛍光灯、ELなどであってもよい。また、選別機10は、第1の光源30a,30bに代えて、または、加えて、近赤外線を照射する光源を備えていてもよい。この場合、近赤外光源用に、中間部材50と同等の機能を有する追加的な中間部材が設けられてもよく、近赤外光源に関して、キャリブレーション処理および報知処理が行われてもよい。また、近赤外光を検出するための追加的な光学センサが設けられてもよい。この場合、当該追加的な光学センサに関して、検出部82、第1の補正部83および第2の補正部84の処理が行われてもよい。また、選別機10に使用される光源は、先に例示した可視光や近赤外光を放出する構成に限られるものではなく、任意の波長の電磁波(換言すれば、広義の光)を放出するように構成されてもよい。この場合、光源から放出される電磁波を検出するために、任意の形式のセンサが採用されてもよく、また、当該光源およびセンサの少なくとも一方のために、中間部材50と同等の機能を有する中間部材が設けられてもよい。 For example, the first light source 30a and the second light source 30b may be configured by any type of light emitting element instead of the LED. The light emitting element may be, for example, a fluorescent lamp, EL, or the like. Further, the sorter 10 may include a light source that irradiates near infrared rays in place of or in addition to the first light sources 30a and 30b. In this case, an additional intermediate member having the same function as the intermediate member 50 may be provided for the near-infrared light source, and calibration processing and notification processing may be performed on the near-infrared light source. Further, an additional optical sensor for detecting near-infrared light may be provided. In this case, the detection unit 82, the first correction unit 83, and the second correction unit 84 may be processed with respect to the additional optical sensor. Further, the light source used in the sorter 10 is not limited to the configuration that emits visible light or near-infrared light exemplified above, but emits electromagnetic waves of arbitrary wavelengths (in other words, light in a broad sense). It may be configured to do so. In this case, any type of sensor may be employed to detect the electromagnetic waves emitted by the light source, and for at least one of the light source and the sensor, an intermediate having the same function as the intermediate member 50. Members may be provided.
 さらに、中間部材50の第1の層51が省略されてもよい。あるいは、中間部材50は、単層領域と複層領域とを備えていてもよい。さらに、検出部82、第1の補正部83、第2の補正部84、色補正部85およびキャリブレーション部86の少なくとも一部が省略されてもよい。あるいは、上述した報知処理の少なくとも一部が省略されてもよい。 Further, the first layer 51 of the intermediate member 50 may be omitted. Alternatively, the intermediate member 50 may include a single-layer region and a multi-layer region. Further, at least a part of the detection unit 82, the first correction unit 83, the second correction unit 84, the color correction unit 85, and the calibration unit 86 may be omitted. Alternatively, at least a part of the above-mentioned notification process may be omitted.
 また、第1の光学センサ40aおよび第2の光学センサ40bの一方が省略されてもよく、あるいは、第1の光源30aおよび第2の光源30bの一方が省略されてもよい。このような省略に伴い、被選別物90に関連付けられた光は、反射光および透過光の一方とされてもよい。逆に、光源の数は、フロント側において2以上の任意の数であってもよく、リア側において2以上の任意の数であってもよい。同様に、光学センサの数は、フロント側において2以上の任意の数であってもよく、リア側において2以上の任意の数であってもよい。光源および光学センサの各々の数は、フロント側とリア側とで同数であってもよく、互いに異なっていてもよい。また、フロント側およびリア側の光源の総数と、フロント側およびリア側の光学センサの総数とは、同数であってもよく、互いに異なっていてもよい。 Further, one of the first optical sensor 40a and the second optical sensor 40b may be omitted, or one of the first light source 30a and the second light source 30b may be omitted. With such omission, the light associated with the object to be sorted 90 may be one of the reflected light and the transmitted light. On the contrary, the number of light sources may be any number of 2 or more on the front side and may be any number of 2 or more on the rear side. Similarly, the number of optical sensors may be any number of 2 or more on the front side and may be any number of 2 or more on the rear side. The number of each of the light source and the optical sensor may be the same on the front side and the number on the rear side, or may be different from each other. Further, the total number of light sources on the front side and the rear side and the total number of optical sensors on the front side and the rear side may be the same number or different from each other.
 さらに、中間部材50の設置数は、1以上の任意の数とすることができる。 Further, the number of intermediate members 50 installed can be any number of 1 or more.
 さらに、選別機10は、第1の光学センサ40aおよび第2の光学センサ40bに加えて、マーキング関連光を検出するための追加的な光学センサを備えていてもよい。この場合、第1の光学センサ40aおよび第2の光学センサ40bは、被選別物90に関連付けられた光の検出のみに使用される。 Further, the sorter 10 may include an additional optical sensor for detecting marking-related light in addition to the first optical sensor 40a and the second optical sensor 40b. In this case, the first optical sensor 40a and the second optical sensor 40b are used only for detecting the light associated with the object 90 to be sorted.
  10...光学式選別機
  20...光学検出部
  21a,21b...透明部材
  30a...第1の光源
  30b...第2の光源
  31a,31b...光
  32a,32b...発光素子
  40a...第1の光学センサ
  40b...第2の光学センサ
  41a,41b...受光素子
  50...中間部材
  51...第1の層
  52...第2の層
  53...マーキング
  54...第1の単位領域
  55...第2の単位領域
  71...貯留タンク
  72...フィーダ
  73...シュート
  74...良品排出樋
  75...不良品排出樋
  76...選別部
  77...エジェクタ
  78...エア
  80...コントローラ
  81...判定部
  82...検出部
  83...第1の補正部
  84...第2の補正部
  85...色補正部
  86...キャリブレーション部
  88...報知部
  90,91,92...被選別物
  95...移送経路
  153...マーキング
  154...第1の領域
  155...第2の領域
  156...第3の領域
  157...小領域
  158...左側小領域
  159...右側小領域
  161...第1の線
  162...第2の線
  D1...第1の方向
  D2...第2の方向
  V1...第1の光学センサおよび第2の光学センサの総視野
  V2...第1の光学センサおよび第2の光学センサの原料視野
  V3...第1の光学センサおよび第2の光学センサの非原料視野
10 ... Optical sorter 20 ... Optical detection unit 21a, 21b ... Transparent member 30a ... First light source 30b ... Second light source 31a, 31b ... Light 32a, 32b. .. Light source 40a ... First optical sensor 40b ... Second optical sensor 41a, 41b ... Light receiving element 50 ... Intermediate member 51 ... First layer 52 ... Second Layer 53 ... Marking 54 ... First unit area 55 ... Second unit area 71 ... Storage tank 72 ... Feeder 73 ... Shoot 74 ... Good product discharge gutter 75. .. Defective product discharge gutter 76 ... Sorting unit 77 ... Ejector 78 ... Air 80 ... Controller 81 ... Judgment unit 82 ... Detection unit 83 ... First correction unit 84. .. 2nd correction unit 85 ... color correction unit 86 ... calibration unit 88 ... notification unit 90, 91, 92 ... object to be sorted 95 ... transfer path 153 ... marking 154 ... first area 155 ... second area 156 ... third area 157 ... small area 158 ... left side small area 159 ... right side small area 161 ... first Line 162 ... 2nd line D1 ... 1st direction D2 ... 2nd direction V1 ... Total field of view of the 1st optical sensor and the 2nd optical sensor V2 ... 1st Raw material field of view of optical sensor and second optical sensor V3 ... Non-raw material field of view of first optical sensor and second optical sensor

Claims (8)

  1.  光学式選別機であって、
     移送経路上を移送中の被選別物に光を照射するように構成された光源と、
     前記光源から照射され、前記被選別物に関連付けられた光を検出するように構成された光学センサと、
     前記被選別物に関連付けられた光に関して前記光学センサによって取得される信号に基づいて、前記被選別物についての異物および/または不良品の判定を行うように構成された判定部と、
     前記光源から前記被選別物への前記光の照射方向における前記光源と前記移送経路との間の位置であって、前記被選別物に関連付けられた前記光の検出に影響しない位置に配置され、マーキングを有する中間部材と
     を備え、
     前記光学センサは、さらに、前記光源から照射され、前記マーキングを介して得られるマーキング関連光を検出するように構成された
     光学式選別機。
    It ’s an optical sorter,
    A light source configured to illuminate the object being transferred on the transfer path, and
    An optical sensor configured to detect light emitted from the light source and associated with the object to be sorted.
    A determination unit configured to determine a foreign object and / or a defective product for the object to be sorted based on a signal acquired by the optical sensor with respect to the light associated with the object to be sorted.
    It is arranged at a position between the light source and the transfer path in the direction of irradiation of the light from the light source to the object to be sorted, and at a position that does not affect the detection of the light associated with the object to be sorted. Equipped with an intermediate member with markings,
    The optical sensor is an optical sorter configured to detect marking-related light emitted from the light source and obtained through the marking.
  2.  請求項1に記載の光学式選別機であって、
     前記マーキング関連光の検出結果に基づいて前記光学センサの状態を検出するように構成された検出部を備える
     光学式選別機。
    The optical sorter according to claim 1.
    An optical sorter including a detection unit configured to detect the state of the optical sensor based on the detection result of the marking-related light.
  3.  請求項1または請求項2に記載の光学式選別機であって、
     前記マーキング関連光の検出結果に基づいてキャリブレーションを実行可能に構成されたキャリブレーション部を備える
     光学式選別機。
    The optical sorter according to claim 1 or 2.
    An optical sorter including a calibration unit configured to be able to perform calibration based on the detection result of the marking-related light.
  4.  請求項1ないし請求項3のいずれか一項に記載の光学式選別機であって、
     前記光源は、
      被選別物の移送経路に対する第1の側に配置される第1の光源と、
      前記第1の側と反対の第2の側に配置される第2の光源と
     を備え、
     前記光学センサは、前記第1の側に配置される第1の光学センサと、前記第2の側に配置される第2の光学センサと、のうちの少なくとも一方を備え、
     前記中間部材は、光非透過性を有し、光が前記移送経路側から前記中間部材を透過して前記光学センサに到達することを実質的に防止する
     光学式選別機。
    The optical sorter according to any one of claims 1 to 3.
    The light source is
    A first light source located on the first side of the transfer path of the object to be sorted,
    It comprises a second light source located on the second side opposite to the first side.
    The optical sensor includes at least one of a first optical sensor arranged on the first side and a second optical sensor arranged on the second side.
    The intermediate member is an optical sorter that has light non-transparency and substantially prevents light from passing through the intermediate member from the transfer path side and reaching the optical sensor.
  5.  請求項1ないし請求項4のいずれか一項に記載の光学式選別機であって、
     前記マーキングは、
      第1の色を有するとともに一定の大きさを有する少なくとも一つの第1の単位領域と、前記第1の色とは異なる第2の色を有するとともに、前記一定の大きさを有する少なくとも一つの第2の単位領域と、を少なくとも含み、
      前記第1の単位領域と前記第2の単位領域とが、予め定められた出現パターンで、一次元的または二次元的に並ぶように構成された
     光学式選別機。
    The optical sorter according to any one of claims 1 to 4.
    The marking is
    At least one first unit region having a first color and a certain size, and at least one first having a second color different from the first color and having a certain size. Including at least 2 unit areas,
    An optical sorter in which the first unit area and the second unit area are arranged one-dimensionally or two-dimensionally with a predetermined appearance pattern.
  6.  光学式選別機であって、
     移送経路上を移送中の被選別物に光を照射するように構成された光源と、
     前記光源から照射され、前記被選別物に関連付けられた光を検出するように構成された第1の光学センサと、
     前記被選別物に関連付けられた光に関して前記光学センサによって取得される信号に基づいて、前記被選別物についての異物および/または不良品の判定を行うように構成された判定部と、
     前記光源から前記被選別物への前記光の照射方向における前記光源と前記移送経路との間の位置であって、前記被選別物に関連付けられた前記光の検出に影響しない位置に配置され、マーキングを有する中間部材と、
     前記光源から照射され、前記マーキングを介して得られるマーキング関連光を検出するように構成された第2の光学センサと
     を備える
     光学式選別機。
    It ’s an optical sorter,
    A light source configured to illuminate the object being transferred on the transfer path, and
    A first optical sensor radiated from the light source and configured to detect light associated with the object to be sorted.
    A determination unit configured to determine a foreign object and / or a defective product for the object to be sorted based on a signal acquired by the optical sensor with respect to the light associated with the object to be sorted.
    It is arranged at a position between the light source and the transfer path in the direction of irradiation of the light from the light source to the object to be sorted, and at a position that does not affect the detection of the light associated with the object to be sorted. Intermediate members with markings and
    An optical sorter comprising a second optical sensor configured to detect marking-related light emitted from the light source and obtained through the marking.
  7.  光学式選別機であって、
     移送経路上を移送中の被選別物に光を照射するように構成された光源と、
     前記光源から照射され、前記被選別物に関連付けられた光を検出するように構成された光学センサと、
     前記被選別物に関連付けられた光に関して前記光学センサによって取得される信号に基づいて、前記被選別物についての品質の判定を行うように構成された判定部と、
     前記光源から前記被選別物への前記光の照射方向における前記光源と前記移送経路との間の位置であって、前記被選別物に関連付けられた前記光の検出に影響しない位置に配置され、マーキングを有する中間部材と
     を備え、
     前記光学センサは、さらに、前記光源から照射され、前記マーキングを介して得られるマーキング関連光を検出するように構成され、
     前記マーキングは複数の領域を備え、
     前記複数の領域の各々は、前記マーキング関連光に基づいて前記判定部の判定性能を確保するための少なくとも一つ以上の機能を提供するように構成された
     光学式選別機。
    It ’s an optical sorter,
    A light source configured to illuminate the object being transferred on the transfer path, and
    An optical sensor configured to detect light emitted from the light source and associated with the object to be sorted.
    A determination unit configured to determine the quality of the object to be sorted based on the signal acquired by the optical sensor with respect to the light associated with the object to be sorted.
    It is arranged at a position between the light source and the transfer path in the direction of irradiation of the light from the light source to the object to be sorted, and at a position that does not affect the detection of the light associated with the object to be sorted. Equipped with an intermediate member with markings,
    The optical sensor is further configured to detect marking-related light emitted from the light source and obtained through the marking.
    The marking comprises multiple areas
    Each of the plurality of regions is an optical sorter configured to provide at least one or more functions for ensuring the determination performance of the determination unit based on the marking-related light.
  8.  請求項7に記載の光学式選別機であって、
     前記少なくとも一つの機能は、前記光源の光量検出機能、前記光学センサの位置ずれ検出機能、前記光学センサのフォーカスずれ検出機能、および、前記光学センサのホワイトバランス確認機能のうちの少なくとも一つを含む
     光学式選別機。
    The optical sorter according to claim 7.
    The at least one function includes at least one of a light amount detection function of the light source, a position shift detection function of the optical sensor, a focus shift detection function of the optical sensor, and a white balance confirmation function of the optical sensor. Optical sorter.
PCT/JP2021/037754 2020-10-15 2021-10-12 Optical sorting machine WO2022080373A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180069876.XA CN116368373A (en) 2020-10-15 2021-10-12 Optical sorting machine
JP2022502298A JP7188638B2 (en) 2020-10-15 2021-10-12 optical sorter
GB2304656.8A GB2614190A (en) 2020-10-15 2021-10-12 Optical sorting machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020173790 2020-10-15
JP2020-173790 2020-10-15

Publications (1)

Publication Number Publication Date
WO2022080373A1 true WO2022080373A1 (en) 2022-04-21

Family

ID=81208200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/037754 WO2022080373A1 (en) 2020-10-15 2021-10-12 Optical sorting machine

Country Status (4)

Country Link
JP (2) JP7188638B2 (en)
CN (1) CN116368373A (en)
GB (1) GB2614190A (en)
WO (1) WO2022080373A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7521570B2 (en) 2020-10-15 2024-07-24 株式会社サタケ Optical sorting machine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09203709A (en) * 1996-01-25 1997-08-05 Matsushita Electric Works Ltd Rice particle inspecting device
JPH09304182A (en) * 1996-05-20 1997-11-28 Satake Eng Co Ltd Grain color selector
JP2002168778A (en) * 2000-12-04 2002-06-14 Kubota Corp Internal quality evaluation device of agricultural product

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000210626A (en) 1999-01-21 2000-08-02 Kubota Corp Defective article detector, and adjusting jig and adjusting method therefor
JP7188638B2 (en) 2020-10-15 2022-12-13 株式会社サタケ optical sorter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09203709A (en) * 1996-01-25 1997-08-05 Matsushita Electric Works Ltd Rice particle inspecting device
JPH09304182A (en) * 1996-05-20 1997-11-28 Satake Eng Co Ltd Grain color selector
JP2002168778A (en) * 2000-12-04 2002-06-14 Kubota Corp Internal quality evaluation device of agricultural product

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7521570B2 (en) 2020-10-15 2024-07-24 株式会社サタケ Optical sorting machine

Also Published As

Publication number Publication date
JP7521570B2 (en) 2024-07-24
GB202304656D0 (en) 2023-05-10
JP2023017898A (en) 2023-02-07
GB2614190A (en) 2023-06-28
JP7188638B2 (en) 2022-12-13
CN116368373A (en) 2023-06-30
JPWO2022080373A1 (en) 2022-04-21

Similar Documents

Publication Publication Date Title
US8587844B2 (en) Image inspecting apparatus, image inspecting method, and image forming apparatus
WO2022045047A1 (en) Optical sorter
KR101249472B1 (en) Grain color sorting apparatus for using full color led
KR20170107952A (en) Optical appearance inspection device and optical appearance inspection system using same
WO2022080373A1 (en) Optical sorting machine
EP3828635A1 (en) Edge position detecting apparatusand image forming apparatus
JP4851856B2 (en) Granule sorter
WO2021117544A1 (en) Optical sorting machine
WO2021106964A1 (en) Optical sorting machine
JP2004108995A (en) Defective object detection device and isolation device using it
JP2008042329A (en) Image reader, and control method thereof
JP2020046972A (en) Paper sheet processing apparatus and paper sheet processing method
JP7074241B2 (en) Optical sorter
JP2001272353A (en) Powder and grain inspecting device
WO2024048452A1 (en) Measurement device and selection device
JP2021094553A (en) Optical sorting machine
JP2004105877A (en) Defective detection apparatus and separation apparatus using it
WO2023176751A1 (en) Measuring device and selection device
JP7434889B2 (en) optical sorter
US20220373472A1 (en) Optical sorter
JP7282021B2 (en) color sorter
WO2024111183A1 (en) Measuring device and sorting machine
JP4342332B2 (en) Object evaluation device
JP2021180428A (en) Image reading device, image forming apparatus, and method for inspecting image reading device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022502298

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21880111

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 202304656

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20211012

WWE Wipo information: entry into national phase

Ref document number: 202317031515

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21880111

Country of ref document: EP

Kind code of ref document: A1