[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022080343A1 - 核酸検出装置および核酸の検出方法 - Google Patents

核酸検出装置および核酸の検出方法 Download PDF

Info

Publication number
WO2022080343A1
WO2022080343A1 PCT/JP2021/037659 JP2021037659W WO2022080343A1 WO 2022080343 A1 WO2022080343 A1 WO 2022080343A1 JP 2021037659 W JP2021037659 W JP 2021037659W WO 2022080343 A1 WO2022080343 A1 WO 2022080343A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleic acid
fluorescence
detection device
effector protein
acid detection
Prior art date
Application number
PCT/JP2021/037659
Other languages
English (en)
French (fr)
Inventor
昌人 南
哲哉 矢野
陽治 山本
美絵 岡野
賢史 小河
拓志 一ノ尾
Original Assignee
キヤノン株式会社
キヤノンメディカルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノン株式会社, キヤノンメディカルシステムズ株式会社 filed Critical キヤノン株式会社
Priority to CN202180069220.8A priority Critical patent/CN116391023A/zh
Priority to JP2022556986A priority patent/JPWO2022080343A1/ja
Publication of WO2022080343A1 publication Critical patent/WO2022080343A1/ja
Priority to US18/295,976 priority patent/US20230295689A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6806Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/34Measuring or testing with condition measuring or sensing means, e.g. colony counters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6816Hybridisation assays characterised by the detection means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6452Individual samples arranged in a regular 2D-array, e.g. multiwell plates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6456Spatial resolved fluorescence measurements; Imaging
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6439Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" with indicators, stains, dyes, tags, labels, marks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6408Fluorescence; Phosphorescence with measurement of decay time, time resolved fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/12Circuits of general importance; Signal processing
    • G01N2201/124Sensitivity
    • G01N2201/1247Thresholding

Definitions

  • the present invention relates to a nucleic acid detection device and a nucleic acid detection method using a trans-cleaving reaction of the CHRISPR-Cas technique and an individual independent separation compartment.
  • Non-Patent Document 1 The complex consisting of Cas12a and crRNA specifically recognizes and binds to the sequence of the target DNA, and Cas12a cleaves the bound target DNA.
  • Cas12a cleaves the single-stranded DNA of the reporter molecule by a trans-cleaving reaction.
  • the fluorescent substance and the quencher are separated, and fluorescence is generated.
  • the trans-cleaving reaction of Cas12a is activated to generate fluorescence from the fluorescent substance derived from the reporter molecule, so that the target DNA can be detected based on the fluorescence. ..
  • Patent Document 1 Feng Zhang et al. Of Broad Institute disclosed a method for detecting a target RNA using a complex consisting of Cas13a and crRNA and a reporter molecule.
  • the complex consisting of Cas13a and crRNA specifically recognizes and binds to the sequence of the target RNA, and Cas13a cleaves the bound target RNA.
  • a reporter molecule in which the fluorescent substance and the quencher are linked by RNA is added to the reaction system, Cas13a cleaves the RNA at the linking portion, and fluorescence is generated. This makes it possible to detect the target RNA.
  • Patent Document 1 describes that a sample containing a target RNA may be distributed to individual independent separation compartments.
  • Non-Patent Document 1 and Patent Document 1 When attempting to detect a low-concentration target nucleic acid by the methods described in Non-Patent Document 1 and Patent Document 1, it was difficult to detect or it was necessary to detect the target nucleic acid after a step of amplifying the target nucleic acid. When the step of amplifying the target nucleic acid is included, there is a problem that the operation for amplification is complicated and time-consuming.
  • an object of the present invention is to provide a nucleic acid detection device and a nucleic acid detection method for easily detecting a low-concentration target nucleic acid.
  • the nucleic acid detection apparatus distributes a sample containing a target nucleic acid and a detection reagent containing an effector protein, a crRNA bound to the target nucleic acid, and a reporter molecule into a plurality of individual independent compartments.
  • a partitioning unit an activating unit that activates the effector protein by binding of the crRNA to the target nucleic acid; and a fluorescence generating unit that modifies the reporter molecule with the activated effector protein to generate fluorescence;
  • a nucleic acid detection unit that detects the nucleic acid; based on the detection result obtained by the fluorescence detection unit, the fluorescence intensity of the individual independent separation compartment is determined, and the individual independent separation compartment having a fluorescence intensity exceeding a predetermined threshold value. It is characterized by including a specific part for specifying;
  • a sample containing a target nucleic acid and a plurality of individual independent separations of a detection reagent containing an effector protein, a crRNA bound to the target nucleic acid, and a reporter molecule are separated.
  • a partitioning step that distributes to the compartment; an activation step that activates the effector protein by binding of the crRNA to the target nucleic acid; and a fluorescence generation that modifies the reporter molecule with the activated effector protein to generate fluorescence.
  • the step and the fluorescence detection step of detecting the nucleic acid based on the detection result obtained in the step of detecting the nucleic acid, the fluorescence intensity of the individual independent separation compartment is determined, and the fluorescence intensity exceeding a predetermined threshold value is determined. It is characterized by having a specific step of specifying an individual independent separation section having;
  • the program according to still another aspect of the present invention is a program for causing a computer included in the nucleic acid detection device to execute the nucleic acid detection method in the nucleic acid detection device.
  • nucleic acid detection device and a nucleic acid detection method for easily detecting a low-concentration target nucleic acid.
  • FIG. 1 is a functional block diagram of the nucleic acid detection device 10 according to the present invention.
  • the nucleic acid detection device 10 has a distribution unit 101, an activation unit 102, a fluorescence generation unit 103, a fluorescence detection unit 104, and a specific unit 105.
  • the distribution unit 101 distributes the sample containing the target nucleic acid and the detection reagent to a plurality of individual independent separation compartments.
  • the detection reagent contains an effector protein, a crRNA that binds to the target nucleic acid, and a reporter molecule.
  • the activation unit 102 activates the effector protein by binding the crRNA to the target nucleic acid.
  • the fluorescence generator 103 modifies the reporter molecule with the activated effector protein to generate fluorescence.
  • the fluorescence detection unit 104 detects fluorescence. Further, the specific unit 105 determines the fluorescence intensity of the individual independent separation section, and identifies the individual independent separation section having the fluorescence intensity exceeding a predetermined threshold value.
  • the detection reagent may individually contain an effector protein, crRNA, and a reporter molecule.
  • the sample containing the target nucleic acid may be premixed with the effector protein and crRNA before distribution to the individual independent separation compartment, and then the reporter molecule may be further mixed.
  • the specific unit 105 has an extraction unit 106, a determination unit 107, a determination unit 108, a calculation unit 109, a display unit 110, and a storage unit 111. The functions of these configurations of the specific unit 105 will be described later.
  • effector protein As the effector protein, for example, either Cas12 or Cas13 can be used.
  • Cas12 for example, LbCas12a, AsCas12a, FnCas12a, AaCas12b and the like can be used.
  • Cas13 for example, LwaCas13a, LbaCas13a, LbuCas13a, BzoCas13b, PinCas13b, PbuCas13b, AspCas13b, PsmCas13b, RanCas13b, PauCas13b, RanCas13b, PauCas13b, PsaCas13b, PsaCas13b, PsaCas13b, PsaCas13b, PsaCas13b, PsaCas13b, PsaCas13b, PsaCas13b, PsaCas13b, PsaCas13b, PsaCas13b, PsaCas13b, PsaCas13b, PsaCas13b, PsaCas13b, PsaCas13b, PsaCas13
  • the crRNA is an RNA designed to contain a base sequence having complementarity with the base sequence of the target nucleic acid.
  • the complex consisting of the effector protein and crRNA specifically binds to the target nucleic acid sequence due to the complementarity of crRNA.
  • the crRNA is designed based on the type of effector protein used and the target region in the base sequence of the target nucleic acid.
  • target nucleic acid examples include DNA and RNA.
  • the target nucleic acid may be a nucleic acid that can be applied to diagnosis of a disease state, constitution diagnosis, or the like.
  • diseases state examples include cancer, autoimmune diseases, and infectious diseases.
  • infectious disease examples include infectious diseases caused by DNA virus, RNA virus, and the like.
  • the target nucleic acid can be arbitrarily selected and is not limited to the above example.
  • reporter molecule examples include a molecule in which a fluorescent substance and a quencher are linked by a single-stranded DNA, a molecule in which a fluorescent substance and a quencher are linked by RNA, and the like.
  • the reporter molecule is preferably a molecule in which a fluorescent substance and a quencher are linked by a single-stranded DNA.
  • a molecule in which a fluorescent substance and a quencher are linked by a single-stranded DNA for example, DNase Allert (IDT) can be used.
  • IDTT DNase Allert
  • the reporter molecule is preferably a molecule in which a fluorescent substance and a quencher are linked by RNA.
  • the detection reagent preferably further contains an amino compound.
  • the detection reagent may have the amino compound separately from other components, or may have the amino compound in a state of being mixed with any of the components.
  • the amino compound is a compound containing an amino group, and in the present invention, any of a primary amine, a secondary amine, and a tertiary amine can be used as the amino compound.
  • amino compound examples include pentaethylenehexamine (following formula (a1)), spermin (following formula (a2)), spermine tetrachloride, triethylenetetramine (following formula (a3)), and spermidin (following formula (a2)).
  • Examples of the compound represented by the following formula (a19) include SUNBRIGHT (registered trademark) EA Series. Further, examples of the compound represented by the following formula (a20) include SUNBRIGHT (registered trademark) PA Series.
  • n is 30 or more and 1000 or less.
  • n is 30 or more and 1000 or less.
  • n is 30 or more and 120 or less.
  • the amino compound preferably has -NH 2 . Further, the amino compound has a plurality of -NH 2 or a plurality of -NH-, or has one or more of -NH 2 and -N (CH 3 ) -in each, or-in one molecule. It is more preferable to have one or more NH 2 and -NH- each. Further, it is more preferable that the amino compound has one or more -NH 2 and two or more -NH-, or has two or more -NH 2 and one or more -NH-.
  • the detection reagent preferably contains a reaction buffer.
  • the detection reagent may have a reaction buffer separate from the effector protein, crRNA, reporter molecule, and amino compound. Further, in the detection reagent, at least one selected from the group consisting of an effector protein, crRNA, a reporter molecule, and an amino compound may be dispersed in the reaction buffer.
  • reaction buffer examples include a Tris-based buffer that has been used in an enzymatic reaction using Cas12a or Cas13a, a HEPES-based buffer, and the like.
  • Binding buffer (20 mM Tis-HCl (pH 7.6), 100 mM KCl, 5 mM MgCl 2 , 1 mM DTT, 5% glycerol, 50 ⁇ g / mL heparin), NE Buffer (registered trademark) 2.1 (10 mM).
  • Tris-HCl 50 mM NaCl, 10 mM MgCl 2 , 100 ⁇ g / mL BSA, pH 7.9), FZ buffer (20 mM HEPES, 60 mM NaCl, 6 mM MgCl 2 , pH 6.8) and the like.
  • the effector protein is preferably bound to the particles.
  • the type of particles bound to the effector protein is not particularly limited as long as the effector protein can be bound.
  • the particles may be primary particles or secondary particles in which primary particles are aggregated.
  • the bond is formed by a reaction using the carboxy group originally possessed by the particle. .. That is, it is preferable that the binding portion between the effector protein and the particle has a structure derived from the carboxy group bonded to the particle.
  • the effector protein and the particles may be bound via an amide bond.
  • C O derived from the carboxy group contained in the particles and NH derived from the amino group contained in the protein form an amide bond.
  • the effector protein and the particles may be bound via a linker.
  • the linker refers to a structure that forms a bond between an effector protein and a particle.
  • the linker preferably contains a peptide consisting of 6 or more and 11 or less histidine residues in succession.
  • the linker may further have an antibody (for example, an anti-His tag antibody) that binds to the peptide by an antigen-antibody reaction. That is, for example, when an effector protein having the peptide is reacted with a particle having an antibody that binds to the peptide to bind the particle and the effector protein, the linker has the peptide and the antibody. become.
  • the particle and the antibody can be bound, for example, via an amide bond formed by reacting a carboxy group originally possessed by the particle with an amino group possessed by the antibody.
  • a commercially available product for example, EnGen LbaCas12a (Cpf1) (trade name: M0653T, manufactured by NEB, 100 ⁇ M) or the like can be used.
  • the linker may further have a metal complex that binds to the peptide. That is, the effector protein having the peptide and the particles having a metal complex may be reacted to bind the effector protein and the particles.
  • the metal complex that binds to the peptide include a complex of nitrilotriacetic acid or iminodiacetic acid and a divalent nickel ion. It is particularly preferable that the peptide is a peptide in which 6 histidine residues are consecutive (hereinafter, may be referred to as a His tag).
  • the binding part between the effector protein and the effector protein side linker was artificially inserted into the ⁇ -amino group of the lysine residue of the effector protein, the ⁇ -amino group of the N-terminal of the effector protein, and the N-terminal of the effector protein.
  • Examples include various tag peptide sequences and tag proteins.
  • Examples of the tag peptide include His tag, HA tag, DDDDK tag (FLAG (registered trademark)) and the like.
  • examples of the tag protein include Halo-tag (registered trademark) and the like.
  • the bonding portion between the particle and the linker various ones may be mentioned depending on the type of the linker.
  • the structure used for binding to the linker on the particle side includes a carboxy group and an aldehyde group.
  • a condensation reaction using N-hydroxysuccinimide (NHS) / water-soluble carbodiimide (WSC) can be used.
  • an anti-His tag antibody can be used as a linker.
  • a carboxy group of the particle is used as the particle-side linker, and the anti-His tag antibody is bound to the particle surface by a condensation reaction between the amino group of the anti-His tag antibody and NHS / WSC.
  • the effector protein can be bound to the particles by using the antigen-antibody reaction between the His tag at the N-terminal of the effector protein and the anti-His tag antibody.
  • a metal chelate ligand such as iminodiacetic acid or nitrilotriacetic acid is bound to the particles as a linker to form a coordinate bond via metal ions such as nickel ion and cobalt ion. This allows the effector protein to be immobilized on the particles.
  • linkers include various tag peptide sequences, tag proteins and their affinity sites, complexes of avidin and biotin, and PEG having various functional groups at the ends. Further, the effector protein can be bound to the particle surface by physical adsorption or the like.
  • the position of the effector protein that binds to the particles is preferably a position that does not inhibit the activity of the effector protein.
  • the effector protein is known to have an active site on the carboxy-terminal (C-terminal) side, and a position away from the C-terminal side is preferable.
  • the N-terminal is particularly preferable because it is separated from the C-terminal side and various tag peptides and tag proteins can be inserted.
  • the effector protein and the particles may be bound to form a composite particle. Further, after binding the effector protein and the particle, crRNA may be bound to the effector protein to form a composite particle.
  • the particle material examples include polymer resin (styrene resin, acrylic resin, etc.) particles, silica particles, resin particles, agarose carrier resin particles, metal particles, latex particles, and the like.
  • polymer resin styrene resin, acrylic resin, etc.
  • silica particles silica particles
  • resin particles silica particles
  • agarose carrier resin particles metal particles, latex particles, and the like.
  • commercially available usable particles include Magnosphere® MS300, Magnosphere® MS160, PureProteome® Nickel Magnetic Beads and the like.
  • the material of the particles it is preferable to use particles containing a paramagnetic substance such as iron, nickel, and magnetite, a ferromagnetic substance, a supermagnetic substance, and the like, but other particles may be used.
  • magnetic particles it becomes easy to control the position of the effector protein by applying a magnetic field.
  • the particle size of the particles is preferably 10 nm or more, and more preferably 1 ⁇ m or more and 10 ⁇ m or less.
  • the distribution unit of the nucleic acid detection device may have a recovery unit, and the recovery unit may contain composite particles formed by binding an effector protein bound to particles and crRNA. Use to recover the target nucleic acid.
  • the target nucleic acid can be substantially concentrate by recovering the target nucleic acid from the sample in the recovery unit and then dispersing the target nucleic acid in a medium having a smaller volume than that of the original sample. For example, by having a recovery unit, even if the target nucleic acid is discarded without being filled in the individual independent separation compartment, the target nucleic acid can be recovered by allowing the composite particles to act. After recovery, the target nucleic acid can be detected by filling the individual independent separation compartment with the composite particles that have captured the target nucleic acid. Further, for example, a trace amount of target nucleic acid dissolved in a sample such as blood or an aqueous solution can be captured by the composite particles and recovered.
  • the target nucleic acid when the sample containing the target nucleic acid is a large volume solution, the target nucleic acid is captured by the composite particles and the composite particles holding the target nucleic acid are individually independent before being encapsulated in a minute individual independent separation compartment. It can be enclosed in a separation compartment. As a result, the loss of the target nucleic acid can be suppressed and the nucleic acid can be distributed to the individual independent separation compartments, and the target nucleic acid can be detected with high sensitivity. Further, if magnetic particles are used as the particles, the target nucleic acid can be easily recovered by using magnetism.
  • the test reagent may further contain a blocking agent. That is, when the particle and the effector protein are bound, the portion of the linker binding portion of the particle to which the effector protein is not bound can be filled with the blocking agent.
  • a blocking agent For example, when an amino group of an effector protein or an anti-His tag antibody and a carboxy group of a particle are subjected to a condensation reaction using NHS / WSC, the particle may have an unreacted carboxy group after the reaction. Therefore, the carboxy group that does not bind to the effector protein can be reacted with ethanolamine as a blocking agent, PEG having an amino group, or the like.
  • the nucleic acid detection apparatus performs a trans-cleaving reaction of the CHRISPR-Cas technique in an individual independent separation compartment.
  • the sample is apparently concentrated, the target nucleic acid is detected without going through the amplification step, and the time for which the fluorescent signal is saturated is set. It can be shortened.
  • the target nucleic acid contained in one compartment can be set to be one molecule or less, and the number of compartments from which a fluorescent signal was obtained. By counting, it becomes possible to calculate the concentration of the target nucleic acid in the sample.
  • Droplets and wells can be used as individual independent separation compartments.
  • the droplets it is preferable to use a water-in-oil emulsion (W / O emulsion).
  • W / O emulsion water-in-oil emulsion
  • the well for example, a well having a well plate having the configurations shown in FIGS. 2A and 2B can be used.
  • FIG. 2A is a cross-sectional view of the well plate 200
  • FIG. 2B is a cross-sectional view of the well plate 200 in which the well 204 is filled with the composite particles 206 in which the complex of the effector protein and crRNA is bound to the particles.
  • the well plate 200 includes a lower substrate 201, an upper substrate 202, an injection port portion (not shown), and a discharge port portion (not shown), and the lower substrate 201 is formed with a hydrophobic partition wall 203.
  • a plurality of wells 204 are separated from each other by a partition wall 203.
  • the lower substrate 201 preferably has a hydrophilic surface, and as the material of the lower substrate 201, for example, glass, silicon, a polymer resin, or the like can be used. Further, it is preferable that the surface of the upper substrate 202 (the surface facing the lower substrate 201) is hydrophobic.
  • As the material of the partition wall 203 for example, a hydrophobic resin, a water-repellent resin, a fluoropolymer resin and the like can be used. Since the bottom surface of the well 204 is hydrophilic and the top surface of the partition wall 203 is hydrophobic, the solution can be efficiently filled in the well 204, and the excess solution is hydrophobic in the step of removing with a hydrophobic solvent. It is possible to prevent the sex solvent from entering the well 204.
  • Well 204 is a recess for accommodating a solution, and is separated from each other by a partition wall 203.
  • the well 204 has a lower substrate 201 as a bottom surface, and the shape of the region surrounded by the bottom surface and the side surface of the well 204 may be, for example, a cylindrical shape, a prismatic shape, or the like.
  • the depth of the well 204 is the same as the height of the partition wall 203.
  • the diameter of the well 204 is preferably 1 ⁇ m or more and 11 ⁇ m or less, and the depth of the well 204 is preferably 0.1 ⁇ m or more and 10 ⁇ m or less. Further, it is more preferable that the diameter of the well 204 is 1 ⁇ m or more and 7 ⁇ m or less, and the depth of the well 204 is 1 ⁇ m or more and 8 ⁇ m or less.
  • the upper substrate 202 faces the opening of the well 204 and the upper surface of the partition wall 203 across a space 205.
  • This space 205 is a flow path through which various liquids flow, and various liquids can flow from the injection port portion to the discharge port portion. That is, after the well 204 is filled with the solution, the space 205 is filled with the hydrophobic solvent.
  • the composite particle 206 in which the complex of the effector protein and crRNA is bound to the particle is used, the composite particle 206 is filled in the well 204 and the space 205 is filled with the hydrophobic solvent.
  • the hydrophobic solvent for example, fluorine oil, an aliphatic hydrocarbon or the like can be used.
  • the volume of the individual independent separation section is preferably 0.1 fL or more and 1000 fL or less, and more preferably 0.5 fL or more and 400 fL or less.
  • volume of the individual independent separation section is 0.1 fL or more, droplets or wells having the volume can be formed without difficulty. Further, if the volume of the individual independent separation section is 1000 fL or less, the detection time can be sufficiently shortened.
  • the distributor 101 has, for example, an emulsified membrane or a microchannel.
  • droplets can be prepared by using, for example, a direct membrane emulsification method or a pumping method such as SPG (Shirasu porous glass) film manufactured by SPG Techno.
  • SPG Siliconemulsification method
  • the distribution unit 101 having an emulsified film is used, for example, in a combination of Isopar L (aliphatic hydrocarbon, manufactured by ExxonMobil) and KF-6038 (surfactant, manufactured by Shin-Etsu Chemical Co., Ltd.), 0.6 to 12 ⁇ m. Droplets of diameter can be prepared.
  • a microchannel manufactured by Dolomite can be used as the microchannel.
  • droplets having a diameter of 2 to 10 ⁇ m can be prepared in the following two combinations. ⁇ Combination of Isopar L (aliphatic hydrocarbon, manufactured by ExxonMobil) and KF-6038 (surfactant, manufactured by Shin-Etsu Chemical Co., Ltd.) ⁇ Mineral oil (aliphatic hydrocarbon) and SPAN-80 (surfactant, Tokyo) Combination with (manufactured by Kaseisha)
  • the distribution unit 101 has an injection unit, and the solution is injected into the well from the injection port portion of the well plate using, for example, an injection portion via a nozzle.
  • the sample containing the target nucleic acid and the detection reagent may be mixed in advance before being distributed to the individual independent separation compartment and distributed as a reaction solution, or they may be individually distributed and individually independent. It may be mixed in the separation compartment. Since a uniformly mixed reaction solution can be easily obtained, it is preferable to mix the sample containing the target nucleic acid and the detection reagent in advance before distributing them to the individual independent separation compartments.
  • the activation unit 102 binds the crRNA to the target nucleic acid by appropriately adjusting the environment such as temperature according to the sample, the sequence of the crRNA, the type of the effector protein, and the like, thereby activating the effector protein. ..
  • an incubator can be used as the activating unit 102.
  • the fluorescence generation unit 103 modifies the reporter molecule with the effector protein to generate fluorescence by appropriately adjusting the environment such as temperature according to the sample, the type of effector protein, the type of reporter molecule, and the like.
  • an incubator can be used as the fluorescence generation unit 103.
  • the activation unit 102 and the fluorescence generation unit 103 may be the same component in the nucleic acid detection device.
  • the fluorescence detection unit 104 detects the fluorescence generated by the fluorescence generation unit 103.
  • any device can be used as long as it can detect fluorescence in the individual independent separation compartment, and examples thereof include a plate reader and a fluorescence microscope.
  • the extraction unit 106 extracts information on the number and relative positional relationship of the plurality of individual independent separation sections in the detection result obtained by the fluorescence detection unit 104.
  • the determination unit 107 determines the fluorescence intensity in each individual independent separation section specified by the extraction unit 106 based on the detection result obtained by the fluorescence detection unit 104.
  • the determination unit 108 determines an individual independent separation section having a fluorescence intensity exceeding a predetermined threshold value based on the fluorescence intensity determined by the determination unit 107. Thereby, an individual independent separation section having a fluorescence intensity exceeding a predetermined threshold value is specified.
  • the identification unit 105 is configured to specify an individual independent separation section having a fluorescence intensity exceeding a predetermined threshold value based on the ratio of the fluorescence intensity in the reference section to the fluorescence intensity in the individual independent separation section. Is preferable. Further, the fluorescence intensity in the reference section is preferably the fluorescence intensity obtained by using the sample containing no target nucleic acid and the detection reagent. The fluorescence intensity of the reference compartment can be determined in the same manner as the individual independent separation compartment, except that the reference compartment does not contain the target nucleic acid.
  • the ratio of the fluorescence intensity in the reference compartment to the fluorescence intensity in the individual independent separation compartment is calculated, for example, with the fluorescence intensity in the reference compartment as the denominator and the fluorescence intensity in the individual independent separation compartment as the numerator.
  • the determination unit 108 considers that the fluorescence intensity of the individual independent separation section is equivalent to that of the reference section, and determines that it is negative. judge. Further, when the ratio of the fluorescence intensity in the reference section to the fluorescence intensity of the individual independent separation section is equal to or higher than a predetermined threshold value, the determination unit 108 determines that the individual independent separation section is positive.
  • the calculation unit 109 calculates the concentration of the target nucleic acid in the sample based on the specified number of individual independent separation compartments having a fluorescence intensity exceeding a predetermined threshold.
  • the specific unit 105 may not include the calculation unit 109.
  • the display unit 110 displays the information acquired or extracted by the extraction unit 106, the determination unit 107, the determination unit 108, and the calculation unit 109.
  • the storage unit 111 stores data acquired or extracted by the extraction unit 106, the determination unit 107, the determination unit 108, and the calculation unit 109.
  • the fluorescence detection unit 104 may be an image acquisition unit.
  • FIG. 3 is a functional block diagram showing a nucleic acid detection device 20 having an image acquisition unit 112 as a fluorescence detection unit 104 in the same configuration as the nucleic acid detection device 10.
  • the image acquisition unit 112 acquires an image including individual independent separation compartments and composite particles in which a complex of an effector protein and crRNA is bound to particles.
  • the image acquired by the image acquisition unit 112 is an image including the fluorescence generated by the fluorescence generation unit 103 as image information.
  • a fluorescence microscope can be used as the image acquisition unit 112 for example.
  • the extraction unit 106 possessed by the specific unit 105 can extract information on the number and relative positional relationship of a plurality of individual independent separation sections based on the image acquired by the image acquisition unit 112. preferable. That is, in the nucleic acid detection device 20, it is preferable that the identification unit 105 specifies an individual independent separation section having a fluorescence intensity exceeding a predetermined threshold value by processing the image acquired by the image acquisition unit 112.
  • the extraction unit 106 extracts information about the individual independent separation section by using a region extraction method using luminance information.
  • the region corresponding to the droplet on the image has a contour, and therefore the extraction unit 106 may perform a process of extracting the edge of the contour as a closed curve.
  • the extraction unit 106 may extract a region corresponding to the droplet on the image by binarizing the image based on the luminance information.
  • the determination unit 107 determines the fluorescence intensity of each individual independent separation section based on the luminance information of each individual independent separation section on the image.
  • FIG. 4 is a block diagram showing a hardware configuration example of the nucleic acid detection device 10 according to the present invention.
  • the nucleic acid detection device 10 includes a distribution device 401, an activation device 402, a fluorescence generation device 403, a fluorescence detection device 404, and an information processing system 405.
  • the information processing system 405 may be, for example, an individual independent separation partition specifying device.
  • the distribution device 401, the activation device 402, the fluorescence generation device 403, and the fluorescence detection device 404 are devices for executing the functions of the distribution unit 101, the activation unit 102, the fluorescence generation unit 103, and the fluorescence detection unit 104, respectively. be.
  • the information processing system 405 has a computer function.
  • the information processing system 405 may be integrally configured with a desktop PC (Personal Computer), a laptop PC, a tablet PC, a smartphone, and the like.
  • the information processing system 405 has a function of specifying an individual independent separation partition having a fluorescence intensity exceeding a predetermined threshold value. Further, the information processing system 405 may further have a function of controlling the operation of the distribution device 401, the activation device 402, the fluorescence generation device 403, and the fluorescence detection device 404 according to a predetermined program.
  • the information processing system 405 has a CPU (Central Processing Unit) 406, a RAM (Random Access Memory) 407, a ROM (Read Only Memory) 408, and an HDD (Hard Disk Drive) in order to realize a function as a computer that performs calculations and storage. 409 is provided. Further, the information processing system 405 includes a communication I / F (interface) 410, a display device 411, and an input device 412.
  • the CPU 406, RAM 407, ROM 408, HDD 409, communication I / F 410, display device 411, and input device 412 are connected to each other via the bus 413.
  • the display device 411 and the input device 412 may be connected to the bus 413 via a drive device (not shown) for driving these devices.
  • each part constituting the information processing system 405 is illustrated as an integrated device, but some of these functions may be configured by an external device.
  • the display device 411 and the input device 412 may be external devices different from the parts constituting the functions of the computer including the CPU 406 and the like.
  • the CPU 406 performs a predetermined operation according to a program stored in the RAM 407, the HDD 409, etc., and also has a function of controlling each part of the information processing system 405.
  • the RAM 407 is composed of a volatile storage medium and provides a temporary memory area necessary for the operation of the CPU 406.
  • the ROM 408 is composed of a non-volatile storage medium and stores necessary information such as a program used for the operation of the information processing system 405.
  • the HDD 409 is a storage device composed of a non-volatile storage medium and storing information regarding the number and positions of individual independent separation sections, fluorescence intensity, and the like.
  • Communication I / F410 is a communication interface based on standards such as Wi-Fi (registered trademark) and 4G, and is a module for communicating with other devices.
  • the display device 411 is a liquid crystal display, an OLED (Organic Light Emitting Diode) display, or the like, and is used for displaying moving images, still images, characters, and the like.
  • the input device 412 is a button, a touch panel, a keyboard, a pointing device, or the like, and is used by a user to operate the information processing system 405.
  • the display device 411 and the input device 412 may be integrally formed as a touch panel.
  • the hardware configuration shown in FIG. 4 is an example, and devices other than these may be added, and some devices may not be provided. Further, some devices may be replaced with other devices having similar functions. Further, some functions may be provided by other devices via a network, or the functions constituting the present embodiment may be distributed and realized by a plurality of devices.
  • the HDD 409 may be replaced with an SSD (Solid State Drive) using a semiconductor element such as a flash memory, or may be replaced with a cloud storage.
  • the CPU 406 realizes the functions of the extraction unit 106, the determination unit 107, the determination unit 108, and the calculation unit 109 by loading the program stored in the ROM 408 or the like into the RAM 407 and executing the program. Further, the CPU 406 realizes the function of the display unit 110 by controlling the display device 411. Further, the CPU 406 realizes the function of the storage unit 111 by controlling the HDD 409.
  • the image acquisition device for executing the function of the image acquisition unit 112 is a fluorescence detection device 404.
  • the hardware configuration of the nucleic acid detection device 20 can be the same as that of the nucleic acid detection device 10.
  • FIG. 5 is a flowchart showing the flow of the nucleic acid detection method according to the present invention.
  • the nucleic acid detection method includes a distribution step S101 that distributes a sample containing a target nucleic acid and a detection reagent containing an effector protein, a crRNA that binds to the target nucleic acid, and a reporter molecule into a plurality of individual independent separation compartments.
  • An activation step S102 that activates the effector protein by binding of the crRNA to the target nucleic acid; and a fluorescence generation step S103 that modifies the reporter molecule with the activated effector protein to generate fluorescence;
  • the partitioning step comprises a recovery step of recovering the target nucleic acid using the composite particle formed by binding the effector protein bound to the particle and crRNA. Can be done.
  • nucleic acid detection method according to the present invention will be shown with respect to the case where the individual independent separation compartment is a droplet and the case where the individual independent separation compartment is a well.
  • FIG. 6 is a flowchart showing the flow of the nucleic acid detection method according to the present invention when the individual independent separation section is a droplet.
  • Step S201 Prepare a droplet containing the sample and detection reagent.
  • a water-in-oil emulsion is preferable.
  • Step S202 Droplets containing the sample and detection reagent are placed in a tube and incubated in an incubator at 37 ° C.
  • the reaction temperature can be set arbitrarily and is not limited to 37 ° C. By this incubation, the trans-cleaving reaction of CHRISPR-Cas proceeds, and fluorescence is generated from the fluorescent substance contained in the reporter molecule.
  • Step S203 Incubation is completed at a preset reaction time and the observation chamber is filled with droplets.
  • a plate for sediment is preferable.
  • Step S204 Using a fluorescence microscope, a fluorescence image of each droplet filled in the observation chamber is acquired. A fluorescence image of a droplet is acquired using an image pickup device such as a CCD camera attached to a fluorescence microscope. Fluorescence is detected by acquiring a fluorescence image of the droplet.
  • an image pickup device such as a CCD camera attached to a fluorescence microscope. Fluorescence is detected by acquiring a fluorescence image of the droplet.
  • Step S205 Based on the fluorescence detection result, the fluorescence intensity of the droplet is determined, and the droplet having the fluorescence intensity exceeding a predetermined threshold value is specified.
  • a droplet having a fluorescence intensity exceeding a predetermined threshold can be specified based on the ratio of the fluorescence intensity of the reference droplet to the fluorescence intensity of the droplet containing the sample and the detection reagent.
  • the fluorescence intensity in the reference droplet means the fluorescence intensity obtained for the droplet containing the detection reagent without containing the target nucleic acid.
  • the fluorescence intensity of the droplet is determined by performing predetermined image processing on the fluorescence image of the droplet captured by the image pickup device. For example, by using ImageJ (manufactured by the National Institutes of Health) or the like as image processing software, the fluorescence intensity of the droplet can be determined.
  • ImageJ manufactured by the National Institutes of Health
  • FIG. 8A is a schematic diagram showing a fluorescence image (grayscale image) of the reference droplet
  • FIG. 8B shows an image in which the fluorescence image shown in FIG. 8A is binarized by a predetermined image process to determine the fluorescence intensity.
  • FIG. 8C is a schematic diagram showing a fluorescence image (grayscale image) of a droplet containing a sample and a detection reagent
  • FIG. 8D is a binarization of the fluorescence image shown in FIG. 8C by a predetermined image processing.
  • It is a schematic diagram which shows the image which determined the fluorescence intensity.
  • the predetermined image processing has a function of binarizing a fluorescent image based on luminance information.
  • the negative droplet 801 is a droplet that does not contain the target nucleic acid and does not generate fluorescence derived from the fluorescent substance possessed by the reporter molecule.
  • the positive droplet 802 is a droplet containing a target nucleic acid and is a droplet that produces fluorescence derived from a fluorescent substance possessed by the reporter molecule.
  • Step S206 After the trans-cleaving reaction in the incubation in step S202, the concentration of the target nucleic acid is calculated from the number of fluorescent droplets. If the sample contains a large number of target nucleic acids, one droplet may contain more than one molecule of target nucleic acid. Therefore, the number of molecules of the target nucleic acid and the number of fluorescent droplets may not match.
  • the concentration of the target nucleic acid by calculation considering the Poisson distribution.
  • the ratio P (k) of the droplets that generate fluorescence can be expressed by the following equation (1).
  • P (k) can be obtained from the number of fluorescent droplets, and ⁇ can be calculated. Therefore, by using the formula (1), the concentration of the target nucleic acid can be calculated from the number of droplets in which fluorescence is detected among all the droplets.
  • FIG. 7 is a flowchart showing the flow of the nucleic acid detection method according to the present invention when the individual independent separation compartment is a well.
  • Step S301 As the well plate, the well plate 200 shown in FIGS. 2A and 2B is used.
  • the well plate 200 has an injection port portion (not shown) and an discharge port portion (not shown) open, and a reaction solution composed of a sample and a detection reagent is sent from the injection port portion to the space 205.
  • Step S302 The reaction solution is filled in the well 204.
  • the method for filling the reaction solution include a method in which the well plate 200 is left under reduced pressure to degas the space 205. Specifically, it is preferable to leave the well plate 200 in a decompression desiccator at 0.1 atm for a predetermined time. By degassing, the air in the well 204 is removed, and the reaction solution can be efficiently filled in the well 204.
  • the degassing time is not particularly limited and can be set arbitrarily.
  • the filling method of the reaction solution is not limited to the degassing method.
  • Step S303 A hydrophobic solvent is sent to the space 205 for sealing. That is, the reaction solution existing in the space 205 above the well 204 is replaced with a hydrophobic solvent.
  • a hydrophobic solvent for example, fluorine-based oil, saturated aliphatic hydrocarbon, unsaturated aliphatic hydrocarbon, aromatic hydrocarbon, silicone oil and the like can be used.
  • fluorine-based oil include Fluorinert (manufactured by 3M), Asahiclean AE-3000 (manufactured by AGC), Fomblin (manufactured by Solvay) and the like.
  • the saturated hydrocarbon include isopar (manufactured by ExxonMobil) and mineral oil.
  • Step S304 Incubate the well plate 200 filled with the reaction solution in an incubator at 37 ° C.
  • the reaction temperature can be set arbitrarily and is not limited to 37 ° C.
  • the fluorescence intensity of the well 204 is determined to identify the well 204 having a fluorescence intensity above a predetermined threshold.
  • Well 204 having a fluorescence intensity above a predetermined threshold can be identified based on the ratio of the fluorescence intensity in the reference well to the fluorescence intensity in the well 204 containing the sample and the detection reagent.
  • the fluorescence intensity in the reference well means the fluorescence intensity obtained for the well 204 which does not contain the target nucleic acid and contains the detection reagent.
  • Predetermined image processing is used to determine the fluorescence intensity of each well 204.
  • Image J as described above can be used as the image processing software, and the fluorescence intensity of each well 204 can be determined by the same operation as when the individual independent separation section is a droplet.
  • Step S307 The concentration of the target nucleic acid can be calculated by the same operation as when the individual independent separation compartment is a droplet.
  • the nucleic acid detection method in the present embodiment may include other steps other than the steps listed above.
  • steps include a step of acquiring a reference fluorescence image (hereinafter, abbreviated as reference fluorescence image).
  • reference fluorescence image a reference fluorescence image
  • the fluorescence image obtained in S204 or S305 contains fluorescence derived from a substance other than the fluorescent substance for detecting nucleic acid
  • the concentration of nucleic acid may not be calculated correctly.
  • fluorescence derived from a fluorescent substance other than the fluorescent substance for detecting nucleic acid for example, fluorescence emitted by a well or the like can be considered.
  • the timing for acquiring the reference fluorescence image in the step of acquiring the reference fluorescence image may be before the reporter molecule is cleaved by the presence of nucleic acid and fluorescence is emitted.
  • the sample or detection reagent is filled into the wells or droplets, before the filling of the sealing oil that seals the individual independent compartments such as the wells or droplets, or before the incubation of S202 or S304 (heating is performed).
  • the reference fluorescence image can be obtained before the test.
  • the timing for acquiring the reference fluorescence image is after the detection reagent is filled in the well or the droplet and before the incubation is performed (before the heating is performed), the well or the droplet is filled with the detection reagent.
  • the reference fluorescence image may be acquired after a predetermined time from the time when the operation is started. If the timing for acquiring the reference fluorescence image is before the incubation (before the heating is performed), even if the heating means that has received the drive signal acquires the reference fluorescence image before the heating operation is started. good. Further, the timing of acquiring the reference fluorescence image may be determined by using a means for monitoring the filling state of the sample or the detection reagent in the well or the droplet.
  • the reference fluorescence image can be used as a reference for calculating the fluorescence intensity based on the presence of nucleic acid in each well or each droplet in the fluorescence image obtained in the steps of S204 and S305. That is, if it is calculated from the fluorescence intensity of the reference fluorescent image acquired in advance to what extent the fluorescence intensity has increased, it is derived from a component other than the fluorescent substance for detecting nucleic acid in the well or droplet. The intensity of fluorescence can be excluded. This makes it possible to more accurately obtain the fluorescence intensity derived from the fluorescent substance for detecting nucleic acid.
  • this predetermined threshold value may be determined prior to determining the number of the wells or the number of droplets.
  • this predetermined threshold value may be a value fixed to the nucleic acid detection device or a value set by user input. It can be said that the determination that the value is equal to or higher than the predetermined threshold value is determined to be positive, and the determination that the value is lower than the predetermined threshold value is determined to be negative.
  • a reference fluorescence image may be acquired in order to detect a state in which the sample to be filled or the detection reagent is not filled due to, for example, a well, a droplet, or a defect in the filling operation thereof.
  • a substance that emits light having a wavelength different from that of the fluorescent substance used for detecting nucleic acid hereinafter referred to as a reference substance
  • a fluorescent image is acquired, and a fluorescence distribution is acquired. You may.
  • the difference between the center wavelength of the emission wavelength (fluorescence wavelength) of the reference substance and the center wavelength of the emission wavelength (fluorescence wavelength) of the fluorescent substance used for detecting the nucleic acid is preferably 30 nm or more, preferably 50 nm or more. It is more preferable that the wavelength is 100 nm or more, and it is further preferable that the wavelength is 100 nm or more. If fluorescence is not detected as a result of acquiring the reference fluorescence image, the process may be restarted from the first step, an error may be displayed, or the fluorescence may be restarted according to the number of wells or droplets in which fluorescence is not detected. It may be decided whether to continue the measurement or to continue the measurement.
  • this predetermined threshold value may be determined prior to determining the number of the wells or the number of droplets.
  • this predetermined threshold value may be a value fixed to the nucleic acid detection device or a value set by user input.
  • the user may be able to appropriately select the operation when fluorescence is not detected as a result of acquiring the reference fluorescence image. ..
  • the mode having the above-mentioned step of acquiring the reference fluorescence image and the mode not having the step of acquiring the reference fluorescence image can be switched. good.
  • the step of acquiring the reference fluorescence image has been described in the nucleic acid detection method according to the present embodiment, but it can also be applied to the nucleic acid detection apparatus according to the present embodiment.
  • the reference fluorescence image may be acquired by using the fluorescence detection unit or the image acquisition unit in the nucleic acid detection device according to the present embodiment, or the reference fluorescence image may be acquired by other means (for example, the reference fluorescence image acquisition unit). You may get it.
  • the program according to the present invention is a program for causing a computer included in the nucleic acid detection device to execute the nucleic acid detection method described above in order to cause the nucleic acid detection device to execute the method.
  • Example 1 (Preparation of reagents) -Preparation of Cas12a stock solution (400 nM) EnGen LbaCas12a (Cpf1) (trade name: M0653T, manufactured by NEB, 100 ⁇ M) (hereinafter, simply referred to as Cas12a) was used as Cas12a.
  • Cas12a was diluted with nucleicase free water (trade name: B1500S, manufactured by NEB) (hereinafter, simply referred to as purified water) to prepare a Cas12a stock solution (400 nM).
  • crRNA undiluted solution of crRNA (500 nM) Lb.
  • Cas12a-crRNA1 custom product, manufactured by SIGMA, 100 ⁇ M
  • the crRNA was diluted with purified water to prepare a crRNA stock solution (500 nM).
  • the base sequence of crRNA is shown below (SEQ ID NO: 1). uaauuucuacuaaguguagaugucuggccuuaauccaugcc
  • DNA_113bp -Preparation of DNA solution Synthetic DNA (hereinafter referred to as DNA_113bp) was used as the target nucleic acid.
  • DNA_113bp was diluted with purified water to prepare a DNA stock solution (4 nM), and the concentration was measured and confirmed with a Qubit 2.0 Fluorometer (manufactured by Life Technologies).
  • the DNA stock solution (4 nM) was diluted with purified water to prepare a DNA solution (0.684 nM) (final concentration 0.171 nM). Further, the DNA solution (0.684 nM) was serially diluted 1/3 with purified water to prepare DNA solution 1 (0.228 nM), DNA solution 2 (0.076 nM), and DNA solution 3 (0.025 nM). ..
  • DNA_113bp The base sequence of DNA_113bp is shown below (SEQ ID NO: 2). ctcacgccttatgactgcccttatgtcaccgcttatgtctcccgatatcacacccgttatctcagccctaatctctgcggtttagtctggccttaatccatgcctcatagcta
  • reporter molecule solution (12 ⁇ M)
  • the reporter molecule contained in a commercially available kit (trade name: DNaseAlert (registered trademark) Substrate Nuclease Detection System 11-02-01-04, manufactured by IDT) was used.
  • This reporter molecule has a fluorescent substance, HEX, and a quencher.
  • HiLyte (registered trademark) Fluor488 (AnaSpec) used as a standard fluorescent substance for confirming droplets described later was dissolved in purified water to prepare a standard fluorescent substance solution (800 nM).
  • the reporter molecule is contained in 50 pmol for each reporter molecule-containing tube included in the above kit.
  • 12 reporter molecules were dissolved in 50 ⁇ L of a standard fluorescent substance solution (800 nM). This prepared a reporter molecular solution (12 ⁇ M).
  • Samples 1 to 4 for forming droplets as individual independent compartments were prepared. Specifically, first, Cas12a stock solution (400 nM): 20 ⁇ L, crRNA stock solution (500 nM): 20 ⁇ L, and 1 to 3: 40 ⁇ L of the DNA solutions of each concentration prepared above were mixed. Here, in the preparation of sample 1, purified water was used instead of the DNA solution. The resulting mixed solution was reacted at 37 ° C. for 30 minutes to induce the formation of Cas12a-crRNA-DNA complex.
  • the concentrations of the components other than DNA contained in the droplet-forming samples 1 to 4 are Cas12a: 50 nM, crRNA: 62.5 nM, reporter molecule: 3 ⁇ M, and HiLyte 488: 200 nM, respectively.
  • Dispersed phase Samples 1 to 480 ⁇ L for each droplet formation
  • Continuous phase 2.5 mL of aliphatic hydrocarbon (trade name: IsoparL, manufactured by ExxonMobil) in which a surfactant (trade name: KF-6038, manufactured by Shin-Etsu Chemical Co., Ltd.) is dissolved at a concentration of 4%.
  • aliphatic hydrocarbon trade name: IsoparL, manufactured by ExxonMobil
  • a surfactant trade name: KF-6038, manufactured by Shin-Etsu Chemical Co., Ltd.
  • an SPG pumping connector (hole diameter 20 ⁇ m, manufactured by SPG Techno Co., Ltd.) was used, and the number of pumping times was 10. As a result, a droplet having a diameter of about 5 ⁇ m (volume of about 65 fL) was obtained.
  • 9A-9D are diagrams showing fluorescence microscope images obtained after reacting droplets prepared using each sample for 6 hours.
  • 9A shows sample 1
  • FIG. 9B shows sample 2
  • FIG. 9C shows sample 3
  • FIG. 9D shows fluorescence microscope images obtained for sample 4, respectively.
  • FIGS. 10A to 13B are diagrams showing changes in the fluorescence of droplets with time for Samples 1 to 4, respectively.
  • 10A, 11A, 12A, and 13A show fluorescence microscopic images containing both the fluorescence of HEX derived from the reporter molecule and the background fluorescence of the reporter molecule, respectively.
  • FIGS. 10B, 11B, 12B, and 13B show fluorescence microscope images containing fluorescence of a standard fluorescent substance, respectively.
  • droplets could be confirmed based on the fluorescence of the standard fluorescent substance. Further, as shown in FIGS. 11A, 11B, 12A, 12B, and 13A, 13B, it can be seen that the fluorescence of the standard fluorescent substance is also observed in the droplets in which the fluorescence of HEX is observed. From this, it was confirmed that the sample and the detection reagent were filled in the droplet, and the trans-cleaving reaction of Cas12a worked.
  • FIGS. 9A to 13B it was confirmed that the number of positive droplets increased as the DNA concentration increased.
  • FIG. 51 described in Patent Document 1 it has been difficult to detect a target nucleic acid having a low concentration of 6.3 pM by the CHRISPR-Cas technique without going through an amplification step in the prior art. From the results of the above examples, it was shown that in the present invention, the target nucleic acid having a concentration of 6.3 pM can be detected without going through the amplification step.
  • the fluorescence intensity of each droplet was determined, and the droplet having the fluorescence intensity exceeding a predetermined threshold was identified.
  • the droplet obtained for Sample 1 is used as a reference droplet, and the droplet having a fluorescence intensity exceeding a predetermined threshold is used as the ratio of the fluorescence intensity of the reference droplet to the fluorescence intensity of the sample and the droplet containing the detection reagent. Identified based on.
  • the fluorescence intensity of the droplet containing the sample and the detection reagent is the fluorescence intensity of each droplet obtained for Samples 2 to 4.
  • a predetermined image processing image processing software was used to determine the fluorescence intensity of each droplet.
  • the fluorescence intensity of each droplet (negative droplet) obtained for Sample 1 6 hours after the reaction was 100.
  • the fluorescence intensity of the positive droplets in each of the droplets obtained for Samples 2 to 4 6 hours after the reaction was in the range of 200 to 250.
  • the concentration of the target nucleic acid can be calculated from the total number of droplets and the number of droplets having a fluorescence intensity exceeding a predetermined threshold value.
  • Example 2 (Making wells)
  • the wells 204 shown in FIGS. 2A and 2B were produced through a CYTOP coating step, a photolithography step, and an etching / resist removing step.
  • a quartz substrate synthetic quartz substrate AQ grade, thickness 1 mm, manufactured by AGC
  • KBE-903 silane coupling agent
  • CTL-809A manufactured by AGC
  • positive photoresists AZ P4903, AZ Electrical Materials
  • UV was exposed from above via a photomask of a target pattern, and development treatment was performed with alkali.
  • the photoresist was dissolved only in the portion irradiated with UV, and the hydrophobic resin layer was exposed.
  • the etching / resist removing step a part of the resin layer was removed by etching with oxygen plasma via a photoresist in which a part was dissolved to form a hydrophobic partition wall.
  • the desired well 204 was formed by dissolving the photoresist in an organic solvent.
  • the diameter of the well 204 was 5 ⁇ m, the depth was 4 ⁇ m, the pitch was 10 ⁇ m, and the number of wells was about 1 million.
  • the well plate 200 shown in FIGS. 2A and 2B includes a lower substrate 201 on which the above-mentioned well 204 is formed, an upper substrate 202, an injection port portion (not shown), and a discharge port portion (not shown).
  • a lower substrate 201 on which the above-mentioned well 204 is formed
  • an upper substrate 202 on which the above-mentioned well 204 is formed
  • an injection port portion not shown
  • a discharge port portion not shown.
  • Polycarbonate thickness 1 mm
  • the distance of the space 205 from the upper surface of the partition wall 203 to the upper substrate 202 was 250 ⁇ m.
  • the reaction solution was injected from the injection port portion on the upper substrate 202, and the reaction solution was sent so as to cover the well 204.
  • the well plate 200 was left under reduced pressure, the space 205 was degassed, and the well was filled with the reaction solution.
  • a hydrophobic solvent was sent to the space 205 and sealed.
  • asahiclean AE-3000 manufactured by AGC
  • von Bryn Y-25 manufactured by Solvay
  • FIG. 14A-14D are diagrams showing fluorescence microscope images of wells.
  • FIG. 14A shows a fluorescence microscope image containing both the fluorescence of HEX derived from the reporter molecule and the background fluorescence of the reporter molecule 2 hours after the reaction.
  • FIG. 14B shows a fluorescence microscope image containing fluorescence of a standard fluorescent substance 2 hours after the reaction.
  • FIG. 14C shows a fluorescence microscope image including both the fluorescence of HEX derived from the reporter molecule and the background fluorescence of the reporter molecule 19 hours after the reaction.
  • FIG. 14D shows a fluorescence microscope image containing fluorescence of a standard fluorescent substance 19 hours after the reaction.
  • FIGS. 14B and 14D wells could be identified based on the fluorescence of the standard fluorescent material. Further, as shown in FIGS. 14A to 14D, it can be seen that the fluorescence of the standard fluorescent substance is also observed in the wells in which the fluorescence of HEX was observed. From this, it was confirmed that the well was filled with the sample and the detection reagent, and the trans-cleaving reaction of Cas12a worked. Further, as shown in FIG. 51 described in Patent Document 1, it has been difficult to detect a target nucleic acid having a low concentration of 6.3 pM by the CHRISPR-Cas technique without going through an amplification step in the prior art. From the results of the above examples, it was shown that in the present invention, the target nucleic acid having a concentration of 6.3 pM can be detected without going through the amplification step.
  • predetermined image processing was performed on the fluorescence microscope image 19 hours after the reaction of the above-mentioned example to obtain the histogram shown in FIG.
  • the histogram shown in FIG. 15 shows the number of wells showing the fluorescence intensity contained in each fraction of the fluorescence intensity obtained by dividing the fluorescence intensity by a constant value.
  • three peaks A, B, and C corresponding to the division in which the count number showed the maximum value were observed.
  • the lowest fluorescence intensity peak A is due to the background fluorescence of the reporter molecule.
  • the wells in the peak B category were identified as positive wells B
  • the wells in the peak C category were identified as positive wells C.
  • the fluorescence intensity of the positive well C is stronger, so that the positive well B is filled with one DNA in one well. It is considered that the positive well C is filled with two DNAs in one well.
  • the concentration of the target nucleic acid can be calculated from the total number of wells and the number of positive wells specified from the histogram using the above formula (1).
  • Example 3 (Preparation of reaction solution for wells) A reaction solution was prepared for filling well 204. Specifically, first, Cas12a stock solution (400 nM): 20 ⁇ L, crRNA stock solution (500 nM): 20 ⁇ L, and DNA solution 1 (0.228 ⁇ M): 40 ⁇ L were mixed. The resulting mixed solution was reacted at 37 ° C. for 30 minutes to induce the formation of Cas12a-crRNA-DNA complex.
  • a reporter molecular solution (12 ⁇ M) containing 800 nM HiLyte488: 25 ⁇ L, Tween20 (5%): 10 ⁇ L, BSA (30%): 1 ⁇ L, spermine aqueous solution (50 mM): 4 ⁇ L, 10 ⁇ Binding buffer: 10 ⁇ L were prepared in advance. Mixed in 1.5 mL microtubes. To this mixed solution, 50 ⁇ L of the solution mixed and reacted above was added to prepare a reaction solution for wells. The final concentration of DNA was 57 pM.
  • FIGS. 16A and 16B are diagrams showing fluorescence microscope images obtained after reacting for 0.5 hours.
  • FIG. 16A shows a fluorescence microscope image containing both the fluorescence of HEX derived from the reporter molecule and the background fluorescence of the reporter molecule.
  • FIG. 16B shows a fluorescence microscope image including fluorescence of a standard fluorescent substance. As shown in FIG. 16B, wells could be identified based on the fluorescence of the standard fluorescent material. Further, as shown in FIGS. 16A and 16B, it can be seen that in the wells where the fluorescence of HEX was observed, the fluorescence of the standard fluorescent substance was also observed.
  • Example 3 using the reaction solution containing spermine, the fluorescence of HEX could be observed in 0.5 hours.
  • the fluorescence of HEX could not be confirmed after 0.5 hours. From this, it was confirmed that the inclusion of spermine in the detection reagent promoted the trans-cleaving reaction of Cas12a, and the detection time could be shortened as compared with Example 2 using the detection reagent containing no amino compound.
  • Example 4 Preparation of composite particles in which the complex of Cas12a and crRNA is bound to the particles.
  • a magnetic particle (Magnosphere (registered trademark) MS300 / Carboxyl) dispersion was placed in a microtube to precipitate the magnetic particles with a magnet.
  • MES buffer 100 mM, pH 5.4
  • N-hydroxysulfosuccinimide sulfo-NHS
  • WSC water-soluble carbodiimide
  • the recovered magnetic particles were washed with MES buffer, dispersed with MES buffer, and an arbitrary amount of anti-His tag antibody (Anti-His-tag mAb, MBL Life Science) was added. Then, the mixture was stirred at 25 ° C. for 2 hours. Subsequently, a large excess of ethanolamine was added to deactivate the active groups on the surface of the magnetic particles. The magnetic particles were recovered with a magnet, and the recovered magnetic particles were washed with MES buffer to prepare antibody-immobilized particles.
  • a storage buffer (10 mM HEPES-NaOH (pH 7.9), 50 mM KCl, 1 mM EDTA, 10% glycerol) was added to the obtained antibody-immobilized particles to prepare an antibody-immobilized particle solution.
  • the antibody-immobilized particle solution was stored at 4 ° C. until use.
  • diluted Cas12a and crRNA were mixed to a concentration ratio (molar ratio) of 1: 1.25 and incubated at 37 ° C. for 30 minutes to prepare a Cas12a-crRNA complex.
  • the prepared antibody-immobilized particle solution (1 wt%) was separated into a 2 mL sample tube (manufactured by VIOLAMO, model number: 1-1600-04). After stirring, a sample tube was placed on a magnetic stand (magical trapper, manufactured by TOYOBO, model number: MGS-101), allowed to stand for 1 minute, and then the supernatant was removed to remove the solution. PBS (PBS-T) containing 0.05% Tween 20 was added as a particle washing solution, and after stirring, the solution was removed in the same manner as above. The above operation was repeated twice for cleaning.
  • the washed antibody-immobilized particles were suspended in PBS-T, the Cas12a-crRNA solution prepared above was added to an arbitrary concentration, and the mixture was stirred and then reacted with a shaker for 1 hour.
  • the Cas12a used has a His tag at the N-terminal
  • Cas12a and the antibody-immobilized particles are bound by an antigen-antibody reaction between the His tag possessed by Cas12 and the anti-His-tag antibody possessed by the antibody-immobilized particles.
  • a composite particle in which the complex of Cas12a and crRNA was bound to the particle was prepared. After the reaction, the solution was removed and a washing operation was performed with PBS-T. After washing, it was suspended in purified water, stirred, and stored at 4 ° C. until use.
  • reaction solution for filling well 204. Specifically, first, the composite particles (3.1 ⁇ 10 8 pieces / mL) prepared above: 7.3 ⁇ L, water: 22.7 ⁇ L, and DNA solution 1 (0.228 ⁇ M): 30 ⁇ L were mixed. The obtained mixed solution was reacted at 37 ° C. for 30 minutes to form a complex of composite particles and DNA. Next, the following materials were prepared.
  • FIG. 17A to 17C are views showing a bright-field image and a fluorescence microscope image of wells acquired after reacting for 1 hour.
  • FIG. 17A shows a brightfield image of the well.
  • FIG. 17B shows a fluorescence microscope image containing both the fluorescence of HEX derived from the reporter molecule and the background fluorescence of the reporter molecule.
  • FIG. 17C shows a fluorescence microscope image including fluorescence of a standard fluorescent substance. From FIG. 17A, it was confirmed that the wells were filled with particles. Further, from FIGS. 17A to 17C, it can be seen that the fluorescence of HEX is observed from the well filled with the particles. From this, it was confirmed that the DNA was captured by Cas12a bound to the particles and the trans-cleaving reaction of Cas12a worked.
  • the DNA concentration of 57 pM in this example is a concentration predicted to be positive for all individual independent separation compartments.
  • Example 5 (Immobilization of anti-His tag antibody on magnetic particles) A dispersion of magnetic particles (Magnosphere® MS300 / Carboxyl) was placed in a microtube to precipitate the magnetic particles with a magnet. After removing the supernatant, MES buffer (100 mM, pH 5.4) was added to the magnetic particle pellets and dispersed again, and N-hydroxysulfosuccinimide (sulfo-NHS) and water-soluble carbodiimide (WSC) were added. .. The mixture was stirred at 25 ° C. for 1 hour, and the magnetic particles were collected with a magnet.
  • MES buffer 100 mM, pH 5.4
  • the recovered magnetic particles were washed with MES buffer, dispersed with MES buffer, and an arbitrary amount of anti-His tag antibody (Anti-His-tag mAb, MBL Life Science) was added.
  • the mixture was stirred at 25 ° C. for 2 hours.
  • two methods were prepared, one in which the blocking operation was performed and the other in which the blocking operation was not performed.
  • a large excess of PEGamine having a molecular weight of 5000 was added to the carboxy group on the surface of the magnetic particles, and the mixture was stirred at room temperature for 45 minutes. With or without blocking, a large excess of ethanolamine was subsequently added to deactivate the active groups on the particle surface.
  • Magnetic particles were recovered with a magnet, and the recovered magnetic particles were washed with MES buffer to prepare antibody-immobilized particles (with and without blocking).
  • a storage buffer (10 mM HEPES-NaOH (pH 7.9), 50 mM KCl, 1 mM EDTA, 10% glycerol) was added to the antibody-immobilized particles to prepare an antibody-immobilized particle solution, which was stored at 4 ° C. until use.
  • the above operation was repeated twice.
  • the particles were suspended in PBS-T, the Cas12a-crRNA solution prepared above was added to an arbitrary concentration, and the mixture was stirred and then reacted with a shaker for 1 hour. After the reaction, the solution was removed and a washing operation was performed with PBS-T. After washing, the particles were suspended in purified water to prepare composite particles in which the Cas12a-crRNA complex was bound to the antibody-immobilized particles. After stirring, it was stored at 4 ° C. until use.
  • composite particles AntBL those that have undergone the blocking operation
  • composite particles Ant those that have not undergone the blocking operation
  • PBS-T was added as a particle washing solution, and the solution was removed after stirring. The above operation was repeated twice.
  • the particles were suspended in PBS-T, the Cas12a solution prepared above was added to an arbitrary concentration, and the mixture was stirred and then reacted with a shaker for 1 hour. After the reaction, the solution was removed and a washing operation was performed with PBS-T. After washing, the particles were suspended in purified water to prepare composite particles in which the Cas12a-crRNA complex was immobilized on nickel particles. After stirring, it was stored at 4 ° C. until use. The obtained composite particles were designated as composite particles Ni.
  • a 96-well plate (Thermo Fisher Scientific, model number: 137101) was used to evaluate the activity of the composite particles prepared above under the conditions with and without the addition of the amino compound. Mix each particle in water so that the final concentration of Cas12a is 10 nM, and the final concentration of DNA is 2 nM, and let stand at 37 ° C. for 30 minutes or more to form a complex with DNA. Made.
  • reaction buffer two methods were performed: a case where a binding buffer was used and a case where NE Buffer (registered trademark) was used. Then, with a fluorescent plate reader (Synergy MX, manufactured by BioTek), the fluorescence intensity was measured at 37 ° C. for 2 hours every 2 min.
  • HiLyte488 used an excitation wavelength of 485 ⁇ 20 nm and a fluorescence wavelength of 528 ⁇ 20 nm.
  • reporter molecule an excitation wavelength of 535 ⁇ 20 nm and a fluorescence wavelength of 595 ⁇ 20 nm were used.
  • NEBuffer® 2.1 was used by adding 10 ⁇ NEBuffer® 2.1 attached to EnGen LbaCas12a (Cpf1) (NEB, M0653T) in an amount of 1/10 of the reaction solution. ..
  • the obtained fluorescence intensity was evaluated as the ratio of the fluorescence intensity of the reporter molecule to the fluorescence intensity of the internal standard dye (fluorescence intensity of the reporter molecule / fluorescence intensity of the internal standard dye).
  • FIGS. 18A to 18C show changes over time in the fluorescence intensity ratio (fluorescence intensity of the reporter molecule / fluorescence intensity of the internal standard dye) when each composite particle is used.
  • FIG. 18A shows the result when the composite particle Ant is used
  • FIG. 18B shows the result when the composite particle AntBL is used
  • FIG. 18C shows the result when the composite particle Ni is used.
  • FIGS. 18A to 18C it can be seen that the reaction was promoted by adding spermine, which is an amino compound, regardless of which composite particle or reaction buffer was used.
  • crRNA_T790M The crRNA included in EnGen LbaCas12a (Cpf1) (NEW ENGLAND BioLabs (NEB), M0653T) was diluted with purified water to prepare a storage solution of 500 nM.
  • the sequence of crRNA_T790M is shown below (SEQ ID NO: 3). uaauuucuacuaaguguagauaucaugcagcucaugccc
  • the sample tube was placed on a magnetic stand (manufactured by Magical Trapper TOYOBO, model number: MGS-101), allowed to stand for 1 minute, and the supernatant was removed to remove the solution.
  • PBS containing 0.5% Tween 20 was added as a particle washing solution, and the solution was removed after stirring. The above operation was repeated twice.
  • the particles were suspended in PBS containing 0.5% Tween20, the Cas12a-crRNA complex prepared above was added to an arbitrary concentration, and the mixture was stirred and then reacted with a shaker for 1 hour. After the reaction, the solution was removed and a washing operation was performed with purified water. After washing, it was suspended in purified water to prepare composite particles. After stirring, it was stored at 4 ° C. until use.
  • Genomic DNA 100% EGFR wild type (50 ng / ⁇ L, RIKEN GENESIS, model number: HD709) and 50% EGFR T790M (50 ng / ⁇ L, RIKEN GENESIS, model number: HD258) were used as templates in PCR, respectively.
  • the product amplified by PCR using 100% EGFR wild type as a template was designated as contaminating DNA_WT.
  • the product amplified by PCR using 50% EGFR T790M as a template was used as the target DNA_T790M.
  • concentrations of all PCR products were measured with a Qubit 2.0 Fluorometer (manufactured by Life Technologies).
  • the subsequent concentrations of the PCR amplification product using 50% EGFR T790M as a template were calculated on the assumption that the mutant allele ratio was the same as that of 50% EGFR T790M.
  • Each PCR product was diluted with purified water to prepare a 4 nM storage solution. Further, a 4 nM storage solution was diluted with purified water to prepare DNA solutions having various concentrations.
  • EGFR primer (Forward) (SEQ ID NO: 4)
  • tcacctccaccgtgcatttcatca EGFR primer (Reverse) (SEQ ID NO: 5)
  • DNA_WT (SEQ ID NO: 6) tcacctccaccgtgcatttcatcacgcagctcatgcccttcggctgcctcctggactatgtccgggaacacaaagacaatattggctcccagtacctgctcaactggtgtgtgcagatcgcaa
  • DNA_T790M (SEQ ID NO: 7) tcacctccaccgtgcatttc atcatgcagctcatgccc cttcggctgcctctggactatgtccgggaacacaaagacaatattggctcccagtacctgctcaactggtgtgtgcagatcgcaa
  • the efficiency of collecting and concentrating DNA was evaluated for the composite particles prepared above.
  • the following materials were prepared. -The number of immobilized Cas12a is 6.7 x 10 5 / particle composite particles (referred to as composite particles A): 2.7 x 10-11 mol. -The number of immobilized Cas12a is 1.5 x 10 4 / particle composite particles (referred to as composite particles B): 6.0 x 10-13 mol.
  • -Target DNA_T790M 1.5 x 10-13 mol -DNA_WT as contaminated DNA: 1.5 ⁇ 10-12 mol ⁇ Tween20: Final concentration 0.5%
  • Composite particles A or B and target DNA_T790M, DNA_WT, and Tween20 were added to a 2 mL tube (Eppendorf) to prepare a total solution volume of 1.1 mL. The resulting mixed solution was shaken at room temperature for 1 hour. Then, the particles were collected with a magnet, the supernatant was removed, and the particles were washed with 1 mL of purified water.
  • the particles were collected again with a magnet, the supernatant was removed, and the particles were suspended in 50 ⁇ L of purified water to obtain a DNA-recovered particle solution. Further, in the above, assuming that the contaminated DNA is not contained, the same operation was performed without using DNA_WT.
  • DNA recovery particle solution final concentration of composite particles: 4 ⁇ 10-13 M
  • -Reporter molecule final concentration: 125 nM
  • 8nM HiLyte488 as an internal standard dye 2 mM spermine
  • the measurement wavelength used was an excitation wavelength of 485 ⁇ 20 nm and a fluorescence wavelength of 528 ⁇ 20 nm.
  • the reporter molecule an excitation wavelength of 535 ⁇ 20 nm and a fluorescence wavelength of 595 ⁇ 20 nm were used.
  • the target DNA_T790M was added without performing the recovery operation, and the fluorescence intensity was measured in the same manner as above.
  • the composite particles A or B have the same molar concentration as above (final concentration of composite particles: 4 ⁇ 10-13 M), and the final concentration of 1.5 nM assumed when 100% of the target DNA_T790M can be recovered. And said.
  • a reporter molecule final concentration: 125 nM
  • the fluorescence intensity was measured in the same manner as above.
  • the obtained fluorescence intensity was evaluated as the ratio of the fluorescence intensity of the reporter molecule to the fluorescence intensity of the internal standard dye (fluorescence intensity of the reporter molecule / fluorescence intensity of the internal standard dye).
  • FIG. 19A shows the change over time in the fluorescence intensity ratio when the recovery operation was performed under the condition of no contaminated DNA and when the recovery operation was not performed.
  • FIG. 19B shows the time course of the fluorescence intensity ratio when the recovery operation was performed under the condition with and without the contaminated DNA.
  • FIG. 19A it was confirmed that DNA could be recovered and concentrated with a high recovery rate regardless of which composite particle was used. It was also suggested that the higher the number of immobilized composite particles, the higher the recovery rate. Further, as shown in FIG. 19B, even when contaminated DNA coexists, the composite particles can recover and concentrate the DNA, and the larger the number of immobilized composite particles, the higher the recovery rate of the DNA. was confirmed.
  • the trans-cleaving reaction of the effector protein is promoted and the detection time can be shortened by containing the amino compound in the detection reagent.
  • the target nucleic acid can be recovered by acting on the composite particle in which the complex of the effector protein and crRNA is bound to the particle. Shown.
  • the recovered target nucleic acid can be detected by filling the individual independent separation compartment with the composite particles that have captured the target nucleic acid.
  • An embodiment of the invention is performed by a computer in a system or device (eg, a specific application integrated circuit (ASIC)) that reads and executes computer executable instructions (eg, one or more programs) recorded on a storage medium.
  • a computer in a system or device eg, a specific application integrated circuit (ASIC)
  • ASIC application integrated circuit
  • a computer can include one or more processors (eg, central processing unit (CPU), microprocessing unit (MPU)), a separate computer or a separate processor to read and execute computer executable instructions.
  • processors eg, central processing unit (CPU), microprocessing unit (MPU)
  • Network can be included.
  • Computer-executable instructions may be provided to the computer, for example, from a network or storage medium.
  • Storage media include, for example, hard disks, random access memory (RAM), read-only memory (ROM), storage devices for distributed computing systems, optical discs (compact discs (CDs), digital versatile discs (DVDs), and Blu-ray discs (BDs). ) Etc.), may include one or more of flash memory devices, memory cards, etc.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Sustainable Development (AREA)
  • Plant Pathology (AREA)
  • Optics & Photonics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

低濃度の標的核酸を簡易に検出するための、核酸検出装置および核酸の検出方法を提供する。標的核酸を含有する試料と、エフェクタータンパク質、前記標的核酸に結合するcrRNA、およびレポーター分子を含有する検出試薬とを複数の個別独立分離区画に分配する分配部と;前記crRNAの前記標的核酸への結合によって前記エフェクタータンパク質を活性化する活性化部と;活性化された前記エフェクタータンパク質によって前記レポーター分子を改変して蛍光を生成する蛍光生成部と;前記蛍光を検出する蛍光検出部と;前記蛍光検出部で得られた検出結果に基づいて、前記個別独立分離区画の蛍光強度を決定し、所定の閾値を超えた蛍光強度を有する個別独立分離区画を特定する特定部と;を有することを特徴とする核酸検出装置。

Description

核酸検出装置および核酸の検出方法
 本発明は、CHRISPR-Cas技術のトランス切断反応と個別独立分離区画を用いた、核酸検出装置および核酸の検出方法に関する。
 カリフォルニア大学のジェニファー・ダウドナらは、Cas12aを利用してヒトサンプル中のヒトパピローマウイルス(HPV)の異なる株同士を互いに区別して正確に検出できることを示した(非特許文献1)。Cas12aとcrRNAからなる複合体は、標的DNAの配列を特異的に認識して結合し、Cas12aは結合した標的DNAを切断する。その際、蛍光物質と消光剤とが一本鎖DNAで連結されたレポーター分子を反応系に添加しておくと、Cas12aはトランス切断反応によりレポーター分子の一本鎖DNAを切断する。これにより蛍光物質と消光剤とが分離され、蛍光が生じる。すなわち、試料中に標的DNAが存在するとき、Cas12aのトランス切断反応が活性化されることでレポーター分子に由来する蛍光物質から蛍光が生じるため、その蛍光を基に標的DNAを検出することができる。
 ブロード研究所のフェン・チャンらは、Cas13aとcrRNAとからなる複合体、およびレポーター分子を用いて標的RNAを検出する方法を開示している(特許文献1)。Cas13aとcrRNAとからなる複合体は、標的RNAの配列を特異的に認識して結合し、Cas13aは結合した標的RNAを切断する。その際、蛍光物質と消光剤とがRNAで連結されたレポーター分子を反応系に添加しておくと、Cas13aはこの連結部のRNAを切断し、蛍光が生じる。これにより標的RNAを検出することができる。また、特許文献1には、標的RNAを含む試料を個別独立分離区画に分配してもよいことが記載されている。
Science 27 Apr 2018:Vol.360、Issue 6387、pp436-439
特表2020-501546号公報
 非特許文献1および特許文献1に記載の方法により低濃度の標的核酸を検出しようとする場合、検出が困難であるか、または標的核酸を増幅する工程を経てから検出する必要があった。標的核酸を増幅する工程を含める場合、増幅のための操作が煩雑であり、また時間を要するという課題がある。
 そこで本発明においては、低濃度の標的核酸を簡易に検出するための、核酸検出装置および核酸の検出方法を提供することを目的とする。
 本発明の一態様に係る核酸検出装置は、標的核酸を含有する試料と、エフェクタータンパク質、前記標的核酸に結合するcrRNA、およびレポーター分子を含有する検出試薬とを複数の個別独立分離区画に分配する分配部と;前記crRNAの前記標的核酸への結合によって前記エフェクタータンパク質を活性化する活性化部と;活性化された前記エフェクタータンパク質によって前記レポーター分子を改変して蛍光を生成する蛍光生成部と;前記蛍光を検出する蛍光検出部と;前記蛍光検出部で得られた検出結果に基づいて、前記個別独立分離区画の蛍光強度を決定し、所定の閾値を超えた蛍光強度を有する個別独立分離区画を特定する特定部と;を含むことを特徴とする。
 また、本発明の別の態様に係る核酸の検出方法は、標的核酸を含有する試料と、エフェクタータンパク質、前記標的核酸に結合するcrRNA、およびレポーター分子を含有する検出試薬とを複数の個別独立分離区画に分配する分配工程と;前記crRNAの前記標的核酸への結合によってエフェクタータンパク質を活性化する活性化工程と;活性化された前記エフェクタータンパク質によって前記レポーター分子を改変して蛍光を生成する蛍光生成工程と;前記蛍光を検出する蛍光検出工程と;前記蛍光を検出する工程で得られた検出結果に基づいて、前記個別独立分離区画の蛍光強度を決定し、所定の閾値を超えた蛍光強度を有する個別独立分離区画を特定する特定工程と;を有することを特徴とする。
 また、本発明のさらに別の態様に係るプログラムは、上記核酸の検出方法を核酸検出装置に実行させるために、前記核酸検出装置が有するコンピュータに実行させるためのプログラムである。
 本発明によれば、低濃度の標的核酸を簡易に検出するための、核酸検出装置および核酸の検出方法を提供することができる。
本発明に係る核酸検出装置の機能ブロック図である。 ウェルプレートの断面図である。 エフェクタータンパク質とcrRNAとの複合体が粒子と結合した複合粒子をウェルに充填したウェルプレートの断面図である。 本発明に係る核酸検出装置の機能ブロック図である。 本発明に係る核酸検出装置のハードウェア構成例を示すブロック図である。 本発明に係る核酸の検出方法の流れを示すフローチャートである。 個別独立分離区画として液滴を用いた場合の、核酸の検出方法の流れを示すフローチャートである。 個別独立分離区画としてウェルを用いた場合の、核酸の検出方法の流れを示すフローチャートである。 基準液滴の蛍光画像を示す模式図である。 図8Aで示す蛍光画像を画像処理ソフトにより処理した画像を示す模式図である。 試料と検出試薬とを含む液滴の蛍光画像を示す模式図である。 図8Cで示す蛍光画像を画像処理ソフトにより処理した画像を示す模式図である。 実施例における液滴の蛍光顕微鏡画像を示す図である。 実施例における液滴の蛍光顕微鏡画像を示す図である。 実施例における液滴の蛍光顕微鏡画像を示す図である。 実施例における液滴の蛍光顕微鏡画像を示す図である。 実施例における液滴の蛍光顕微鏡画像を示す図である。 実施例における液滴の蛍光顕微鏡画像を示す図である。 実施例における液滴の蛍光顕微鏡画像を示す図である。 実施例における液滴の蛍光顕微鏡画像を示す図である。 実施例における液滴の蛍光顕微鏡画像を示す図である。 実施例における液滴の蛍光顕微鏡画像を示す図である。 実施例における液滴の蛍光顕微鏡画像を示す図である。 実施例における液滴の蛍光顕微鏡画像を示す図である。 実施例におけるウェルの蛍光顕微鏡画像を示す図である。 実施例におけるウェルの蛍光顕微鏡画像を示す図である。 実施例におけるウェルの蛍光顕微鏡画像を示す図である。 実施例におけるウェルの蛍光顕微鏡画像を示す図である。 実施例におけるウェルの蛍光顕微鏡画像から得られたヒストグラムである。 実施例におけるウェルの蛍光顕微鏡画像を示す図である。 実施例におけるウェルの蛍光顕微鏡画像を示す図である。 実施例におけるウェルの明視野画像を示す図である。 実施例におけるウェルの蛍光顕微鏡画像を示す図である。 実施例におけるウェルの蛍光顕微鏡画像を示す図である。 実施例における蛍光強度比の経時変化を示すグラフである。 実施例における蛍光強度比の経時変化を示すグラフである。 実施例における蛍光強度比の経時変化を示すグラフである。 実施例における蛍光強度比の経時変化を示すグラフである。 実施例における蛍光強度比の経時変化を示すグラフである。
 以下、図面を参照して、本発明の例示的な実施形態を説明する。図面において同様の要素または対応する要素には同一の符号を付し、その説明を省略または簡略化することがある。
 図1は、本発明に係る核酸検出装置10の機能ブロック図である。核酸検出装置10は、分配部101、活性化部102、蛍光生成部103、蛍光検出部104、および特定部105を有する。
 分配部101は、標的核酸を含有する試料と、検出試薬とを複数の個別独立分離区画に分配する。ここで、検出試薬は、エフェクタータンパク質、前記標的核酸に結合するcrRNA、およびレポーター分子を含有する。また、活性化部102は、crRNAの前記標的核酸への結合によって前記エフェクタータンパク質を活性化する。蛍光生成部103は、活性化された前記エフェクタータンパク質によって前記レポーター分子を改変して蛍光を生成する。蛍光検出部104は、蛍光を検出する。さらに、特定部105は、前記個別独立分離区画の蛍光強度を決定し、所定の閾値を超えた蛍光強度を有する個別独立分離区画を特定する。
 なお、検出試薬は、エフェクタータンパク質、crRNA、およびレポーター分子をそれぞれ個別に有していてもよい。例えば、分配部101では、個別独立分離区画に分配する前に、標的核酸を含有する試料と、エフェクタータンパク質およびcrRNAとを予め混合した後に、レポーター分子をさらに混合してもよい。
 特定部105は、抽出部106、決定部107、判定部108、算出部109、表示部110、および記憶部111を有する。特定部105が有するこれらの構成の機能については後述する。
 以下に、本発明の具体的な構成例について記載するが、本発明は以下に示す例に限定されるものではない。
 (エフェクタータンパク質)
 エフェクタータンパク質としては、例えば、Cas12またはCas13のいずれかを使用できる。
 Cas12としては、例えば、LbCas12a、AsCas12a、FnCas12a、AaCas12b等を使用することができる。
 Cas13としては、例えば、LwaCas13a、LbaCas13a、LbuCas13a、BzoCas13b、PinCas13b、PbuCas13b、AspCas13b、PsmCas13b、RanCas13b、PauCas13b、PsaCas13b、PinCas13b、CcaCas13b、PguCas13b、PspCas13b、PigCas13b、Pin3Cas13b等を使用することができる。
 (crRNA)
 crRNAは標的核酸が有する塩基配列と相補性を有する塩基配列を含むように設計されたRNAである。エフェクタータンパク質とcrRNAとからなる複合体は、crRNAが有する相補性により標的核酸配列に特異的に結合する。
 crRNAは、用いるエフェクタータンパク質の種類と、標的核酸が有する塩基配列における標的とする領域とを基に設計される。
 (標的核酸)
 標的核酸としては、DNAやRNA等を挙げることができる。標的核酸は、疾患状態の診断や体質診断等に応用できる核酸であってもよい。上記疾患状態としては、がん、自己免疫疾患、および感染症等が挙げられる。上記感染症としては、例えば、DNAウィルスやRNAウィルス等による感染症を挙げることができる。標的核酸は任意に選択でき、上記の例に限定されるものではない。
 (レポーター分子)
 レポーター分子としては、例えば、蛍光物質と消光剤とが一本鎖DNAで連結された分子、あるいは蛍光物質と消光剤とがRNAで連結された分子等を挙げることができる。エフェクタータンパク質としてCas12を用いる場合、レポーター分子としては蛍光物質と消光剤とが一本鎖DNAで連結された分子が好適である。蛍光物質と消光剤とが一本鎖DNAで連結された分子としては、例えば、DNaseAlert(IDT社)を使用することができる。また、エフェクタータンパク質としてCas13を用いる場合、レポーター分子としては蛍光物質と消光剤とがRNAで連結された分子が好適である。
 (アミノ化合物)
 検出試薬は、さらにアミノ化合物を含有することが好ましい。アミノ化合物の存在下では、エフェクタータンパク質によるDNAの切断活性が高くなるため、標的核酸の検出に要する時間を短くすることができる。
 検出試薬は、アミノ化合物を他の成分と別個に有していても良いし、いずれかの成分と混合された状態で有していてもよい。
 アミノ化合物はアミノ基を含有する化合物であり、本発明においては、アミノ化合物として1級アミン、2級アミン、および3級アミンのいずれも用いることができる。
 アミノ化合物としては、ペンタエチレンヘキサミン(下記式(a1))、スぺルミン(下記式(a2))、スぺルミン四塩酸塩、トリエチレンテトラミン(下記式(a3))、スペルミジン(下記式(a4))、スペルミジン三塩酸塩、ジエチレントリアミン(下記式(a5))、1,3-ジアミノプロパン(下記式(a6))、1,4-ジアミノブタン(下記式(a7))、1,5-ジアミノペンタン(下記式(a8))、1,6-ジアミノヘキサン(下記式(a9))、1,8-ジアミノオクタン(下記式(a10))、エチレンジアミン(下記式(a11))、エチルアミン(下記式(a12))、プロピルアミン(下記式(a13))、N,N’-ジメチルエチレンジアミン(下記式(a14))、N,N-ジメチルエチレンジアミン(下記式(a15))、N-エチルエチレンジアミン(下記式(a16))、N-メチルエチレンジアミン(下記式(a17))、ポリエチレングリコール(PEG)構造を含むアミノ化合物、で構成される群から選択される少なくとも1つの化合物であることが好ましい。PEG構造を含むアミノ化合物としては、下記式(a18)で表される化合物、下記式(a19)で表される化合物、および下記式(a20)で表される化合物が挙げられる。
 下記式(a18)で表される化合物の例としては、市販のBlockmaster(登録商標)CE210(PEGの分子量2000、n=45)、Blockmaster(登録商標) CE510(PEGの分子量5000、n=114)が挙げられる。下記式(a19)で表される化合物の例としては、SUNBRIGHT(登録商標)EA Seriesが挙げられる。また、下記式(a20)で表される化合物の例としては、SUNBRIGHT(登録商標) PA Seriesが挙げられる。
 <ペンタエチレンヘキサミン>
Figure JPOXMLDOC01-appb-C000001
 <スぺルミン>
Figure JPOXMLDOC01-appb-C000002
 <トリエチレンテトラミン>
Figure JPOXMLDOC01-appb-C000003
 <スペルミジン>
Figure JPOXMLDOC01-appb-C000004
 <ジエチレントリアミン>
Figure JPOXMLDOC01-appb-C000005
 <1,3-ジアミノプロパン>
Figure JPOXMLDOC01-appb-C000006
 <1,4-ジアミノブタン>
Figure JPOXMLDOC01-appb-C000007
 <1,5-ジアミノペンタン>
Figure JPOXMLDOC01-appb-C000008
 <1,6-ジアミノヘキサン>
Figure JPOXMLDOC01-appb-C000009
 <1,8-ジアミノオクタン>
Figure JPOXMLDOC01-appb-C000010
 <エチレンジアミン>
Figure JPOXMLDOC01-appb-C000011
 <エチルアミン>
Figure JPOXMLDOC01-appb-C000012
 <プロピルアミン>
Figure JPOXMLDOC01-appb-C000013
 <N,N’-ジメチルエチレンジアミン>
Figure JPOXMLDOC01-appb-C000014
 <N,N-ジメチルエチレンジアミン>
Figure JPOXMLDOC01-appb-C000015
 <N-エチルエチレンジアミン>
Figure JPOXMLDOC01-appb-C000016
 <N-メチルエチレンジアミン>
Figure JPOXMLDOC01-appb-C000017
 <PEG構造を含むアミノ化合物>
Figure JPOXMLDOC01-appb-C000018
 (式(a18)において、nは30以上1000以下である。)
Figure JPOXMLDOC01-appb-C000019
 (式(a19)において、nは30以上1000以下である。)
Figure JPOXMLDOC01-appb-C000020
 (式(a20)において、nは30以上120以下である。)
 アミノ化合物は、-NHを有することが好ましい。また、アミノ化合物は、-NHを複数有する、または、-NH-を複数有する、または、-NHと-N(CH)-とを各々1つ以上有する、または、1分子中に-NHと-NH-とを各々1つ以上有することがより好ましい。また、アミノ化合物は、-NHを1つ以上、-NH-を2つ以上有する、または、-NHを2つ以上、-NH-を1つ以上有することがさらに好ましい。
 (反応バッファー)
 検出試薬は、反応バッファーを含むことが好ましい。検出試薬は、エフェクタータンパク質、crRNA、レポーター分子、およびアミノ化合物とは別個に反応バッファーを有していてもよい。また、検出試薬において、エフェクタータンパク質、crRNA、レポーター分子、およびアミノ化合物から構成される群から選ばれる少なくとも1つが、反応バッファー中に分散されていてもよい。
 反応バッファーとしては、Cas12a、またはCas13aを用いた酵素反応で使用実績があるTris系のバッファー、およびHEPES系のバッファー等が挙げられる。
 具体的には、例えば、Binding buffer(20mM Tis-HCl(pH7.6)、100mM KCl、5mM MgCl、1mM DTT、5%グリセロール、50μg/mL heparin)、NEBuffer(登録商標)2.1(10mM Tris-HCl、50mM NaCl、10mM MgCl、100μg/mL BSA、pH7.9)、FZ buffer(20mM HEPES、60mM NaCl、6mM MgCl、pH6.8)等が挙げられる。
 (粒子)
 エフェクタータンパク質は、粒子と結合していることが好ましい。
 エフェクタータンパク質と結合している粒子の種類は、エフェクタータンパク質を結合させることができれば特に限定されない。
 なお、粒子は一次粒子でも、一次粒子が集合した二次粒子でもよい。
 エフェクタータンパク質と粒子との結合は、エフェクタータンパク質あるいは後述のリンカーを結合させるのが容易であることから、粒子が元来有していたカルボキシ基を利用した反応により形成されたものであることが好ましい。すなわち、エフェクタータンパク質と、粒子との結合部は、粒子と結合したカルボキシ基に由来する構造を有することが好ましい。
 エフェクタータンパク質と粒子とは、アミド結合を介して結合していてもよい。このとき、粒子に含まれるカルボキシ基由来のC=Oと、タンパク質に含まれるアミノ基由来のN-Hとがアミド結合を形成した構成となる。
 エフェクタータンパク質と粒子とはリンカーを介して結合していてもよい。ここで、リンカーとは、エフェクタータンパク質と粒子との結合を形成する構造を指す。
 リンカーは、6個以上11個以下のヒスチジン残基が連続してなるペプチドを含んでいることが好ましい。
 このとき、リンカーは、上記ペプチドと抗原抗体反応によって結合する抗体(例えば、抗Hisタグ抗体)をさらに有していてもよい。すなわち、例えば、上記ペプチドを有するエフェクタータンパク質と、上記ペプチドと結合する抗体を有する粒子と、を反応させて粒子とエフェクタータンパク質とを結合させたとき、リンカーは上記ペプチドと、上記抗体とを有することになる。ここで、粒子と抗体とは、例えば、粒子が元来有するカルボキシ基と、抗体が有するアミノ基とを反応させて形成したアミド結合を介して結合させることができる。また、上記ペプチドを有するエフェクタータンパク質としては、市販のもの、例えば、EnGen LbaCas12a(Cpf1)(商品名:M0653T、NEB社製、100μM)等を用いることができる。
 また、リンカーは、上記ペプチドと結合する金属錯体をさらに有していてもよい。すなわち、上記ペプチドを有するエフェクタータンパク質と、金属錯体を有する粒子と、を反応させてエフェクタータンパク質と粒子とを結合させてもよい。上記ペプチドと結合する金属錯体としては、例えば、ニトリロトリ酢酸またはイミノジ酢酸と、二価のニッケルイオンとの錯体が挙げられる。
 上記ペプチドは、6個のヒスチジン残基が連続してなるペプチド(以下、Hisタグと呼ぶことがある)であることが特に好ましい。
 エフェクタータンパク質とエフェクタータンパク質側リンカーとの結合部としては、エフェクタータンパク質が有するリシン残基のε-アミノ基や、エフェクタータンパク質N末端のα-アミノ基、エフェクタータンパク質のN末端に人工的に挿入された各種タグペプチド配列やタグタンパク質等が挙げられる。
 タグペプチドとしては、Hisタグ、HAタグ、DDDDKタグ(FLAG(登録商標))等が挙げられる。また、タグタンパク質としては、Halo-tag(登録商標)等が挙げられる。
 粒子とリンカーとの結合部としては、リンカーの種類により種々のものが挙げられる。
 一例として、エフェクタータンパク質リシン残基のε-アミノ基、またはエフェクタータンパク質のN末端のα-アミノ基と結合させる場合、粒子側のリンカーとの結合に利用する構造としてはカルボキシ基、アルデヒド基等が挙げられる。
 また、例えば、エフェクタータンパク質に含まれるアミノ基と粒子に含まれるカルボキシ基をアミド結合させる場合には、N-ヒドロキシスクシンイミド(NHS)/水溶性カルボジイミド(WSC)による縮合反応を用いることができる。
 また別の一例として、エフェクタータンパク質のN末端に人工的に挿入されたHisタグと粒子とを結合させる場合には、リンカーとして抗Hisタグ抗体を用いることができる。この場合、粒子側リンカーとして、例えば粒子のカルボキシ基を用いて、抗Hisタグ抗体のアミノ基とNHS/WSCによる縮合反応により粒子表面に抗Hisタグ抗体を結合させる。これにより、エフェクタータンパク質N末端のHisタグと抗Hisタグ抗体との抗原抗体反応を用いて、エフェクタータンパク質を粒子に結合することができる。
 抗Hisタグ抗体以外にも、イミノジ酢酸やニトリロトリ酢酸等の金属キレートリガンドをリンカーとして粒子に結合させ、ニッケルイオン、コバルトイオンといった金属イオンを介した配位結合を形成させる。これにより、エフェクタータンパク質を粒子に固定化することができる。
 その他にもリンカーとしては、各種タグペプチド配列やタグタンパク質とそれに対する親和性部位、アビジンとビオチンとの複合体、各種官能基を末端にもつPEG等が挙げられる。また、エフェクタータンパク質と粒子表面との物理吸着等により結合することもできる。
 エフェクタータンパク質における粒子と結合する位置としては、エフェクタータンパク質の活性を阻害しない位置が好ましい。例えば、エフェクタータンパク質は、カルボキシ末端(C末端)側に活性部位が存在することが知られており、C末端側から離れた位置が好ましい。例えば、N末端はC末端側から離れており、かつ各種タグペプチドやタグタンパク質を挿入することができるため、特に好ましい。
 本発明において、エフェクタータンパク質とcrRNAとを結合して複合体を形成した後に、エフェクタータンパク質と粒子とを結合させて複合粒子を形成してもよい。また、エフェクタータンパク質と粒子とを結合した後に、そのエフェクタータンパク質にcrRNAを結合させて複合粒子を形成してもよい。
 粒子の材料としては、ポリマー樹脂(スチレン樹脂、アクリル樹脂等)粒子、シリカ粒子、レジン粒子、アガロース担体樹脂粒子、金属粒子、ラテックス粒子等が挙げられる。
 例えば、市販されている使用可能な粒子としては、Magnosphere(登録商標) MS300、Magnosphere(登録商標) MS160、PureProteome(登録商標) Nickel Magnetic Beads等が挙げられる。粒子の材料としては、鉄、ニッケル、およびマグネタイト等の常磁性体、強磁性体、超磁性体等を含む粒子を用いるのが好ましいが、それ以外でも構わない。磁性粒子を用いることで、磁場の印加により、エフェクタータンパク質の位置を制御することが容易となる。
 粒子の粒径は10nm以上であることが好ましく、1μm以上10μm以下であることがより好ましい。
 エフェクタータンパク質が粒子と結合しているとき、当該粒子の性質を使用して標的核酸を回収することが可能となる。即ち、本発明に係る核酸検出装置が有する分配部は、回収部を有してもよく、当該回収部は、粒子と結合したエフェクタータンパク質と、crRNAと、が結合して形成された複合粒子を用いて標的核酸を回収する。
 回収部において、試料より標的核酸を回収した後、元の試料よりも少ない容量の媒体中に分散することで、実質的に標的核酸を濃縮することも可能である。
 例えば、回収部を有することで、個別独立分離区画に充填されずに廃棄されてしまう標的核酸であっても、上記複合粒子を作用させることによって標的核酸を回収できる。回収後、標的核酸を捕捉した前記複合粒子を個別独立分離区画に充填することで、標的核酸を検出することができる。また、例えば、血液等の検体や水溶液に溶解する微量な標的核酸を上記複合粒子に捕捉し、回収することができる。
 また、例えば、標的核酸を含む試料が大容積の溶液であるとき、微小な個別独立分離区画に封入する前に、上記複合粒子により標的核酸を捕捉し、標的核酸を保持した複合粒子を個別独立分離区画の中に封入することができる。これにより、標的核酸の損失を抑えて、個別独立分離区画に分配することができ、高感度な標的核酸の検出が可能となる。
 また、粒子として磁性粒子を用いれば、磁気を利用することにより、簡便に標的核酸を回収することができる。
 (ブロッキング剤)
 検査試薬は、さらにブロッキング剤を含んでいてもよい。すなわち、粒子とエフェクタータンパク質とを結合させる際に、粒子のリンカー結合部のうちエフェクタータンパク質が結合しなかった部分を、ブロッキング剤で埋めることができる。例えば、エフェクタータンパク質や抗Hisタグ抗体のアミノ基と粒子のカルボキシ基とを、NHS/WSCを用いて縮合反応させる場合、粒子は、反応後に未反応のカルボキシ基を有し得る。そこで、エフェクタータンパク質と結合しなかったカルボキシ基をブロッキング剤としてのエタノールアミンやアミノ基を有するPEG等と反応させることができる。
 (個別独立分離区画)
 本発明に係る核酸検出装置は、個別独立分離区画においてCHRISPR-Cas技術のトランス切断反応を行う。標的核酸を含む試料を個別独立分離区画に分配することで、見かけ上、試料が濃縮された状態になり、増幅工程を経ずに標的核酸を検出すること、および、蛍光シグナルが飽和する時間を短縮することが可能となる。さらに、個別独立分離区画の1区画当たりの体積を十分に小さくすることで、1区画に含まれる標的核酸が1分子以下となるように設定することができ、蛍光シグナルが得られた区画の数をカウントすることで、試料中の標的核酸の濃度を算出することが可能となる。
 個別独立分離区画としては、液滴やウェルを使用することができる。液滴としては、油中水型エマルジョン(W/Oエマルジョン)を使用することが好ましい。また、ウェルとしては、例えば、図2Aおよび図2Bに示す構成のウェルプレートが有するウェルを用いることができる。
 図2Aはウェルプレート200の断面図であり、図2Bはエフェクタータンパク質とcrRNAとの複合体が粒子に結合した複合粒子206をウェル204に充填したウェルプレート200の断面図である。ウェルプレート200は下基板201と、上基板202と、注入口部(不図示)と、排出口部(不図示)とを備え、下基板201には疎水性の隔壁203が形成されている。下基板201には、複数のウェル204が隔壁203によって互いに隔てられている。
 下基板201は親水性表面を有していることが好ましく、下基板201の材料としては、例えば、ガラス、シリコン、高分子樹脂等を用いることができる。また、上基板202の表面(下基板201に対向する面)は疎水性であることが好ましい。隔壁203の材料としては、例えば、疎水性の樹脂、撥水性の樹脂、フッ素系高分子樹脂等を用いることができる。ウェル204の底面が親水性であり、隔壁203の上面が疎水性であることにより、溶液を効率よくウェル204の中に充填することができ、過剰の溶液を疎水性溶媒で除去する工程において疎水性溶媒がウェル204に入り込むことを防止できる。
 ウェル204は溶液を収容する凹部であり、互いに隔壁203によって隔てられている。ウェル204は、下基板201を底面としており、ウェル204の底面および側面によって囲まれた領域の形状は、例えば円柱形状、または角柱形状等であってもよい。図2Aおよび図2Bに示すウェルプレート200においては、ウェル204の深さは隔壁203の高さと同じである。
 ウェル204の形状が円柱形状である場合、ウェル204の直径は1μm以上11μm以下であり、ウェル204の深さは、0.1μm以上10μm以下であることが好ましい。また、ウェル204の直径は1μm以上7μm以下であり、ウェル204の深さは、1μm以上8μm以下であることがさらに好ましい。
 上基板202はウェル204の開口および隔壁203の上面に対して空間205を隔てて対向している。この空間205は各種の液体が流れる流路となっており、各種の液体は注入口部から排出口部へと向かって流れることができる。すなわち、ウェル204に溶液が充填された後、この空間205を疎水性溶媒で充填する。エフェクタータンパク質とcrRNAとの複合体が粒子に結合した複合粒子206を使用する場合、複合粒子206がウェル204に充填され、空間205を疎水性溶媒で充填する。疎水性溶媒としては、例えば、フッ素オイルや脂肪族炭化水素等を用いることができる。
 個別独立分離区画の体積は0.1fL以上1000fL以下であることが好ましく、0.5fL以上400fL以下であることがさらに好ましい。
 個別独立分離区画の体積が0.1fL以上であれば、当該体積を有する液滴やウェルを無理なく形成することができる。また、個別独立分離区画の体積が1000fL以下であれば検出時間を十分に短くすることができる。
 (分配部)
 個別独立分離区画が液滴である場合、分配部101は、例えば、乳化膜やマイクロ流路を有する。分配部101が乳化膜を有する場合、例えば、SPGテクノ社のSPG(シラス多孔質ガラス)膜等の直接膜乳化法やポンピング法を使用することにより、液滴を調製することができる。乳化膜を有する分配部101を用いる場合、例えば、アイソパーL(脂肪族炭化水素、エクソンモービル社製)とKF-6038(界面活性剤、信越化学社製)との組合せにおいて、0.6~12μm径の液滴を調製することができる。
 分配部101がマイクロ流路を有する場合、マイクロ流路としては、例えば、dolomite社のマイクロ流路等を使用することができる。マイクロ流路を有する分配部101を用いる場合、例えば、以下の2通りの組み合わせにおいて、2~10μm径の液滴を調製することができる。
 ・アイソパーL(脂肪族炭化水素、エクソンモービル社製)とKF-6038(界面活性剤、信越化学社製)との組合せ
 ・ミネラルオイル(脂肪族炭化水素)とSPAN-80(界面活性剤、東京化成社製)との組合せ
 個別独立分離区画がウェルである場合、分配部101は注入部を有し、ウェルプレートが有する注入口部から、例えば、ノズルを介して注入部を用いて溶液をウェルに注入する。
 分配部101において、標的核酸を含有する試料と、検出試薬とは、個別独立分離区画に分配される前に予め混合され、反応液として分配されても良いし、それぞれ個別に分配され、個別独立分離区画の中で混合されるようにしてもよい。均一に混合された反応液を容易に得ることができるため、標的核酸を含有する試料と、検出試薬とを、個別独立分離区画に分配する前に予め混合することが好ましい。
 (活性化部)
 活性化部102は、試料、crRNAの配列、およびエフェクタータンパク質の種類等に応じて、温度等の環境を適切に整えることで、crRNAを前記標的核酸に結合させ、これによりエフェクタータンパク質を活性化する。活性化部102としては、例えばインキュベーターを用いることができる。
 (蛍光生成部)
 蛍光生成部103は、試料、エフェクタータンパク質の種類、およびレポーター分子の種類等に応じて、温度等の環境を適切に整えることで、エフェクタータンパク質によりレポーター分子を改変し、蛍光を生成させる。蛍光生成部103としては、例えば、インキュベーターを用いることができる。
 活性化部102と蛍光生成部103とは、核酸検出装置において同一の構成部分であってもよい。
 (蛍光検出部)
 蛍光検出部104は、蛍光生成部103で生じた蛍光を検出する。蛍光検出部104としては、個別独立分離区画における蛍光を検出できる装置であれば、いかなる装置を用いることができるが、例えば、プレートリーダーや蛍光顕微鏡等が挙げられる。
 (特定部)
 特定部105において、抽出部106は、蛍光検出部104で得られた検出結果において、複数の個別独立分離区画に関する数および相対的位置関係の情報を抽出する。決定部107は、抽出部106で特定されたそれぞれの個別独立分離区画における蛍光強度を、蛍光検出部104で得られた検出結果に基づいて決定する。判定部108は、決定部107で決定した蛍光強度を基に、所定の閾値を超えた蛍光強度を有する個別独立分離区画を判定する。これにより、所定の閾値を超えた蛍光強度を有する個別独立分離区画が特定される。
 特定部105は、基準区画における蛍光強度と、個別独立分離区画における蛍光強度との比に基づいて、所定の閾値を超えた蛍光強度を有する個別独立分離区画を特定するように構成されていることが好ましい。さらに、基準区画における蛍光強度は、標的核酸を含まない試料と、検出試薬とを用いて取得された蛍光強度であることが好ましい。基準区画が標的核酸を含まないこと以外は、個別独立分離区画と同様にして、基準区画の蛍光強度を決定することができる。
 基準区画における蛍光強度と、個別独立分離区画における蛍光強度との比は、例えば、基準区画における蛍光強度を分母とし、個別独立分離区画の蛍光強度を分子として算出する。判定部108は、基準区画における蛍光強度と個別独立分離区画の蛍光強度との比が所定の閾値未満である場合、その個別独立分離区画の蛍光強度は基準区画と同等であるとみなし、ネガティブと判定する。また、判定部108は、基準区画における蛍光強度と個別独立分離区画の蛍光強度との比が所定の閾値以上である場合、その個別独立分離区画はポジティブと判定する。
 算出部109は、所定の閾値を超えた蛍光強度を有する個別独立分離区画について、特定されたその数を基に、試料中の標的核酸の濃度を算出する。試料中の標的核酸の濃度を算出しない場合は、特定部105は、算出部109を備えていなくてもよい。
 表示部110は、抽出部106、決定部107、判定部108、および算出部109で取得あるいは抽出された情報を表示する。記憶部111は、抽出部106、決定部107、判定部108、および算出部109で取得あるいは抽出されたデータ等を記憶する。
 本発明に係る核酸検出装置において、蛍光検出部104は、画像取得部であってもよい。図3は、上記の核酸検出装置10と同様の構成において、蛍光検出部104として画像取得部112を有する核酸検出装置20を示す機能ブロック図である。
 画像取得部112は、個別独立分離区画やエフェクタータンパク質とcrRNAとの複合体が粒子に結合した複合粒子を含む画像を取得する。画像取得部112で取得される画像は、蛍光生成部103で生成された蛍光を、画像情報として含む画像である。画像取得部112としては、例えば、蛍光顕微鏡を用いることができる。
 核酸検出装置20において、特定部105が有する抽出部106は、画像取得部112で取得された画像を基に、複数の個別独立分離区画について、数および相対的位置関係の情報を抽出することが好ましい。すなわち、核酸検出装置20において、特定部105は、画像取得部112で取得された画像を処理することにより、所定の閾値を超えた蛍光強度を有する個別独立分離区画を特定することが好ましい。
 例えば、抽出部106は、輝度情報を用いた領域抽出法を用いて個別独立分離区画についての情報を抽出する。特に、個別独立分離区画が液滴である場合、画像上の液滴に対応する領域は輪郭を有するため、抽出部106は、当該輪郭のエッジを閉曲線として抽出する処理を行ってもよい。また、抽出部106は、画像を輝度情報に基づいて2値化することで画像上の液滴に対応する領域を抽出してもよい。
 さらに、決定部107は、画像上のそれぞれの個別独立分離区画が有する輝度情報に基づいて、個別独立分離区画の蛍光強度を決定する。
 図4は、本発明に係る核酸検出装置10のハードウェア構成例を示すブロック図である。核酸検出装置10は、分配装置401、活性化装置402、蛍光生成装置403、蛍光検出装置404、および情報処理システム405を備える。情報処理システム405は、例えば、個別独立分離区画特定装置であり得る。
 分配装置401、活性化装置402、蛍光生成装置403、および蛍光検出装置404は、それぞれ分配部101、活性化部102、蛍光生成部103、および蛍光検出部104の機能を実行するための装置である。
 情報処理システム405は、コンピュータの機能を有する。例えば、情報処理システム405は、デスクトップPC(Personal Computer)、ラップトップPC、タブレットPC、スマートフォン等と一体に構成されていてもよい。情報処理システム405は所定の閾値を超えた蛍光強度を有する個別独立分離区画を特定する機能を備える。また、情報処理システム405はさらに、所定のプログラムに従って分配装置401、活性化装置402、蛍光生成装置403、および蛍光検出装置404の動作を制御する機能を有していてもよい。
 情報処理システム405は、演算および記憶を行うコンピュータとしての機能を実現するため、CPU(Central Processing Unit)406、RAM(Random Access Memory)407、ROM(Read Only Memory)408およびHDD(Hard Disk Drive)409を備える。また、情報処理システム405は、通信I/F(インターフェース)410、表示装置411、および入力装置412を備える。CPU406、RAM407、ROM408、HDD409、通信I/F410、表示装置411、および入力装置412は、バス413を介して相互に接続される。なお、表示装置411および入力装置412は、これらの装置を駆動するための不図示の駆動装置を介してバス413に接続されてもよい。
 図4では、情報処理システム405を構成する各部が一体の装置として図示されているが、これらの機能の一部は外付け装置により構成されていてもよい。例えば、表示装置411および入力装置412は、CPU406等を含むコンピュータの機能を構成する部分とは別の外付け装置であってもよい。
 CPU406は、RAM407、HDD409等に記憶されたプログラムに従って所定の動作を行うとともに、情報処理システム405の各部を制御する機能をも有する。RAM407は、揮発性記憶媒体から構成され、CPU406の動作に必要な一時的なメモリ領域を提供する。ROM408は、不揮発性記憶媒体から構成され、情報処理システム405の動作に用いられるプログラム等の必要な情報を記憶する。HDD409は、不揮発性記憶媒体から構成され、個別独立分離区画の数や位置に関する情報、蛍光強度等の記憶を行う記憶装置である。
 通信I/F410は、Wi-Fi(登録商標)、4G等の規格に基づく通信インターフェースであり、他の装置との通信を行うためのモジュールである。表示装置411は、液晶ディスプレイ、OLED(Organic Light Emitting Diode)ディスプレイ等であって、動画、静止画、文字等の表示に用いられる。入力装置412は、ボタン、タッチパネル、キーボード、ポインティングデバイス等であって、利用者が情報処理システム405を操作するために用いられる。表示装置411および入力装置412は、タッチパネルとして一体に形成されていてもよい。
 なお、図4に示されているハードウェア構成は例示であり、これら以外の装置が追加されていてもよく、一部の装置が設けられていなくてもよい。また、一部の装置が同様の機能を有する別の装置に置換されていてもよい。さらに、一部の機能がネットワークを介して他の装置により提供されてもよく、本実施形態を構成する機能が複数の装置に分散されて実現されるものであってもよい。例えば、HDD409は、フラッシュメモリ等の半導体素子を用いたSSD(Solid State Drive)に置換されていてもよく、クラウドストレージに置換されていてもよい。
 CPU406は、ROM408等に記憶されたプログラムをRAM407にロードして実行することにより、抽出部106、決定部107、判定部108、および算出部109の機能を実現する。また、CPU406は、表示装置411を制御することにより表示部110の機能を実現する。また、CPU406は、HDD409を制御することにより記憶部111の機能を実現する。
 なお、本発明に係る核酸検出装置20のハードウェア構成例としては、上記の核酸検出装置10のハードウェア構成例において、画像取得部112の機能を実行するための画像取得装置を蛍光検出装置404として有する例が挙げられる。それ以外は、核酸検出装置20のハードウェア構成は、核酸検出装置10と同様とすることができる。
 次に、これまで述べてきた核酸検出装置において実行される、本発明に係る核酸の検出方法について説明する。図5は、本発明に係る核酸の検出方法の流れを示すフローチャートである。
 本発明に係る核酸の検出方法は、標的核酸を含有する試料と、エフェクタータンパク質、前記標的核酸に結合するcrRNAおよびレポーター分子を含む検出試薬とを複数の個別独立分離区画に分配する分配工程S101と;前記crRNAの前記標的核酸への結合によって前記エフェクタータンパク質を活性化する活性化工程S102と;活性化された前記エフェクタータンパク質によって前記レポーター分子を改変して蛍光を生成する蛍光生成工程S103と;蛍光を検出する蛍光検出工程S104と;前記個別独立分離区画の蛍光強度を決定し、所定の閾値を超えた蛍光強度を有する個別独立分離区画を特定する特定工程S105と;を有する。
 エフェクタータンパク質が、粒子と結合しているとき、上記分配工程は、粒子と結合したエフェクタータンパク質と、crRNAと、が結合して形成された複合粒子を用いて標的核酸を回収する回収工程を含むことができる。
 以下、個別独立分離区画が液滴である場合と、個別独立分離区画がウェルである場合とについて、本発明に係る核酸の検出方法の具体的な例を示す。
 図6は、個別独立分離区画が液滴である場合の、本発明に係る核酸の検出方法の流れを示すフローチャートである。
 (工程S201)
 試料と検出試薬を含む液滴を調製する。液滴としては、油中水型エマルジョンが好ましい。
 (工程S202)
 試料と検出試薬とを含む液滴をチューブに入れ、インキュベーターにて37℃でインキュベートする。但し、反応温度は任意に設定でき、37℃に限定されない。
 このインキュベートによって、CHRISPR-Casのトランス切断反応が進行し、レポーター分子が有する蛍光物質から蛍光が生じる。
 (工程S203)
 予め設定された反応時間でインキュベートを終了し、液滴を観察室に充填する。観察室としては、沈渣用プレートが好ましい。
 (工程S204)
 蛍光顕微鏡を用い、観察室に充填された各液滴の蛍光画像を取得する。蛍光顕微鏡に取り付けられたCCDカメラ等の撮像装置を使用して液滴の蛍光画像を取得する。液滴の蛍光画像の取得により蛍光が検出されることになる。
 (工程S205)
 蛍光の検出結果に基づいて、液滴の蛍光強度を決定し、所定の閾値を超えた蛍光強度を有する液滴を特定する。
 所定の閾値を超えた蛍光強度を有する液滴は、基準液滴における蛍光強度と、試料と検出試薬を含む液滴における蛍光強度との比に基づいて特定することができる。基準液滴における蛍光強度とは、標的核酸を含まず、検出試薬を含む液滴について取得した蛍光強度を意味する。
 液滴の蛍光強度は、撮像装置で撮像された液滴の蛍光画像に対して所定の画像処理を行うことにより決定される。例えば、画像処理ソフトとしてImage J(アメリカ国立衛生研究所製)等を使用することにより、液滴の蛍光強度を決定することができる。
 図8Aは、基準液滴の蛍光画像(グレースケール画像)を示す模式図であり、図8Bは、図8Aで示す蛍光画像を所定の画像処理により二値化して蛍光強度を決定した画像を示す模式図である。また、図8Cは、試料と検出試薬とを含む液滴の蛍光画像(グレースケール画像)を示す模式図であり、図8Dは、図8Cで示す蛍光画像を所定の画像処理により二値化して蛍光強度を決定した画像を示す模式図である。所定の画像処理は、蛍光画像を輝度情報に基づいて二値化する機能を有する。
 ネガ液滴801は、標的核酸を含まない液滴であり、レポーター分子が有する蛍光物質に由来する蛍光を生じない液滴である。また、ポジ液滴802は、標的核酸を含む液滴であり、レポーター分子が有する蛍光物質に由来する蛍光を生じる液滴である。所定の画像処理を用いて、蛍光画像(グレースケール画像)を二値化することで、各液滴の蛍光強度を決定することができる。
 (工程S206)
 工程S202におけるインキュベートでのトランス切断反応の後、蛍光を生じている液滴の数から標的核酸の濃度を算出する。試料に含まれている標的核酸の数が多い場合は、ひとつの液滴に2分子以上の標的核酸が含まれる可能性がある。そのため、標的核酸の分子数と、蛍光を生じている液滴の数とが一致しない場合がある。
 上記の理由から、標的核酸の濃度は、ポアソン分布を考慮した計算により算出することが好ましい。ポアソン分布では、ひとつの液滴あたりの平均分子数をλとしたとき、蛍光を生じる液滴の割合P(k)を以下の式(1)で表すことができる。
 P(k)=(λk/k!)e-λ (k=0、1、2、・・・) ・・・式(1)
 蛍光を生じている液滴の数から、P(k)を求めることができ、λを算出することができる。従って、式(1)を用いることで、全ての液滴のうち、蛍光が検出された液滴の数から、標的核酸の濃度を算出することができる。
 図7は、個別独立分離区画がウェルである場合の、本発明に係る核酸の検出方法の流れを示すフローチャートである。
 (工程S301)
 ウェルプレートとしては、図2Aおよび図2Bに示すウェルプレート200を用いる。ウェルプレート200は、注入口部(不図示)と排出口部(不図示)が開放されており、試料と検出試薬とからなる反応液を注入口部から空間205に送液する。
 (工程S302)
 反応液をウェル204に充填する。反応液の充填方法としては、例えば、ウェルプレート200を減圧下に放置し、空間205を脱気する方法が挙げられる。具体的には、0.1気圧の減圧デシケーター内にウェルプレート200を所定時間放置することが好ましい。脱気を行なうことにより、ウェル204内の空気が除去され、反応液をウェル204に効率良く充填することができる。脱気時間は特に限定されず、任意に設定することができる。反応液の充填方法は、脱気による方法に限定されない。
 (工程S303)
 空間205に疎水性溶媒を送液して封止する。すなわち、ウェル204の上部の空間205に存在する反応液を疎水性溶媒で置換する。疎水性溶媒としては、例えば、フッ素系オイル、飽和脂肪族炭化水素、不飽和脂肪族炭化水素、芳香族炭化水素、およびシリコーンオイル等を用いることができる。フッ素系オイルとしては、例えば、フロリナート(3M社製)、アサヒクリンAE-3000(AGC社製)、フォンブリン(ソルベイ社製)等を挙げることができる。飽和炭化水素としては、例えば、アイソパー(エクソンモービル社製)やミネラルオイル等を挙げることができる。
 (工程S304)
 反応液が充填されたウェルプレート200をインキュベーターにて37℃でインキュベートする。但し、反応温度は任意に設定でき、37℃に限定されない。
 このインキュベートによって、CHRISPR-Casのトランス切断反応が進行し、レポーター分子が有する蛍光物質に由来する蛍光が生じる。
 (工程S305)
 予め設定された反応時間でインキュベートを終了し、蛍光顕微鏡を用いて各ウェル204の蛍光画像を取得する。
 (工程S306)
 ウェル204の蛍光強度を決定し、所定の閾値を超えた蛍光強度を有するウェル204を特定する。所定の閾値を超えた蛍光強度を有するウェル204は、基準ウェルにおける蛍光強度と、試料と検出試薬とを含むウェル204における蛍光強度との比に基づいて特定することができる。基準ウェルにおける蛍光強度とは、標的核酸を含まず、検出試薬を含むウェル204について取得した蛍光強度を意味する。
 各ウェル204の蛍光強度の決定には、所定の画像処理を用いる。画像処理ソフトとして、前述したようなImage Jを使用することができ、個別独立分離区画が液滴である場合と同様の操作によって各ウェル204の蛍光強度を決定することができる。
 (工程S307)
 個別独立分離区画が液滴である場合と同様の操作によって、標的核酸の濃度を算出することができる。
 (その他の工程)
 本実施形態における核酸の検出方法は、上記に挙げる工程以外のその他の工程を含んでいてもよい。
 その他の工程の例としては、基準となる蛍光画像(以下、基準蛍光画像と略す)を取得する工程が挙げられる。
 例えば、核酸を検出するための蛍光物質以外の物質に由来する蛍光が、S204やS305において取得される蛍光画像に含まれる場合には、核酸の濃度が正しく算出されない可能性がある。核酸を検出するための蛍光物質以外に由来する蛍光としては、例えばウェルにより発せられる蛍光等が考えられる。
 この場合、基準蛍光画像を取得する工程において基準蛍光画像を取得するタイミングは、核酸の存在により上記レポーター分子が切断されて蛍光が発せられる前であればよい。例えば、試料あるいは検出試薬がウェルや液滴に充填される前、ウェルや液滴といった個別独立分離区画をシーリングするシーリングオイルの充填前、または、S202やS304のインキュベートが行われる前(加熱が行われる前)に基準蛍光画像を取得できる。また、基準蛍光画像を取得するタイミングが、検出試薬がウェルや液滴に充填された後、かつインキュベートが行われる前(加熱が行われる前)である場合、ウェルや液滴に検出試薬の充填を開始した時刻から所定時間後に基準蛍光画像を取得してもよい。基準蛍光画像を取得するタイミングを、インキュベートが行われる前(加熱が行われる前)とする場合は、駆動信号を受信した加熱手段が、加熱動作を開始する前に基準蛍光画像を取得してもよい。また、ウェルや液滴への試料や検出試薬の充填の状態を監視する手段を用いることで基準蛍光画像を取得するタイミングを決めてもよい。
 基準蛍光画像は、S204やS305の工程で得られた蛍光画像において、各ウェルや各液滴における核酸の存在に基づく蛍光の強度を算出する上での基準とすることができる。すなわち、予め取得しておいた基準蛍光画像の蛍光強度から、どの程度、蛍光強度が大きくなったかを算出すれば、ウェルや液滴中の核酸を検出するための蛍光物質以外の成分に由来する蛍光の強度を除外することができる。これにより、核酸を検出するための蛍光物質に由来する蛍光強度をより正確に得ることができる。そして、例えば、S204やS305の工程で得られた蛍光画像について、対象のウェルや液滴の画素値(蛍光強度)が所定の閾値以上であるか、あるいは所定の閾値未満であるかをより正しく判定することができる。この所定の閾値は、当該ウェルの数又は液滴の数の判定に先立って決定されていればよい。たとえば、この所定の閾値は、核酸検出装置に固定された値であってもよいし、ユーザの入力により設定される値であってもよい。なお、所定の閾値以上であると判定されることをポジ判定されると言うことができ、所定の閾値未満であると判定されることをネガ判定されると言うことができる。
 また、例えば、ウェルや液滴、またはそれらへの充填動作の不備等により、充填する試料や検出試薬が充填されていない状態を検知するために、基準蛍光画像を取得しても良い。この場合、例えば、核酸の検出に用いられる蛍光物質とは異なる波長の光を発する物質(以下、基準物質と呼ぶ)をウェルや液滴に充填して、蛍光画像を取得し蛍光分布を取得してもよい。ここで、基準物質の発光波長(蛍光波長)の中心波長と、核酸の検出に用いられる蛍光物質の発光波長(蛍光波長)の中心波長との差は、30nm以上であることが好ましく、50nm以上であることがより好ましく、100nm以上であることがさらに好ましい。
 基準蛍光画像を取得した結果、蛍光が検出されない場合、最初の工程からやり直しても良いし、エラー表示をしてもよいし、蛍光が検出されないウェルの数や液滴の数に応じて、やり直しをするか、測定を続行するかが決定されるようにしてもよい。蛍光が検出されないウェルの数や液滴の数が所定の閾値以下の場合は、当該ウェルや液滴の蛍光のカウントをしないことにしてもよい。この所定の閾値は、当該ウェルの数又は液滴の数の判定に先立って決定されていればよい。たとえば、この所定の閾値は、核酸検出装置に固定された値であってもよいし、ユーザの入力により設定される値であってもよい。また、例えば、本実施形態における核酸の検出方法を実施させる核酸検出装置において、基準蛍光画像を取得した結果、蛍光が検出されない場合の動作について、ユーザが適宜選択することができるようにしてもよい。
 本実施形態における核酸の検出方法を実施させる核酸検出装置においては、上記の基準蛍光画像を取得する工程を有するモードと、基準蛍光画像を取得する工程を有しないモードとを切り替えられるようにしてもよい。
 上記の通り、基準蛍光画像を取得する工程について、本実施形態に係る核酸の検出方法で説明を行ったが、上記本実施形態に係る核酸検出装置に適用することも可能である。この場合、本実施形態に係る核酸検出装置における蛍光検出部や画像取得部を用いて基準蛍光画像を取得してもよいし、その他の手段(例えば、基準蛍光画像取得部)によって基準蛍光画像を取得してもよい。
 本発明に係るプログラムは、上記に記載の核酸の検出方法を核酸検出装置に実行させるために、核酸検出装置が有するコンピュータに実行させるためのプログラムである。
 以下、実施例により本発明をさらに詳細に説明するが、本発明は以下に示す実施例に限定されるものではない。
 実施例1
 (試薬の調製)
 ・Cas12a原液(400nM)の調製 
 Cas12aとしてEnGen LbaCas12a(Cpf1)(商品名:M0653T、NEB社製、100μM)(以下、単にCas12aという)を用いた。Cas12aをnuclease free water(商品名:B1500S、NEB社製)(以下、単に精製水という)で希釈し、Cas12a原液(400nM)を調製した。
 ・crRNA原液(500nM)の調製
 crRNAとしてLb.Cas12a-crRNA1(カスタム品、SIGMA社製、100μM)(以下、単にcrRNAという)を用いた。crRNAを精製水で希釈し、crRNA原液(500nM)を調製した。
 crRNAの塩基配列を以下に示す(配列番号1)。
 uaauuucuacuaaguguagaugucuggccuuaauccaugcc
 ・DNA溶液の調製
 標的核酸として、合成DNA(以下、DNA_113bpという)を用いた。DNA_113bpを精製水で希釈してDNA原液(4nM)を調製し、Qubit 2.0 Fluorometer (ライフテクノロジーズ社製)で濃度を計測して確認した。
 DNA原液(4nM)を精製水で希釈し、DNA溶液(0.684nM)(終濃度0.171nMとなる)を調製した。さらにDNA溶液(0.684nM)から精製水で1/3の段階希釈を行い、DNA溶液1(0.228nM)、DNA溶液2(0.076nM)、DNA溶液3(0.025nM)を調製した。
 DNA_113bpの塩基配列を以下に示す(配列番号2)。
 ctcacgccttatgactgcccttatgtcaccgcttatgtctcccgatatcacacccgttatctcagccctaatctctgcggtttagtctggccttaatccatgcctcatagcta
 ・レポーター分子溶液(12μM)の調製
 レポーター分子として、市販のキット(商品名:DNaseAlert(登録商標) Substrate Nuclease Detection System 11-02-01-04、IDT社製)に含まれるレポーター分子を用いた。このレポーター分子は、蛍光物質であるHEXと、消光剤とを有する。
 後述する液滴を確認するための標準蛍光物質として用いるHiLyte(登録商標)Fluor488(AnaSpec社)を精製水に溶解し、標準蛍光物質溶液(800nM)を調製した。レポーター分子は、上記のキットに含まれるレポーター分子含有チューブ1本につき50pmol含まれている。このレポーター分子含有チューブ12本を使用し、12本分のレポーター分子を、50μLの標準蛍光物質溶液(800nM)に溶解した。これにより、レポーター分子溶液(12μM)を調製した。
 (液滴形成用サンプルの調製)
 個別独立分離区画としての液滴を形成するためのサンプル1~4を調製した。
 具体的には、まず、Cas12a原液(400nM):20μL、crRNA原液(500nM):20μL、および上記で調製した各濃度のDNA溶液1~3:40μLを混合した。ここで、サンプル1の調製ではDNA溶液の代わりに精製水を用いた。得られた混合溶液を37℃で30分間反応させ、Cas12a-crRNA-DNA複合体の形成を誘導した。
 次に、レポーター分子溶液(12μM)20μLと、以下に示す組成の4×Binding buffer20μLとをあらかじめ1.5mLマイクロチューブ内で混合した。
 4×Binding bufferの組成:80mM Tris-HCl(pH7.6)、400mM KCl、20mM MgCl、4mM ジチオトレイトール(DTT)、20% グリセロール、200μg/mL ヘパリン
 この混合溶液に、上記で混合および反応させた溶液40μLを加えて液滴形成用のサンプルとした。
 上記で調製した液滴形成用のサンプル1~4に含まれるDNA_113bpの濃度を以下に示す。
 サンプル1:0pM
 サンプル2:6.3pM
 サンプル3:19pM
 サンプル4:57pM
 また、液滴形成用のサンプル1~4に含まれるDNA以外の成分の濃度はそれぞれ、Cas12a:50nM、crRNA:62.5nM、レポーター分子:3μM、HiLyte488:200nMである。
 (液滴の調製)
 液滴は、上記で調製した液滴形成用のサンプル1~4を用い、SPG乳化膜のポンピング法により調製した。分散相および連続相を以下に示す。
 ・分散相:各液滴形成用のサンプル1~4 80μL
 ・連続相:界面活性剤(商品名:KF-6038、信越化学社製)を、4%の濃度で溶解した脂肪族炭化水素(商品名:IsoparL、エクソンモービル社製) 2.5mL
 SPG乳化膜としてはSPGポンピングコネクター(孔径20μm、SPGテクノ社製)を用い、ポンピング回数は10回とした。これにより直径約5μm(体積約65fL)の液滴が得られた。
 (蛍光顕微鏡観察)
 上記で調製した液滴を37℃でインキュベートして反応させ、蛍光の生成を促した。その後、沈渣用プレート(商品名:MUR-300、松浪硝子工業社製)に充填し、蛍光顕微鏡(商品名:ECLIPS TE2000-U、ニコン社製)にて観察した。
 各蛍光物質に由来する蛍光の観察を以下の条件で行い、蛍光画像を取得した。
 HEX:ex533nm、em559nm、EMゲイン250
 標準蛍光物質(HiLyte(登録商標)Fluor488):ex499nm、em523nm、EMゲイン250
 図9A~図9Dは、各サンプルを用いて調製した液滴を6時間反応させた後に取得した蛍光顕微鏡画像を示す図である。図9Aはサンプル1、図9Bはサンプル2、図9Cはサンプル3、図9Dはサンプル4についてそれぞれ取得した蛍光顕微鏡画像を示す。
 図10A~図13Bは、それぞれサンプル1~4について液滴の蛍光の経時変化を示す図である。図10A、図11A、図12A、および図13Aはそれぞれレポーター分子に由来するHEXの蛍光と、レポーター分子のバックグラウンドの蛍光とを共に含む蛍光顕微鏡画像を示す。また、図10B、図11B、図12B、および図13Bはそれぞれ標準蛍光物質の蛍光を含む蛍光顕微鏡画像を示す。
 図10B、図11B、図12B、および図13Bに示すように、標準蛍光物質の蛍光を基に液滴を確認することができた。また、図11A、図11B、図12A、図12B、および図13A、図13Bに示すように、HEXの蛍光が観察された液滴では、標準蛍光物質の蛍光も観察されていることがわかる。このことから、液滴内に試料と検出試薬が充填され、Cas12aのトランス切断反応が機能したことが確認された。
 また、図9A~図13Bに示すように、DNA濃度の増加に応じてポジ液滴数が増加することが確認された。
 例えば特許文献1に記載の図51に示されるように、従来技術では増幅工程を経ることなく、CHRISPR-Cas技術により6.3pMという低濃度の標的核酸を検出することは難しかった。上記の実施例の結果より、本発明においては6.3pMの濃度の標的核酸を増幅工程を経ることなく検出することが可能であることが示された。
 次に、上記の実施例で得られた蛍光顕微鏡画像を用い、各液滴の蛍光強度を決定し、所定の閾値を超えた蛍光強度を有する液滴を特定した。
 サンプル1について得られた液滴を基準液滴とし、所定の閾値を超えた蛍光強度を有する液滴を、基準液滴における蛍光強度と試料と検出試薬を含む液滴における蛍光強度との比に基づいて特定した。ここで、試料と検出試薬を含む液滴における蛍光強度は、サンプル2~4について得られた各液滴の蛍光強度である。
 具体的には、所定の画像処理(画像処理ソフト)を使用し、各液滴の蛍光強度を決定した。反応6時間後のサンプル1について得られた各液滴(ネガ液滴)の蛍光強度は100であった。また、反応6時間後のサンプル2~4について得られた各液滴におけるポジ液滴の蛍光強度は200~250の範囲内であった。サンプル2~4について得られた各液滴の蛍光強度と、基準液滴であるサンプル1について得られた液滴の蛍光強度との比をとり、また、閾値を2とし、上記の比が2を超える液滴をポジ液滴として特定した。
 さらに、上記式(1)を用いて、全液滴数と、所定の閾値を超えた蛍光強度を有する液滴数とから、標的核酸の濃度を算出することができる。
 実施例2
 (ウェルの作製)
 図2Aおよび図2Bに示したウェル204を、CYTOP塗布工程、フォトリソグラフィ工程、エッチング・レジスト除去工程を経て作製した。
 CYTOP塗布工程では、下基板201として石英基板(合成石英基板AQグレード、厚さ1mm、AGC社製)を使用し、シランカップリング剤(KBE-903、信越シリコーン社製)で処理した後、CYTOP(CTL-809A、AGC社製)を塗布した。
 フォトリソグラフィ工程では、ポジ型のフォトレジスト(AZ P4903、AZ Electronic Materials)を塗布した。次に、目的のパターンのフォトマスクを介して上部からUVを露光し、アルカリによる現像処理を行なった。この現像処理によりUVが照射された部分のみ、フォトレジストが溶解して疎水性の樹脂層がむき出しになった。
 エッチング・レジスト除去工程では、一部が溶解したフォトレジストを介して酸素プラズマによるエッチングで樹脂層の一部を除去して疎水性の隔壁を形成した。
 最後に、有機溶媒でフォトレジストを溶解させることによって目的とするウェル204を形成した。ウェル204の直径は5μm、深さは4μm、ピッチは10μm、ウェル数は約100万個であった。
 (ウェルプレートの作製)
 図2Aおよび図2Bに示したウェルプレート200を、上述したウェル204が形成された下基板201と、上基板202と、注入口部(不図示)と、排出口部(不図示)とを備えるように作製した。上基板202としてポリカーボネート(厚さ1mm)を使用し、上基板202はウェル204の開口および隔壁203の上面に対して空間205を隔てて対向させた。隔壁203の上面から上基板202までの空間205の距離は250μmであった。
 (ウェル用反応液の調製)
 ウェル204に充填するための反応液を調製した。具体的には、まず、Cas12a原液(400nM):15μL、crRNA原液(500nM):15μL、およびDNA溶液3(0.025μM):30μLを混合した。得られた混合溶液を37℃で30分間反応させ、Cas12a-crRNA-DNA複合体の形成を誘導した。
 次に、800nMのHiLyte488を含むレポーター分子溶液(12μM):25μL、Tween20(5%):10μL、BSA(30%):1μL、精製水:4μL、10×Binding buffer:10μLとをあらかじめ1.5mLマイクロチューブ内で混合した。この混合溶液に、上記で混合および反応させた溶液50μLを加えてウェル用反応液とした。DNAの終濃度は6.3pMであった。
 (ウェルへの反応液の充填)
 反応液は上基板202上の注入口部から注入し、反応液がウェル204上を覆うように送液した。次に、ウェルプレート200を減圧下に放置し、空間205を脱気してウェル内に反応液を充填した。その後、空間205に疎水性溶媒を送液して封止した。疎水性溶媒として、フッ素系オイルであるアサヒクリンAE-3000(AGC社製)とフォンブリンY-25(ソルベイ社製)とを使用した。
 (蛍光顕微鏡観察)
 上記で調製したウェルプレートを37℃でインキュベートして反応させ、蛍光の生成を促した。その後、蛍光顕微鏡にて観察した。
 各蛍光物質に由来する蛍光の観察を以下の条件で行い、蛍光画像を取得した。
 HEX:ex533nm、em559nm、EMゲイン210
 標準蛍光物質(HiLyte(登録商標)Fluor488):ex499nm、em523nm、EMゲイン210
 図14A~図14Dは、ウェルの蛍光顕微鏡画像を示す図である。図14Aは反応2時間後における、レポーター分子に由来するHEXの蛍光と、レポーター分子のバックグラウンドの蛍光とを共に含む蛍光顕微鏡画像を示す。また、図14Bは反応2時間後における、標準蛍光物質の蛍光を含む蛍光顕微鏡画像を示す。また、図14Cは反応19時間後における、レポーター分子に由来するHEXの蛍光と、レポーター分子のバックグラウンドの蛍光とを共に含む蛍光顕微鏡画像を示す。また、図14Dは反応19時間後における、標準蛍光物質の蛍光を含む蛍光顕微鏡画像を示す。
 図14Bおよび図14Dに示すように、標準蛍光物質の蛍光を基にウェルを確認することができた。また、図14A~図14Dに示すように、HEXの蛍光が観察されたウェルでは、標準蛍光物質の蛍光も観察されていることがわかる。このことから、ウェル内に試料と検出試薬が充填され、Cas12aのトランス切断反応が機能したことが確認された。
 また、特許文献1に記載の図51に示されるように、従来技術では増幅工程を経ることなく、CHRISPR-Cas技術により6.3pMという低濃度の標的核酸を検出することは難しかった。上記の実施例の結果より、本発明においては6.3pMの濃度の標的核酸を増幅工程を経ることなく検出することが可能であることが示された。
 次に、上記の実施例の反応19時間後の蛍光顕微鏡画像に対して所定の画像処理(画像処理ソフト)を行って、図15に示すヒストグラムを得た。
 図15に示すヒストグラムでは、蛍光強度を一定値毎に区切って得た、蛍光強度のそれぞれの画分に含まれる蛍光強度を示したウェルの数を示している。
 このヒストグラムにおいて、図15に示すようにカウント数が極大値を示した区分に対応する3つのピークA、B、Cが観察された。このうち最も小さい蛍光強度のピークAは、レポーター分子のバックグラウンドの蛍光に起因するものである。
 また、ピークBの区分にあるウェルをポジのウェルB、ピークCの区分にあるウェルをポジのウェルCとして特定した。ポジのウェルBとポジのウェルCとの蛍光強度を比較すると、ポジのウェルCの蛍光強度の方が強いことから、ポジのウェルBにはひとつのウェルに1個のDNAが充填されており、ポジのウェルCにはひとつのウェルに2個のDNAが充填されていると考えられる。
 さらに、全ウェル数と、ヒストグラムから特定したポジのウェル数とから、上記式(1)を用いて、標的核酸の濃度を算出することができる。
 実施例3
 (ウェル用反応液の調製)
 ウェル204に充填するための反応液を調製した。具体的には、まず、Cas12a原液(400nM):20μL、crRNA原液(500nM):20μL、およびDNA溶液1(0.228μM):40μLを混合した。得られた混合溶液を37℃で30分間反応させ、Cas12a-crRNA-DNA複合体の形成を誘導した。
 次に、800nMのHiLyte488を含むレポーター分子溶液(12μM):25μL、Tween20(5%):10μL、BSA(30%):1μL、スペルミン水溶液(50mM):4μL、10×Binding buffer:10μLとをあらかじめ1.5mLマイクロチューブ内で混合した。この混合溶液に、上記で混合および反応させた溶液50μLを加えてウェル用反応液とした。DNAの終濃度は57pMであった。
 (ウェルへの反応液の充填)
 ウェルへの反応液の充填は実施例2と同様の操作方法によって行った。
 (蛍光顕微鏡観察)
 上記で調製したウェルプレートを37℃でインキュベートして反応させ、蛍光の生成を促した。その後、蛍光顕微鏡にて観察した。
 各蛍光物質に由来する蛍光の観察を以下の条件で行い、蛍光画像を取得した。
 HEX:ex533nm、em559nm、EMゲイン210
 標準蛍光物質(HiLyte(登録商標)Fluor488):ex499nm、em523nm、EMゲイン210
 図16Aおよび図16Bは、0.5時間反応させた後に取得した蛍光顕微鏡画像を示す図である。図16Aはレポーター分子に由来するHEXの蛍光と、レポーター分子のバックグラウンドの蛍光とを共に含む蛍光顕微鏡画像を示す。また、図16Bは標準蛍光物質の蛍光を含む蛍光顕微鏡画像を示す。
 図16Bに示すように、標準蛍光物質の蛍光を基にウェルを確認することができた。また、図16Aおよび図16Bに示すように、HEXの蛍光が観察されたウェルでは、標準蛍光物質の蛍光も観察されていることがわかる。このことから、ウェル内に試料と検出試薬が充填され、Cas12aのトランス切断反応が機能したことが確認された。
 また、スペルミンを含む反応液を用いた実施例3では、0.5時間でHEXの蛍光を観察することができた。一方、実施例2では、0.5時間後ではHEXの蛍光を確認できなかった。このことから、検出試薬がスペルミンを含むことでCas12aのトランス切断反応が促進され、アミノ化合物を含まない検出試薬を用いた実施例2よりも検出時間を短縮できることが確認された。
 実施例4
 (Cas12aとcrRNAとの複合体が粒子に結合した複合粒子の作製)
 まず、磁性粒子(Magnosphere(登録商標)MS300/Carboxyl)分散液をマイクロチューブに入れて磁性粒子を磁石で沈殿させた。上清を除去した後に、磁性粒子ペレットにMES緩衝液(100mM、pH5.4)を加えて再度分散させ、N-ヒドロキシスルホスクシンイミド(sulfo-NHS)、および、水溶性カルボジイミド(WSC)を加えた。その後、25℃で1時間攪拌し、磁石で磁性粒子を回収した。
 続いて、回収した磁性粒子をMES緩衝液で洗浄し、MES緩衝液で分散させて、任意の量の抗Hisタグ抗体(Anti-His-tag mAb、MBLライフサイエンス社)を加えた。その後、25℃で2時間攪拌した。
 続いて大過剰のエタノールアミンを添加して磁性粒子表面の活性基を失活させた。磁石で磁性粒子を回収し、回収した磁性粒子をMES緩衝液で洗浄して、抗体固定化粒子を作製した。
 得られた抗体固定化粒子にストレージバッファー(10mM HEPES-NaOH(pH7.9)、50mM KCl、1mM EDTA、10%グリセロール)を添加し、抗体固定化粒子液を調製した。抗体固定化粒子液は使用時まで4℃で保存した。
 次に、希釈したCas12aとcrRNAを1:1.25の濃度比(モル比)になるように混合し、37℃で30分間インキュベートし、Cas12a-crRNA複合体を作製した。
 また、作製した抗体固定化粒子液(1wt%)を2mLサンプルチューブ(VIOLAMO製、型番:1-1600-04)に分取した。攪拌後、磁性スタンド(マジカルトラッパー、TOYOBO製、型番:MGS-101)にサンプルチューブを立て、1分間静置したのち上清を除去することにより、溶液除去を行った。粒子洗浄液として0.05%Tween20含有PBS(PBS-T)を加え、攪拌後、上記と同様にして溶液を除去した。以上の操作を2度繰り返して洗浄した。
 洗浄後の抗体固定化粒子をPBS-Tに懸濁し、上記で調製したCas12a-crRNA溶液を任意の濃度になるように添加し、攪拌後、振とう機で1時間反応させた。ここで、用いたCas12aはN末端にHisタグを有することから、Cas12が有するHisタグと、抗体固定化粒子が有する抗Hisタグ抗体との抗原抗体反応によりCas12aと抗体固定化粒子とが結合される。これによりCas12aとcrRNAとの複合体が粒子に結合した複合粒子を作製した。
 反応後に溶液を除去し、PBS-Tで洗浄操作を行った。洗浄後、精製水に懸濁し、攪拌後、使用時まで4℃で保存した。
 (ウェル用反応液の調製)
 ウェル204に充填するための反応液を調製した。具体的には、まず、上記で作製した複合粒子(3.1×10個/mL):7.3μL、水:22.7μL、およびDNA溶液1(0.228μM):30μLを混合した。得られた混合溶液を37℃で30分間反応させ、複合粒子とDNAとの複合体を形成した。
 次に、以下の材料を用意した。
 ・800nMのHiLyte488を含むレポーター分子溶液(12μM):25μL
 ・Tween20(5%):10μL
 ・BSA(30%):1μL
 ・スペルミン水溶液(50mM):4μL
 ・10×Binding buffer:10μL
 これらをあらかじめ1.5mLマイクロチューブ内で混合した。この混合溶液に、上記の複合粒子とDNAとの複合体50μLを加えてウェル用反応液とした。DNAの終濃度は57pMであった。
 (ウェルへの反応液の充填)
 ウェルへの反応液の充填は実施例2と同様の操作方法によって行った。
 (蛍光顕微鏡観察)
 上記で調製したウェルプレートを37℃でインキュベートして反応させ、蛍光の生成を促した。その後、蛍光顕微鏡にて観察した。
 各蛍光物質に由来する蛍光の観察を以下の条件で行い、蛍光画像を取得した。
 HEX:ex533nm、em559nm、EMゲイン210
 標準蛍光物質(HiLyte(登録商標)Fluor488):ex499nm、em523nm、EMゲイン210
 図17A~図17Cは、1時間反応させた後に取得したウェルの明視野画像と蛍光顕微鏡画像を示す図である。図17Aはウェルの明視野画像を示す。図17Bはレポーター分子に由来するHEXの蛍光と、レポーター分子のバックグラウンドの蛍光とを共に含む蛍光顕微鏡画像を示す。また、図17Cは標準蛍光物質の蛍光を含む蛍光顕微鏡画像を示す。
 図17Aより、ウェルに粒子が充填されていることを確認できた。
 また、図17A~図17Cより、粒子が充填されているウェルからHEXの蛍光が観察されていることがわかる。このことから、粒子と結合したCas12aによってDNAが捕捉され、Cas12aのトランス切断反応が機能したことが確認された。なお、本実施例におけるDNA濃度57pMは、全ての個別独立分離区画がポジティブになると予測される濃度である。
 実施例5
 (磁性粒子への抗Hisタグ抗体の固定化)
 磁性粒子(Magnosphere(登録商標)MS300/Carboxyl)分散液をマイクロチューブに入れて磁性粒子を磁石で沈殿させた。上清を除去した後に、磁性粒子ペレットにMES緩衝液(100mM、pH5.4)を加えて再度分散させ、N-ヒドロキシスルホスクシンイミド(sulfo-NHS)、および、水溶性カルボジイミド(WSC)を加えた。25℃で1時間攪拌し、磁石で磁性粒子を回収した。
 回収した磁性粒子をMES緩衝液で洗浄し、MES緩衝液で分散させて、任意の量の抗Hisタグ抗体(Anti-His-tag mAb、MBLライフサイエンス社)を加えた。25℃で2時間攪拌した。続いて、ブロッキング操作を行う場合と行わない場合の2通りを用意した。ブロッキング操作を行う場合は、磁性粒子の表面のカルボキシ基に対して大過剰の分子量5000のPEGアミンを添加し、室温で45分間攪拌した。
 ブロッキングの有無にかかわらず、続いて大過剰のエタノールアミンを添加して粒子表面の活性基を失活させた。磁石で磁性粒子を回収し、回収した磁性粒子をMES緩衝液で洗浄して、抗体固定化粒子(ブロッキング有りおよび無し)を作製した。
 抗体固定化粒子にストレージバッファー(10mM HEPES-NaOH(pH7.9)、50mM KCl、1mM EDTA、10%グリセロール)を添加し、抗体固定化粒子液を調製し、使用時まで4℃で保存した。
 (Cas12a-crRNAと抗体固定化粒子との反応)
 希釈したCas12aとcrRNAとを1:1.25の濃度比(モル比)になるように混合し、37℃で30分間インキュベートしてCas12a-crRNA複合体を作製した。
 作製した抗体固定化粒子液(1wt%)を2mLサンプルチューブ(VIOLAMO製 型番 1-1600-04)に分取した。攪拌後、磁性スタンド(マジカルトラッパー TOYOBO製 型番:MGS-101)にサンプルチューブを立て、1分間静置したのちに上清を除くことにより、溶液を除去した。粒子洗浄液としてPBS-Tを加え、攪拌後、上記と同様にして溶液を除去した。以上の操作を2度繰り返した。
 粒子をPBS-Tに懸濁し、上記で調製したCas12a-crRNA溶液を任意の濃度になるように添加し、攪拌後、振とう機で1時間反応させた。反応後に溶液を除去し、PBS-Tで洗浄操作を行った。洗浄後、精製水に懸濁し、Cas12a-crRNA複合体が抗体固定化粒子と結合した複合粒子を作製した。攪拌後、使用時まで4℃で保存した。得られた複合粒子のうち、ブロッキング操作を経たものを複合粒子AntBL、ブロッキング操作を経なかったものを複合粒子Antとする。
 (Cas12a-crRNAとニッケル粒子の反応)
 希釈したCas12aとcrRNAとを1:1.25の濃度比(モル比)になるように混合し、37℃で30分間インキュベートしてCas12a-crRNA複合体を作製した。
 市販のニッケル粒子液(PureProteome(登録商標) Nickel Magnetic Beads、Merck社、3wt%)を2mLサンプルチューブ(VIOLAMO製、型番:1-1600-04)に分取した。攪拌後、磁性スタンド(マジカルトラッパー、TOYOBO製、型番:MGS-101)にサンプルチューブを立て、静置後に上清を除くことで溶液を除去した。
 粒子洗浄液としてPBS-Tを加え、攪拌後、溶液を除去した。以上の操作を2度繰り返した。粒子をPBS-Tに懸濁し、上記で調製したCas12a溶液を任意の濃度になるように添加し、攪拌後、振とう機で1時間反応させた。反応後、溶液を除去し、PBS-Tで洗浄操作を行った。洗浄後、精製水に懸濁し、Cas12a-crRNA複合体をニッケル粒子に固定化した複合粒子を作製した。攪拌後、使用時まで4℃で保存した。得られた複合粒子を複合粒子Niとした。
 (ウェルでの複合粒子の活性評価)
 96ウェルプレート(Thermo Fisher Scientific社、型番:137101)を用い、アミノ化合物の添加有りおよび無しの条件下における上記で作製した複合粒子の活性を評価した。
 各粒子をCas12aの終濃度が10nMになるように、また、DNA溶液をDNAの終濃度が2nMになるように水中で混合し、37℃、30分以上静置してDNAとの複合体を作製した。
 その後、以下の材料を用意した。
 ・各粒子とDNAの複合体(複合粒子AntBLおよび複合粒子Antでは、Cas12aの終濃度が5nMとなる量、複合粒子NiではCas12aの終濃度が3.7nMとなる量)
 ・125nMレポーター分子
 ・内部標準色素としての8nMのHiLyte488
 ・アミノ化合物としての2mMスペルミン(ナカライテスク株式会社、型番:32111-31)
 これらを96ウェルプレート中で、反応バッファーに添加して総体積が80μLになるように調製した。なお、アミノ化合物の添加無しの条件においては、上記材料におけるスペルミンを用いなかった。また、反応バッファーとしては、Binding bufferを用いた場合と、NEBuffer(登録商標)を用いた場合との2通り行った。
 その後、蛍光プレートリーダー(Synergy MX、BioTek社製)で、37℃、2時間、2minおきに、蛍光強度を測定した。測定波長は、HiLyte488は、励起波長485±20nm、蛍光波長528±20nmを使用した。レポーター分子は、励起波長535±20nm、蛍光波長595±20nmを使用した。
 なお、Binding bufferは、10×Binding bufferを調製し、反応溶液の10分の1倍量を添加して使用した。
 NEBuffer(登録商標) 2.1は、EnGen LbaCas12a(Cpf1)(NEB社、M0653T)添付の10×NEBuffer(登録商標) 2.1を、反応溶液の10分の1倍量を添加して使用した。
 得られた蛍光強度は、内部標準色素の蛍光強度に対する、レポーター分子の蛍光強度の比(レポーター分子の蛍光強度/内部標準色素の蛍光強度)として評価した。
 図18A~図18Cに、各複合粒子を用いた場合の蛍光強度比(レポーター分子の蛍光強度/内部標準色素の蛍光強度)の経時変化を示す。図18Aは、複合粒子Antを用いたときの結果を示し、図18Bは、複合粒子AntBLを用いたときの結果を示し、図18Cは、複合粒子Niを用いたときの結果を示す。
 図18A~図18Cに示すように、いずれの複合粒子、あるいはいずれの反応バッファーを用いた場合においても、アミノ化合物であるスペルミンを添加することで、反応が促進されたことがわかる。
 実施例6
 (crRNA 500nMの調製)
 EnGen LbaCas12a(Cpf1)(NEW ENGLAND BioLabs(NEB社)、M0653T)に同梱されているcrRNA(crRNA_T790Mと呼ぶ)を精製水で希釈し、500nMの保存溶液を調製した。
 crRNA_T790Mの配列を以下に示す(配列番号3)。
 uaauuucuacuaaguguagauaucaugcagcucaugcc
 (Cas12a-crRNA複合体を固定化した複合粒子の作製)
 希釈したCas12aとcrRNAを1:1.25の濃度比(モル比)になるように混合し、37℃で30分間インキュベートしてCas12a-crRNA複合体を作製した。
 抗Hisタグ抗体粒子(Anti-His-tag mAb-Magnetic Beads(登録商標)、MBLライフサイエンス社、1wt%)を2mLサンプルチューブ(VIOLAMO製、型番:1-1600-04)に分取した。攪拌後、磁性スタンド(マジカルトラッパー TOYOBO製、型番:MGS-101)にサンプルチューブを立て、1分間静置し、上清を除くことにより、溶液を除去した。粒子洗浄液として0.5%Tween20含有PBSを加え、攪拌後、溶液除去した。以上の操作を2度繰り返した。
 粒子を0.5%Tween20含有PBSに懸濁し、上記で調製したCas12a-crRNA複合体を任意の濃度になるように添加し、攪拌後、振とう機で1時間反応させた。反応後、溶液を除去し、精製水で洗浄操作を行った。洗浄後、精製水に懸濁して、複合粒子を作製した。攪拌後、使用時まで4℃で保存した。
 (DNAの調製)
 ゲノムDNAである100%EGFR wildtype(50ng/μL、理研ジェネシス、型番:HD709)、および50%EGFR T790M(50ng/μL、理研ジェネシス、型番:HD258)をそれぞれPCRにおける鋳型として用いた。
 100%EGFR wildtypeを鋳型としてPCRにより増幅された産物を夾雑DNA_WTとした。また、50%EGFR T790Mを鋳型としてPCRにより増幅された産物を標的DNA_T790Mとした。いずれのPCR産物についても、精製後、Qubit 2.0 Fluorometer(ライフテクノロジーズ社製)で濃度を計測した。
 なお50%EGFR T790Mを鋳型としたPCR増幅産物は、50%EGFR T790Mと同じ変異アレル比率となっていると仮定して、以降の濃度を算出した。
 PCR産物をそれぞれ精製水で希釈して4nMの保存溶液を調製した。さらに、4nMの保存溶液を精製水で希釈して種々の濃度のDNA溶液を調製した。
 PCRに用いたプライマーの配列を以下に示す。
 EGFRプライマー(Forward)(配列番号4)
 tcacctccaccgtgcatttcatca
 EGFRプライマー(Reverse)(配列番号5)
 ttgcgatctgcacacaccagttga
 また、PCR産物である夾雑DNA_WTおよび標的DNA_T790Mの配列を以下に示す。下線部はcrRNAのターゲット配列を示す。
 DNA_WT(配列番号6)
 tcacctccaccgtgcatttcatcacgcagctcatgcccttcggctgcctcctggactatgtccgggaacacaaagacaatattggctcccagtacctgctcaactggtgtgtgcagatcgcaa
 DNA_T790M(配列番号7)
 tcacctccaccgtgcatttcatcatgcagctcatgcccttcggctgcctcctggactatgtccgggaacacaaagacaatattggctcccagtacctgctcaactggtgtgtgcagatcgcaa
 続いて、上記で作製した複合粒子について、DNAを回収および濃縮する効率を評価した。
 まず、以下の材料を用意した。
 ・Cas12aの固定化数が6.7×10個/粒子の複合粒子(複合粒子Aとする):2.7×10-11mol
 ・Cas12aの固定化数が1.5×10個/粒子の複合粒子(複合粒子Bとする):6.0×10-13mol
 ・標的DNA_T790M:1.5×10-13mol
 ・夾雑DNAとしてDNA_WT:1.5×10-12mol
 ・Tween20:終濃度0.5%
 複合粒子AまたはBと、標的DNA_T790M、DNA_WT、およびTween20とを2mLチューブ(エッペンドルフ)に添加し、全体の溶液体積が1.1mLになるように調製した。得られた混合溶液を室温で1時間振とうした。その後、磁石で粒子を回収し、上清を除いて1mLの精製水で洗浄した。その後、再度磁石で粒子を回収し、上清を除き、精製水50μLに懸濁することで、DNA回収粒子溶液を得た。
 また、上記において、夾雑DNAを含まない場合として、DNA_WTを用いずに同様の操作を行った。
 続いて、以下の材料を用意した。
 ・DNA回収粒子溶液40μL(複合粒子の終濃度:4×10-13M)
 ・レポーター分子(終濃度:125nM)
 ・内部標準色素としての8nMのHiLyte488
 ・2mMスペルミン
 これらを96ウェルプレート(Thermo Fisher Scientific社、型番:137101)中で、Binding bufferに添加して総体積が80μLになるように調製した。その後、蛍光プレートリーダーSynergy MX(BioTek社)で、37℃、2時間、2minおきに、蛍光強度を測定した。
 測定波長は、HiLyte488については、励起波長485±20nm、蛍光波長528±20nmを使用した。また、レポーター分子については、励起波長535±20nm、蛍光波長595±20nmを使用した。
 DNAの回収効率を評価するための比較対象として、回収操作を行わずに標的DNA_T790Mを添加して上記と同様に蛍光強度を測定した。
 具体的には、複合粒子AまたはBを上記と同じモル濃度(複合粒子の終濃度:4×10-13M)とし、標的DNA_T790Mを100%回収できた場合に想定される終濃度1.5nMとした。これらに加えて、レポーター分子(終濃度:125nM)、8nMのHiLyte488、および2mMスペルミンを96ウェルプレート中で、Binding bufferに添加して総体積が80μLになるように調製した。その後、上記と同様にして蛍光強度を測定した。
 得られた蛍光強度は、内部標準色素の蛍光強度に対する、レポーター分子の蛍光強度の比(レポーター分子の蛍光強度/内部標準色素の蛍光強度)として評価した。
 図19Aは、夾雑DNA無しの条件で回収操作を行った場合および回収操作を行わなかった場合の蛍光強度比の経時変化を示す。また図19Bには、夾雑DNA有りの条件および無しの条件でそれぞれ回収操作を行った場合の蛍光強度比の経時変化を示す。
 図19Aに示すように、いずれの複合粒子を用いた場合でも高い回収率でDNAを回収および濃縮できていることが確認できた。また、複合粒子の固定化数が多いほど、回収率が高くなる傾向になることが示唆された。
 また、図19Bに示すように、夾雑DNAが共存する場合においても、複合粒子はDNAを回収および濃縮することができること、および複合粒子の固定化数が多いほど、DNAの回収率は高くなることが確認できた。
 以上の実施例より、本発明によれば、検出試薬がアミノ化合物を含むことによって、エフェクタータンパク質のトランス切断反応が促進され、検出時間を短縮することができることが示された。また、例えば、個別独立分離区画に充填されずに廃棄されてしまう標的核酸であっても、エフェクタータンパク質とcrRNAとの複合体が粒子に結合した複合粒子を作用させることによって標的核酸を回収できることが示された。回収した標的核酸は、標的核酸を捕捉した前記複合粒子を個別独立分離区画に充填することで検出することができる。
 本発明に係る実施形態は、記憶媒体に記録されたコンピュータ実行可能命令(例えば、1つ以上のプログラム)を読み出して実行するシステムまたは装置(例えば、特定用途向け集積回路(ASIC))のコンピュータによって、上記実施形態の1つまたは複数の機能を実行することによって、および/または、上記実施形態の1つまたは複数の機能を実行する1つまたは複数の回路を含むシステムまたは装置のコンピュータによって、および、例えば、上記実施形態の1つまたは複数の機能を実行するために、記憶媒体からコンピュータ実行可能命令を読み出して実行することによって、および/または、上記実施形態の1つまたは複数の機能を実行するために1つまたは複数の回路を制御することによって、システムまたは装置のコンピュータによって実行される方法によって実現することもできる。コンピュータは、1つ以上のプロセッサ(例えば、中央処理装置(CPU)、マイクロ処理装置(MPU))を含むことができ、コンピュータ実行可能命令を読み出して実行するために、別個のコンピュータまたは別個のプロセッサのネットワークを含むことができる。コンピュータ実行可能命令は、例えば、ネットワークまたは記憶媒体からコンピュータに提供されてもよい。記憶媒体は、例えば、ハードディスク、ランダムアクセスメモリ(RAM)、リードオンリーメモリ(ROM)、分散コンピューティングシステムの記憶装置、光ディスク(コンパクトディスク(CD)、デジタル多用途ディスク(DVD)、ブルーレイディスク(BD)等)、フラッシュメモリデバイス、メモリカード等のうちの1つ以上を含み得る。
 本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために以下の請求項を添付する。
 本願は、2020年10月13日提出の日本国特許出願特願2020-172561および2021年5月31日提出の日本国特許出願特願2021-091877を基礎として優先権を主張するものであり、その記載内容の全てをここに援用する。
10、20 核酸検出装置
101 分配部
102 活性化部
103 蛍光生成部
104 蛍光検出部
105 特定部
106 抽出部
107 決定部
108 判定部
109 算出部
110 表示部
111 記憶部
112 画像取得部
200 ウェルプレート
201 下基板
202 上基板
203 隔壁
204 ウェル
205 空間
206 エフェクタータンパク質とcrRNAとの複合体が粒子に結合した複合粒子
801 ネガ液滴
802 ポジ液滴

Claims (30)

  1.  標的核酸を含有する試料と、エフェクタータンパク質、前記標的核酸に結合するcrRNA、およびレポーター分子を含有する検出試薬とを複数の個別独立分離区画に分配する分配部と;
     前記crRNAの前記標的核酸への結合によって前記エフェクタータンパク質を活性化する活性化部と;
     活性化された前記エフェクタータンパク質によって前記レポーター分子を改変して蛍光を生成する蛍光生成部と;
     前記蛍光を検出する蛍光検出部と;
     前記蛍光検出部で得られた検出結果に基づいて、前記個別独立分離区画の蛍光強度を決定し、所定の閾値を超えた蛍光強度を有する個別独立分離区画を特定する特定部と;
     を有することを特徴とする核酸検出装置。
  2.  前記蛍光検出部は、前記個別独立分離区画を含む画像を取得する画像取得部である請求項1に記載の核酸検出装置。
  3.  前記特定部は、前記画像取得部で取得された前記画像を処理することにより、前記所定の閾値を超えた蛍光強度を有する個別独立分離区画を特定する請求項2に記載の核酸検出装置。
  4.  前記エフェクタータンパク質がCas12またはCas13のいずれかである請求項1乃至3のいずれか1項に記載の核酸検出装置。
  5.  前記検出試薬が、さらにアミノ化合物を含有する請求項1乃至4のいずれか1項に記載の核酸検出装置。
  6.  前記アミノ化合物が、-NHを有する請求項5に記載の核酸検出装置。
  7.  前記アミノ化合物が、-NHと-NH-とを各々1つ以上有する請求項6に記載の核酸検出装置。
  8.  前記アミノ化合物が、スペルミンである請求項7に記載の核酸検出装置。
  9.  前記エフェクタータンパク質は、粒子と結合している請求項1乃至8のいずれか1項に記載の核酸検出装置。
  10.  前記エフェクタータンパク質と、前記粒子との結合部は、前記粒子と結合したカルボキシ基に由来する構造を有する、請求項9に記載の核酸検出装置。
  11.  前記エフェクタータンパク質が、N末端を介して前記粒子と結合している請求項9または10に記載の核酸検出装置。
  12.  前記エフェクタータンパク質と、前記粒子とは、アミド結合を介して結合している請求項9乃至11のいずれか1項に記載の核酸検出装置。
  13.  前記エフェクタータンパク質と、前記粒子とは、リンカーを介して結合している請求項9乃至12のいずれか1項に記載の核酸検出装置。
  14.  前記リンカーは、6個以上11個以下のヒスチジンが連続してなるペプチドを有する請求項13に記載の核酸検出装置。
  15.  前記リンカーは、前記ペプチドと抗原抗体反応によって結合する抗体を有する請求項14に記載の核酸検出装置。
  16.  前記リンカーは、前記ペプチドと結合する金属錯体を有する請求項14に記載の核酸検出装置。
  17.  前記金属錯体は、ニトリロトリ酢酸またはイミノジ酢酸と、二価のニッケルイオンとの錯体である請求項16に記載の核酸検出装置。
  18.  前記リンカーはポリエチレングリコールを有する請求項13に記載の核酸検出装置。
  19.  前記リンカーはビオチンとアビジンとの複合体を有する請求項13に記載の核酸検出装置。
  20.  前記粒子の粒径は1μm以上10μm以下である請求項9乃至19のいずれか1項に記載の核酸検出装置。
  21.  前記分配部は、回収部を有し、
     前記回収部は、前記粒子と結合した前記エフェクタータンパク質と、前記crRNAと、が結合して形成された複合粒子を用いて前記標的核酸を回収する、請求項9乃至20のいずれか1項に記載の核酸検出装置。
  22.  前記個別独立分離区画が液滴である請求項1乃至21のいずれか1項に記載の核酸検出装置。
  23.  前記個別独立分離区画がウェルである請求項1乃至21のいずれか1項に記載の核酸検出装置。
  24.  前記個別独立分離区画の体積が0.1fL以上1000fL以下である請求項1乃至23のいずれか1項に記載の核酸検出装置。
  25.  前記個別独立分離区画の体積が、0.5fL以上400fL以下である請求項1乃至24のいずれか1項に記載の核酸検出装置。
  26.  前記特定部は、基準区画における蛍光強度と、前記個別独立分離区画における蛍光強度との比に基づいて、前記所定の閾値を超えた蛍光強度を有する個別独立分離区画を特定するように構成されている請求項1乃至25のいずれか1項に記載の核酸検出装置。
  27.  前記基準区画における蛍光強度は、前記標的核酸を含まない試料と、前記検出試薬とを用いて取得された蛍光強度である請求項26に記載の核酸検出装置。
  28.  標的核酸を含有する試料と、エフェクタータンパク質、前記標的核酸に結合するcrRNA、およびレポーター分子を含有する検出試薬とを複数の個別独立分離区画に分配する分配工程と;
     前記crRNAの前記標的核酸への結合によって前記エフェクタータンパク質を活性化する活性化工程と;
     活性化された前記エフェクタータンパク質によって前記レポーター分子を改変して蛍光を生成する蛍光生成工程と;
     前記蛍光を検出する蛍光検出工程と;
     前記蛍光を検出する工程で得られた検出結果に基づいて、前記個別独立分離区画の蛍光強度を決定し、所定の閾値を超えた蛍光強度を有する個別独立分離区画を特定する特定工程と、
     を有することを特徴とする核酸の検出方法。
  29.  前記エフェクタータンパク質は、粒子と結合しており、
     前記分配工程は、前記粒子と結合した前記エフェクタータンパク質と、前記crRNAと、が結合して形成された複合粒子を用いて前記標的核酸を回収する回収工程を含む、請求項28に記載の核酸の検出方法。
  30.  請求項28または29に記載の核酸の検出方法を核酸検出装置に実行させるために、前記核酸検出装置が有するコンピュータに実行させるためのプログラム。
PCT/JP2021/037659 2020-10-13 2021-10-12 核酸検出装置および核酸の検出方法 WO2022080343A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180069220.8A CN116391023A (zh) 2020-10-13 2021-10-12 核酸检测装置及检测核酸的方法
JP2022556986A JPWO2022080343A1 (ja) 2020-10-13 2021-10-12
US18/295,976 US20230295689A1 (en) 2020-10-13 2023-04-05 Nucleic acid detection apparatus and method of detecting nucleic acid

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020172561 2020-10-13
JP2020-172561 2020-10-13
JP2021-091877 2021-05-31
JP2021091877 2021-05-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/295,976 Continuation US20230295689A1 (en) 2020-10-13 2023-04-05 Nucleic acid detection apparatus and method of detecting nucleic acid

Publications (1)

Publication Number Publication Date
WO2022080343A1 true WO2022080343A1 (ja) 2022-04-21

Family

ID=81208209

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/037659 WO2022080343A1 (ja) 2020-10-13 2021-10-12 核酸検出装置および核酸の検出方法

Country Status (4)

Country Link
US (1) US20230295689A1 (ja)
JP (1) JPWO2022080343A1 (ja)
CN (1) CN116391023A (ja)
WO (1) WO2022080343A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022210822A1 (ja) * 2021-04-02 2022-10-06 キヤノン株式会社 試薬、及びそれを用いた標的核酸の検出方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019148206A1 (en) * 2018-01-29 2019-08-01 The Broad Institute, Inc. Crispr effector system based diagnostics
EP3653722A1 (en) * 2017-07-14 2020-05-20 Shanghai Tolo Biotechnology Company Limited Application of cas protein, method for detecting target nucleic acid molecule and kit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3653722A1 (en) * 2017-07-14 2020-05-20 Shanghai Tolo Biotechnology Company Limited Application of cas protein, method for detecting target nucleic acid molecule and kit
WO2019148206A1 (en) * 2018-01-29 2019-08-01 The Broad Institute, Inc. Crispr effector system based diagnostics

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022210822A1 (ja) * 2021-04-02 2022-10-06 キヤノン株式会社 試薬、及びそれを用いた標的核酸の検出方法

Also Published As

Publication number Publication date
CN116391023A (zh) 2023-07-04
US20230295689A1 (en) 2023-09-21
JPWO2022080343A1 (ja) 2022-04-21

Similar Documents

Publication Publication Date Title
US11448647B2 (en) Methods of assaying proteins
Wu et al. Ultrasensitive detection of attomolar protein concentrations by dropcast single molecule assays
Zhang et al. Reverse transcription recombinase polymerase amplification coupled with CRISPR-Cas12a for facile and highly sensitive colorimetric SARS-CoV-2 detection
US20220333192A1 (en) Methods and devices for spatial assessment of rna quality
US20200318101A1 (en) Methods of selecting binding reagents
JP2013500725A (ja) アッセイツールおよびその使用方法
KR20200105497A (ko) 단백질 식별을 위한 디코딩 접근법
CN118240918A (zh) 采用微流控装置的空间编码生物分析
JP6996502B2 (ja) 標的分子の検出方法
KR20210118072A (ko) 샘플 처리 및 검출 동안의 제어된 환경을 위한 장벽 구현
Roh et al. CRISPR‐enhanced hydrogel microparticles for multiplexed detection of nucleic acids
US20210354126A1 (en) Implementing barriers for controlled environments during sample processing and detection
WO2022080343A1 (ja) 核酸検出装置および核酸の検出方法
JP4803125B2 (ja) ビーズ群と該ビーズ群の作製方法、並びにビーズ群を用いる方法
JPWO2012026541A1 (ja) タンパク質又はペプチドのプリンティング方法、及び、タンパク質アレイ又はペプチドアレイ、並びに、機能性タンパク質又は機能性ペプチドの同定方法
US20240254549A1 (en) Partitioning cells for high throughput single-cell sequencing
WO2024124073A1 (en) A method comprising performing on a single-analyte array at least 50 cycles of a process
CN103852582B (zh) 纳米荧光微粒用作多重pcr产物的液相蛋白芯片的用途
US20240026424A1 (en) Reagent and method for detecting target nucleic acid using same
Bally et al. Particle flow assays for fluorescent protein microarray applications
US20220268768A1 (en) Structure and methods for detection of sample analytes
US20240044882A1 (en) Tethered detection assays
Yao et al. Hydrogel-Based Microdroplet Ensembles Encapsulating Multiplexed EXPAR Assays for Trichromic Digital Profiling of MicroRNAs and in-Depth Classification of Primary Urethral Cancers
WO2024085132A1 (ja) 生体物質処理方法及び反応検出方法並びに生体物質処理装置及び反応検出装置
US20240118274A1 (en) Structure and methods for detection of sample analytes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21880082

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022556986

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21880082

Country of ref document: EP

Kind code of ref document: A1