[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022064946A1 - 車両用空調装置 - Google Patents

車両用空調装置 Download PDF

Info

Publication number
WO2022064946A1
WO2022064946A1 PCT/JP2021/031287 JP2021031287W WO2022064946A1 WO 2022064946 A1 WO2022064946 A1 WO 2022064946A1 JP 2021031287 W JP2021031287 W JP 2021031287W WO 2022064946 A1 WO2022064946 A1 WO 2022064946A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
heat exchanger
temperature
heating
compressor
Prior art date
Application number
PCT/JP2021/031287
Other languages
English (en)
French (fr)
Inventor
芳樹 柴岡
耕平 山下
洪銘 張
佳之 岡本
尭之 松村
航大 松▲崎▼
Original Assignee
サンデン・オートモーティブクライメイトシステム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデン・オートモーティブクライメイトシステム株式会社 filed Critical サンデン・オートモーティブクライメイトシステム株式会社
Priority to US18/044,013 priority Critical patent/US20240278619A1/en
Priority to DE112021004952.6T priority patent/DE112021004952T5/de
Priority to CN202180054218.3A priority patent/CN116113553A/zh
Publication of WO2022064946A1 publication Critical patent/WO2022064946A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • B60H1/2215Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant the heat being derived from electric heaters
    • B60H1/2225Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant the heat being derived from electric heaters arrangements of electric heaters for heating air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00899Controlling the flow of liquid in a heat pump system
    • B60H1/00907Controlling the flow of liquid in a heat pump system where the flow direction of the refrigerant changes and an evaporator becomes condenser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H1/00278HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit for the battery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00899Controlling the flow of liquid in a heat pump system
    • B60H1/00914Controlling the flow of liquid in a heat pump system where the flow direction of the refrigerant does not change and there is a bypass of the condenser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00899Controlling the flow of liquid in a heat pump system
    • B60H1/00921Controlling the flow of liquid in a heat pump system where the flow direction of the refrigerant does not change and there is an extra subcondenser, e.g. in an air duct
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3205Control means therefor
    • B60H1/3213Control means therefor for increasing the efficiency in a vehicle heat pump
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H2001/00307Component temperature regulation using a liquid flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H2001/00928Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices comprising a secondary circuit

Definitions

  • the present invention relates to a heat pump type vehicle air conditioner capable of absorbing heat from a temperature-controlled object such as a battery and a motor mounted on a vehicle to heat the interior of the vehicle.
  • the refrigerant discharged from the compressor and dissipated in the radiator is heated by absorbing heat in the outdoor heat exchanger, and the refrigerant discharged from the compressor and dissipated in the outdoor heat exchanger is used.
  • the interior of the vehicle is air-conditioned by evaporating it in a heat exchanger (evaporator) and cooling it by absorbing heat.
  • the heat exchanger for the temperature control target for cooling the temperature control target such as a battery
  • the heat absorption of the refrigerant during the heating operation is performed only by the outdoor heat exchanger.
  • the heat exchanger heating mode for temperature control which is performed only with the heat exchanger for temperature control
  • the combined heating mode which is performed for both the outdoor heat exchanger and the heat exchanger for temperature control, are switched and executed.
  • Vehicle air conditioners are known (for example, Patent Document 2).
  • the refrigerant discharged from the compressor and radiated by the radiator to be cooled is used. . . Divide the flow into the flow path to the outdoor heat exchanger and the flow path to the heat exchanger for temperature control. After that, the separated refrigerant is absorbed in the outdoor heat exchanger and the heat exchanger for temperature control, respectively, and flows into the compressor again.
  • the shunted refrigerant flows into the outdoor heat exchanger, the shunted refrigerant flows out at the outlet of the outdoor heat exchanger.
  • the refrigerant circulated from the outdoor heat exchanger and the refrigerant circulated from the heat exchanger for temperature control merge and flow in. Therefore, the amount of the circulating refrigerant differs between the outlet of the outdoor heat exchanger and the inlet of the compressor. Further, since the amount of heat absorbed by the outdoor heat exchanger and the amount of heat absorbed by the heat exchanger for temperature control are not necessarily the same, the temperature and pressure of the refrigerant flowing out from each heat exchanger are not necessarily the same.
  • refrigerant liquid refrigerant or oil
  • refrigerant may accumulate in the outdoor heat exchanger during operation in the combined heating mode.
  • the amount of the refrigerant circulating in the refrigerant circuit is insufficient, which may cause deterioration of heating performance, deterioration or failure of compressor durability, false detection of refrigerant shortage, and the like.
  • the present invention has been made in view of such circumstances, and has an object of suppressing the accumulation of a refrigerant in an outdoor exchange while effectively utilizing the heat of the object to be temperature-controlled for heating the vehicle interior. ..
  • the present invention uses a refrigerant circuit including a compressor that compresses the refrigerant, a heating unit that heats the blown air blown to the air-conditioned space, and an outdoor heat exchanger that absorbs the heat of the refrigerant, and a vehicle using the refrigerant.
  • the control device includes a device temperature control circuit including a heat exchanger for temperature control target, which is mounted on the above, and a control device for controlling the refrigerant circuit and the device temperature control circuit.
  • the temperature control is such that the refrigerant discharged from the compressor and dissipated by the heating unit is absorbed by the heat exchanger for temperature control.
  • the outdoor heat exchanger has at least a target heat absorption heating mode and a combined heating mode that absorbs heat in the outdoor heat exchanger and the heat exchanger for temperature control.
  • an air conditioner for a vehicle which determines an operating state in which the refrigerant can accumulate, and controls to switch to the heat absorption heating mode to be heated and execute a heating operation.
  • the present invention it is possible to suppress the accumulation of the refrigerant in the outdoor heat exchanger while effectively utilizing the heat of the object to be temperature-controlled for heating the vehicle interior.
  • FIG. 1 shows the schematic structure of the air conditioner for a vehicle which concerns on embodiment of this invention.
  • FIG. 1 shows the schematic structure of the air-conditioning controller as the control device of the air-conditioning apparatus for vehicles which concerns on embodiment of this invention.
  • It is explanatory drawing which shows the flow of the refrigerant at the time of performing the heating operation by the outside air endothermic heating mode in the vehicle air-conditioning apparatus which concerns on embodiment of this invention.
  • It is explanatory drawing which shows the flow of the refrigerant at the time of performing the heating operation by the combined heating mode in the vehicle air-conditioning apparatus which concerns on embodiment of this invention.
  • It is explanatory drawing which shows the flow of the refrigerant at the time of performing the heating operation by the endothermic heating mode which is subject to temperature control in the vehicle air-conditioning apparatus which concerns on embodiment of this invention.
  • FIG. 1 shows a schematic configuration of a vehicle air conditioner 1 according to an embodiment of the present invention.
  • the vehicle air conditioner 1 can be applied to a vehicle such as an electric vehicle (EV) in which an engine (internal engine) is not mounted or a so-called hybrid vehicle in which an engine and an electric motor for traveling are used.
  • a vehicle such as an electric vehicle (EV) in which an engine (internal engine) is not mounted or a so-called hybrid vehicle in which an engine and an electric motor for traveling are used.
  • a vehicle is equipped with a battery 55 (for example, a lithium battery) and is driven by supplying power charged to the battery 55 from an external power source to a motor unit 65 including a traveling motor (electric motor). Run.
  • the vehicle air conditioner 1 is also driven by being supplied with power from the battery 55.
  • the vehicle air conditioner 1 includes a refrigerant circuit R for operating a heat pump and an equipment temperature adjusting circuit 61 for adjusting the temperature of a temperature control target such as a battery 55 or a motor unit 65.
  • the equipment temperature adjustment circuit 61 becomes a parallel circuit to the refrigerant circuit R via the refrigerant-heat medium heat exchanger 64 described later.
  • the vehicle air conditioner 1 selectively executes various operation modes including air conditioning operation such as heating operation and cooling operation by heat pump operation using the refrigerant circuit R, thereby performing air conditioning in the vehicle interior and the battery 55 and the motor unit 65. Etc. To adjust the temperature of the object to be heated.
  • the refrigerant circuit R is provided in the electric compressor (electric compressor) 2 for compressing the refrigerant and in the air flow passage 3 of the HVAC unit 10 through which the air in the vehicle interior is circulated, and is discharged from the compressor 2.
  • a radiator 4 as an indoor heat exchanger (heating unit) that dissipates high-temperature and high-pressure refrigerant to heat the air supplied to the vehicle interior, an outdoor expansion valve 6 that decompresses and expands the refrigerant during heating, and dissipates the refrigerant during cooling.
  • An outdoor heat exchanger 7 for exchanging heat between the refrigerant and the outside air in order to function as a radiator (condenser) to absorb heat of the refrigerant during heating, and a room for decompressing and expanding the refrigerant.
  • An expansion valve 8, a heat exchanger 9 provided in the air flow passage 3 for cooling the air supplied to the vehicle interior by absorbing heat from the outside of the vehicle interior to the refrigerant during cooling (during dehumidification), an accumulator 12, and the like are provided. It is configured by being connected by refrigerant pipes 13A to 13H.
  • An electronic expansion valve can be applied to both the outdoor expansion valve 6 and the indoor expansion valve 8.
  • the outdoor expansion valve 6 decompresses and expands the refrigerant flowing out of the radiator 4 and flowing into the outdoor heat exchanger 7, and can be fully closed.
  • the indoor expansion valve 8 decompresses and expands the refrigerant flowing into the heat absorber 9, and adjusts the endothermic force of the refrigerant in the endothermic device 9, that is, the cooling capacity of the passing air.
  • the refrigerant outlet of the outdoor heat exchanger 7 and the refrigerant inlet of the heat absorber 9 are connected by a refrigerant pipe 13A.
  • the refrigerant pipe 13A is provided with a check valve 18 and an indoor expansion valve 8 in this order from the outdoor heat exchanger 7 side.
  • the check valve 18 is provided in the refrigerant pipe 13A so that the direction toward the heat absorber 9 is the forward direction.
  • the refrigerant pipe 13A branches to the refrigerant pipe 13B at a position closer to the outdoor heat exchanger 7 than the check valve 18.
  • the refrigerant pipe 13B branched from the refrigerant pipe 13A is connected to the refrigerant inlet of the accumulator 12.
  • the refrigerant pipe 13B is provided with a solenoid valve 21 and a check valve 20 that are opened during heating in order from the outdoor heat exchanger 7 side.
  • the check valve 20 is connected so that the direction toward the accumulator 12 is the forward direction.
  • the solenoid valve 21 and the check valve 20 of the refrigerant pipe 13B are branched into the refrigerant pipe 13C.
  • the refrigerant pipe 13C branched from the refrigerant pipe 13B is connected to the refrigerant outlet of the heat absorber 9.
  • the refrigerant outlet of the accumulator 12 and the compressor 2 are connected by a refrigerant pipe D.
  • the refrigerant outlet of the compressor 2 and the refrigerant inlet of the radiator 4 are connected by a refrigerant pipe 13E.
  • One end of the refrigerant pipe 13F is connected to the refrigerant outlet of the radiator 4, and the other end side of the refrigerant pipe 13F is branched into the refrigerant pipe 13G and the refrigerant pipe 13H in front of the outdoor expansion valve 6 (on the upstream side of the refrigerant).
  • One of the branched refrigerant pipes 13H is connected to the refrigerant inlet side of the outdoor heat exchanger 7 via the outdoor expansion valve 6.
  • the other branched refrigerant pipe 13G is connected between the check valve 18 of the refrigerant pipe A and the indoor expansion valve 8.
  • a solenoid valve 22 is provided on the upstream side of the refrigerant from the connection point of the refrigerant pipe 13G with the refrigerant pipe A.
  • the refrigerant pipe 13G is connected in parallel to the series circuit of the outdoor expansion valve 6, the outdoor heat exchanger 7, and the check valve 18 and bypasses the outdoor expansion valve 6, the outdoor heat exchanger 7, and the check valve 18. It becomes a circuit to do.
  • the air flow passage 3 on the upstream side of the air of the heat absorber 9 is formed with each suction port of the outside air suction port and the inside air suction port (represented by the suction port 25 in FIG. 1).
  • the suction port 25 is provided with a suction switching damper 26.
  • the suction switching damper 26 appropriately switches between the inside air (inside air circulation), which is the air inside the vehicle interior, and the outside air (outside air introduction), which is the air outside the vehicle interior, and introduces the air into the air flow passage 3 from the suction port 25.
  • An indoor blower fan 27 for supplying the introduced inside air and outside air to the air flow passage 3 is provided on the air downstream side of the suction switching damper 26.
  • the auxiliary heater 23 is an auxiliary heater as an auxiliary heating device.
  • the auxiliary heater 23 is composed of, for example, a PTC heater (electric heater), and is provided in the air flow passage 3 on the air downstream side of the radiator 4 with respect to the air flow in the air flow passage 3. ..
  • PTC heater electric heater
  • the air (inside air or outside air) in the air flow passage 3 after flowing into the air flow passage 3 and passing through the heat absorber 9 is taken into the radiator 4 and the outside air.
  • An air mix damper 28 for adjusting the ratio of ventilation to the auxiliary heater 23 is provided.
  • the device temperature adjustment circuit 61 adjusts the temperature of the battery 55 and the motor unit 65 by circulating a heat medium through a temperature-controlled object such as the battery 55 and the motor unit 65.
  • the motor unit 65 also includes a traveling electric motor and a heat generating device such as an inverter circuit for driving the electric motor.
  • a device mounted on a vehicle and generating heat can be applied as a temperature control target.
  • the equipment temperature control circuit 61 includes a first circulation pump 62 and a second circulation pump 63 as circulation devices for circulating the heat medium to the battery 55 and the motor unit 65, and a refrigerant-heat medium heat exchanger (hereinafter, “chiller”). It is provided with a heat exchanger) 64, a heat medium heater 66, an air-heat medium heat exchanger 67, and a three-way valve 81 as a flow path switching device.
  • a heat exchanger 64, a heat medium heater 66, an air-heat medium heat exchanger 67, and a three-way valve 81 as a flow path switching device.
  • the equipment temperature control circuit 61 is connected to the refrigerant circuit R via the chiller heat exchanger 64.
  • one end of the branch pipe 72 as a branch circuit is connected between the connection point of the refrigerant pipe 13A with the refrigerant pipe G and the indoor expansion valve 8, and the other end of the branch pipe 72 is chiller heat. It is connected to the refrigerant flow path of the exchanger 64.
  • the branch pipe 72 is provided with an auxiliary expansion valve 73.
  • the auxiliary expansion valve 73 decompresses and expands the refrigerant flowing into the refrigerant flow path of the chiller heat exchanger 64 and can be fully closed.
  • the chiller heat exchanger 64 constitutes a part of the refrigerant circuit R and at the same time constitutes a part of the equipment temperature control circuit 61.
  • the heat medium pipe 68A is connected to the heat medium discharge side of the chiller heat exchanger 64.
  • the heat medium pipe 68A is provided with a heat medium heater 66, a battery 55, a first circulation pump 62, and a check valve 82 in this order from the chiller heat exchanger 64 side.
  • the other end of the heat medium pipe 68A is connected to the heat medium pipe 68B described later.
  • the heat medium pipe 68A is branched into the heat medium pipe 68B at a position closer to the chiller heat exchanger 64 than the heat medium heater 66.
  • the other end of the branched heat medium pipe 68B is connected to the heat medium inlet of the chiller heat exchanger 64.
  • the heat medium pipe 68B is provided with an air-heat medium heat exchanger 67.
  • the air-heat medium heat exchanger 67 is arranged on the leeward side of the outdoor heat exchanger 7 with respect to the flow (air passage) of the outside air (air) ventilated by an outdoor blower (not shown).
  • a three-way valve 81 is provided on the downstream side of the heat medium from the air-heat medium heat exchanger 67 of the heat medium pipe 68B, and is located between the three-way valve 81 of the heat medium pipe 68B and the heat medium inlet of the chiller heat exchanger 64. , The other end of the heat medium pipe A is connected.
  • the heat medium pipe 68B branches to the heat medium pipe C on the upstream side of the heat medium from the air-heat medium heat exchanger 67 of the heat medium pipe 68B, and the other end of the branched heat medium pipe C is connected to the three-way valve 81. There is.
  • the heat medium pipe C is provided with a second circulation pump 63 and a motor unit 65.
  • the heat medium used in the equipment temperature control circuit 61 for example, water, a refrigerant such as HFO-1234yf, a liquid such as a coolant, or a gas such as air can be adopted.
  • water is used as a heat medium.
  • a jacket structure is provided around the battery 55 and the motor unit 65 so that, for example, a heat medium can be distributed in a heat exchange relationship with the battery 55 and the motor unit 65.
  • the heat medium discharged from the second circulation pump 63 is the heat medium pipe 64C.
  • the motor unit 65, the three-way valve 81, the heat medium pipe 68B, the heat medium flow path of the chiller heat exchanger 64, and the heat medium pipe 68B flow in this order and are sucked into the second circulation pump 63. In such a flow path control state, the heat medium is circulated between the motor unit 65 and the chiller heat exchanger 64.
  • auxiliary expansion valve 73 When the auxiliary expansion valve 73 is open, a part or all of the refrigerant flowing out from the refrigerant pipe 13G or the outdoor heat exchanger 7 flows into the branch pipe 72, is depressurized by the auxiliary expansion valve 73, and then the chiller heat exchanger. It flows into the refrigerant flow path of 64 and evaporates. The refrigerant absorbs heat from the heat medium flowing through the heat medium flow path in the process of flowing through the refrigerant flow path of the chiller heat exchanger 64, and then is sucked into the compressor 2 via the accumulator 12.
  • hot water heated by the waste heat of the compressor may be circulated to the heater core to heat the blown air.
  • FIG. 2 shows a schematic configuration of an air conditioning controller 32 as a control device that controls the control of the vehicle air conditioning device 1.
  • the air conditioning controller 32 is connected to the vehicle controller 35 (ECU), which controls the entire vehicle including the drive control of the motor unit 65 and the charge / discharge control of the battery 55, via the vehicle communication bus, and transmits / receives information.
  • ECU vehicle controller 35
  • a microcomputer as an example of a computer provided with a processor can be applied to both the air conditioning controller 32 and the vehicle controller 35 (ECU).
  • the following sensors and detectors are connected to the air conditioning controller 32 (control device), and the outputs of each of these sensors and detectors are input. That is, the air conditioning controller 32 (control device) includes an outside air temperature sensor 33 that detects the outside air temperature (Tam) of the vehicle, and an HVAC suction temperature sensor 36 that detects the temperature of the air sucked into the air flow passage 3 from the suction port 25.
  • the air conditioning controller 32 includes an outside air temperature sensor 33 that detects the outside air temperature (Tam) of the vehicle, and an HVAC suction temperature sensor 36 that detects the temperature of the air sucked into the air flow passage 3 from the suction port 25.
  • the inside air temperature sensor 37 that detects the temperature of the air (inside air) in the vehicle interior, the outlet temperature sensor 41 that detects the temperature of the air blown into the vehicle interior from the outlet 29, and the discharge refrigerant pressure of the compressor 2 (
  • the discharge pressure sensor 42 that detects the discharge pressure Pd
  • the discharge temperature sensor 43 that detects the discharge refrigerant temperature of the compressor 2
  • the suction temperature sensor 44 that detects the suction refrigerant temperature TS of the compressor 2
  • the radiator 4 A radiator temperature sensor 46 that detects the temperature (the temperature of the refrigerant that has passed through the radiator 4 or the temperature of the radiator 4 itself: the radiator temperature TCI), and the refrigerant pressure of the radiator 4 (inside the radiator 4 or heat dissipation).
  • the pressure of the refrigerant immediately after leaving the vessel 4 the radiator pressure sensor 47 that detects the radiator pressure PCI) and the temperature of the heat absorber 9 (the temperature of the air that has passed through the heat absorber 9 or the temperature of the heat absorber 9 itself: A heat absorber temperature sensor 48 that detects the heat absorber temperature Te), and a heat absorber pressure sensor 49 that detects the refrigerant pressure of the heat absorber 9 (the pressure of the refrigerant in the heat absorber 9 or immediately after leaving the heat absorber 9).
  • a photosensor type solar radiation sensor 51 for detecting the amount of solar radiation into the vehicle interior
  • a vehicle speed sensor 52 for detecting the moving speed (vehicle speed) of the vehicle, and for setting a set temperature and switching of air conditioning operation.
  • An outdoor heat exchanger pressure sensor 56 that detects the refrigerant pressure of 7 (in this embodiment, the discharge refrigerant pressure value PXO immediately after discharge from the outdoor heat exchanger 7) is connected.
  • the air conditioner controller 32 has the temperature of the battery 55 (the temperature of the battery 55 itself, the temperature of the heat medium exiting the battery 55, and the temperature of the heat medium entering the battery 55: one of the temperatures: the battery.
  • the battery temperature sensor 76 that detects the temperature Tb
  • the heat medium outlet temperature sensor that detects the temperature of the heat medium exiting the heat medium flow path of the chiller heat exchanger 64
  • the temperature of the motor unit 65 (of the motor unit 65 itself).
  • a motor temperature sensor 78 that detects the temperature, the temperature of the heat medium exiting the motor unit 65, or the temperature of the heat medium entering the motor unit 65: motor temperature Tw) is also connected.
  • the output of the air conditioning controller 32 includes a compressor 2, an outdoor blower, an indoor blower (blower fan) 27, a suction switching damper 26, an air mix damper 28, an outlet switching damper 31, and an outdoor expansion valve. 6.
  • the indoor expansion valve 8 and the solenoid valves 21 and 22 are connected to the auxiliary heater 23, the first and second circulation pumps 62 and 63, the auxiliary expansion valve 73, and the three-way valve 81.
  • the air conditioning controller 32 controls these based on the output of each sensor, the settings input by the air conditioning operation unit 53, and the information from the vehicle controller 35.
  • the air conditioner controller 32 (control device) in the present embodiment has an outside air heat absorption heating mode (heating mode) in which heat is absorbed only by the outdoor heat exchanger 7 and heat absorption by the outdoor heat exchanger 7 and the chiller heat exchanger 64 in the heating operation. It is possible to switch between three modes: a combined heating mode (waste heat recovery parallel mode) and a heat absorption heating mode (waste heat recovery independent mode) for which heat is absorbed only by the chiller heat exchanger 64. ..
  • each heating mode will be described.
  • FIG. 3 shows the flow of the refrigerant (solid arrow) in the refrigerant circuit R in the outside air endothermic heating mode.
  • the compressor 2 and the blower 27 are operated, and the air mix damper 28 adjusts the ratio of the air blown from the indoor blower 27 to the radiator 4 and the auxiliary heater 23.
  • the air mix damper 28 adjusts the ratio of the air blown from the indoor blower 27 to the radiator 4 and the auxiliary heater 23.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Since the air in the air flow passage 3 is ventilated through the radiator 4, the air in the air flow passage 3 is heated by the high temperature refrigerant in the radiator 4, while the refrigerant in the radiator 4 heats the air. It is deprived, cooled, and liquefied.
  • the refrigerant liquefied in the radiator 4 exits the radiator 4 and then reaches the outdoor expansion valve 6 via the refrigerant pipes 13F and 13H.
  • the refrigerant is depressurized by the outdoor expansion valve 6 and then flows into the outdoor heat exchanger 7.
  • the refrigerant that has flowed into the outdoor heat exchanger 7 evaporates, and draws heat from the outside air that flows in by traveling or the outside air that is ventilated by the outdoor blower (not shown) (endothermic). That is, the refrigerant circuit R becomes a heat pump.
  • the low-temperature refrigerant leaving the outdoor heat exchanger 7 flows into the accumulator 12 via the refrigerant pipe 13A, the refrigerant pipe 13B, the solenoid valve 21, and the check valve 20.
  • the gas refrigerant is repeatedly circulated to be sucked into the compressor 2 through the refrigerant pipe 13D.
  • the air heated by the radiator 4 is blown out from the outlet 29. As a result, the interior of the vehicle is heated.
  • the air conditioning controller 32 calculates the target radiator pressure PCO (target value of the pressure PCI of the radiator 4) from the target heater temperature TCO (target value of the air temperature on the leeward side of the radiator 4) calculated from the target outlet temperature TAO. Then, the rotation speed of the compressor 2 is controlled based on the target radiator pressure PCO and the refrigerant pressure of the radiator 4 (radiator pressure PCI; high pressure of the refrigerant circuit R) detected by the radiator pressure sensor 47. The valve opening of the outdoor expansion valve 6 is controlled based on the temperature of the radiator 4 (radiator temperature TCI) detected by the radiator temperature sensor 46 and the radiator pressure PCI detected by the radiator pressure sensor 47, and the radiator is used. The degree of supercooling of the refrigerant at the outlet of 4 is controlled.
  • FIG. 4 shows the flow of the refrigerant in the refrigerant circuit R and the flow of the heat medium in the equipment temperature adjusting circuit 61 in the combined heating mode.
  • the air conditioning controller 32 further opens the solenoid valve 22 and the auxiliary expansion valve 73 to control the valve opening in the state of the outside air endothermic heating mode in the heating operation of the refrigerant circuit R shown in FIG. Make it a state.
  • a part of the refrigerant discharged from the radiator 4 is diverted on the upstream side of the refrigerant of the outdoor expansion valve 6 and flows into the refrigerant pipe 13A via the refrigerant pipe 13G.
  • the refrigerant flowing into the refrigerant pipe 13A enters the branch pipe 72, is depressurized by the auxiliary expansion valve 73, and then flows into the refrigerant flow path of the chiller heat exchanger 64 through the branch pipe 72 and evaporates. At this time, it exerts an endothermic effect.
  • the refrigerant evaporated in the refrigerant flow path enters the check valve 20 downstream side of the refrigerant pipe 13B via the refrigerant pipe 74, repeats circulation sucked into the compressor 2 via the accumulator 12 and the refrigerant pipe 13D.
  • the heat medium in the equipment temperature control circuit 61 is discharged from the second circulation pump 63 to the heat medium pipe 68C, reaches the motor unit 65, exchanges heat with the motor unit 65, and then has a three-way valve. It reaches the heat medium flow path of the chiller heat exchanger 64 via 81.
  • the heat medium is endothermic and cooled by the refrigerant evaporating in the refrigerant flow path of the chiller heat exchanger 64.
  • the heat medium cooled by the endothermic action of the refrigerant repeats circulation that exits the chiller heat exchanger 64 and is sucked into the second circulation pump 63.
  • the refrigerant exchanges heat with the outdoor heat exchanger 7 and the chiller. It flows into the vessel 64 and evaporates in each. Therefore, the outdoor heat exchanger 7 absorbs heat from the outside air, and the chiller heat exchanger 64 also absorbs heat from the heat medium (motor unit 65). As a result, heat is pumped from the motor unit 65 (target for temperature control) via the heat medium, and while cooling the motor unit 65, the pumped heat is transferred to the radiator 4 and used for heating the interior of the vehicle. become able to.
  • FIG. 5 shows the flow of the refrigerant in the refrigerant circuit R and the flow of the heat medium in the equipment temperature adjusting circuit 61 in the endothermic heating mode for temperature control.
  • the air conditioning controller 32 closes the solenoid valve 21 (it may be opened because there is a check valve 20), the outdoor expansion valve 6 and the indoor expansion valve 8 are fully closed, and the solenoid valve 22 is fully closed. Is opened, and the auxiliary expansion valve 73 is also opened to control the valve opening degree.
  • the compressor 2 and the indoor blower 27 are operated (the heat medium heater 66 is not energized).
  • the heat medium in the equipment temperature control circuit 61 is discharged from the second circulation pump 63 to the heat medium pipe 68C, reaches the motor unit 65, exchanges heat with the motor unit 65, and then has a three-way valve. It reaches the heat medium flow path of the chiller heat exchanger 64 via 81.
  • the heat medium is endothermic and cooled by the refrigerant evaporating in the refrigerant flow path of the chiller heat exchanger 64.
  • the heat medium cooled by the endothermic action of the refrigerant repeats circulation that exits the chiller heat exchanger 64 and is sucked into the second circulation pump 63.
  • the refrigerant in the refrigerant circuit R evaporates in the chiller heat exchanger 64, and heat is absorbed only from the heat medium of the equipment temperature control circuit 61. That is, the refrigerant does not flow into the outdoor heat exchanger 7 and evaporate, and the refrigerant draws heat from only the motor unit 65 via the heat medium, so that there is a problem of frost formation on the outdoor heat exchanger 7.
  • the motor unit 65 can be cooled, and the heat pumped from the motor unit 65 (target for temperature control) can be transferred to the radiator 4 to heat the interior of the vehicle.
  • the air conditioning controller 32 switches between each heating mode, for example, in the following cases.
  • a sufficient amount of waste heat can be recovered from the motor unit 65 (the temperature of the heat medium (cooling water) entering the motor unit 65 Tw> 30 deg and waste. If there is a heat recovery request), the mode is changed to the waste heat recovery parallel mode.
  • the refrigerant or oil contained in the refrigerant may accumulate in the outdoor heat exchanger 7 depending on the operating conditions. If a certain amount or more of refrigerant or the like accumulates in the outdoor heat exchanger, the amount of refrigerant circulating in the refrigerant circuit R becomes insufficient, resulting in deterioration of heating performance, deterioration or failure of compressor durability, false detection of refrigerant shortage, and the like. sell.
  • the air conditioning controller 32 determines the state in which the refrigerant can accumulate in the outdoor heat exchanger during the heating operation in the waste heat recovery parallel mode, and switches to the waste heat recovery independent mode to execute the heating operation.
  • Waste heat recovery As a state in which refrigerant can accumulate in the outdoor heat exchanger during heating operation in parallel mode, the state in which the discharge refrigerant pressure value PXO of the outdoor heat exchanger is smaller than the suction refrigerant pressure value PS of the compressor is for a certain period of time or longer. There is a continuous operating condition.
  • the compressor When the compressor is operating at a predetermined rotation speed or less, or when the compressor is operating intermittently, the amount of the refrigerant circulating in the refrigerant circuit R decreases, and the discharged refrigerant of the outdoor heat exchanger 7 decreases.
  • the pressure value PXO becomes smaller than the suction refrigerant pressure value PS of the compressor 2, and the refrigerant can be accumulated in the outdoor heat exchanger 7.
  • the discharge refrigerant pressure value PXO of the outdoor heat exchanger 7 is compressed. It becomes smaller than the suction refrigerant pressure value PS of the machine 2, and the refrigerant can be accumulated in the outdoor heat exchanger 7.
  • the air conditioning controller 32 monitors the discharge refrigerant pressure value PXO of the outdoor heat exchanger 7 and the intake refrigerant pressure value PS of the compressor 2.
  • the discharge refrigerant pressure value PXO uses the discharge refrigerant pressure value PXO obtained from the outdoor heat exchanger pressure sensor 56, and the suction refrigerant pressure value PS is calculated from the suction refrigerant temperature TS and the refrigerant saturation temperature obtained from the suction temperature sensor 44.
  • the suction refrigerant pressure value PS can be used.
  • the discharge refrigerant pressure value PXO of the outdoor heat exchanger 7 is smaller than the suction refrigerant pressure value PS of the compressor 2, or the discharge refrigerant temperature TXO of the outdoor heat exchanger 7 is the suction refrigerant temperature of the compressor 2.
  • the heating operation is executed by switching from the waste heat recovery parallel mode to the waste heat recovery single mode.
  • the discharged refrigerant pressure value PXO may be calculated using the discharged refrigerant temperature TXO obtained from the outdoor heat exchanger temperature sensor 54 and the refrigerant saturation temperature, and a pressure sensor may be provided at the suction port of the compressor 2 for suction.
  • the refrigerant pressure value PS may be directly detected.
  • the air conditioning controller 32 may monitor the discharge refrigerant temperature TXO of the outdoor heat exchanger 7 and the intake refrigerant temperature TS of the compressor 2.
  • the discharge refrigerant temperature TXO can be calculated using the discharge refrigerant pressure value PXO detected from the outdoor heat exchanger pressure sensor 56 and the saturation temperature, and the discharge directly detected from the outdoor heat exchanger temperature sensor 54.
  • a refrigerant temperature TXO can also be used.
  • the suction refrigerant temperature TS can be calculated by providing a pressure sensor at the suction port of the compressor 2 and directly detecting the suction refrigerant pressure value PS and the saturation temperature, and is directly detected from the suction temperature sensor 44.
  • the intake refrigerant temperature TS can also be used.
  • the air conditioning controller 32 monitors the operating status such as the rotation speed of the compressor 2, and is abolished when the compressor is operating at a predetermined rotation speed or less, or when the compressor is intermittently operated.
  • the heating operation can be executed by switching from the heat recovery parallel mode to the waste heat recovery single mode.
  • the waste heat recovery parallel mode is changed to the waste heat recovery independent mode. Switch to execute heating operation.
  • the discharge refrigerant pressure value PXO of the outdoor heat exchanger 7 and the intake refrigerant pressure value PS of the compressor 2 can be restored to a desirable state.

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

【課題】被温調対象の熱を車室内の暖房に有効利用しながら、室外熱交換器における冷媒の蓄積を抑制する。冷媒を圧縮する圧縮機、空調対象空間へ送風される送風空気を加熱する加熱部、及び、前記冷媒の吸熱を行う室外熱交換器を含む冷媒回路と、前記冷媒を用いて車両に搭載された被温調対象の温度を調整する被温調対象用熱交換器を含む機器温度調整回路と、前記冷媒回路及び前記機器温度調整回路を制御する制御装置を備え、前記制御装置は、前記加熱部を用いて前記車室内を暖房する暖房運転において、前記圧縮機から吐出し前記加熱部にて放熱した前記冷媒を、前記被温調対象用熱交換器において吸熱する被温調対象吸熱暖房モードと、前記室外熱交換器及び前記被温調対象用熱交換器において吸熱する併用暖房モードと、を少なくとも有し、前記併用暖房モードによる暖房運転時において、前記室外熱交換器に前記冷媒が蓄積し得る運転状態を判定し、前記被温調対象吸熱暖房モードに切り替えて暖房運転を実行するよう制御する、車両用空調装置を提供する。

Description

車両用空調装置
 本発明は、ヒートポンプ式の車両用空調装置であって、特に、車両に搭載されたバッテリ、モータ等の被温調対象から吸熱して車室内の暖房を行うことができるものに関する。
 近年、車両に搭載されたバッテリから供給される電力によって走行用モータを駆動するハイブリッド自動車や電気自動車等の車両が普及している。このような車両に適用される空気調和装置として、冷媒を圧縮して吐出する圧縮機と、車室内に設けられて冷媒を放熱させる放熱器(室内熱交換器)と、車室外に設けられて外気が通風されると共に冷媒を吸熱又は放熱させる室外熱交換器とが接続された冷媒回路を備えたものが知られている(例えば、特許文献1)。このような車両用空調装置では、圧縮機から吐出され放熱器において放熱させた冷媒を室外熱交換器で吸熱させることにより暖房し、圧縮機から吐出され室外熱交換器で放熱させた冷媒を、吸熱器(蒸発器)において蒸発させ、吸熱させることにより冷房する等して車室内の空調を行っている。
 また、例えば、冷媒回路に、バッテリ等の被温調対象を冷却する被温調対象用熱交換器を設け、暖房運転時の冷媒の吸熱を、室外熱交換器のみで行う外気吸熱暖房モードと、被温調対象用熱交換器のみで行う被温調対象用熱交換器暖房モードと、室外熱交換器及び被温調対象用熱交換器の双方で行う併用暖房モードとを切り替えて実行する車両用空調装置が知られている(例えば、特許文献2)。
特開2014-213765号公報 特開2020-050155号公報
 上記の車両用空調装置の併用暖房モードにおいて、室外熱交換器及び被温調対象用熱交換器の双方に冷媒を循環させる場合は、圧縮機から吐出し放熱器で放熱して冷却した冷媒を、室外熱交換器へ向かう流路と被温調対象用熱交換器へ向かう流路とに分流させる。その後、分流された冷媒を、室外熱交換器及び被温調対象用熱交換器においてそれぞれ吸熱させ再び圧縮機へ流入させる。
 すなわち、室外熱交換器には分流された冷媒が流入しているので、室外熱交換器の出口においては、分流された冷媒が流出する。一方、圧縮機の入口においては、室外熱交換器から循環してきた冷媒と被温調対象用熱交換器から循環してきた冷媒とが合流して流入する。従って、室外熱交換器の出口と圧縮機の入口とでは、循環している冷媒の量が異なる。また、室外熱交換器での吸熱量と被温調対象用熱交換器での吸熱量が必ずしも同一でないため、各熱交換器から流出する冷媒の温度や圧力も必ずしも同一でない。
 このような背景に起因して、併用暖房モードでの運転時に、室外熱交換器に冷媒(液冷媒やオイル)が蓄積してしまう場合がある。室外熱交換器に冷媒が一定量以上蓄積すると、冷媒回路内を循環する冷媒の量が不足し、暖房性能の低下、圧縮機の耐久性低下や故障、冷媒不足の誤検知などが生じうる。
 本発明は、このような事情に鑑みてなされたものであり、被温調対象の熱を車室内の暖房に有効利用しながら、室外交換機における冷媒の蓄積を抑制すること、などを課題としている。
 本発明は、冷媒を圧縮する圧縮機、空調対象空間へ送風される送風空気を加熱する加熱部、及び、前記冷媒の吸熱を行う室外熱交換器を含む冷媒回路と、前記冷媒を用いて車両に搭載された被温調対象の温度を調整する被温調対象用熱交換器を含む機器温度調整回路と、前記冷媒回路及び前記機器温度調整回路を制御する制御装置を備え、前記制御装置は、前記加熱部を用いて前記車両の内部を暖房する暖房運転において、前記圧縮機から吐出し前記加熱部にて放熱した前記冷媒を、前記被温調対象用熱交換器において吸熱する被温調対象吸熱暖房モードと、前記室外熱交換器及び前記被温調対象用熱交換器において吸熱する併用暖房モードと、を少なくとも有し、前記併用暖房モードによる暖房運転時において、前記室外熱交換器に前記冷媒が蓄積し得る運転状態を判定し、前記被温調対象吸熱暖房モードに切り替えて暖房運転を実行するよう制御する、車両用空調装置を提供する。
 本発明によれば、被温調対象の熱を車室内の暖房に有効利用しながら、室外熱交換器における冷媒の蓄積を抑制することができる。
本発明の実施形態に係る車両用空調装置の概略構成を示す図である。 本発明の実施形態に係る車両用空調装置の制御装置としての空調コントローラの概略構成を示すブロック図である。 本発明の実施形態に係る車両用空調装置において、外気吸熱暖房モードによって暖房運転を行う際の冷媒の流れを示す説明図である。 本発明の実施形態に係る車両用空調装置において、併用暖房モードによって暖房運転を行う際の冷媒の流れを示す説明図である。 本発明の実施形態に係る車両用空調装置において、被温調対象吸熱暖房モードによって暖房運転を行う際の冷媒の流れを示す説明図である。
 以下、本発明を実施するための形態について、図面を参照しつつ詳細に説明する。以下の説明において、同一の符号は同一の機能の部位を示しており、各図における重複説明は適宜省略する。
 図1は、本発明の実施形態に係る車両用空調装置1の概略構成を示す。車両用空調装置1は、例えば、エンジン(内燃機関)が搭載されていない電気自動車(EV)やエンジンと走行用の電動モータを供用する所謂ハイブリッド自動車などの車両に適用することができる。このような車両は、バッテリ55(例えば、リチウム電池)が搭載され、外部電源からバッテリ55に充電された電力を、走行用モータ(電動モータ)を含むモータユニット65に供給することで駆動し、走行する。車両用空調装置1も、バッテリ55から給電されて駆動される。
 車両用空調装置1は、ヒートポンプ運転を行うための冷媒回路Rと、バッテリ55やモータユニット65等の温調対象の温度を調整する機器温度調整回路61とを備えている。機器温度調整回路61は、冷媒回路Rに対して後述する冷媒-熱媒体熱交換器64を介して並列回路となる。車両用空調装置1は、冷媒回路Rを用いたヒートポンプ運転により暖房運転や冷房運転等の空調運転を含む各種運転モードを選択的に実行することで、車室内の空調及びバッテリ55やモータユニット65等の被温調対象の温調を行う。
 冷媒回路Rは、冷媒を圧縮する電動式の圧縮機(電動圧縮機)2と、車室内空気が通気循環されるHVACユニット10の空気流通路3内に設けられ、圧縮機2から吐出された高温高圧の冷媒を放熱させて車室内に供給する空気を加熱する室内熱交換器(加熱部)としての放熱器4と、暖房時に冷媒を減圧膨張させる室外膨張弁6と、冷房時には冷媒を放熱させる放熱器(凝縮器)として機能し、暖房時には冷媒を吸熱させる蒸発器として機能すべく冷媒と外気との間で熱交換を行わせるための室外熱交換器7と、冷媒を減圧膨張させる室内膨張弁8と、空気流通路3内に設けられて冷房時(除湿時)に車室内外から冷媒に吸熱させて車室内に供給する空気を冷却するための吸熱器9と、アキュムレータ12等が冷媒配管13A~13Hにより接続されて構成されている。
 室外膨張弁6及び室内膨張弁8はいずれも電子膨張弁を適用することができる。室外膨張弁6は、放熱器4から流出し室外熱交換器7に流入する冷媒を減圧膨張させると共に、全閉も可能となっている。室内膨張弁8は、吸熱器9に流入する冷媒を減圧膨張させると共に、吸熱器9における冷媒の吸熱力、つまり通過空気の冷却能力を調整する。
 室外熱交換器7の冷媒出口と吸熱器9の冷媒入口とは冷媒配管13Aにより接続されている。冷媒配管13Aには、室外熱交換器7側から順に、逆止弁18と室内膨張弁8とが設けられている。逆止弁18は、吸熱器9に向かう方向が順方向となるように冷媒配管13Aに設けられる。冷媒配管13Aは、逆止弁18よりも室外熱交換器7側の位置で冷媒配管13Bに分岐している。
 冷媒配管13Aから分岐した冷媒配管13Bは、アキュムレータ12の冷媒入口に接続されている。冷媒配管13Bには、室外熱交換器7側から順に、暖房時に開放される電磁弁21及び逆止弁20が設けられている。逆止弁20は、アキュムレータ12に向かう方向が順方向となるように接続されている。冷媒配管13Bの電磁弁21と逆止弁20との間は冷媒配管13Cに分岐している。冷媒配管13Bから分岐した冷媒配管13Cは、吸熱器9の冷媒出口に接続されている。アキュムレータ12の冷媒出口と圧縮機2とは、冷媒配管Dにより接続されている。
 圧縮機2の冷媒出口と放熱器4の冷媒入口とは、冷媒配管13Eにより接続されている。放熱器4の冷媒出口には冷媒配管13Fの一端が接続され、冷媒配管13Fの他端側は室外膨張弁6の手前(冷媒上流側)で冷媒配管13Gと冷媒配管13Hに分岐している。分岐した一方の冷媒配管13Hが室外膨張弁6を介して室外熱交換器7の冷媒入口側に接続されている。また、分岐した他方の冷媒配管13Gは、冷媒配管Aの逆止弁18と室内膨張弁8との間に接続されている。冷媒配管13Gの冷媒配管Aとの接続点より冷媒上流側には、電磁弁22が設けられている。
 これにより、冷媒配管13Gは室外膨張弁6、室外熱交換器7及び逆止弁18の直列回路に対して並列に接続され、室外膨張弁6、室外熱交換器7及び逆止弁18をバイパスする回路となる。
 吸熱器9の空気上流側における空気流通路3には、外気吸込口と内気吸込口の各吸込口が形成されている(図1では吸込口25で代表して示す)。吸込口25には吸込切換ダンパ26が設けられている。吸込切換ダンパ26により、車室内の空気である内気(内気循環)と、車室外の空気である外気(外気導入)とを適宜切り換えて吸込口25から空気流通路3内に導入する。吸込切換ダンパ26の空気下流側には、導入した内気や外気を空気流通路3に送給するための室内送風機(ブロワファン)27が設けられている。
 図1において補助ヒータ23は補助加熱装置としての補助ヒータである。補助ヒータ23は、例えば、PTCヒータ(電気ヒータ)から構成されており、空気流通路3の空気の流れに対して、放熱器4の空気下流側となる空気流通路3内に設けられている。補助ヒータ23が通電されて発熱すると、これが所謂ヒータコアとなり、車室内の暖房を補完する。
 放熱器4の空気上流側における空気流通路3内には、空気流通路3内に流入し、吸熱器9を通過した後の空気流通路3内の空気(内気や外気)を放熱器4及び補助ヒータ23に通風する割合を調整するエアミックスダンパ28が設けられている。
 機器温度調整回路61は、バッテリ55やモータユニット65等の被温調対象に熱媒体を循環させてバッテリ55やモータユニット65の温度を調整する。なお、モータユニット65には、走行用の電動モータと電動モータを駆動するインバータ回路等の発熱機器も含まれる。被温調対象として、バッテリ55やモータユニット65の他に、車両に搭載されて発熱する機器を適用することができる。
 機器温度調整回路61は、バッテリ55やモータユニット65に熱媒体を循環させるための循環装置としての第1循環ポンプ62及び第2循環ポンプ63と、冷媒-熱媒体熱交換器(以下、「チラー熱交換器)という)64と、熱媒体加熱ヒータ66と、空気-熱媒体熱交換器67と、流路切換装置としての三方弁81とを備えている。
 機器温度調整回路61は、チラー熱交換器64を介して冷媒回路Rと接続されている。冷媒回路Rにおいて、冷媒配管13Aの、冷媒配管Gとの接続点と室内膨張弁8との間には、分岐回路としての分岐配管72の一端が接続され、分岐配管72の他端はチラー熱交換器64の冷媒流路に接続されている。分岐配管72には補助膨張弁73が設けられている。補助膨張弁73はチラー熱交換器64の冷媒流路に流入する冷媒を減圧膨張させると共に全閉も可能となっている。
 チラー熱交換器64の冷媒流路の出口には冷媒配管74の一端が接続され、冷媒配管74の他端は、冷媒配管Bの逆止弁20とアキュムレータ12との間に接続されている。チラー熱交換器64は、冷媒回路Rの一部を構成すると同時に、機器温度調整回路61の一部をも構成する。
 チラー熱交換器64の熱媒体吐出側に熱媒体配管68Aの一端が接続されている。熱媒体配管68Aには、チラー熱交換器64側から順に、熱媒体加熱ヒータ66、バッテリ55、第1循環ポンプ62、逆止弁82が設けられている。熱媒体配管68Aの他端は、後述する熱媒体配管68Bに接続される。熱媒体配管68Aは、熱媒体加熱ヒータ66よりもチラー熱交換器64側の位置で熱媒体配管68Bに分岐している。分岐した熱媒体配管68Bの他端は、チラー熱交換器64の熱媒体入口に接続されている。熱媒体配管68Bには、空気-熱媒体熱交換器67が設けられている。空気-熱媒体熱交換器67は、図示しない室外送風機によって通風される外気(空気)の流れ(風路)に対して、室外熱交換器7の風下側に配置される。
 熱媒体配管68Bの空気-熱媒体熱交換器67より熱媒体下流側には三方弁81が設けられ、熱媒体配管68Bの三方弁81とチラー熱交換器64の熱媒体入口との間には、熱媒体配管Aの他端が接続されている。熱媒体配管68Bは、熱媒体配管68Bの空気-熱媒体熱交換器67より熱媒体上流側において熱媒体配管Cに分岐し、分岐した熱媒体配管Cの他端は三方弁81に接続されている。熱媒体配管Cには、第2循環ポンプ63及びモータユニット65が設けられている。
 機器温度調整回路61で使用される熱媒体としては、例えば水、HFO-1234yfのような冷媒、クーラント等の液体、空気等の気体が採用可能である。尚、本実施形態では水を熱媒体として採用している。また、バッテリ55やモータユニット65の周囲には例えば熱媒体が当該バッテリ55やモータユニット65と熱交換関係で流通可能なジャケット構造が施されているものとする。
 三方弁81が入口とチラー熱交換器64側の出口を連通する状態に切り換えられ、第2循環ポンプ63が運転されると、第2循環ポンプ63から吐出された熱媒体は熱媒体配管64C、モータユニット65、三方弁81、熱媒体配管68B、チラー熱交換器64の熱媒体流路、熱媒体配管68Bの順に流れて第2循環ポンプ63に吸い込まれる。このような流路制御状態では、モータユニット65とチラー熱交換器64の間で熱媒体が循環される。
 補助膨張弁73が開いている場合、冷媒配管13Gや室外熱交換器7から流出した冷媒の一部又は全部は、分岐配管72に流入し補助膨張弁73で減圧された後、チラー熱交換器64の冷媒流路に流入して蒸発する。冷媒は、チラー熱交換器64の冷媒流路を流れる過程で熱媒体流路を流れる熱媒体から吸熱した後、アキュムレータ12を経て圧縮機2に吸い込まれる。
 なお、加熱部として室内熱交換器の他に、例えば、圧縮機廃熱によって加熱した温水をヒータコアに循環させることにより、送風空気を加熱する形態とすることもできる。
 図2に、車両用空調装置1の制御を司る制御装置としての空調コントローラ32の概略構成を示す。空調コントローラ32は、モータユニット65の駆動制御やバッテリ55の充放電制御を含む車両全般の制御を司る車両コントローラ35(ECU)に車両通信バスを介して接続され、情報の送受信を行う。空調コントローラ32及び車両コントローラ35(ECU)には何れもプロセッサを備えたコンピュータの一例としてのマイクロコンピュータを適用することができる。
 空調コントローラ32(制御装置)には、以下の各センサや検出器が接続され、これらの各センサや検出器等の出力が入力される。すなわち、空調コントローラ32(制御装置)には、車両の外気温度(Tam)を検出する外気温度センサ33と、吸込口25から空気流通路3に吸い込まれる空気の温度を検出するHVAC吸込温度センサ36と、車室内の空気(内気)の温度を検出する内気温度センサ37と、吹出口29から車室内に吹き出される空気の温度を検出する吹出温度センサ41と、圧縮機2の吐出冷媒圧力(吐出圧力Pd)を検出する吐出圧力センサ42と、圧縮機2の吐出冷媒温度を検出する吐出温度センサ43と、圧縮機2の吸込冷媒温度TSを検出する吸込温度センサ44と、放熱器4の温度(放熱器4を経た冷媒の温度、又は、放熱器4自体の温度:放熱器温度TCI)を検出する放熱器温度センサ46と、放熱器4の冷媒圧力(放熱器4内、又は、放熱器4を出た直後の冷媒の圧力:放熱器圧力PCI)を検出する放熱器圧力センサ47と、吸熱器9の温度(吸熱器9を経た空気の温度、又は、吸熱器9自体の温度:吸熱器温度Te)を検出する吸熱器温度センサ48と、吸熱器9の冷媒圧力(吸熱器9内、又は、吸熱器9を出た直後の冷媒の圧力)を検出する吸熱器圧力センサ49と、車室内への日射量を検出するための例えばフォトセンサ式の日射センサ51と、車両の移動速度(車速)を検出するための車速センサ52と、設定温度や空調運転の切り換えを設定するための空調操作部53と、室外熱交換器7の温度(本実施形態においては室外熱交換器7から吐出直後の吐出冷媒温度TXO)を検出する室外熱交換器温度センサ54と、室外熱交換器7の冷媒圧力(本実施形態においては室外熱交換器7から吐出直後の吐出冷媒圧力値PXO)を検出する室外熱交換器圧力センサ56が接続されている。
 上記のほか、空調コントローラ32には、バッテリ55の温度(バッテリ55自体の温度、バッテリ55を出た熱媒体の温度、及び、バッテリ55に入る熱媒体の温度のうち、いずれかの温度:バッテリ温度Tb)を検出するバッテリ温度センサ76と、チラー熱交換器64の熱媒体流路を出た熱媒体の温度を検出する熱媒体出口温度センサと、モータユニット65の温度(モータユニット65自体の温度、モータユニット65を出た熱媒体の温度、及びモータユニット65に入る熱媒体の温度のうちいずれかの温度:モータ温度Tw)を検出するモータ温度センサ78も接続されている。
 一方、空調コントローラ32の出力には、圧縮機2と、室外送風機と、室内送風機(ブロワファン)27と、吸込切換ダンパ26と、エアミックスダンパ28と、吹出口切換ダンパ31と、室外膨張弁6、室内膨張弁8と、電磁弁21,22の各電磁弁と、補助ヒータ23、第1及び第2循環ポンプ62、63、補助膨張弁73、三方弁81が接続されている。そして、空調コントローラ32は各センサの出力と空調操作部53にて入力された設定、車両コントローラ35からの情報に基づいてこれらを制御するものである。
 以下、このように構成された車両用空調装置1の動作、特に、暖房運転時の動作について説明する。本実施形態における空調コントローラ32(制御装置)は、暖房運転において、室外熱交換器7のみによって吸熱を行う外気吸熱暖房モード(暖房モード)と、室外熱交換器7及びチラー熱交換器64によって吸熱を行う併用暖房モード(廃熱回収並列モード)と、チラー熱交換器64のみによって吸熱を行う被温調対象吸熱暖房モード(廃熱回収単独モード)の三つのモードを切り替えて実行することができる。
 以下、各暖房モードについて説明する。
(1)外気吸熱暖房モード(暖房モード)
 図3は、外気吸熱暖房モードにおける冷媒回路Rの冷媒の流れ(実線矢印)を示している。空調コントローラ32により(オートモード)、或いは、空調操作部53へのマニュアル操作(マニュアルモード)により暖房運転が選択され、空調コントローラ32が外気吸熱暖房モードを実行する場合、電磁弁21(暖房用)を開放し、室内膨張弁8を全閉とする。また、補助膨張弁73を全閉とし、電磁弁22(除湿用)も閉じる。
 圧縮機2、及び、送風機27を運転し、エアミックスダンパ28は室内送風機27から吹き出された空気が放熱器4及び補助ヒータ23に通風される割合を調整する状態とする。これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒により加熱され、一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化する。
 放熱器4内で液化した冷媒は放熱器4を出た後、冷媒配管13F、13Hを経て室外膨張弁6に至る。冷媒は、室外膨張弁6で減圧された後、室外熱交換器7に流入する。室外熱交換器7に流入した冷媒は蒸発し、走行により流入する外気、或いは、室外送風機(図示せず)にて通風される外気中から熱を汲み上げる(吸熱)。即ち、冷媒回路Rがヒートポンプとなる。
 そして、室外熱交換器7を出た低温の冷媒は冷媒配管13A及び冷媒配管13B、電磁弁21、逆止弁20を経てアキュムレータ12に流入する。冷媒はアキュムレータ12で気液分離された後、ガス冷媒が冷媒配管13Dを経て圧縮機2に吸い込まれる循環を繰り返す。放熱器4にて加熱された空気は吹出口29から吹き出される。これにより、車室内の暖房が行われることとなる。
 空調コントローラ32は、目標吹出温度TAOから算出される目標ヒータ温度TCO(放熱器4の風下側の空気温度の目標値)から目標放熱器圧力PCO(放熱器4の圧力PCIの目標値)を算出し、この目標放熱器圧力PCOと、放熱器圧力センサ47が検出する放熱器4の冷媒圧力(放熱器圧力PCI。冷媒回路Rの高圧圧力)に基づいて圧縮機2の回転数を制御すると共に、放熱器温度センサ46が検出する放熱器4の温度(放熱器温度TCI)及び放熱器圧力センサ47が検出する放熱器圧力PCIに基づいて室外膨張弁6の弁開度を制御し、放熱器4の出口における冷媒の過冷却度を制御する。目標ヒータ温度TCOは基本的にはTCO=TAOとされるが、制御上の所定の制限が設けられる。また、放熱器4による暖房能力が不足する場合には補助ヒータ23に通電して発熱させ、暖房能力を補助(補完)する。
 (2)併用暖房モード(廃熱回収並列モード)
 図4は、併用暖房モードにおける冷媒回路Rの冷媒の流れ及び機器温度調整回路61の熱媒体の流れを示している。併用暖房モードでは、空調コントローラ32は図3に示した冷媒回路Rの暖房運転における外気吸熱暖房モードの状態で、更に電磁弁22を開き、補助膨張弁73も開いてその弁開度を制御する状態とする。これにより、放熱器4から出た冷媒の一部が室外膨張弁6の冷媒上流側で分流され、冷媒配管13Gを経て冷媒配管13Aに流入する。
 冷媒配管13Aに流入した冷媒は、分岐配管72に入り、補助膨張弁73で減圧された後、分岐配管72を経てチラー熱交換器64の冷媒流路に流入して蒸発する。このときに吸熱作用を発揮する。冷媒流路で蒸発した冷媒は、冷媒配管74を経て冷媒配管13Bの逆止弁20下流側に入り、アキュムレータ12、冷媒配管13Dを経て圧縮機2に吸い込まれる循環を繰り返す。
 一方、図4に示すように、機器温度調整回路61における熱媒体は、第2循環ポンプ63から熱媒体配管68Cに吐出されてモータユニット65に至り、モータユニット65と熱交換した後、三方弁81を経てチラー熱交換器64の熱媒体流路に至る。熱媒体は、チラー熱交換器64の冷媒流路内で蒸発する冷媒により吸熱されて冷却される。冷媒の吸熱作用で冷却された熱媒体は、チラー熱交換器64を出て第2循環ポンプ63に吸い込まれる循環を繰り返す。
 このように、併用暖房モードでは、冷媒回路Rの冷媒の流れに対して室外熱交換器7とチラー熱交換器64が並列に接続されているので、冷媒が室外熱交換器7とチラー熱交換器64に流れてそれぞれで蒸発する。従って、室外熱交換器7によって外気から吸熱すると共に、チラー熱交換器64によって熱媒体(モータユニット65)からも吸熱することになる。これにより、熱媒体を介してモータユニット65(被温調対象)から熱を汲み上げ、モータユニット65を冷却しながら、汲み上げた熱を放熱器4に搬送し、車室内の暖房に利用することができるようになる。
 (3)被温調対象吸熱暖房モード(廃熱回収単独モード)
 図5は、被温調対象吸熱暖房モードにおける冷媒回路Rの冷媒の流れ及び機器温度調整回路61の熱媒体の流れを示している。
 この被温調対象暖房モードでは、空調コントローラ32は電磁弁21を閉じ(逆止弁20があるので開いていてもよい)、室外膨張弁6と室内膨張弁8を全閉とし、電磁弁22を開き、補助膨張弁73も開いてその弁開度を制御する状態とする。圧縮機2及び室内送風機27を運転する(熱媒体加熱ヒータ66は非通電)。
 これにより、放熱器4から出た全ての冷媒が電磁弁22に流れ、冷媒配管13Gを経て冷媒配管13Aに流入する。冷媒は次に分岐配管72に入り、補助膨張弁73で減圧された後、分岐配管72を経てチラー熱交換器64の冷媒流路に流入して蒸発する。このときに吸熱作用を発揮する。冷媒流路で蒸発した冷媒は、冷媒配管74を経て冷媒配管13Bの逆止弁20の下流側に流入し、アキュムレータ12、冷媒配管13Dを経て圧縮機2に吸い込まれる循環を繰り返す。
 一方、図5に示すように、機器温度調整回路61における熱媒体は、第2循環ポンプ63から熱媒体配管68Cに吐出されてモータユニット65に至り、モータユニット65と熱交換した後、三方弁81を経てチラー熱交換器64の熱媒体流路に至る。熱媒体は、チラー熱交換器64の冷媒流路内で蒸発する冷媒により吸熱されて冷却される。冷媒の吸熱作用で冷却された熱媒体は、チラー熱交換器64を出て第2循環ポンプ63に吸い込まれる循環を繰り返す。
 このように廃熱回収単独モードでは、冷媒回路Rの冷媒がチラー熱交換器64にて蒸発し、機器温度調整回路61の熱媒体のみから吸熱する。即ち、冷媒は室外熱交換器7に流入して蒸発することは無く、冷媒は熱媒体を介してモータユニット65のみから熱を汲み上げることになるので、室外熱交換器7への着霜の問題を解消しながら、モータユニット65を冷却し、モータユニット65(被温調対象)から汲み上げた熱を放熱器4に搬送して車室内を暖房することができる。
(4)暖房運転時のモード切替
 空調コントローラ32は、各暖房モード間の切替を、例えば、次のような場合に行っている。
 車両用空調装置1が、通常の暖房モードで運転されている場合において、モータユニット65から十分な廃熱量が回収できる状況(モータユニット65に入る熱媒体(冷却水)の温度Tw>30degかつ廃熱回収要求あり)である場合には、廃熱回収並列モードに遷移させる。
 車両用空調装置1が、廃熱回収並列モードで運転されている場合において、廃熱回収できない状況(Tw<-5degまたはTw<車の外気温Tamまたは廃熱回収要求なし)となった場合には、空調コントローラ32により廃熱回収完了と判断し、廃熱回収並列モードから通常の暖房モードに切り替える。
 車両用空調装置1が、廃熱回収並列モードで運転されている場合において、水温が上昇しつづけた場合(Tw>60degかつ廃熱回収要求あり)は、廃熱回収単独モードに遷移させる。
 ここで、廃熱回収並列モードによる運転時に、運転状況によっては室外熱交換器7に冷媒や冷媒に含まれるオイルが蓄積してしまう場合がある。室外熱交換器に冷媒等が一定量以上蓄積すると、冷媒回路R内を循環する冷媒の量が不足し、暖房性能の低下、圧縮機の耐久性低下や故障、冷媒不足の誤検知などが生じうる。
 そこで、空調コントローラ32は、廃熱回収並列モードによる暖房運転時に、運転状況が室外熱交換器に冷媒が蓄積し得る状態を判定して、廃熱回収単独モードに切り替えて暖房運転を実行する。
 廃熱回収並列モードによる暖房運転時に、室外熱交換器に冷媒が蓄積し得る状態として、室外熱交換器の吐出冷媒圧力値PXOが圧縮機の吸入冷媒圧力値PSよりも小さい状態が一定時間以上継続するような運転状態がある。
 圧縮機が所定回転数以下で運転している場合、又は、圧縮機が間欠運転している場合には、冷媒回路R内に循環する冷媒の量が減少し、室外熱交換器7の吐出冷媒圧力値PXOが圧縮機2の吸入冷媒圧力値PSよりも小さくなり、室外熱交換器7に冷媒が蓄積し得る状態となる。
 また、室外熱交換器7における冷媒の吸熱量に対し、チラー熱交換器64における冷媒の吸熱量が大きい状態が一定以上継続した場合にも、室外熱交換器7の吐出冷媒圧力値PXOが圧縮機2の吸入冷媒圧力値PSよりも小さくなり、室外熱交換器7に冷媒が蓄積し得る状態となる。
 このため、空調コントローラ32は、室外熱交換器7の吐出冷媒圧力値PXOと圧縮機2の吸入冷媒圧力値PSとを監視する。吐出冷媒圧力値PXOは、室外熱交換器圧力センサ56から得た吐出冷媒圧力値PXOを用い、吸入冷媒圧力値PSは、吸込温度センサ44から得た吸込冷媒温度TSと冷媒飽和温度から算出した吸入冷媒圧力値PSを用いることができる。
 空調コントローラ32は、室外熱交換器7の吐出冷媒圧力値PXOが圧縮機2の吸入冷媒圧力値PSよりも小さい状態、または室外熱交換器7の吐出冷媒温度TXOが圧縮機2の吸入冷媒温度TSよりも小さい状態が予め定めた時間を超える場合に、廃熱回収並列モードから廃熱回収単独モードに切り替えて暖房運転を実行する。
 なお、吐出冷媒圧力値PXOは、室外熱交換器温度センサ54から得た吐出冷媒温度TXOと冷媒飽和温度とを用いて算出してもよく、圧縮機2の吸込口に圧力センサを設けて吸入冷媒圧力値PSを直接検出してもよい。
 この他、空調コントローラ32は、室外熱交換器7の吐出冷媒温度TXOと圧縮機2の吸入冷媒温度TSとを監視してもよい。この場合、吐出冷媒温度TXOは、室外熱交換器圧力センサ56から検出した吐出冷媒圧力値PXOと飽和温度とを用いて算出することができる他、室外熱交換器温度センサ54から直接検出した吐出冷媒温度TXOを用いることもできる。また、吸入冷媒温度TSは、圧縮機2の吸込口に圧力センサを設けて直接検出した吸込冷媒圧力値PSと飽和温度とを用いて算出することができる他、吸込温度センサ44から直接検出した吸入冷媒温度TSを用いることもできる。
 また、空調コントローラ32は、例えば、圧縮機2の回転数等の運転状況を監視し、圧縮機が所定回転数以下で運転している場合、又は、圧縮機が間欠運転している場合に廃熱回収並列モードから廃熱回収単独モードに切り替えて暖房運転を実行することができる。
 本実施形態に係る車両用空調装置1によれば、暖房運転時の運転状況が室外熱交換器7に冷媒が蓄積し得る状態である場合に、廃熱回収並列モードから廃熱回収単独モードに切り替えて暖房運転を実行させる。このように、一時的に室外熱交換器7への冷媒の循環を停止させることで、室外熱交換器7に冷媒が蓄積しうる状態を回避させることができる。さらに、その間に、室外熱交換器7の吐出冷媒圧力値PXOと圧縮機2の吸入冷媒圧力値PSを望ましい状態に回復させることができる。これにより、暖房性能の低下、圧縮機の耐久性低下や故障、冷媒不足の誤検知などを抑制することができる。
 以上、本発明の実施の形態について図面を参照して詳述してきたが、具体的な構成はこれらの実施の形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計の変更等があっても本発明に含まれる。
 1:車両用空調装置,2:圧縮機,4:放熱器,6:室外膨張弁,7:室外熱交換器,8:室内膨張弁,9:吸熱器,32:空調コントローラ(制御装置),44:吸込温度センサ,54:室外熱交換器温度センサ,56:室外熱交換器圧力センサ,61:機器温度調整回路,63:第2循環ポンプ,64:チラー熱交換器(冷媒-熱媒体熱交換器),65:モータユニット

Claims (8)

  1.  冷媒を圧縮する圧縮機、空調対象空間へ送風される送風空気を加熱する加熱部、及び、前記冷媒の吸熱を行う室外熱交換器を含む冷媒回路と、
     前記冷媒を用いて車両に搭載された被温調対象の温度を調整する被温調対象用熱交換器を含む機器温度調整回路と、
     前記冷媒回路及び前記機器温度調整回路を制御する制御装置を備え、
     前記制御装置は、
     前記加熱部を用いて前記車両の内部を暖房する暖房運転において、
     前記圧縮機から吐出し前記加熱部にて放熱した前記冷媒を、
     前記被温調対象用熱交換器において吸熱する被温調対象吸熱暖房モードと、
     前記室外熱交換器及び前記被温調対象用熱交換器において吸熱する併用暖房モードと、を少なくとも有し、
     前記併用暖房モードによる暖房運転時において、前記室外熱交換器に前記冷媒が蓄積し得る運転状態を判定し、前記被温調対象吸熱暖房モードに切り替えて暖房運転を実行するよう制御する、車両用空調装置。
  2.  前記制御装置は、
     前記室外熱交換器の吐出冷媒圧力値が、前記圧縮機の吸入冷媒圧力値よりも小さい状態が所定時間以上継続した場合に、前記室外熱交換器に前記冷媒が蓄積し得る運転状態であると判定して前記併用暖房モードから前記被温調対象吸熱暖房モードに切り替えて暖房運転を実行する請求項1記載の車両用空調装置。
  3.  前記吐出冷媒圧力値は、前記室外熱交換器の吐出冷媒温度と冷媒飽和温度とを用いて算出した値である請求項2記載の車両用空調装置。
  4.  前記吸入冷媒圧力値は、前記圧縮機の吸込冷媒温度と冷媒飽和温度とを用いて算出した値である請求項2又は請求項3記載の車両用空調装置。
  5.  前記制御装置は、
     前記室外熱交換器の吐出冷媒温度が、前記圧縮機の吸入冷媒温度よりも小さい状態が所定時間以上継続した場合に、前記室外熱交換器に前記冷媒が蓄積し得る運転状態であると判定して前記併用暖房モードから前記被温調対象吸熱暖房モードに切り替えて暖房運転を実行する請求項1記載の車両用空調装置。
  6.  前記吐出冷媒温度は、前記室外熱交換器の吐出冷媒圧力値と冷媒飽和温度とを用いて算出した値である請求項5記載の車両用空調装置。
  7.  前記吸入冷媒温度は、前記圧縮機の吸込冷媒圧力値と冷媒飽和温度とを用いて算出した値である請求項5又は請求項6記載の車両用空調装置。
  8.  前記制御装置は、
     前記圧縮機が所定回転数以下で運転している場合、又は、前記圧縮機が間欠運転している場合に、前記室外熱交換器に前記冷媒が蓄積し得る運転状態であると判定して前記併用暖房モードから前記被温調対象吸熱暖房モードに切り替えて暖房運転を実行する請求項1記載の車両用空調装置。
PCT/JP2021/031287 2020-09-24 2021-08-26 車両用空調装置 WO2022064946A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/044,013 US20240278619A1 (en) 2020-09-24 2021-08-26 Air conditioning device for vehicle
DE112021004952.6T DE112021004952T5 (de) 2020-09-24 2021-08-26 Fahrzeugklimaanlage
CN202180054218.3A CN116113553A (zh) 2020-09-24 2021-08-26 车辆用空调装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020160097A JP7444749B2 (ja) 2020-09-24 2020-09-24 車両用空調装置
JP2020-160097 2020-09-24

Publications (1)

Publication Number Publication Date
WO2022064946A1 true WO2022064946A1 (ja) 2022-03-31

Family

ID=80845128

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/031287 WO2022064946A1 (ja) 2020-09-24 2021-08-26 車両用空調装置

Country Status (5)

Country Link
US (1) US20240278619A1 (ja)
JP (1) JP7444749B2 (ja)
CN (1) CN116113553A (ja)
DE (1) DE112021004952T5 (ja)
WO (1) WO2022064946A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2023189051A1 (ja) 2022-03-29 2023-10-05

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019021710A1 (ja) * 2017-07-24 2019-01-31 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
WO2020066719A1 (ja) * 2018-09-27 2020-04-02 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6125312B2 (ja) 2013-04-26 2017-05-10 サンデンホールディングス株式会社 車両用空気調和装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019021710A1 (ja) * 2017-07-24 2019-01-31 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
WO2020066719A1 (ja) * 2018-09-27 2020-04-02 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置

Also Published As

Publication number Publication date
JP7444749B2 (ja) 2024-03-06
US20240278619A1 (en) 2024-08-22
DE112021004952T5 (de) 2023-07-06
CN116113553A (zh) 2023-05-12
JP2022053320A (ja) 2022-04-05

Similar Documents

Publication Publication Date Title
US11577579B2 (en) Vehicle air-conditioning device
WO2018193770A1 (ja) 車両用空気調和装置
WO2020031568A1 (ja) 車両用空気調和装置
JP6607638B2 (ja) 車両用空気調和装置
WO2019150829A1 (ja) 車両用空気調和装置
JP6571430B2 (ja) 車両用空気調和装置
JP2020050155A (ja) 車両用空気調和装置
JP2017154521A (ja) 車両用空気調和装置
WO2021020162A1 (ja) 車両用空気調和装置
WO2022064946A1 (ja) 車両用空調装置
JP6738156B2 (ja) 車両用空気調和装置
JP7164986B2 (ja) 車両用空気調和装置
WO2022064945A1 (ja) 車両用空調装置
JP6854668B2 (ja) 車両用空気調和装置
JP7494139B2 (ja) 車両用空調装置
WO2022137925A1 (ja) 車両用空調装置
WO2023002993A1 (ja) 車両用空調装置
WO2023140205A1 (ja) 車両用空調装置
WO2023140210A1 (ja) 車両用空調装置
WO2023140206A1 (ja) 車両用空調装置
WO2019150832A1 (ja) 車両用空気調和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21872078

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18044013

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 21872078

Country of ref document: EP

Kind code of ref document: A1