[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022074776A1 - Signal transmission wiring connection unit, endoscope, method for manufacturing signal transmission wiring connection unit, and ultrasound oscillator module - Google Patents

Signal transmission wiring connection unit, endoscope, method for manufacturing signal transmission wiring connection unit, and ultrasound oscillator module Download PDF

Info

Publication number
WO2022074776A1
WO2022074776A1 PCT/JP2020/038050 JP2020038050W WO2022074776A1 WO 2022074776 A1 WO2022074776 A1 WO 2022074776A1 JP 2020038050 W JP2020038050 W JP 2020038050W WO 2022074776 A1 WO2022074776 A1 WO 2022074776A1
Authority
WO
WIPO (PCT)
Prior art keywords
connection terminal
substrate
bent
connection
signal transmission
Prior art date
Application number
PCT/JP2020/038050
Other languages
French (fr)
Japanese (ja)
Inventor
祐也 熊田
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to PCT/JP2020/038050 priority Critical patent/WO2022074776A1/en
Publication of WO2022074776A1 publication Critical patent/WO2022074776A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/12Diagnosis using ultrasonic, sonic or infrasonic waves in body cavities or body tracts, e.g. by using catheters

Definitions

  • the present invention relates to a signal transmission wiring connection unit, an endoscope, a method for manufacturing a signal transmission wiring connection unit, and an ultrasonic vibrator module.
  • an endoscope system has been used when observing an organ of a subject such as a patient.
  • an image sensor, an ultrasonic transducer, or other element is provided at the tip, and the endoscope is connected to an endoscope having an insertion portion to be inserted into the subject via a cable to the base end side of the insertion portion.
  • It is provided with a processing device that performs image processing on the image pickup signal generated by the element and displays an internal image on a display unit or the like.
  • the insertion portion is provided on the base end side of the tip portion where the element is provided, and has a bendable portion.
  • the element and the signal cable are electrically connected via a substrate at the tip of the endoscope (see, for example, Patent Document 1).
  • the signal cable has a plurality of signal lines.
  • the element is electrically connected to each signal line via the substrate.
  • electronic components and the like are mounted by a laminated substrate in which a plurality of substrates are laminated, and an image pickup device and a signal line are electrically connected.
  • Patent Document 1 has a configuration in which a plurality of substrates are laminated, wiring is complicated and unsuitable for miniaturization.
  • the present invention has been made in view of the above, and is a signal transmission wiring connection unit, an endoscope, and a signal transmission wiring connection that can reduce the size of connections between members of a unit that transmits signals with a simple configuration. It is an object of the present invention to provide a method of manufacturing a unit and an ultrasonic transducer module.
  • the signal transmission wiring connection unit is provided with an electrode which is a connection terminal for outputting an electric signal from an element for generating image data.
  • a first board having one connection terminal portion, a cable having a plurality of signal lines for transmitting the electric signal, two first connection terminals connected to the plurality of signal lines, and the first board.
  • a second connection terminal that is electrically connected, a first bent portion provided between the two first connection terminals, and a provision between the first connection terminal and the second connection terminal. It is provided with a second substrate having a second bent portion to be formed, and an insulating layer provided between the surfaces of the second substrate facing each other in a folded state of the first and second bent portions. It is a feature.
  • the second substrate has a front surface and a back surface, and the first connection is connected to a part of the signal lines among the plurality of signal lines. It is characterized by having a first portion in which terminals are arranged on the surface and a second portion in which a first connection terminal connected to the remaining signal lines of the plurality of signal lines is arranged on the surface. And.
  • the first bent portion is provided between the first portion and the second portion, and the back surface of the first portion is provided. It is characterized in that the back surface of the second portion and the back surface of the second portion are bent so as to approach each other.
  • the insulating layer is a back surface of the first portion and a back surface of the second portion in a state where the first bent portion is bent. It is characterized by being provided between and.
  • the insulating layer is a back surface of the first portion and a back surface of the second portion in a state where the first bent portion is bent. It is characterized by fixing between and.
  • the second substrate further has a third portion in which the second connection terminal is arranged, and the second bent portion is. It is provided between the first portion and the third portion, and is characterized in that the first portion and the third portion are bent so as to approach each other.
  • the signal transmission wiring connection unit according to the present invention is characterized in that, in the above invention, a coverlay covering at least the second bent portion on the surface of the second substrate is provided.
  • the signal transmission wiring connection unit according to the present invention is characterized in that, in the above invention, the first bent portion is thinner than the other portions.
  • the signal transmission wiring connection unit according to the present invention is characterized in that, in the above invention, a notch portion is formed in the second bent portion.
  • the signal transmission wiring connection unit is characterized in that, in the above invention, the element is an ultrasonic vibrator for generating image data based on ultrasonic waves.
  • the signal transmission wiring connection unit is characterized in that, in the above invention, the element is an image pickup element for generating image data based on an optical image.
  • the second bent portion is bent so that the first connection terminal portion and the third connection terminal portion are close to each other. It is characterized by that.
  • the endoscope according to the present invention is characterized by including an insertion portion for accommodating the signal transmission wiring connection unit according to the above invention.
  • the method for manufacturing a signal transmission wiring connection unit according to the present invention is arranged on the surface of the first and second connection terminal portions of a substrate electrically connected to a plurality of elements for generating image data, respectively.
  • a signal line connection step for connecting a corresponding signal line to each of the plurality of first connection terminals to be formed, and after connecting the signal line to the first connection terminal, the above-mentioned is performed on the back surface of the first connection terminal portion. It is characterized by including an insulating layer forming step for forming an insulating layer for fixing the back surface of the second connection terminal portion.
  • the insulating layer forming step is provided between the first connection terminal portion and the second connection terminal portion. After bending the bent portion of the above to face the back surfaces of the first and second connection terminal portions, the back surface of the second connection terminal portion is fixed to the back surface of the first connection terminal portion to insulate the insulation. It is characterized by further comprising a removal step of forming a layer and removing the first bent portion.
  • the ultrasonic transducer module includes a first substrate having a first connection terminal portion in which an electrode, which is a connection terminal for outputting an electric signal from an element for generating image data, is arranged.
  • a cable having a plurality of signal lines for transmitting the electric signal, two first connection terminals connected to the plurality of signal lines, and a second connection terminal electrically connected to the first board.
  • a second having a first bent portion provided between the two first connection terminals and a second bent portion provided between the first connection terminal and the second connection terminal. It is characterized by comprising a substrate and an insulating layer provided between the surfaces of the second substrate facing each other in a state where the first and second bent portions are bent.
  • the signal transmission wiring connection unit includes a first substrate having a first connection terminal portion in which an electrode, which is a connection terminal for outputting an electric signal from an element for generating image data, is arranged.
  • a cable having a plurality of signal lines for transmitting the electric signal, a first connection terminal portion in which a first connection terminal for connecting to a part of the signal lines among the plurality of signal lines is arranged on the surface, and a portion of the first connection terminal.
  • a second connection terminal portion in which a first connection terminal connected to the remaining signal lines of the plurality of signal lines is arranged on the surface and a second connection terminal electrically connected to the first board are provided.
  • the third connection terminal portion arranged, and the back surface of the first connection terminal portion and the second connection terminal portion provided between the first connection terminal portion and the second connection terminal portion.
  • a first bent portion that is bent so that the back surfaces are close to each other, and a first connection terminal portion and the third connection terminal portion are provided between the first bending portion and the first connection terminal portion and the third connection.
  • a second substrate having a second bent portion that can be bent so that the terminal portions approach each other, and a back surface of the first connection terminal portion in a state where the first bent portion is bent. It is characterized by comprising an insulating layer for fixing between the back surface of the second connection terminal portion.
  • connection between the members of the unit that transmits a signal can be miniaturized with a simple configuration.
  • FIG. 1 is a diagram schematically showing an endoscope system according to the first embodiment of the present invention.
  • FIG. 2 is a perspective view schematically showing the tip configuration of the insertion portion of the ultrasonic endoscope according to the first embodiment of the present invention.
  • FIG. 3 is a perspective view schematically showing the internal configuration of the tip portion of the ultrasonic endoscope according to the first embodiment of the present invention.
  • FIG. 4 is a perspective view schematically showing the internal configuration of the tip portion of the ultrasonic endoscope according to the first embodiment of the present invention.
  • FIG. 5 is a diagram illustrating the configuration of the ultrasonic oscillator shown in FIGS. 3 and 4.
  • FIG. 6 is a diagram (No.
  • FIG. 7 is a diagram (No. 2) illustrating the connection between the substrate and the signal line at the time of manufacturing the ultrasonic endoscope according to the first embodiment of the present invention.
  • FIG. 8 is a diagram (No. 3) illustrating the connection between the substrate and the signal line at the time of manufacturing the ultrasonic endoscope according to the first embodiment of the present invention.
  • FIG. 9 is a plan view of the first portion and the second portion as viewed from the direction of arrow A shown in FIG.
  • FIG. 10 is a diagram (No.
  • FIG. 11 is a diagram (No. 2) illustrating the connection between the first substrate and the second substrate of the relay substrate at the time of manufacturing the ultrasonic endoscope according to the first embodiment of the present invention.
  • FIG. 12 is a plan view illustrating the configuration of the ultrasonic endoscope second substrate according to the modified example of the first embodiment of the present invention.
  • FIG. 13 is a perspective view schematically showing the internal configuration of the tip portion of the ultrasonic endoscope according to the second embodiment of the present invention.
  • FIG. 14 is a perspective view schematically showing the internal configuration of the tip portion of the ultrasonic endoscope according to the second embodiment of the present invention.
  • FIG. 15 is a diagram (No. 1) for explaining the connection between the substrate and the signal line at the time of manufacturing the ultrasonic endoscope according to the second embodiment of the present invention.
  • FIG. 16 is a diagram (No. 2) illustrating the connection between the substrate and the signal line at the time of manufacturing the ultrasonic endoscope according to the second embodiment of the present invention.
  • FIG. 17 is a diagram (No. 3) illustrating the connection between the substrate and the signal line at the time of manufacturing the ultrasonic endoscope according to the second embodiment of the present invention.
  • FIG. 1 is a diagram (No. 1) for explaining the connection between the substrate and the signal line at the time of manufacturing the ultrasonic endoscope according to the second embodiment of the present invention.
  • FIG. 16 is a diagram (No. 2) illustrating the connection between the substrate and the signal line at the time of manufacturing the ultrasonic
  • FIG. 18 is a plan view of the first portion and the second portion as viewed from the direction of arrow B shown in FIG.
  • FIG. 19 is a diagram (No. 1) illustrating the connection between the first substrate and the second substrate of the relay substrate at the time of manufacturing the ultrasonic endoscope according to the second embodiment of the present invention.
  • FIG. 20 is a diagram (No. 2) illustrating the connection between the first substrate and the second substrate of the relay substrate at the time of manufacturing the ultrasonic endoscope according to the second embodiment of the present invention.
  • FIG. 21 is a diagram (No. 1) for explaining the connection between the substrate and the signal line at the time of manufacturing the ultrasonic endoscope according to the modified example of the second embodiment of the present invention.
  • FIG. 22 is a diagram (No.
  • FIG. 23 is a diagram schematically showing an internal configuration of a tip portion in an ultrasonic endoscope according to another embodiment of the present invention.
  • FIG. 1 is a diagram schematically showing an endoscope system 1 according to a first embodiment of the present invention.
  • the endoscope system 1 is a system for performing ultrasonic diagnosis in a subject such as a person using an ultrasonic endoscope.
  • the endoscope system 1 includes an ultrasonic endoscope 2, an ultrasonic observation device 3, an endoscope observation device 4, a display device 5, and a light source device 6.
  • the ultrasonic endoscope 2 has an imaging optical system and an imaging element, and is inserted into the digestive tract (esophagus, stomach, duodenum, large intestine) or respiratory organs (trachea, bronchus) of the subject, and is inserted into the digestive tract or the digestive tract. , It is possible to perform either respiratory imaging.
  • the ultrasonic endoscope 2 has a light guide that guides the illumination light to irradiate the subject at the time of imaging. Light guided by an optical fiber cable 61, which will be described later, is supplied to this light guide, and the tip portion reaches the tip of the insertion portion of the ultrasonic endoscope 2 into the subject, while the base end portion is illuminated. It is connected to a light source device 6 that generates light.
  • the ultrasonic endoscope 2 transmits ultrasonic waves to the gastrointestinal tract and organs around the respiratory organs (pancreatic duct, gallbladder, bile duct, biliary tract, lymph node, mediastinal organ, blood vessel, etc.), and the periphery thereof. Receives ultrasonic waves reflected by the organ.
  • the ultrasonic endoscope 2 includes an insertion unit 21, an operation unit 22, a universal cord 23, and a connector 24.
  • the insertion portion 21 is a portion to be inserted into the subject.
  • the insertion portion 21 is provided on the tip side, and has a rigid tip portion 211 having an ultrasonic vibrator 7, a curved portion 212 connected to the base end side of the tip portion 211 to enable bending, and a base of the curved portion 212.
  • a flexible tube portion 213 connected to the end side and having flexibility is provided.
  • various signals including a light guide for transmitting the illumination light supplied from the light source device 6 and a signal line (signal line 81) described later are included.
  • a plurality of signal lines for transmitting the light source are routed, and an insertion passage for the treatment tool for inserting the treatment tool is formed.
  • the bending portion 212 is capable of bending the longitudinal axis of the tip portion 211 in at least two directions different from each other.
  • the ultrasonic vibrator 7 is a convex type in which a plurality of piezoelectric elements are provided in an array, the piezoelectric elements involved in transmission / reception are electronically switched, and the transmission / reception of each piezoelectric element is delayed to electronically scan. It is an ultrasonic transducer of.
  • the ultrasonic vibrator 7 irradiates an observation target with ultrasonic waves by vibrating the piezoelectric element due to the input of a pulse signal. Further, the ultrasonic waves reflected from the observation target are transmitted to the piezoelectric element.
  • the piezoelectric element vibrates due to ultrasonic waves, and the piezoelectric element converts the vibration into an electrical echo signal and outputs the vibration to the ultrasonic observation device 3.
  • the operation unit 22 is connected to the base end side of the insertion unit 21 and is a part that receives various operations from users such as doctors.
  • the operation unit 22 includes a bending knob 221 for performing a bending operation on the bending portion 212, and a plurality of operating members 222 for performing various operations. Further, the operation unit 22 is formed with a treatment tool insertion port 223 that communicates with the treatment tool insertion passage and inserts the treatment tool into the treatment tool insertion passage.
  • the universal cord 23 is a cable extending from the operation unit 22 and having a plurality of signal cables for transmitting various signals, an optical fiber for transmitting illumination light supplied from the light source device 6, and the like.
  • the connector 24 is provided at the tip of the universal cord 23.
  • the connector 24 includes first to third connector portions 241 to 243 to which the external ultrasonic signal cable 31, the video cable 41, and the optical fiber cable 61 are connected, respectively.
  • the ultrasonic observation device 3 is electrically connected to the ultrasonic endoscope 2 via an external ultrasonic signal cable 31, and outputs a pulse signal to the ultrasonic endoscope 2 via an external ultrasonic signal cable 31. At the same time, an echo signal is input from the ultrasonic endoscope 2. Then, the ultrasonic observation device 3 performs a predetermined process on the echo signal to generate ultrasonic image data.
  • the endoscope observation device 4 is electrically connected to the ultrasonic endoscope 2 via a video cable 41, and inputs an image signal from the ultrasonic endoscope 2 via the video cable 41. Then, the endoscope observation device 4 performs a predetermined process on the image signal to generate endoscopic image data.
  • the display device 5 is configured by using a liquid crystal display or an organic EL (Electro Luminescence), a projector, a CRT (Cathode Ray Tube), or the like, and an ultrasonic image generated by the ultrasonic observation device 3 or an endoscopic observation device 4 Display the endoscopic image etc. generated in.
  • a liquid crystal display or an organic EL (Electro Luminescence), a projector, a CRT (Cathode Ray Tube), or the like and an ultrasonic image generated by the ultrasonic observation device 3 or an endoscopic observation device 4 Display the endoscopic image etc. generated in.
  • the light source device 6 is connected to the ultrasonic endoscope 2 via the optical fiber cable 61, and supplies the illumination light for illuminating the inside of the subject via the optical fiber cable 61 to the ultrasonic endoscope 2.
  • FIG. 2 is a perspective view schematically showing the tip configuration of the insertion portion 21 of the ultrasonic endoscope 2 according to the first embodiment.
  • the tip portion 211 includes an ultrasonic vibrator module 214 holding the ultrasonic vibrator 7, an objective lens 215a that forms a part of an imaging optical system and captures light from the outside, and an imaging element. It also includes an endoscope module 215 having an illumination lens 215b that collects illumination light and emits it to the outside.
  • the endoscope module 215 is formed with a treatment tool protrusion 215c that communicates with the treatment tool insertion passage formed in the insertion portion 21 and projects the treatment tool from the tip of the insertion portion 21.
  • the vicinity of the end connected to the treatment tool protrusion 215c is inclined with respect to the longitudinal axis of the insertion portion 21, and the treatment tool protrudes from the treatment tool protrusion 215c in the direction inclined with respect to the longitudinal axis. It is provided to do so.
  • the longitudinal axis referred to here is an axis along the longitudinal direction of the insertion portion 21.
  • the longitudinal axis is an axis forming a constant straight line.
  • FIGS. 3 and 4 are perspective views schematically showing the internal configuration of the tip portion 211 in the ultrasonic endoscope according to the first embodiment.
  • the ultrasonic oscillator module 214 forms a part of a path for electrically connecting the ultrasonic oscillator 7, the ultrasonic oscillator 7 (ultrasonic oscillator module 214), and the ultrasonic observation device 3, and is super.
  • a relay board 9 for relaying an electrical connection between the sound wave oscillator 7 and the internal ultrasonic signal cable 8 is provided.
  • the signal transmission wiring connection unit according to the present invention is composed of an ultrasonic vibrator 7 corresponding to an element, an internal ultrasonic signal cable 8, and a relay board 9.
  • the ultrasonic oscillator 7 is connected to the internal ultrasonic signal cable 8 via the relay board 9.
  • the internal ultrasonic signal cable 8 is electrically connected to the external ultrasonic signal cable 31.
  • the internal ultrasonic signal cable 8 has a plurality of signal lines 81. Each signal line 81 is electrically connected to the corresponding piezoelectric element via the relay board 9. Although the simplified configuration is shown in FIG. 3 for the sake of explanation, the actual coaxial line is provided according to the number of piezoelectric elements.
  • FIG. 5 is a diagram illustrating the configuration of the ultrasonic oscillator shown in FIGS. 3 and 4.
  • the ultrasonic vibrator 7 is provided with a plurality of piezoelectric elements 71 having a prismatic shape and being arranged so as to be aligned in the longitudinal direction. Each piezoelectric element 71 is connected to a relay board 9 (first board 91 described later). Further, the ultrasonic vibrator 7 is provided with an acoustic matching layer, an acoustic lens, and a backing material provided on the outer surface side of the ultrasonic vibrator 7.
  • the relay board 9 is connected to the ultrasonic vibrator 7, and the first board 91 extending from the ultrasonic vibrator 7 and one end thereof are connected to the first board 91, and the other end is connected to the internal ultrasonic signal cable 8. It has a second substrate 92 to be connected.
  • the first substrate 91 and the second substrate 92 are configured by using flexible printed circuits (FPCs), and can be deformed according to an external load.
  • FPCs flexible printed circuits
  • the surface having the largest area in each of the first substrate 91 and the second substrate 92 is referred to as a “main surface”.
  • the signal transmission wiring connection unit is configured by using at least the first board 91, the second board 92, and the internal ultrasonic signal cable 8.
  • the first substrate 91 and the second substrate 92 are formed by providing a wiring pattern on a substrate formed by using polyimide.
  • Each of the first substrate 91 and the second substrate 92 is configured by laminating, for example, a plurality of base materials.
  • a predetermined wiring pattern is formed in each layer.
  • a coverlay which will be described later, is provided on the surface of the outermost layer of the base material.
  • FIG. 6 is a diagram (signal line connection step 1-1) for explaining the connection between the substrate and the signal line at the time of manufacturing the ultrasonic endoscope 2 according to the first embodiment of the present invention.
  • the signal line 81 and the electrodes on the substrate are omitted.
  • first substrate 91 and the second substrate 92 will be described.
  • a piezoelectric element connection terminal portion 911 in which an electrode for outputting an electric signal of the corresponding connection terminal of the second substrate 92 is arranged is formed on the first surface P 11 of the first substrate 91.
  • the first substrate 91 is also electrically connected to each piezoelectric element of the ultrasonic vibrator 7.
  • the second substrate 92 extends in a band shape, and among the plurality of signal lines 81 of the internal ultrasonic signal cable 8, a plurality of first connection terminals 921a connected to some of the signal lines 81 are arranged. A portion 1 (first connection terminal portion) 921 and a second portion (second connection terminal portion) 922 in which a plurality of first connection terminals 922a connected to the remaining signal lines 81 are arranged. ). Further, the second substrate 92 has an L-shaped shape in which another connection terminal portion extends from the first portion 921 in a direction orthogonal to the direction in which the second portion 922 extends.
  • the second board 92 has a third portion (third connection terminal portion) 923 in which a plurality of second connection terminals 923a connected to the first board 91 are arranged, and a first portion 921. It has a first bent portion 924 provided between the second portion 922 and the second portion 922. Further, the second substrate 92 is provided between the first portion 921 and the third portion 923 and has a second bent portion 925 including a bent position.
  • first surface P 21 On one surface (first surface P 21 ) of the main surface of the first portion 921, a plurality of first connection terminals 921a connected to some signal lines of each signal line 81 are formed. Will be done. A plurality of first connection terminals 922a connected to the remaining signal lines of each signal line 81 are formed on the first surface P 21 of the second portion 922. The first connection terminals 921a and 922a are connected to signal lines 81 different from each other. On the first surface P 21 of the third portion 923, a plurality of second connection terminals 923a connected to each electrode (piezoelectric element connection terminal portion 911) formed on the first substrate 91 are formed. The first surface P 21 corresponds to the surface of the second substrate 92 (first portion 921, second portion 922, and third portion 923).
  • Coverlays 910 and 920 are provided on the first substrate 91 and the second substrate 92, respectively.
  • the coverlay 910 covers the surface of the first substrate 91 other than the piezoelectric element connection terminal portion 911 forming region.
  • the coverlay 920 has a surface other than a part of the first connection terminal 921a and 922a forming region, the second connection terminal 923a forming region, the first bent portion 924, and the second bent portion 925 of the second substrate 92. Covering.
  • the coverlays 910 and 920 protect the wiring pattern formed on the substrate by covering the surface of each substrate.
  • the first bent portion 924 is bent so that the back surface of the first portion 921 and the back surface of the second portion 922 (here, the second surface P 22 ) are close to each other. Since the coverlay 920 is not provided in the first bent portion 924, the thickness of the first bent portion 924 is thinner than that of the other portions. The first bent portion 924 is easier to bend than the first portion 921 and the second portion 922 due to the difference in the thickness thereof.
  • the second bent portion 925 can be bent so that the surface of the first portion 921 and the surface of the third portion 923 (here, the first surface P 21 ) are close to each other.
  • a notch 925a is formed in the second bent portion 925, and a through hole 925b is formed in the periphery thereof.
  • the cut portion 925a is formed at both ends of the outer shape of the second bent portion 925, for example.
  • the through hole 925b has a ground pattern formed on the inner substrate of the substrate constituting the second substrate 92 mainly for the purpose of shielding, and the first connection terminal. It is electrically connected to the ground pattern formed on the substrate on which 921a or the like is formed.
  • the second bent portion 925 has a configuration in which the bent position can be identified by forming the cut portion 925a. Further, in the second bent portion 925, the region (region 925c) excluding the cut portion 925a and the portion between which the cover ray 920 is not provided is relatively harder than the other portions, and is difficult to bend. In the second bent portion 925, if the bent position is the easiest to bend, such as by partially changing the thickness, the configuration may not have the notch portion 925a, or the configuration may be covered with the coverlay 920. good.
  • the connection between the relay board 9 and the signal line 81 will be described.
  • the first signal line 81 corresponds to the first.
  • connection terminals 921a and 922a respectively (see FIG. 6: signal line connection step).
  • the signal line 81 is connected to the first connection terminals 921a and 922a, respectively, by a joining process involving heat treatment such as soldering.
  • the second bent portion 925 is also in a non-bent state.
  • FIG. 7 is a diagram (signal line connection step 1-2) illustrating the connection between the substrate and the signal line at the time of manufacturing the ultrasonic endoscope according to the first embodiment of the present invention.
  • the first bent portion 924 is bent and the second portion 922 is folded back in the direction of arrow R1, that is, toward the first portion 921. ..
  • the second surface P 22 which is the opposite surface of the first portion 921 and the second portion 922 and is the opposite surface of the first surface P 21 is insulated from each other. It is fixed by an adhesive or the like (insulation layer forming step).
  • the second surface P 22 corresponds to the back surface of the second substrate 92.
  • FIG. 8 is a diagram (signal line connection step 1-3) for explaining the connection between the substrate and the signal line at the time of manufacturing the ultrasonic endoscope according to the first embodiment of the present invention.
  • FIG. 9 is a plan view of the first portion 921 and the second portion 922 as viewed from the direction of arrow A shown in FIG. The first portion 921 is bent at the first bent portion 924, and the signal line 81 is arranged on one side of the second substrate 92 and the opposite side thereof. Further, an insulating layer 926 is provided between the second surface P 22 of the first portion 921 and the second surface P 22 of the second portion 922.
  • the insulating layer 926 is made of an insulating adhesive and is formed so as to fix the second surface P 22 of the first portion 921 and the second surface P 22 of the second portion 922. Therefore, the first portion 921 and the second portion 922 are in a state of being insulated between the main surfaces.
  • FIG. 10 is a diagram (signal line connection step 1-4) for explaining the connection between the first substrate and the second substrate of the relay board at the time of manufacturing the ultrasonic endoscope according to the first embodiment of the present invention.
  • the first substrate 91 and the second substrate 92 are electrically connected by joining the second connection terminal 923a of the third portion 923 to the piezoelectric element connection terminal portion 911 of the first substrate 91.
  • the second connection terminal 923a is connected to the piezoelectric element connection terminal portion 911 by, for example, soldering or the like.
  • FIG. 11 is a diagram (signal line connection step 1-5) for explaining the connection between the first substrate and the second substrate of the relay board at the time of manufacturing the ultrasonic endoscope according to the first embodiment of the present invention. be.
  • the second substrate 92 shown in FIG. 11 is the second substrate 92 shown in FIG. 10 turned upside down.
  • the second connection terminal 923a is electrically connected to the piezoelectric element connection terminal portion 911
  • the end portion of the first substrate 91 on the ultrasonic transducer 7 side is bent in the direction of arrow R2 and the second bending is performed.
  • the portion 925 in the direction of the arrow R3 the internal configuration shown in FIGS. 3 and 4 can be obtained.
  • the internal configuration of the tip portion 211 (see FIG. 3) according to the first embodiment is such that the first substrate 91 and the second substrate 92 made of flexible substrates are bent to save space and the second substrate.
  • the relay board 9 is made thinner.
  • electrodes are arranged on the front surface and the back surface of the substrate and are connected to the signal line 81, respectively.
  • the first substrate 91 and the second substrate 92 made of flexible substrates are bent at the tip portion 211 to save space. Further, in the first embodiment, the first bent portion 924 of the second substrate 92 is bent, the first portion 921 is arranged on one side of the second substrate 92, and the second portion 922 is arranged on the opposite side. Then, as the whole of the second board 92 after bending, the relay board 9 is made thinner by arranging the first connection terminals 921a connected to the signal line 81 on both sides of the second board 92. According to the first embodiment, the unit for connecting the members (here, the ultrasonic vibrator 7, the internal ultrasonic signal cable 8 and the relay board 9) can be miniaturized with a simple configuration.
  • the first bent portions 924 are expanded without being bent, and the respective signal lines 81 are corresponding to each other. It is joined to the connection terminals 921a and 922a of No. 1, respectively. In the state where the first bent portion 924 is expanded, the first connection terminals 921a and 922a do not face each other, and the distance between the first connection terminals is secured. It is possible to suppress disconnection due to heat generated at the time of joining the signal line 81 of.
  • FIG. 12 is a plan view illustrating the configuration of the second substrate 92A of the ultrasonic endoscope according to the modified example of the first embodiment of the present invention.
  • FIG. 12 corresponds to the plan view seen from the arrow A direction shown in FIG.
  • the endoscope system according to this modification has the same configuration except that the configuration of the relay board of the endoscope system 1 described above is changed.
  • the configuration of the second substrate 92 is different in the relay board 9 of the first embodiment described above.
  • a configuration different from the above-described first embodiment will be described.
  • the second substrate 92 according to this modification is provided with a wiring pattern on a substrate formed by using polyimide. Further, a ground pattern 927 is provided on the side (second surface P 22 ) opposite to the side where the first connection terminals (first connection terminals 921a and 922a) are arranged. The insulating layer 926 fixes the second surface P 22 of the second portion 922 to the second surface P 22 of the first portion 921 via the ground pattern 927. The ground pattern 927 is connected to an external ground via wiring (not shown).
  • the unit for connecting the members can be miniaturized with a simple configuration as in the first embodiment.
  • FIG. 13 and 14 are perspective views schematically showing the internal configuration of the tip portion 211 in the ultrasonic endoscope according to the second embodiment of the present invention.
  • the endoscope system according to the second embodiment has the same configuration except that the relay board of the endoscope system 1 described above is changed.
  • the relay board 9A is provided in place of the relay board 9 of the first embodiment described above.
  • a configuration (relay board 9A) different from that of the first embodiment described above will be described.
  • the relay board 9A is connected to the ultrasonic vibrator 7, and the first board 91A extending from the ultrasonic vibrator 7 and one end connected to the first board 91 and the other end connected to the ultrasonic cable 8. It has a second substrate 92A to be used.
  • the first substrate 91A and the second substrate 92A are configured by using a flexible substrate (FPC) and can be deformed according to an external load.
  • the first substrate 91A and the second substrate 92A are formed by providing a wiring pattern on a substrate formed by using polyimide. Further, on one surface (first surface P 31 ) of the main surface of the first substrate 91A, a plurality of electrodes (piezoelectric element connection terminal portion 913a shown in FIG. 15) connected to the corresponding electrodes of the second substrate 92 are connected. , 914a) are provided.
  • FIG. 15 is a diagram (signal line connection step 2-1) for explaining the connection between the substrate and the signal line at the time of manufacturing the ultrasonic endoscope according to the second embodiment of the present invention.
  • the signal line 81 and the electrodes on the substrate are omitted.
  • the first substrate 91A is electrically connected to each piezoelectric element of the ultrasonic vibrator 7, and has a main body portion 912 extending from the ultrasonic vibrator 7 and two extending portions (first) extending from the main body portion 912. It includes an extending portion 913 and a second extending portion 914).
  • a plurality of piezoelectric element connection terminal portions 913a, 914a in which electrodes connecting to the corresponding connection terminals of the second substrate 92A are arranged on the first surface P 31 side of the first extending portion 913 and the second extending portion 914. Are formed respectively.
  • the second substrate 92A has the above-mentioned first portion 921, second portion 922, and first bent portion 924. Further, the second substrate 92A extends from the first portion 921 in a direction orthogonal to the direction in which the second portion 922 extends, and is connected to the first substrate 91A from the third portion 928 and the second portion 922. , A fourth portion (fourth connection terminal portion) 929 extending in a direction orthogonal to the extending direction of the first portion 921 and connecting to the first substrate 91A. Further, the second substrate 92A has a second bent portion 931 connecting the first portion 921 and the third portion 928, and a third bent portion connecting the second portion 922 and the fourth portion 929. It has a part 932. The first portion 921, the second portion 922, and the first bent portion 924 are the same as those in the first embodiment.
  • a plurality of first connection terminals 921a connected to each signal line 81 are formed on one surface (first surface P 41 ) of the main surfaces of the first portion 921.
  • a plurality of first connection terminals 922a connected to each signal line 81 are formed on the first surface P 41 of the second portion 922.
  • On the first surface P 41 of the third portion 928 a plurality of second connection terminals 928a connected to each piezoelectric element connection terminal portion 913a formed on the first substrate 91A are formed.
  • On the first surface P 41 of the fourth portion 929 a plurality of second connection terminals 929a connected to each piezoelectric element connection terminal portion 914a formed on the first substrate 91A are formed.
  • the second bent portion 931 can be bent so that the surface of the first portion 921 and the surface of the third portion 928 (here, the first surface P 41 ) are close to each other.
  • the third bent portion 932 can be bent so that the surface of the second portion 922 and the surface of the fourth portion 929 are close to each other.
  • the second bent portion 931 and the third bent portion 932 may have a wiring layout that does not require the coverlay 920A, and may be partially thinned to form a bent position. Further, a cut portion may be formed in each bent portion to form a bent position.
  • Coverlays 910A and 920A are provided on the first substrate 91A and the second substrate 92A, respectively.
  • the coverlay 910A covers the surface of the first substrate 91A other than the piezoelectric element connection terminal portions 913a and 914a forming regions.
  • the coverlay 920A covers the surface of the second substrate 92A other than the first connection terminal 921a and 922a forming region, the second connection terminal 928a and 929a forming region, and the first bent portion 924.
  • the coverlays 910A and 920A protect the wiring pattern formed on the substrate by covering the surface of each substrate.
  • each signal line 81 is connected to the corresponding first connection terminal 921a. (See FIG. 13: signal line connection step).
  • the signal line 81 is connected to the first connection terminal 921a by a joining process involving heat treatment such as soldering.
  • FIG. 16 is a diagram (signal line connection step 2-2) for explaining the connection between the substrate and the signal line at the time of manufacturing the ultrasonic endoscope according to the second embodiment of the present invention.
  • the first bent portion 924 is bent in the direction of arrow R4, and the second portion 922 is folded back toward the first portion 921.
  • the fourth portion 929 is folded back toward the third portion 928.
  • the second surface P 42 which is the opposite surface of the first portion 921 and the second portion 922 and is the opposite surface of the first surface P 41 , is fixed to each other by an insulating adhesive or the like ( Insulation layer formation step).
  • FIG. 17 is a diagram (signal line connection step 2-3) for explaining the connection between the substrate and the signal line at the time of manufacturing the ultrasonic endoscope according to the second embodiment of the present invention.
  • FIG. 18 shows a second portion by bending the first portion 921 and the second portion 922 at the first bent portion 924, which is a plan view of the first portion 921 and the second portion 922 as viewed from the direction of arrow B shown in FIG.
  • the signal line 81 is connected to one of the boards 92A and the other side of the board 92A.
  • an insulating layer 926 formed of an insulating adhesive is provided between the second surface P 42 of the first portion 921 and the second surface P 42 of the second portion 922 (insulating layer). Formation step).
  • the first portion 921 and the second portion 922 are in a state of being insulated between the main surfaces.
  • the third portion 928 and the fourth portion 929 are in a state of being bent opposite to each other with the second bent portion 931 and the third bent portion 932 as the base points, respectively.
  • FIG. 19 is a diagram (signal line connection step 2-4) for explaining the connection between the first substrate and the second substrate of the relay board at the time of manufacturing the ultrasonic endoscope according to the second embodiment of the present invention. be.
  • the surface to which the first substrate 91A of the ultrasonic transducer 7 is connected is defined as the surface S
  • the virtual surface passing through the surfaces of the third portion 928 and the fourth portion 929 is defined as the virtual surface L. ..
  • the first substrate 91A and the second substrate 92A have a second connection terminal 928a of the third portion 928, a second connection terminal 929a of the fourth portion 929, and a piezoelectric element connection terminal portion 913a of the first substrate 91A. , 914a are connected by joining.
  • the second connection terminals 928a and 929a are connected to the piezoelectric element connection terminal portions 913a and 914a by, for example, soldering or the like.
  • the third portion 928 and the fourth portion 929 are joined to the first substrate 91A in a state of being bent to the opposite sides from the second bent portion 931 and the third bent portion 932, respectively. ..
  • the first substrate 91A is bent in the direction of the arrow R5.
  • FIG. 20 is a diagram (signal line connection step 2-5) illustrating the connection between the first substrate and the second substrate of the relay board at the time of manufacturing the ultrasonic endoscope according to the second embodiment of the present invention. be.
  • the second connection terminal 923a is connected to the piezoelectric element connection terminal portion 911
  • the end portion of the first substrate 91A on the ultrasonic transducer 7 side is bent in the direction of the arrow R6 to be shown in FIGS. 13 and 14.
  • the internal configuration shown is obtained.
  • the surface S and the virtual surface L are parallel to each other.
  • the formation range d 1 of the first bent portion 924 will be described.
  • This formation range d 1 corresponds to the distance between the third portion 928 and the fourth portion 929.
  • the first bent portion 924 has a curved shape due to the rigidity of the substrate when bent (see, for example, FIG. 15).
  • the formation range d 1 is set to, for example, a length at which the first bent portion 924 does not interfere with the member provided inside the tip portion 211 when the first bent portion 924 is bent.
  • the first substrate 91A and the second substrate 92A made of a flexible substrate are bent to save space, and the first bent portion of the second substrate 92A is bent.
  • the 924 is bent and the first portion 921 is arranged on one side of the second substrate 92A, and the second portion 922 is arranged on the opposite side thereof.
  • the relay board 9A is made thinner.
  • the unit for connecting the members here, the ultrasonic oscillator 7, the internal ultrasonic signal cable 8 and the relay board 9A
  • the unit for connecting the members here, the ultrasonic oscillator 7, the internal ultrasonic signal cable 8 and the relay board 9A
  • each signal line 81 when the signal lines 81 are connected to the first connection terminals 921a and 922a, each signal line 81 is corresponded to the first in a state where the first bent portion 924 is expanded without being bent. It is joined to the connection terminals 921a and 922a, respectively. In the state where the first bent portion 924 is expanded, the first connection terminals 921a and 922a do not face each other, and the distance between the first connection terminals is secured. It is possible to suppress disconnection due to heat generated at the time of joining the signal line 81 of.
  • the endoscope system according to this modification has the same configuration except that the configuration of the relay board of the endoscope system 1 described above is changed.
  • the signal line 81 is joined to the first connection terminal 921a, and then the first bent portion 924 is cut off.
  • a configuration different from the above-described first embodiment will be described.
  • FIG. 21 is a diagram (signal line connection step 3-1) for explaining the connection between the substrate and the signal line at the time of manufacturing the ultrasonic endoscope according to the modified example of the second embodiment of the present invention.
  • the first bent portion 924 is cut off (removal step) in a state where the signal line 81 is connected to the first connection terminal 921a (see FIG. 16).
  • the second portion 922 is turned in the direction of the arrow R7, and the second surface P 42 of the divided first portion 921 and the second portion 922 is separated from each other by the insulating layer 926. (See FIG. 18) to fix.
  • the second portion 922 may be fixed to the first portion 921 by the insulating layer 926, and then the first bent portion 924 may be cut off.
  • FIG. 22 is a diagram (signal line connection step 3-2) for explaining the connection between the substrate and the signal line at the time of manufacturing the ultrasonic endoscope according to the modified example of the second embodiment of the present invention.
  • the second substrate 92A is connected to the first substrate 91A in the same manner as in the second embodiment. Also in this modification, the same effect as that of the second embodiment described above can be obtained. Further, in this modification, since the first bent portion 924 does not exist as the second substrate 92A in a curved state, the relay board 9A can be further miniaturized.
  • the first bent portion 924 of the second substrate 92 can be cut off.
  • the relay board is composed of the first substrate and the second substrate
  • the relay board is composed of a single substrate in which the first substrate and the second substrate are integrated. It may be done.
  • FIG. 23 is a diagram schematically showing an internal configuration of a tip portion in an ultrasonic endoscope according to another embodiment of the present invention.
  • the relay board 9 is configured to relay signal transmission between the image pickup element 10 and a cable (internal ultrasonic signal cable 8) which is composed of a plurality of signal lines and transmits an electric signal generated by the image pickup element 10.
  • the relay board 9 and the image pickup device 10 are electrically connected by, for example, a transmission member 12 made of a wire, a flexible board, or the like.
  • a piezoelectric element has been described as an example for emitting ultrasonic waves and converting ultrasonic waves incident from the outside into echo signals, but the present invention is not limited to MEMS.
  • Elements manufactured using Micro Electro Mechanical Systems, for example, C-MUT (Capacitive Micromachined Ultrasonic Transducers) or P-MUT (Piezoelectric Micromachined Ultrasonic Transducers) may be used.
  • ultrasonic endoscope it may be applied to a small-diameter ultrasonic probe that does not have an optical system and mechanically rotates and scans an oscillator.
  • Ultrasound probes are usually inserted into the biliary tract, bile duct, pancreatic duct, trachea, bronchi, urethra, ureter and used to observe surrounding organs (pancreas, lung, prostate, bladder, lymph nodes, etc.).
  • the ultrasonic oscillator may be a linear oscillator, a radial oscillator, or a convex oscillator.
  • its scanning area is rectangular (rectangular, square)
  • the ultrasonic oscillator is a radial oscillator or convex oscillator
  • its scanning area is fan-shaped or annular.
  • the ultrasonic endoscope may be one that mechanically scans the ultrasonic vibrator, or a plurality of elements are provided in an array as the ultrasonic vibrator, and the elements involved in transmission / reception are electronically switched. Alternatively, it may be electronically scanned by delaying the transmission and reception of each element.
  • an extracorporeal ultrasonic probe that irradiates ultrasonic waves from the body surface of the subject may be applied.
  • Extracorporeal ultrasound probes are typically used to observe abdominal organs (liver, gallbladder, bladder), breasts (particularly the mammary glands), and thyroid glands.
  • an ultrasonic endoscope provided with an ultrasonic transducer at the tip has been described as an example, but an endoscope having no ultrasonic transducer, for example, an endoscope module It can also be applied to an endoscope equipped with only 215 at the tip.
  • an endoscope it is possible to apply the configurations of the above-described first and second embodiments in a configuration including a relay board connected to the image pickup device and a cable extending from the relay board to the connector.
  • the ultrasonic endoscope in which the insertion portion 21 is provided with the flexible tube portion 213 has been described as an example, but a hard tube portion is used instead of the flexible tube portion 213. It is possible to apply even an endoscope having an insertion portion, that is, a rigid endoscope.
  • the method for manufacturing the signal transmission wiring connection unit, the endoscope, the signal transmission wiring connection unit, and the ultrasonic vibrator module according to the present invention are useful for miniaturizing the connection between the members of the element unit with a simple configuration. Is.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

A signal transmission wiring connection unit according to the present invention comprises: a first substrate that has a first connection terminal part having an electrode disposed thereto, the first connection terminal part being a connection terminal for outputting electric signals from an element for generating image data; a cable having a plurality of signal wires for transferring the electric signals; a second substrate having two first connection terminals respectively connected to the plurality of signal wires, a second connection terminal electrically connected to the first substrate, a first folding part provided between the two first connection terminals, and a second folding part provided between the first connection terminals and the second connection terminal; and an insulating layer provided between the two facing surfaces of the second substrate while the first and second folding parts are folded.

Description

信号伝送配線接続ユニット、内視鏡、信号伝送配線接続ユニットの製造方法および超音波振動子モジュールManufacturing method of signal transmission wiring connection unit, endoscope, signal transmission wiring connection unit and ultrasonic oscillator module
 本発明は、信号伝送配線接続ユニット、内視鏡、信号伝送配線接続ユニットの製造方法および超音波振動子モジュールに関する。 The present invention relates to a signal transmission wiring connection unit, an endoscope, a method for manufacturing a signal transmission wiring connection unit, and an ultrasonic vibrator module.
 従来、医療分野においては、患者等の被検体の臓器を観察する際に内視鏡システムが用いられている。内視鏡システムは、例えば先端に撮像素子や超音波振動子等の素子が設けられ、被検体内に挿入される挿入部を有する内視鏡と、挿入部の基端側にケーブルを経て接続され、素子が生成した撮像信号に画像処理を施して体内画像を表示部等に表示させる処理装置と、を備える。挿入部は、素子が設けられる先端部の基端側に設けられ、湾曲自在な湾曲部を有する。 Conventionally, in the medical field, an endoscope system has been used when observing an organ of a subject such as a patient. In the endoscope system, for example, an image sensor, an ultrasonic transducer, or other element is provided at the tip, and the endoscope is connected to an endoscope having an insertion portion to be inserted into the subject via a cable to the base end side of the insertion portion. It is provided with a processing device that performs image processing on the image pickup signal generated by the element and displays an internal image on a display unit or the like. The insertion portion is provided on the base end side of the tip portion where the element is provided, and has a bendable portion.
 素子と信号ケーブルとは、内視鏡の先端部において、基板を経由して電気的に接続される(例えば、特許文献1を参照)。信号ケーブルは、複数の信号線を有している。素子は、基板を経て各信号線と電気的に接続する。特許文献1では、複数の基板を積層した積層基板によって、電子部品等が実装されたり、撮像素子と信号線とを電気的に接続したりする。 The element and the signal cable are electrically connected via a substrate at the tip of the endoscope (see, for example, Patent Document 1). The signal cable has a plurality of signal lines. The element is electrically connected to each signal line via the substrate. In Patent Document 1, electronic components and the like are mounted by a laminated substrate in which a plurality of substrates are laminated, and an image pickup device and a signal line are electrically connected.
特開2011-50496号公報Japanese Unexamined Patent Publication No. 2011-50496
 ところで、内視鏡の先端部は、被検体への挿入を容易にするため、信号を伝送するユニットを小型化することが求められている。特許文献1は、複数の基板を積層する構成であるため、配線が複雑化し、小型化には不向きであった。 By the way, the tip of the endoscope is required to be miniaturized in order to facilitate insertion into the subject. Since Patent Document 1 has a configuration in which a plurality of substrates are laminated, wiring is complicated and unsuitable for miniaturization.
 本発明は、上記に鑑みてなされたものであって、信号を伝送するユニットの部材同士の接続を簡易な構成で小型化することができる信号伝送配線接続ユニット、内視鏡、信号伝送配線接続ユニットの製造方法および超音波振動子モジュールを提供することを目的とする。 The present invention has been made in view of the above, and is a signal transmission wiring connection unit, an endoscope, and a signal transmission wiring connection that can reduce the size of connections between members of a unit that transmits signals with a simple configuration. It is an object of the present invention to provide a method of manufacturing a unit and an ultrasonic transducer module.
 上述した課題を解決し、目的を達成するために、本発明に係る信号伝送配線接続ユニットは、画像データを生成するための素子からの電気信号を出力する接続端子である電極が配置された第1の接続端子部を有する第1基板と、前記電気信号を伝送する複数の信号線を有するケーブルと、前記複数の信号線とそれぞれ接続する二つの第1の接続端子と、前記第1基板と電気的に接続する第2の接続端子と、前記二つの第1の接続端子の間に設けられる第1の折り曲げ部と、前記第1の接続端子と前記第2の接続端子との間に設けられる第2の折り曲げ部と、を有する第2基板と、前記第1および第2の折り曲げ部を折り曲げた状態において対向する前記第2基板の面の間に設けられる絶縁層と、を備えることを特徴とする。 In order to solve the above-mentioned problems and achieve the object, the signal transmission wiring connection unit according to the present invention is provided with an electrode which is a connection terminal for outputting an electric signal from an element for generating image data. A first board having one connection terminal portion, a cable having a plurality of signal lines for transmitting the electric signal, two first connection terminals connected to the plurality of signal lines, and the first board. A second connection terminal that is electrically connected, a first bent portion provided between the two first connection terminals, and a provision between the first connection terminal and the second connection terminal. It is provided with a second substrate having a second bent portion to be formed, and an insulating layer provided between the surfaces of the second substrate facing each other in a folded state of the first and second bent portions. It is a feature.
 また、本発明に係る信号伝送配線接続ユニットは、上記発明において、前記第2基板は、表面及び裏面を有するとともに、前記複数の信号線のうちの一部の信号線と接続する第1の接続端子が表面に配列された第1の部分と、前記複数の信号線のうちの残りの信号線と接続する第1の接続端子が表面に配列された第2の部分と、を有することを特徴とする。 Further, in the signal transmission wiring connection unit according to the present invention, in the above invention, the second substrate has a front surface and a back surface, and the first connection is connected to a part of the signal lines among the plurality of signal lines. It is characterized by having a first portion in which terminals are arranged on the surface and a second portion in which a first connection terminal connected to the remaining signal lines of the plurality of signal lines is arranged on the surface. And.
 また、本発明に係る信号伝送配線接続ユニットは、上記発明において、前記第1の折り曲げ部は、前記第1の部分と前記第2の部分との間に設けられ、前記第1の部分の裏面と前記第2の部分の裏面とが互いに近づく態様に折り曲げられることを特徴とする。 Further, in the signal transmission wiring connection unit according to the present invention, in the above invention, the first bent portion is provided between the first portion and the second portion, and the back surface of the first portion is provided. It is characterized in that the back surface of the second portion and the back surface of the second portion are bent so as to approach each other.
 また、本発明に係る信号伝送配線接続ユニットは、上記発明において、前記絶縁層は、前記第1の折り曲げ部を折り曲げた状態における、前記第1の部分の裏面と、前記第2の部分の裏面との間に設けられることを特徴とする。 Further, in the signal transmission wiring connection unit according to the present invention, in the above invention, the insulating layer is a back surface of the first portion and a back surface of the second portion in a state where the first bent portion is bent. It is characterized by being provided between and.
 また、本発明に係る信号伝送配線接続ユニットは、上記発明において、前記絶縁層は、前記第1の折り曲げ部を折り曲げた状態における、前記第1の部分の裏面と、前記第2の部分の裏面との間を固着することを特徴とする。 Further, in the signal transmission wiring connection unit according to the present invention, in the above invention, the insulating layer is a back surface of the first portion and a back surface of the second portion in a state where the first bent portion is bent. It is characterized by fixing between and.
 また、本発明に係る信号伝送配線接続ユニットは、上記発明において、前記第2基板は、前記第2の接続端子が配列された第3の部分をさらに有し、前記第2の折り曲げ部は、前記第1の部分と前記第3の部分との間に設けられ、前記第1の部分と前記第3の部分とが互いに近づく態様に折り曲げられることを特徴とする。 Further, in the signal transmission wiring connection unit according to the present invention, in the above invention, the second substrate further has a third portion in which the second connection terminal is arranged, and the second bent portion is. It is provided between the first portion and the third portion, and is characterized in that the first portion and the third portion are bent so as to approach each other.
 また、本発明に係る信号伝送配線接続ユニットは、上記発明において、前記第2基板の表面において、少なくとも前記第2の折り曲げ部を覆うカバーレイ、を備えることを特徴とする。 Further, the signal transmission wiring connection unit according to the present invention is characterized in that, in the above invention, a coverlay covering at least the second bent portion on the surface of the second substrate is provided.
 また、本発明に係る信号伝送配線接続ユニットは、上記発明において、前記第1の折り曲げ部は、他の部分と比して厚さが薄いことを特徴とする。 Further, the signal transmission wiring connection unit according to the present invention is characterized in that, in the above invention, the first bent portion is thinner than the other portions.
 また、本発明に係る信号伝送配線接続ユニットは、上記発明において、前記第2の折り曲げ部には、切り込み部が形成されることを特徴とする。 Further, the signal transmission wiring connection unit according to the present invention is characterized in that, in the above invention, a notch portion is formed in the second bent portion.
 また、本発明に係る信号伝送配線接続ユニットは、上記発明において、前記素子は、超音波に基づく画像データを生成するための超音波振動子であることを特徴とする。 Further, the signal transmission wiring connection unit according to the present invention is characterized in that, in the above invention, the element is an ultrasonic vibrator for generating image data based on ultrasonic waves.
 また、本発明に係る信号伝送配線接続ユニットは、上記発明において、前記素子は、光学像に基づく画像データを生成するための撮像素子であることを特徴とする。 Further, the signal transmission wiring connection unit according to the present invention is characterized in that, in the above invention, the element is an image pickup element for generating image data based on an optical image.
 また、本発明に係る信号伝送配線接続ユニットは、上記発明において、前記第2の折り曲げ部は、前記第1の接続端子部分と前記第3の接続端子部分とが互いに近づく態様に折り曲げられていることを特徴とする。 Further, in the signal transmission wiring connection unit according to the present invention, in the above invention, the second bent portion is bent so that the first connection terminal portion and the third connection terminal portion are close to each other. It is characterized by that.
 また、本発明に係る内視鏡は、上記発明に係る信号伝送配線接続ユニットを収容する挿入部、を備えることを特徴とする。 Further, the endoscope according to the present invention is characterized by including an insertion portion for accommodating the signal transmission wiring connection unit according to the above invention.
 また、本発明に係る信号伝送配線接続ユニットの製造方法は、画像データを生成するための複数の素子と電気的に接続する基板における、第1および第2の接続端子部分の表面にそれぞれ配設される複数の第1の接続端子に、対応する信号線をそれぞれ接続する信号線接続ステップと、前記第1の接続端子に前記信号線を接続後、前記第1の接続端子部分の裏面に前記第2の接続端子部分の裏面を固着する絶縁層を形成する絶縁層形成ステップと、を含むことを特徴とする。 Further, the method for manufacturing a signal transmission wiring connection unit according to the present invention is arranged on the surface of the first and second connection terminal portions of a substrate electrically connected to a plurality of elements for generating image data, respectively. A signal line connection step for connecting a corresponding signal line to each of the plurality of first connection terminals to be formed, and after connecting the signal line to the first connection terminal, the above-mentioned is performed on the back surface of the first connection terminal portion. It is characterized by including an insulating layer forming step for forming an insulating layer for fixing the back surface of the second connection terminal portion.
 また、本発明に係る信号伝送配線接続ユニットの製造方法は、上記発明において、前記絶縁層形成ステップは、前記第1の接続端子部分と前記第2の接続端子部分との間に設けられる第1の折り曲げ部を屈曲させて該第1および第2の接続端子部分の裏面を向い合せた後、前記第1の接続端子部分の裏面に前記第2の接続端子部分の裏面を固着させて前記絶縁層を形成し、前記第1の折り曲げ部を除去する除去ステップ、をさらに含むことを特徴とする。 Further, in the method for manufacturing a signal transmission wiring connection unit according to the present invention, in the above invention, the insulating layer forming step is provided between the first connection terminal portion and the second connection terminal portion. After bending the bent portion of the above to face the back surfaces of the first and second connection terminal portions, the back surface of the second connection terminal portion is fixed to the back surface of the first connection terminal portion to insulate the insulation. It is characterized by further comprising a removal step of forming a layer and removing the first bent portion.
 また、本発明に係る超音波振動子モジュールは、画像データを生成するための素子からの電気信号を出力する接続端子である電極が配置された第1の接続端子部を有する第1基板と、前記電気信号を伝送する複数の信号線を有するケーブルと、前記複数の信号線とそれぞれ接続する二つの第1の接続端子と、前記第1基板と電気的に接続する第2の接続端子と、前記二つの第1の接続端子の間に設けられる第1の折り曲げ部と、前記第1の接続端子と前記第2の接続端子との間に設けられる第2の折り曲げ部と、を有する第2基板と、前記第1および第2の折り曲げ部を折り曲げた状態において対向する前記第2基板の面の間に設けられる絶縁層と、を備えることを特徴とする。 Further, the ultrasonic transducer module according to the present invention includes a first substrate having a first connection terminal portion in which an electrode, which is a connection terminal for outputting an electric signal from an element for generating image data, is arranged. A cable having a plurality of signal lines for transmitting the electric signal, two first connection terminals connected to the plurality of signal lines, and a second connection terminal electrically connected to the first board. A second having a first bent portion provided between the two first connection terminals and a second bent portion provided between the first connection terminal and the second connection terminal. It is characterized by comprising a substrate and an insulating layer provided between the surfaces of the second substrate facing each other in a state where the first and second bent portions are bent.
 また、本発明に係る信号伝送配線接続ユニットは、画像データを生成するための素子からの電気信号を出力する接続端子である電極が配置された第1の接続端子部を有する第1基板と、前記電気信号を伝送する複数の信号線を有するケーブルと、前記複数の信号線のうちの一部の信号線と接続する第1の接続端子が表面に配列された第1の接続端子部分と、前記複数の信号線のうちの残りの信号線と接続する第1の接続端子が表面に配列された第2の接続端子部分と、前記第1基板と電気的に接続する第2の接続端子が配列された第3の接続端子部分と、前記第1の接続端子部分と前記第2の接続端子部分の間に設けられ、前記第1の接続端子部分の裏面と前記第2の接続端子部分の裏面とが互いに近づく態様に折り曲げられる第1の折り曲げ部と、前記第1の接続端子部分と前記第3の接続端子部分の間に設けられ、前記第1の接続端子部分と前記第3の接続端子部分とが互いに近づく態様に折り曲げ可能になされた第2の折り曲げ部と、を有する第2基板と、前記第1の折り曲げ部を折り曲げた状態における、前記第1の接続端子部分の裏面と、前記第2の接続端子部分の裏面との間を固着する絶縁層と、を備えることを特徴とする。 Further, the signal transmission wiring connection unit according to the present invention includes a first substrate having a first connection terminal portion in which an electrode, which is a connection terminal for outputting an electric signal from an element for generating image data, is arranged. A cable having a plurality of signal lines for transmitting the electric signal, a first connection terminal portion in which a first connection terminal for connecting to a part of the signal lines among the plurality of signal lines is arranged on the surface, and a portion of the first connection terminal. A second connection terminal portion in which a first connection terminal connected to the remaining signal lines of the plurality of signal lines is arranged on the surface and a second connection terminal electrically connected to the first board are provided. The third connection terminal portion arranged, and the back surface of the first connection terminal portion and the second connection terminal portion provided between the first connection terminal portion and the second connection terminal portion. A first bent portion that is bent so that the back surfaces are close to each other, and a first connection terminal portion and the third connection terminal portion are provided between the first bending portion and the first connection terminal portion and the third connection. A second substrate having a second bent portion that can be bent so that the terminal portions approach each other, and a back surface of the first connection terminal portion in a state where the first bent portion is bent. It is characterized by comprising an insulating layer for fixing between the back surface of the second connection terminal portion.
 本発明によれば、信号を伝送するユニットの部材同士の接続を簡易な構成で小型化することができるという効果を奏する。 According to the present invention, there is an effect that the connection between the members of the unit that transmits a signal can be miniaturized with a simple configuration.
図1は、本発明の実施の形態1に係る内視鏡システムを模式的に示す図である。FIG. 1 is a diagram schematically showing an endoscope system according to the first embodiment of the present invention. 図2は、本発明の実施の形態1に係る超音波内視鏡の挿入部の先端構成を模式的に示す斜視図である。FIG. 2 is a perspective view schematically showing the tip configuration of the insertion portion of the ultrasonic endoscope according to the first embodiment of the present invention. 図3は、本発明の実施の形態1に係る超音波内視鏡における先端部の内部構成を模式的に示す斜視図である。FIG. 3 is a perspective view schematically showing the internal configuration of the tip portion of the ultrasonic endoscope according to the first embodiment of the present invention. 図4は、本発明の実施の形態1に係る超音波内視鏡における先端部の内部構成を模式的に示す斜視図である。FIG. 4 is a perspective view schematically showing the internal configuration of the tip portion of the ultrasonic endoscope according to the first embodiment of the present invention. 図5は、図3、4に示す超音波振動子の構成を説明する図である。FIG. 5 is a diagram illustrating the configuration of the ultrasonic oscillator shown in FIGS. 3 and 4. 図6は、本発明の実施の形態1に係る超音波内視鏡の製造時における、基板と信号線との接続を説明する図(その1)である。FIG. 6 is a diagram (No. 1) for explaining the connection between the substrate and the signal line at the time of manufacturing the ultrasonic endoscope according to the first embodiment of the present invention. 図7は、本発明の実施の形態1に係る超音波内視鏡の製造時における、基板と信号線との接続を説明する図(その2)である。FIG. 7 is a diagram (No. 2) illustrating the connection between the substrate and the signal line at the time of manufacturing the ultrasonic endoscope according to the first embodiment of the present invention. 図8は、本発明の実施の形態1に係る超音波内視鏡の製造時における、基板と信号線との接続を説明する図(その3)である。FIG. 8 is a diagram (No. 3) illustrating the connection between the substrate and the signal line at the time of manufacturing the ultrasonic endoscope according to the first embodiment of the present invention. 図9は、第1部分および第2部分を、図8に示す矢視A方向からみた平面図である。FIG. 9 is a plan view of the first portion and the second portion as viewed from the direction of arrow A shown in FIG. 図10は、本発明の実施の形態1に係る超音波内視鏡の製造時における、中継基板の第1基板と第2基板との接続を説明する図(その1)である。FIG. 10 is a diagram (No. 1) illustrating the connection between the first substrate and the second substrate of the relay substrate at the time of manufacturing the ultrasonic endoscope according to the first embodiment of the present invention. 図11は、本発明の実施の形態1に係る超音波内視鏡の製造時における、中継基板の第1基板と第2基板との接続を説明する図(その2)である。FIG. 11 is a diagram (No. 2) illustrating the connection between the first substrate and the second substrate of the relay substrate at the time of manufacturing the ultrasonic endoscope according to the first embodiment of the present invention. 図12は、本発明の実施の形態1の変形例に係る超音波内視鏡第2基板の構成を説明する平面図である。FIG. 12 is a plan view illustrating the configuration of the ultrasonic endoscope second substrate according to the modified example of the first embodiment of the present invention. 図13は、本発明の実施の形態2に係る超音波内視鏡における先端部の内部構成を模式的に示す斜視図である。FIG. 13 is a perspective view schematically showing the internal configuration of the tip portion of the ultrasonic endoscope according to the second embodiment of the present invention. 図14は、本発明の実施の形態2に係る超音波内視鏡における先端部の内部構成を模式的に示す斜視図である。FIG. 14 is a perspective view schematically showing the internal configuration of the tip portion of the ultrasonic endoscope according to the second embodiment of the present invention. 図15は、本発明の実施の形態2に係る超音波内視鏡の製造時における、基板と信号線との接続を説明する図(その1)である。FIG. 15 is a diagram (No. 1) for explaining the connection between the substrate and the signal line at the time of manufacturing the ultrasonic endoscope according to the second embodiment of the present invention. 図16は、本発明の実施の形態2に係る超音波内視鏡の製造時における、基板と信号線との接続を説明する図(その2)である。FIG. 16 is a diagram (No. 2) illustrating the connection between the substrate and the signal line at the time of manufacturing the ultrasonic endoscope according to the second embodiment of the present invention. 図17は、本発明の実施の形態2に係る超音波内視鏡の製造時における、基板と信号線との接続を説明する図(その3)である。FIG. 17 is a diagram (No. 3) illustrating the connection between the substrate and the signal line at the time of manufacturing the ultrasonic endoscope according to the second embodiment of the present invention. 図18は、第1部分および第2部分を、図17に示す矢視B方向からみた平面図である。FIG. 18 is a plan view of the first portion and the second portion as viewed from the direction of arrow B shown in FIG. 図19は、本発明の実施の形態2に係る超音波内視鏡の製造時における、中継基板の第1基板と第2基板との接続を説明する図(その1)である。FIG. 19 is a diagram (No. 1) illustrating the connection between the first substrate and the second substrate of the relay substrate at the time of manufacturing the ultrasonic endoscope according to the second embodiment of the present invention. 図20は、本発明の実施の形態2に係る超音波内視鏡の製造時における、中継基板の第1基板と第2基板との接続を説明する図(その2)である。FIG. 20 is a diagram (No. 2) illustrating the connection between the first substrate and the second substrate of the relay substrate at the time of manufacturing the ultrasonic endoscope according to the second embodiment of the present invention. 図21は、本発明の実施の形態2の変形例に係る超音波内視鏡の製造時における、基板と信号線との接続を説明する図(その1)である。FIG. 21 is a diagram (No. 1) for explaining the connection between the substrate and the signal line at the time of manufacturing the ultrasonic endoscope according to the modified example of the second embodiment of the present invention. 図22は、本発明の実施の形態2の変形例に係る超音波内視鏡の製造時における、基板と信号線との接続を説明する図(その2)である。FIG. 22 is a diagram (No. 2) illustrating the connection between the substrate and the signal line at the time of manufacturing the ultrasonic endoscope according to the modified example of the second embodiment of the present invention. 図23は、本発明の他の実施の形態に係る超音波内視鏡における先端部の内部構成を模式的に示す図である。FIG. 23 is a diagram schematically showing an internal configuration of a tip portion in an ultrasonic endoscope according to another embodiment of the present invention.
 以下に、図面を参照して、本発明を実施するための形態(以下、実施の形態)について説明する。なお、以下に説明する実施の形態によって本発明が限定されるものではない。さらに、図面の記載において、同一の部分には同一の符号を付している。 Hereinafter, embodiments for carrying out the present invention (hereinafter referred to as embodiments) will be described with reference to the drawings. The present invention is not limited to the embodiments described below. Further, in the description of the drawings, the same parts are designated by the same reference numerals.
(実施の形態1)
 図1は、本発明の実施の形態1に係る内視鏡システム1を模式的に示す図である。内視鏡システム1は、超音波内視鏡を用いて人等の被検体内の超音波診断を行うシステムである。この内視鏡システム1は、図1に示すように、超音波内視鏡2と、超音波観測装置3と、内視鏡観察装置4と、表示装置5と、光源装置6とを備える。
(Embodiment 1)
FIG. 1 is a diagram schematically showing an endoscope system 1 according to a first embodiment of the present invention. The endoscope system 1 is a system for performing ultrasonic diagnosis in a subject such as a person using an ultrasonic endoscope. As shown in FIG. 1, the endoscope system 1 includes an ultrasonic endoscope 2, an ultrasonic observation device 3, an endoscope observation device 4, a display device 5, and a light source device 6.
 超音波内視鏡2は、撮像光学系および撮像素子を有しており、被検体の消化管(食道、胃、十二指腸、大腸)、または呼吸器(気管、気管支)へ挿入され、消化管や、呼吸器のいずれかの撮像を行うことが可能である。超音波内視鏡2は、撮像時に被検体へ照射する照明光を導くライトガイドを有する。このライトガイドは、後述する光ファイバケーブル61によって導光される光が供給され、先端部が超音波内視鏡2の被検体への挿入部の先端まで達している一方、基端部が照明光を発生する光源装置6に接続されている。また、超音波内視鏡2は、消化管や、呼吸器の周囲臓器(膵臓、胆嚢、胆管、胆道、リンパ節、縦隔臓器、血管等)に対して、超音波を送信し、該周辺臓器で反射した超音波を受信する。 The ultrasonic endoscope 2 has an imaging optical system and an imaging element, and is inserted into the digestive tract (esophagus, stomach, duodenum, large intestine) or respiratory organs (trachea, bronchus) of the subject, and is inserted into the digestive tract or the digestive tract. , It is possible to perform either respiratory imaging. The ultrasonic endoscope 2 has a light guide that guides the illumination light to irradiate the subject at the time of imaging. Light guided by an optical fiber cable 61, which will be described later, is supplied to this light guide, and the tip portion reaches the tip of the insertion portion of the ultrasonic endoscope 2 into the subject, while the base end portion is illuminated. It is connected to a light source device 6 that generates light. Further, the ultrasonic endoscope 2 transmits ultrasonic waves to the gastrointestinal tract and organs around the respiratory organs (pancreatic duct, gallbladder, bile duct, biliary tract, lymph node, mediastinal organ, blood vessel, etc.), and the periphery thereof. Receives ultrasonic waves reflected by the organ.
 超音波内視鏡2は、図1に示すように、挿入部21と、操作部22と、ユニバーサルコード23と、コネクタ24とを備える。挿入部21は、被検体内に挿入される部分である。この挿入部21は、先端側に設けられ、超音波振動子7を有する硬性の先端部211と、先端部211の基端側に連結され湾曲可能とする湾曲部212と、湾曲部212の基端側に連結され可撓性を有する可撓管部213とを備える。ここで、挿入部21の内部には、具体的な図示は省略したが、光源装置6から供給された照明光を伝送するライトガイドと、後述する信号線(信号線81)を含む、各種信号を伝送する複数の信号線とが引き回されているとともに、処置具を挿通するための処置具用挿通路などが形成されている。湾曲部212は、先端部211の長手軸を、少なくとも互いに異なる二方向に湾曲可能である。 As shown in FIG. 1, the ultrasonic endoscope 2 includes an insertion unit 21, an operation unit 22, a universal cord 23, and a connector 24. The insertion portion 21 is a portion to be inserted into the subject. The insertion portion 21 is provided on the tip side, and has a rigid tip portion 211 having an ultrasonic vibrator 7, a curved portion 212 connected to the base end side of the tip portion 211 to enable bending, and a base of the curved portion 212. A flexible tube portion 213 connected to the end side and having flexibility is provided. Here, although specific illustration is omitted inside the insertion portion 21, various signals including a light guide for transmitting the illumination light supplied from the light source device 6 and a signal line (signal line 81) described later are included. A plurality of signal lines for transmitting the light source are routed, and an insertion passage for the treatment tool for inserting the treatment tool is formed. The bending portion 212 is capable of bending the longitudinal axis of the tip portion 211 in at least two directions different from each other.
 超音波振動子7は、複数の圧電素子をアレイ状に設け、送受信にかかわる圧電素子を電子的に切り替えたり、各圧電素子の送受信に遅延をかけたりすることで、電子的に走査させるコンベックス型の超音波振動子である。超音波振動子7は、パルス信号の入力によって圧電素子が振動することによって観測対象に超音波を照射する。また、観測対象から反射された超音波は、圧電素子に伝わる。超音波によって圧電素子が振動し、圧電素子が該振動を電気的なエコー信号に変換して超音波観測装置3に出力する。 The ultrasonic vibrator 7 is a convex type in which a plurality of piezoelectric elements are provided in an array, the piezoelectric elements involved in transmission / reception are electronically switched, and the transmission / reception of each piezoelectric element is delayed to electronically scan. It is an ultrasonic transducer of. The ultrasonic vibrator 7 irradiates an observation target with ultrasonic waves by vibrating the piezoelectric element due to the input of a pulse signal. Further, the ultrasonic waves reflected from the observation target are transmitted to the piezoelectric element. The piezoelectric element vibrates due to ultrasonic waves, and the piezoelectric element converts the vibration into an electrical echo signal and outputs the vibration to the ultrasonic observation device 3.
 操作部22は、挿入部21の基端側に連結され、医師等のユーザからの各種操作を受け付ける部分である。この操作部22は、湾曲部212を湾曲操作するための湾曲ノブ221と、各種操作を行うための複数の操作部材222とを備える。また、操作部22には、処置具用挿通路に連通し、当該処置具用挿通路に処置具を挿通するための処置具挿入口223が形成されている。 The operation unit 22 is connected to the base end side of the insertion unit 21 and is a part that receives various operations from users such as doctors. The operation unit 22 includes a bending knob 221 for performing a bending operation on the bending portion 212, and a plurality of operating members 222 for performing various operations. Further, the operation unit 22 is formed with a treatment tool insertion port 223 that communicates with the treatment tool insertion passage and inserts the treatment tool into the treatment tool insertion passage.
 ユニバーサルコード23は、操作部22から延在し、各種信号を伝送する複数の信号ケーブル、および光源装置6から供給された照明光を伝送する光ファイバ等が配設されたケーブルである。 The universal cord 23 is a cable extending from the operation unit 22 and having a plurality of signal cables for transmitting various signals, an optical fiber for transmitting illumination light supplied from the light source device 6, and the like.
 コネクタ24は、ユニバーサルコード23の先端に設けられている。そして、コネクタ24は、外部超音波信号ケーブル31、ビデオケーブル41、および光ファイバケーブル61がそれぞれ接続される第1~第3コネクタ部241~243を備える。 The connector 24 is provided at the tip of the universal cord 23. The connector 24 includes first to third connector portions 241 to 243 to which the external ultrasonic signal cable 31, the video cable 41, and the optical fiber cable 61 are connected, respectively.
 超音波観測装置3は、外部超音波信号ケーブル31を介して超音波内視鏡2に電気的に接続し、外部超音波信号ケーブル31を介して超音波内視鏡2にパルス信号を出力するとともに超音波内視鏡2からエコー信号を入力する。そして、超音波観測装置3は、当該エコー信号に所定の処理を施して超音波画像データを生成する。 The ultrasonic observation device 3 is electrically connected to the ultrasonic endoscope 2 via an external ultrasonic signal cable 31, and outputs a pulse signal to the ultrasonic endoscope 2 via an external ultrasonic signal cable 31. At the same time, an echo signal is input from the ultrasonic endoscope 2. Then, the ultrasonic observation device 3 performs a predetermined process on the echo signal to generate ultrasonic image data.
 内視鏡観察装置4は、ビデオケーブル41を介して超音波内視鏡2に電気的に接続し、ビデオケーブル41を介して超音波内視鏡2からの画像信号を入力する。そして、内視鏡観察装置4は、当該画像信号に所定の処理を施して内視鏡画像データを生成する。 The endoscope observation device 4 is electrically connected to the ultrasonic endoscope 2 via a video cable 41, and inputs an image signal from the ultrasonic endoscope 2 via the video cable 41. Then, the endoscope observation device 4 performs a predetermined process on the image signal to generate endoscopic image data.
 表示装置5は、液晶または有機EL(Electro Luminescence)、プロジェクタ、CRT(Cathode Ray Tube)などを用いて構成され、超音波観測装置3にて生成された超音波画像や、内視鏡観察装置4にて生成された内視鏡画像等を表示する。 The display device 5 is configured by using a liquid crystal display or an organic EL (Electro Luminescence), a projector, a CRT (Cathode Ray Tube), or the like, and an ultrasonic image generated by the ultrasonic observation device 3 or an endoscopic observation device 4 Display the endoscopic image etc. generated in.
 光源装置6は、光ファイバケーブル61を介して超音波内視鏡2に接続し、光ファイバケーブル61を介して被検体内を照明する照明光を超音波内視鏡2に供給する。 The light source device 6 is connected to the ultrasonic endoscope 2 via the optical fiber cable 61, and supplies the illumination light for illuminating the inside of the subject via the optical fiber cable 61 to the ultrasonic endoscope 2.
 図2は、本実施の形態1に係る超音波内視鏡2の挿入部21の先端構成を模式的に示す斜視図である。図2に示すように、先端部211は、超音波振動子7を保持する超音波振動子モジュール214と、撮像光学系の一部をなし、外部からの光を取り込む対物レンズ215a、撮像素子、および、照明光を集光して外部に出射する照明レンズ215bを有する内視鏡モジュール215と、を備える。内視鏡モジュール215には、挿入部21内に形成された処置具用挿通路に連通し、挿入部21の先端から処置具を突出させる処置具突出口215cが形成されている。処置具用挿通路は、処置具突出口215cに連なる端部近傍が、挿入部21の長手軸に対して傾斜し、処置具が処置具突出口215cから長手軸に対して傾斜した方向に突出するように設けられている。ここでいう長手軸とは、挿入部21の長手方向に沿った軸である。湾曲部212や可撓管部213では各位置によって軸方向が変化するが、硬性の先端部211では、長手軸は、一定した直線をなす軸である。 FIG. 2 is a perspective view schematically showing the tip configuration of the insertion portion 21 of the ultrasonic endoscope 2 according to the first embodiment. As shown in FIG. 2, the tip portion 211 includes an ultrasonic vibrator module 214 holding the ultrasonic vibrator 7, an objective lens 215a that forms a part of an imaging optical system and captures light from the outside, and an imaging element. It also includes an endoscope module 215 having an illumination lens 215b that collects illumination light and emits it to the outside. The endoscope module 215 is formed with a treatment tool protrusion 215c that communicates with the treatment tool insertion passage formed in the insertion portion 21 and projects the treatment tool from the tip of the insertion portion 21. In the insertion passage for the treatment tool, the vicinity of the end connected to the treatment tool protrusion 215c is inclined with respect to the longitudinal axis of the insertion portion 21, and the treatment tool protrudes from the treatment tool protrusion 215c in the direction inclined with respect to the longitudinal axis. It is provided to do so. The longitudinal axis referred to here is an axis along the longitudinal direction of the insertion portion 21. In the curved portion 212 and the flexible tube portion 213, the axial direction changes depending on each position, but in the rigid tip portion 211, the longitudinal axis is an axis forming a constant straight line.
 続いて、挿入部21の先端部211における内部構成(信号伝送ケーブルユニット)について、図3、4を参照して説明する。図3および図4は、本実施の形態1に係る超音波内視鏡における先端部211の内部構成を模式的に示す斜視図である。超音波振動子モジュール214は、超音波振動子7と、当該超音波振動子7(超音波振動子モジュール214)と超音波観測装置3とを電気的に接続する経路の一部をなし、超音波振動子7と内部超音波信号ケーブル8との間の電気的な接続を中継する中継基板9と、を備える。本発明に係る信号伝送配線接続ユニットは、素子に相当する超音波振動子7、内部超音波信号ケーブル8および中継基板9によって構成される。 Subsequently, the internal configuration (signal transmission cable unit) in the tip portion 211 of the insertion portion 21 will be described with reference to FIGS. 3 and 4. 3 and 4 are perspective views schematically showing the internal configuration of the tip portion 211 in the ultrasonic endoscope according to the first embodiment. The ultrasonic oscillator module 214 forms a part of a path for electrically connecting the ultrasonic oscillator 7, the ultrasonic oscillator 7 (ultrasonic oscillator module 214), and the ultrasonic observation device 3, and is super. A relay board 9 for relaying an electrical connection between the sound wave oscillator 7 and the internal ultrasonic signal cable 8 is provided. The signal transmission wiring connection unit according to the present invention is composed of an ultrasonic vibrator 7 corresponding to an element, an internal ultrasonic signal cable 8, and a relay board 9.
 超音波振動子7は、中継基板9を経て内部超音波信号ケーブル8に接続する。内部超音波信号ケーブル8は、外部超音波信号ケーブル31と電気的に接続する。内部超音波信号ケーブル8は、複数の信号線81を有している。各信号線81は、中継基板9を経由して対応する圧電素子と電気的に接続している。なお、図3では、説明のために簡略化した構成を図示しているが、実際の同軸線は、圧電素子の数に応じて設けられる。 The ultrasonic oscillator 7 is connected to the internal ultrasonic signal cable 8 via the relay board 9. The internal ultrasonic signal cable 8 is electrically connected to the external ultrasonic signal cable 31. The internal ultrasonic signal cable 8 has a plurality of signal lines 81. Each signal line 81 is electrically connected to the corresponding piezoelectric element via the relay board 9. Although the simplified configuration is shown in FIG. 3 for the sake of explanation, the actual coaxial line is provided according to the number of piezoelectric elements.
 図5は、図3、4に示す超音波振動子の構成を説明する図である。超音波振動子7は、角柱状をなし、長手方向を揃えて並べられてなる複数の圧電素子71を備える。各圧電素子71は、中継基板9(後述する第1基板91)と接続する。また、超音波振動子7には、当該超音波振動子7の外表面側に設けられる音響整合層や、音響レンズ、バッキング材が設けられる。 FIG. 5 is a diagram illustrating the configuration of the ultrasonic oscillator shown in FIGS. 3 and 4. The ultrasonic vibrator 7 is provided with a plurality of piezoelectric elements 71 having a prismatic shape and being arranged so as to be aligned in the longitudinal direction. Each piezoelectric element 71 is connected to a relay board 9 (first board 91 described later). Further, the ultrasonic vibrator 7 is provided with an acoustic matching layer, an acoustic lens, and a backing material provided on the outer surface side of the ultrasonic vibrator 7.
 中継基板9は、超音波振動子7に接続し、該超音波振動子7から延出する第1基板91と、一端が第1基板91に接続され、他端が内部超音波信号ケーブル8に接続する第2基板92とを有する。第1基板91および第2基板92は、屈曲自在なフレキシブル基板(Flexible Printed Circuits:FPC)を用いて構成され、外部からの荷重に応じて変形可能である。以下、第1基板91および第2基板92においてそれぞれ最も広い面積を有する面を「主面」という。
 信号伝送配線接続ユニットは、少なくとも第1基板91、第2基板92および内部超音波信号ケーブル8を用いて構成される。
The relay board 9 is connected to the ultrasonic vibrator 7, and the first board 91 extending from the ultrasonic vibrator 7 and one end thereof are connected to the first board 91, and the other end is connected to the internal ultrasonic signal cable 8. It has a second substrate 92 to be connected. The first substrate 91 and the second substrate 92 are configured by using flexible printed circuits (FPCs), and can be deformed according to an external load. Hereinafter, the surface having the largest area in each of the first substrate 91 and the second substrate 92 is referred to as a “main surface”.
The signal transmission wiring connection unit is configured by using at least the first board 91, the second board 92, and the internal ultrasonic signal cable 8.
 第1基板91および第2基板92は、ポリイミドを用いて形成される基材に配線パターンを設けてなる。第1基板91および第2基板92は、それぞれが、例えば複数の基材を積層して構成される。各層には、それぞれ所定の配線パターンが形成される。また、基材の最外層の表面には、後述するカバーレイが設けられる。 The first substrate 91 and the second substrate 92 are formed by providing a wiring pattern on a substrate formed by using polyimide. Each of the first substrate 91 and the second substrate 92 is configured by laminating, for example, a plurality of base materials. A predetermined wiring pattern is formed in each layer. Further, a coverlay, which will be described later, is provided on the surface of the outermost layer of the base material.
 次に、超音波内視鏡2の製造時における、中継基板9と信号線81との接続について、図6~図9を参照して説明する。図6は、本発明の実施の形態1に係る超音波内視鏡2の製造時における、基板と信号線との接続を説明する図(信号線接続ステップ1-1)である。なお、以下の図6~図8では、信号線81や基板上の電極を省略して図示している。 Next, the connection between the relay board 9 and the signal line 81 at the time of manufacturing the ultrasonic endoscope 2 will be described with reference to FIGS. 6 to 9. FIG. 6 is a diagram (signal line connection step 1-1) for explaining the connection between the substrate and the signal line at the time of manufacturing the ultrasonic endoscope 2 according to the first embodiment of the present invention. In FIGS. 6 to 8 below, the signal line 81 and the electrodes on the substrate are omitted.
 まず、第1基板91および第2基板92について説明する。
 第1基板91の第1表面P11には、第2基板92の対応する接続端子の電気信号を出力する電極が配置された圧電素子接続端子部911が形成される。第1基板91は、超音波振動子7の各圧電素子とも電気的に接続している。
First, the first substrate 91 and the second substrate 92 will be described.
On the first surface P 11 of the first substrate 91, a piezoelectric element connection terminal portion 911 in which an electrode for outputting an electric signal of the corresponding connection terminal of the second substrate 92 is arranged is formed. The first substrate 91 is also electrically connected to each piezoelectric element of the ultrasonic vibrator 7.
 第2基板92は、帯状をなして延び、内部超音波信号ケーブル8の複数の信号線81のうち、一部の信号線81とそれぞれ接続する複数の第1の接続端子921aが配置された第1の部分(第1の接続端子部分)921、および、残りの信号線81とそれぞれ接続する複数の第1の接続端子922aが配置された第2の部分(第2の接続端子部分)922という)を有する。また、第2基板92は、第1の部分921から、第2の部分922が延びる方向と直交する方向に他の接続端子部分が延びた、L字状をなす形状を有する。具体的には、第2基板92は、第1基板91と接続する複数の第2の接続端子923aが配置された第3の部分(第3の接続端子部分)923と、第1の部分921と第2の部分922との間に設けられる第1の折り曲げ部924とを有する。更に、第2基板92は、第1の部分921と第3の部分923との間に設けられ、折り曲げ位置を含む第2の折り曲げ部925とを有する。 The second substrate 92 extends in a band shape, and among the plurality of signal lines 81 of the internal ultrasonic signal cable 8, a plurality of first connection terminals 921a connected to some of the signal lines 81 are arranged. A portion 1 (first connection terminal portion) 921 and a second portion (second connection terminal portion) 922 in which a plurality of first connection terminals 922a connected to the remaining signal lines 81 are arranged. ). Further, the second substrate 92 has an L-shaped shape in which another connection terminal portion extends from the first portion 921 in a direction orthogonal to the direction in which the second portion 922 extends. Specifically, the second board 92 has a third portion (third connection terminal portion) 923 in which a plurality of second connection terminals 923a connected to the first board 91 are arranged, and a first portion 921. It has a first bent portion 924 provided between the second portion 922 and the second portion 922. Further, the second substrate 92 is provided between the first portion 921 and the third portion 923 and has a second bent portion 925 including a bent position.
 第1の部分921の主面のうちの一方の面(第1表面P21)には、各信号線81のうちの一部の信号線とそれぞれ接続する複数の第1の接続端子921aが形成される。第2の部分922の第1表面P21には、各信号線81の残りの信号線とそれぞれ接続する複数の第1の接続端子922aが形成される。第1の接続端子921a、922aは、互いに異なる信号線81と接続する。
 第3の部分923の第1表面P21には、第1基板91に形成される各電極(圧電素子接続端子部911)とそれぞれ接続する複数の第2の接続端子923aが形成される。
 なお、第1表面P21は、第2基板92(第1の部分921、第2の部分922および第3の部分923)の表面に相当する。
On one surface (first surface P 21 ) of the main surface of the first portion 921, a plurality of first connection terminals 921a connected to some signal lines of each signal line 81 are formed. Will be done. A plurality of first connection terminals 922a connected to the remaining signal lines of each signal line 81 are formed on the first surface P 21 of the second portion 922. The first connection terminals 921a and 922a are connected to signal lines 81 different from each other.
On the first surface P 21 of the third portion 923, a plurality of second connection terminals 923a connected to each electrode (piezoelectric element connection terminal portion 911) formed on the first substrate 91 are formed.
The first surface P 21 corresponds to the surface of the second substrate 92 (first portion 921, second portion 922, and third portion 923).
 第1基板91および第2基板92には、カバーレイ910、920がそれぞれ設けられる。
 カバーレイ910は、第1基板91の圧電素子接続端子部911形成領域以外の表面を覆っている。
 カバーレイ920は、第2基板92の第1の接続端子921a、922a形成領域、第2の接続端子923a形成領域、第1の折り曲げ部924、第2の折り曲げ部925の一部以外の表面を覆っている。
 カバーレイ910、920は、各基板の表面を覆うことによって、基板に形成される配線パターンを保護する。
Coverlays 910 and 920 are provided on the first substrate 91 and the second substrate 92, respectively.
The coverlay 910 covers the surface of the first substrate 91 other than the piezoelectric element connection terminal portion 911 forming region.
The coverlay 920 has a surface other than a part of the first connection terminal 921a and 922a forming region, the second connection terminal 923a forming region, the first bent portion 924, and the second bent portion 925 of the second substrate 92. Covering.
The coverlays 910 and 920 protect the wiring pattern formed on the substrate by covering the surface of each substrate.
 第1の折り曲げ部924は、第1の部分921の裏面と第2の部分922の裏面(ここでは第2表面P22)とが互いに近づく態様に折り曲げられる。第1の折り曲げ部924は、カバーレイ920が設けられていないため、他の部分と比して厚さが薄い。第1の折り曲げ部924は、その厚さの違いによって、第1の部分921や第2の部分922よりも折り曲げやすくなっている。 The first bent portion 924 is bent so that the back surface of the first portion 921 and the back surface of the second portion 922 (here, the second surface P 22 ) are close to each other. Since the coverlay 920 is not provided in the first bent portion 924, the thickness of the first bent portion 924 is thinner than that of the other portions. The first bent portion 924 is easier to bend than the first portion 921 and the second portion 922 due to the difference in the thickness thereof.
 第2の折り曲げ部925は、第1の部分921の表面と第3の部分923の表面(ここでは第1表面P21)とが互いに近づく態様に折り曲げられ得る。第2の折り曲げ部925には、切り込み部925aが形成され、また、その周辺にはスルーホール925bが形成される。切り込み部925aは、例えば、第2の折り曲げ部925の外形の両端に形成される。本実施の形態1において、スルーホール925bは、第2基板92を構成する基材のうち、内部側の基材に形成される、主にシールドを目的としたグラウンドパターンと、第1の接続端子921a等が形成される基材に形成されるグラウンドパターンとを電気的に接続する。第2の折り曲げ部925は、切り込み部925aの形成によって折り曲げ位置を識別できる構成となっている。また、第2の折り曲げ部925では、切り込み部925a及びその間のカバーレイ920が設けられていない部分を除く領域(領域925c)が、他の部分よりも相対的に固くなっており、折り曲げにくい。なお、第2の折り曲げ部925において、部分的に厚さを変える等、折り曲げ位置が最も折り曲げやすくなれば、切り込み部925aを有しない構成としてもよいし、カバーレイ920に覆われた構成としてもよい。 The second bent portion 925 can be bent so that the surface of the first portion 921 and the surface of the third portion 923 (here, the first surface P 21 ) are close to each other. A notch 925a is formed in the second bent portion 925, and a through hole 925b is formed in the periphery thereof. The cut portion 925a is formed at both ends of the outer shape of the second bent portion 925, for example. In the first embodiment, the through hole 925b has a ground pattern formed on the inner substrate of the substrate constituting the second substrate 92 mainly for the purpose of shielding, and the first connection terminal. It is electrically connected to the ground pattern formed on the substrate on which 921a or the like is formed. The second bent portion 925 has a configuration in which the bent position can be identified by forming the cut portion 925a. Further, in the second bent portion 925, the region (region 925c) excluding the cut portion 925a and the portion between which the cover ray 920 is not provided is relatively harder than the other portions, and is difficult to bend. In the second bent portion 925, if the bent position is the easiest to bend, such as by partially changing the thickness, the configuration may not have the notch portion 925a, or the configuration may be covered with the coverlay 920. good.
 続いて、中継基板9と信号線81との接続について説明する。まず、第1の折り曲げ部924が屈曲していない状態、すなわち、第1の部分921と第2の部分922との主面同士が向かい合っていない状態において、各信号線81を対応する第1の接続端子921a、922aにそれぞれ接続する(図6参照:信号線接続ステップ)。信号線81は、例えば半田等の熱処理を伴う接合処理によって第1の接続端子921a、922aにそれぞれ接続される。この際、図6では、第2の折り曲げ部925も屈曲していない状態となっている。 Next, the connection between the relay board 9 and the signal line 81 will be described. First, in a state where the first bent portion 924 is not bent, that is, in a state where the main surfaces of the first portion 921 and the second portion 922 do not face each other, the first signal line 81 corresponds to the first. Connect to connection terminals 921a and 922a, respectively (see FIG. 6: signal line connection step). The signal line 81 is connected to the first connection terminals 921a and 922a, respectively, by a joining process involving heat treatment such as soldering. At this time, in FIG. 6, the second bent portion 925 is also in a non-bent state.
 図7は、本発明の実施の形態1に係る超音波内視鏡の製造時における、基板と信号線との接続を説明する図(信号線接続ステップ1-2)である。第1の接続端子921a、922aに信号線81が接続された状態において、第1の折り曲げ部924を折り曲げて、第2の部分922を矢印R1の方向、すなわち、第1の部分921側に折り返す。第2の部分922を折り返した後に、第1の部分921および第2の部分922の対向する面であって、第1表面P21の反対面である第2表面P22同士を、絶縁性の接着材等によって固着する(絶縁層形成ステップ)。なお、第2表面P22は、第2基板92の裏面に相当する。 FIG. 7 is a diagram (signal line connection step 1-2) illustrating the connection between the substrate and the signal line at the time of manufacturing the ultrasonic endoscope according to the first embodiment of the present invention. With the signal line 81 connected to the first connection terminals 921a and 922a, the first bent portion 924 is bent and the second portion 922 is folded back in the direction of arrow R1, that is, toward the first portion 921. .. After the second portion 922 is folded back, the second surface P 22 which is the opposite surface of the first portion 921 and the second portion 922 and is the opposite surface of the first surface P 21 is insulated from each other. It is fixed by an adhesive or the like (insulation layer forming step). The second surface P 22 corresponds to the back surface of the second substrate 92.
 図8は、本発明の実施の形態1に係る超音波内視鏡の製造時における、基板と信号線との接続を説明する図(信号線接続ステップ1-3)である。図9は、第1の部分921および第2の部分922を、図8に示す矢視A方向からみた平面図である。第1の部分921を第1の折り曲げ部924で折り曲げて、第2基板92の一方と、その反対側とに信号線81を配置する。また、第1の部分921の第2表面P22と第2の部分922の第2表面P22との間には、絶縁層926が設けられる。絶縁層926は、絶縁性の接着材からなり、第1の部分921の第2表面P22と第2の部分922の第2表面P22とを固着するように形成される。このため、第1の部分921と第2の部分922とは、主面間において絶縁された状態となる。 FIG. 8 is a diagram (signal line connection step 1-3) for explaining the connection between the substrate and the signal line at the time of manufacturing the ultrasonic endoscope according to the first embodiment of the present invention. FIG. 9 is a plan view of the first portion 921 and the second portion 922 as viewed from the direction of arrow A shown in FIG. The first portion 921 is bent at the first bent portion 924, and the signal line 81 is arranged on one side of the second substrate 92 and the opposite side thereof. Further, an insulating layer 926 is provided between the second surface P 22 of the first portion 921 and the second surface P 22 of the second portion 922. The insulating layer 926 is made of an insulating adhesive and is formed so as to fix the second surface P 22 of the first portion 921 and the second surface P 22 of the second portion 922. Therefore, the first portion 921 and the second portion 922 are in a state of being insulated between the main surfaces.
 次に、超音波内視鏡2の製造時における、第1基板91と第2基板92との接続について、図10および図11を参照して説明する。図10は、本発明の実施の形態1に係る超音波内視鏡の製造時における、中継基板の第1基板と第2基板との接続を説明する図(信号線接続ステップ1-4)である。第1基板91と第2基板92とは、第3の部分923の第2の接続端子923aを、第1基板91の圧電素子接続端子部911に接合することによって電気的に接続される。第2の接続端子923aは、例えば半田等によって圧電素子接続端子部911に接続される。 Next, the connection between the first substrate 91 and the second substrate 92 at the time of manufacturing the ultrasonic endoscope 2 will be described with reference to FIGS. 10 and 11. FIG. 10 is a diagram (signal line connection step 1-4) for explaining the connection between the first substrate and the second substrate of the relay board at the time of manufacturing the ultrasonic endoscope according to the first embodiment of the present invention. be. The first substrate 91 and the second substrate 92 are electrically connected by joining the second connection terminal 923a of the third portion 923 to the piezoelectric element connection terminal portion 911 of the first substrate 91. The second connection terminal 923a is connected to the piezoelectric element connection terminal portion 911 by, for example, soldering or the like.
 図11は、本発明の実施の形態1に係る超音波内視鏡の製造時における、中継基板の第1基板と第2基板との接続を説明する図(信号線接続ステップ1-5)である。なお、図11に示す第2基板92は、図10に示す第2基板92を裏返したものである。第2の接続端子923aが圧電素子接続端子部911に電気的に接続された状態において、第1基板91の超音波振動子7側の端部を矢印R2の方向に折り曲げるとともに、第2の折り曲げ部925を矢印R3の方向に屈曲させることによって、図3、図4に示す内部構成が得られる。 FIG. 11 is a diagram (signal line connection step 1-5) for explaining the connection between the first substrate and the second substrate of the relay board at the time of manufacturing the ultrasonic endoscope according to the first embodiment of the present invention. be. The second substrate 92 shown in FIG. 11 is the second substrate 92 shown in FIG. 10 turned upside down. In a state where the second connection terminal 923a is electrically connected to the piezoelectric element connection terminal portion 911, the end portion of the first substrate 91 on the ultrasonic transducer 7 side is bent in the direction of arrow R2 and the second bending is performed. By bending the portion 925 in the direction of the arrow R3, the internal configuration shown in FIGS. 3 and 4 can be obtained.
 本実施の形態1に係る先端部211の内部構成(図3参照)は、フレキシブル基板からなる第1基板91および第2基板92が屈曲することによって、省スペース化をはかり、かつ、第2基板92の一方、およびその反対側に、信号線81と接続する第1の接続端子921aを配置することによって、中継基板9の薄型化をはかっている。第2基板92では、基板の表面および裏面に各電極が配置され、信号線81とそれぞれ接続する。 The internal configuration of the tip portion 211 (see FIG. 3) according to the first embodiment is such that the first substrate 91 and the second substrate 92 made of flexible substrates are bent to save space and the second substrate. By arranging the first connection terminal 921a connected to the signal line 81 on one side of the 92 and on the opposite side thereof, the relay board 9 is made thinner. In the second substrate 92, electrodes are arranged on the front surface and the back surface of the substrate and are connected to the signal line 81, respectively.
 以上説明した実施の形態1では、先端部211において、フレキシブル基板からなる第1基板91および第2基板92が屈曲することによって省スペース化をはかっている。さらに、実施の形態1では、第2基板92の第1の折り曲げ部924を折り曲げて、第2基板92の一方に第1の部分921を配置し、その反対側に第2の部分922を配置して、折り曲げ後の第2基板92全体として、第2基板92の両面に信号線81と接続する第1の接続端子921aを配置することによって中継基板9の薄型化をはかっている。本実施の形態1によれば、部材同士(ここでは超音波振動子7、内部超音波信号ケーブル8および中継基板9)を接続するユニットを簡易な構成で小型化することができる。 In the first embodiment described above, the first substrate 91 and the second substrate 92 made of flexible substrates are bent at the tip portion 211 to save space. Further, in the first embodiment, the first bent portion 924 of the second substrate 92 is bent, the first portion 921 is arranged on one side of the second substrate 92, and the second portion 922 is arranged on the opposite side. Then, as the whole of the second board 92 after bending, the relay board 9 is made thinner by arranging the first connection terminals 921a connected to the signal line 81 on both sides of the second board 92. According to the first embodiment, the unit for connecting the members (here, the ultrasonic vibrator 7, the internal ultrasonic signal cable 8 and the relay board 9) can be miniaturized with a simple configuration.
 また、本実施の形態1では、信号線81を第1の接続端子921a、922aに接続する際、第1の折り曲げ部924を屈曲させずに広げた状態において、各信号線81を対応する第1の接続端子921a、922aにそれぞれ接合する。第1の折り曲げ部924を広げた状態では、第1の接続端子921a、922aが対向せず、各第1の接続端子間の距離が確保されているため、接合済みの信号線81が、他の信号線81の接合時に生じた熱によって断線することを抑制できる。 Further, in the first embodiment, when the signal lines 81 are connected to the first connection terminals 921a and 922a, the first bent portions 924 are expanded without being bent, and the respective signal lines 81 are corresponding to each other. It is joined to the connection terminals 921a and 922a of No. 1, respectively. In the state where the first bent portion 924 is expanded, the first connection terminals 921a and 922a do not face each other, and the distance between the first connection terminals is secured. It is possible to suppress disconnection due to heat generated at the time of joining the signal line 81 of.
(実施の形態1の変形例)
 次に、実施の形態1の変形例について、図12を参照して説明する。図12は、本発明の実施の形態1の変形例に係る超音波内視鏡の第2基板92Aの構成を説明する平面図である。図12は、図8に示す矢視A方向からみた平面図に対応する。本変形例に係る内視鏡システムは、上述した内視鏡システム1の中継基板の構成を変えた以外は、同じ構成である。本変形例では、上述した実施の形態1の中継基板9において、第2基板92の構成が異なる。以下、上述した実施の形態1とは異なる構成について説明する。
(Modified Example of Embodiment 1)
Next, a modified example of the first embodiment will be described with reference to FIG. FIG. 12 is a plan view illustrating the configuration of the second substrate 92A of the ultrasonic endoscope according to the modified example of the first embodiment of the present invention. FIG. 12 corresponds to the plan view seen from the arrow A direction shown in FIG. The endoscope system according to this modification has the same configuration except that the configuration of the relay board of the endoscope system 1 described above is changed. In this modification, the configuration of the second substrate 92 is different in the relay board 9 of the first embodiment described above. Hereinafter, a configuration different from the above-described first embodiment will be described.
 本変形例に係る第2基板92は、ポリイミドを用いて形成される基材に配線パターンを設けてなる。さらに、第1の接続端子(第1の接続端子921a、922a)が配設される側と反対側(第2表面P22)には、グラウンドパターン927が設けられる。絶縁層926は、グラウンドパターン927を経て第2の部分922の第2表面P22を第1の部分921の第2表面P22に固着する。グラウンドパターン927は、図示しない配線を経て外部のグラウンドに接続される。 The second substrate 92 according to this modification is provided with a wiring pattern on a substrate formed by using polyimide. Further, a ground pattern 927 is provided on the side (second surface P 22 ) opposite to the side where the first connection terminals ( first connection terminals 921a and 922a) are arranged. The insulating layer 926 fixes the second surface P 22 of the second portion 922 to the second surface P 22 of the first portion 921 via the ground pattern 927. The ground pattern 927 is connected to an external ground via wiring (not shown).
 以上説明した変形例においても、実施の形態1と同様に、部材同士を接続するユニットを簡易な構成で小型化することができる。 Also in the modification described above, the unit for connecting the members can be miniaturized with a simple configuration as in the first embodiment.
(実施の形態2)
 図13および図14は、本発明の実施の形態2に係る超音波内視鏡における先端部211の内部構成を模式的に示す斜視図である。本実施の形態2に係る内視鏡システムは、上述した内視鏡システム1の中継基板を変えた以外は、同じ構成である。本実施の形態2では、上述した実施の形態1の中継基板9に代えて中継基板9Aを備える。以下、上述した実施の形態1とは異なる構成(中継基板9A)について説明する。
(Embodiment 2)
13 and 14 are perspective views schematically showing the internal configuration of the tip portion 211 in the ultrasonic endoscope according to the second embodiment of the present invention. The endoscope system according to the second embodiment has the same configuration except that the relay board of the endoscope system 1 described above is changed. In the second embodiment, the relay board 9A is provided in place of the relay board 9 of the first embodiment described above. Hereinafter, a configuration (relay board 9A) different from that of the first embodiment described above will be described.
 中継基板9Aは、超音波振動子7に接続し、該超音波振動子7から延出する第1基板91Aと、一端が第1基板91に接続され、他端が超音波ケーブルに8に接続する第2基板92Aとを有する。第1基板91Aおよび第2基板92Aは、フレキシブル基板(FPC)を用いて構成され、外部からの荷重に応じて変形可能である。 The relay board 9A is connected to the ultrasonic vibrator 7, and the first board 91A extending from the ultrasonic vibrator 7 and one end connected to the first board 91 and the other end connected to the ultrasonic cable 8. It has a second substrate 92A to be used. The first substrate 91A and the second substrate 92A are configured by using a flexible substrate (FPC) and can be deformed according to an external load.
 第1基板91Aおよび第2基板92Aは、ポリイミドを用いて形成される基材に配線パターンを設けてなる。また、第1基板91Aの主面のうちの一方の面(第1表面P31)には、第2基板92の対応する電極と接続する複数の電極(図15に示す圧電素子接続端子部913a、914a)が設けられる。 The first substrate 91A and the second substrate 92A are formed by providing a wiring pattern on a substrate formed by using polyimide. Further, on one surface (first surface P 31 ) of the main surface of the first substrate 91A, a plurality of electrodes (piezoelectric element connection terminal portion 913a shown in FIG. 15) connected to the corresponding electrodes of the second substrate 92 are connected. , 914a) are provided.
 次に、超音波内視鏡2の製造時における、中継基板9と信号線81との接続について、図15~図17を参照して説明する。図15は、本発明の実施の形態2に係る超音波内視鏡の製造時における、基板と信号線との接続を説明する図(信号線接続ステップ2-1)である。なお、以下の図15~図17では、信号線81や基板上の電極を省略して図示している。 Next, the connection between the relay board 9 and the signal line 81 at the time of manufacturing the ultrasonic endoscope 2 will be described with reference to FIGS. 15 to 17. FIG. 15 is a diagram (signal line connection step 2-1) for explaining the connection between the substrate and the signal line at the time of manufacturing the ultrasonic endoscope according to the second embodiment of the present invention. In the following FIGS. 15 to 17, the signal line 81 and the electrodes on the substrate are omitted.
 まず、第1基板91Aおよび第2基板92Aについて説明する。
 第1基板91Aは、超音波振動子7の各圧電素子と電気的に接続し、該超音波振動子7から延出する本体部912と、本体部912から延びる二つの延在部(第1延在部913および第2延在部914)とを備える。第1延在部913および第2延在部914の第1表面P31側には、第2基板92Aの対応する接続端子と接続する電極が配置された複数の圧電素子接続端子部913a、914aがそれぞれ形成される。
First, the first substrate 91A and the second substrate 92A will be described.
The first substrate 91A is electrically connected to each piezoelectric element of the ultrasonic vibrator 7, and has a main body portion 912 extending from the ultrasonic vibrator 7 and two extending portions (first) extending from the main body portion 912. It includes an extending portion 913 and a second extending portion 914). A plurality of piezoelectric element connection terminal portions 913a, 914a in which electrodes connecting to the corresponding connection terminals of the second substrate 92A are arranged on the first surface P 31 side of the first extending portion 913 and the second extending portion 914. Are formed respectively.
 第2基板92Aは、上述した第1の部分921、第2の部分922および第1の折り曲げ部924を有する。また、第2基板92Aは、第1の部分921から、第2の部分922が延びる方向と直交する方向に延び、第1基板91Aと接続する第3の部分928と、第2の部分922から、第1の部分921が延びる方向と直交する方向に延び、第1基板91Aと接続する第4の部分(第4の接続端子部分)929とを有する。また、第2基板92Aは、第1の部分921と第3の部分928とを接続する第2の折り曲げ部931と、第2の部分922と第4の部分929とを接続する第3の折り曲げ部932とを有する。第1の部分921、第2の部分922および第1の折り曲げ部924は、実施の形態1と同様である。 The second substrate 92A has the above-mentioned first portion 921, second portion 922, and first bent portion 924. Further, the second substrate 92A extends from the first portion 921 in a direction orthogonal to the direction in which the second portion 922 extends, and is connected to the first substrate 91A from the third portion 928 and the second portion 922. , A fourth portion (fourth connection terminal portion) 929 extending in a direction orthogonal to the extending direction of the first portion 921 and connecting to the first substrate 91A. Further, the second substrate 92A has a second bent portion 931 connecting the first portion 921 and the third portion 928, and a third bent portion connecting the second portion 922 and the fourth portion 929. It has a part 932. The first portion 921, the second portion 922, and the first bent portion 924 are the same as those in the first embodiment.
 第1の部分921の主面のうちの一方の面(第1表面P41)には、各信号線81とそれぞれ接続する複数の第1の接続端子921aが形成される。第2の部分922の第1表面P41には、各信号線81とそれぞれ接続する複数の第1の接続端子922aが形成される。
 第3の部分928の第1表面P41には、第1基板91Aに形成される各圧電素子接続端子部913aとそれぞれ接続する複数の第2の接続端子928aが形成される。第4の部分929の第1表面P41には、第1基板91Aに形成される各圧電素子接続端子部914aとそれぞれ接続する複数の第2の接続端子929aが形成される。
A plurality of first connection terminals 921a connected to each signal line 81 are formed on one surface (first surface P 41 ) of the main surfaces of the first portion 921. A plurality of first connection terminals 922a connected to each signal line 81 are formed on the first surface P 41 of the second portion 922.
On the first surface P 41 of the third portion 928, a plurality of second connection terminals 928a connected to each piezoelectric element connection terminal portion 913a formed on the first substrate 91A are formed. On the first surface P 41 of the fourth portion 929, a plurality of second connection terminals 929a connected to each piezoelectric element connection terminal portion 914a formed on the first substrate 91A are formed.
 第2の折り曲げ部931は、第1の部分921の表面と第3の部分928の表面(ここでは第1表面P41)とが互いに近づく態様に折り曲げられ得る。また、第3の折り曲げ部932は、第2の部分922の表面と第4の部分929の表面とが互いに近づく態様に折り曲げられ得る。第2の折り曲げ部931、第3の折り曲げ部932は、例えば、カバーレイ920Aを必要しない配線レイアウトとし、部分的に薄くして、折り曲げ位置を構成してもよい。また、各折り曲げ部に切り込み部を形成して、折り曲げ位置を構成してもよい。 The second bent portion 931 can be bent so that the surface of the first portion 921 and the surface of the third portion 928 (here, the first surface P 41 ) are close to each other. Further, the third bent portion 932 can be bent so that the surface of the second portion 922 and the surface of the fourth portion 929 are close to each other. The second bent portion 931 and the third bent portion 932 may have a wiring layout that does not require the coverlay 920A, and may be partially thinned to form a bent position. Further, a cut portion may be formed in each bent portion to form a bent position.
 第1基板91Aおよび第2基板92Aには、カバーレイ910A、920Aがそれぞれ設けられる。
 カバーレイ910Aは、第1基板91Aの圧電素子接続端子部913a、914a形成領域以外の表面を覆っている。
 カバーレイ920Aは、第2基板92Aの第1の接続端子921a、922a形成領域、第2の接続端子928a、929a形成領域、第1の折り曲げ部924以外の表面を覆っている。
 カバーレイ910A、920Aは、各基板の表面を覆うことによって、基板に形成される配線パターンを保護する。
Coverlays 910A and 920A are provided on the first substrate 91A and the second substrate 92A, respectively.
The coverlay 910A covers the surface of the first substrate 91A other than the piezoelectric element connection terminal portions 913a and 914a forming regions.
The coverlay 920A covers the surface of the second substrate 92A other than the first connection terminal 921a and 922a forming region, the second connection terminal 928a and 929a forming region, and the first bent portion 924.
The coverlays 910A and 920A protect the wiring pattern formed on the substrate by covering the surface of each substrate.
 続いて、中継基板9Aと信号線81との接続について説明する。まず、第1の折り曲げ部924が屈曲していない状態、すなわち、第1の部分921の主面が屈曲していない状態において、各信号線81を対応する第1の接続端子921aにそれぞれ接続する(図13参照:信号線接続ステップ)。信号線81は、半田等の熱処理を伴う接合処理によって第1の接続端子921aに接続される。 Next, the connection between the relay board 9A and the signal line 81 will be described. First, in a state where the first bent portion 924 is not bent, that is, in a state where the main surface of the first portion 921 is not bent, each signal line 81 is connected to the corresponding first connection terminal 921a. (See FIG. 13: signal line connection step). The signal line 81 is connected to the first connection terminal 921a by a joining process involving heat treatment such as soldering.
 図16は、本発明の実施の形態2に係る超音波内視鏡の製造時における、基板と信号線との接続を説明する図(信号線接続ステップ2-2)である。第1の接続端子921aに信号線81が接続された状態において、第1の折り曲げ部924を矢印R4の方向に折り曲げて、第2の部分922を第1の部分921側に折り返す。この際、第4の部分929が第3の部分928側に折り返される。折り返し後、第1の部分921および第2の部分922の対向する面であって、第1表面P41の反対面である第2表面P42同士を、絶縁性の接着材等によって固着する(絶縁層形成ステップ)。 FIG. 16 is a diagram (signal line connection step 2-2) for explaining the connection between the substrate and the signal line at the time of manufacturing the ultrasonic endoscope according to the second embodiment of the present invention. With the signal line 81 connected to the first connection terminal 921a, the first bent portion 924 is bent in the direction of arrow R4, and the second portion 922 is folded back toward the first portion 921. At this time, the fourth portion 929 is folded back toward the third portion 928. After folding back, the second surface P 42 , which is the opposite surface of the first portion 921 and the second portion 922 and is the opposite surface of the first surface P 41 , is fixed to each other by an insulating adhesive or the like ( Insulation layer formation step).
 図17は、本発明の実施の形態2に係る超音波内視鏡の製造時における、基板と信号線との接続を説明する図(信号線接続ステップ2-3)である。図18は、第1の部分921および第2の部分922を、図17に示す矢視B方向からみた平面図である第1の部分921を第1の折り曲げ部924で折り曲げることによって、第2基板92Aの一方と、その反対側とに信号線81が接続された状態となる。また、第1の部分921の第2表面P42と第2の部分922の第2表面P42との間には、絶縁性の接着材により形成されてなる絶縁層926が設けられる(絶縁層形成ステップ)。このため、第1の部分921と第2の部分922とは、主面間において絶縁された状態となる。この状態において、第3の部分928および第4の部分929は、それぞれ第2の折り曲げ部931、第3の折り曲げ部932を基点に互いに反対側に屈曲される状態にある。 FIG. 17 is a diagram (signal line connection step 2-3) for explaining the connection between the substrate and the signal line at the time of manufacturing the ultrasonic endoscope according to the second embodiment of the present invention. FIG. 18 shows a second portion by bending the first portion 921 and the second portion 922 at the first bent portion 924, which is a plan view of the first portion 921 and the second portion 922 as viewed from the direction of arrow B shown in FIG. The signal line 81 is connected to one of the boards 92A and the other side of the board 92A. Further, an insulating layer 926 formed of an insulating adhesive is provided between the second surface P 42 of the first portion 921 and the second surface P 42 of the second portion 922 (insulating layer). Formation step). Therefore, the first portion 921 and the second portion 922 are in a state of being insulated between the main surfaces. In this state, the third portion 928 and the fourth portion 929 are in a state of being bent opposite to each other with the second bent portion 931 and the third bent portion 932 as the base points, respectively.
 次に、超音波内視鏡2の製造時における、第1基板91Aと第2基板92Aとの接続について、図19および図20を参照して説明する。図19は、本発明の実施の形態2に係る超音波内視鏡の製造時における、中継基板の第1基板と第2基板との接続を説明する図(信号線接続ステップ2-4)である。図19および図20において、超音波振動子7の第1基板91Aが接続される面を面S、第3の部分928および第4の部分929の表面を通過する仮想面を仮想面Lとする。第1基板91Aと第2基板92Aとは、第3の部分928の第2の接続端子928a、第4の部分929の第2の接続端子929aを、第1基板91Aの圧電素子接続端子部913a、914aに接合することによって接続される。第2の接続端子928a、929aは、例えば半田等によって圧電素子接続端子部913a、914aに接続される。この際、第3の部分928および第4の部分929が、それぞれ第2の折り曲げ部931、第3の折り曲げ部932を基点に互いに反対側に屈曲された状態で第1基板91Aに接合される。第1基板91Aと第2基板92Aとを接続した後、第1基板91Aが、矢印R5の方向に折り曲げられる。 Next, the connection between the first substrate 91A and the second substrate 92A at the time of manufacturing the ultrasonic endoscope 2 will be described with reference to FIGS. 19 and 20. FIG. 19 is a diagram (signal line connection step 2-4) for explaining the connection between the first substrate and the second substrate of the relay board at the time of manufacturing the ultrasonic endoscope according to the second embodiment of the present invention. be. In FIGS. 19 and 20, the surface to which the first substrate 91A of the ultrasonic transducer 7 is connected is defined as the surface S, and the virtual surface passing through the surfaces of the third portion 928 and the fourth portion 929 is defined as the virtual surface L. .. The first substrate 91A and the second substrate 92A have a second connection terminal 928a of the third portion 928, a second connection terminal 929a of the fourth portion 929, and a piezoelectric element connection terminal portion 913a of the first substrate 91A. , 914a are connected by joining. The second connection terminals 928a and 929a are connected to the piezoelectric element connection terminal portions 913a and 914a by, for example, soldering or the like. At this time, the third portion 928 and the fourth portion 929 are joined to the first substrate 91A in a state of being bent to the opposite sides from the second bent portion 931 and the third bent portion 932, respectively. .. After connecting the first substrate 91A and the second substrate 92A, the first substrate 91A is bent in the direction of the arrow R5.
 図20は、本発明の実施の形態2に係る超音波内視鏡の製造時における、中継基板の第1基板と第2基板との接続を説明する図(信号線接続ステップ2-5)である。第2の接続端子923aが圧電素子接続端子部911に接続された状態において、第1基板91Aの超音波振動子7側の端部を矢印R6の方向に折り曲げることによって、図13、図14に示す内部構成が得られる。図13、図14に示す内部構成では、面Sと仮想面Lとが平行になっている。 FIG. 20 is a diagram (signal line connection step 2-5) illustrating the connection between the first substrate and the second substrate of the relay board at the time of manufacturing the ultrasonic endoscope according to the second embodiment of the present invention. be. In a state where the second connection terminal 923a is connected to the piezoelectric element connection terminal portion 911, the end portion of the first substrate 91A on the ultrasonic transducer 7 side is bent in the direction of the arrow R6 to be shown in FIGS. 13 and 14. The internal configuration shown is obtained. In the internal configuration shown in FIGS. 13 and 14, the surface S and the virtual surface L are parallel to each other.
 ここで、第1の折り曲げ部924の形成範囲d1について説明する。この形成範囲d1は、第3の部分928と第4の部分929との間の距離に相当する。第1の折り曲げ部924は、屈曲した際に、基板の剛性によって湾曲した形状をなす(例えば、図15参照)。形成範囲d1は、例えば、第1の折り曲げ部924が屈曲した際に、該第1の折り曲げ部924が、先端部211の内部に設けられる部材と干渉しない長さに設定される。 Here, the formation range d 1 of the first bent portion 924 will be described. This formation range d 1 corresponds to the distance between the third portion 928 and the fourth portion 929. The first bent portion 924 has a curved shape due to the rigidity of the substrate when bent (see, for example, FIG. 15). The formation range d 1 is set to, for example, a length at which the first bent portion 924 does not interfere with the member provided inside the tip portion 211 when the first bent portion 924 is bent.
 以上説明した実施の形態2では、先端部211において、フレキシブル基板からなる第1基板91Aおよび第2基板92Aが屈曲することによって省スペース化をはかり、かつ、第2基板92Aの第1の折り曲げ部924を折り曲げて、第2基板92Aの一方に第1の部分921を配置し、その反対側に第2の部分922を配置して、折り曲げ後の第2基板92A全体として、第2基板92Aの両面に信号線81と接続する第1の接続端子921aを配置することによって中継基板9Aの薄型化をはかっている。本実施の形態2によれば、部材同士(ここでは超音波振動子7、内部超音波信号ケーブル8および中継基板9A)を接続するユニットを簡易な構成で小型化することができる。 In the second embodiment described above, in the tip portion 211, the first substrate 91A and the second substrate 92A made of a flexible substrate are bent to save space, and the first bent portion of the second substrate 92A is bent. The 924 is bent and the first portion 921 is arranged on one side of the second substrate 92A, and the second portion 922 is arranged on the opposite side thereof. By arranging the first connection terminal 921a connected to the signal line 81 on both sides, the relay board 9A is made thinner. According to the second embodiment, the unit for connecting the members (here, the ultrasonic oscillator 7, the internal ultrasonic signal cable 8 and the relay board 9A) can be miniaturized with a simple configuration.
 また、本実施の形態2では、信号線81を第1の接続端子921a、922aに接続する際、第1の折り曲げ部924を屈曲させずに広げた状態で各信号線81を対応する第1の接続端子921a、922aにそれぞれ接合する。第1の折り曲げ部924を広げた状態では、第1の接続端子921a、922aが対向せず、各第1の接続端子間の距離が確保されているため、接合済みの信号線81が、他の信号線81の接合時に生じた熱によって断線することを抑制できる。 Further, in the second embodiment, when the signal lines 81 are connected to the first connection terminals 921a and 922a, each signal line 81 is corresponded to the first in a state where the first bent portion 924 is expanded without being bent. It is joined to the connection terminals 921a and 922a, respectively. In the state where the first bent portion 924 is expanded, the first connection terminals 921a and 922a do not face each other, and the distance between the first connection terminals is secured. It is possible to suppress disconnection due to heat generated at the time of joining the signal line 81 of.
(実施の形態2の変形例)
 次に、実施の形態2の変形例について、図21および図22を参照して説明する。本変形例に係る内視鏡システムは、上述した内視鏡システム1の中継基板の構成を変えた以外は、同じ構成である。本変形例では、上述した実施の形態2の中継基板9Aにおいて、第1の接続端子921aに信号線81を接合後、第1の折り曲げ部924を切除する。以下、上述した実施の形態1とは異なる構成について説明する。
(Modified Example of Embodiment 2)
Next, a modification of the second embodiment will be described with reference to FIGS. 21 and 22. The endoscope system according to this modification has the same configuration except that the configuration of the relay board of the endoscope system 1 described above is changed. In this modification, in the relay board 9A of the second embodiment described above, the signal line 81 is joined to the first connection terminal 921a, and then the first bent portion 924 is cut off. Hereinafter, a configuration different from the above-described first embodiment will be described.
 図21は、本発明の実施の形態2の変形例に係る超音波内視鏡の製造時における、基板と信号線との接続を説明する図(信号線接続ステップ3-1)である。本変形例では、第1の接続端子921aに信号線81が接続された状態(図16参照)において、第1の折り曲げ部924を切除する(除去ステップ)。第1の折り曲げ部924の切除後、第2の部分922を矢印R7の方向に向きを変え、分断された第1の部分921および第2の部分922の第2表面P42同士を絶縁層926(図18参照)によって固着する。なお、絶縁層926によって第1の部分921に第2の部分922を固着後、第1の折り曲げ部924を切除してもよい。 FIG. 21 is a diagram (signal line connection step 3-1) for explaining the connection between the substrate and the signal line at the time of manufacturing the ultrasonic endoscope according to the modified example of the second embodiment of the present invention. In this modification, the first bent portion 924 is cut off (removal step) in a state where the signal line 81 is connected to the first connection terminal 921a (see FIG. 16). After excision of the first bent portion 924, the second portion 922 is turned in the direction of the arrow R7, and the second surface P 42 of the divided first portion 921 and the second portion 922 is separated from each other by the insulating layer 926. (See FIG. 18) to fix. The second portion 922 may be fixed to the first portion 921 by the insulating layer 926, and then the first bent portion 924 may be cut off.
 図22は、本発明の実施の形態2の変形例に係る超音波内視鏡の製造時における、基板と信号線との接続を説明する図(信号線接続ステップ3-2)である。分断された第1の部分921の第2表面P4と第2の部分922の第2表面P42とを固着することによって、第2基板92Aの一方に第1の部分921が露出し、その反対側に第2の部分922が露出し、各第1の接続端子に信号線81が接続された状態となる。この状態において、第3の部分928および第4の部分929は、それぞれ第2の折り曲げ部931、第3の折り曲げ部932を基点に互いに反対側に屈曲される状態にある。 FIG. 22 is a diagram (signal line connection step 3-2) for explaining the connection between the substrate and the signal line at the time of manufacturing the ultrasonic endoscope according to the modified example of the second embodiment of the present invention. By fixing the second surface P 4 of the divided first portion 921 and the second surface P 42 of the second portion 922, the first portion 921 is exposed on one of the second substrate 92A. The second portion 922 is exposed on the opposite side, and the signal line 81 is connected to each first connection terminal. In this state, the third portion 928 and the fourth portion 929 are in a state of being bent opposite to each other with the second bent portion 931 and the third bent portion 932 as the base points, respectively.
 その後は、実施の形態2と同様にして、第2基板92Aが、第1基板91Aに接続される。本変形例においても、上述した実施の形態2と同様の効果を得ることができる。また、本変形例では、第2基板92Aとして、第1の折り曲げ部924が湾曲した状態で存在しないため、中継基板9Aをさらに小型化することができる。 After that, the second substrate 92A is connected to the first substrate 91A in the same manner as in the second embodiment. Also in this modification, the same effect as that of the second embodiment described above can be obtained. Further, in this modification, since the first bent portion 924 does not exist as the second substrate 92A in a curved state, the relay board 9A can be further miniaturized.
 なお、上述した実施の形態1に上述した変形例を適用して、第2基板92の第1の折り曲げ部924を切除する構成とすることができる。 It should be noted that, by applying the above-mentioned modification to the above-mentioned first embodiment, the first bent portion 924 of the second substrate 92 can be cut off.
 ここまで、本発明を実施するための形態を説明してきたが、本発明は上述した実施の形態および変形例によってのみ限定されるべきものではない。本発明は、以上説明した実施の形態および変形例には限定されず、特許請求の範囲に記載した技術的思想を逸脱しない範囲内において、様々な実施の形態を含みうるものである。また、実施の形態および変形例の構成を適宜組み合わせてもよい。 Although the embodiments for carrying out the present invention have been described so far, the present invention should not be limited only to the above-described embodiments and modifications. The present invention is not limited to the embodiments and modifications described above, and may include various embodiments within the scope of the technical ideas described in the claims. Further, the configurations of the embodiments and the modifications may be appropriately combined.
 なお、上述した実施の形態1、2では、中継基板が第1基板および第2基板からなる構成を例に説明したが、第1基板と第2基板とを一体化した一枚の基板で構成されるものとしてもよい。 In the above-described first and second embodiments, the configuration in which the relay board is composed of the first substrate and the second substrate has been described as an example, but the relay board is composed of a single substrate in which the first substrate and the second substrate are integrated. It may be done.
 また、上述した実施の形態1、2では、中継基板が超音波振動子7に接続する構成を例に説明したが、超音波振動子とは異なる素子に接続する構成としてもよい。図23は、本発明の他の実施の形態に係る超音波内視鏡における先端部の内部構成を模式的に示す図である。例えば、中継基板9を、撮像素子10と、複数の信号線からなり、撮像素子10が生成した電気信号を伝送するケーブル(内部超音波信号ケーブル8)との間の信号伝送を中継する構成としても、上述した効果を得ることができる。この際、中継基板9と撮像素子10とは、例えば、ワイヤーやフレキシブル基板等からなる伝送部材12によって電気的に接続される。 Further, in the above-described first and second embodiments, the configuration in which the relay board is connected to the ultrasonic vibrator 7 has been described as an example, but the configuration may be such that the relay board is connected to an element different from the ultrasonic vibrator. FIG. 23 is a diagram schematically showing an internal configuration of a tip portion in an ultrasonic endoscope according to another embodiment of the present invention. For example, the relay board 9 is configured to relay signal transmission between the image pickup element 10 and a cable (internal ultrasonic signal cable 8) which is composed of a plurality of signal lines and transmits an electric signal generated by the image pickup element 10. Also, the above-mentioned effects can be obtained. At this time, the relay board 9 and the image pickup device 10 are electrically connected by, for example, a transmission member 12 made of a wire, a flexible board, or the like.
 また、上述した実施の形態1、2では、超音波を出射するとともに、外部から入射した超音波をエコー信号に変換するものとして圧電素子を例に挙げて説明したが、これに限らず、MEMS(Micro Electro Mechanical Systems)を利用して製造した素子、例えばC-MUT(Capacitive Micromachined Ultrasonic Transducers)やP-MUT(Piezoelectric Micromachined Ultrasonic Transducers)であってもよい。 Further, in the above-described first and second embodiments, a piezoelectric element has been described as an example for emitting ultrasonic waves and converting ultrasonic waves incident from the outside into echo signals, but the present invention is not limited to MEMS. Elements manufactured using (Micro Electro Mechanical Systems), for example, C-MUT (Capacitive Micromachined Ultrasonic Transducers) or P-MUT (Piezoelectric Micromachined Ultrasonic Transducers) may be used.
 また、超音波内視鏡として、光学系がなく、振動子を機械的に回転させ走査する細径の超音波プローブに適用してもよい。超音波プローブは、通常、胆道、胆管、膵管、気管、気管支、尿道、尿管へ挿入され、その周囲臓器(膵臓、肺、前立腺、膀胱、リンパ節等)を観察する際に用いられる。 Further, as an ultrasonic endoscope, it may be applied to a small-diameter ultrasonic probe that does not have an optical system and mechanically rotates and scans an oscillator. Ultrasound probes are usually inserted into the biliary tract, bile duct, pancreatic duct, trachea, bronchi, urethra, ureter and used to observe surrounding organs (pancreas, lung, prostate, bladder, lymph nodes, etc.).
 また、超音波振動子は、リニア振動子でもラジアル振動子でもコンベックス振動子でも構わない。超音波振動子がリニア振動子である場合、その走査領域は矩形(長方形、正方形)をなし、超音波振動子がラジアル振動子やコンベックス振動子である場合、その走査領域は扇形や円環状をなす。また、超音波内視鏡は、超音波振動子をメカ的に走査させるものであってもよいし、超音波振動子として複数の素子をアレイ状に設け、送受信にかかわる素子を電子的に切り替えたり、各素子の送受信に遅延をかけたりすることで、電子的に走査させるものであってもよい。 The ultrasonic oscillator may be a linear oscillator, a radial oscillator, or a convex oscillator. When the ultrasonic oscillator is a linear oscillator, its scanning area is rectangular (rectangular, square), and when the ultrasonic oscillator is a radial oscillator or convex oscillator, its scanning area is fan-shaped or annular. Oscillator. Further, the ultrasonic endoscope may be one that mechanically scans the ultrasonic vibrator, or a plurality of elements are provided in an array as the ultrasonic vibrator, and the elements involved in transmission / reception are electronically switched. Alternatively, it may be electronically scanned by delaying the transmission and reception of each element.
 また、超音波内視鏡として、被検体の体表から超音波を照射する体外式超音波プローブを適用してもよい。体外式超音波プローブは、通常、腹部臓器(肝臓、胆嚢、膀胱)、乳房(特に乳腺)、甲状腺を観察する際に用いられる。 Further, as an ultrasonic endoscope, an extracorporeal ultrasonic probe that irradiates ultrasonic waves from the body surface of the subject may be applied. Extracorporeal ultrasound probes are typically used to observe abdominal organs (liver, gallbladder, bladder), breasts (particularly the mammary glands), and thyroid glands.
 なお、上述した実施の形態1、2では、超音波振動子を先端に備えた超音波内視鏡を例に説明したが、超音波振動子を有しない内視鏡、例えば、内視鏡モジュール215のみを先端に備えた内視鏡においても適用することが可能である。内視鏡の場合、撮像素子に接続する中継基板と、中継基板からコネクタまで延びるケーブルとを備えた構成において、上述した実施の形態1、2の構成を適用することが可能である。 In the above-described first and second embodiments, an ultrasonic endoscope provided with an ultrasonic transducer at the tip has been described as an example, but an endoscope having no ultrasonic transducer, for example, an endoscope module It can also be applied to an endoscope equipped with only 215 at the tip. In the case of an endoscope, it is possible to apply the configurations of the above-described first and second embodiments in a configuration including a relay board connected to the image pickup device and a cable extending from the relay board to the connector.
 また、上述した実施の形態1、2では、挿入部21が可撓管部213を備えている超音波内視鏡を例に説明したが、可撓管部213に代えて硬質の管部を有する挿入部を備える内視鏡、すなわち硬性鏡であっても適用することが可能である。 Further, in the above-described first and second embodiments, the ultrasonic endoscope in which the insertion portion 21 is provided with the flexible tube portion 213 has been described as an example, but a hard tube portion is used instead of the flexible tube portion 213. It is possible to apply even an endoscope having an insertion portion, that is, a rigid endoscope.
 以上、本発明に係る信号伝送配線接続ユニット、内視鏡、信号伝送配線接続ユニットの製造方法および超音波振動子モジュールは、素子ユニットの部材同士の接続を簡易な構成で小型化するのに有用である。 As described above, the method for manufacturing the signal transmission wiring connection unit, the endoscope, the signal transmission wiring connection unit, and the ultrasonic vibrator module according to the present invention are useful for miniaturizing the connection between the members of the element unit with a simple configuration. Is.
 1 内視鏡システム
 2 超音波内視鏡
 3 超音波観測装置
 4 内視鏡観察装置
 5 表示装置
 6 光源装置
 7 超音波振動子
 8 内部超音波信号ケーブル
 9、9A 中継基板
 10 撮像素子
 21 挿入部
 22 操作部
 23 ユニバーサルコード
 24 コネクタ
 31 外部超音波信号ケーブル
 41 ビデオケーブル
 61 光ファイバケーブル
 211 先端部
 212 湾曲部
 213 可撓管部
 214 超音波振動子モジュール
 215 内視鏡モジュール
 91、91A 第1基板
 92、92A 第2基板
 911、913a、914a 圧電素子接続端子部
 912 本体部
 913 第1延在部
 914 第2延在部
 921 第1の部分(第1の接続端子部分)
 921a、922a 第1の接続端子
 922 第2の部分(第2の接続端子部分)
 923、928 第3の部分(第3の接続端子部分)
 923a、928a、929a 第2の接続端子
 924 第1の折り曲げ部
 925、931 第2の折り曲げ部
 926 絶縁層
 927 グラウンドパターン
 929 第4の部分(第4の接続端子部分)
 932 第3の折り曲げ部
1 Endoscope system 2 Ultrasonic endoscope 3 Ultrasonic observation device 4 Endoscope observation device 5 Display device 6 Light source device 7 Ultrasonic oscillator 8 Internal ultrasonic signal cable 9, 9A Relay board 10 Imaging element 21 Insertion part 22 Operation part 23 Universal cord 24 Connector 31 External ultrasonic signal cable 41 Video cable 61 Optical fiber cable 211 Tip part 212 Curved part 213 Flexible tube part 214 Ultrasonic oscillator module 215 Endoscope module 91, 91A 1st board 92 , 92A 2nd board 911, 913a, 914a Hydraulic element connection terminal part 912 Main body part 913 1st extension part 914 2nd extension part 921 1st part (1st connection terminal part)
921a, 922a First connection terminal 922 Second part (second connection terminal part)
923, 928 Third part (third connection terminal part)
923a, 928a, 929a Second connection terminal 924 First bending part 925, 931 Second bending part 926 Insulation layer 927 Ground pattern 929 Fourth part (fourth connection terminal part)
932 Third bent part

Claims (17)

  1.  画像データを生成するための素子からの電気信号を出力する接続端子である電極が配置された第1の接続端子部を有する第1基板と、
     前記電気信号を伝送する複数の信号線を有するケーブルと、
     前記複数の信号線とそれぞれ接続する二つの第1の接続端子と、前記第1基板と電気的に接続する第2の接続端子と、前記二つの第1の接続端子の間に設けられる第1の折り曲げ部と、前記第1の接続端子と前記第2の接続端子との間に設けられる第2の折り曲げ部と、を有する第2基板と、
     前記第1および第2の折り曲げ部を折り曲げた状態において対向する前記第2基板の面の間に設けられる絶縁層と、
     を備える信号伝送配線接続ユニット。
    A first substrate having a first connection terminal portion in which an electrode, which is a connection terminal for outputting an electric signal from an element for generating image data, is arranged, and a first substrate.
    A cable having a plurality of signal lines for transmitting the electric signal,
    The first connection terminal provided between the two first connection terminals connected to the plurality of signal lines, the second connection terminal electrically connected to the first board, and the two first connection terminals. A second substrate having a bent portion of the above and a second bent portion provided between the first connection terminal and the second connection terminal.
    An insulating layer provided between the surfaces of the second substrate facing each other in a state where the first and second bent portions are bent, and
    A signal transmission wiring connection unit.
  2.  前記第2基板は、
     表面及び裏面を有するとともに、
     前記複数の信号線のうちの一部の信号線と接続する第1の接続端子が表面に配列された第1の部分と、
     前記複数の信号線のうちの残りの信号線と接続する第1の接続端子が表面に配列された第2の部分と、
     を有する請求項1に記載の信号伝送配線接続ユニット。
    The second substrate is
    It has a front surface and a back surface, and
    A first portion in which a first connection terminal for connecting to a part of the plurality of signal lines is arranged on the surface, and
    A second portion in which the first connection terminal for connecting to the remaining signal lines of the plurality of signal lines is arranged on the surface, and
    The signal transmission wiring connection unit according to claim 1.
  3.  前記第1の折り曲げ部は、前記第1の部分と前記第2の部分との間に設けられ、前記第1の部分の裏面と前記第2の部分の裏面とが互いに近づく態様に折り曲げられる、
     請求項2に記載の信号伝送配線接続ユニット。
    The first bent portion is provided between the first portion and the second portion, and is bent so that the back surface of the first portion and the back surface of the second portion approach each other.
    The signal transmission wiring connection unit according to claim 2.
  4.  前記絶縁層は、前記第1の折り曲げ部を折り曲げた状態における、前記第1の部分の裏面と、前記第2の部分の裏面との間に設けられる、
     請求項3に記載の信号伝送配線接続ユニット。
    The insulating layer is provided between the back surface of the first portion and the back surface of the second portion in a state where the first bent portion is bent.
    The signal transmission wiring connection unit according to claim 3.
  5.  前記絶縁層は、前記第1の折り曲げ部を折り曲げた状態における、前記第1の部分の裏面と、前記第2の部分の裏面との間を固着する、
     請求項4に記載の信号伝送配線接続ユニット。
    The insulating layer is fixed between the back surface of the first portion and the back surface of the second portion in a state where the first bent portion is bent.
    The signal transmission wiring connection unit according to claim 4.
  6.  前記第2基板は、前記第2の接続端子が配列された第3の部分をさらに有し、
     前記第2の折り曲げ部は、前記第1の部分と前記第3の部分との間に設けられ、前記第1の部分と前記第3の部分とが互いに近づく態様に折り曲げられる、
     請求項3に記載の信号伝送配線接続ユニット。
    The second substrate further has a third portion in which the second connection terminal is arranged.
    The second bent portion is provided between the first portion and the third portion, and is bent so that the first portion and the third portion approach each other.
    The signal transmission wiring connection unit according to claim 3.
  7.  前記第2基板の表面において、少なくとも前記第2の折り曲げ部を覆うカバーレイ、
     を備える請求項2に記載の信号伝送配線接続ユニット。
    A coverlay that covers at least the second bent portion on the surface of the second substrate.
    2. The signal transmission wiring connection unit according to claim 2.
  8.  前記第1の折り曲げ部は、他の部分と比して厚さが薄い、
     請求項7に記載の信号伝送配線接続ユニット。
    The first bent portion is thinner than the other portions.
    The signal transmission wiring connection unit according to claim 7.
  9.  前記第2の折り曲げ部には、切り込み部が形成される、
     請求項7に記載の信号伝送配線接続ユニット。
    A notch is formed in the second bent portion.
    The signal transmission wiring connection unit according to claim 7.
  10.  前記素子は、超音波に基づく画像データを生成するための超音波振動子である、
     請求項1に記載の信号伝送配線接続ユニット。
    The element is an ultrasonic transducer for generating image data based on ultrasonic waves.
    The signal transmission wiring connection unit according to claim 1.
  11.  前記素子は、光学像に基づく画像データを生成するための撮像素子である、
     請求項1に記載の信号伝送配線接続ユニット。
    The element is an image pickup element for generating image data based on an optical image.
    The signal transmission wiring connection unit according to claim 1.
  12.  前記第2の折り曲げ部は、前記第1の部分と前記第3の部分とが互いに近づく態様に折り曲げられている、
     請求項6に記載の信号伝送配線接続ユニット。
    The second bent portion is bent so that the first portion and the third portion are close to each other.
    The signal transmission wiring connection unit according to claim 6.
  13.  請求項1に記載の信号伝送配線接続ユニットを収容する挿入部、
     を備える内視鏡。
    An insertion unit that accommodates the signal transmission wiring connection unit according to claim 1.
    Endoscope equipped with.
  14.  画像データを生成するための複数の素子と電気的に接続する基板における、第1および第2の接続端子部分の表面にそれぞれ配設される複数の第1および第2の接続端子に、対応する信号線をそれぞれ接続する信号線接続ステップと、
     前記第1の接続端子に前記信号線を接続後、前記第1の接続端子部分の裏面に前記第2の接続端子部分の裏面を固着する絶縁層を形成する絶縁層形成ステップと、
     を含む信号伝送配線接続ユニットの製造方法。
    Corresponds to a plurality of first and second connection terminals respectively arranged on the surface of the first and second connection terminal portions in a substrate electrically connected to a plurality of elements for generating image data. The signal line connection step that connects each signal line, and
    An insulating layer forming step of forming an insulating layer for fixing the back surface of the second connection terminal portion to the back surface of the first connection terminal portion after connecting the signal line to the first connection terminal.
    Manufacturing method of signal transmission wiring connection unit including.
  15.  前記絶縁層形成ステップは、前記第1の接続端子部分と前記第2の接続端子部分との間に設けられる第1の折り曲げ部を屈曲させて該第1および第2の接続端子部分の裏面を向い合せた後、前記第1の接続端子部分の裏面に前記第2の接続端子部分の裏面を固着させて前記絶縁層を形成し、
     前記第1の折り曲げ部を除去する除去ステップ、
     をさらに含む請求項14に記載の信号伝送配線接続ユニットの製造方法。
    In the insulating layer forming step, the back surface of the first and second connection terminal portions is formed by bending the first bent portion provided between the first connection terminal portion and the second connection terminal portion. After facing each other, the back surface of the second connection terminal portion is fixed to the back surface of the first connection terminal portion to form the insulating layer.
    The removal step of removing the first bent portion,
    14. The method of manufacturing a signal transmission wiring connection unit according to claim 14.
  16.  画像データを生成するための素子からの電気信号を出力する接続端子である電極が配置された第1の接続端子部を有する第1基板と、
     前記電気信号を伝送する複数の信号線を有するケーブルと、
     前記複数の信号線とそれぞれ接続する二つの第1の接続端子と、前記第1基板と電気的に接続する第2の接続端子と、前記二つの第1の接続端子の間に設けられる第1の折り曲げ部と、前記第1の接続端子と前記第2の接続端子との間に設けられる第2の折り曲げ部と、を有する第2基板と、
     前記第1および第2の折り曲げ部を折り曲げた状態において対向する前記第2基板の面の間に設けられる絶縁層と、
     を備える超音波振動子モジュール。
    A first substrate having a first connection terminal portion in which an electrode, which is a connection terminal for outputting an electric signal from an element for generating image data, is arranged, and a first substrate.
    A cable having a plurality of signal lines for transmitting the electric signal,
    The first connection terminal provided between the two first connection terminals connected to the plurality of signal lines, the second connection terminal electrically connected to the first board, and the two first connection terminals. A second substrate having a bent portion of the above and a second bent portion provided between the first connection terminal and the second connection terminal.
    An insulating layer provided between the surfaces of the second substrate facing each other in a state where the first and second bent portions are bent, and
    Ultrasonic oscillator module equipped with.
  17.  画像データを生成するための素子からの電気信号を出力する接続端子である電極が配置された第1の接続端子部を有する第1基板と、
     前記電気信号を伝送する複数の信号線を有するケーブルと、
     前記複数の信号線のうちの一部の信号線と接続する第1の接続端子が表面に配列された第1の接続端子部分と、前記複数の信号線のうちの残りの信号線と接続する第1の接続端子が表面に配列された第2の接続端子部分と、前記第1基板と電気的に接続する第2の接続端子が配列された第3の接続端子部分と、前記第1の接続端子部分と前記第2の接続端子部分の間に設けられ、前記第1の接続端子部分の裏面と前記第2の接続端子部分の裏面とが互いに近づく態様に折り曲げられる第1の折り曲げ部と、前記第1の接続端子部分と前記第3の接続端子部分の間に設けられ、前記第1の接続端子部分と前記第3の接続端子部分とが互いに近づく態様に折り曲げ可能になされた第2の折り曲げ部と、を有する第2基板と、
     前記第1の折り曲げ部を折り曲げた状態における、前記第1の接続端子部分の裏面と、前記第2の接続端子部分の裏面との間を固着する絶縁層と、
     を備える信号伝送配線接続ユニット。
    A first substrate having a first connection terminal portion in which an electrode, which is a connection terminal for outputting an electric signal from an element for generating image data, is arranged, and a first substrate.
    A cable having a plurality of signal lines for transmitting the electric signal,
    The first connection terminal portion to be connected to a part of the plurality of signal lines is connected to the first connection terminal portion arranged on the surface and the remaining signal lines of the plurality of signal lines. A second connection terminal portion in which the first connection terminal is arranged on the surface, a third connection terminal portion in which the second connection terminal electrically connected to the first board is arranged, and the first connection terminal portion. A first bent portion provided between the connection terminal portion and the second connection terminal portion and bent so that the back surface of the first connection terminal portion and the back surface of the second connection terminal portion approach each other. The second connection terminal portion is provided between the first connection terminal portion and the third connection terminal portion, and can be bent so that the first connection terminal portion and the third connection terminal portion are close to each other. A second substrate having a bent portion of, and
    An insulating layer for fixing between the back surface of the first connection terminal portion and the back surface of the second connection terminal portion in a state where the first bent portion is bent.
    A signal transmission wiring connection unit.
PCT/JP2020/038050 2020-10-07 2020-10-07 Signal transmission wiring connection unit, endoscope, method for manufacturing signal transmission wiring connection unit, and ultrasound oscillator module WO2022074776A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/038050 WO2022074776A1 (en) 2020-10-07 2020-10-07 Signal transmission wiring connection unit, endoscope, method for manufacturing signal transmission wiring connection unit, and ultrasound oscillator module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/038050 WO2022074776A1 (en) 2020-10-07 2020-10-07 Signal transmission wiring connection unit, endoscope, method for manufacturing signal transmission wiring connection unit, and ultrasound oscillator module

Publications (1)

Publication Number Publication Date
WO2022074776A1 true WO2022074776A1 (en) 2022-04-14

Family

ID=81125762

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/038050 WO2022074776A1 (en) 2020-10-07 2020-10-07 Signal transmission wiring connection unit, endoscope, method for manufacturing signal transmission wiring connection unit, and ultrasound oscillator module

Country Status (1)

Country Link
WO (1) WO2022074776A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07327299A (en) * 1994-05-31 1995-12-12 Toshiba Corp Ultrasonic transducer
JP2005218519A (en) * 2004-02-03 2005-08-18 Olympus Corp Ultrasonic vibrator unit
JP2019054962A (en) * 2017-09-20 2019-04-11 オリンパス株式会社 Endoscope
JP2019097906A (en) * 2017-12-04 2019-06-24 株式会社日立製作所 Ultrasonic imaging probe, manufacturing method therefor, and ultrasonic imaging device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07327299A (en) * 1994-05-31 1995-12-12 Toshiba Corp Ultrasonic transducer
JP2005218519A (en) * 2004-02-03 2005-08-18 Olympus Corp Ultrasonic vibrator unit
JP2019054962A (en) * 2017-09-20 2019-04-11 オリンパス株式会社 Endoscope
JP2019097906A (en) * 2017-12-04 2019-06-24 株式会社日立製作所 Ultrasonic imaging probe, manufacturing method therefor, and ultrasonic imaging device

Similar Documents

Publication Publication Date Title
US11317897B2 (en) Ultrasonic endoscope and method for manufacturing same
JP6741637B2 (en) Ultrasound endoscope
US10869649B2 (en) Ultrasound transducer module and ultrasound endoscope
US11160530B2 (en) Ultrasonic transducer module, ultrasonic endoscope and processing method of ultrasonic transducer module
WO2022074776A1 (en) Signal transmission wiring connection unit, endoscope, method for manufacturing signal transmission wiring connection unit, and ultrasound oscillator module
CN110494084B (en) Ultrasonic endoscope
US11872081B2 (en) Ultrasound transducer, ultrasound endoscope, and manufacturing method of ultrasound transducer
JP7395277B2 (en) Signal transmission wiring connection unit, endoscope, method for manufacturing signal transmission wiring connection unit, and ultrasonic transducer module
JP6697962B2 (en) Ultrasonic transducer and ultrasonic endoscope
JP6952533B2 (en) Endoscopic ultrasound
US20230052510A1 (en) Multilayer board, probe unit, and ultrasound endoscope
WO2022208807A1 (en) Ultrasound transducer array, endoscope, and method for producing ultrasound transducer array
CN109475347B (en) Ultrasonic vibrator assembly and ultrasonic endoscope
JP2017074231A (en) Method of manufacturing ultrasonic endoscope and ultrasonic endoscope
WO2017150461A1 (en) Ultrasonic probe unit, ultrasonic endoscope, and method for manufacturing ultrasonic probe unit
WO2018193845A1 (en) Ultrasonic transducer, ultrasonic endoscope, and ultrasonic transducer production method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20956724

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20956724

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP