[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022067783A1 - 收发数据的方法、装置和通信系统 - Google Patents

收发数据的方法、装置和通信系统 Download PDF

Info

Publication number
WO2022067783A1
WO2022067783A1 PCT/CN2020/119699 CN2020119699W WO2022067783A1 WO 2022067783 A1 WO2022067783 A1 WO 2022067783A1 CN 2020119699 W CN2020119699 W CN 2020119699W WO 2022067783 A1 WO2022067783 A1 WO 2022067783A1
Authority
WO
WIPO (PCT)
Prior art keywords
random access
configuration information
resource
bwp
resource block
Prior art date
Application number
PCT/CN2020/119699
Other languages
English (en)
French (fr)
Inventor
蒋琴艳
张磊
Original Assignee
富士通株式会社
蒋琴艳
张磊
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社, 蒋琴艳, 张磊 filed Critical 富士通株式会社
Priority to PCT/CN2020/119699 priority Critical patent/WO2022067783A1/zh
Publication of WO2022067783A1 publication Critical patent/WO2022067783A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the embodiments of the present application relate to the field of communication technologies.
  • the unlicensed frequency band or shared spectrum is an important part of spectrum resources.
  • many systems support data transmission in the unlicensed frequency band, such as WiFi, Long Term Evolution (LTE, Long Term Evolution) licensed spectrum auxiliary access.
  • Access LAA, License Assisted Access
  • NR New Radio
  • the NR system supports multiple sub-carrier spacings (SCS, Sub-Carrier Spacing) and introduces the concept of a partial bandwidth (BWP, BandWidth Part).
  • the network device can configure one or more BWPs (UL BWPs) on the uplink carrier and one or more BWPs (DL BWPs) on the downlink carriers for the terminal device through high-layer signaling.
  • Different sub-carrier spacing (SCS, Sub-Carrier Spacing) can be configured for different BWPs, for example, SCS can be 15kHz, 30kHz, etc.
  • the terminal device can use the active BWP (active BWP) to work, that is, to receive downlink data on the active DL BWP, and send uplink data on the active UL BWP.
  • intra-cell guard bands intra-cell guard bands
  • GB guard bands, guard bands, or GB
  • resource block sets RB set
  • RB sets resource block sets
  • the inventor found that: according to the existing RB set configuration method and BWP configuration method, in some cases, the requirement that the BWP should include an integer number of resource block sets (RB sets) cannot be met, or the network device cannot uniquely determine the Which part of resources (i.e. RBs) receive the Physical Uplink Shared Channel (PUSCH).
  • PUSCH Physical Uplink Shared Channel
  • the embodiments of the present application provide a method, apparatus, and communication system for sending and receiving data, which can meet the requirement that the BWP should include an integer number of resource block sets (RB sets), or enable network devices to uniquely Determines on which part of the resource the Physical Uplink Shared Channel (PUSCH) is received.
  • RB sets resource block sets
  • PUSCH Physical Uplink Shared Channel
  • a method for sending and receiving data is provided, which is applied to a terminal device, and the method includes:
  • Second configuration information is received, where the second configuration information is used to configure a bandwidth part (BWP), where the bandwidth part (BWP) includes K predefined resource block sets, where K is a natural number.
  • BWP bandwidth part
  • an apparatus for sending and receiving data which is applied to terminal equipment, and the apparatus includes:
  • a first receiving unit that receives first configuration information for configuring a resource block set (RB set) in a carrier
  • a second receiving unit which receives second configuration information, where the second configuration information is used to configure a bandwidth part (BWP), where the bandwidth part (BWP) includes K predefined resource block sets, where K is a natural number.
  • a method for sending and receiving data is provided, which is applied to a terminal device, and the method includes:
  • the bandwidth part (BWP) includes K resource block sets configured by the first configuration information, and K is a natural number;
  • the resource block set corresponding to the bandwidth part (BWP) and/or the resource block set corresponding to the physical random access channel (PRACH) resource in the resource block set configured by the first configuration information is the same as the predefined resource block set .
  • an apparatus for sending and receiving data which is applied to terminal equipment, and the apparatus includes:
  • a third receiving unit which receives first configuration information, the first configuration information is used to configure a resource block set (RB set) in the carrier;
  • a fourth receiving unit which receives second configuration information, where the second configuration information is used to configure a bandwidth part (BWP), and the bandwidth part (BWP) includes K resource block sets configured by the first configuration information, K is a natural number,
  • the resource block set corresponding to the bandwidth part (BWP) and/or the resource block set corresponding to the physical random access channel (PRACH) resource in the resource block set configured by the first configuration information is the same as the predefined resource block set .
  • a method for sending and receiving data is provided, which is applied to a network device, and the method includes:
  • Send second configuration information where the second configuration information is used to configure a bandwidth part (BWP), where the bandwidth part includes K predefined resource block sets, where K is a natural number.
  • BWP bandwidth part
  • an apparatus for sending and receiving data which is applied to network equipment, and the apparatus includes:
  • a first sending unit which sends first configuration information, where the first configuration information is used to configure a resource block set (RB set) in a carrier;
  • a second sending unit which sends second configuration information, where the second configuration information is used to configure a bandwidth part (BWP), where the bandwidth part includes K predefined resource block sets, where K is a natural number.
  • BWP bandwidth part
  • a method for sending and receiving data is provided, which is applied to a network device, and the method includes:
  • the bandwidth part (BWP) includes K resource block sets configured by the first configuration information, and K is a natural number
  • the resource block set corresponding to the bandwidth part (BWP) and/or the resource block set corresponding to the physical random access channel (PRACH) resource in the resource block set configured in the first configuration information is configured to be the same as the predefined resource block set the same.
  • an apparatus for sending and receiving data which is applied to network equipment, and the apparatus includes:
  • a third sending unit which sends first configuration information, where the first configuration information is used to configure a resource block set (RB set) in the carrier;
  • a fourth sending unit which sends second configuration information, where the second configuration information is used to configure a bandwidth part (BWP), and the bandwidth part (BWP) includes K resource block sets configured by the first configuration information, K is a natural number,
  • the resource block set corresponding to the bandwidth part (BWP) and/or the resource block set corresponding to the physical random access channel (PRACH) resource in the resource block set configured in the first configuration information is configured to be the same as the predefined resource block set the same.
  • the BWP can meet the requirement of including an integer number of resource block sets (RB sets), or the network device can uniquely determine which part of the resources to receive the PUSCH.
  • RB sets resource block sets
  • FIG. 1 is a schematic diagram of a communication system according to an embodiment of the present application.
  • FIG. 2 is an exemplary diagram of carriers and resource blocks
  • 3A is an exemplary diagram of a guard band and a resource block set
  • 3B is an exemplary diagram of the relationship between guard bands, resource block sets and partial bandwidths
  • Fig. 4 is an example diagram of interlace frequency domain resources
  • Fig. 5 is a schematic diagram of the interaction between network equipment and terminal equipment
  • FIG. 6 is a schematic diagram of a method for sending and receiving data according to an embodiment of the present application.
  • Fig. 7 is a schematic diagram of RB set and Initial BWP of different devices in the prior art
  • Fig. 8 is a schematic diagram of RB set and Initial BWP predefined in this application.
  • Fig. 9 is a schematic diagram of the RB set sending PRACH and PUSCH in the random access process
  • Figure 10 is a schematic diagram of the resources used by different terminal equipment in the CBRA process
  • Fig. 11 is a schematic diagram of the resources used in the CBRA process of the related art.
  • Fig. 12 is a schematic diagram of a predefined RB set in this application and a UL BWP configured with PRACH resources;
  • FIG. 13 is a schematic diagram of a method for sending and receiving data according to an embodiment of the present application.
  • FIG. 13A is a schematic diagram of a method for sending and receiving data according to an embodiment of the present application.
  • Fig. 14 is a schematic diagram of RB set and Initial BWP predefined in this application.
  • Fig. 15 is a schematic diagram of a predefined RB set in this application and a UL BWP configured with PRACH resources;
  • Figure 16 is another schematic diagram of a predefined RB set and a UL BWP configured with PRACH resources in this application;
  • 17 is a schematic diagram of a method of an uplink transmission receiving method according to an embodiment of the seventh aspect
  • FIG. 18 is a schematic diagram of a method of an uplink transmission receiving method according to an embodiment of the seventh aspect
  • 19 is a schematic diagram of an apparatus for sending and receiving data according to an embodiment of the present application.
  • 20 is a schematic diagram of an apparatus for sending and receiving data according to an embodiment of the present application.
  • 21 is a schematic diagram of an apparatus for sending and receiving data according to an embodiment of the present application.
  • 22 is a schematic diagram of an apparatus for sending and receiving data according to an embodiment of the present application.
  • FIG. 23 is a schematic diagram of the structure of a network device according to an embodiment of the present application.
  • FIG. 24 is a schematic diagram of a terminal device according to an embodiment of the present application.
  • the terms “first”, “second”, etc. are used to distinguish different elements in terms of numelation, but do not indicate the spatial arrangement or temporal order of these elements, and these elements should not be referred to by these terms restricted.
  • the term “and/or” includes any and all combinations of one or more of the associated listed items.
  • the terms “comprising”, “including”, “having”, etc. refer to the presence of stated features, elements, elements or components, but do not preclude the presence or addition of one or more other features, elements, elements or components.
  • the term "communication network” or “wireless communication network” may refer to a network that conforms to any of the following communication standards, such as Long Term Evolution (LTE, Long Term Evolution), Long Term Evolution Enhanced (LTE-A, LTE- Advanced), Wideband Code Division Multiple Access (WCDMA, Wideband Code Division Multiple Access), High-Speed Packet Access (HSPA, High-Speed Packet Access) and so on.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution Enhanced
  • WCDMA Wideband Code Division Multiple Access
  • High-Speed Packet Access High-Speed Packet Access
  • HSPA High-Speed Packet Access
  • the communication between devices in the communication system can be carried out according to communication protocols at any stage, for example, including but not limited to the following communication protocols: 1G (generation), 2G, 2.5G, 2.75G, 3G, 4G, 4.5G and 5G , New Radio (NR, New Radio), etc., and/or other communication protocols currently known or to be developed in the future.
  • Network device refers to, for example, a device in a communication system that connects a terminal device to a communication network and provides services for the terminal device.
  • Network devices may include but are not limited to the following devices: base station (BS, Base Station), access point (AP, Access Point), transmission and reception point (TRP, Transmission Reception Point), broadcast transmitter, mobility management entity (MME, Mobile Management Entity), gateway, server, radio network controller (RNC, Radio Network Controller), base station controller (BSC, Base Station Controller) and so on.
  • the base station may include but is not limited to: Node B (NodeB or NB), evolved Node B (eNodeB or eNB), and 5G base station (gNB), etc., and may also include a remote radio head (RRH, Remote Radio Head) , Remote Radio Unit (RRU, Remote Radio Unit), relay (relay) or low power node (eg femeto, pico, etc.).
  • RRH Remote Radio Head
  • RRU Remote Radio Unit
  • relay relay
  • low power node eg femeto, pico, etc.
  • base station may include some or all of their functions, each base station may provide communication coverage for a particular geographic area.
  • the term "cell” may refer to a base station and/or its coverage area, depending on the context in which the term is used.
  • the term "user equipment” (UE, User Equipment) or “terminal equipment” (TE, Terminal Equipment or Terminal Device), for example, refers to a device that accesses a communication network through a network device and receives network services.
  • a terminal device may be fixed or mobile, and may also be referred to as a mobile station (MS, Mobile Station), a terminal, a subscriber station (SS, Subscriber Station), an access terminal (AT, Access Terminal), a station, and the like.
  • the terminal device may include but is not limited to the following devices: Cellular Phone (Cellular Phone), Personal Digital Assistant (PDA, Personal Digital Assistant), wireless modem, wireless communication device, handheld device, machine type communication device, laptop computer, Cordless phones, smartphones, smart watches, digital cameras, and more.
  • Cellular Phone Cellular Phone
  • PDA Personal Digital Assistant
  • wireless modem wireless communication device
  • handheld device machine type communication device
  • laptop computer Cordless phones, smartphones, smart watches, digital cameras, and more.
  • the terminal device may also be a machine or device that performs monitoring or measurement, such as but not limited to: Machine Type Communication (MTC, Machine Type Communication) terminals, In-vehicle communication terminals, device-to-device (D2D, Device to Device) terminals, machine-to-machine (M2M, Machine to Machine) terminals, etc.
  • MTC Machine Type Communication
  • D2D Device to Device
  • M2M Machine to Machine
  • network side refers to one side of the network, which may be a certain base station, and may also include one or more network devices as described above.
  • user side or “terminal side” or “terminal device side” refers to the side of a user or terminal, which may be a certain UE, or may include one or more terminal devices as above.
  • FIG. 1 is a schematic diagram of a communication system according to an embodiment of the present application, which schematically illustrates the case of a terminal device and a network device as an example.
  • a communication system 100 may include a network device 101 and terminal devices 102 and 103 .
  • FIG. 1 only takes two terminal devices and one network device as an example for description, but the embodiment of the present application is not limited to this.
  • the network device 101 and the terminal devices 102 and 103 may perform transmission of existing services or services that can be implemented in the future.
  • these services may include, but are not limited to: Enhanced Mobile Broadband (eMBB, enhanced Mobile Broadband), Massive Machine Type Communication (mMTC, massive Machine Type Communication), and Ultra-Reliable and Low Latency Communication (URLLC, Ultra-Reliable and Low). -Latency Communication), etc.
  • FIG. 2 is an example diagram of carriers and resource blocks, which are applicable to both uplink and downlink.
  • 201 denotes a resource block (RB), and the bandwidth of the carrier includes an integer number of RBs.
  • 201a is the RB corresponding to the starting position of the carrier.
  • the carrier width can be configured by carrierBandwidth in SCS-SpecificCarrier IE, and the starting position of the carrier can be configured by offsetToCarrier in SCS-SpecificCarrier IE.
  • FIG. 3A is an example diagram of guard bands and resource block sets.
  • 201 represents a resource block (RB)
  • each RB set for example, RB set 0, RB set 1, RB set 2, RB set 3
  • each GB respectively includes an integer number of RBs.
  • There is a guard band between two resource block sets e.g. GB 0 between RB set 0 and RB set 1. .
  • the bandwidth of the carrier includes an integer number of RBs, for example, in Figure 3A, the bandwidth of the carrier includes RB set 0, RB set 1, RB set 2, RB set 3 and GB 0, GB 1, GB 2, each RB set and GB Each includes an integer number of RBs, so the bandwidth of the carrier includes an integer number of RBs.
  • 201a is the first RB of RB set 0, and is also the RB (ie, the first RB) corresponding to the starting position of the carrier.
  • FIG. 3B is an exemplary diagram of the relationship among guard bands, resource block sets and partial bandwidths, which are applicable to both downlink and uplink.
  • a BWP includes an integer number of RB sets, and the starting RB and the last RB of the BWP are the starting RB of the first RB set and the last RB of the last RB set, respectively.
  • the BWP of Figure 3B includes RB set 1 and RB set 2, with GB 1 between RB set 1 and RB set 2, the starting RB of BWP is the starting RB of RB set 1, and the last RB of BWP is RB set 2's last RB.
  • a second type of resource allocation (Type 2 resource allocation) is also introduced.
  • the network device may instruct the terminal device to use interlaced resource blocks (Interlaced resource blocks) to send uplink transmission through higher layer signaling. If this resource allocation method is adopted, when scheduling the terminal device to send the PUSCH or PUCCH, the network device will instruct the terminal device which interlaced resource blocks (Interlaced resource blocks) to use to send.
  • Fig. 5 is a schematic diagram of the interaction between the network device and the terminal device.
  • the network device can send first configuration information to the terminal device, the first configuration information is used to configure the RB set, and can also be sent to the terminal device.
  • the second configuration information, the second configuration information is used to configure the BWP, the two kinds of configuration information may be sent simultaneously (for example, included in the same RRC message), or may be sent separately (not simultaneously).
  • the network device may send indication information for scheduling uplink transmission to the terminal device on the active DL BWP. After the terminal device determines the frequency domain resources on the UL BWP, the Send upstream transmission.
  • FIG. 5 schematically illustrates the interaction between the network device and the terminal device according to the embodiment of the present application.
  • the present application is not limited to this, for example, one or more operations may be omitted, or one or more other operations may be added.
  • uplink control signal and “uplink control information (UCI, Uplink Control Information)” or “physical uplink control channel (PUCCH, Physical Uplink Control Channel)” can be used interchangeably without causing confusion.
  • uplink data signal and “uplink data information” or “physical uplink shared channel (PUSCH, Physical Uplink Shared Channel)” can be interchanged;
  • downlink control signal and “downlink control information (DCI, Downlink Control Information)” or “physical downlink control channel (PDCCH, Physical Downlink Control Channel)” are interchangeable, and the terms “downlink data signal” and “downlink data information” Or “Physical Downlink Shared Channel (PDSCH, Physical Downlink Shared Channel)” can be interchanged.
  • DCI Downlink Control Information
  • PDCCH Physical Downlink Control Channel
  • sending or receiving PUSCH can be understood as sending or receiving uplink data carried by PUSCH
  • sending or receiving PUCCH can be understood as sending or receiving uplink information carried by PUCCH
  • sending or receiving PRACH can be understood as sending or receiving data carried by PRACH preamble
  • uplink signals may include uplink data signals and/or uplink control signals, etc., and may also be referred to as uplink transmission (UL transmission) or uplink information or uplink channel.
  • Sending the uplink transmission on the uplink resource can be understood as using the uplink resource to send the uplink transmission.
  • downlink data/signal/channel/information can be understood accordingly.
  • the high-level signaling may be, for example, Radio Resource Control (RRC) signaling; for example, it is called an RRC message (RRC message), for example, including MIB, system information (system information), and dedicated RRC message; RRC IE (RRC information element).
  • RRC Radio Resource Control
  • the high-layer signaling can also be MAC (Medium Access Control) signaling; or called MAC CE (MAC control element).
  • MAC Medium Access Control
  • MAC CE MAC control element
  • the BWP cannot meet the requirement of including an integer number of resource block sets (RB sets), or the network device cannot uniquely determine which part of the resources to receive the Physical Uplink Shared Channel (PUSCH).
  • RB sets resource block sets
  • PUSCH Physical Uplink Shared Channel
  • an embodiment of the present application provides a method for sending and receiving data, which is described from the side of the terminal device, and reference may be made to FIG. 5 for the interaction process between the terminal device and the network device.
  • FIG. 6 is a schematic diagram of a method for sending and receiving data according to an embodiment of the present application. As shown in FIG. 6 , the method includes:
  • Operation 601. Receive first configuration information, where the first configuration information is used to configure a resource block set (RB set); and
  • Operation 602 Receive second configuration information, where the second configuration information is used to configure a bandwidth part (BWP), where the bandwidth part (BWP) includes K predefined resource block sets, where K is a natural number.
  • BWP bandwidth part
  • FIG. 6 only schematically illustrates the embodiment of the present application, but the present application is not limited thereto.
  • the execution order of the various operations can be adjusted appropriately, and other operations can be added or some of the operations can be reduced.
  • Those skilled in the art can make appropriate modifications according to the above content, and are not limited to the description of the above-mentioned FIG. 6 .
  • the BWP configured by the second configuration information includes K predefined resource block sets, so that the BWP can meet the requirement of including an integer number of resource block sets (RB sets), or,
  • the network device can uniquely determine on which part of the resource the PUSCH is received.
  • the first configuration information may be intraCellGuardBandsUL-r16 or intraCellGuardBandsDL-r16.
  • the network device may send the first configuration information through high-layer signaling.
  • intraCellGuardBandsUL-r16 and intraCellGuardBandsDL-r16 are used to configure resource block sets (RB sets) of uplink carriers and downlink carriers, respectively.
  • the first configuration information provides the starting RB information (provided by startCRB -r16 in the first configuration information) and size (provided by nrofCRBs- r16) information, and further, according to the first configuration information, the UE may determine N RB-set, x -1 GB and N RB-set, RBs respectively included in the x RB sets in the carrier. That is, the first configuration information is used to configure the RB set.
  • the terminal device determines the guard band and/or resource block set (that is, the predefined resource block) in the cell according to the nominal intra-cell guard band and RB set pattern defined by the RAN4 protocol. block set). For example, in the above example, when the terminal device is configured with intraCellGuardBandsUL-r16, the terminal device determines the GB and RB set according to the parameters included in the intraCellGuardBandsUL-r16.
  • the terminal device determines the RBs (for example, CRB indices of RBs) included in the GB and RB set according to the predefined GB and RB set.
  • the RBs for example, CRB indices of RBs
  • the second configuration information is, for example, initialUplinkBWP, initialDownlinkBWP, BWP-Uplink or BWP-Downlink, or the like.
  • the first configuration information and the second configuration information may be sent by radio resource control (RRC) signaling.
  • RRC radio resource control
  • the resource block set configured by the first configuration information is the same as or different from the predefined resource block set.
  • the carrier may be an uplink carrier, whereby the BWP is an uplink bandwidth part (UL BWP); or, the carrier may also be a downlink carrier, whereby the BWP is a downlink bandwidth part (DL BWP) .
  • UL BWP uplink bandwidth part
  • DL BWP downlink bandwidth part
  • the first configuration information (for example, intraCellGuardBandsUL-r16) is UE-specific, different terminal devices may have different understandings of the RBs included in each GB and RB set on the carrier; while the Initial BWP is cell-specific ( cell-specific), that is, the Initial BWP of each terminal device in the same cell is the same. That is to say, for different terminal devices in the same cell, in the case where the second configuration information configures the initial BWP, the RBs included in the BWP configured by the second configuration information received by the second configuration information are the same. Therefore, in the prior art, for some terminal devices (for example, UE2 in FIG. 7 ), the Initial BWP may include a non-integer number of RB sets, which does not meet the requirement that the BWP includes an integer number of RB sets.
  • Fig. 7 is a schematic diagram of RB set and Initial BWP of different devices in the prior art.
  • the terminal equipment UE1 and UE2 have different understandings of the RBs included in the GB and the RB set on the carrier.
  • the GB of the terminal equipment UE2 is 0, that is, the GB is not configured.
  • the RB sets of the terminal equipment UE1 and UE2 are different.
  • the Initial BWP includes an integer number (eg, 1) of RB sets of the terminal equipment UE1, whereas the Initial BWP includes a non-integer number of RB sets of the terminal equipment UE2. Therefore, for the terminal device UE2, the Initial BWP does not satisfy the requirement that the BWP includes an integer number of RB sets.
  • the BWP involved in operation 602 is the initial bandwidth part (Initial BWP), for example, the initial uplink bandwidth part (Initial UL BWP) or the initial downlink bandwidth Part (Initial DL BWP).
  • Initial BWP the initial bandwidth part
  • Initial UL BWP the initial uplink bandwidth part
  • Initial DL BWP the initial downlink bandwidth Part
  • the BWP configured by the second configuration information includes K predefined resource block sets; for the initial downlink bandwidth Part (Initial DL BWP), the BWP configured by the second configuration information (for example, initialDownlinkBWP) should include K predefined resource block sets.
  • the Initial UL BWP or Initial DL BWP configured by the second configuration information includes 1 predefined RB set, that is, the first RB of the Initial UL BWP or Initial DL BWP is the starting RB of the predefined RB set , the last RB of the Initial UL BWP or Initial DL BWP is the last RB of the predefined RB set. That is to say, whether the initial BWP satisfies the requirement that an integer number of RB sets should be included is always based on whether an integer number of predefined RB sets are included, rather than the RB set configured by the first configuration information. In this way, while ensuring that the initial BWP can meet the requirement of including an integer number of RB sets, it can also allow the network device to flexibly configure a UE-specific RB set for each terminal device through the first configuration information.
  • Figure 8 is a schematic diagram of RB set and Initial BWP predefined in this application.
  • the Initial BWP may be an Initial UL BWP or an Initial DL BWP.
  • the Initial BWP includes 1 predefined RB set.
  • the RB set configured by the first configuration information is different from the predefined RB set.
  • the present application may not be limited to this, and the RB set configured by the first configuration information may be the same as the predefined RB set.
  • the other BWPs may include a natural number of RB sets configured by the first configuration information.
  • an initial UL BWP may also be referred to as a UL BWP configured by initialUplinkBWP
  • an initial DL BWP may also be referred to as a DL BWP configured by initialDownlinkBWP
  • a DL BWP that is not an initial UL BWP may also be referred to as configured by BWP-Uplink UL BWP
  • DL BWP not initial DL BWP can also be called DL BWP configured by BWP-Downlink.
  • the terminal device After the terminal device sends a preamble (ie, PRACH), if the terminal device receives a random access response (RAR) or a downlink scrambled by a Temporary Cell Radio Network Temporary Identity (TC-RNTI) Control information (DCI), the terminal device will use the RB set that sent the PRACH to send the PUSCH scheduled by the RAR or DCI.
  • RAR random access response
  • TC-RNTI Temporary Cell Radio Network Temporary Identity
  • DCI Temporary Cell Radio Network Temporary Identity
  • FIG. 9 is a schematic diagram of the RB set for transmitting PRACH and PUSCH in the random access process.
  • the active UL BWP of the terminal device includes two RB sets (ie, RB set 0 and RB set 1).
  • the terminal device uses RB set 0 to send PRACH, and after receiving the RAR or TC-RNTI scrambled DCI associated with the sent PRACH, the terminal device uses RB set 0 to send the PUSCH scheduled by the RAR or TC-RNTI scrambled DCI .
  • the RAR and DCI indicate the interlace, and the terminal device can determine the resource for sending the PUSCH according to the indicated interval and the RB set for sending the PRACH. More specifically, the terminal device transmits the PUSCH by using the RBs in the intersection of the RB set where the PRACH is located and the RBs included in the interlace indicated by the RAR or DCI.
  • the network device cannot determine which terminal device is scheduled for when the terminal device transmits PUSCH using RAR or TC-RNTI scrambled DCI. Since the BWP and RB set configurations of different terminal devices are different, the network device cannot uniquely determine which part of the resources to receive the PUSCH.
  • FIG. 10 is a schematic diagram of resources used by different terminal equipments in the CBRA process.
  • the terminal equipment UE1 and the terminal equipment UE2 use the same resources to send PRACH respectively, but due to different understandings of the RBs included in the GB and the RB set on the carrier, the RBs included in the RB set determined by the two terminal equipment are different, that is, the RBs included in the RB set 0 of UE1 and the RB set 0 of UE2 in the figure are different.
  • the resources finally determined for transmitting the PUSCH are different. Therefore, the network device cannot uniquely determine on which part of the resource the PUSCH is received.
  • FIG. 11 is a schematic diagram of the resources used in the CBRA process in the related art.
  • UEs in a cell all use a predefined RB set to send uplink data.
  • the restrictions on the BWP configuration are also different.
  • the terminal device can only send and receive data within the range of the BWP, even if the terminal device UE2 assumes that the predefined RB set 0 is used to send the PUSCH, due to the limitation of the BWP range of the UE2, the resources that the UE2 can actually use to send the PUSCH are the BWP and the PUSCH of the UE2.
  • the overlapping part of the predefined RB set 0, the overlapping part is still different from the resource used by UE1 to send the PUSCH (that is, the RB set 0 of UE1 is the same as the predefined RB set 0, and the BWP of UE1 includes 1 RB set 0 of UE1, therefore, the resource used by UE1 to send PUSCH is RB set 0). Therefore, the network device still cannot uniquely determine the resource. That is to say, in the situation shown in Fig. 11, the related art still has the technical problem that the network device cannot uniquely determine which part of the resources to receive the PUSCH. .
  • the BWP involved in operation 602 is a bandwidth portion configured with physical random access channel (PRACH) resources.
  • PRACH physical random access channel
  • the second configuration information includes K predefined resource block sets, where K is a natural number.
  • the network device can determine the resources of the BWP, so as to receive or transmit data correctly.
  • the other BWPs may include a natural number of RB sets configured by the first configuration information.
  • FIG. 12 is a schematic diagram of a predefined RB set and a UL BWP configured with PRACH resources (PRACH resource) in this application.
  • the UL BWP may include 2 predefined RB sets (ie, predefined RB set 0 and RB set 1).
  • the RB set configured by the first configuration information is different from the predefined RB set.
  • the present application may not be limited to this, and the RB set configured by the first configuration information may be the same as the predefined RB set.
  • the physical random access channel (PRACH) resource may also be a physical random access channel resource not used for contention-free random access (CFRA) based beam failure recovery (BFR), eg, the UL
  • the BWP is configured with rach-ConfigCommon and/or rach-ConfigDedicated.
  • the other BWPs may include a natural number of RB sets configured by the first configuration information; or, the physical random access channel (PRACH) resources are physical random access channel resources for contention-based random access (CBRA), for example, the UL BWP is configured with rach-ConfigCommon, and for other BWPs of the terminal device, the other BWPs It can include a natural number of RB sets configured by the first configuration information; or, the physical random access channel (PRACH) resource is the PRACH resource that the terminal device will receive the RAR after using the PRACH resource to send the PRACH.
  • PRACH physical random access channel
  • the other BWPs may include a natural number of RB sets configured by the first configuration information; or, the physical random access channel (PRACH) resource is a terminal device that uses the PRACH resource to send a PRACH that will receive random access.
  • DCI Downlink Control Information
  • RA-RNTI Radio Network Temporary Identity
  • the method for sending and receiving data according to the embodiment of the first aspect of the present application is not only applicable to the above scenarios 1 and 2, but also applicable to other scenarios.
  • the method for sending and receiving data further includes the following operations:
  • Operation 603 Send or receive data in the partial bandwidth according to the predefined resource block set or the resource block set configured according to the first configuration information.
  • the terminal device can send and receive data according to the appropriate RB set.
  • data can be sent or received on the BWP involved in operation 602 .
  • the BWP is a UL BWP
  • operation 603 sends uplink data on the UL BWP
  • the BWP is a DL BWP
  • operation 603 receives downlink data on the DL BWP.
  • the predefined resource block set may be, for example, the predefined resource block set shown in FIG. 8 or FIG. 12 ; the resource block set configured by the first configuration information may be, for example, shown in FIG. 8 or FIG. 12 .
  • the resource block set configured by the first configuration information may be, for example, shown in FIG. 8 or FIG. 12 .
  • data may be sent or received at the BWP according to a predefined RB set or an RB set configured by the first configuration information.
  • the data to be sent is a physical uplink shared channel (PUSCH) scheduled by a random access response (RAR) or downlink control information (DCI) scrambled by a temporary cell radio network temporary identity (TC-RNTI), then according to the predefined
  • the data is sent by the resource block set; for another example, the data to be sent is the downlink control of Random Access Response (RAR) in Contention-Based Random Access (CBRA) or Temporary Cell Radio Network Temporary Identity (TC-RNTI) scrambled Information (DCI) scheduled physical uplink shared channel (PUSCH), the data is sent according to a predefined set of resource blocks.
  • RAR Random Access Response
  • CBRA Contention-Based Random Access
  • TC-RNTI Temporary Cell Radio Network Temporary Identity
  • the RB set configured according to the first configuration information sends or receives data at the BWP
  • the RB set configured by the first configuration information and the BWP configured by the second configuration information are used to overlap the RBs (that is, the RBs included in the two include RBs). RBs in the intersection) to send or receive data.
  • the BWP configured by the second configuration information includes K predefined resource block sets, so that the BWP can meet the requirement of including an integer number of resource block sets (RB sets), or,
  • the network device can uniquely determine on which part of the resource the PUSCH is received.
  • the embodiment of the second aspect of the present application provides a method for sending and receiving data, which is described from the terminal device side, and the interaction process between the terminal device and the network device can be referred to FIG. 5 .
  • FIG. 13 is a schematic diagram of a method for sending and receiving data according to an embodiment of the present application. As shown in FIG. 13 , the method includes:
  • Operation 1301. Receive first configuration information, where the first configuration information is used to configure a resource block set (RB set) in a carrier;
  • Operation 1302 Receive second configuration information, where the second configuration information is used to configure a bandwidth part (BWP), where the bandwidth part (BWP) includes K resource block sets configured by the first configuration information, where K is a natural number.
  • BWP bandwidth part
  • the resource block set configured in the first configuration information corresponds to the bandwidth part (BWP) resource block set configured in operation 1302 and/or the resource block set corresponding to the physical random access channel (PRACH) resource and the predefined resource block set same.
  • BWP bandwidth part
  • PRACH physical random access channel
  • FIG. 13 only schematically illustrates the embodiment of the present application, but the present application is not limited thereto.
  • the execution order of the various operations can be adjusted appropriately, and other operations can be added or some of the operations can be reduced.
  • Those skilled in the art can make appropriate modifications according to the above content, and are not limited to the description of the above-mentioned FIG. 13 .
  • the BWP can be made to meet the requirement of including an integer number of resource block sets (RB sets), or the network device can uniquely determine which part of the resources to receive the PUSCH.
  • RB sets resource block sets
  • the description about the first configuration information is the same as that of the embodiment of the first aspect.
  • the first configuration information may be intraCellGuardBandsUL-r16 or intraCellGuardBandsDL-r16.
  • the network device may send the first configuration information through high-layer signaling.
  • intraCellGuardBandsUL-r16 and intraCellGuardBandsDL-r16 are used to configure resource block sets (RB sets) of uplink carriers and downlink carriers, respectively.
  • the first configuration information provides the starting RB information (provided by startCRB -r16 in the first configuration information) and size (provided by nrofCRBs- r16) information, and further, according to the first configuration information, the UE may determine N RB-set, x -1 GB and N RB-set, RBs respectively included in the x RB sets in the carrier. That is, the first configuration information is used to configure the RB set.
  • the terminal device determines the guard band and/or resource block set (that is, the predefined resource block) in the cell according to the nominal intra-cell guard band and RB set pattern defined by the RAN4 protocol. block set). For example, in the above example, when the terminal device is configured with intraCellGuardBandsUL-r16, the terminal device determines the GB and RB set according to the parameters included in the intraCellGuardBandsUL-r16.
  • the terminal device determines the RBs (for example, CRB indices of RBs) included in the GB and RB set according to the predefined GB and RB set.
  • the RBs for example, CRB indices of RBs
  • the second configuration information is, for example, initialUplinkBWP, initialDownlinkBWP, BWP-Uplink or BWP-Downlink, or the like.
  • the first configuration information and the second configuration information may be sent by radio resource control (RRC) signaling.
  • RRC radio resource control
  • the resource block set configured by the first configuration information is the same as or different from the predefined resource block set.
  • the carrier may be an uplink carrier, whereby the BWP is an uplink bandwidth part (UL BWP); or, the carrier may also be a downlink carrier, whereby the BWP is a downlink bandwidth part (DL BWP) .
  • UL BWP uplink bandwidth part
  • DL BWP downlink bandwidth part
  • the BWP configured by the second configuration information is the initial bandwidth part (Initial BWP), for example, the initial uplink bandwidth part (Initial UL BWP) or the initial downlink bandwidth part (Initial DL BWP).
  • the RB set configured in the first configuration information corresponds to the Initial UL
  • the RB set of the BWP is the same as the predefined RB set
  • the RB set configured by the first configuration information corresponds to the initial DL BWP RB set is the same as the predefined RB set.
  • the Initial UL BWP or Initial DL BWP configured by the second configuration information includes one RB set configured by the first configuration information, that is, the first RB of the Initial UL BWP or Initial DL BWP is the RB configured by the first configuration information
  • the starting RB of the set, the last RB of the Initial UL BWP or the Initial DL BWP is the last RB of the RB set configured by the first configuration information. Therefore, for different UEs in the cell, the initial BWP can meet the requirement of including an integer number of RB sets.
  • Figure 14 is a schematic diagram of RB set and Initial BWP predefined in this application.
  • the Initial BWP may be an Initial UL BWP or an Initial DL BWP.
  • the Initial BWP includes one RB set configured by the first configuration information.
  • the RB set configured by the first configuration information is the same as the predefined RB set.
  • an initial UL BWP may also be referred to as a UL BWP configured by initialUplinkBWP
  • an initial DL BWP may also be referred to as a DL BWP configured by initialDownlinkBWP
  • a DL BWP that is not an initial UL BWP may also be referred to as configured by BWP-Uplink UL BWP
  • DL BWP not initial DL BWP can also be called DL BWP configured by BWP-Downlink.
  • the BWP configured by the second configuration information involved in operation 1302 is a bandwidth portion configured with physical random access channel (PRACH) resources.
  • PRACH physical random access channel
  • FIG. 15 is a schematic diagram of a predefined RB set and a UL BWP configured with PRACH resources in this application.
  • the UL BWP is configured with PRACH resources.
  • the UL BWP may include 2 RB sets configured by the first configuration information (that is, RB set 0 and RB set 1 configured by the first configuration information).
  • the RB set configured by the first configuration information is the same as the predefined RB set, that is, the RB set 0 and RB set 1 configured by the first configuration information are respectively the same as the predefined RB set 0 and the predefined RB set 1.
  • FIG. 16 is another schematic diagram of the RB set predefined in this application and the UL BWP configured with PRACH resources.
  • the UL BWP is configured with PRACH resources.
  • the RB set configured by the first configuration information ie, the RB set 0 configured by the first configuration information
  • the RB set configured by the first configuration information is a resource block set corresponding to a physical random access channel (PRACH) resource of the UL BWP.
  • PRACH physical random access channel
  • the first The RB set corresponding to the UL BWP and/or the RB set corresponding to the PRACH resource configured in the configuration information is the same as the predefined RB set.
  • the network device can determine the resources of the BWP, so as to receive or transmit data correctly.
  • the other BWPs may include a natural number of RB sets configured by the first configuration information.
  • the physical random access channel (PRACH) resource may also be a physical random access channel resource not used for contention-free random access (CFRA) based beam failure recovery (BFR), eg, the UL
  • the BWP is configured with rach-ConfigCommon and/or rach-ConfigDedicated.
  • the other BWPs may include a natural number of RB sets configured by the first configuration information; or, the physical random access channel (PRACH) resources can also be physical random access channel resources for contention-based random access (CBRA), eg, the UL BWP is configured with rach-ConfigCommon
  • the other The BWP may include a natural number of RB sets configured by the first configuration information; or, the physical random access channel (PRACH) resource may also be the PRACH resource that the terminal device will receive the RAR after using the PRACH resource to send the PRACH.
  • the other BWPs may include a natural number of RB sets configured by the first configuration information; alternatively, the physical random access channel (PRACH) resource is also a random access channel that the terminal device will receive after using the PRACH resource to send PRACH.
  • DCI downlink control information
  • RA-RNTI incoming wireless network temporary identity
  • the set of resource blocks corresponding to Physical Random Access Channel (PRACH) resources may be used to send downlink control scrambled by Random Access Response (RAR) or Temporary Cell Radio Network Temporary Identity (TC-RNTI)
  • RAR Random Access Response
  • TC-RNTI Temporary Cell Radio Network Temporary Identity
  • the resource block set of the physical uplink shared channel (PUSCH) scheduled by the information (DCI); alternatively, the resource block set corresponding to the physical random access channel (PRACH) resources may be used to send the random access response (RAR) in the CBRA Or a physical uplink shared channel (PUSCH) resource block set scheduled by downlink control information (DCI) scrambled by a temporary cell radio network temporary identity (TC-RNTI).
  • a second aspect of the embodiments of the present application further provides a method for sending and receiving data.
  • the method for sending and receiving data includes:
  • Operation 1301A receiving first configuration information, where the first configuration information is used to configure a resource block set (RB set) in a carrier;
  • Operation 1302A Receive second configuration information, where the second configuration information is used to configure a bandwidth part (BWP), where the bandwidth part (BWP) includes K resource block sets configured by the first configuration information, where K is a natural number, wherein, The BWP includes all RBs of the predefined RB set corresponding to the PRACH resource.
  • BWP bandwidth part
  • the terminal device may send or receive data on a part of the bandwidth according to the resource block set configured by the first configuration information.
  • the BWP can be made to meet the requirement of including an integer number of resource block sets (RB sets), or the network device can uniquely determine which part of the resources to receive the PUSCH.
  • RB sets resource block sets
  • Embodiments of the third aspect of the present application provide a method for sending and receiving data, which is applied to a network device and corresponds to the embodiments of the first aspect.
  • FIG. 17 is a schematic diagram of a method of an uplink transmission receiving method according to an embodiment of the seventh aspect. As shown in FIG. 17 , the method includes:
  • Operation 1701. Send first configuration information, where the first configuration information is used to configure a resource block set (RB set) in a carrier;
  • Operation 1702 Send second configuration information, where the second configuration information is used to configure a bandwidth part (BWP), where the bandwidth part includes K predefined resource block sets, where K is a natural number.
  • BWP bandwidth part
  • the resource block set configured by the first configuration information is the same as or different from the predefined resource block set.
  • the carrier is an uplink carrier, and the bandwidth portion is an uplink bandwidth portion; or, the carrier is a downlink carrier, and the bandwidth portion is a downlink bandwidth portion.
  • the bandwidth portion is an initial bandwidth portion, eg, Initial UL BWP or Initial DL BWP.
  • the bandwidth portion is a bandwidth portion configured with Physical Random Access Channel (PRACH) resources.
  • the physical random access channel (PRACH) resource is not a physical random access channel resource used for contention-free random access (CFRA) based beam failure recovery (BFR) triggering; or, the physical random access channel (PRACH) ) resource is the contention-based random access (CBRA) physical random access channel resource; or, the physical random access channel (PRACH) resource is the physical random access channel resource that the terminal device uses to send the physical random access channel resource After accessing the channel, it will receive a physical random access channel (PRACH) resource of a random access response (RAR); or, the physical random access channel (PRACH) resource is the physical random access channel resource that the terminal device uses After the physical random access channel is sent, a physical random access channel (PRACH) resource of downlink control information (DCI) scrambled by a random access radio network temporary identity (RA-RNTI) will be received.
  • DCI downlink control information
  • the method for sending and receiving data further includes:
  • Operation 1703 Receive or send data in a partial bandwidth according to a predefined resource block set or a resource block set configured according to the first configuration information.
  • data sent by the terminal device is received on the UL BWP, or data is sent to the terminal device on the DL BWP.
  • the network receives data according to a predefined set of resource blocks.
  • PUSCH physical uplink shared channel
  • RAR random access response
  • DCI downlink control information
  • TC-RNTI temporary cell radio network temporary identity
  • the received data is Random Access Response (RAR) in Contention Based Random Access (CBRA) or Downlink Control Information (DCI) scrambled by Temporary Cell Radio Network Temporary Identity (TC-RNTI) scheduling
  • RAR Random Access Response
  • CBRA Contention Based Random Access
  • DCI Downlink Control Information
  • TC-RNTI Temporary Cell Radio Network Temporary Identity
  • PUSCH physical uplink shared channel
  • the BWP can be made to meet the requirement of including an integer number of resource block sets (RB sets), or the network device can uniquely determine which part of the resources to receive the PUSCH.
  • RB sets resource block sets
  • Embodiments of the fourth aspect of the present application provide a method for sending and receiving data, which is applied to a network device and corresponds to the embodiments of the second aspect.
  • FIG. 18 is a schematic diagram of a method of an uplink transmission receiving method according to an embodiment of the seventh aspect. As shown in FIG. 18 , the method includes:
  • Operation 1801. Send first configuration information, where the first configuration information is used to configure a resource block set (RB set) in a carrier;
  • Operation 1802 Send second configuration information, where the second configuration information is used to configure a bandwidth part (BWP), where the bandwidth part (BWP) includes K resource block sets configured by the first configuration information, where K is a natural number.
  • BWP bandwidth part
  • the resource block set corresponding to the bandwidth part (BWP) configured in the second configuration information and/or the resource block set corresponding to the physical random access channel (PRACH) resource in the resource block set configured in the first configuration information is configured to be the same as the predefined
  • the set of resource blocks is the same.
  • the carrier is an uplink carrier, and the bandwidth portion is an uplink bandwidth portion; or, the carrier is a downlink carrier, and the bandwidth portion is a downlink bandwidth portion.
  • the bandwidth portion is an initial bandwidth portion, eg, Initial UL BWP or Initial DL BWP.
  • the bandwidth portion is a bandwidth portion configured with Physical Random Access Channel (PRACH) resources.
  • the physical random access channel (PRACH) resource is not a physical random access channel resource used for contention-free random access (CFRA) based beam failure recovery (BFR) triggering; or, the physical random access channel (PRACH) ) resource is the contention-based random access (CBRA) physical random access channel resource; or, the physical random access channel (PRACH) resource is the physical random access channel resource that the terminal device uses to send the physical random access channel resource After accessing the channel, it will receive a physical random access channel (PRACH) resource of a random access response (RAR); or, the physical random access channel (PRACH) resource is the physical random access channel resource that the terminal device uses After the physical random access channel is sent, a physical random access channel (PRACH) resource of downlink control information (DCI) scrambled by a random access radio network temporary identity (RA-RNTI) will be received.
  • DCI downlink control information
  • the network device receives and sends data according to the RB set configured by the first configuration information.
  • the BWP can be made to meet the requirement of including an integer number of resource block sets (RB sets), or the network device can uniquely determine which part of the resources to receive the PUSCH.
  • RB sets resource block sets
  • An embodiment of the present application provides an apparatus for sending and receiving data.
  • the apparatus may be, for example, a terminal device, or may be one or some components or components configured in the terminal device.
  • the apparatus corresponds to an embodiment of the first aspect.
  • FIG. 19 is a schematic diagram of an apparatus for sending and receiving data according to an embodiment of the present application.
  • the apparatus 1900 for sending and receiving data includes:
  • a first receiving unit 1901 which receives first configuration information, the first configuration information is used to configure a resource block set (RB set) in a carrier;
  • the second receiving unit 1902 receives second configuration information, where the second configuration information is used to configure a bandwidth part (BWP), where the bandwidth part (BWP) includes K predefined resource block sets, where K is a natural number.
  • BWP bandwidth part
  • apparatus 1900 for sending and receiving data further includes:
  • the first transceiving unit 1903 which transmits or receives data in the partial bandwidth according to a predefined resource block set or a resource block set configured according to the first configuration information.
  • the apparatus 1900 for sending and receiving data by an uplink transmission apparatus may further include other components or modules.
  • the apparatus 1900 for sending and receiving data by an uplink transmission apparatus may further include other components or modules.
  • For the specific content of these components or modules reference may be made to the related art.
  • For the specific description of each unit in the apparatus 1900 for sending and receiving data reference may be made to the embodiments of the first aspect.
  • This embodiment of the present application provides another apparatus for sending and receiving data.
  • the apparatus may be, for example, a terminal device, or may be one or some components or components configured in the terminal device.
  • the apparatus corresponds to an embodiment of the second aspect.
  • FIG. 20 is a schematic diagram of an apparatus for sending and receiving data according to an embodiment of the present application.
  • the apparatus 2000 for sending and receiving data includes:
  • a third receiving unit 2001 which receives first configuration information, where the first configuration information is used to configure a resource block set (RB set) in a carrier;
  • a fourth receiving unit 2002 which receives second configuration information, where the second configuration information is used to configure a bandwidth part (BWP), where the bandwidth part (BWP) includes K resource block sets configured by the first configuration information, K is a natural number.
  • the resource block set corresponding to the bandwidth part (BWP) and/or the resource block set corresponding to the physical random access channel (PRACH) resource in the resource block set configured in the first configuration information is configured to be the same as the predefined resource block set the same.
  • the apparatus 2000 for sending and receiving data by an uplink transmission apparatus may further include other components or modules.
  • the apparatus 2000 for sending and receiving data by an uplink transmission apparatus may further include other components or modules.
  • For the specific contents of these components or modules reference may be made to the related art.
  • For the specific description of each unit in the apparatus 2000 for sending and receiving data reference may be made to the embodiments of the first aspect.
  • the apparatuses 1900 and 2000 for sending and receiving data only exemplarily show the connection relationship or signal direction between the various components or modules, but it should be clear to those skilled in the art that various bus connections, such as bus connections, may be used. related technologies.
  • the above-mentioned components or modules may be implemented by hardware facilities such as processors, memories, transmitters, receivers, etc. The implementation of this application does not limit this.
  • the above embodiments can enable the BWP to meet the requirement of including an integer number of resource block sets (RB sets), or enable the network device to uniquely determine which part of the resources to receive the PUSCH.
  • RB sets resource block sets
  • An embodiment of the present application provides an apparatus for sending and receiving data.
  • the apparatus may be, for example, a network device, or may be one or some components or components configured in the network device.
  • the apparatus corresponds to the embodiment of the third aspect.
  • FIG. 21 is a schematic diagram of an apparatus for sending and receiving data according to an embodiment of the present application. As shown in FIG. 21 , the apparatus 2100 for sending and receiving data includes:
  • a first sending unit 2101 which sends first configuration information, where the first configuration information is used to configure a resource block set (RB set) in a carrier;
  • the second sending unit 2102 sends second configuration information, where the second configuration information is used to configure a bandwidth part (BWP), where the bandwidth part includes K predefined resource block sets, where K is a natural number.
  • BWP bandwidth part
  • the apparatus 2100 for sending and receiving data further includes:
  • the second transceiving unit 2103 is configured to receive or transmit data in the partial bandwidth according to the predefined resource block set or the resource block set configured according to the first configuration information.
  • the apparatus 2100 for sending and receiving data by an uplink transmission apparatus may further include other components or modules.
  • the apparatus 2100 for sending and receiving data by an uplink transmission apparatus may further include other components or modules.
  • For the specific content of these components or modules reference may be made to the related art.
  • This embodiment of the present application provides another apparatus for sending and receiving data.
  • the apparatus may be, for example, a network device, or may be one or some components or components configured in the network device.
  • the apparatus corresponds to an embodiment of the second aspect.
  • FIG. 22 is a schematic diagram of an apparatus for sending and receiving data according to an embodiment of the present application. As shown in FIG. 22 , the apparatus 2200 for sending and receiving data includes:
  • a third sending unit 2201 which sends first configuration information, where the first configuration information is used to configure a resource block set (RB set) in a carrier;
  • a fourth sending unit 2202 which sends second configuration information, where the second configuration information is used to configure a bandwidth part (BWP), where the bandwidth part (BWP) includes K resource block sets configured by the first configuration information, K is a natural number.
  • the resource block set corresponding to the bandwidth part (BWP) and/or the resource block set corresponding to the physical random access channel (PRACH) resource in the resource block set configured in the first configuration information is configured to be the same as the predefined resource block set the same.
  • the apparatus 2200 for sending and receiving data by an uplink transmission apparatus may further include other components or modules.
  • the apparatus 2200 for sending and receiving data by an uplink transmission apparatus may further include other components or modules.
  • For the specific contents of these components or modules reference may be made to the related art.
  • the apparatuses 2100 and 2200 for sending and receiving data only exemplarily show the connection relationship or signal direction between the various components or modules, but it should be clear to those skilled in the art that various bus connections, such as bus connections, may be used. related technologies.
  • the above-mentioned components or modules may be implemented by hardware facilities such as processors, memories, transmitters, receivers, etc. The implementation of this application does not limit this.
  • the above embodiments can enable the BWP to meet the requirement of including an integer number of resource block sets (RB sets), or enable the network device to uniquely determine which part of the resources to receive the PUSCH.
  • RB sets resource block sets
  • An embodiment of the present application further provides a communication system, and reference may be made to FIG. 1 , and the same contents as those of the embodiments of the first aspect to the sixth aspect will not be repeated.
  • the communication system 100 may include:
  • the network device 101 which includes the apparatus 2100 or 2200 for transmitting and receiving data according to the embodiment of the sixth aspect;
  • the terminal device 102 includes the apparatus 1900 or 2000 for transmitting and receiving data according to the embodiment of the fifth aspect.
  • the embodiment of the present application also provides a network device, which may be, for example, a base station, but the present application is not limited to this, and may also be other network devices.
  • a network device which may be, for example, a base station, but the present application is not limited to this, and may also be other network devices.
  • FIG. 23 is a schematic structural diagram of a network device according to an embodiment of the present application.
  • the network device 2300 may include: a processor 2310 (eg, a central processing unit CPU) and a memory 2320 ; the memory 2020 is coupled to the processor 2310 .
  • the memory 2320 can store various data; in addition, a program 2330 for information processing is also stored, and the program 2330 is executed under the control of the processor 2310 .
  • the processor 2310 may be configured to execute a program to implement the method of transceiving data according to the embodiments of the third to fourth aspects.
  • the processor 2310 may be configured to perform the following control: send configuration information and/or indication information to the terminal device.
  • the processor 2010 may be configured to execute a program to implement the uplink transmission receiving method according to the embodiment of the seventh aspect.
  • the network device 2300 may also include an apparatus 2100 or 2200 for transmitting and receiving data.
  • the network device 2300 may further include: a transceiver 2340, an antenna 2350, etc.; wherein, the functions of the above components are similar to those in the prior art, and are not repeated here. It is worth noting that the network device 2300 does not necessarily include all the components shown in FIG. 23 ; in addition, the network device 2300 may also include components not shown in FIG. 20 , and reference may be made to the prior art.
  • the embodiment of the present application also provides a terminal device, but the present application is not limited to this, and may also be other devices.
  • FIG. 24 is a schematic diagram of a terminal device according to an embodiment of the present application.
  • the terminal device 2400 may include a processor 2410 and a memory 2420 ; the memory 2420 stores data and programs, and is coupled to the processor 2410 .
  • this figure is exemplary; other types of structures may be used in addition to or in place of this structure to implement telecommunication functions or other functions.
  • the processor 2410 may be configured to execute a program to implement the method of transceiving data as described in the embodiment of the first or second aspect.
  • the terminal device 2400 may further include: a communication module 2430 , an input unit 2440 , a display 2450 , and a power supply 2460 .
  • the functions of the above components are similar to those in the prior art, and details are not repeated here. It is worth noting that the terminal device 2400 does not necessarily include all the components shown in FIG. 24 , and the above components are not required; in addition, the terminal device 2400 may also include components not shown in FIG. 24 . There is technology.
  • An embodiment of the present application further provides a computer program, wherein when the program is executed in a terminal device, the program causes the terminal device to execute the method for sending and receiving data according to the embodiments of the first to second aspects.
  • An embodiment of the present application further provides a storage medium storing a computer program, wherein the computer program enables a terminal device to execute the method for sending and receiving data described in the embodiments of the first to second aspects.
  • An embodiment of the present application further provides a computer program, wherein when the program is executed in a network device, the program causes the network device to execute the method for sending and receiving data according to the embodiments of the third to fourth aspects.
  • the embodiments of the present application further provide a storage medium storing a computer program, wherein the computer program enables a network device to execute the data sending and receiving methods described in the third to fourth aspects.
  • the apparatuses and methods above in the present application may be implemented by hardware, or may be implemented by hardware combined with software.
  • the present application relates to a computer-readable program that, when executed by logic components, enables the logic components to implement the above-described apparatus or constituent components, or causes the logic components to implement the above-described various methods or steps.
  • the present application also relates to a storage medium for storing the above program, such as a hard disk, a magnetic disk, an optical disk, a DVD, a flash memory, and the like.
  • the method/apparatus described in conjunction with the embodiments of this application may be directly embodied as hardware, a software module executed by a processor, or a combination of the two.
  • one or more of the functional block diagrams and/or one or more combinations of the functional block diagrams shown in the figures may correspond to either individual software modules of the computer program flow, or may also correspond to individual hardware modules.
  • These software modules may respectively correspond to the various steps shown in the figure.
  • These hardware modules can be implemented by, for example, solidifying these software modules using a Field Programmable Gate Array (FPGA).
  • FPGA Field Programmable Gate Array
  • a software module may reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM, or any other form of storage medium known in the art.
  • a storage medium can be coupled to the processor, such that the processor can read information from, and write information to, the storage medium; or the storage medium can be an integral part of the processor.
  • the processor and storage medium may reside in an ASIC.
  • the software module can be stored in the memory of the mobile terminal, or can be stored in a memory card that can be inserted into the mobile terminal.
  • the software module can be stored in the MEGA-SIM card or a large-capacity flash memory device.
  • the functional blocks and/or one or more combinations of the functional blocks described in the figures can be implemented as a general-purpose processor, a digital signal processor (DSP) for performing the functions described in this application ), Application Specific Integrated Circuits (ASICs), Field Programmable Gate Arrays (FPGAs) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, or any suitable combination thereof.
  • DSP digital signal processor
  • ASICs Application Specific Integrated Circuits
  • FPGAs Field Programmable Gate Arrays
  • One or more of the functional blocks and/or one or more combinations of the functional blocks described with respect to the figures can also be implemented as a combination of computing devices, eg, a combination of a DSP and a microprocessor, multiple microprocessors processor, one or more microprocessors in communication with the DSP, or any other such configuration.
  • a method for sending and receiving data, applied to a terminal device comprising:
  • Second configuration information is received, where the second configuration information is used to configure a bandwidth part (BWP), where the bandwidth part (BWP) includes K predefined resource block sets, where K is a natural number.
  • BWP bandwidth part
  • the resource block set configured by the first configuration information is the same as or different from the predefined resource block set.
  • the method also includes:
  • Data is sent or received in the partial bandwidth according to a predefined resource block set or a resource block set configured according to the first configuration information.
  • the data is a Physical Uplink Shared Channel (PUSCH) scheduled by Downlink Control Information (DCI) scrambled by Random Access Response (RAR) or Temporary Cell Radio Network Temporary Identity (TC-RNTI), and sent according to a predefined set of resource blocks the data.
  • DCI Downlink Control Information
  • RAR Random Access Response
  • TC-RNTI Temporary Cell Radio Network Temporary Identity
  • the data is a physical uplink shared channel (PUC) scheduled by Random Access Response (RAR) in Contention-Based Random Access (CBRA) or Downlink Control Information (DCI) scrambled by Temporary Cell Radio Network Temporary Identity (TC-RNTI).
  • PUC physical uplink shared channel
  • RAR Random Access Response
  • CBRA Contention-Based Random Access
  • DCI Downlink Control Information
  • TC-RNTI Temporary Cell Radio Network Temporary Identity
  • a method for sending and receiving data, applied to a terminal device comprising:
  • the bandwidth part (BWP) includes K resource block sets configured by the first configuration information, and K is a natural number;
  • the resource block set corresponding to the bandwidth part (BWP) and/or the resource block set corresponding to the physical random access channel (PRACH) resource in the resource block set configured by the first configuration information is the same as the predefined resource block set .
  • the carrier is an uplink carrier, and the bandwidth part is an uplink bandwidth part, or,
  • the carrier is a downlink carrier, and the bandwidth portion is a downlink bandwidth portion.
  • the bandwidth portion is an initial bandwidth portion or a bandwidth portion configured with physical random access channel (PRACH) resources.
  • PRACH physical random access channel
  • the physical random access channel (PRACH) resources are physical random access channel resources that are not used for contention-free random access (CFRA) based beam failure recovery (BFR).
  • PRACH physical random access channel
  • CFRA contention-free random access
  • BFR beam failure recovery
  • the physical random access channel (PRACH) resource is a physical random access channel resource for contention based random access (CBRA).
  • the physical random access channel (PRACH) resource is a physical random access channel (PRACH) on which the terminal device will receive a random access response (RAR) after using the physical random access channel resource to send the physical random access channel. )resource.
  • the physical random access channel (PRACH) resource is the scrambled random access radio network temporary identifier (RA-RNTI) that the terminal device will receive after using the physical random access channel resource to send the physical random access channel.
  • a method for sending and receiving data, applied to a network device comprising:
  • Send second configuration information where the second configuration information is used to configure a bandwidth part (BWP), where the bandwidth part includes K predefined resource block sets, where K is a natural number.
  • BWP bandwidth part
  • the resource block set configured by the first configuration information is the same as or different from the predefined resource block set.
  • the method also includes:
  • Data is received or transmitted in the partial bandwidth according to the predefined resource block set or the resource block set configured according to the first configuration information.
  • the data is a Physical Uplink Shared Channel (PUSCH) scheduled by Downlink Control Information (DCI) scrambled by Random Access Response (RAR) or Temporary Cell Radio Network Temporary Identity (TC-RNTI), received according to a predefined set of resource blocks the data.
  • DCI Downlink Control Information
  • RAR Random Access Response
  • TC-RNTI Temporary Cell Radio Network Temporary Identity
  • the data is a physical uplink shared channel (PUC) scheduled by Random Access Response (RAR) in Contention-Based Random Access (CBRA) or Downlink Control Information (DCI) scrambled by Temporary Cell Radio Network Temporary Identity (TC-RNTI).
  • PUC physical uplink shared channel
  • RAR Random Access Response
  • CBRA Contention-Based Random Access
  • DCI Downlink Control Information
  • TC-RNTI Temporary Cell Radio Network Temporary Identity
  • a method for sending and receiving data, applied to a network device comprising:
  • the bandwidth part (BWP) includes K resource block sets configured by the first configuration information, and K is a natural number
  • the resource block set corresponding to the bandwidth part (BWP) and/or the resource block set corresponding to the physical random access channel (PRACH) resource in the resource block set configured in the first configuration information is configured to be the same as the predefined resource block set the same.
  • the carrier is an uplink carrier
  • the bandwidth part is an uplink bandwidth part
  • the carrier is a downlink carrier, and the bandwidth portion is a downlink bandwidth portion.
  • the bandwidth portion is an initial bandwidth portion or a bandwidth portion configured with physical random access channel (PRACH) resources.
  • PRACH physical random access channel
  • the physical random access channel (PRACH) resource is not a physical random access channel resource used for contention-free random access (CFRA) based beam failure recovery (BFR) triggering.
  • CFRA contention-free random access
  • BFR beam failure recovery
  • the physical random access channel (PRACH) resource is a contention based random access (CBRA) physical random access channel resource.
  • PRACH physical random access channel
  • CBRA contention based random access
  • the physical random access channel (PRACH) resource is a physical random access channel (PRACH) that the terminal device will receive a random access response (RAR) after using the physical random access channel resource to send the physical random access channel.
  • PRACH physical random access channel
  • the physical random access channel (PRACH) resource is the scrambled random access radio network temporary identifier (RA-RNTI) that the terminal device will receive after using the physical random access channel resource to send the physical random access channel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种收发数据的方法、装置和通信系统,该收发数据的装置,应用于终端设备,该装置包括:第一接收单元,其接收第一配置信息,所述第一配置信息用于配置载波中的资源块集(RB set);以及第二接收单元,其接收第二配置信息,所述第二配置信息用于配置带宽部分(BWP),所述带宽部分(BWP)包括K个预定义的资源块集,K为自然数。

Description

收发数据的方法、装置和通信系统 技术领域
本申请实施例涉及通信技术领域。
背景技术
非授权频段或称为共享频段(shared spectrum)是频谱资源的重要组成部分,目前已经有很多系统支持在非授权频段的数据传输,例如WiFi,长期演进(LTE,Long Term Evolution)授权频谱辅助接入(LAA,License Assisted Access)等等。目前,新无线(NR,New Radio)系统如何支持在非授权频段工作仍在讨论中。
NR系统支持多种子载波间隔(SCS,Sub-Carrier Spacing)并且引入了部分带宽(BWP,BandWidth Part)的概念。网络设备可以通过高层信令为终端设备分别配置上行载波上的一个或多个BWP(UL BWP)和下行载波上的一个或多个BWP(DL BWP)。针对不同的BWP可以配置不同的子载波间隔(SCS,Sub-Carrier Spacing),例如SCS可以是15kHz、30kHz等。终端设备可以使用激活的BWP(active BWP)进行工作,即在激活的DL BWP上接收下行数据,在激活的UL BWP上发送上行数据。
应该注意,上面对技术背景的介绍只是为了方便对本申请的技术方案进行清楚、完整的说明,并方便本领域技术人员的理解而阐述的。不能仅仅因为这些方案在本申请的背景技术部分进行了阐述而认为上述技术方案为本领域技术人员所公知。
发明内容
目前,为了支持NR系统在非授权频段工作(For operation with shared spectrum channel access),引入了小区内保护带(intra-cell guard bands,以下简称保护带,guard band,或者GB)和资源块集(RB set)的概念。并且,针对BWP作了进一步限制,即BWP中应包括整数个资源块集(RB set)。但是发明人发现:根据现有的RB set配置方法和BWP配置方法,在有些情况下,不能满足BWP应包括整数个资源块集(RB set)的要求,或者,在网络设备不能唯一地确定在哪部分资源(i.e.RBs)接收物理上行共享信道(PUSCH)。
针对上述问题的至少之一,本申请实施例提供一种收发数据的方法、装置和通信系统,能够满足BWP应包括整数个资源块集(RB set)的要求,或者,使网络设备能够唯一地确定在哪部分资源接收物理上行共享信道(PUSCH)。
根据本申请实施例的一个方面,提供一种收发数据的方法,应用于终端设备,该方法包括:
接收第一配置信息,所述第一配置信息用于配置载波中的资源块集(RB set);以及
接收第二配置信息,所述第二配置信息用于配置带宽部分(BWP),所述带宽部分(BWP)包括K个预定义的资源块集,K为自然数。
根据本申请实施例的又一个方面,提供一种收发数据的装置,应用于终端设备,该装置包括:
第一接收单元,其接收第一配置信息,所述第一配置信息用于配置载波中的资源块集(RB set);以及
第二接收单元,其接收第二配置信息,所述第二配置信息用于配置带宽部分(BWP),所述带宽部分(BWP)包括K个预定义的资源块集,K为自然数。
根据本申请实施例的又一个方面,提供一种收发数据的方法,应用于终端设备,该方法包括:
接收第一配置信息,所述第一配置信息用于配置载波中的资源块集(RB set);以及
接收第二配置信息,所述第二配置信息用于配置带宽部分(BWP),所述带宽部分(BWP)包括K个所述第一配置信息配置的资源块集,K为自然数;
其中,所述第一配置信息配置的资源块集中对应所述带宽部分(BWP)的资源块集和/或对应物理随机接入信道(PRACH)资源的资源块集与预定义的资源块集相同。
根据本申请实施例的又一个方面,提供一种收发数据的装置,应用于终端设备,该装置包括:
第三接收单元,其接收第一配置信息,所述第一配置信息用于配置载波中的资源块集(RB set);以及
第四接收单元,其接收第二配置信息,所述第二配置信息用于配置带宽部分(BWP),所述带宽部分(BWP)包括K个所述第一配置信息配置的资源块集,K为 自然数,
其中,所述第一配置信息配置的资源块集中对应所述带宽部分(BWP)的资源块集和/或对应物理随机接入信道(PRACH)资源的资源块集与预定义的资源块集相同。
根据本申请实施例的又一个方面,提供一种收发数据的方法,应用于网络设备,该方法包括:
发送第一配置信息,所述第一配置信息用于配置载波中的资源块集(RB set);以及
发送第二配置信息,所述第二配置信息用于配置带宽部分(BWP),所述带宽部分包括K个预定义的资源块集,K为自然数。
根据本申请实施例的又一个方面,提供一种收发数据的装置,应用于网络设备,该装置包括:
第一发送单元,其发送第一配置信息,所述第一配置信息用于配置载波中的资源块集(RB set);以及
第二发送单元,其发送第二配置信息,所述第二配置信息用于配置带宽部分(BWP),所述带宽部分包括K个预定义的资源块集,K为自然数。
根据本申请实施例的又一个方面,提供一种收发数据的方法,应用于网络设备,该方法包括:
发送第一配置信息,所述第一配置信息用于配置载波中的资源块集(RB set);以及
发送第二配置信息,所述第二配置信息用于配置带宽部分(BWP),所述带宽部分(BWP)包括K个所述第一配置信息配置的资源块集,K为自然数,
其中,所述第一配置信息配置的资源块集中对应所述带宽部分(BWP)的资源块集和/或对应物理随机接入信道(PRACH)资源的资源块集配置为与预定义的资源块集相同。
根据本申请实施例的又一个方面,提供一种收发数据的装置,应用于网络设备,该装置包括:
第三发送单元,其发送第一配置信息,所述第一配置信息用于配置载波中的资源块集(RB set);以及
第四发送单元,其发送第二配置信息,所述第二配置信息用于配置带宽部分 (BWP),所述带宽部分(BWP)包括K个所述第一配置信息配置的资源块集,K为自然数,
其中,所述第一配置信息配置的资源块集中对应所述带宽部分(BWP)的资源块集和/或对应物理随机接入信道(PRACH)资源的资源块集配置为与预定义的资源块集相同。
本申请实施例的有益效果之一在于:能够使BWP满足包括整数个资源块集(RB set)的要求,或者,使网络设备能够唯一地确定在哪部分资源接收PUSCH。
参照后文的说明和附图,详细公开了本申请的特定实施方式,指明了本申请的原理可以被采用的方式。应该理解,本申请的实施方式在范围上并不因而受到限制。在所附权利要求的精神和条款的范围内,本申请的实施方式包括许多改变、修改和等同。
针对一种实施方式描述和/或示出的特征可以以相同或类似的方式在一个或更多个其它实施方式中使用,与其它实施方式中的特征相组合,或替代其它实施方式中的特征。
应该强调,术语“包括/包含”在本文使用时指特征、整件、步骤或组件的存在,但并不排除一个或更多个其它特征、整件、步骤或组件的存在或附加。
附图说明
在本申请实施例的一个附图或一种实施方式中描述的元素和特征可以与一个或更多个其它附图或实施方式中示出的元素和特征相结合。此外,在附图中,类似的标号表示几个附图中对应的部件,并可用于指示多于一种实施方式中使用的对应部件。
图1是本申请实施例的通信系统的一示意图;
图2是载波和资源块的一示例图;
图3A是保护带和资源块集的一示例图;
图3B是保护带、资源块集和部分带宽之间关系的一示例图;
图4是interlace频域资源的一示例图;
图5是网络设备和终端设备进行交互的一示意图;
图6是本申请实施例的收发数据的方法的一示意图;
图7是现有技术中不同设备的RB set和Initial BWP的一个示意图;
图8是本申请中预定义的RB set和Initial BWP的一个示意图;
图9是随机接入过程中发送PRACH和PUSCH的RB set的一个示意图;
图10不同终端设备在CBRA过程中使用的资源的一个示意图;
图11是相关技术在CBRA过程中使用的资源的一个示意图;
图12是本申请中预定义的RB set和配置了PRACH资源的UL BWP的一个示意图;
图13是本申请实施例的收发数据的方法的一示意图;
图13A是本申请实施例的收发数据的方法的一示意图;
图14是本申请中预定义的RB set和Initial BWP的一个示意图;
图15是本申请中预定义的RB set和配置了PRACH资源的UL BWP的一个示意图;
图16是本申请中预定义的RB set和配置了PRACH资源的UL BWP的另一个示意图;
图17是第七方面的实施例的上行传输接收方法的一种方法的示意图;
图18是第七方面的实施例的上行传输接收方法的一种方法的示意图;
图19是本申请实施例的收发数据的装置的一示意图;
图20是本申请实施例的收发数据的装置的一示意图;
图21是本申请实施例的收发数据的装置的一示意图;
图22是本申请实施例的收发数据的装置的一示意图;
图23是本申请实施例的网络设备的构成示意图;
图24是本申请实施例的终端设备的示意图。
具体实施方式
参照附图,通过下面的说明书,本申请的前述以及其它特征将变得明显。在说明书和附图中,具体公开了本申请的特定实施方式,其表明了其中可以采用本申请的原则的部分实施方式,应了解的是,本申请不限于所描述的实施方式,相反,本申请包括落入所附权利要求的范围内的全部修改、变型以及等同物。
在本申请实施例中,术语“第一”、“第二”等用于对不同元素从称谓上进行区分,但并不表示这些元素的空间排列或时间顺序等,这些元素不应被这些术语所限制。术 语“和/或”包括相关联列出的术语的一种或多个中的任何一个和所有组合。术语“包含”、“包括”、“具有”等是指所陈述的特征、元素、元件或组件的存在,但并不排除存在或添加一个或多个其他特征、元素、元件或组件。
在本申请实施例中,单数形式“一”、“该”等包括复数形式,应广义地理解为“一种”或“一类”而并不是限定为“一个”的含义;此外术语“所述”应理解为既包括单数形式也包括复数形式,除非上下文另外明确指出。此外术语“根据”应理解为“至少部分根据……”,术语“基于”应理解为“至少部分基于……”,除非上下文另外明确指出。
在本申请实施例中,术语“通信网络”或“无线通信网络”可以指符合如下任意通信标准的网络,例如长期演进(LTE,Long Term Evolution)、增强的长期演进(LTE-A,LTE-Advanced)、宽带码分多址接入(WCDMA,Wideband Code Division Multiple Access)、高速报文接入(HSPA,High-Speed Packet Access)等等。
并且,通信系统中设备之间的通信可以根据任意阶段的通信协议进行,例如可以包括但不限于如下通信协议:1G(generation)、2G、2.5G、2.75G、3G、4G、4.5G以及5G、新无线(NR,New Radio)等等,和/或其他目前已知或未来将被开发的通信协议。
在本申请实施例中,术语“网络设备”例如是指通信系统中将终端设备接入通信网络并为该终端设备提供服务的设备。网络设备可以包括但不限于如下设备:基站(BS,Base Station)、接入点(AP、Access Point)、发送接收点(TRP,Transmission Reception Point)、广播发射机、移动管理实体(MME、Mobile Management Entity)、网关、服务器、无线网络控制器(RNC,Radio Network Controller)、基站控制器(BSC,Base Station Controller)等等。
其中,基站可以包括但不限于:节点B(NodeB或NB)、演进节点B(eNodeB或eNB)以及5G基站(gNB),等等,此外还可包括远端无线头(RRH,Remote Radio Head)、远端无线单元(RRU,Remote Radio Unit)、中继(relay)或者低功率节点(例如femeto、pico等等)。并且术语“基站”可以包括它们的一些或所有功能,每个基站可以对特定的地理区域提供通信覆盖。术语“小区”可以指的是基站和/或其覆盖区域,这取决于使用该术语的上下文。
在本申请实施例中,术语“用户设备”(UE,User Equipment)或者“终端设备”(TE,Terminal Equipment或Terminal Device)例如是指通过网络设备接入通信网络并接收 网络服务的设备。终端设备可以是固定的或移动的,并且也可以称为移动台(MS,Mobile Station)、终端、用户台(SS,Subscriber Station)、接入终端(AT,Access Terminal)、站,等等。
其中,终端设备可以包括但不限于如下设备:蜂窝电话(Cellular Phone)、个人数字助理(PDA,Personal Digital Assistant)、无线调制解调器、无线通信设备、手持设备、机器型通信设备、膝上型计算机、无绳电话、智能手机、智能手表、数字相机,等等。
再例如,在物联网(IoT,Internet of Things)等场景下,终端设备还可以是进行监控或测量的机器或装置,例如可以包括但不限于:机器类通信(MTC,Machine Type Communication)终端、车载通信终端、设备到设备(D2D,Device to Device)终端、机器到机器(M2M,Machine to Machine)终端,等等。
此外,术语“网络侧”或“网络设备侧”是指网络的一侧,可以是某一基站,也可以包括如上的一个或多个网络设备。术语“用户侧”或“终端侧”或“终端设备侧”是指用户或终端的一侧,可以是某一UE,也可以包括如上的一个或多个终端设备。
以下通过示例对本申请实施例的场景进行说明,但本申请不限于此。
图1是本申请实施例的通信系统的示意图,示意性说明了以终端设备和网络设备为例的情况,如图1所示,通信系统100可以包括网络设备101和终端设备102、103。为简单起见,图1仅以两个终端设备和一个网络设备为例进行说明,但本申请实施例不限于此。
在本申请实施例中,网络设备101和终端设备102、103之间可以进行现有的业务或者未来可实施的业务传输。例如,这些业务可以包括但不限于:增强的移动宽带(eMBB,enhanced Mobile Broadband)、大规模机器类型通信(mMTC,massive Machine Type Communication)和高可靠低时延通信(URLLC,Ultra-Reliable and Low-Latency Communication),等等。
图2是载波和资源块的一示例图,上行和下行均适用。如图2所示,201表示一个资源块(RB),载波的带宽包括整数个RB。201a是载波的起始位置(starting position)对应的RB。
对于不同子载波间隔(subcarrier spacing),载波宽度可以由SCS-SpecificCarrier IE中的carrierBandwidth配置,载波的起始位置可以由SCS-SpecificCarrier IE中的 offsetToCarrier配置。
图3A是保护带和资源块集的一示例图,如图3A所示,201表示一个资源块(RB),各RB set(例如,RB set 0,RB set 1,RB set 2,RB set 3)分别包括整数个RB,各GB(例如,GB 0,GB 1,GB 2)分别包括整数个RB。两个资源块集之间具有保护带,例如,RB set 0和RB set 1之间具有GB 0。。载波的带宽包括整数个RB,例如,在图3A中,载波的带宽包括RB set 0,RB set 1,RB set 2,RB set 3以及GB 0,GB 1,GB 2,每个RB set和GB分别包括整数个RB,因此,载波的带宽包括整数个RB。此外,在图2中,201a是RB set 0的第一个RB,也是载波的起始位置(starting position)对应的RB(即第一个RB)。
图3B是保护带、资源块集和部分带宽之间关系的一示例图,下行和上行均适用。如图3B所示,一个BWP包括整数个RB set,BWP的起始RB和最后一个RB分别是其包括的第一个RB set的起始RB和最后一个RB set的最后一个RB。例如,图3B的BWP包括RB set 1和RB set 2,RB set 1和RB set 2之间具有GB 1,BWP的起始RB是RB set 1的起始RB,BWP的最后一个RB是RB set 2的最后一个RB。
此外,针对非授权频段(For operation with shared spectrum channel access)的上行传输,还引入了第二类型资源分配(Type 2resource allocation)。网络设备可通过高层信令指示终端设备采用交错(interlace)的资源块(Interlaced resource blocks)发送上行传输。若采用这种资源分配方式,网络设备在调度终端设备发送PUSCH或PUCCH时,会指示终端设备采用哪些交错(interlace)的资源块(Interlaced resource blocks)发送。
interlace的数目与子载波间隔相关。例如,子载波间隔与interlace数目的对应关系如下表1所示。即,若子载波间隔为15kHz(μ=0),则分为10个RB interlaces(M=10);若子载波间隔为30kHz(μ=1),则分为5个RB interlaces(M=5)。
表1
μ M
0 10
1 5
载波上的每M个RBs分别依次属于M个interlace。图4是载波上的RBs与interlace的关系的一示例图,以上行载波包括整数个子载波间隔为15kHz的RB为例(即M= 10)。如图4所示,具有相同数字标号的RB属于一个interlace,例如,图4用虚线指示出标号为6的3个RB(图中仅示意图标识了3个,不限于这3个)属于一个interlace。
图5是网络设备和终端设备进行交互的一示意图,如图5所示,网络设备可以向终端设备发送第一配置信息,该第一配置信息用于配置RB set,此外还可以向终端设备发送第二配置信息,该第二配置信息用于配置BWP,这两种配置信息可以同时地发送(例如包括在同一RRC消息中),也可以分别(不同时地)发送。
如图5所示,网络设备可以在激活的(active)DL BWP上向终端设备发送用于调度上行传输的指示信息,终端设备确定UL BWP上的频域资源后,在确定的频域资源上发送上行传输。
图5对本申请实施例的网络设备和终端设备之间的交互进行了示意性说明。但本申请不限于此,例如可以省略其中的一个或多个操作,或者增加其他的一个或多个操作。
在以下的说明中,在不引起混淆的情况下,术语“上行控制信号”和“上行控制信息(UCI,Uplink Control Information)”或“物理上行控制信道(PUCCH,Physical Uplink Control Channel)”可以互换,术语“上行数据信号”和“上行数据信息”或“物理上行共享信道(PUSCH,Physical Uplink Shared Channel)”可以互换;
术语“下行控制信号”和“下行控制信息(DCI,Downlink Control Information)”或“物理下行控制信道(PDCCH,Physical Downlink Control Channel)”可以互换,术语“下行数据信号”和“下行数据信息”或“物理下行共享信道(PDSCH,Physical Downlink Shared Channel)”可以互换。
另外,发送或接收PUSCH可以理解为发送或接收由PUSCH承载的上行数据,发送或接收PUCCH可以理解为发送或接收由PUCCH承载的上行信息,发送或接收PRACH可以理解为发送或接收由PRACH承载的preamble;上行信号可以包括上行数据信号和/或上行控制信号等,也可以称为上行传输(UL transmission)或上行信息或上行信道。在上行资源上发送上行传输可以理解为使用该上行资源发送该上行传输。类似地,可以相应地理解下行数据/信号/信道/信息。
在本申请实施例中,高层信令例如可以是无线资源控制(RRC)信令;例如称为RRC消息(RRC message),例如包括MIB、系统信息(system information)、专用RRC消息;或者称为RRC IE(RRC information element)。高层信令例如还可以是 MAC(Medium Access Control)信令;或者称为MAC CE(MAC control element)。但本申请不限于此。
第一方面的实施例
在有些情况下,BWP不能满足包括整数个资源块集(RB set)的要求,或者,网络设备不能唯一地确定在哪部分资源接收物理上行共享信道(PUSCH)。
至少针对该问题,本申请实施例提供一种收发数据的方法,从终端设备侧进行说明,终端设备与网络设备的交互过程可以参考图5。
图6是本申请实施例的收发数据的方法的一示意图,如图6所示,该方法包括:
操作601、接收第一配置信息,所述第一配置信息用于配置资源块集(RB set);以及
操作602、接收第二配置信息,所述第二配置信息用于配置带宽部分(BWP),所述带宽部分(BWP)包括K个预定义的资源块集,K为自然数。
值得注意的是,以上附图6仅对本申请实施例进行了示意性说明,但本申请不限于此。例如可以适当地调整各个操作之间的执行顺序,此外还可以增加其他的一些操作或者减少其中的某些操作。本领域的技术人员可以根据上述内容进行适当地变型,而不仅限于上述附图6的记载。
根据本申请第一方面的实施例,第二配置信息配置的BWP包括K个预定义的资源块集,由此,能够使BWP满足包括整数个资源块集(RB set)的要求,或者,使网络设备能够唯一地确定在哪部分资源接收PUSCH。
在一些实施例中,第一配置信息可以是intraCellGuardBandsUL-r16或intraCellGuardBandsDL-r16。网络设备可以通过高层信令发送该第一配置信息。例如,intraCellGuardBandsUL-r16和intraCellGuardBandsDL-r16用于分别配置上行载波和下行载波的资源块集(RB set)。第一配置信息提供了载波中N RB-set,x-1GB中每个GB的起始RB信息(由第一配置信息中的startCRB-r16提供)和大小(由第一配置信息中的nrofCRBs-r16提供)信息,进而,根据第一配置信息,UE可以确定载波中N RB-set,x-1GB和N RB-set,x个RB set分别包括的RBs。也就是说,第一配置信息用于配置RB set。
如果终端设备没有被提供intraCellGuardBandsUL-r16或 intraCellGuardBandsDL-r16,则终端设备按照RAN4协议定义的nominal intra-cell guard band and RB set pattern确定小区内的保护带和/或资源块集(即预定义的资源块集)。例如,以上行为例,在终端设备被配置了intraCellGuardBandsUL-r16的情况下,终端设备根据intraCellGuardBandsUL-r16中包括的参数确定GB和RB set。又例如,以上行为例,在终端设备没有被配置intraCellGuardBandsUL-r16的情况下,终端设备根据预定义的GB和RB set确定GB和RB set中包括的RB(例如,RB的CRB indices)。
在一些实施例中,第二配置信息例如是initialUplinkBWP,initialDownlinkBWP BWP-Uplink或BWP-Downlink等。
在一些实施例中,第一配置信息和第二配置信息可以由无线资源控制(RRC)信令发送。
在一些实施例中,第一配置信息配置的资源块集与预定义的资源块集相同或不同。
在一些实施例中,该载波可以是上行载波,由此,该BWP为上行带宽部分(UL BWP);或者,该载波也可以是下行载波,由此,该BWP是下行带宽部分(DL BWP)。
下面,针对不同的场景,说明本申请第一方面实施例的收发数据的方法。
场景1、
由于第一配置信息(例如,intraCellGuardBandsUL-r16)是终端设备特定的(UE-specific),不同终端设备对于载波上各GB和RB set包括的RBs的理解可能不同;而Initial BWP是小区特定的(cell-specific)的,即,同一个小区中各终端设备的Initial BWP相同。也就是说,对于同一小区中的不同终端设备,在第二配置信息配置的是initial BWP的情况下,其接收到的第二配置信息配置的BWP包括的RBs是相同的。因此,在现有技术中,对于部分终端设备来说(例如图7中的UE2),Initial BWP可能包括非整数个RB set,不满足BWP包括整数个RB set的要求。
图7是现有技术中不同设备的RB set和Initial BWP的一个示意图。如图7所示,终端设备UE1和UE2对于载波上GB和RB set包括的RBs的理解不同,例如,终端设备UE2的GB为0,即,没有被配置GB。终端设备UE1和UE2的RB set不同。Initial BWP包括整数个(例如,1个)终端设备UE1的RB set,然而,Initial BWP包括非整数个终端设备UE2的RB set。因此,对于终端设备UE2,Initial BWP不满足BWP包括整数个RB set的要求。
针对场景1,在第一方面实施例的收发数据的方法中,操作602中涉及的BWP 为初始的带宽部分(Initial BWP),例如,初始的上行带宽部分(Initial UL BWP)或初始的下行带宽部分(Initial DL BWP)。
因此,根据本申请第一方面实施例,针对初始的上行带宽部分(Initial UL BWP),第二配置信息(例如,initialUplinkBWP)配置的BWP包括K个预定义的资源块集;针对初始的下行带宽部分(Initial DL BWP),第二配置信息(例如,initialDownlinkBWP)配置的BWP应包括K个预定义的资源块集。例如,第二配置信息配置的Initial UL BWP或Initial DL BWP包括1个预定义的RB set,即,该Initial UL BWP或Initial DL BWP的第一个RB是该预定义的RB set的起始RB,该Initial UL BWP或Initial DL BWP的最后一个RB是该预定义的RB set的最后一个RB。也就是说,initial BWP是否满足应包括整数个RB set的要求始终以是否包括整数个预定义的RB set为准,而非第一配置信息配置的RB set。这样,在保证initial BWP能够满足包括整数个RB set的要求的同时,也能够允许网络设备通过第一配置信息为每个终端设备灵活地配置UE-specific的RB set。
图8是本申请中预定义的RB set和Initial BWP的一个示意图。如图8所示,该Initial BWP可以是Initial UL BWP或Initial DL BWP。该Initial BWP包括1个预定义的RB set。第一配置信息配置的RB set与预定义的RB set不同。此外,本申请可以不限于此,第一配置信息配置的RB set与预定义的RB set可以相同。
如图8所示,针对终端设备的其它的BWP(即不是initial(DL/UL)BWP的(DL/UL)BWP),该其它的BWP(如图8中的non-initial BWP 1和non-initial BWP 2)可以包括自然数个由第一配置信息配置的RB set。
在一些实施例中,initial UL BWP也可以称为由initialUplinkBWP配置的UL BWP,initial DL BWP也可以称为由initialDownlinkBWP配置的DL BWP,不是initial UL BWP的DL BWP也可以称为由BWP-Uplink配置的UL BWP,不是initial DL BWP的DL BWP也可以称为由BWP-Downlink配置的DL BWP。
场景2、
在随机接入过程中,终端设备发送前导码(preamble)(即,PRACH)之后,若终端设备接收到随机接入响应(RAR)或临时小区无线网络临时标识(TC-RNTI)加 扰的下行控制信息(DCI),终端设备将采用发送该PRACH的RB set发送该RAR或DCI调度的PUSCH。
图9是随机接入过程中发送PRACH和PUSCH的RB set的一个示意图。如图9所示,终端设备的激活的(active)UL BWP包括两个RB set(即,RB set 0和RB set 1)。终端设备采用RB set 0发送PRACH,在接收到与该发送的PRACH关联的RAR或TC-RNTI加扰的DCI之后,终端设备采用RB set 0发送由RAR或TC-RNTI加扰的DCI调度的PUSCH。其中,该RAR和DCI中指示了interlace,终端设备可以根据指示的interlace和发送PRACH的RB set确定用于发送PUSCH的资源。更具体地,终端设备采用上述PRACH所在的RB set与上述RAR或DCI指示的interlace中包括的RBs的交集中的RBs发送上述PUSCH。
然而,在基于竞争的随机接入(CBRA)过程中,网络设备在采用RAR或TC-RNTI加扰的DCI调度终端设备发送PUSCH时,不能确定是针对哪一个终端设备进行调度。由于不同终端设备的BWP、RB set配置不同,网络设备不能唯一确定在哪部分资源接收PUSCH。
图10不同终端设备在CBRA过程中使用的资源的一个示意图。如图10所示,如果终端设备UE1和终端设备UE2采用相同的资源分别发送PRACH,但是由于对载波上GB和RB set包括的RBs的理解不同,两个终端设备确定出来的RB set包括的RB是不同的,即,图中UE1的RB set 0和UE2的RB set 0包括的RB是不同的。进而,导致最后确定的用于发送PUSCH的资源不同。因此,网络设备不能唯一地确定在哪部分资源接收PUSCH。
图11是相关技术在CBRA过程中使用的资源的一个示意图。在相关技术中,假设小区内的UE都使用预定义的RB set发送上行数据。但是,如图11所示,由于终端设备UE1和UE2的RB set不同,对于BWP配置的限制也就不同。终端设备只能在BWP的范围内收发数据,即使终端设备UE2假设预定义的RB set 0用于发送PUSCH,由于UE2的BWP范围的限制,UE2实际可以用于发送PUSCH的资源为UE2的BWP与预定义的RB set 0重叠的部分,该重叠的部分仍与UE1用于发送PUSCH的资源不同(即,UE1的RB set 0与预定的义的RB set 0相同,并且,UE1的BWP包括1个UE1的RB set 0,因此,UE1用于发送PUSCH的资源为RB set 0)。因此,网络设备仍不能唯一确定资源。也就是说,在图11所示的情况下,相关技术 仍存在网络设备不能唯一确定在哪部分资源接收PUSCH的技术问题。。
针对场景2,在第一方面实施例的收发数据的方法中,操作602中涉及的BWP为配置了物理随机接入信道(PRACH)资源的带宽部分。
因此,根据本申请第一方面实施例,针对配置了PRACH资源的UL BWP(或者说,针对配置了rach-ConfigCommon和/或rach-ConfigDedicated和/或rach-ConfigBFR的UL BWP),第二配置信息配置的该BWP包括K个预定义的资源块集,K为自然数。由此,网络设备能够确定该BWP的资源,从而正确地接收或发送数据。此外,针对终端设备的其它的BWP,该其它的BWP可以包括自然数个由第一配置信息配置的RB set。
图12是本申请中预定义的RB set和配置了PRACH资源(PRACH resource)的UL BWP的一个示意图。如图12所示,该UL BWP可以包括2个预定义的RB set(即,预定义的RB set 0和RB set 1)。第一配置信息配置的RB set与预定义的RB set不同。此外,本申请可以不限于此,第一配置信息配置的RB set与预定义的RB set可以相同。
在至少一个实施例中,该物理随机接入信道(PRACH)资源也可以是不用于基于非竞争随机接入(CFRA)的波束失败恢复(BFR)的物理随机接入信道资源,例如,该UL BWP被配置了rach-ConfigCommon和/或rach-ConfigDedicated,此外,针对终端设备的其它的BWP,该其它的BWP可以包括自然数个由第一配置信息配置的RB set;或者,该物理随机接入信道(PRACH)资源是用于基于竞争的随机接入(CBRA)的物理随机接入信道资源,例如,该UL BWP被配置了rach-ConfigCommon,此外,针对终端设备的其它的BWP,该其它的BWP可以包括自然数个由第一配置信息配置的RB set;或者,该物理随机接入信道(PRACH)资源是终端设备在采用该PRACH资源发送PRACH后会接收RAR的PRACH资源,此外,针对终端设备的其它的BWP,该其它的BWP可以包括自然数个由第一配置信息配置的RB set;或者,该物理随机接入信道(PRACH)资源是终端设备在采用该PRACH资源发送PRACH后会接收随机接入无线网络临时标识(RA-RNTI)加扰的下行控制信息(DCI)的PRACH资源,此外,针对终端设备的其它的BWP,该其它的BWP可以包括自然数个由第一配置信息配置的RB set。
需要说明的是,本申请第一方面实施例的收发数据的方法不仅能适用于上述场景1和场景2,也可以适用于其它的场景。
下面,对于本申请第一方面实施例的收发数据的方法进行进一步说明。
如图6所示,收发数据的方法还包括如下操作:
操作603、根据预定义的资源块集或者根据第一配置信息配置的资源块集,在该部分带宽发送或接收数据。
由此,在第二配置信息配置了包括K个预定义的RB set的BWP,并且第一配置信息配置了RB set的情况下,终端设备能够根据适当的RB set进行数据的收发。
在操作603中,能够在操作602涉及的BWP上发送数据或接收数据。例如,BWP为UL BWP,则操作603在该UL BWP上发送上行数据;BWP为DL BWP,则操作603在该DL BWP上接收下行数据。
在操作603中,预定义的资源块集,例如可以是图8或图12所示的预定义的资源块集;第一配置信息配置的资源块集,例如可以是图8或图12所示的第一配置信息配置的资源块集。
在操作603中,可以基于不同方式调度的数据,根据预定义的RB set或者第一配置信息配置的RB set在该BWP发送或接收数据。
例如,被发送的数据是随机接入响应(RAR)或临时小区无线网络临时标识(TC-RNTI)加扰的下行控制信息(DCI)调度的物理上行共享信道(PUSCH),则根据预定义的资源块集发送该数据;又例如,被发送的数据是基于竞争的随机接入(CBRA)中的随机接入响应(RAR)或临时小区无线网络临时标识(TC-RNTI)加扰的下行控制信息(DCI)调度的物理上行共享信道(PUSCH),则根据预定义的资源块集发送该数据。
此外,当根据第一配置信息配置的RB set在该BWP发送或接收数据时,使用第一配置信息配置的RB set与第二配置信息配置的BWP的重叠的RBs(即两者包括的RBs的交集中的RBs)发送或接收数据。
根据本申请第一方面的实施例,第二配置信息配置的BWP包括K个预定义的资源块集,由此,能够使BWP满足包括整数个资源块集(RB set)的要求,或者,使网络设备能够唯一地确定在哪部分资源接收PUSCH。
第二方面的实施例
至少针对与第一方面的实施例相同的问题,本申请第二方面的实施例提供一种收发数据的方法,从终端设备侧进行说明,终端设备与网络设备的交互过程可以参考图5。
图13是本申请实施例的收发数据的方法的一示意图,如图13所示,该方法包括:
操作1301、接收第一配置信息,所述第一配置信息用于配置载波中的资源块集(RB set);以及
操作1302、接收第二配置信息,所述第二配置信息用于配置带宽部分(BWP),所述带宽部分(BWP)包括K个第一配置信息配置的资源块集,K为自然数。
其中,第一配置信息配置的资源块集中对应操作1302中配置的带宽部分(BWP)的资源块集和/或对应物理随机接入信道(PRACH)资源的资源块集与预定义的资源块集相同。
值得注意的是,以上附图13仅对本申请实施例进行了示意性说明,但本申请不限于此。例如可以适当地调整各个操作之间的执行顺序,此外还可以增加其他的一些操作或者减少其中的某些操作。本领域的技术人员可以根据上述内容进行适当地变型,而不仅限于上述附图13的记载。
根据本申请第二方面的实施例,能够使BWP满足包括整数个资源块集(RB set)的要求,或者,使网络设备能够唯一地确定在哪部分资源接收PUSCH。
在第二方面的实施例中,关于第一配置信息的说明与第一方面的实施例相同。
例如,在一些实施例中,第一配置信息可以是intraCellGuardBandsUL-r16或intraCellGuardBandsDL-r16。网络设备可以通过高层信令发送该第一配置信息。例如,intraCellGuardBandsUL-r16和intraCellGuardBandsDL-r16用于分别配置上行载波和下行载波的资源块集(RB set)。第一配置信息提供了载波中N RB-set,x-1GB中每个GB的起始RB信息(由第一配置信息中的startCRB-r16提供)和大小(由第一配置信息中的nrofCRBs-r16提供)信息,进而,根据第一配置信息,UE可以确定载波中N RB-set,x-1GB和N RB-set,x个RB set分别包括的RBs。也就是说,第一配置信息用于配置RB set。
如果终端设备没有被提供intraCellGuardBandsUL-r16或intraCellGuardBandsDL-r16,则终端设备按照RAN4协议定义的nominal intra-cell  guard band and RB set pattern确定小区内的保护带和/或资源块集(即预定义的资源块集)。例如,以上行为例,在终端设备被配置了intraCellGuardBandsUL-r16的情况下,终端设备根据intraCellGuardBandsUL-r16中包括的参数确定GB和RB set。又例如,以上行为例,在终端设备没有被配置intraCellGuardBandsUL-r16的情况下,终端设备根据预定义的GB和RB set确定GB和RB set中包括的RB(例如,RB的CRB indices)。
在一些实施例中,第二配置信息例如是initialUplinkBWP,initialDownlinkBWP BWP-Uplink或BWP-Downlink等。
在一些实施例中,第一配置信息和第二配置信息可以由无线资源控制(RRC)信令发送。
在一些实施例中,第一配置信息配置的资源块集与预定义的资源块集相同或不同。
在一些实施例中,该载波可以是上行载波,由此,该BWP为上行带宽部分(UL BWP);或者,该载波也可以是下行载波,由此,该BWP是下行带宽部分(DL BWP)。
下面,针对不同的场景,说明本申请第二方面实施例的收发数据的方法。
场景1、
在场景1中,第二配置信息配置的BWP为初始的带宽部分(Initial BWP),例如,初始的上行带宽部分(Initial UL BWP)或初始的下行带宽部分(Initial DL BWP)。
在场景1中,根据本申请第二方面实施例,针对第二配置信息(例如,initialUplinkBWP)配置的初始的上行带宽部分(Initial UL BWP),第一配置信息配置的RB set中对应该Initial UL BWP的RB set与预定义的RB set相同;针对第二配置信息(例如,initialDownlinkBWP)配置的初始的下行带宽部分(Initial DL BWP),第一配置信息配置的RB set中对应该Initial DL BWP的RB set与预定义的RB set相同。其中,第二配置信息配置的Initial UL BWP或Initial DL BWP包括1个第一配置信息配置的RB set,即,该Initial UL BWP或Initial DL BWP的第一个RB是第一配置信息配置的RB set的起始RB,该Initial UL BWP或Initial DL BWP的最后一个RB是第一配置信息配置的RB set的最后一个RB。由此,针对小区中的不同UE,initial BWP都能够满足包括整数个RB set的要求。
图14是本申请中预定义的RB set和Initial BWP的一个示意图。如图14所示,该Initial BWP可以是Initial UL BWP或Initial DL BWP。该Initial BWP包括1个第一配置信息配置的RB set。第一配置信息配置的RB set与预定义的RB set相同。
在一些实施例中,initial UL BWP也可以称为由initialUplinkBWP配置的UL BWP,initial DL BWP也可以称为由initialDownlinkBWP配置的DL BWP,不是initial UL BWP的DL BWP也可以称为由BWP-Uplink配置的UL BWP,不是initial DL BWP的DL BWP也可以称为由BWP-Downlink配置的DL BWP。
场景2、
在场景2中,操作1302中涉及的由第二配置信息配置的BWP为配置了物理随机接入信道(PRACH)资源的带宽部分。
图15是本申请中预定义的RB set和配置了PRACH资源的UL BWP的一个示意图。如图15所示,UL BWP被配置了PRACH资源。该UL BWP可以包括2个由第一配置信息配置的RB set(即,第一配置信息配置的RB set 0和RB set 1)。第一配置信息配置的RB set与预定义的RB set相同,即,第一配置信息配置的RB set 0和RB set 1分别与预定义的RB set 0和预定义的RB set 1相同。
图16是本申请中预定义的RB set和配置了PRACH资源的UL BWP的另一个示意图。如图16所示,UL BWP被配置了PRACH资源。由第一配置信息配置的RB set(即,第一配置信息配置的RB set 0)是对应于该UL BWP的物理随机接入信道(PRACH)资源的资源块集。第一配置信息配置的RB set与预定义的RB set相同,即,第一配置信息配置的RB set 0与预定义的RB set 0相同。
在场景2中,根据本申请第二方面实施例,针对配置了PRACH资源的UL BWP(或者说,针对配置了rach-ConfigCommon和/或rach-ConfigDedicated和/或rach-ConfigBFR的UL BWP),第一配置信息配置的对应该UL BWP的RB set和/或对应该PRACH资源的RB set与预定义的RB set相同。由此,网络设备能够确定该BWP的资源,从而正确地接收或发送数据。此外,针对终端设备的其它的BWP,该其它的BWP可以包括自然数个由第一配置信息配置的RB set。
在至少一个实施例中,该物理随机接入信道(PRACH)资源也可以是不用于基于非竞争随机接入(CFRA)的波束失败恢复(BFR)的物理随机接入信道资源,例如,该UL BWP被配置了rach-ConfigCommon和/或rach-ConfigDedicated,此外,针对终端设备的其它的BWP,该其它的BWP可以包括自然数个由第一配置信息配置的RB set;或者,该物理随机接入信道(PRACH)资源也可以是用于基于竞争的随机接入(CBRA)的物理随机接入信道资源,例如,该UL BWP被配置了rach-ConfigCommon 此外,针对终端设备的其它的BWP,该其它的BWP可以包括自然数个由第一配置信息配置的RB set;或者,该物理随机接入信道(PRACH)资源也可以是终端设备在采用PRACH资源发送PRACH后会接收RAR的PRACH资源,此外,针对终端设备的其它的BWP,该其它的BWP可以包括自然数个由第一配置信息配置的RB set;或者,该物理随机接入信道(PRACH)资源也是终端设备在采用PRACH资源发送PRACH后会接收随机接入无线网络临时标识(RA-RNTI)加扰的下行控制信息(DCI)的PRACH资源,此外,针对终端设备的其它的BWP,该其它的BWP可以包括自然数个由第一配置信息配置的RB set。
在一些实施例中,对应物理随机接入信道(PRACH)资源的资源块集即可能用于发送由随机接入响应(RAR)或临时小区无线网络临时标识(TC-RNTI)加扰的下行控制信息(DCI)调度的物理上行共享信道(PUSCH)的资源块集;或者,对应物理随机接入信道(PRACH)资源的资源块集即可能用于发送由CBRA中的随机接入响应(RAR)或临时小区无线网络临时标识(TC-RNTI)加扰的下行控制信息(DCI)调度的物理上行共享信道(PUSCH)的资源块集。
针对场景2,本申请实施例的第二方面还提供一种收发数据的方法,如图13A所示,该收发数据的方法包括:
操作1301A、接收第一配置信息,第一配置信息用于配置载波中的资源块集(RB set);以及
操作1302A、接收第二配置信息,所述第二配置信息用于配置带宽部分(BWP),所述带宽部分(BWP)包括K个第一配置信息配置的资源块集,K为自然数,其中,BWP包括PRACH资源对应的预定义的RB set的全部RBs。
关于操作1301A、1302A中第一配置信息、第二配置信息和BWP的说明,可以参考对针对操作1301、1302中相应特征在场景2中的说明。
需要说明的是,本申请第二方面实施例的收发数据的方法(如图13所示)不仅能适用于上述场景1和场景2,也可以适用于其它的场景。
在第二方面的实施例中,终端设备可以根据第一配置信息配置的资源块集,在部分带宽上发送或接收数据。
根据本申请第二方面的实施例,能够使BWP满足包括整数个资源块集(RB set)的要求,或者,使网络设备能够唯一地确定在哪部分资源接收PUSCH。
第三方面的实施例
本申请第三方面的实施例提供一种收发数据的方法,应用于网络设备,与第一方面的实施例对应。
图17是第七方面的实施例的上行传输接收方法的一种方法的示意图,如图17所示,该方法包括:
操作1701、发送第一配置信息,所述第一配置信息用于配置载波中的资源块集(RB set);以及
操作1702、发送第二配置信息,所述第二配置信息用于配置带宽部分(BWP),所述带宽部分包括K个预定义的资源块集,K为自然数。
在一些实施例中,第一配置信息配置的资源块集与预定义的资源块集相同或不同。
在一些实施例中,该载波是上行载波,该带宽部分为上行带宽部分;或者,该载波是下行载波,该带宽部分是下行带宽部分。
在一些实施例中,该带宽部分为初始的带宽部分,例如,Initial UL BWP或者Initial DL BWP。
在另一些实施例中,该带宽部分是配置了物理随机接入信道(PRACH)资源的带宽部分。例如,该物理随机接入信道(PRACH)资源不是用于基于非竞争随机接入(CFRA)的波束失败恢复(BFR)触发的物理随机接入信道资源;或者,该物理随机接入信道(PRACH)资源是基于竞争的随机接入(CBRA)的物理随机接入信道资源;或者,物理随机接入信道(PRACH)资源是所述终端设备在采用该物理随机接入信道资源发送所述物理随机接入信道后会接收随机接入响应(RAR)的物理随机接入信道(PRACH)资源;或者,该物理随机接入信道(PRACH)资源是所述终端设备在采用该物理随机接入信道资源发送所述物理随机接入信道后会接收随机接入无线网络临时标识(RA-RNTI)加扰的下行控制信息(DCI)的物理随机接入信道(PRACH)资源。
如图17所示,该数据的收发方法还包括:
操作1703、根据预定义的资源块集或者根据所述第一配置信息配置的资源块集,在部分带宽接收或发送数据。
例如,在操作1703中,根据预定义的资源块集或者根据第一配置信息配置的资 源块集,在UL BWP上接收终端设备发送的数据,或者,在DL BWP上向终端设备发送数据。
在操作1703中,在接收的数据是随机接入响应(RAR)或临时小区无线网络临时标识(TC-RNTI)加扰的下行控制信息(DCI)调度的物理上行共享信道(PUSCH)时,网络设备根据预定义的资源块集接收数据。
在操作1703中,在接收的数据是基于竞争的随机接入(CBRA)中的随机接入响应(RAR)或临时小区无线网络临时标识(TC-RNTI)加扰的下行控制信息(DCI)调度的物理上行共享信道(PUSCH),网络设备根据预定义的资源块集接收数据。
根据本申请第三方面的实施例,能够使BWP满足包括整数个资源块集(RB set)的要求,或者,使网络设备能够唯一地确定在哪部分资源接收PUSCH。
第四方面的实施例
本申请第四方面的实施例提供一种收发数据的方法,应用于网络设备,与第二方面的实施例对应。
图18是第七方面的实施例的上行传输接收方法的一种方法的示意图,如图18所示,该方法包括:
操作1801、发送第一配置信息,所述第一配置信息用于配置载波中的资源块集(RB set);以及
操作1802、发送第二配置信息,所述第二配置信息用于配置带宽部分(BWP),所述带宽部分(BWP)包括K个所述第一配置信息配置的资源块集,K为自然数。
其中,第一配置信息配置的资源块集中对应第二配置信息配置的带宽部分(BWP)的资源块集和/或对应物理随机接入信道(PRACH)资源的资源块集配置为与预定义的资源块集相同。
在一些实施例中,该载波是上行载波,该带宽部分为上行带宽部分;或者,该载波是下行载波,该带宽部分是下行带宽部分。
在一些实施例中,该带宽部分为初始的带宽部分,例如,Initial UL BWP或者Initial DL BWP。
在另一些实施例中,该带宽部分是配置了物理随机接入信道(PRACH)资源的带宽部分。例如,该物理随机接入信道(PRACH)资源不是用于基于非竞争随机接 入(CFRA)的波束失败恢复(BFR)触发的物理随机接入信道资源;或者,该物理随机接入信道(PRACH)资源是基于竞争的随机接入(CBRA)的物理随机接入信道资源;或者,物理随机接入信道(PRACH)资源是所述终端设备在采用该物理随机接入信道资源发送所述物理随机接入信道后会接收随机接入响应(RAR)的物理随机接入信道(PRACH)资源;或者,该物理随机接入信道(PRACH)资源是所述终端设备在采用该物理随机接入信道资源发送所述物理随机接入信道后会接收随机接入无线网络临时标识(RA-RNTI)加扰的下行控制信息(DCI)的物理随机接入信道(PRACH)资源。
在第四方面的实施例中,网络设备根据第一配置信息配置的RB set接收和发送数据。
根据本申请第四方面的实施例,能够使BWP满足包括整数个资源块集(RB set)的要求,或者,使网络设备能够唯一地确定在哪部分资源接收PUSCH。
第五方面的实施例
本申请实施例提供一种收发数据的装置。该装置例如可以是终端设备,也可以是配置于终端设备的某个或某些部件或者组件。该装置对应于第一方面的实施例。
图19是本申请实施例的收发数据的装置的一示意图,如图19所示,收发数据的装置1900包括:
第一接收单元1901,其接收第一配置信息,所述第一配置信息用于配置载波中的资源块集(RB set);以及
第二接收单元1902,其接收第二配置信息,所述第二配置信息用于配置带宽部分(BWP),所述带宽部分(BWP)包括K个预定义的资源块集,K为自然数。
此外,收发数据的装置1900还包括:
第一收发单元1903,其根据预定义的资源块集或者根据所述第一配置信息配置的资源块集,在所述部分带宽发送或接收数据。
值得注意的是,以上仅对与本申请相关的各部件或模块进行了说明,但本申请不限于此。上行传输装置收发数据的装置1900还可以包括其他部件或者模块,关于这些部件或者模块的具体内容,可以参考相关技术。关于收发数据的装置1900中各单元的具体说明,可以参考第一方面的实施例。
本申请实施例提供另一种收发数据的装置。该装置例如可以是终端设备,也可以是配置于终端设备的某个或某些部件或者组件。该装置对应于第二方面的实施例。
图20是本申请实施例的收发数据的装置的一示意图,如图20所示,收发数据的装置2000包括:
第三接收单元2001,其接收第一配置信息,所述第一配置信息用于配置载波中的资源块集(RB set);以及
第四接收单元2002,其接收第二配置信息,所述第二配置信息用于配置带宽部分(BWP),所述带宽部分(BWP)包括K个所述第一配置信息配置的资源块集,K为自然数。
其中,所述第一配置信息配置的资源块集中对应所述带宽部分(BWP)的资源块集和/或对应物理随机接入信道(PRACH)资源的资源块集配置为与预定义的资源块集相同。
值得注意的是,以上仅对与本申请相关的各部件或模块进行了说明,但本申请不限于此。上行传输装置收发数据的装置2000还可以包括其他部件或者模块,关于这些部件或者模块的具体内容,可以参考相关技术。关于收发数据的装置2000中各单元的具体说明,可以参考第一方面的实施例。
此外,为了简单起见,收发数据的装置1900、2000中仅示例性示出了各个部件或模块之间的连接关系或信号走向,但是本领域技术人员应该清楚的是,可以采用总线连接等各种相关技术。上述各个部件或模块可以通过例如处理器、存储器、发射机、接收机等硬件设施来实现;本申请实施并不对此进行限制。
以上各实施例仅对本申请实施例进行了示例性说明,但本申请不限于此,还可以在以上各实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例,也可以将以上各个实施例中的一种或多种结合起来。
上述实施例能够使BWP满足包括整数个资源块集(RB set)的要求,或者,使网络设备能够唯一地确定在哪部分资源接收PUSCH。
第六方面的实施例
本申请实施例提供一种收发数据的装置。该装置例如可以是网络设备,也可以是配置于网络设备的某个或某些部件或者组件。该装置对应于第三方面的实施例。
图21是本申请实施例的收发数据的装置的一示意图,如图21所示,收发数据的装置2100包括:
第一发送单元2101,其发送第一配置信息,所述第一配置信息用于配置载波中的资源块集(RB set);以及
第二发送单元2102,其发送第二配置信息,所述第二配置信息用于配置带宽部分(BWP),所述带宽部分包括K个预定义的资源块集,K为自然数。
此外,收发数据的装置2100还包括:
第二收发单元2103,其根据所述预定义的资源块集或者根据所述第一配置信息配置的资源块集,在所述部分带宽接收或发送数据。
值得注意的是,以上仅对与本申请相关的各部件或模块进行了说明,但本申请不限于此。上行传输装置收发数据的装置2100还可以包括其他部件或者模块,关于这些部件或者模块的具体内容,可以参考相关技术。关于收发数据的装置2100中各单元的具体说明,可以参考第三方面的实施例。
本申请实施例提供另一种收发数据的装置。该装置例如可以是网路设备,也可以是配置于网络设备的某个或某些部件或者组件。该装置对应于第二方面的实施例。
图22是本申请实施例的收发数据的装置的一示意图,如图22所示,收发数据的装置2200包括:
第三发送单元2201,其发送第一配置信息,所述第一配置信息用于配置载波中的资源块集(RB set);以及
第四发送单元2202,其发送第二配置信息,所述第二配置信息用于配置带宽部分(BWP),所述带宽部分(BWP)包括K个所述第一配置信息配置的资源块集,K为自然数。
其中,所述第一配置信息配置的资源块集中对应所述带宽部分(BWP)的资源块集和/或对应物理随机接入信道(PRACH)资源的资源块集配置为与预定义的资源块集相同。
值得注意的是,以上仅对与本申请相关的各部件或模块进行了说明,但本申请不限于此。上行传输装置收发数据的装置2200还可以包括其他部件或者模块,关于这些部件或者模块的具体内容,可以参考相关技术。关于收发数据的装置2200中各单元的具体说明,可以参考第一方面的实施例。
此外,为了简单起见,收发数据的装置2100、2200中仅示例性示出了各个部件或模块之间的连接关系或信号走向,但是本领域技术人员应该清楚的是,可以采用总线连接等各种相关技术。上述各个部件或模块可以通过例如处理器、存储器、发射机、接收机等硬件设施来实现;本申请实施并不对此进行限制。
以上各实施例仅对本申请实施例进行了示例性说明,但本申请不限于此,还可以在以上各实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例,也可以将以上各个实施例中的一种或多种结合起来。
上述实施例能够使BWP满足包括整数个资源块集(RB set)的要求,或者,使网络设备能够唯一地确定在哪部分资源接收PUSCH。
第七方面的实施例
本申请实施例还提供一种通信系统,可以参考图1,与第一方面至第六方面的实施例相同的内容不再赘述。
在一些实施例中,通信系统100可以包括:
网络设备101,其包括如第六方面的实施例所述的收发数据的装置2100或2200;以及
终端设备102,其包括如第五方面的实施例所述的收发数据的装置1900或2000。
本申请实施例还提供一种网络设备,例如可以是基站,但本申请不限于此,还可以是其他的网络设备。
图23是本申请实施例的网络设备的构成示意图。如图23所示,网络设备2300可以包括:处理器2310(例如中央处理器CPU)和存储器2320;存储器2020耦合到处理器2310。其中该存储器2320可存储各种数据;此外还存储信息处理的程序2330,并且在处理器2310的控制下执行该程序2330。
例如,处理器2310可以被配置为执行程序而实现如第三至四方面的实施例所述的收发数据的方法。例如处理器2310可以被配置为进行如下的控制:向终端设备发送配置信息和/或指示信息。此外,处理器2010可以被配置为执行程序而实现如第七方面的实施例所述的上行传输接收方法。
此外,网络设备2300也可以包括收发数据的装置2100或2200。
此外,如图23所示,网络设备2300还可以包括:收发机2340和天线2350等; 其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,网络设备2300也并不是必须要包括图23中所示的所有部件;此外,网络设备2300还可以包括图20中没有示出的部件,可以参考现有技术。
本申请实施例还提供一种终端设备,但本申请不限于此,还可以是其他的设备。
图24是本申请实施例的终端设备的示意图。如图24所示,该终端设备2400可以包括处理器2410和存储器2420;存储器2420存储有数据和程序,并耦合到处理器2410。值得注意的是,该图是示例性的;还可以使用其他类型的结构,来补充或代替该结构,以实现电信功能或其他功能。
例如,处理器2410可以被配置为执行程序而实现如第一或第二方面的实施例所述的收发数据的方法。
如图24所示,该终端设备2400还可以包括:通信模块2430、输入单元2440、显示器2450、电源2460。其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,终端设备2400也并不是必须要包括图24中所示的所有部件,上述部件并不是必需的;此外,终端设备2400还可以包括图24中没有示出的部件,可以参考现有技术。
本申请实施例还提供一种计算机程序,其中当在终端设备中执行所述程序时,所述程序使得所述终端设备执行第一至二方面的实施例所述的收发数据的方法。
本申请实施例还提供一种存储有计算机程序的存储介质,其中所述计算机程序使得终端设备执行第一至二方面的实施例所述的收发数据方法。
本申请实施例还提供一种计算机程序,其中当在网络设备中执行所述程序时,所述程序使得所述网络设备执行第三至四方面的实施例所述的收发数据的方法。
本申请实施例还提供一种存储有计算机程序的存储介质,其中所述计算机程序使得网络设备执行第三至四方面的实施例所述的收发数据方法。
本申请以上的装置和方法可以由硬件实现,也可以由硬件结合软件实现。本申请涉及这样的计算机可读程序,当该程序被逻辑部件所执行时,能够使该逻辑部件实现上文所述的装置或构成部件,或使该逻辑部件实现上文所述的各种方法或步骤。本申请还涉及用于存储以上程序的存储介质,如硬盘、磁盘、光盘、DVD、flash存储器等。
结合本申请实施例描述的方法/装置可直接体现为硬件、由处理器执行的软件模块或二者组合。例如,图中所示的功能框图中的一个或多个和/或功能框图的一个或 多个组合,既可以对应于计算机程序流程的各个软件模块,亦可以对应于各个硬件模块。这些软件模块,可以分别对应于图中所示的各个步骤。这些硬件模块例如可利用现场可编程门阵列(FPGA)将这些软件模块固化而实现。
软件模块可以位于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、移动磁盘、CD-ROM或者本领域已知的任何其它形式的存储介质。可以将一种存储介质耦接至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息;或者该存储介质可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。该软件模块可以存储在移动终端的存储器中,也可以存储在可插入移动终端的存储卡中。例如,若设备(如移动终端)采用的是较大容量的MEGA-SIM卡或者大容量的闪存装置,则该软件模块可存储在该MEGA-SIM卡或者大容量的闪存装置中。
针对附图中描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,可以实现为用于执行本申请所描述功能的通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件或者其任意适当组合。针对附图描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,还可以实现为计算设备的组合,例如,DSP和微处理器的组合、多个微处理器、与DSP通信结合的一个或多个微处理器或者任何其它这种配置。
以上结合具体的实施方式对本申请进行了描述,但本领域技术人员应该清楚,这些描述都是示例性的,并不是对本申请保护范围的限制。本领域技术人员可以根据本申请的精神和原理对本申请做出各种变型和修改,这些变型和修改也在本申请的范围内。
关于包括以上实施例的实施方式,还公开下述的附记:
终端侧:
1.一种收发数据的方法,应用于终端设备,该方法包括:
接收第一配置信息,所述第一配置信息用于配置载波中的资源块集(RB set);以及
接收第二配置信息,所述第二配置信息用于配置带宽部分(BWP),所述带宽部分(BWP)包括K个预定义的资源块集,K为自然数。
2.如附记1所述的收发数据的方法,其中,
所述第一配置信息配置的资源块集与预定义的资源块集相同或不同。
3.如附记1所述的收发数据的方法,其中,
所述方法还包括:
根据预定义的资源块集或者根据所述第一配置信息配置的资源块集,在所述部分带宽发送或接收数据。
4.如附记3所述的收发数据的方法,其中,
所述数据是随机接入响应(RAR)或临时小区无线网络临时标识(TC-RNTI)加扰的下行控制信息(DCI)调度的物理上行共享信道(PUSCH),根据预定义的资源块集发送所述数据。
5.如附记3所述的收发数据的方法,其中,
所述数据是基于竞争的随机接入(CBRA)中的随机接入响应(RAR)或临时小区无线网络临时标识(TC-RNTI)加扰的下行控制信息(DCI)调度的物理上行共享信道(PUSCH),根据预定义的资源块集发送所述数据。
6.一种收发数据的方法,应用于终端设备,该方法包括:
接收第一配置信息,所述第一配置信息用于配置载波中的资源块集(RB set);以及
接收第二配置信息,所述第二配置信息用于配置带宽部分(BWP),所述带宽部分(BWP)包括K个所述第一配置信息配置的资源块集,K为自然数;
其中,所述第一配置信息配置的资源块集中对应所述带宽部分(BWP)的资源块集和/或对应物理随机接入信道(PRACH)资源的资源块集与预定义的资源块集相同。
7.如附记1~6中的任一项所述的收发数据的方法,其中,
所述载波是上行载波,所述带宽部分为上行带宽部分,或者,
所述载波是下行载波,所述带宽部分是下行带宽部分。
8.如附记1~6中的任一项所述的收发数据的方法,其中,
所述带宽部分为初始的带宽部分或配置了物理随机接入信道(PRACH)资源的带宽部分。
9.如附记6~8中的任一项所述的收发数据的方法,其中,
所述物理随机接入信道(PRACH)资源是不用于基于非竞争随机接入(CFRA) 的波束失败恢复(BFR)的物理随机接入信道资源。
10.如附记6~8中的任一项所述的收发数据的方法,其中,
所述物理随机接入信道(PRACH)资源是用于基于竞争的随机接入(CBRA)的物理随机接入信道资源。
11.如附记6~8中的任一项所述的收发数据的方法,其中,
所述物理随机接入信道(PRACH)资源是所述终端设备在采用所述物理随机接入信道资源发送物理随机接入信道后会接收随机接入响应(RAR)的物理随机接入信道(PRACH)资源。
12.如附记6~8中的任一项所述的收发数据的方法,其中,
所述物理随机接入信道(PRACH)资源是所述终端设备在采用所述物理随机接入信道资源发送物理随机接入信道后会接收随机接入无线网络临时标识(RA-RNTI)加扰的下行控制信息(DCI)的物理随机接入信道(PRACH)资源。
网络侧:
1.一种收发数据的方法,应用于网络设备,该方法包括:
发送第一配置信息,所述第一配置信息用于配置载波中的资源块集(RB set);以及
发送第二配置信息,所述第二配置信息用于配置带宽部分(BWP),所述带宽部分包括K个预定义的资源块集,K为自然数。
2.如附记1所述的收发数据的方法,其中,
所述第一配置信息配置的资源块集与预定义的资源块集相同或不同。
3.如附记1所述的收发数据的方法,其中,
所述方法还包括:
根据所述预定义的资源块集或者根据所述第一配置信息配置的资源块集,在所述部分带宽接收或发送数据。
4.如附记3所述的收发数据的方法,其中,
所述数据是随机接入响应(RAR)或临时小区无线网络临时标识(TC-RNTI)加扰的下行控制信息(DCI)调度的物理上行共享信道(PUSCH),根据预定义的资源块集接收所述数据。
5.如附记3所述的收发数据的方法,其中,
所述数据是基于竞争的随机接入(CBRA)中的随机接入响应(RAR)或临时小区无线网络临时标识(TC-RNTI)加扰的下行控制信息(DCI)调度的物理上行共享信道(PUSCH),根据预定义的资源块集接收所述数据。
6.一种收发数据的方法,应用于网络设备,该方法包括:
发送第一配置信息,所述第一配置信息用于配置载波中的资源块集(RB set);以及
发送第二配置信息,所述第二配置信息用于配置带宽部分(BWP),所述带宽部分(BWP)包括K个所述第一配置信息配置的资源块集,K为自然数,
其中,所述第一配置信息配置的资源块集中对应所述带宽部分(BWP)的资源块集和/或对应物理随机接入信道(PRACH)资源的资源块集配置为与预定义的资源块集相同。
7.如附记1~6中的任一项所述的收发数据的方法,其中,
所述载波是上行载波,所述带宽部分为上行带宽部分,
或者,
所述载波是下行载波,所述带宽部分是下行带宽部分。
8.如附记1~6中的任一项所述的收发数据的方法,其中,
所述带宽部分为初始的带宽部分或配置了物理随机接入信道(PRACH)资源的带宽部分。
9.如附记6~8中的任一项所述的收发数据的方法,其中,
所述物理随机接入信道(PRACH)资源不是用于基于非竞争随机接入(CFRA)的波束失败恢复(BFR)触发的物理随机接入信道资源。
10.如附记6~8中的任一项所述的收发数据的方法,其中,
所述物理随机接入信道(PRACH)资源是基于竞争的随机接入(CBRA)的物理随机接入信道资源。
11.如附记6~8中的任一项所述的收发数据的方法,其中,
所述物理随机接入信道(PRACH)资源是所述终端设备在采用该物理随机接入信道资源发送所述物理随机接入信道后会接收随机接入响应(RAR)的物理随机接入信道(PRACH)资源。
12.如附记6~8中的任一项所述的收发数据的方法,其中,
所述物理随机接入信道(PRACH)资源是所述终端设备在采用该物理随机接入信道资源发送所述物理随机接入信道后会接收随机接入无线网络临时标识(RA-RNTI)加扰的下行控制信息(DCI)的物理随机接入信道(PRACH)资源。

Claims (15)

  1. 一种收发数据的装置,应用于终端设备,该装置包括:
    第一接收单元,其接收第一配置信息,所述第一配置信息用于配置载波中的资源块集(RB set);以及
    第二接收单元,其接收第二配置信息,所述第二配置信息用于配置带宽部分(BWP),所述带宽部分(BWP)包括K个预定义的资源块集,K为自然数。
  2. 如权利要求1所述的收发数据的装置,其中,
    所述第一配置信息配置的资源块集与预定义的资源块集相同或不同。
  3. 如权利要求1所述的收发数据的装置,其中,
    所述装置还包括:
    第一收发单元,其根据预定义的资源块集或者根据所述第一配置信息配置的资源块集,在所述部分带宽发送或接收数据。
  4. 如权利要求3所述的收发数据的装置,其中,
    所述数据是随机接入响应(RAR)或临时小区无线网络临时标识(TC-RNTI)加扰的下行控制信息(DCI)调度的物理上行共享信道(PUSCH),根据预定义的资源块集发送所述数据。
  5. 如权利要求3所述的收发数据的装置,其中,
    所述数据是基于竞争的随机接入(CBRA)中的随机接入响应(RAR)或临时小区无线网络临时标识(TC-RNTI)加扰的下行控制信息(DCI)调度的物理上行共享信道(PUSCH),根据预定义的资源块集发送所述数据。
  6. 一种收发数据的装置,应用于终端设备,该装置包括:
    第三接收单元,其接收第一配置信息,所述第一配置信息用于配置载波中的资源块集(RB set);以及
    第四接收单元,其接收第二配置信息,所述第二配置信息用于配置带宽部分(BWP),所述带宽部分(BWP)包括K个所述第一配置信息配置的资源块集,K为自然数,
    其中,所述第一配置信息配置的资源块集中对应所述带宽部分(BWP)的资源块集和/或对应物理随机接入信道(PRACH)资源的资源块集与预定义的资源块集相同。
  7. 如权利要求6所述的收发数据的装置,其中,
    所述载波是上行载波,所述带宽部分为上行带宽部分,或者,
    所述载波是下行载波,所述带宽部分是下行带宽部分。
  8. 如权利要求6所述的收发数据的装置,其中,
    所述带宽部分为初始的带宽部分;或者
    所述带宽部分为配置了物理随机接入信道(PRACH)资源的带宽部分;或者
    所述物理随机接入信道(PRACH)资源是不用于基于非竞争随机接入(CFRA)的波束失败恢复(BFR)的物理随机接入信道资源;或者
    所述物理随机接入信道(PRACH)资源是用于基于竞争的随机接入(CBRA)的物理随机接入信道资源;或者
    所述物理随机接入信道(PRACH)资源是所述终端设备在采用所述物理随机接入信道资源发送物理随机接入信道后会接收随机接入响应(RAR)的物理随机接入信道(PRACH)资源;或者
    所述物理随机接入信道(PRACH)资源是所述终端设备在采用所述物理随机接入信道资源发送物理随机接入信道后会接收随机接入无线网络临时标识(RA-RNTI)加扰的下行控制信息(DCI)的物理随机接入信道(PRACH)资源。
  9. 一种收发数据的装置,应用于网络设备,该装置包括:
    第一发送单元,其发送第一配置信息,所述第一配置信息用于配置载波中的资源块集(RB set);以及
    第二发送单元,其发送第二配置信息,所述第二配置信息用于配置带宽部分(BWP),所述带宽部分包括K个预定义的资源块集,K为自然数。
  10. 如权利要求9所述的收发数据的装置,其中,
    所述第一配置信息配置的资源块集与预定义的资源块集相同或不同。
  11. 如权利要求9所述的收发数据的装置,其中,
    所述装置还包括:
    第二收发单元,其根据所述预定义的资源块集或者根据所述第一配置信息配置的资源块集,在所述部分带宽接收或发送数据。
  12. 如权利要求11所述的收发数据的装置,其中,
    所述数据是随机接入响应(RAR)或临时小区无线网络临时标识(TC-RNTI)加 扰的下行控制信息(DCI)调度的物理上行共享信道(PUSCH),根据预定义的资源块集接收所述数据。
  13. 如权利要求11所述的收发数据的装置,其中,
    所述数据是基于竞争的随机接入(CBRA)中的随机接入响应(RAR)或临时小区无线网络临时标识(TC-RNTI)加扰的下行控制信息(DCI)调度的物理上行共享信道(PUSCH),根据预定义的资源块集接收所述数据。
  14. 如权利要求9所述的收发数据的装置,其中,
    所述载波是上行载波,所述带宽部分为上行带宽部分,
    或者,
    所述载波是下行载波,所述带宽部分是下行带宽部分。
  15. 如权利要求9所述的收发数据的装置,其中,
    所述带宽部分为初始的带宽部分;或者
    所述带宽部分为配置了物理随机接入信道(PRACH)资源的带宽部分;或者
    所述物理随机接入信道(PRACH)资源不是用于基于非竞争随机接入(CFRA)的波束失败恢复(BFR)触发的物理随机接入信道资源;或者
    所述物理随机接入信道(PRACH)资源是基于竞争的随机接入(CBRA)的物理随机接入信道资源;或者
    所述物理随机接入信道(PRACH)资源是终端设备在采用该物理随机接入信道资源发送所述物理随机接入信道后会接收随机接入响应(RAR)的物理随机接入信道(PRACH)资源;或者
    所述物理随机接入信道(PRACH)资源是终端设备在采用该物理随机接入信道资源发送所述物理随机接入信道后会接收随机接入无线网络临时标识(RA-RNTI)加扰的下行控制信息(DCI)的物理随机接入信道(PRACH)资源。
PCT/CN2020/119699 2020-09-30 2020-09-30 收发数据的方法、装置和通信系统 WO2022067783A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/119699 WO2022067783A1 (zh) 2020-09-30 2020-09-30 收发数据的方法、装置和通信系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/119699 WO2022067783A1 (zh) 2020-09-30 2020-09-30 收发数据的方法、装置和通信系统

Publications (1)

Publication Number Publication Date
WO2022067783A1 true WO2022067783A1 (zh) 2022-04-07

Family

ID=80949477

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/119699 WO2022067783A1 (zh) 2020-09-30 2020-09-30 收发数据的方法、装置和通信系统

Country Status (1)

Country Link
WO (1) WO2022067783A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108882376A (zh) * 2017-11-10 2018-11-23 华为技术有限公司 一种通信方法、装置以及系统
WO2019060676A1 (en) * 2017-09-21 2019-03-28 Qualcomm Incorporated CALCULATING CHANNEL STATUS INFORMATION USING A CONTROL RESOURCE HYPOTHESIS
CN110972515A (zh) * 2018-07-31 2020-04-07 Lg电子株式会社 在无线通信系统中监测终端的控制信号的方法及其终端
EP3703300A1 (en) * 2019-01-11 2020-09-02 LG Electronics Inc. -1- Method and device for performing bwp-based communication in nr v2x

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019060676A1 (en) * 2017-09-21 2019-03-28 Qualcomm Incorporated CALCULATING CHANNEL STATUS INFORMATION USING A CONTROL RESOURCE HYPOTHESIS
CN108882376A (zh) * 2017-11-10 2018-11-23 华为技术有限公司 一种通信方法、装置以及系统
CN110972515A (zh) * 2018-07-31 2020-04-07 Lg电子株式会社 在无线通信系统中监测终端的控制信号的方法及其终端
EP3703300A1 (en) * 2019-01-11 2020-09-02 LG Electronics Inc. -1- Method and device for performing bwp-based communication in nr v2x

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MODERATOR (LG ELECTRONICS): "Summary#2 of email discussion [100b-e-NR-unlic-NRU-WB-01] on RB", 3GPP DRAFT; R1-2002955, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20200420 - 20200430, 1 May 2020 (2020-05-01), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051879531 *

Similar Documents

Publication Publication Date Title
CN111165060B (zh) 随机接入方法、装置以及通信系统
CN114342535B (zh) 上行信号的发送和接收方法以及装置
WO2020199000A1 (zh) 随机接入方法以及装置
US20230156779A1 (en) Uplink signal sending and receiving method and apparatus
WO2020191679A1 (zh) 随机接入方法、终端设备和网络设备
WO2021159626A1 (zh) 上行传输方法以及装置
US20220007396A1 (en) Uplink transmission method, uplink scheduling method, apparatuses thereof and system
CN111972032B (zh) 随机接入的方法和设备
JP2024069386A (ja) アップリンク伝送方法及び装置
CN112237019B (zh) 数据发送和接收方法以及装置
WO2022077322A1 (zh) 探测参考信号的发送和接收方法以及装置
CN113228807B (zh) 数据发送方法、装置和通信系统
WO2020210963A1 (zh) 消息传输的方法和设备
WO2021203956A1 (zh) 一种通信方法及装置
EP3557921B1 (en) Data multiplexing device, method, and communication system
WO2022067519A1 (zh) 随机接入方法和终端设备
US20240031092A1 (en) Terminal device and network device
WO2020029299A1 (zh) 数据中断指示方法及其装置、通信系统
JP7456551B2 (ja) 信号の送受信方法、装置及び通信システム
WO2022067783A1 (zh) 收发数据的方法、装置和通信系统
WO2020206658A1 (zh) 无线通信方法、终端设备和网络设备
WO2022213293A1 (zh) 随机接入前导序列的发送和配置方法以及装置
CN116491085B (zh) 探测参考信号的发送和接收方法以及装置
CN114402649B (zh) 无线通信方法、装置和系统
CN112369105A (zh) 随机接入方法,数据接收方法及其装置、通信系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20955806

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20955806

Country of ref document: EP

Kind code of ref document: A1