WO2022077567A1 - 三相同轴超导电缆通电导体冷却结构以及超导电缆通电导体 - Google Patents
三相同轴超导电缆通电导体冷却结构以及超导电缆通电导体 Download PDFInfo
- Publication number
- WO2022077567A1 WO2022077567A1 PCT/CN2020/124507 CN2020124507W WO2022077567A1 WO 2022077567 A1 WO2022077567 A1 WO 2022077567A1 CN 2020124507 W CN2020124507 W CN 2020124507W WO 2022077567 A1 WO2022077567 A1 WO 2022077567A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- superconducting
- layer
- phase
- insulating layer
- liquid nitrogen
- Prior art date
Links
- 239000004020 conductor Substances 0.000 title claims abstract description 56
- 238000001816 cooling Methods 0.000 title claims abstract description 18
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 120
- 239000007788 liquid Substances 0.000 claims abstract description 60
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 60
- 230000004087 circulation Effects 0.000 claims abstract description 4
- 239000010410 layer Substances 0.000 claims description 203
- 239000000835 fiber Substances 0.000 claims description 13
- 229910000679 solder Inorganic materials 0.000 claims description 12
- 239000011241 protective layer Substances 0.000 claims description 10
- 238000004804 winding Methods 0.000 claims description 8
- 238000003466 welding Methods 0.000 claims description 7
- 238000005219 brazing Methods 0.000 claims description 3
- 230000005540 biological transmission Effects 0.000 description 9
- 238000010586 diagram Methods 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000002887 superconductor Substances 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000004089 microcirculation Effects 0.000 description 2
- 238000005476 soldering Methods 0.000 description 2
- 239000000306 component Substances 0.000 description 1
- 239000008358 core component Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 239000002346 layers by function Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B12/00—Superconductive or hyperconductive conductors, cables, or transmission lines
- H01B12/16—Superconductive or hyperconductive conductors, cables, or transmission lines characterised by cooling
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B12/00—Superconductive or hyperconductive conductors, cables, or transmission lines
- H01B12/02—Superconductive or hyperconductive conductors, cables, or transmission lines characterised by their form
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Definitions
- the invention relates to the technical field of superconducting cables, in particular to a three-phase coaxial superconducting cable energizing conductor cooling structure and a superconducting cable energizing conductor.
- High-temperature superconducting cable system is a kind of power facility that uses unimpeded superconducting material that can transmit high current density as conductor and can transmit large current. It has the advantages of small size, light weight, low loss and large transmission capacity. Realize low-loss, high-efficiency, large-capacity power transmission.
- the high temperature superconducting cable system will first be applied to the occasions of short-distance transmission of power (such as generators to transformers, substations to substations, underground substations to urban power grid ports) and short-distance transmission of large currents such as electroplating plants, power plants and substations. occasions, as well as occasions for power transmission in large or very large cities.
- the current-carrying conductor is the current-carrying part of the high-temperature superconducting cable, and is the core component of the superconducting cable system. environment.
- the heat conduction path of the middle B-phase superconducting layer is long, and the thermal stability is relatively poor.
- the B-phase short-circuit fault occurs, it is especially obvious.
- the present invention aims to provide a three-phase coaxial superconducting cable energizing conductor cooling structure and superconducting cable energizing conductor, so that the heat conduction path of the middle B-phase superconducting layer of the superconducting cable can be shortened and its thermal stability can be improved.
- an embodiment of the present invention proposes a cooling structure for an energized conductor of a three-phase coaxial superconducting cable, including:
- Low temperature Dewar tube which is a hollow cylindrical structure
- the energization conductor in the low temperature Dewar tube is arranged, and the energization conductor is a hollow cylindrical structure, which is wound with a flexible skeleton, a first insulating layer, a phase A superconducting layer, a second insulating layer, B-phase superconducting layer, third insulating layer, C-phase superconducting layer, shielding layer, fifth insulating layer, protective layer;
- the hollow part of the flexible skeleton constitutes a first liquid nitrogen channel; the gap between the inner wall surface of the low-temperature Dewar tube and the outer wall surface of the protective layer constitutes a second liquid nitrogen channel; the B-phase superconducting layer The gap between the second insulating layer and the second insulating layer constitutes a third liquid nitrogen channel; the gap between the B-phase superconducting layer and the third insulating layer constitutes a fourth liquid nitrogen channel; the first liquid nitrogen channel and the second liquid nitrogen channel , the third liquid nitrogen channel and the fourth liquid nitrogen channel are used for the circulation of liquid nitrogen to cool the current conductor.
- the third liquid nitrogen channel and the fourth liquid nitrogen channel are both microfluidic channels, between the B-phase superconducting layer and the second insulating layer, and between the B-phase superconducting layer and the second insulating layer.
- a fiber mesh is arranged between the three insulating layers, and the fiber mesh is used to maintain micro-circulation between the B-phase superconducting layer and the second insulating layer, and between the B-phase superconducting layer and the third insulating layer road.
- the fiber web is wound on the outer wall surface of the second insulating layer and the outer wall surface of the B-phase superconducting layer by spiral winding, respectively.
- Embodiments of the present invention also provide a three-phase coaxial superconducting cable energizing conductor, including the superconducting cable energizing conductor cooling structure described in the above embodiments;
- the A-phase superconducting layer is formed by using a superconducting tape in the first An insulating layer is spirally wound in a first direction;
- the B-phase superconducting layer is spirally wound in a second direction on the second insulating layer by using a superconducting tape;
- the C-phase superconducting layer The conductive layer is helically wound in a first direction on the third insulating layer by using a superconducting tape; the first direction and the second direction are symmetrical about the central axis of the cable.
- a semi-conductive layer is respectively spirally wound between the conductive layer and the fourth insulating layer.
- the A, B, and C-phase superconducting layers are all formed by welding a plurality of superconducting strips; wherein the ends of two adjacent superconducting strips are overlapped and connected by low-temperature solder brazing; adjacent The length of the overlapping portion of the two superconducting strips is 60mm, and the thickness of the solder is less than 0.1mm.
- the embodiment of the present invention provides a three-phase coaxial superconducting cable energizing conductor cooling structure and a superconducting cable energizing conductor, the cooling structure includes four liquid nitrogen channels, and the hollow part of the flexible frame constitutes a first liquid nitrogen channel;
- the gap between the inner wall surface of the low temperature Dewar tube and the outer wall surface of the protective layer constitutes a second liquid nitrogen channel;
- the gap between the B-phase superconducting layer and the second insulating layer constitutes a third liquid nitrogen channel;
- the gap between the B-phase superconducting layer and the third insulating layer constitutes a fourth liquid nitrogen channel;
- the first liquid nitrogen channel, the second liquid nitrogen channel, the third liquid nitrogen channel and the fourth liquid nitrogen channel are used for liquid nitrogen
- FIG. 1 is a cross-sectional view of a current-carrying conductor of a three-phase coaxial high-temperature superconducting cable according to an embodiment of the present invention.
- FIG. 2 is a schematic diagram of a fiber web structure according to an embodiment of the present invention.
- FIG. 3 is a schematic structural diagram of a microfluidic channel according to an embodiment of the present invention.
- FIG. 4 is a schematic diagram of the winding direction of the superconducting tapes of the three-phase A, B, and C phases of the current conductors of the three-phase coaxial high-temperature superconducting cable according to the embodiment of the present invention.
- FIG. 5 is a schematic diagram of the relationship between the welding resistance and the overlapping length of the superconducting tape in this embodiment.
- 1-low temperature Dewar tube 11-first liquid nitrogen channel, 12-first liquid nitrogen channel, 13-first liquid nitrogen channel, 14-first liquid nitrogen channel, 2-current conductor, 21- Flexible skeleton, 22-first insulating layer, 23-A-phase superconducting layer, 24-second insulating layer, 25-B-phase superconducting layer, 26-third insulating layer, 27-C-phase superconducting layer, 28- Fourth insulating layer, 29-copper shielding layer, 210-fifth insulating layer, 211-protective layer, 3-fiber mesh.
- an embodiment of the present invention proposes a cooling structure for an energized conductor of a three-phase coaxial superconducting cable, including:
- Low temperature Dewar tube which is a hollow cylindrical structure
- the energization conductor in the low temperature Dewar tube is arranged, and the energization conductor is a hollow cylindrical structure, which is wound with a flexible skeleton, a first insulating layer, a phase A superconducting layer, a second insulating layer, B-phase superconducting layer, third insulating layer, C-phase superconducting layer, shielding layer, fifth insulating layer, protective layer;
- the hollow part of the flexible skeleton constitutes a first liquid nitrogen channel; the gap between the inner wall surface of the low-temperature Dewar tube and the outer wall surface of the protective layer constitutes a second liquid nitrogen channel; the B-phase superconducting layer The gap with the second insulating layer constitutes a third liquid nitrogen channel; the gap between the B-phase superconducting layer and the third insulating layer constitutes a fourth liquid nitrogen channel.
- the cooling structure includes four liquid nitrogen channels, the hollow part of the flexible frame constitutes a first liquid nitrogen channel; the gap between the inner wall surface of the low temperature Dewar tube and the outer wall surface of the protective layer constitutes the second liquid nitrogen channel; the gap between the B-phase superconducting layer and the second insulating layer constitutes a third liquid nitrogen channel; the gap between the B-phase superconducting layer and the third insulating layer constitutes a fourth liquid nitrogen channel;
- the first liquid nitrogen channel, the second liquid nitrogen channel, the third liquid nitrogen channel and the fourth liquid nitrogen channel are used for the circulation of liquid nitrogen to cool the energized conductor;
- the thermal conduction path of the intermediate B-phase superconducting layer is shortened, and its thermal stability can be improved.
- the third liquid nitrogen channel and the fourth liquid nitrogen channel are both microfluidic channels, between the B-phase superconducting layer and the second insulating layer, and between the B-phase superconducting layer and the second insulating layer.
- a fiber mesh is arranged between the three insulating layers, and the fiber mesh is used to maintain micro-circulation between the B-phase superconducting layer and the second insulating layer, and between the B-phase superconducting layer and the third insulating layer road.
- a "microfluidic channel” is introduced in the adjacent layer of the B-phase conductor. That is, a “microfluidic channel” is introduced in the middle of the functional layers such as the insulating layer between the A-B phase and the B-C phase through a micro-support structure.
- the microfluidic channel will be filled with liquid nitrogen after being filled with liquid nitrogen, providing a good low-temperature environment for the B-phase conductor.
- the surface viscous force is dominant, and the Reynolds number is large, which will not have a significant impact on the macroscopic refrigeration process.
- the support structure of the microfluidic channel adopts a special fiber mesh, as shown in Figure 3, the mesh, the relative thickness of the warp and weft lines of this fiber mesh are selected based on the CFD calculation results of the microfluidic channel.
- the fiber web is wound on the outer wall surface of the second insulating layer and the outer wall surface of the B-phase superconducting layer by spiral winding, for example, as shown in FIG. 3 .
- Embodiments of the present invention also provide a three-phase coaxial superconducting cable energizing conductor, including the superconducting cable energizing conductor cooling structure described in the above embodiments;
- the A-phase superconducting layer is formed by using a superconducting tape in the first An insulating layer is spirally wound in a first direction;
- the B-phase superconducting layer is spirally wound in a second direction on the second insulating layer by using a superconducting tape;
- the C-phase superconducting layer The conductive layer is helically wound in a first direction on the third insulating layer by using a superconducting tape; the first direction and the second direction are symmetrical about the central axis of the cable.
- the winding directions of the superconducting tapes of the A-phase superconducting layer and the B-phase superconducting layer are symmetrical with respect to the central axis of the cable, and the superconducting directions of the B-phase superconducting layer and the C-phase superconducting layer are
- the winding direction of the conductive tape is symmetrical about the central axis of the cable, that is, the winding direction of the superconducting tape of the A-phase superconducting layer and the C-phase superconducting layer is the same, which helps to reduce the circumferential magnetic field and is suitable for short distances.
- low-loss, high-efficiency, and large-capacity power transmission can be realized.
- the relative positions of the interlayer superconducting tapes are in a "gap" manner, that is, the superconducting tapes of the next layer are aligned with the gap between the two superconducting tapes of the previous layer.
- the vertical components of the magnetic field of the adjacent superconducting strips are partially canceled, which helps to homogenize the magnetic field and eliminate the influence of the vertical field.
- a semiconducting layer is respectively spirally wound between the four insulating layers.
- the thickness of the fifth insulating layer is smaller than that of the first, second, third and fourth insulating layers.
- a low-temperature Dewar tube is arranged on the periphery of the current-carrying conductor.
- a fourth insulating layer and a protective layer are spirally wound on the outer surface of the copper shielding layer to isolate the point between the copper shielding layer and the low-temperature Dewar tube and protect the current-carrying conductors when they penetrate the low-temperature Dewar tube. Not subject to mechanical damage.
- this embodiment further includes:
- a plurality of superconducting strips are welded to form a superconducting strip satisfying a preset superconducting cable length; wherein the ends of two adjacent superconducting strips are overlapped and connected by low-temperature soldering.
- the length of the overlapping portion of two adjacent superconducting tapes is 60 mm, and the thickness of the solder is less than 0.1 mm.
- the resistance of the high temperature superconducting tape can be determined by the definition of the critical current, which is given by:
- this embodiment controls the overlap of 60mm and the thickness of the solder to be less than 0.1mm, which can ensure that the resistance of the solder joint is below 20n ⁇ .
Landscapes
- Superconductors And Manufacturing Methods Therefor (AREA)
Abstract
一种三相同轴超导电缆通电导体冷却结构以及超导电缆通电导体,包括:低温杜瓦管(1),其为空心圆柱结构;设置于低温杜瓦管(1)中的通电导体(2),通电导体(2)为空心圆柱结构,其由内至外依次绕制有柔性骨架(21)、第一绝缘层(22)、A相超导层(23)、第二绝缘层(24)、B相超导层(25)、第三绝缘层(26)、C相超导层(27)、屏蔽层(29)、第五绝缘层(210)、保护层(211);其中,柔性骨架(21)的中空部分构成第一液氮通道(11);低温杜瓦管(1)的内壁面与保护层(211)的外壁面之间间隙构成第二液氮通道(14);B相超导层(25)与第二绝缘层(24)之间间隙构成第三液氮通道(12);B相超导层(25)与第三绝缘层(26)之间间隙构成第四液氮通道(13);第一、第二、第三、第四液氮通道(11-14)用于液氮流通,为通电导体(2)进行降温冷却,使得B相超导层(25)的热传导路径缩短,提高热稳定性。
Description
本申请要求于2020年10月13日提交中国专利局、申请号为202011090821.0、发明名称为“三相同轴超导电缆通电导体冷却结构以及超导电缆通电导体”的中国专利申请的优先权,上述专利的全部内容通过引用结合在本申请中。
本发明涉及超导电缆技术领域,具体涉及一种三相同轴超导电缆通电导体冷却结构及超导电缆通电导体。
高温超导电缆系统是采用无阻的、能传输高电流密度的超导材料作为导电体并能传输大电流的一种电力设施,具有体积小、重量轻、损耗低和传输容量大的优点,可以实现低损耗、高效率、大容量输电。高温超导电缆系统将首先应用于短距离传输电力的场合(如发电机到变压器、变电中心到变电站、地下变电站到城市电网端口)及电镀厂、发电厂和变电站等短距离传输大电流的场合,以及大型或超大型城市电力传输的场合。其中,通电导体是高温超导电缆的载流部分,是超导电缆系统最核心的部件,通电导体是一个空心圆柱结构,内外表面均浸泡于制冷工质液氮之中,可以获得良好的低温环境。对于三相同轴的超导电缆而言,中间B相超导层的热传导路径长,热稳定性相对较差。特别是在发生B相短路故障的时候,尤其明显。
发明内容
本发明旨在提出一种三相同轴超导电缆通电导体冷却结构及超导电缆通电导体,使得超导电缆的中间B相超导层的热传导路径缩短,能够提高其热稳定性。
为此,本发明实施例提出一种三相同轴超导电缆通电导体冷却结构,包括:
低温杜瓦管,其为空心圆柱结构;
设置与所述低温杜瓦管中的通电导体,所述通电导体为空心圆柱结构,其由内之外依次绕制有柔性骨架、第一绝缘层、A相超导层、第二绝缘层、B相超导层、第三绝缘层、C相超导层、屏蔽层、第五绝缘层、保护层;
其中,所述柔性骨架的中空部分构成第一液氮通道;所述低温杜瓦管的内壁面与所述保护层的外壁面之间间隙构成第二液氮通道;所述B相超导层与第二绝缘层之间间隙构成第三液氮通道;所述B相超导层与第三绝缘层之间间隙构成第四液氮通道;所述第一液氮通道、第二液氮通道、第三液氮通道以及第四液氮通道用于液氮的流通,以为所述通电导体进行降温冷却。
可选地,所述第三液氮通道和所述第四液氮通道均为微流通道,所述B相超导层与第二绝缘层之间、以及所述B相超导层与第三绝缘层之间设置有纤维网,所述纤维网用于维持所述B相超导层与第二绝缘层之间、以及所述B相超导层与第三绝缘层之间的微流通道。
可选地,所述纤维网分别通过螺旋绕制的方式绕制在所述第二绝缘层的外壁面以及所述B相超导层的外壁面上。
本发明的实施例还提出一种三相同轴超导电缆通电导体,包括上述实施 例所述的超导电缆通电导体冷却结构;所述A相超导层通过使用超导带材在所述第一绝缘层上以第一方向螺旋绕制而成;所述B相超导层通过使用超导带材在所述第二绝缘层上以第二方向螺旋绕制而成;所述C相超导层通过使用超导带材在所述第三绝缘层上以第一方向螺旋绕制而成;所述第一方向与第二方向关于所述电缆的中轴线对称。
可选地,所述B相超导层的超导带材的中线与所述A相超导层的超导带材的间隙;所述C相超导层的超导带材的中线与所述B相超导层的超导带材的间隙。
可选地,在所述第一绝缘层与所述A相超导层之间、在所述A相超导层与所述第二绝缘层之间、在所述第二绝缘层与所述B相超导层之间、在所述B相超导层与所述第三绝缘层之间、在所述第三绝缘层与所述C相超导层之间、在所述C相超导层与所述第四绝缘层之间分别螺旋绕制有半导电层。
可选地,A、B、C相超导层均由多根超导带材焊接形成;其中相邻两根超导带材的端部进行搭接,并进行低温焊锡钎焊连接;相邻两根超导带材搭接的部分的长度为60mm,并且焊锡厚度小于0.1mm。
本发明的实施例提出一种三相同轴超导电缆通电导体冷却结构以及超导电缆通电导体,所述冷却结构包括四个液氮通道,所述柔性骨架的中空部分构成第一液氮通道;所述低温杜瓦管的内壁面与所述保护层的外壁面之间间隙构成第二液氮通道;所述B相超导层与第二绝缘层之间间隙构成第三液氮通道;所述B相超导层与第三绝缘层之间间隙构成第四液氮通道;所述第一液氮通道、第二液氮通道、第三液氮通道以及第四液氮通道用于液氮的流通,以为所述通电导体进行降温冷却;通过以上设置,使得超导电缆的中间 B相超导层的热传导路径缩短,能够提高其热稳定性。
本发明的其它特征和优点将在随后的具体实施方式中阐述。
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例的三相同轴高温超导电缆通电导体剖视图。
图2为本发明实施例的纤维网结构示意图。
图3为本发明实施例的微流通道结构示意图。
图4为本发明实施例的三相同轴高温超导电缆通电导体的A、B、C三相的超导带材绕制方向示意图。
图5为本实施例中焊接电阻与超导带搭接长度的关系示意图。
图中标记:1-低温杜瓦管,11-第一液氮通道,12-第一液氮通道,13-第一液氮通道,14-第一液氮通道,2-通电导体,21-柔性骨架,22-第一绝缘层,23-A相超导层,24-第二绝缘层,25-B相超导层,26-第三绝缘层,27-C相超导层,28-第四绝缘层,29-铜屏蔽层,210-第五绝缘层,211-保护层,3-纤维网。
以下将参考附图详细说明本公开的各种示例性实施例、特征和方面。附图中相同的附图标记表示功能相同或相似的元件。尽管在附图中示出了实施例的各种方面,但是除非特别指出,不必按比例绘制附图。
另外,为了更好的说明本发明,在下文的具体实施例中给出了众多的具体细节。本领域技术人员应当理解,没有某些具体细节,本发明同样可以实施。在一些实例中,对于本领域技术人员熟知的手段未作详细描述,以便于凸显本发明的主旨。
参阅图1,本发明实施例提出一种三相同轴超导电缆通电导体冷却结构,包括:
低温杜瓦管,其为空心圆柱结构;
设置与所述低温杜瓦管中的通电导体,所述通电导体为空心圆柱结构,其由内之外依次绕制有柔性骨架、第一绝缘层、A相超导层、第二绝缘层、B相超导层、第三绝缘层、C相超导层、屏蔽层、第五绝缘层、保护层;
其中,所述柔性骨架的中空部分构成第一液氮通道;所述低温杜瓦管的内壁面与所述保护层的外壁面之间间隙构成第二液氮通道;所述B相超导层与第二绝缘层之间间隙构成第三液氮通道;所述B相超导层与第三绝缘层之间间隙构成第四液氮通道。
具体而言,所述冷却结构包括四个液氮通道,所述柔性骨架的中空部分构成第一液氮通道;所述低温杜瓦管的内壁面与所述保护层的外壁面之间间隙构成第二液氮通道;所述B相超导层与第二绝缘层之间间隙构成第三液氮通道;所述B相超导层与第三绝缘层之间间隙构成第四液氮通道;所述第一液氮通道、第二液氮通道、第三液氮通道以及第四液氮通道用于液氮的流通,以为所述通电导体进行降温冷却;通过以上设置,使得超导电缆的中间B相超导层的热传导路径缩短,能够提高其热稳定性。
可选地,所述第三液氮通道和所述第四液氮通道均为微流通道,所述B相超导层与第二绝缘层之间、以及所述B相超导层与第三绝缘层之间设置有 纤维网,所述纤维网用于维持所述B相超导层与第二绝缘层之间、以及所述B相超导层与第三绝缘层之间的微流通道。
具体而言,本实施例为了改进超导电缆的B相超导层的冷却效果,在B相导体相邻层引入“微流通道”。即在A-B相和B-C相之间的绝缘层等功能层中间通过微支撑结构引入“微流通道”,微流通道在充入液氮后会充满液氮,为B相导体提供良好的低温环境。不过由于微流通道的空间狭小,表面粘性力占优,雷诺数很大,不会对宏观制冷流程产生明显影响。
其中,微流通道的支撑结构采用一种特制的纤维网,如图3所示,这种纤维网的网孔、经纬线相对粗细是以微流通道CFD计算结果为基准选定的。
可选地,所述纤维网分别通过螺旋绕制的方式绕制在所述第二绝缘层的外壁面以及所述B相超导层的外壁面上,例如图3所示。
本发明的实施例还提出一种三相同轴超导电缆通电导体,包括上述实施例所述的超导电缆通电导体冷却结构;所述A相超导层通过使用超导带材在所述第一绝缘层上以第一方向螺旋绕制而成;所述B相超导层通过使用超导带材在所述第二绝缘层上以第二方向螺旋绕制而成;所述C相超导层通过使用超导带材在所述第三绝缘层上以第一方向螺旋绕制而成;所述第一方向与第二方向关于所述电缆的中轴线对称。
具体而言,本实施例中A相超导层与B相超导层的超导带材的卷绕方向关于所述电缆的中轴线对称,B相超导层与C相超导层的超导带材的卷绕方向关于所述电缆的中轴线对称,即A相超导层与C相超导层的超导带材的卷绕方向相同,有助于减少周向磁场,适用短距离传输电力的场合,实现低损耗、高效率、大容量输电。
可选地,所述B相超导层的超导带材的中线与所述A相超导层的超导 带材的间隙;所述C相超导层的超导带材的中线与所述B相超导层的超导带材的间隙。
具体而言,本实施例中层间超导带的相对位置是“插空”方式,即下一层的超导带对准上一层两根超导带之间的间隙。这种排列方法,相邻超导带的磁场垂直分量被部分抵消,有助于均化磁场,消除垂直场的影响。
可选地,所述第一绝缘层与所述A相超导层之间、所述A相超导层与所述第二绝缘层之间、所述第二绝缘层与所述B相超导层之间、所述B相超导层与所述第三绝缘层之间、所述第三绝缘层与所述C相超导层之间、所述C相超导层与所述第四绝缘层之间分别螺旋绕制有半导电层。
需说明的是,本实施例通过在第一绝缘层2和A相导体层之间、A相导体层与第二绝缘层之间、第二绝缘层和B相导体层之间、B相导体层和第三绝缘层之间、第三绝缘层和C相导体层之间、C相导体层和第四绝缘层之间分别螺旋绕制半导电层,来避免导体性质不规则产生的局部电场畸变,利用本实施例制造得到的超导电缆通电导体的局部结构如图1所示,利用本实施例制造得到的超导电缆通电导体适用短距离传输电力的场合,实现低损耗、高效率、大容量输电。
可选地,所述第五绝缘层的厚度小于所述第一、第二、第三、第四绝缘层。其中,通电导体外围设置低温杜瓦管。具体而言,铜屏蔽层外表面螺旋绕制第四绝缘层以及保护层,以隔离所述铜屏蔽层与低温杜瓦管之间的点位,并保护通电导体穿入低温杜瓦管的时候不受到机械损伤。
可选地,本实施例还包括:
将多根超导带材焊接形成满足预设超导电缆长度的超导带材;其中相邻两根超导带材的端部进行搭接,并进行低温焊锡钎焊连接。
可选地,相邻两根超导带材搭接的部分的长度为60mm,并且焊锡厚度小于0.1mm。
其中,由于高温超导带材的电阻是磁场、温度和运行电流的函数,其电阻计算非常复杂。在一定的假设简化下,各层的电阻计算可以遵循如下步骤。
通过临界电流的定义可以确定高温超导带材的电阻,如下式给出:
式中,为温度和磁场B下的临界电流(A);为实际运行电流(A);N为反应超导材料特性的指数,越大说明超导体越接近理想超导体,表示其E-J曲线的上升部分越陡;R是超导层的平均半径(m);为超导带材的绕向角(rad)。
从定义上看,这一部分超导带材固有的电阻是极小的,可以忽略不计。由于超导带的单带长度有限,需要由多根超导带焊接形成电缆长度的超导带材。超导带之间的非超导焊接,引入了所谓的接头电阻。接头电阻与焊接长度和焊锡厚度等要素有关系。图6给出了采用搭接低温焊锡钎焊的方法,焊接电阻与搭接长度、焊锡厚度的关系。从图5中我们可以看出,搭接长度在60mm之上,焊接电阻的下降开始不再明显;同时,也看到焊接厚度则是以“较薄”为宜。但是焊锡太薄了,可能会产生焊接不牢固或不均匀的问题。综合考虑搭接长度和焊锡厚度两方面因素,本实施例控制搭接60mm并且焊锡厚度小于0.1mm,可以保证焊接接头电阻在20nΩ以下。
以上已经描述了本发明的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。本文中所用术语的选择,旨在最好地解释各实施例的原理、实际 应用或对市场中的技术改进,或者使本技术领域的其它普通技术人员能理解本文披露的各实施例。
Claims (7)
- 一种三相同轴超导电缆通电导体冷却结构,其特征在于,包括:低温杜瓦管,其为空心圆柱结构;设置与所述低温杜瓦管中的通电导体,所述通电导体为空心圆柱结构,其由内之外依次绕制有柔性骨架、第一绝缘层、A相超导层、第二绝缘层、B相超导层、第三绝缘层、C相超导层、屏蔽层、第五绝缘层、保护层;其中,所述柔性骨架的中空部分构成第一液氮通道;所述低温杜瓦管的内壁面与所述保护层的外壁面之间间隙构成第二液氮通道;所述B相超导层与第二绝缘层之间间隙构成第三液氮通道;所述B相超导层与第三绝缘层之间间隙构成第四液氮通道;所述第一液氮通道、第二液氮通道、第三液氮通道以及第四液氮通道用于液氮的流通,以为所述通电导体进行降温冷却。
- 根据权利要求1所述的三相同轴超导电缆通电导体冷却结构,其特征在于,所述第三液氮通道和所述第四液氮通道均为微流通道,所述B相超导层与第二绝缘层之间、以及所述B相超导层与第三绝缘层之间设置有纤维网,所述纤维网用于维持所述B相超导层与第二绝缘层之间、以及所述B相超导层与第三绝缘层之间的微流通道。
- 根据权利要求1所述的三相同轴超导电缆通电导体冷却结构,其特征在于,所述纤维网分别通过螺旋绕制的方式绕制在所述第二绝缘层的外壁面以及所述B相超导层的外壁面上。
- 一种三相同轴超导电缆通电导体,其特征在于,包括权利要求1~3任 一项所述的超导电缆通电导体冷却结构;所述A相超导层通过使用超导带材在所述第一绝缘层上以第一方向螺旋绕制而成;所述B相超导层通过使用超导带材在所述第二绝缘层上以第二方向螺旋绕制而成;所述C相超导层通过使用超导带材在所述第三绝缘层上以第一方向螺旋绕制而成;所述第一方向与第二方向关于所述电缆的中轴线对称。
- 根据权利要求4所述的三相同轴超导电缆通电导体,其特征在于,所述B相超导层的超导带材的中线与所述A相超导层的超导带材的间隙;所述C相超导层的超导带材的中线与所述B相超导层的超导带材的间隙。
- 根据权利要求5所述的三相同轴超导电缆通电导体,其特征在于,所述第一绝缘层与所述A相超导层之间、所述A相超导层与所述第二绝缘层之间、所述第二绝缘层与所述B相超导层之间、所述B相超导层与所述第三绝缘层之间、所述第三绝缘层与所述C相超导层之间、所述C相超导层与所述第四绝缘层之间分别螺旋绕制有半导电层。
- 根据权利要求6所述的三相同轴超导电缆通电导体,其特征在于,A、B、C相超导层均由多根超导带材焊接形成;其中相邻两根超导带材的端部进行搭接,并进行低温焊锡钎焊连接;相邻两根超导带材搭接的部分的长度为60mm,并且焊锡厚度小于0.1mm。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011090821.0A CN112435799A (zh) | 2020-10-13 | 2020-10-13 | 三相同轴超导电缆通电导体冷却结构及超导电缆通电导体 |
CN202011090821.0 | 2020-10-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022077567A1 true WO2022077567A1 (zh) | 2022-04-21 |
Family
ID=74690195
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/124507 WO2022077567A1 (zh) | 2020-10-13 | 2020-10-28 | 三相同轴超导电缆通电导体冷却结构以及超导电缆通电导体 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN112435799A (zh) |
WO (1) | WO2022077567A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113077935B (zh) * | 2021-03-23 | 2022-05-20 | 广东电网有限责任公司电力科学研究院 | 一种超导电缆制冷介质螺旋传输结构以及超导电缆 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050096231A1 (en) * | 1998-09-11 | 2005-05-05 | Hughey Raburn L. | Superconducting cable |
CN109559850A (zh) * | 2018-12-07 | 2019-04-02 | 深圳供电局有限公司 | 一种直流双极超导电缆通电导体 |
CN109637738A (zh) * | 2018-12-07 | 2019-04-16 | 深圳供电局有限公司 | 一种三相同轴式超导电缆通电导体 |
CN110462756A (zh) * | 2017-04-04 | 2019-11-15 | Ls电线有限公司 | 三相同轴超导电缆 |
CN110570988A (zh) * | 2019-09-24 | 2019-12-13 | 深圳供电局有限公司 | 三相高温超导通电导体 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3822685A1 (de) * | 1988-07-05 | 1990-01-11 | Asea Brown Boveri | Elektrischer leiter in draht- oder kabelform, bestehend aus mindestens zwei einzelheiten in form eines ummantelten drahtes oder eines mehrfachfilamentleiters oder eines koaxialkabels auf der basis eines keramischen hochtemperatur-supraleiters |
JP2005129458A (ja) * | 2003-10-27 | 2005-05-19 | Miyazaki Tlo:Kk | 交流用超電導ケーブル |
DE60329774D1 (de) * | 2003-12-31 | 2009-12-03 | Servicios Condumex S A | Supraleitendes Energiekabel mit einem verbesserten supraleitenden Kern |
CN110600190B (zh) * | 2019-09-24 | 2021-03-30 | 深圳供电局有限公司 | 三相高温超导通电导体 |
CN110570986A (zh) * | 2019-09-24 | 2019-12-13 | 深圳供电局有限公司 | 三相高温超导通电导体及三相超导电缆的运行方式 |
-
2020
- 2020-10-13 CN CN202011090821.0A patent/CN112435799A/zh active Pending
- 2020-10-28 WO PCT/CN2020/124507 patent/WO2022077567A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050096231A1 (en) * | 1998-09-11 | 2005-05-05 | Hughey Raburn L. | Superconducting cable |
CN110462756A (zh) * | 2017-04-04 | 2019-11-15 | Ls电线有限公司 | 三相同轴超导电缆 |
CN109559850A (zh) * | 2018-12-07 | 2019-04-02 | 深圳供电局有限公司 | 一种直流双极超导电缆通电导体 |
CN109637738A (zh) * | 2018-12-07 | 2019-04-16 | 深圳供电局有限公司 | 一种三相同轴式超导电缆通电导体 |
CN110570988A (zh) * | 2019-09-24 | 2019-12-13 | 深圳供电局有限公司 | 三相高温超导通电导体 |
Also Published As
Publication number | Publication date |
---|---|
CN112435799A (zh) | 2021-03-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9002423B2 (en) | Superconducting cable | |
JP4298450B2 (ja) | 超電導ケーブルの端末構造 | |
EP2168179B1 (en) | A superconducting element joint | |
KR101380921B1 (ko) | 초전도 케이블 및 초전도 케이블 제조 방법 | |
US3595982A (en) | Supercounducting alternating current cable | |
US20140221213A1 (en) | Superconducting cable, superconducting cable line, method of installing superconducting cable, and method of operating superconducting cable line | |
CN109637738A (zh) | 一种三相同轴式超导电缆通电导体 | |
US7498519B2 (en) | Joint for superconducting cable | |
JP6210537B2 (ja) | 超電導ケーブルの接続構造、超電導ケーブル、超電導ケーブルの終端部の電流端子構造 | |
JP2018530853A (ja) | 超伝導線材 | |
EP1455367A1 (en) | Dc superconducting cable | |
JP2005012927A (ja) | 多相超電導ケーブルの相分岐構造 | |
CN209487218U (zh) | 一种三相同轴式超导电缆通电导体 | |
WO2022077567A1 (zh) | 三相同轴超导电缆通电导体冷却结构以及超导电缆通电导体 | |
JP2005012925A (ja) | 多相超電導ケーブルの相分岐構造 | |
KR20130014396A (ko) | 초전도성 직류 케이블 시스템을 구비한 배열 | |
WO2022077566A1 (zh) | 一种超导电缆通电导体制造方法 | |
KR20140094012A (ko) | 초전도 케이블의 임계 전류 측정 방법 | |
CN110931162A (zh) | 一种自屏蔽冷绝缘直流高温超导限流电缆 | |
JP5252324B2 (ja) | 超電導送電システム | |
KR102621367B1 (ko) | 초전도 케이블 | |
CN114628076B (zh) | 一种二分型三相同轴超导电缆及其设计方法 | |
JP2015216735A (ja) | 超電導ケーブル、及び超電導ケーブル線路 | |
JP6200402B2 (ja) | 超電導ケーブル線路、及び断熱管路 | |
JP2012174403A (ja) | 常温絶縁型超電導ケーブル、およびその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20957345 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 29.08.2023) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20957345 Country of ref document: EP Kind code of ref document: A1 |