[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022077128A1 - Dispositivo para extracción y purificación de ácidos nucleicos - Google Patents

Dispositivo para extracción y purificación de ácidos nucleicos Download PDF

Info

Publication number
WO2022077128A1
WO2022077128A1 PCT/CL2020/050157 CL2020050157W WO2022077128A1 WO 2022077128 A1 WO2022077128 A1 WO 2022077128A1 CL 2020050157 W CL2020050157 W CL 2020050157W WO 2022077128 A1 WO2022077128 A1 WO 2022077128A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
nucleic acids
samples
pcr
resin
Prior art date
Application number
PCT/CL2020/050157
Other languages
English (en)
French (fr)
Inventor
Denis Gustavo BERNDT BRICEÑO
Rodrigo Fernando MALIG FUENTES
Mauricio Alejandro NIKLITSCHEK OYARZÚN
Original Assignee
Taag Genetics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taag Genetics Corp filed Critical Taag Genetics Corp
Priority to CA3195482A priority Critical patent/CA3195482A1/en
Priority to US18/248,863 priority patent/US20230383279A1/en
Priority to EP20956912.8A priority patent/EP4245860A4/en
Publication of WO2022077128A1 publication Critical patent/WO2022077128A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1003Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor
    • C12N15/1006Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor by means of a solid support carrier, e.g. particles, polymers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1003Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor
    • C12N15/1006Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor by means of a solid support carrier, e.g. particles, polymers
    • C12N15/101Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor by means of a solid support carrier, e.g. particles, polymers by chromatography, e.g. electrophoresis, ion-exchange, reverse phase
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/26Selective adsorption, e.g. chromatography characterised by the separation mechanism
    • B01D15/265Adsorption chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/26Selective adsorption, e.g. chromatography characterised by the separation mechanism
    • B01D15/38Selective adsorption, e.g. chromatography characterised by the separation mechanism involving specific interaction not covered by one or more of groups B01D15/265 - B01D15/36
    • B01D15/3861Selective adsorption, e.g. chromatography characterised by the separation mechanism involving specific interaction not covered by one or more of groups B01D15/265 - B01D15/36 using an external stimulus
    • B01D15/3876Selective adsorption, e.g. chromatography characterised by the separation mechanism involving specific interaction not covered by one or more of groups B01D15/265 - B01D15/36 using an external stimulus modifying the temperature
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6806Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the present invention falls within the field of nucleic acid purification from different complex biological samples, which have various inhibitors, making it difficult to obtain quality and quantity nucleic acids to be used in different molecular biology techniques.
  • the present invention describes new molecular biology devices that comprise adsorption resins, which facilitate the extraction of nucleic acids by reducing the purification steps from different types of samples.
  • the present invention thereby simplifies the extraction and purification of nucleic acids, allowing anyone with minimal training in molecular biology to perform the extraction process in a single step.
  • the main challenge in this technical field is to develop a product for the extraction and purification of nucleic acids that is universal, that is, that is useful for extracting and purifying nucleic acids efficiently in the different types of samples of each industry.
  • the nucleic acid extraction process generally follows the following steps:
  • Micromachines (Basel). 2017 Mar; 8(3): 83) for extracting and purifying nucleic acids from some microorganisms, it is necessary to use a combination of mechanical and enzymatic (or other) methods to obtain quality and quantity nucleic acids from different biological samples. Additionally, the use of enzymes in cell disruption increases the extraction costs per reaction. Consequently, enzyme cleavage methods are widely used by laboratories or research centers (which process few samples), while the use of enzymes is avoided in private laboratories that routinely perform this type of analysis.
  • SPE solid phase extraction
  • SPE methods can be divided into normal/regular SPE, reverse SPE, and ion exchange SPE.
  • Each sorbent used in SPE has unique characteristics, giving rise to a solution to a specific problem involved in extraction methods.
  • polystyrene copolymer One of the polymeric matrices that has gained more attention are those derived from the polydivinylbenzene copolymer. Said polymer is produced from the polymerization of divinylbenzene with styrene, and due to the presence of large aromatic groups in its structure, it has a hydrophobic capture behavior.
  • these types of resins are defined as non-ionic adsorbents since they do not have ionizable functional groups in their structure, and they are resistant in pH ranges ranging from 0 to 14.
  • this type of resins can be modified by coupling different functional groups (ionizable or non-ionizable) and thus a non-ionic resin can be adapted for different types of chromatography. This versatility of this type of hydrophobic resins has made them one of the most used in chromatographic processes as they are capable of maintaining their properties in a wide pH range.
  • US2019100788 describes a technology related to the isolation of nucleic acids.
  • the technology relates to methods and kits for extracting nucleic acids from problem samples such as feces.
  • Claim 8 describes a method for removing a PCR inhibitor from a crude sample preparation comprising a nucleic acid, wherein the method comprises: a) adding insoluble polyvinyl Ipyrrolidone to said crude sample preparation before isolating the nucleic acid under conditions whereby said assay inhibitor binds to said polyvinylpyrrolidone to produce a complex; b) separating the complex from the crude sample preparation to produce a clarified sample preparation including said nucleic acid.
  • US2017152501 describes a process for the purification and/or isolation of nucleic acids where the process comprises: (1) cell lysis, which produces a sample containing nucleic acids and proteins, (2) contacting the sample with a sorbent material that binds proteins, and collection of the eluate containing the acids nucleic acids, wherein the sorbent material comprises a porous inorganic material comprising silica that is at least partially covered by a polymer.
  • US2014363819 describes compositions and methods to improve the amplification or detection of a target nucleic acid in a sample containing PCR inhibitors, such as polyphenols.
  • An enhancer composition is provided that includes casein or polyvinylpyrrolidone, or a modified polymer thereof.
  • WO201 3144654 describes a method for passing a liquid sample through a porous solid matrix, comprising the following steps: (1) sealing the liquid sample within a container comprising a porous solid matrix or at least a part of the container and ( 2) raising the temperature to increase the pressure inside the container, thus causing the liquid to pass through the porous solid matrix.
  • the nucleic acids have affinity for the matrix while the inhibitors come out in the eluate.
  • WO2004020971 describes a method for preparing adenovirus particles from an adenovirus preparation comprising the steps of: (a) subjecting said adenovirus preparation to chromatography in a first chromatographic medium, whereby adenovirus particles from said adenovirus preparation are retained in said first chromatographic medium; (b) eluting adenovirus particles from said first chromatographic medium to produce an adenovirus particle eluate; (c) subjecting adenovirus particles from said eluate to chromatography in a second chromatographic medium, wherein said second chromatographic medium retains one or more contaminants from said eluate and wherein said second chromatographic medium is not solely a size exclusion medium ; and (d) collecting adenovirus particles from said eluate.
  • the second chromatographic medium is the BioSepra Blue Trisacryl resin. This is a nonionic resin that separates by hydrophobic interactions.
  • DE19731670 describes the purification of nucleic acids from biological samples, comprising treating the sample with a synthetic anion exchange resin having a binding affinity for bile acids such that any inhibitors of the subsequent analytical reaction bind to the resin and are removed. It is also claimed the use of cholestyramine (divinylbenzene cross-linked polystyrene with quaternary ammonium groups) or colestipol (diethylenethamine-epichlorohydrin copolymer) for purification and/or isolation, from biological samples.
  • cholestyramine divininylbenzene cross-linked polystyrene with quaternary ammonium groups
  • colestipol diethylenethamine-epichlorohydrin copolymer
  • Chelex is a copolymer of styrene of divinylbenzene that has covalently attached iminodiacetate ions, which are used as chelators of polyvalent metal ions. Chelex is described as an interesting technique as it is fast, has few steps and does not use dangerous chemicals such as phenol/chloroform. Its main drawback is the inability to efficiently remove PCR inhibitors from complex samples due to the lack of purification steps.
  • nucleic acid purification method involves a resin that does not bind nucleic acids but is capable of retaining the inhibitors present in the sample.
  • the present invention describes a new device for the extraction and purification of nucleic acids from a biological sample, comprising: a closed container containing a solid phase comprising a mixture of non-ionic resins, preferably aromatic or aliphatic, in combination with a buffer solution or water or just the sample.
  • the invention further describes a method for detecting a nucleic acid comprising the following steps: (1) provide a sample of biological origin, (2) deposit the sample of biological origin containing the nucleic acids in the closed container, (3) heating the sample, (4) taking a volume of the sample, and (5) detecting the presence of the nucleic acid of interest by means of PCR or any of its variants.
  • the present invention corresponds to a device for the extraction and purification of nucleic acids from a biological sample, comprising: a closed container containing a solid matrix comprising a mixture of preferably aromatic or aliphatic non-ionic solid resins and optionally a buffer solution.
  • a closed container containing a solid matrix comprising a mixture of preferably aromatic or aliphatic non-ionic solid resins and optionally a buffer solution.
  • the SARS-COV-2 virus is a betacoronavirus and is the agent responsible for coronavirus disease 2019 (COVID-2019).
  • the condition generated by this virus is a severe acute respiratory syndrome and was identified as a pandemic by the World Health Organization (WHO) on March 11, 2020.
  • WHO World Health Organization
  • This new virus has infected 37 million people and has caused the death of around 1 million of them.
  • This is an enveloped, non-segmented, positive-sense RNA virus, approximately 65-125 nm in diameter, contains single-stranded RNA, and is provided with crown-shaped spikes on the outer surface.
  • a particular solution to the problem of detecting SARS-COV-2 corresponds to analyzing biological samples of nasopharyngeal swabs from human patients who are presumably infected with the virus, applying the aforementioned nucleic acid extraction and purification device, which comprises a closed container containing a solid matrix comprising a solid non-ionic resin or a mixture of said resins and optionally a buffer solution.
  • the nonionic solid resins are an aromatic and/or aliphatic nonionic adsorbent resin, in particular those selected from the group of resins of the styrene-divinylbenzene group with a macropore structure and having a large surface area.
  • the most preferred resins to be used in the invention can be selected from the following: PuroSorb® PAD400, PAD500, PAD600, PAD900, PAD1200, PAD350, PAD610, PAD910, PAD950, PAD950C, Amberlite® FPX66, FPX68, Amberlite® XAD2, XAD4, XAD16, XAD1 180, XAD200, XAD2010, XAD16N, XAD1600N, XAD18, XAD1 180N, XAD7HP and Diadion® Sepabe, XAD761 ® HP20, HP20SS, HP21 , SP70, SP700, SP825L, SP850, CHP20, CHP50, SP207, HP2MGL, LEWATIT® AF 5, SEPLITE® CT10, LX20, LX 207, LXA8, LXA10
  • the buffer solution is capable of preserving the state of the biological sample, for example, during its transport, and not it has to do with a choice related to the resin itself.
  • the resins of the present invention are stable throughout the pH range and do not change their adsorption properties.
  • the buffer solution is PBS 1 X pH 8.0.
  • a buffer solution should not be taken as limiting the scope of the device of the present invention. If it is desired to detect the presence of nucleic acids in a biological sample that is preserved in acidic pH ranges, the solid matrix containing the resin should be embedded in a buffer solution in said pH range. The same applies to a biological sample that must be kept at a basic pH. However, there are different biological samples that do not use a buffer solution for their processing, but rather the sample can be added directly to the container containing the resin without the need to buffer the pH of the solution.
  • the buffer solution of the present invention can be selected from the following buffers: citric acid, phosphate, MES, Bis-Tris, ADA, ACES, PIPES, MOPSO, Bis-Tris Propane, BES, MOPS, TES, HEPES, DIPSO, TAPSO , Tris, HEPPSO, POPSO, TEA, EPPS, Tricine, Gly-Gly, Bicine, HEPBS, TAPS, AMPD, TABS, AMPSO, CHES, CAPSO, AMP, CAPS and/or CABS.
  • buffers citric acid, phosphate, MES, Bis-Tris, ADA, ACES, PIPES, MOPSO, Bis-Tris Propane, BES, MOPS, TES, HEPES, DIPSO, TAPSO , Tris, HEPPSO, POPSO, TEA, EPPS, Tricine, Gly-Gly, Bicine, HEPBS, TAPS, AMPD, TABS,
  • the present invention also relates to a method of preparing the solid matrix comprising massing suitable quantities of one or more non-ionic adsorption resins, depositing them in a suitable container and mixing them with a suitable quantity of a buffer solution.
  • the proportion of resin: buffer solution is 0.6 grams of resin: 1 mL of buffer solution.
  • Said resin:buffer solution mixture can be deposited in a container of a suitable size to contain said solution.
  • the proportion of resin is 0.06 grams with 100 ⁇ L of sample without buffer solution. It is important to note that the sample does not necessarily have to be deposited directly on the resin. Depending on the type of sample, for example, an enrichment of a food sample, the sample may be premixed with a buffer solution and then a volume of said mixture may be heat treated in the presence of the non-ionic resin.
  • the nonionic resin of the invention is present as a free solid matrix in a container, said matrix could also be used in other formats such as embedded in filters that can be incorporated in containers such as Eppendorf tubes or other suitable plastic tubes.
  • the present invention should not be construed as limiting its use as described in the particular examples, but rather additionally, it could be used in HPLC-type purification systems or suitable chromatographic systems.
  • a container in the context of the present invention is understood as any molecular biology grade container that can contain reagents of suitable purity.
  • These containers can be, but should not be limited to the following: 50 mL or 15 mL Falcon type tubes, Eppendorf tubes in all their formats (2 mL, 1.5 mL, 1 mL, 0.5 mL), PCR tubes in all its formats, 96-well plates compatible with PCR systems and 384-well plates. Each of said containers could be used to perform the nucleic acid extraction and purification process.
  • the invention further describes a method for detecting a nucleic acid comprising the following steps:
  • the biological sample can have different origins.
  • Biological samples can be obtained from environmental samples, from production processes, clinics and/or from various surfaces.
  • the environmental samples can correspond to liquid or solid samples, or mixtures of them (sludge).
  • Samples of production processes can be taken from the agricultural, food, fruit, mining, metallurgical, and dairy industries, among others.
  • the agricultural samples can correspond to a part of the vegetables that are being cultivated, and in the same way the fruit samples can correspond to portions of fruit in the pre-harvest stage, during processing, packaging or post-harvest.
  • Food industry samples can be ready-to-eat foods and other types of processed or pre-processed foods.
  • the biological samples to be detected contain animal or plant cells, bacteria or viral particles whose nucleic acids are to be detected and inhibitors that interfere with the detection of said nucleic acids.
  • the samples may contain substances that inhibit the polymerase chain reaction, in all its variants.
  • CRP inhibitors can be of different types, but the most frequent are: humic acid found in plants and soil, polyphenols, certain divalent metals, collagen and pigments. Additionally, the matrices that frequently present this type of inhibitors are selected from chocolates, coffee, samples that have colorants (berries) and some spices.
  • the invention allows the removal of inhibitors that are normally found as part of complex molecular structures within the sample of biological origin. These molecular structures are affected by the heat treatment in such a way that the hydrophobic chemical groups are exposed and can be absorbed by the resin present in the device described in the present invention. Surprisingly, the adsorption of the inhibitors on the non-ionic resin is such that it allows direct detection of the nucleic acids from the extraction of a portion of the supernatant liquid within the device, without the need for additional purification steps.
  • this can be of different types.
  • a sterile swab can be used, and after the sample is taken from the patient, it must be deposited in the aforementioned device and the device must be closed during transport.
  • these can be taken from different parts of the human body: skin, mucous membranes, hair, nails and fluids.
  • the clinical samples may correspond to nasopharyngeal swabs, oropharyngeal swabs, nasal swabs, oral swabs, vaginal swabs, cervical swabs, urethral swabs, saliva, dermatological samples.
  • the sample taken from different environments may require treatment prior to the extraction and purification of nucleic acids by the device of the invention. For example, this occurs when analyzing food samples where said samples must be incubated in an enrichment medium for a period of time in order to increase the number of microorganisms present in the sample. In these cases, the sample can be taken and does not need to be immediately deposited in the device of the invention.
  • this is defined as the incubation process of the device with the sample inoculated inside at a temperature between 50 s C to 100 s C for a period of at least 1 to 30 minutes, preferably by 95 S C for at least 15 min.
  • said thermal treatment must be such that it allows cell lysis and molecular denaturation, which in turn allows the adsorption of the inhibitors in the resin present during the thermal treatment.
  • biological samples can be treated with different combinations of temperatures and time, all of them being able to achieve the same effect of cell lysis and molecular denaturation, which in turn allows the adsorption of the inhibitors in the resin present during treatment. heat treatment.
  • a volume of the purified nucleic acid sample is taken and used directly as a template for PCR reactions, or any technique that requires nucleic acids as isothermal amplification, DNA sequencing, among others.
  • the variants of PCR by which a nucleic acid can be detected can be the following: real-time PCR, RT-PCR, Multiplex PCR, nested PCR, Hot start PCR, among others.
  • real-time PCR technique a person of ordinary skill in the art understands that said technique employs different fluorophores to detect the presence of the target nucleic acid to be identified. There are different fluorophores that can be excited at specific wavelengths, and also emit in a specific wavelength range.
  • the commonly used fluorophores are FAM, ROX and HEX, but in fact any other fluorophore available in the state of the art that has been used in real-time PCR is compatible with the detection method of the present invention.
  • a positive reaction is detected by the accumulation of a fluorescent signal.
  • the Ct cycle threshold
  • the Ct is defined as the number of cycles required for the fluorescent signal to cross the threshold (ie, exceed the background level).
  • a real-time PCR reaction is more sensitive than another, if it has a Ct of at least 0.5 difference compared to another reaction, preferably greater than 1.0.
  • Figure 1 Efficiency of different types of resin for the detection of SARS-COV-2, compared to the result obtained from the sample without resin.
  • a negative result means that the new CT is lower (higher sensitivity) than the CT obtained from the sample without resin.
  • Example 1 Comparison of extraction and purification of nasopharyngeal and oropharyngeal swab samples using the device of the invention versus other resins.
  • the first thing that was evaluated was to determine what type of resin was the one that allowed SARS-COV-2 RNA to be extracted and purified from human clinical samples. All the resins had a polystyrene polymer or a copolymer of styrene and divinylbenzene as a skeleton, but they differed in that Some of these resins had other functional groups covalently attached, which allowed them to have a charge at different pH's.
  • the presence of SARS-COV-2 was detected by amplifying the N1 gene, which codes for the viral nucleocapsid and is one of the most widely used markers to determine the detection of coronavirus in human clinical samples. Additionally, the gene that codes for human RNAase P (RP) was detected, which corresponds to the test sample control.
  • N1 gene which codes for the viral nucleocapsid and is one of the most widely used markers to determine the detection of coronavirus in human clinical samples.
  • RP human RNAase P
  • one of the ways to determine the sensitivity of different detection methods through real-time PCR is to determine the ct with which the sample is classified as positive.
  • a lower ct in a given treatment indicates that the method is more sensitive in that condition, and that is what is always sought when working in real-time PCR systems.
  • the extraction protocol used in this example comprises the following steps:
  • the amount of DNA after the thermal process is the same in all the samples, so the difference in Ct it is mainly caused by the amount of free inhibitors that affect the RT-PCR and by the amount of free DNA that is available to amplify.
  • nucleic acid extraction device comprising a nonionic adsorption resin with aromatic groups makes it possible to reduce the amount of inhibitors contained in the sample and consequently increase the sensitivity of RT-PCR to detect RNA-like nucleic acids.
  • the methods using PurosorbTM PAD900 and AmberLiteTM FPX66 resins showed significant differences compared to the other methods. These differences are surprising and show that not any resin, and in particular, only one of the adsorption type with aromatic groups, allows to increase the sensitivity of RT-PCR for the detection of SARS-COV-2 RNA.
  • Example 2 Comparison of extraction and purification using the device of the invention versus column extraction device. Clinical validation of the device
  • kits for the extraction and purification of nucleic acids from samples suspected of having the virus can be considered a reference method in the art.
  • Said kit uses purification columns in which a cell lysate of the biological sample to be purified is deposited, the sample is centrifuged, and the RNA of the virus remains adhered to the matrix of the column, passing the inhibitors and other interfering molecules in the eluate. .
  • the extraction and processing of the samples with the device of the invention was identical to that described in example 1 of the present application.
  • the sample extraction protocol used for the E.Z.N.A.® Total RNA Kit I from Omega Biotek was that described by the manufacturer. Briefly, this protocol consists of 6 steps: i) add lysis buffer and incubate for 10 minutes; i) add binding buffer; iii) add the sample to the column and then centrifuge; iv) add wash buffer and centrifuge; v) add the washing buffer again and centrifuge, and; vi) add elution buffer, spin down and elute nucleic acids into a receiving tube. This whole process takes about 1 hour for 24 samples.
  • the nucleic acid extraction and purification device has a sensitivity of more than one Ct difference in 12 of the 15 clinical samples evaluated. Therefore, it can be concluded that the extraction device comprising a non-ionic adsorption resin for the extraction of nucleic acids from a sample comprising only the steps of contacting the biological sample with the extraction device and heating the sample at 95 S C for 15 min, is a method that produces a cleaner RNA of inhibitors and/or a greater amount of RNA available for amplification than the gold standard for SARS-COV-2 RNA extraction currently available in the industry.
  • One of the experimental objectives that guided the development of the present invention was to determine if the combination of the non-ionic adsorption resin with the thermal treatment was essential in the effectiveness of the developed extraction method. To determine if both treatments were necessary to achieve the desired effectiveness, an experiment was designed in which the treatments were evaluated separately.
  • Treatment 1 described in this example refers to incubating a biological mixture comprising the nucleic acid to be detected with the buffer of the extraction device, but the nucleic acid extraction was performed without the resin. That is, the biological sample was put in contact with the buffer solution, and then it was heated for at least 15 min at 95 °C . Then, the resulting solution was used as a template for real-time PCR assays as described above. .
  • Treatment 2 described in this example refers to incubating a biological mixture comprising the nucleic acid to be detected with the buffer solution of the extraction device (without the resin) and then incubating said resulting solution for at least 15 min at 95 S C. After said incubation, an appropriate volume of the solid resin as described above in the present application is added and allowed to incubate for an adequate period of time. Finally, a volume of said solution is taken to be used as a template for real-time PCR assays.
  • Treatment 3 described in the present example refers to the normal nucleic acid extraction and purification method that comprises the simultaneous incubation of the resin with the biological sample and then a thermal treatment is carried out for at least 15 min at 95 S C. This treatment corresponds to the control of the experiment.
  • Table 3 shows the results obtained from real-time tests for each of the treatments. It should be noted that, as indicated for example 2, each of the samples evaluated had previously been determined to be positive for SARS-COV-2. Table 3. Effect of resin and heat treatment on device detection sensitivity.
  • Example 4 Comparison of extraction and purification using the device of the invention varying the thermal treatment
  • Table 4 shows different heat treatment regimens to which different samples positive for SARS-COV-2 were subjected.
  • Example 5 Comparison of extraction and purification using the device of the invention varying the proportions of resin and buffer solution
  • Another of the preferred embodiments of the present invention was to search for the optimal ratio between the amount of resin and the amount of a solution comprising the biological sample and the buffer solution specifically for the detection of SARS-CoV-2.
  • the biological sample in the form of a nasopharyngeal swab was deposited in a first container containing an appropriate amount of buffer solution.
  • the mixture was homogenized and then different volumes of said mixture were taken and each one was mixed with 0.06 grams of solid resin deposited in a separate container. Samples were then incubated for 15 min at 95° C , and real-time RT-PCR assays were performed as described above. Table 5 shows the results of said tests for each of the proportions resin: buffer solution + evaluated sample.
  • Example 6 Validation from previously fortified food samples
  • another of the preferred embodiments of the invention is the extraction and purification from different food samples and/or surfaces.
  • the device of the present invention was capable of extracting and purifying nucleic acids from microorganisms in such samples, the device was used in different matrices. Table 6 shows the results obtained in the different samples.
  • the nucleic acid extraction device is capable of detecting the four microorganisms evaluated in each of said matrices. This is particularly important in the condiment sample, which are samples known to have PCR inhibitors.
  • the enriched samples were added directly to resin tubes, without any type of buffer, and the results were satisfactory.
  • the device developed in the present invention may or may not contain a buffer solution.
  • Example 7 Comparison of extraction and purification using the device of the invention versus column extraction device. Clinical validation of the device in Saliva samples. In order to compare the efficiency of the device of the invention with respect to other commercial kit alternatives available on the market for the extraction of RNA from saliva, real-time RT-PCR assays were performed using as template nucleic acids those that were extracted by the device developed in the present invention and others by the EZNA® Total RNA Kit I from Omega Biotek.
  • Table 7 Comparison of the detection sensitivity of SARS-COV-2 by real-time RT-PCR of the device of the present invention in saliva samples with respect to a reference kit.
  • the device for the extraction and purification of nucleic acids from saliva generally has better performance than the gold standard for SARS-COV-2 RNA extraction currently available in the industry.
  • Example 8 Comparison of extraction and purification using the device of the invention by varying the temperature of the heat treatment.
  • Table 8 shows the efficiency of the method according to different incubation temperatures to which a positive sample for SARS-COV-2 was subjected.
  • temperatures above 75° C maximize the efficiency of the method.
  • the optimal temperature will depend on additional sample treatment requirements, which in the case of SARS-CoV-2 should also consider its inactivation.
  • Example 9 Comparison of extraction and purification using the device of the invention varying the thermal treatment
  • Table 3 shows the results obtained after incubating a positive sample for SARS-COV-2 at 95 S C, with different incubation times.
  • Example 10 Comparison of extraction and purification using the device of the invention varying the type of resin.
  • non-ionic aromatic and/or aliphatic absorbent resins maximize the sensitivity of the method compared to the use of ionic resins.
  • the present invention has a wide application in the biotechnological, biomedical and food industries. Also, the present invention provides an innovative application for the rapid and effective extraction of nucleic acids from different samples.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Analytical Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Plant Pathology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Immunology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Saccharide Compounds (AREA)

Abstract

La presente invención describe un nuevo dispositivo de extracción y purificación de ácidos nucleicos desde una muestra biológica, que comprende: un contenedor cerrado que contiene una fase sólida que comprende una mezcla de resinas no iónicas, preferentemente aromáticas, en combinación con una solución amortiguadora o agua o solo la muestra. La invención además describe un método de detección de un ácido nucleico que comprende los siguientes pasos: (1) proveer una muestra de origen biológico, (2) depositar la muestra de origen biológico que contiene los ácidos nucleicos en el contenedor cerrado, (3) calentar la muestra, (4) tomar un volumen de la muestra, y (5) detectar la presencia del ácido nucleico de interés mediante PCR o cualquiera de sus variantes.

Description

DISPOSITIVO PARA EXTRACCIÓN Y PURIFICACIÓN DE ÁCIDOS NUCLEICOS
MEMORIA DESCRIPTIVA
CAMPO TÉCNICO
La presente invención se enmarca en el campo de la purificación de ácidos nucleicos desde diferentes muestras biológicas complejas, las cuales presentan diversos inhibidores, haciendo difícil la obtención de ácidos nucleicos en calidad y cantidad para ser utilizados en diferentes técnicas de biología molecular. En particular, la presente invención describe nuevos dispositivos de biología molecular que comprenden resinas de adsorción, las que facilitan la extracción de ácidos nucleicos mediante la disminución de los pasos de purificación desde diferentes tipos de muestras. Es más, la presente invención simplifica de tal modo la extracción y purificación de ácidos nucleicos, permitiendo que en un solo paso cualquier persona con un mínimo entrenamiento en biología molecular pueda realizar el proceso de extracción.
ANTECEDENTES Y ARTE PREVIO
Los avances en el campo técnico de la biología molecular, y en particular el avance en la detección de ácidos nucleicos mediante PCR y sus diferentes variantes, han revolucionado la detección de microorganismos patógenos o no patógenos en sectores industriales tales como el alimentario, clínico, tratamiento de aguas, agricultura, minería, entre otros. En particular la detección oportuna de microorganismos patógenos en diferentes tipos de alimentos, o matrices alimentarias, y también en diferentes muestras clínicas, plantea una serie de desafíos para las empresas que presentan servicios de detección o que comercializan reactivos para este fin.
El principal desafío en este campo técnico consiste en desarrollar un producto de extracción y purificación de ácidos nucleicos que sea universal, es decir, que sea útil para extraer y purificar ácidos nucleicos de forma eficiente en los diferentes tipos de muestras de cada industria. Este es un gran problema que no tiene solución actual debido a que cada muestra, al tener una composición distinta, puede presentar diferentes desafíos técnicos en sí mismos. El proceso de extracción de ácidos nucleicos en general sigue los siguientes pasos:
1 . Ruptura celular;
2. Eliminación de restos celulares, proteínas, carbohidratos, lípidos y otras moléculas; y
3. Obtener una solución enriquecida con ácidos nucleicos.
El estado de la técnica enseña que existen, principalmente, dos métodos que se utilizan para realizar la ruptura celular: ruptura mecánica, ruptura química y ruptura enzimática. La ruptura mecánica se basa en la ruptura celular utilizando “bolas de vidrio” de 0,5 mm que al adicionarse a una muestra biológica y agitarse en vértex, se produce la liberación de los ácidos nucleicos que contienen las células presentes en la muestra biológica. En cambio, la ruptura enzimática se basa en la digestión diferencial de las membranas plasmáticas de diferentes microorganismos. Tradicionalmente para romper las células bacterianas se utiliza lisozima (sola o en combinación con otros agentes) y para las células de hongos y levaduras se utiliza quitinasa. Sin embargo, tal como se ha descrito en diversos artículos, (ver por ejemplo: Ohta A., et al. A Review on Macroscale and Microscale Cell Lysis Methods. Micromachines (Basel). 2017 Mar; 8(3): 83) para extraer y purificar ácidos nucleicos de algunos microorganismos, es necesario utilizar una combinación de métodos mecánicos y enzimáticos (u otros) para lograr obtener ácidos nucleicos en calidad y cantidad desde diferentes muestras biológicas. Adicionalmente, el uso de enzimas en la ruptura celular aumenta los costos de extracción por reacción. En consecuencia, los métodos de ruptura enzimática son ampliamente utilizados por laboratorios o centros de investigación (que procesan pocas muestras), mientras que la utilización de enzimas es evitada en laboratorios privados que realizan este tipo de análisis de forma rutinaria.
El siguiente paso tras la ruptura celular, es la separación de los componentes celulares presentes en el lisado celular (proteínas, lípidos, carbohidratos, y otras diversas moléculas), de los ácidos nucleicos. Para realizar esta tarea se ha desarrollado y masificado el uso de métodos de purificación de ácidos nucleicos de extracción en fase sólida (SPE). La SPE se basa en fases líquidas y estacionarias, que separan selectivamente el analito objetivo de la solución en función de las propiedades hidrófobas, polares y/o iónicas específicas tanto del soluto como del sorbente. La química entre el sorbente y el analito de interés es la base de esta técnica, mientras que las interacciones químicas "débiles" como las fuerzas de van der Waals (interacciones no polares), las interacciones dipolo-dipolo (interacciones polares) y los enlaces de hidrógeno determinan el mecanismo de retención en SPE.
Los métodos SPE se pueden dividir en SPE normal/regular, SPE inversa y SPE de intercambio iónico. Cada sorbente utilizado en SPE tiene características únicas, que dan lugar a una solución para un problema específico involucrado en los métodos de extracción.
Independientemente del tipo de SPE, se han desarrollado diferentes resinas que son compatibles con los diversos formatos que puede tomar un proceso de purificación de SPE. Las resinas o matrices más utilizadas son las basadas en silica, vidrio, tierra de diatomeas, perlas magnéticas, materiales de intercambio aniónico, matrices de celulosa, metacrilatos y diferentes polímeros orgánicos e inorgánicos. De todas esas matrices las más utilizada han sido las basadas en sílices por sus conocidas propiedades de unión a los ácidos nucleicos. En el último tiempo han surgido las matrices poliméricas en diversos procesos de purificación debido a que son costo-efectivas, y además presentan propiedades mejoradas en comparación a otros materiales.
Una de las matrices poliméricas que ha ganado mayor atención son las derivadas del copolímero polidivinilbenceno. Dicho polímero se produce a partir de la polimerización del divinilbenceno con el estireno, y debido a la presencia de grandes grupos aromáticos en su estructura tiene un comportamiento de captura hidrofóbico. Específicamente este tipo de resinas se definen como adsorbentes no iónicas ya que no tienen grupos funcionales ionizables en su estructura, y son resistentes en intervalos de pH que van desde 0 a 14. No obstante, este tipo de resinas pueden ser modificadas mediante el acoplamiento de diferentes grupos funcionales (ionizables o no ionizables) y de este modo una resina no iónica se puede adaptar para diferentes tipos de cromatografías. Esta versatilidad de este tipo de resinas hidrofóbicas las ha convertido en una de las más utilizadas en procesos cromatográficos al ser capaces de mantener sus propiedades en un amplio rango de pH.
Tal como un experto en la técnica reconocerá, aunque existen numerosos tipos de resinas, las más utilizadas en la actualidad para purificación de ácidos nucleicos son las de intercambio iónico, y específicamente las de intercambio aniónico, debido a su afinidad por las moléculas negativas como los ácidos nucleicos. El documento WO201 3144654, el cual se incorpora como referencia en su totalidad, resume el estado del arte de las resinas que tienen afinidad por ácidos nucleicos.
No obstante, la purificación de ácidos nucleicos mediante cromatografía de intercambio iónico genera algunos problemas en las etapas de PCR posteriores ya que existen moléculas cargadas negativamente que co-purifican con los ácidos nucleicos unidos a las resinas, y que pueden actuar como inhibidores.
Teniendo en consideración todos estos antecedentes expuestos, es evidente que existe un problema de la técnica no satisfecho, que corresponde a generar un dispositivo de extracción y purificación de ácidos nucleicos que sea fácil de realizar, que sea compatible con numerosas matrices y que sea competitivo en cuanto a su costo de comercialización.
A fin de describir de mejor manera la presente invención, se realizó una búsqueda de arte previo, y a continuación se resumen los documentos cercanos encontrados.
US2019100788 describe una tecnología relacionada con el aislamiento de ácidos nucleicos. En particular, la tecnología se refiere a métodos y kits para extraer ácidos nucleicos de muestras problemáticas como las heces. En la reivindicación 8 se describe un método para eliminar un inhibidor de PCR de una preparación de muestra cruda que comprende un ácido nucleico, en donde el método comprende: a) añadir poli vi n i Ipi rrolidona insoluble a dicha preparación de muestra cruda antes de aislar el ácido nucleico en condiciones en que dicho inhibidor de ensayo se une a dicha polivinilpirrolidona para producir un complejo; b) separar el complejo de la preparación de la muestra cruda para producir una preparación de la muestra clarificada que incluya dicho ácido nucleico.
US2017152501 describe un proceso para la purificación y/o aislamiento de ácidos nucleicos donde el proceso comprende: (1 ) una lisis celular, que producen una muestra que contiene ácidos nucleicos y proteínas, (2) poner en contacto la muestra con un material sorbente que une las proteínas, y recogida del eluído que contiene los ácidos nucleicos, en donde el material sorbente comprende un material inorgánico poroso que comprende sílice que está al menos parcialmente cubierta por un polímero.
US2014363819 describe composiciones y métodos para mejorar la amplificación o detección de un ácido nucleico diana en una muestra que contiene inhibidores de PCR, tales como polifenoles. Se proporciona una composición potenciadora que incluye caseína o polivinilpirrolidona, o un polímero modificado de la misma.
WO201 3144654 describe un método para pasar una muestra líquida a través de una matriz sólida porosa, que comprende los siguientes pasos: (1 ) sellar la muestra líquida dentro de un contenedor que comprende una matriz sólida porosa o al menos una parte del contenedor y (2) elevar la temperatura para aumentar la presión dentro del contenedor, por lo tanto, provocando que el líquido pase a través de la matriz sólida porosa. En la reivindicación 4 se describe que los ácidos nucleicos tienen afinidad por la matriz mientras que los inhibidores salen en el eluato.
W02004020971 describe un método para preparar partículas de adenovirus a partir de una preparación de adenovirus que comprende las etapas de: (a) someter dicha preparación de adenovirus a cromatografía en un primer medio cromatográfico, por lo que las partículas de adenovirus de dicha preparación de adenovirus se retienen en dicho primer medio cromatográfico; (b) eluír partículas de adenovirus de dicho primer medio cromatográfico para producir un eluato de partículas de adenovirus; (c) someter partículas de adenovirus de dicho eluato a cromatografía en un segundo medio cromatográfico, en el que dicho segundo medio cromatográfico retiene uno o más contaminantes de dicho eluato y en el que dicho segundo medio cromatográfico no es únicamente un medio de exclusión por tamaño; y (d) recoger partículas de adenovirus de dicho eluato. En el pliego de reivindicaciones se describe que el segundo medio cromatográfico es la resina BioSepra Blue Trisacryl. Esta es una resina no iónica que separa por interacciones hidrofóbicas.
DE19731670 describe la purificación ácidos nucleicos de muestras biológicas, que comprende tratar la muestra con una resina intercambiadora de aniones sintética que tiene afinidad de unión por los ácidos biliares de modo que cualquier inhibidor de la reacción analítica subsiguiente se una a la resina y se elimine. También se reivindica el uso de colestiramina (poliestireno reticulado con divinilbenceno con grupos amonio cuaternario) o colestipol (copolímero de dietilenthamina-epiclorhidrina) para la purificación y / o aislamiento, a partir de muestras biológicas.
“Current Nucleic Acid Extraction Methods and Their Implications to Point-of-Care Diagnostics”. Ali Nasir., et al. 2017. BioMed Research International Volume 2017, Article ID 9306564. describe que el Chelex es un copolímero de estireno de divinilbenceno que tiene unido covalentemente iones iminodiacetato, que se utilizan como quelantes de iones metálicos polivalentes. Se describe que el chelex es una técnica interesante ya que es rápida, tiene pocos pasos y no utiliza productos químicos peligrosos como fenol/ cloroformo. Su principal inconveniente es la incapacidad para eliminar de manera eficiente los inhibidores de la PCR de muestras complejas debido a la falta de pasos de purificación.
Teniendo esto en consideración se encontraron pocos documentos en los cuáles se divulga un método de purificación de ácidos nucleicos que involucrara una resina que no uniera ácidos nucleicos pero que si sea capaz de retener los inhibidores presentes en la muestra.
Cabe destacar que el principio que guía la presente invención se basa en una lisis celular y denaturación molecular por temperatura, donde en esta misma etapa una matriz sólida compuesta preferentemente de resinas con grupos aromáticos captura los inhibidores y el ácido nucleico queda libre de inhibidores para su posterior análisis. Este principio de purificación es justamente contrario a todos los productos y métodos descritos en el estado del arte previo, y no son dehvables de ningún modo de la combinación de diferentes documentos disponibles en el estado del arte previo al momento de la presentación de la presente invención. El tratamiento térmico de las muestras biológicas que permite la lisis celular y la denaturación molecular en presencia de una resina no iónica aromática o alifática permite la detección sensible y directa de ácidos nucleicos sin necesidad de etapas de purificación lentas y complejas.
BREVE DESCRIPCIÓN DE LA INVENCIÓN
La presente invención describe un nuevo dispositivo de extracción y purificación de ácidos nucleicos desde una muestra biológica, que comprende: un contenedor cerrado que contiene una fase sólida que comprende una mezcla de resinas no iónicas, preferentemente aromáticas o alifáticas, en combinación con una solución amortiguadora o agua o solo la muestra. La invención además describe un método de detección de un ácido nucleico que comprende los siguientes pasos: (1 ) proveer una muestra de origen biológico, (2) depositar la muestra de origen biológico que contiene los ácidos nucleicos en el contenedor cerrado, (3) calentar la muestra, (4) tomar un volumen de la muestra, y (5) detectar la presencia del ácido nucleico de interés mediante PCR o cualquiera de sus variantes.
DESCRIPCIÓN DETALLADA DEL INVENTO
Tal como se ha indicado previamente, la presente invención corresponde a un dispositivo de extracción y purificación de ácidos nucleicos desde una muestra biológica, que comprende: un contenedor cerrado que contiene una matriz sólida que comprende una mezcla de resinas sólidas no iónicas preferentemente aromáticas o alifáticas y opcionalmente una solución amortiguadora. A fin de ejemplificar la invención y mostrar los principales elementos que la componen, se realizará la descripción de la misma utilizando un caso particular, y en la sección de ejemplos, se muestran 7 distintas realizaciones de la invención.
La elección de la realización particular correspondiente a un dispositivo de extracción y purificación de los ácidos nucleicos del virus SARS-COV-2 presente en una muestra biológica humana, se debe a la necesidad de detectar de forma oportuna y precisa la presencia de este virus pandémico en el mundo al ser un problema de salud global.
El virus SARS-COV-2 es un betacoronavirus y es el agente responsable de la enfermedad por coronavirus 2019 (COVID-2019). El cuadro generado por este virus es un síndrome respiratorio agudo severo y fue identificado como una pandemia por la Organización Mundial de la Salud (OMS) el 11 de marzo de 2020. A la fecha este nuevo virus ha infectado a 37 millones de personas y ha provocado la muerte de alrededor de 1 millón de ellas. Este es un virus de ARN de sentido positivo envuelto, no segmentado, su diámetro es de aproximadamente 65 a 125 nm, contiene hebras simples de ARN y está provisto de puntas en forma de corona en la superficie exterior. En esta pandemia de SARS-CoV-2, el diagnóstico confiable, temprano y preciso es crucial para brindar ayuda médica oportuna a la persona infectada, así como también ayudar a las agencias gubernamentales a prevenir su propagación a otras personas y salvar vidas. Los resultados falsos negativos de las pruebas pueden provocar la propagación de la epidemia en la comunidad. De manera similar, el resultado falso positivo puede provocar un tratamiento innecesario y un trauma mental para los pacientes.
Una de las principales causas en la demora en la entrega de exámenes que buscan la detección del virus es el procesamiento de las muestras (extracción y purificación de los ácidos nucleicos). Los kits de detección disponibles actualmente como el E.Z.N.A.® Total RNA Kit I de Omega Bioteck (número de catálogo: R6834-02 x 200 rx, o Cat. R6834-01 x 50 rx) son complejos en cuanto a su utilización ya que tienen una serie pasos y soluciones que se deben agregar secuencialmente. La complejidad del protocolo además de consumir horas/hombre del personal técnico que realiza el procesamiento de las muestras, puede generar errores involuntarios en el procesamiento de las muestras a extraer.
Por estas razones, la extracción y purificación de ácidos nucleicos de SARS-COV-2 desde muestras biológicas humanas de forma sencilla y robusta es aún una necesidad permanente no satisfecha en la técnica.
Una solución particular al problema de la detección del SARS-COV-2, corresponde a analizar muestras biológicas de hisopados nasofaríngeos de pacientes humanos que presuntamente están infectados con el virus, aplicando el dispositivo de extracción y purificación de ácidos nucleicos mencionado anteriormente, el cual comprende un contenedor cerrado que contiene una matriz sólida que comprende una resina sólida no iónica o una mezcla de dichas resinas y opcionalmente una solución amortiguadora.
En una solución aún más particular las resinas sólidas no iónicas es una resina adsorbente aromática y/o alifática no iónica, en particular aquellas seleccionada del grupo de resinas del grupo estireno-divinilbenceno con una estructura de macroporo y que tenga un área de superficie extensa. Dentro de las resinas derivadas de estierno- divinilbenceno las resinas más preferidas para ser utilizadas en la invención se puede seleccionar de las siguientes: PuroSorb® PAD400, PAD500, PAD600, PAD900, PAD1200, PAD350, PAD610, PAD910, PAD950, PAD950C, Amberlite® FPX66, FPX68, Amberlite® XAD2, XAD4, XAD16, XAD1 180, XAD200, XAD2010, XAD16N, XAD1600N, XAD18, XAD1 180N, XAD7HP, XAD761 , Diaion® and Sepabeads® HP20, HP20SS, HP21 , SP70, SP700, SP825L, SP850, CHP20, CHP50, SP207, HP2MGL, LEWATIT® AF 5, SEPLITE® CT10, LX20, LX 207, LXA8, LXA10, LXA17, LXA680, LXA1600, LXA1 180, LXA81 , LXA816, LXA817, LXA8302, LXA88, LXS868, AB-8 u otras resinas adsorbentes aromáticas o alifáticas. Esta es una lista que no debe ser tomada como limitante para la presente invención, sino que son solo ejemplificaciones de resinas no iónicas aromáticas que pueden ser utilizadas como equivalentes técnicos de la presente invención.
Una persona experta en la materia de la invención reconocerá que el principio novedoso de extracción y purificación de ácidos nucleicos descrito en la presente invención está basado en las propiedades inesperadas de las resinas hidrofóbicas, las cuales retienen los inhibidores de PCR presentes en diferentes tipos de muestras. Por lo tanto, cualquier resina no iónica, hidrofóbica podría actuar como adsorbente de dichos inhibidores, y la descripción particular de las resinas nombradas anteriormente no deberían ser tomadas como limitantes para la presente invención.
En relación a la elección de la solución amortiguadora en la cual va embebida la mezcla de resinas sólidas, se debe tomar en cuenta principalmente que la solución amortiguadora sea capaz de conservar el estado de la muestra biológica, por ejemplo, durante su transporte, y no tiene que ver con una elección relacionada con la resina en sí misma. Tal como se comentó anteriormente las resinas de la presente invención son estables en todo el rango de pH y no cambian sus propiedades de adsorción. Para la realización específica relacionada con la detección del SARS-COV-2 desde muestras de hisopados humanas de diversos tipos, la solución amortiguadora es PBS 1 X pH 8,0.
Sin embargo, dicha ejemplificación particular de una solución amortiguadora no debe ser tomada como limitante para los alcances del dispositivo de la presente invención. Si se desea detectar la presencia de ácidos nucleicos en una muestra biológica que se conserva en rangos de pH ácidos, la matriz sólida que contiene la resina debería estar embebida en una solución amortiguadora en dicho rango de pH. Lo mismo aplica para una muestra biológica que debe conservarse en un pH básico. No obstante, existen diferentes muestras biológicas que para su procesamiento no se utiliza una solución amortiguadora, sino que la muestra puede adicionarse directo al contenedor que contiene la resina sin la necesidad de amortiguar el pH de la solución.
La solución amortiguadora de la presente invención se puede seleccionar de los siguientes buffers: ácido cítrico, fosfato, MES, Bis-Tris, ADA, ACES, PIPES, MOPSO, Bis-Tris Propane, BES, MOPS, TES, HEPES, DIPSO, TAPSO, Tris, HEPPSO, POPSO, TEA, EPPS, Tricina, Gly-Gly, Bicina, HEPBS, TAPS, AMPD, TABS, AMPSO, CHES, CAPSO, AMP, CAPS y/o CABS.
La presente invención también se refiere a un método de preparación de la matriz sólida que comprende masar cantidades adecuadas de una o varias resinas de adsorción no iónica, depositarlas en un contenedor adecuado y mezclarlas con una cantidad adecuada de una solución amortiguadora.
En una realización preferida la proporción de resina: solución amortiguadora es de 0,6 gramos de resina: 1 mL de solución amortiguadora. Dicha mezcla de resina: solución amortiguadora puede ser depositada en un contenedor de un tamaño adecuado para contener dicha solución.
En otra realización un poco más específica, la proporción de resina es de 0,06 gramos con 100 |iL de muestra sin solución amortiguadora. Es importante destacar que la muestra no necesariamente debe ser depositada directamente sobre la resina. De acuerdo con el tipo de muestra, por ejemplo, un enriquecido de una muestra de alimentos, la muestra se puede mezclar previamente con una solución amortiguadora y luego un volumen de dicha mezcla puede ser tratada térmicamente en presencia de la resina no iónica.
Si bien en una ejemplificación de la invención, la resina no iónica de la invención se encuentra presente como una matriz sólida libre en un contenedor, dicha matriz también podría ser utilizada en otros formatos tales como embebidas en filtros que pueden ser incorporados en contenedores tales como tupos eppendorf u otros tubos de plásticos adecuados. La presente invención no debe ser pensada como limitante en cuanto a su utilización tal como se describe en las ejemplificaciones particulares, sino que adicionalmente podría ser utilizada en sistemas de purificación tipo HPLC o sistemas cromatográficos adecuados.
Un contenedor en el contexto de la presente invención se entiende como cualquier recipiente de grado de biología molecular que puede contener reactivos con la pureza adecuada. Dichos contenedores pueden ser, pero no deben limitarse a los siguientes: tubo tipos Falcon de 50 mL o 15 mL, tubos Eppendorf en todos sus formatos (2 mL, 1 ,5 mL, 1 mL, 0,5 mL), tubos de PCR en todos sus formatos, placas de 96 pocilios compatibles con sistemas de PCR y placas de 384 pocilios. Cada uno de dichos contenedores podría ser utilizado para realizar el proceso de extracción y purificación de ácidos nucleicos.
La invención además describe un método de detección de un ácido nucleico que comprende los siguientes pasos:
1 . tomar una muestra de origen biológico,
2. depositar la muestra de origen biológico que contiene los ácidos nucleicos en el contenedor cerrado,
3. calentar la muestra,
4. tomar un volumen de la muestra, y
5. detectar la presencia del ácido nucleico de interés mediante PCR o cualquiera de sus vahantes.
En una realización preferida la muestra biológica puede tener diferentes orígenes. Las muestras biológicas pueden ser obtenidas desde muestras ambientales, de procesos productivos, clínicas y/o de diversas superficies. Las muestras ambientales pueden corresponder a muestras líquidas, sólidas, o mezclas de las mismas (lodo). Las muestras de procesos productivos pueden ser tomadas desde la industria agrícola, alimentaria, frutícola, minera, metalúrgica, láctea, entre otras. Las muestras agrícolas pueden corresponder a una parte de hortalizas que están siendo cultivadas, y del mismo modo las muestras frutícolas pueden corresponder a porciones de frutas en etapa de precosecha, durante su procesamiento, packaging o post cosecha. Las muestras de la industria alimentaria pueden ser alimentos listos para consumo y otro tipo de alimentos procesados o pre-procesados. En otra realización preferida las muestras biológicas a detectar contienen células animales o vegetales, bacterias o partículas virales cuyos ácidos nucleicos se deseen detectar e inhibidores que interfieren en la detección de dichos ácidos nucleicos.
En una realización preferida aún más específica las muestras pueden contener sustancias inhibitorias de la reacción en cadena de la polimerasa, en todas sus vahantes. Los inhibidores del PCR pueden ser de diferentes tipos, pero los más frecuentes son: ácido húmico que se encuentra en las plantas y el suelo, polifenoles, ciertos metales divalentes, colágeno y pigmentos. Adicionalmente, las matrices que presentan frecuentemente este tipo de inhibidores se seleccionan de chocolates, café, muestras que tienen colorantes (berries) y algunas especias.
La invención permite la remoción de los inhibidores que normalmente se encuentran formando parte de estructuras moleculares complejas dentro de la muestra de origen biológico. Estas estructuras moleculares son afectadas por el tratamiento térmico de forma tal que los grupos químicos hidrofóbicos quedan expuestos y puedan ser absorbidos por la resina presente en el dispositivo descrito en la presente invención. Sorprendentemente, la adsorción de los inhibidores en la resina no iónica es tal que permite la detección directa de los ácidos nucleicos a partir de la extracción de una porción del líquido sobrenadante dentro del dispositivo, sin necesidad de pasos adicionales de purificación.
En relación al dispositivo de toma de muestra, este puede ser diferentes tipos. Para las muestras clínicas se puede utilizar una tórula estéril, y tras ser tomada la muestra desde el paciente, esta debe depositar en el dispositivo mencionado anteriormente y cerrar el dispositivo durante su transporte. En relación a la toma de muestras clínicas, estas pueden ser tomadas desde diferentes partes del cuerpo humano: piel, mucosas, pelo, uñas y fluidos.
En otra realización preferida adicional las muestras clínicas pueden corresponder a hisopados nasofaríngeos, hisopados orofaríngeos, hisopados nasales, hisopados orales, hisopados vaginales, hisopados cervicouterinos, hisopados uretrales, saliva, muestras dermatológicas. En otra realización preferida la muestra tomada desde diferentes ambientes puede requerir un tratamiento previo a la extracción y purificación de ácidos nucleicos por el dispositivo de la invención. Por ejemplo, esto ocurre al analizar muestras de alimentos en donde dichas muestras deben ser incubadas en un medio de enriquecimiento por un período de tiempo con el objetivo de aumentar el número de microorganismos presentes en la muestra. En estos casos, la muestra puede ser tomada y no es necesario que sea depositada de inmediato en el dispositivo de la invención.
En relación con el calentamiento de la muestra, este se define como el proceso de incubación del dispositivo con la muestra inoculada en su interior a una temperatura de entre 50sC a 100sC por un período de al menos 1 a 30 minutos, preferentemente por 95SC por al menos 15 min. Cabe mencionar que dicho tratamiento térmico debe ser tal que permita la lisis celular y denaturación molecular que a su vez permita la adsorción de los inhibidores en la resina presente durante el tratamiento térmico. Tal como un experto en la materia reconocerá las muestras biológicas pueden ser tratadas con distintas combinaciones de temperaturas y tiempo, todas ellas pudiendo lograr el mismo efecto de lisis celular y denaturación molecular que a su vez permita la adsorción de los inhibidores en la resina presente durante el tratamiento térmico.
Otras de las características novedosas y no derivadles del estado de la técnica, es que todo el protocolo de extracción y de purificación de ácidos nucleicos se realiza en un mismo contenedor, y no requiere de pasos de centrifugación.
Por lo tanto, tras incubar la muestra a una temperatura adecuada y por un período de tiempo apropiado, se toma un volumen de la muestra de ácidos nucleicos purificada y se utiliza directamente como molde para reacciones de PCR, o cualquier técnica que requiera ácidos nucleicos como amplificación isotérmica, secuenciación de ADN, entre otras.
Las vahantes de PCR mediante las cuales un ácido nucleico puede ser detectado pueden ser las siguientes: PCR en tiempo real, RT-PCR, Multiplex PCR, PCR anidado, Hot start PCR, entre otros. Con respecto a la técnica de PCR en tiempo real, una persona normalmente versada en la materia entiende que dicha técnica emplea diferentes fluoróforos para detectar la presencia del ácido nucleico objetivo que se quiere identificar. Existen diferentes fluóroforos que pueden ser excitados con longitudes de onda específicas, y que emiten también en un intervalo de longitud de onda específica.
Los fluoróforos comúnmente utilizados son FAM, ROX y HEX, pero en realidad cualquier otro fluoróforo disponible en el estado de la técnica que haya sido utilizado en PCR en tiempo real es compatible con el método de detección de la presente invención.
En un ensayo de PCR en tiempo real, se detecta una reacción positiva mediante la acumulación de una señal fluorescente. El Ct (umbral de ciclo) se define como el número de ciclos necesarios para que la señal fluorescente cruce el umbral (es decir, supere el nivel de fondo). En el contexto de la presente invención una reacción de PCR en tiempo real es más sensible que otra, si esta tiene un Ct de al menos un 0,5 de diferencia en comparación a otra reacción, preferiblemente mayor que 1 ,0.
DESCRIPCIÓN DE LA FIGURA
Figura 1. Eficiencia de diferentes tipos de resina para la detección de SARS-COV-2, en comparación al resultado obtenido de la muestra sin resina. Un resultado negativo quiere decir que el nuevo CT es menor (mayor sensibilidad) que el CT obtenido de la muestra sin resina.
EJEMPLOS
Ejemplo 1 : Comparación de extracción y purificación de muestras de hisopados nasofaríngeos y orofaríngeos utilizando el dispositivo de la invención versus otras resinas.
Durante el desarrollo de la presente invención, lo primero que se evaluó fue determinar qué tipo de resina era la que permitía extraer y purificar ARN de SARS-COV-2 desde muestras clínicas humanas. Todas las resinas tenían como esqueleto un polímero de poliestireno o un copolímero de estireno y divinilbenceno pero se diferenciaban en que algunas de dichas resinas tenían unidas covalentemente otros grupos funcionales, que les permitían tener carga a diferentes pH.
En esta ejemplificación preferida de la invención se detectó la presencia SARS-COV-2, mediante la amplificación del gene N1 , el cual codifica para la nucleocápside viral y es uno de los marcadores más utilizados para determinar la detección de coronavirus en muestras clínicas humanas. Adicionalmente, se detectó el gen que codifica para RNAasa P humana (RP), la cual corresponde al control de muestra del ensayo.
Como se mencionó anteriormente una de las formas para determinar la sensibilidad de diferentes métodos de detección a través de PCR en tiempo real, es determinar el ct con el cual la muestra es catalogada como positiva. Un menor ct en un determinado tratamiento indica que en dicha condición el método es más sensible, y eso es lo que siempre se busca cuando se trabaja en sistemas de PCR en tiempo real.
El protocolo de extracción utilizado en este ejemplo comprende los siguientes pasos:
1 . tomar una muestra biológica positiva para SARS-CoV-2;
2. depositar 100 uL de la muestra de origen biológico que contiene los ácidos nucleicos en distintos contenedores cada uno con X mg de distintas resinas;
3. calentar la muestra por 15 min a 95SC;
4. tomar 5 uL de la muestra, y
5. detectar la presencia del gen N1 de SARS-CoV-2 mediante RT-PCR en tiempo real.
Las resinas evaluadas y los resultados obtenidos se muestran en la tabla 1 .
Tabla 1 . Efecto del tipo de resina en la detección del SARS-COV-2.
Figure imgf000016_0001
Figure imgf000017_0001
Tal como se observa en la tabla 1 de la presente solicitud, los métodos con las resinas de adsorción con grupos aromáticos (AmberLite™ FPX66 y Purosorb PAD900) fueron los que presentaron el menor Ct en comparación a los métodos con otras resinas.
Es importante destacar que debido a que las condiciones experimentales son las mismas en todas las muestras, excepto por la resina, se puede inferir que la cantidad de ADN luego del proceso térmico es el mismo en todas las muestras, por lo que la diferencia de Ct se produce principalmente por la cantidad de inhibidores libres que afectan el RT-PCR y por la cantidad de ADN libre que está disponible para amplificar.
A raíz de lo anterior, estos resultados demuestran que el dispositivo de extracción de ácidos nucleicos que comprende una resina de adsorción no iónica con grupos aromáticos permite disminuir la cantidad de inhibidores que contiene la muestra y en consecuencia aumentar la sensibilidad del RT-PCR para detectar ácidos nucleicos de tipo ARN. Los métodos que utilizaron las resinas Purosorb™ PAD900 y AmberLite™ FPX66 presentaron diferencias significativas con respecto a los otros métodos. Dichas diferencias son sorprendentes y demuestran que no cualquier resina, y en particular, solo una de tipo de adsorción con grupo aromáticos permite aumentar la sensibilidad del RT- PCR para la detección del ARN de SARS-COV-2.
Ejemplo 2: Comparación de extracción y purificación utilizando el dispositivo de la invención versus dispositivo de extracción por columnas. Validación clínica del dispositivo
Para comparar la sensibilidad del dispositivo de la invención con respecto a otras alternativas comerciales de kit disponibles en el mercado, se realizaron ensayos de RT- PCR en tiempo real utilizando como ácido nucleico molde aquellos que fueron extraídos por el dispositivo desarrollado en la presente invención y otros por el kit E.Z.N.A.® Total RNA Kit I de Omega Biotek. Este es un kit muy utilizado en extracción y purificación de ácidos nucleicos desde muestras que presuntamente tienen el virus, y puede ser considerado como un método de referencia en la técnica. Dicho kit utiliza columnas de purificación en las cuáles se deposita un lisado celular de la muestra biológica a purificar, se centrifuga la muestra, y el ARN del virus queda adherido a la matriz de la columna, pasando los inhibidores y otras moléculas interferentes en el eluato.
La extracción y procesamiento de las muestras con el dispositivo de la invención fue idéntico a lo descrito en el ejemplo 1 de la presente solicitud. El protocolo de extracción de muestras utilizado para el kit E.Z.N.A.® Total RNA Kit I de Omega Biotek fue el descrito por el fabricante. Brevemente este protocolo consiste en 6 pasos: i) agregar buffer de lisis e incubar por 10 minutos; ¡i) agregar buffer de unión; iii) agregar la muestra a la columna y luego centrifugar; iv) agregar buffer de lavado y centrifugar; v) agregar nuevamente el buffer de lavado y centrifugar, y; vi) agregar buffer de elución, centrifugar y eluir los ácidos nucleicos a un tubo receptor. Todo este proceso tarda cerca de 1 hora para 24 muestras.
Es importante precisar que las muestras clínicas utilizadas para realizar estos ensayos comparativos fueron las mismas. Es decir, se guardaron muestras biológicas de hisopados nasofaríngeos y/o orofaríngeos que habían sido determinadas previamente como positivas para SARS-COV-2, y una solución de dichas muestras fueron utilizadas como material de partida para la detección de ácidos nucleicos. Los resultados obtenidos mediante RT-PCR en tiempo real se muestran en la Tabla 2.
Tabla 2. Comparación de sensibilidad de detección de SARS-COV-2 mediante RT-PCR en tiempo real del dispositivo de la presente invención con respecto a un kit de referencia.
Figure imgf000018_0001
Figure imgf000019_0001
Tal como se desprende de la tabla 2, el dispositivo de extracción y purificación de ácidos nucleicos tiene una sensibilidad de más de un Ct de diferencia en 12 de las 15 muestras clínicas evaluadas. Por lo tanto, se puede concluir que el dispositivo de extracción que comprende una resina de adsorción no iónica para la extracción de ácidos nucleicos de una muestra que comprende solo los pasos de poner en contacto la muestra biológica con el dispositivo de extracción y calentar la muestra a 95SC por 15 min, es un método que produce un RNA más limpio de inhibidores y/o mayor cantidad de RNA disponible para amplificación que el gold estándar para extracción de RNA de SARS-COV-2 disponible actualmente en la industria.
Cabe destacar que esta mejora del dispositivo desarrollado en la presente invención es inesperado y sorprendente, ya que no era posible predecir que la simple incubación de la muestra biológica que contiene un ácido nucleico con una resina de adsorción no iónica, y calentar la muestra por 15 min a 95SC, generaría efectos técnicos mejorados en comparación al gold estándar en extracción de RNA de SARS-COV-2, el cual tiene una serie de pasos de purificación. Tal como un experto en la materia reconocerá, el dispositivo desarrollado generará una disminución de tiempos y de costos en cualquier laboratorio que implemento este tipo de dispositivos simplificados de extracción. Ejemplo 3: Evaluación del efecto combinado de la resina de adsorción no iónica y el tratamiento térmico en la sensibilidad de detección
Uno de los objetivos experimentales que guiaron el desarrollo de la presente invención fue determinar si la combinación de la resina de adsorción no iónica con el tratamiento térmico era esencial en la efectividad del método de extracción desarrollado. Para determinar si ambos tratamientos eran necesarios para lograr la efectividad deseada, se diseñó un experimento en donde se evaluaron por separado los tratamientos.
El tratamiento 1 descrito en el presente ejemplo se refiere a incubar una mezcla biológica que comprende el ácido nucleico a detectar con la solución amortiguadora del dispositivo de extracción, pero la extracción de ácidos nucleicos se realizó sin la resina. Es decir, la muestra biológica se puso en contacto con la solución amortiguadora, y luego fue calentada por al menos 15 min a 95SC. Luego, la solución resultante se utilizó como molde para ensayos de PCR en tiempo real como se ha descrito anteriormente.
El tratamiento 2 descrito en el presente ejemplo se refiere a incubar una mezcla biológica que comprende el ácido nucleico a detectar con la solución amortiguadora del dispositivo de extracción (sin la resina) y luego incubar dicha solución resultante por al menos 15 min a 95SC. Tras dicha incubación se agrega un volumen apropiado de la resina sólida tal se ha descrito anteriormente en la presente solicitud y se deja incubar por un período de tiempo adecuado. Finalmente, se toma un volumen de dicha solución para ser utilizado como molde para ensayos de PCR en tiempo real.
El tratamiento 3 descrito en el presente ejemplo se refiere al método de extracción y purificación de ácidos nucleicos normal que comprende la incubación simultánea de la resina con la muestra biológica y luego se realiza un tratamiento térmico por al menos 15 min a 95SC. Este tratamiento corresponde al control del experimento.
En la tabla 3 se muestran los resultados obtenidos de ensayos de tiempo real para cada uno de los tratamientos. Cabe destacar que al igual que lo indicado para el ejemplo 2 cada una de las muestras evaluadas habían sido determinadas previamente como positivas para SARS-COV-2. Tabla 3. Efecto de la resina y el tratamiento térmico en la sensibilidad de detección del dispositivo
Figure imgf000021_0001
Los resultados que se muestran en la tabla 3 demuestran que el tratamiento 3 es el más sensible para la detección de SARS-CoV-2. No se observaron diferencias significativas en cuanto a la sensibilidad observada entre los tratamientos 1 y 2.
Estos resultados demuestran claramente que la resina junto con el tratamiento térmico funciona mejor que ambos por separado. Estos resultados son inesperado y sorprendente, ya que los protocolos de los métodos más utilizados para extraer ácidos nucleicos a lo menos tienen dos pasos claramente diferenciados: Lisis y Purificación, mientras que el dispositivo desarrollado en la presente invención unifica estas dos etapas, generado un protocolo más simple y rápido.
Ejemplo 4: Comparación de extracción y purificación utilizando el dispositivo de la invención variando el tratamiento térmico
En una realización adicional, se evaluó el efecto de la temperatura y el tiempo del tratamiento térmico en cuanto a la sensibilidad del método. En la tabla 4 se observan diferentes regímenes de tratamiento térmico a los que fueron sometidos diferentes muestras positivas para SARS-COV-2.
Tabla 4. Efecto de diferentes temperaturas y tiempos de incubación en la sensibilidad de detección
Figure imgf000021_0002
Figure imgf000022_0001
Tal como se observa en dicha tabla no existen diferencias significativas en cuanto a la sensibilidad de la detección de SARS-CoV-2 cuando se vahó el tiempo de incubación (15 min o 30 min).
Es importante mencionar que en este ejemplo ambas condiciones tienen una incubación de 15 minutos a 95SC. Esta etapa es necesaria para inactivar el SARS-CoV-2 de acuerdo a los lincamientos de la OMS, razón por la cual es la temperatura y tiempo mínimo utilizado. Sin embargo, y tal como un experto en la materia reconocerá, menor temperatura y menor tiempo podría ser igual de eficiente para liberar ácidos de nucleicos de microorganismos.
Ejemplo 5: Comparación de extracción y purificación utilizando el dispositivo de la invención variando las proporciones de resina y solución amortiguadora
Otras de las realizaciones preferidas de la presente invención fue buscar la proporción óptima entre la cantidad de resina y la cantidad de una solución que comprende la muestra biológica y la solución amortiguadora específicamente para la detección de SARS-CoV-2. Para esto, la muestra biológica en forma de hisopado nasofaríngeo fue depositada en un primer contenedor que contenía cantidad apropiada de solución amortiguadora. La mezcla fue homogenizada y luego se toman diferentes volúmenes de dicha mezcla y se mezclaron cada una de ellas con 0,06 gramos de resina sólida depositada en un contenedor independiente. Luego, las muestras fueron incubadas por 15 min a 95SC, y se realizaron ensayos de RT-PCR en tiempo real tal como se ha descrito anteriormente. En la tabla 5 se observan los resultados de dichos ensayos para cada una de las proporciones resina: solución amortiguadora + muestra evaluada.
Tabla 5. Efecto de la proporción de la cantidad resina versus cantidad de solución amortiguadora y muestra en la sensibilidad del dispositivo
Figure imgf000023_0001
De la tabla anterior se desprende que existe una proporción específica de resina y mezcla amortiguadora y muestra, que maximiza la sensibilidad del método. La proporción óptima de resina y muestra más solución amortiguadora, para el caso de muestras de hisopado nasofaríngeo de pacientes positivos para SARS-CoV-2, fue de 0.06 gramos de resina y 120 uL de muestra más solución amortiguadora.
Estos resultados sugieren que existe un cuidadoso equilibrio químico entre los diferentes componentes presentes en una determinada muestra biológica, y dichos ensayos demuestran que debe existir una proporción adecuada para maximizar los resultados que se desean obtener.
Es importante mencionar que en este ejemplo se pretende demostrar la importancia de las proporciones de resina versus la muestra y el amortiguador para optimizar la extracción de RNA de SARS-CoV-2. Para otras aplicaciones estas proporciones podrían vahar, como se presenta en el ejemplo 6.
Ejemplo 6: Validación desde muestras de alimentos previamente enriquecidas Tal como se mencionó anteriormente, otras de las realizaciones preferidas de la invención es la extracción y purificación desde diferentes muestras de alimentos y/o superficies. Para evaluar si el dispositivo de la presente invención era capaz de extraer y purificar ácidos nucleicos de microorganismos en ese tipo de muestras, se utilizó el dispositivo en diferentes matrices. La tabla 6 muestra los resultados obtenidos en las diferentes muestras.
Tabla 6. Detección de ácidos nucleicos de microorganismos en diversas matrices.
Figure imgf000024_0001
Tal como se desprende de la tabla anterior el dispositivo de extracción de ácidos nucleicos es capaz de detectar los cuatro microorganismos evaluados en cada una de dichas matrices. Esto es particularmente importante en la muestra de condimentos, la cual son muestras conocidas por tener inhibidores de PCR.
En este ejemplo las muestras enriquecidas se adicionaron directamente sobre tubos con resina, sin ningún tipo de amortiguador, y los resultados fueron satisfactorios. A raíz de lo anterior se desprende que, dependiendo de la aplicación, el dispositivo desarrollado en la presente invención puede o no contener una solución amortiguadora.
Ejemplo 7: Comparación de extracción y purificación utilizando el dispositivo de la invención versus dispositivo de extracción por columnas. Validación clínica del dispositivo en muestras de Saliva. Para comparar la eficiencia del dispositivo de la invención con respecto a otras alternativas comerciales de kit disponibles en el mercado para la extracción de ARN desde saliva, se realizaron ensayos de RT- PCR en tiempo real utilizando como ácido nucleico molde aquellos que fueron extraídos por el dispositivo desarrollado en la presente invención y otros por el kit E.Z.N.A.® Total RNA Kit I de Omega Biotek.
Es importante precisar que las muestras clínicas utilizadas para realizar estos ensayos comparativos fueron las mismas. Es decir, se guardaron muestras biológicas de saliva que habían sido determinadas previamente como positivas para SARS-COV-2, y una solución de dichas muestras fueron utilizadas como material de partida para la detección de ácidos nucleicos. Los resultados obtenidos mediante RT-PCR en tiempo real se muestran en la Tabla 7.
Tabla 7. Comparación de sensibilidad de detección de SARS-COV-2 mediante RT-PCR en tiempo real del dispositivo de la presente invención en muestras de saliva con respecto a un kit de referencia.
Figure imgf000025_0001
Tal como se desprende de la tabla 1 , el dispositivo de extracción y purificación de ácidos nucleicos desde saliva, en general tiene un mejor rendimiento que el gold estándar para extracción de RNA de SARS-COV-2 disponible actualmente en la industria.
Ejemplo 8 : Comparación de extracción y purificación utilizando el dispositivo de la invención variando la temperatura del tratamiento térmico.
En una realización adicional, se evaluó el efecto de diferentes temperaturas en cuanto a la sensibilidad del método. En la tabla 8 se observan la eficiencia del método de acuerdo a diferentes temperaturas de incubación a la que se sometió una muestra positiva para SARS-COV-2.
Tabla 8. Efecto de diferentes temperaturas en la sensibilidad de detección.
Figure imgf000026_0001
Tal como se observa en dicha tabla, temperaturas sobre los 75° C maximizan la eficiencia del método. La temperatura optima dependerá de requerimientos adicionales de tratamiento de las muestras, que para el caso de SARS- CoV-2 debe considerarse también su inactivación.
Ejemplo 9: Comparación de extracción y purificación utilizando el dispositivo de la invención variando el tratamiento térmico
En una realización adicional, se evaluó el efecto del tiempo del tratamiento térmico en cuanto a la eficiencia del método. En la tabla 3 se observan los resultados obtenidos luego de incubar a 95SC, con distintos tiempos de incubación, una muestra positiva para SARS-COV-2.
Tabla 9. Efecto de diferentes tiempos en la sensibilidad de detección.
Figure imgf000026_0002
Figure imgf000027_0001
Tal como se observa en la tabla 9, incubar las muestras a alta temperatura tiene un efecto muy importante en la eficiencia de la extracción de los ácidos nucleicos.
Es importante mencionar que las muestras se analizaron para detectar la presencia del virus SARS-COV-2 por lo que un periodo de incubación muy corto fue suficiente para liberar el material genético del virus, sin embargo, para microorganismos más complejos, como bacterias y hongos, este tiempo de incubación podría ser mayor para lograr una liberación eficiente del material genético.
Ejemplo 10: Comparación de extracción y purificación utilizando el dispositivo de la invención variando el tipo de resina.
Se evaluó el efecto de diferentes tipos de resinas iónicas y resinas absorbentes aromáticas y/o alifáticas no iónicas en cuanto a la sensibilidad del método. Los resultados de RT-PCR en tiempo real de una muestra positiva para SARS-COV-2 procesada con distintas resinas se muestran en la Fig. 1.
Tal como se observa en la Fig. 1 , resinas absorbentes aromáticas y/o alifáticas no iónicas maximizan la sensibilidad del método en comparación con el uso de resinas iónicas.
APLICACIÓN INDUSTRIAL
La presente invención tiene una gran aplicación en la industria biotecnológica, biomedicina y de alimentos. Así también, la presente invención brinda una innovadora aplicación para la extracción rápida y de forma efectiva de ácidos nucleicos desde diferentes muestras.

Claims

REIVINDICACIONES Un dispositivo para la extracción y purificación de ácidos nucleicos, CARACTERIZADO porque comprende un contenedor cerrado que permite un tratamiento térmico de una mezcla que incluye una fase sólida compuesta de resinas adsorbentes aromáticas y/o alifáticas no iónicas, una solución acuosa y una muestra de origen biológico que contiene los ácidos nucleicos, que luego de calentada, permite la detección de ácidos nucleicos. Un dispositivo de acuerdo a la reivindicación 1 , CARACTERIZADO porque dicho dispositivo permite la detección directa de ácidos nucleicos sin necesidad de separar las fases sólida y líquida. Un dispositivo de acuerdo con las reivindicaciones 1 y 2, CARACTERIZADO porque el tratamiento térmico incluye el calentamiento de la muestra a una temperatura entre 50sC a 100sC por 1 a 30 minutos. El dispositivo de acuerdo con la reivindicación 3, CARACTERIZADO porque la temperatura de calentamiento es preferentemente a 95SC por al menos 15 minutos. El dispositivo de acuerdo con cualquiera de las reivindicaciones 1 a 4, CARACTERIZADO porque dicha fase sólida es una resina poliméhca adsorbente aromática y/o alifática agregada al contenedor en una proporción con respecto a los demás componentes desde un 5% hasta un 300% p/v, preferiblemente desde un 30% a un 150% p/v, y más preferiblemente de un 50% a un 100% p/v. El dispositivo de acuerdo con cualquiera de las reivindicaciones 1 a 5, CARACTERIZADO porque la resina adsorbente aromática y/o alifática no iónica se selecciona do PuroSorb® PAD400, PAD500, PAD600, PAD900, PAD1200, PAD350, PAD610, PAD910, PAD950, PAD950C, Amberlite® FPX66, FPX68, Amberlite® XAD2, XAD4, XAD16, XAD1180, XAD200, XAD2010, XAD16N, XAD1600N, XAD18, XAD1180N, XAD7HP, XAD761 , Diaion® and Sepabeads® HP20, HP20SS, HP21 , SP70, SP700, SP825L, SP850, CHP20, CHP50, SP207, HP2MGL, LEWATIT® AF 5, SEPLITE® CT10, LX20, LX 207, LXA8, LXA10, LXA17, LXA680, LXA1600, LXA1180, LXA81 , LXA816, LXA817, LXA8302, LXA88, LXS868, AB-8 u otras resinas adsorbentes aromáticas o alifáticas. El dispositivo de acuerdo con cualquiera de las reivindicaciones 1 a 6, CARACTERIZADO porque la matriz sólida no iónica puede comprender una mezcla de resinas adsorbentes aromáticas y/o alifáticas no iónicas. El dispositivo de acuerdo con cualquiera de las reivindicaciones 1 a 7, CARACTERIZADO porque la matriz sólida no iónica es una mezcla entre distintas resinas adsorbentes aromáticas y/o alifáticas no iónicas. El dispositivo de acuerdo con cualquiera de las reivindicaciones 1 a 8, CARACTERIZADO porque la cantidad de la resina adsorbente aromática y/o alifática no iónica en un contenedor es de 0,6 gramos de resina mezclado con 1 mL de una solución amortiguadora acuosa. El dispositivo de acuerdo con cualquiera de las reivindicaciones 1 a 9, CARACTERIZADO porque el líquido que se agrega a la resina es seleccionado de: (a) una solución amortiguadora que puede actuar manteniendo el pH de la mezcla a pH ácidos, neutros y básicos; y (b) agua. El dispositivo de acuerdo con cualquiera de las reivindicaciones 1 a 10, CARACTERIZADO porque la solución amortiguadora se selecciona de ácido cítrico, fosfato, MES, Bis-Ths, ADA, ACES, PIPES, MOPSO, Bis-Tris Propane, BES, MOPS, TES, HEPES, DIPSO, TAPSO, Tris, HEPPSO, POPSO, TEA, EPPS, Tricina, Gly-Gly, Bicina, HEPBS, TAPS, AMPD, TABS, AMPSO, CHES, CAPSO, AMP, CAPS y/o CABS. El dispositivo de acuerdo con cualquiera de las reivindicaciones 1 a 1 1 , CARACTERIZADO porque dicha muestra biológica es seleccionada de muestras de origen animal, vegetal y microbiológico que contengan células, bacterias, o partículas virales cuyos ácidos nucleicos se desean detectar, y en donde dichas muestras contienen inhibidores que interfieren en la detección de ácidos nucleicos. El dispositivo de acuerdo con cualquiera de las reivindicaciones a 1 a 12, CARACTERIZADO porque dichas muestras incluyen enriquecidos bacterianos y de hongos y levaduras, y muestras biológicas humanas para la detección de bacterias y virus. El dispositivo de acuerdo con cualquiera de las reivindicaciones 1 a 13, CARACTERIZADO por la muestra biológica humana proviene de un hisopado nasofaríngeo, hisopado orofaríngeo, hisopado nasal, hisopado oral, hisopado vaginal, hisopado cervicoutehnos, hisopados uretrales, saliva, muestras dermatológicas, sangre y plasma. El dispositivo de acuerdo con cualquiera de las reivindicaciones 1 a 14, CARACTERIZADO porque el contenedor corresponde a un tubo que permite depositar la muestra biológica, transportarla de manera segura y realizar el tratamiento térmico de la misma. El dispositivo de acuerdo con cualquiera de las reivindicaciones 1 a 15, CARACTERIZADO porque el contenedor es seleccionado de tubos plásticos, incluidos los tipos Falcon de 50 mL o 15 mL, tubos Eppendorf de 2 mL, 1 ,5 mL, 1 mL o 0,5 mL, tubos de PCR, placas de 96 pocilios y placas de 384 pocilios. El dispositivo de acuerdo con cualquiera de las reivindicaciones 1 a 16, CARACTERIZADO porque las resinas adsorbentes aromáticas y/o alifáticas no iónicas pueden ser utilizadas en dispositivos de purificación por columnas, filtros o discos. Un método de extracción y purificación de ácidos nucleicos desde muestras biológicas que utiliza los dispositivos de acuerdo con las reivindicaciones 1 a 17, CARACTERIZADO porque el método consiste de los siguientes pasos: a) proveer una muestra de origen biológico; b) depositar la muestra de origen biológico que contiene los ácidos nucleicos en el contenedor cerrado; c) calentar la muestra; d) Tomar un volumen de la muestra, y e) detectar la presencia del ácido nucleico de interés mediante PCR o cualquiera de sus variantes. El método de extracción de acuerdo con la reivindicación 18, CARACTERIZADO porque el calentamiento de la muestra se realiza mediante una incubación a 95SC por a lo menos 15 min. El método de extracción de acuerdo con la reivindicación 19, CARACTERIZADO porque la detección del ácido nucleico se realiza por PCR en tiempo real, RT- PCR, Multiplex PCR, PCR anidado y Hot start PCR.
PCT/CL2020/050157 2020-10-12 2020-11-17 Dispositivo para extracción y purificación de ácidos nucleicos WO2022077128A1 (es)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CA3195482A CA3195482A1 (en) 2020-10-12 2020-11-17 Device for extraction and purification of nucleic acids
US18/248,863 US20230383279A1 (en) 2020-10-12 2020-11-17 Device for nucleic acid extraction and purification
EP20956912.8A EP4245860A4 (en) 2020-10-12 2020-11-17 DEVICE FOR THE EXTRACTION AND PURIFICATION OF NUCLEIC ACIDS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CL2629-2020 2020-10-12
CL2020002629A CL2020002629A1 (es) 2020-10-12 2020-10-12 Nuevo dispositivo de biología molecular para extracción y purificación de ácidos nucleicos desde diferentes tipos de muestras biológicas que comprende resinas de adsorción

Publications (1)

Publication Number Publication Date
WO2022077128A1 true WO2022077128A1 (es) 2022-04-21

Family

ID=74569115

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CL2020/050157 WO2022077128A1 (es) 2020-10-12 2020-11-17 Dispositivo para extracción y purificación de ácidos nucleicos

Country Status (5)

Country Link
US (1) US20230383279A1 (es)
EP (1) EP4245860A4 (es)
CA (1) CA3195482A1 (es)
CL (1) CL2020002629A1 (es)
WO (1) WO2022077128A1 (es)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19731670A1 (de) 1997-07-23 1999-01-28 Dorothea Dr Rer Nat Waschk Verfahren zur Reinigung und gegebenenfalls Analyse von Nukleinsäuren aus biologischen Proben
WO2004020971A2 (en) 2002-08-28 2004-03-11 Introgen Therapeutics Inc. Chromatographic methods for adenovirus purification
WO2013144654A1 (en) 2012-03-30 2013-10-03 Lumora Ltd. Methods for preparing samples for nucleic acid amplification
US20140363819A1 (en) 2010-12-22 2014-12-11 Katherine Rowlyk Composition to overcome inhibitors in pcr and growth cultures
US20150176063A1 (en) * 2011-05-12 2015-06-25 Exact Sciences Corporation Removal of pcr inhibitors
US20170152501A1 (en) 2004-04-02 2017-06-01 Nexttec Gmbh Process for manufacturing a composite sorbent material for chromatographical separation of biopolymers
US20190100788A1 (en) 2011-05-12 2019-04-04 Exact Sciences Corporation Isolation of nucleic acids

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010009756A1 (en) * 1998-01-06 2001-07-26 Derek Hei Flow devices for the reduction of compounds from biological compositions and methods of use
JPWO2015050191A1 (ja) * 2013-10-03 2017-03-09 協和発酵バイオ株式会社 二重鎖リボ核酸の精製方法
EP3059312A1 (en) * 2015-02-20 2016-08-24 QIAGEN GmbH Nucleic acid extraction method
WO2020009008A1 (ja) * 2018-07-02 2020-01-09 旭化成メディカル株式会社 血液処理用ビーズ
BR112021000177A2 (pt) * 2018-07-11 2021-04-06 Monsanto Technology Llc Extração de polinucleotídeos

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19731670A1 (de) 1997-07-23 1999-01-28 Dorothea Dr Rer Nat Waschk Verfahren zur Reinigung und gegebenenfalls Analyse von Nukleinsäuren aus biologischen Proben
WO2004020971A2 (en) 2002-08-28 2004-03-11 Introgen Therapeutics Inc. Chromatographic methods for adenovirus purification
US20170152501A1 (en) 2004-04-02 2017-06-01 Nexttec Gmbh Process for manufacturing a composite sorbent material for chromatographical separation of biopolymers
US20140363819A1 (en) 2010-12-22 2014-12-11 Katherine Rowlyk Composition to overcome inhibitors in pcr and growth cultures
US20150176063A1 (en) * 2011-05-12 2015-06-25 Exact Sciences Corporation Removal of pcr inhibitors
US20190100788A1 (en) 2011-05-12 2019-04-04 Exact Sciences Corporation Isolation of nucleic acids
WO2013144654A1 (en) 2012-03-30 2013-10-03 Lumora Ltd. Methods for preparing samples for nucleic acid amplification
US10246735B2 (en) * 2012-03-30 2019-04-02 Roche Molecular Systems, Inc. Methods for preparing samples for nucleic acid amplification

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
ALI NASIR ET AL.: "Current nuclear Acid extraction Methods and Their Implications to Point- of - Care Diagnostics", BIOMED _ RESEARCH INTERNATIONAL, vol. 2017, no. ID 9306564, 2017, XP055592792, DOI: 10.1155/2017/9306564
BARZA RUBY; PATEL PARUL; SABATINI LINDA; SINGH KAMALJIT: "Use of a simplified sample processing step without RNA extraction for direct SARS-CoV-2 RT-PCR detection", JOURNAL OF CLINICAL VIROLOGY, ELSEVIER, AMSTERDAM,, NL, vol. 132, 11 August 2020 (2020-08-11), NL , XP086320245, ISSN: 1386-6532, DOI: 10.1016/j.jcv.2020.104587 *
OHTA A. ET AL.: "A Review on Macroscale and Microscale Cell Lysis Methods", MICROMACHINES, vol. 8, no. 3, March 2017 (2017-03-01), pages 83
QINGQING HU, YUXUAN LIU, SHAOHUA YI, DAIXIN HUANG: "A comparison of four methods for PCR inhibitor removal", FORENSIC SCIENCE INTERNATIONAL: GENETICS, vol. 16, 1 May 2015 (2015-05-01), pages 94 - 97, XP055934813 *
See also references of EP4245860A4
SMYRLAKI IOANNA, EKMAN MARTIN, LENTINI ANTONIO, RUFINO DE SOUSA NUNO, PAPANICOLAOU NATALI, VONDRACEK MARTIN, AARUM JOHAN, SAFARI H: "Massive and rapid COVID-19 testing is feasible by extraction-free SARS-CoV-2 RT-PCR", NATURE COMMUNICATIONS, vol. 11, no. 1, 1 December 2020 (2020-12-01), XP055809208, DOI: 10.1038/s41467-020-18611-5 *
WALSH, P. ET AL.: "Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material", BIOTECHNIQUES, vol. 54, no. 3, 2013, pages 134 - 139, XP055734384, DOI: 10.2144/000114018 *

Also Published As

Publication number Publication date
CA3195482A1 (en) 2022-04-21
CL2020002629A1 (es) 2021-01-15
EP4245860A4 (en) 2024-07-10
US20230383279A1 (en) 2023-11-30
EP4245860A1 (en) 2023-09-20

Similar Documents

Publication Publication Date Title
ES2622352T3 (es) Métodos para la preparación de muestras para la amplificación del ácido nucleico
ES2588227T3 (es) Composiciones, métodos y kits para aislar ácidos nucleicos de fluidos corporales usando medios de intercambio aniónico
ES2289611T3 (es) Adsorcion de acidos nucleicos en una fase solida.
Tan et al. DNA, RNA, and protein extraction: the past and the present
ES2642683T3 (es) Aislamiento de ácidos nucleicos
ES2938752T3 (es) Método, solución de lisis y kit para la reducción selectiva de ácidos nucleicos animales en una muestra
US9856515B2 (en) Removal of PCR inhibitors
ES2394815T3 (es) Utilización de TDE para el aislamiento de ácidos nucleicos
US7115719B2 (en) Formulations and methods for denaturing proteins
ES2689441T3 (es) Procedimientos de fraccionamiento y detección de ácido nucleico
US20040157219A1 (en) Chemical treatment of biological samples for nucleic acid extraction and kits therefor
ES2305023T3 (es) Metodos para el analisis de componentes no proteinaceos usando una proteasa de una cepa de bacilo.
JPH09327291A (ja) Rnaの抽出精製方法
ES2965460T3 (es) Método automatizable para el aislamiento de ácidos nucleicos
Pawar et al. Investigating purification and activity analysis of urease enzyme extracted from jack bean source: A green chemistry approach
ES2819903T3 (es) Aislamiento de ácidos nucleicos
ES2279960T3 (es) Procedimiento y automata de extraccion de acidos nucleicos a partir de una mezcla compleja.
JP6121780B2 (ja) 生物学的試料の選択的調製のためのアミン化合物
WO2022077128A1 (es) Dispositivo para extracción y purificación de ácidos nucleicos
RU2808832C1 (ru) Способ выделения рибонуклеиновой кислоты вируса из спинномозговой жидкости для молекулярно-биологических исследований
WO2008150187A1 (fr) Utilisation du trichloracétate d'ammonium en tant que produit de dissociation de complexes naturels d'acides nucléiques et procédé d'extraction d'arn
KR20030028498A (ko) 객담에서 rna를 추출하는 방법
ES2365976T3 (es) Materiales y procedimientos para capturar los patógenos y retirar el ácido aurintricarboxílico de una muestra.
ES2376706T3 (es) Procedimiento de detección y/o cuantificación y/o identificación in vitro de compuestos infecciosos en un material biológico.
Jdeed et al. A Comparison of Silica Membrane-Based and Acidic Phenol Methods in RNA Isolation: Determination of the Most Effective Acidic Phenol RNA Isolation Protocol

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20956912

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3195482

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020956912

Country of ref document: EP

Effective date: 20230512