WO2022064875A1 - Arrayed waveguide grating, broadband light source device, and spectrometer - Google Patents
Arrayed waveguide grating, broadband light source device, and spectrometer Download PDFInfo
- Publication number
- WO2022064875A1 WO2022064875A1 PCT/JP2021/029229 JP2021029229W WO2022064875A1 WO 2022064875 A1 WO2022064875 A1 WO 2022064875A1 JP 2021029229 W JP2021029229 W JP 2021029229W WO 2022064875 A1 WO2022064875 A1 WO 2022064875A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- waveguide
- light
- wavelength
- incident
- diffraction grating
- Prior art date
Links
- 239000000835 fiber Substances 0.000 claims description 56
- 230000003595 spectral effect Effects 0.000 claims description 12
- 238000000034 method Methods 0.000 claims description 10
- 230000003287 optical effect Effects 0.000 claims description 9
- 230000008859 change Effects 0.000 claims description 8
- 230000008569 process Effects 0.000 claims description 6
- 238000012545 processing Methods 0.000 claims description 3
- 238000005259 measurement Methods 0.000 abstract description 46
- 230000000694 effects Effects 0.000 abstract description 4
- 238000004611 spectroscopical analysis Methods 0.000 abstract description 2
- 239000011162 core material Substances 0.000 description 70
- 238000001228 spectrum Methods 0.000 description 26
- 238000002834 transmittance Methods 0.000 description 21
- 230000009471 action Effects 0.000 description 14
- 238000010586 diagram Methods 0.000 description 10
- 239000000463 material Substances 0.000 description 10
- 238000000411 transmission spectrum Methods 0.000 description 9
- 238000002474 experimental method Methods 0.000 description 8
- 238000004364 calculation method Methods 0.000 description 7
- 230000007423 decrease Effects 0.000 description 6
- 238000000295 emission spectrum Methods 0.000 description 6
- 230000006870 function Effects 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- 230000035945 sensitivity Effects 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 238000004321 preservation Methods 0.000 description 3
- 239000013074 reference sample Substances 0.000 description 3
- 230000002123 temporal effect Effects 0.000 description 3
- 238000004497 NIR spectroscopy Methods 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000007619 statistical method Methods 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 239000004840 adhesive resin Substances 0.000 description 1
- 229920006223 adhesive resin Polymers 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 239000004038 photonic crystal Substances 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/12—Generating the spectrum; Monochromators
- G01J3/18—Generating the spectrum; Monochromators using diffraction elements, e.g. grating
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/28—Investigating the spectrum
- G01J3/30—Measuring the intensity of spectral lines directly on the spectrum itself
- G01J3/32—Investigating bands of a spectrum in sequence by a single detector
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/01—Arrangements or apparatus for facilitating the optical investigation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/27—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/35—Non-linear optics
- G02F1/365—Non-linear optics in an optical waveguide structure
Definitions
- the invention of this application relates to an arrayed waveguide diffraction grating and an applied technique of the array waveguide diffraction grating.
- Arrayed waveguide grating is a kind of PLC (planar lightwave circuit) and is an element having spectroscopic and combined wave action. It is used for wavelength division multiplexing communication in the field of optical communication.
- FIG. 8 is a schematic diagram of a conventional general arrayed waveguide diffraction grating.
- the array waveguide diffraction grating is an element manufactured by applying planar technology, and is manufactured by forming various functional waveguides 12 to 16 on a substrate 11.
- Each functional waveguide includes an incident side waveguide 12, a first slab waveguide 13 connected to the exit end of the incident side waveguide 12, and an array waveguide 14 connected to the end surface of the first slab waveguide 13.
- a second slab waveguide 15 connected to the emission end of the array waveguide 14, and a plurality of emission side waveguides 16 having an incident end provided at the end surface of the second slab waveguide 15.
- the array waveguide 14 has a structure in which a large number of waveguides having different lengths by a fixed amount are arranged with respect to adjacent waveguides.
- the first slab waveguide 13 is a free space, and the light incident from the exit end of the incident side waveguide 12 spreads in the first slab waveguide and is incident on each waveguide of the array waveguide 14 in the same phase.
- the light that has reached the end of the array waveguide 14 is emitted to the second slab waveguide 15 in a state where the phases are out of phase by the difference in the optical path length.
- the second slab waveguide 15 is also a free space, and the light emitted from each waveguide of the array waveguide 14 interferes with each other and reaches the end surface having an arcuate cross section.
- each emission end waveguide 16 sequentially emits light having a different wavelength, and thus may be referred to as a “channel”.
- spectra of different wavelengths emitted from each emission end waveguide form a wavelength region (measurement wavelength region) used for measurement.
- the measurement wavelength region for example, the wavelength region of 400 nm extending from 900 nm to 1300 nm
- it is desirable that the amount of light is uniform over the entire region. The reason is as follows.
- the SN ratio at that wavelength will decrease and the measurement accuracy will decrease.
- the amount of light is large only at a certain wavelength, the light receiving sensitivity of the light receiver will be lowered according to the amount of light (so that the amount of light does not exceed the measurement range), and if this happens, the measurement accuracy at other wavelengths will decrease. do. Therefore, we want to make the amount of light of each wavelength emitted from each emitting side waveguide uniform. However, in reality, the light intensity of each wavelength emitted from each emitting side waveguide is not uniform, and when a wide measurement wavelength region is set, a wavelength region relatively dark with respect to the overall spectral intensity always exists.
- the sensitivity of the light receiver also depends on the wavelength, there is a wavelength range in which the measurement SN becomes low depending on the combination of the light source and the detector. In such a case, it is desired to increase the amount of transmitted light of the channel corresponding to the dark wavelength region and the wavelength region where the SN is low.
- some wideband light sources have very sharp peaks.
- the spectrum of a supercontinuum light source suitable for spectroscopic measurements on an arrayed waveguide diffraction grating has sharp peaks derived from seed light.
- the measurement range of the spectroscopic measuring device is set according to the maximum value, so that if there is a specifically high peak, the vertical axis resolution at a low level becomes low. In such a case, it is desired to reduce the amount of transmitted light of the channel corresponding to the desired wavelength.
- the conventional arrayed waveguide diffraction grating it is not considered to make the amount of light of each wavelength emitted from each emission end waveguide uniform.
- the present invention has been made to solve such a problem, and when an arrayed waveguide diffraction grating is used for spectroscopic measurement, it can be measured accurately by adding a function of adjusting the amount of emitted light. The purpose is to.
- the array waveguide grating according to the disclosed invention is an array connected to an incident side waveguide, a first slab waveguide connected to an exit end of the incident side waveguide, and an end surface of the first slab waveguide. It includes a waveguide, a second slab waveguide connected to the exit end of the array waveguide, and a plurality of exit side waveguides having an incident end at the end surface of the second slab waveguide.
- the array waveguide has a structure in which a plurality of waveguides having different optical path lengths by a fixed amount are arranged.
- each emitting side waveguide is provided at each different position when condensing light at a different position depending on the wavelength due to the phase difference generated when light propagates through the array waveguide.
- the core width of the incident end of at least one of the plurality of emitting side waveguides is different from the core width of the emitting end of the incident side waveguide.
- This array waveguide diffraction grating may have a configuration in which the core width of the incident end of the emitting side waveguide is wider than the core width of the emitting end of the incident side waveguide.
- This array waveguide diffraction grating may have a configuration in which the core width of the incident end of the emitting side waveguide is narrower than the core width of the emitting end of the incident side waveguide.
- the arrayed waveguide grating is provided on the incident side waveguide, the first slab waveguide connected to the exit end of the incident side waveguide, and the end surface of the first slab waveguide. It comprises a connected array waveguide, a second slab waveguide connected to the exit end of the array waveguide, and a plurality of exit side waveguides having an incident end at the end surface of the second slab waveguide.
- the array waveguide has a structure in which a plurality of waveguides having different optical path lengths by a fixed amount are arranged, and the incident end of each emission side waveguide is the position generated when light propagates through the array waveguide.
- each of the array waveguide diffraction gratings it is an array waveguide diffraction grating provided at each different position when condensing light at different positions depending on the wavelength due to the phase difference.
- the core width of the incident end of at least one emitting side waveguide is different from the core width of the incident end of the other emitting side waveguide.
- light in a wavelength range having a width of at least 200 nm within the range of 800 nm or more and 1700 nm or less is sequentially focused at different positions depending on the wavelength on the terminal surface of the second slab waveguide. It may have a configuration in which each waveguide and each slab waveguide are formed.
- the wideband light source device includes a wideband light source and any of the above arrayed waveguide diffraction gratings provided at a position where light emitted from the wideband light source is incident, and any of the above. It emits wideband light whose wavelength is divided by the arrayed waveguide grating.
- the spectroscopic measuring apparatus includes the above-mentioned broadband light source apparatus, a receiver arranged at a position where the broadband light emitted from the broadband light source apparatus receives light from an object irradiated with the broadband light, and the light receiver. It is equipped with an arithmetic means for processing the output from the light source to obtain the spectral characteristics of the object.
- This spectroscopic measurement device is a device in which a broadband light source device emits light having a one-to-one correspondence between an elapsed time and a wavelength of light as wide band light, and a calculation means is a device for temporal output from a receiver. It may have a configuration that it is a means for performing a process of converting a change into a wavelength.
- a delay fiber is connected to each emission side waveguide of the array waveguide diffraction grating in the broadband light source device, and each delay fiber realizes a delay amount according to the wavelength of the transmitted light. It may have a configuration of being a fiber.
- the core width of the exit end of the incident side waveguide to which the first slab waveguide is connected and the incident end of at least one emission side waveguide Since the core width is different from that of the above, the dimming action is exhibited at the incident end of the at least one emitting side waveguide. Further, if the core width of the incident end of the emitting side waveguide is wider than the core width of the emitting end of the incident side waveguide, the amount of light emitted through the emitting side waveguide increases, so that the light having a weak wavelength in the spectrum is used. The strength can be compensated.
- the core width of the incident end of the emitting side waveguide is narrower than the core width of the emitting end of the incident side waveguide, the amount of light emitted through the emitting side waveguide can be reduced, so that the spectrum is strong.
- the light intensity of the wavelength can be reduced.
- the array waveguide diffraction grating since the core width of the incident end of at least one emitting side waveguide is different from the core width of the incident end of the other emitting side waveguide, the array guide is used. The intensity can be adjusted between the wavelengths of the light incident on the waveguide diffraction grating.
- the arrayed waveguide diffraction grating is particularly suitable for near-infrared spectroscopic measurement for material analysis.
- the wideband light source device since the array waveguide diffraction grating according to the disclosed invention is provided, it is possible to increase the light intensity of a weak wavelength in the emission spectrum, and to increase the light intensity of a strong wavelength. It can be reduced. Therefore, there is provided a wideband light source device that emits light that is spatially divided according to wavelength and has a uniform spectral intensity. Further, according to the spectroscopic measurement device according to the disclosed invention, the object is irradiated with the light emitted from the broadband light source device provided with the array waveguide diffraction grating according to the disclosed invention, and the object is spectrally measured. Spectroscopic measurement can be performed with light whose wavelength intensity is adjusted.
- the broadband light source device is a device that emits light having a one-to-one correspondence between the elapsed time and the wavelength of the light, and the arithmetic means performs a process of converting the temporal change of the output from the light receiver into a wavelength.
- the configuration as a means the effect of being able to perform high-speed spectroscopic measurement is further obtained.
- a delay fiber is connected to each emission side waveguide of the array waveguide diffraction grating, and each delay fiber is a fiber that realizes a delay amount according to the wavelength of light transmitted through each emission side waveguide. If there is, it becomes easy to make the wavelength resolution uniform over the measurement wavelength range.
- FIG. 1 is a schematic diagram of an arrayed waveguide diffraction grating of an embodiment.
- the array waveguide grating shown in FIG. 1 is composed of the functional waveguides 12 to 16 formed on the substrate 11 in the same manner as that shown in FIG. 8, and each functional waveguide is the incident side waveguide 12.
- the first slab waveguide 13 connected to the exit end of the incident side waveguide, the array waveguide 14 connected to the end surface 131 of the first slab waveguide 13, and the array waveguide 14 connected to the exit end.
- the second slab waveguide 15 is provided, and a plurality of emission side waveguides 16 having incident ends provided on the end surface 151 of the second slab waveguide 15.
- the major features of the array waveguide diffraction grating of the embodiment are the core width of the exit end of the incident side waveguide 12 connected to the first slab waveguide 13 and the core of the incident end of at least one emission side waveguide 16. The point is that it is different from the width. That is, as shown in an enlarged view in FIG. 1, if the core width of the exit end of the incident side waveguide 12 is D1 and the core width of the incident end of one emitting side waveguide 16 is D2, then D1 ⁇ D2. It has become.
- the core thickness (height) in the orthogonal direction of the core width may be changed for matching with the fiber to be connected, but it is basically constant for manufacturing reasons.
- the core width of the incident end of the emitting side waveguide 16 is the same as the core width of the emitting end of the incident side waveguide 12 from the viewpoint of emphasizing the peak intensity. ing.
- FIG. 8 shows the light L when incident on the first slab waveguide 13 from the incident side waveguide 12.
- the incident-side waveguide 12 is a transmission path for transmitting light by utilizing the difference in refractive index, as in the case of an optical fiber. That is, it is made of a material having a high refractive index with respect to the material of the substrate 11 (this portion is called a core).
- the outer peripheral portion of the waveguide is filled with a material having the same refractive index as that of the substrate 11 (this portion is called a clad).
- the numerical aperture NA is defined as n ⁇ sin ⁇ max , where ⁇ max is the maximum angle of incidence that can propagate through the core.
- n is the refractive index of the incident medium, which is 1 for air.
- the product of the core width D and NA is preserved in the waveguide. As described above, the cross-sectional shape of the core is square, and this preservation holds true in the direction of the core thickness, but here, we will focus on the difference in core width assuming elements with the same core thickness (height). ..
- the light emitted from the incident side waveguide 12 spreads through the first slab waveguide 13 and enters the array waveguide 14 in the same phase, and a phase difference occurs in the process of propagating through the array waveguide 14. It is emitted from the emission end of each waveguide to the second slab waveguide 15 with a phase difference, and is focused on a position on the end surface 151 according to the wavelength. Then, each emitting side waveguide 16 having an incident end arranged on the terminal surface 151 takes in and emits light of each wavelength spatially divided.
- the core width D ⁇ NA at the emission end of the incident side waveguide 12 is always preserved. Since NA is determined by the refractive index of the core and the clad and is usually uniform in the plane, the core width at the input / output ends of each waveguide may be the same in order to demultiplex the waves with the lowest loss.
- the waveguide has a tapered shape, and the width may differ between the end and the inside, but here it refers to the core width at each emission end. When having a tapered shape, it is more desirable that the tapered shape at the emitting portion of the incident side waveguide 12 and the tapered shape at the incident portion of the emitting side waveguide 12 are equal to each other.
- the inventor of the present application contrary to the conventional idea of the prior art, has an array waveguide diffraction grating in which the incident end of the emitting side waveguide 16 has a core width different from that of the emitting end of the incident side waveguide 12. I came up with the composition of. The reason why the incident end of the emitting side waveguide 16 has a core width different from that of the emitting end of the incident side waveguide 12 is that the array waveguide diffraction grating has a dimming action (light intensity adjusting action) as well as a wavelength dividing action. Based on the idea of This point will be described below.
- FIG. 2 is a schematic view showing this point, and the transmittance of the emitting side waveguide 16 when the incident end of the emitting side waveguide 16 has a different core width from the emitting end of the incident side waveguide 12. It is a figure which showed about.
- FIG. 2 (2) is a schematic diagram showing an experiment when the result of FIG. 2 (1) is obtained. As shown in FIG. 2 (2), in this experiment, light having a known spectrum was incident on the incident side waveguide 12, and the intensity of the emitted light in a certain channel was detected.
- the transmittance is measured by measuring the spectrum of the light emitted from the emitting side waveguide 16 of the channel whose width is set by the spectrum analyzer 9, and the light intensity of each wavelength is set to the incident side waveguide 12. It is obtained by comparing with the light intensity of each wavelength before the incident.
- the solid line (a) shows the light transmittance in the conventional type configuration
- the broken line (b) shows the light transmittance in the wide type configuration
- the broken line (c) shows the light transmittance of the narrow type. Shows the rate.
- both the peak transmittance and the total amount of transmitted light (spectral area) are lower than those of the conventional type (a). This is a natural result from the preservation of D ⁇ NA.
- the peak of the transmittance is lowered, but the amount of transmitted light is larger than that of the conventional type (a). That is, as shown in FIG. 2 (1), in the case of the wide type (b), the spectral area is larger than that of the conventional type (a).
- FIG. 3 schematically depicts the structure near the incident end of the emitting side waveguide 16 in the array waveguide diffraction grating used in the experiment.
- two types of arrayed waveguide diffraction gratings with different configurations near the incident end of the emitting side waveguide 16 were used.
- the incident end core width D of each emitting side waveguide 16 indicated by diagonal lines is constant, which coincides with the emitting end core width of the incident side waveguide 12. (Hereafter, it is called a constant width type).
- FIG. 3 (1) the incident end core width D of each emitting side waveguide 16 indicated by diagonal lines is constant, which coincides with the emitting end core width of the incident side waveguide 12.
- the incident end core width D of the emitted side waveguide 16 shown by the diagonal line becomes wider toward the left side (long wavelength side) of the figure (hereinafter, the same type). Width change type).
- the pitch in FIG. 3 is not important here, but the incident end core of the emitting side waveguide located at the end surface 151 of the slab waveguide is located on an arc of a certain curvature, and this position determines the center wavelength of each channel. Is decided. In the prototype design, the pitch is designed to change gradually, and the center wavelength intervals are not evenly spaced. It was
- FIG. 4 shows the light transmittance obtained in each type of array waveguide grating shown in FIG. 3 and the amount of transmitted light.
- FIG. 4 (1) shows the light transmittance
- FIG. 4 (2) shows the amount of transmitted light.
- the amount of transmitted light is the transmittance spectrum area in each channel.
- FIGS. 4 (1) and 4 (2) only the values in some channels are shown in order to avoid complication.
- the transmittance peaks on the long wavelength side, that is, as the core width at the incident end of the emitting side waveguide becomes wider than that of the constant width type. Along with this, the half-value width widens and the amount of transmitted light increases remarkably.
- the incident end of the emitting side waveguide 16 is wider than the emitting end core width of the incident side waveguide 12, the peak transmittance decreases, but the transmittance spectrum area (transmitted light amount) per channel increases. do.
- An increase in the amount of transmitted light means an increase in the amount of light emitted from the emitting side waveguide 16.
- the array waveguide grating of the embodiment is based on these findings, and for a channel containing a wavelength for which the amount of transmitted light is desired to be reduced, the incident end of the emitting side waveguide 16 is cored from the emitting end of the incident side waveguide 12.
- the incident end of the emitting side waveguide 16 has a structure in which the core width is wider than the emitting end of the incident side waveguide 12. That is, by appropriately selecting the core width of the incident end of each emission end waveguide, the array waveguide diffraction grating is configured to have a dimming function in addition to the wavelength division function.
- the number of the emitting side waveguide 16 that changes the core width of the incident end with respect to the emitting end of the incident side waveguide 12 may be only one, or may be two or more.
- the core width of all the incident ends of the emitting side waveguide 16 may be changed with respect to the emitting end of the incident side waveguide 12.
- the incident ends of all the emitting side waveguides 16 may be narrowed with respect to the emitting ends of the incident side waveguides 12 to exert a dimming action of weakening the entire light in addition to the wavelength dividing action.
- the incident ends of all the emitting side waveguides 16 may be widened with respect to the emitting ends of the incident side waveguides 12 to increase the total amount of transmitted light (at all wavelengths) at the time of wavelength division. ..
- the incident end of a specific emitting side waveguide 16 is relative to the incident end of another emitting side waveguide 16. Different core widths are sufficient. That is, the object of comparison does not have to be the emission end of the incident side waveguide 12. Therefore, for example, in a configuration in which the incident ends of all the emitting side waveguides 16 are smaller than the emitting ends of the incident side waveguide 12, the incident ends of the specific emitting side waveguide 16 are narrower than the others, or It may be wide. Further, in a configuration in which the incident ends of all the emitting side waveguides 16 are wider than the emitting ends of the incident side waveguide 12, the incident ends of the specific emitting side waveguide 16 may be narrower or wider than the others. You may.
- FIG. 5 is a schematic view of the wideband light source device of the embodiment.
- the wideband light source device shown in FIG. 5 includes a wideband light source 2 and an arrayed waveguide diffraction grating 1.
- the wideband light source 2 uses the array waveguide diffraction grating 1 as a wavelength dividing element, it means a light source that emits light in a wide band to some extent of the significance of the division.
- Various LED light sources and various lamps can be used as the wideband light source 2. Even when a laser source is used, it can be used as a wideband light source 2 if it emits light in a wide band to some extent or emits supercontinuum light as described later.
- the supercontinuum light source has a very wide band wavelength of 400 nm to 2400 nm, and is suitable because it emits light from a fiber and can light light into an optical waveguide with high efficiency.
- Such a wideband light source 2 has a peculiar emission spectrum, and in many cases, the spectral intensity is not completely uniform.
- An example of a non-uniform emission spectrum is shown in FIG. 5 (A).
- the arrayed waveguide diffraction grating 1 used together with such a wideband light source 2 has a wavelength division function and a dimming function for correcting the emission spectrum of the wideband light source 2. Specifically, the transmittance is lowered for the channel corresponding to the wavelength having the intensity higher than the average intensity (wavelength averaged intensity) in the emission spectrum of the broadband light source 2.
- a typical example of a wavelength having a higher intensity than the average is the peak wavelength at the portion where the intensity is spiked and high as shown in FIG. 5 (A).
- the transmitted light amount is increased for the channel corresponding to the wavelength whose intensity is lower than the average.
- the "channel corresponding to the wavelength” is the emitting side waveguide 16 in which the incident end is provided at the position where the light of the wavelength is focused.
- the transmittance is lowered means that, as described above, the incident end core width of the emitting side waveguide 16 is narrower than the emitting end core width of the incident side waveguide 12.
- "Increasing the amount of transmitted light” means that, as described above, the width of the incident end core of the emitting side waveguide 16 is wider than the width of the emitting end core of the incident side waveguide 12.
- FIG. 5B the transmittance of each channel is shown.
- FIG. 5C further shows the intensity of light of each wavelength emitted from each emitting side waveguide 16 of such an array waveguide diffraction grating 1. That is, as a result of passing light having a spectrum as shown in FIG. 5 (A) through the array waveguide diffraction grating 1 having the channel transmittance shown in FIG. 5 (B), as shown in FIG. 5 (C), It is emitted in a state where the intensity is adjusted along with the wavelength division. As shown in FIG. 5C, the spectrum of the emitted light is scattered due to wavelength division, but the uniformity of the peak intensity is enhanced. Note that FIG. 5B shows a large number of small pulse waveforms slightly overlapping at the hem, and each pulse waveform shows the transmittance in each channel.
- the wideband light source device of the embodiment is a device that spatially divides the wideband light according to the wavelength while correcting the non-uniformity of the emission spectrum intensity in the wideband light source 2.
- a wideband light source device can be used for various purposes. Since the light of each wavelength is spatially divided, for example, only the light of one selected wavelength is irradiated to the object, or only the light of a plurality of selected wavelengths is irradiated to the object. It is also possible. At this time, even when the wavelength is switched, the change in illuminance in the object can be suppressed to a small extent.
- the light from the wideband light source 2 is guided by the fiber 200 and incident on the incident side waveguide 12 of the array waveguide diffraction grating 1, but various configurations can be adopted. ..
- the light from the broadband light source 2 may be guided by a mirror, condensed by a lens, and incident on the array waveguide diffraction grating 1, or the fiber 200 may be bonded to the array waveguide diffraction grating 1 with a UV adhesive resin. It may be incident.
- FIG. 6 is a schematic view of the spectroscopic measuring device of the embodiment.
- the spectroscopic measurement device of the embodiment is a device that irradiates the object S with light having a one-to-one correspondence between the elapsed time and the wavelength of the light for spectroscopic measurement.
- this spectroscopic measuring device includes a broadband light source device 20, a receiver 3 arranged at a position where the light from the object S irradiated with the light from the broadband light source device 20 is received, and a receiver. It is provided with a calculation means 4 that performs a process of converting the output from 3 into a spectrum. Further, a receiver 5 for holding the object S at the light irradiation position is provided.
- the wideband light source device 20 is a more embodied version of the above embodiment. Specifically, the wideband light source device 20 is a light source that emits so-called supercontinuum light (hereinafter referred to as SC light). SC light is light obtained by passing light from a pulse laser through a highly nonlinear element such as a fiber and widening the wavelength by a nonlinear optical effect.
- SC light is light obtained by passing light from a pulse laser through a highly nonlinear element such as a fiber and widening the wavelength by a nonlinear optical effect.
- the wideband light source device 20 includes a short pulse laser source 21 and a highly nonlinear element 22.
- a short pulse laser source 21 a fiber laser, a microchip laser, or the like can be used.
- Fiber is often used as the highly non-linear element 22.
- a photonic crystal fiber and other fibers can also be used as the highly non-linear element 22.
- the fiber mode is often a single mode, but it can be used as a highly non-linear element 22 as long as it exhibits sufficient non-linearity even in a multi-mode.
- the lower side of FIG. 6 shows the relationship between the time vs. intensity and the wavelength vs. intensity of each light.
- the short pulse light L1 emitted from the short pulse laser source 21 has a narrow wavelength width of a substantially single wavelength (oscillation wavelength ⁇ o) having a line width of about 50 nm or less.
- the wideband pulsed light L2 having a wide wavelength width due to the nonlinear optical effect is emitted.
- the spectroscopic measuring device of the embodiment adopts a configuration in which light is divided according to wavelength by using an arrayed waveguide diffraction grating, and the optimum delay amount is secured while being transmitted by a transmission element for each wavelength. That is, the wideband light source device 20 includes an array waveguide diffraction grating 1 on the emission side of the high nonlinear element 22. Then, as shown in FIG. 6, a delay fiber 61, which is a fiber having a different length, is connected to each emission side waveguide 16 of the array waveguide diffraction grating 1.
- Each delay fiber 61 is finally bundled into one to form a bundle fiber.
- An emission end unit 62 is provided at the emission end of the bundle fiber, and the light emitted from each delay fiber 61 is collectively irradiated to the object S.
- the light emitted to the object S is a recollection of the wideband pulsed light L2, which was the original single pulsed light, after being divided.
- this light is referred to as synthetic pulse light and is shown by L3 in FIG.
- each delay fiber 61 has an appropriate length depending on the wavelength of the incident light. It is made of wire and material.
- the appropriate length and material means that the length and material are selected so as to have a delay amount that achieves a one-to-one correspondence between the elapsed time and the wavelength in the combined pulsed light L3.
- each delay fiber 61 may be the same fiber (fiber of the same core material and the same clad material), and may have a configuration in which only the length is different.
- each delay fiber 61 is a general silica fiber and has a different length of 1 m
- the time difference for each channel is 5 ns. That is, if there are 30 channels, 30 pulse trains are emitted from the bundle fiber at 5 ns intervals.
- the delay fiber length is set so that the time interval ⁇ the number of channels ⁇ the repetition period of the light source. By doing so, the elapsed time from a certain trigger signal corresponds to the wavelength. Due to the group delay generated in each delay fiber 61, uniqueness (one-to-one correspondence) between the elapsed time and the wavelength is achieved in the combined pulsed light L3, as shown in FIG.
- the light After delaying the light divided by the arrayed waveguide grating 1 with each delay fiber 61, the light is back-incidented to another arrayed waveguide grating instead of the bundle fiber to combine and emit the light. Is also good.
- the bundle fiber When a bundle fiber is used, the bundle fiber has a number of cores according to the number of channels, and different wavelengths are emitted from each core.
- synthetic pulsed light can be obtained from a single core.
- time-to-wavelength uniqueness can be achieved using the wavelength dispersion of the fibers, even if the delayed fibers 61 are all of the same length.
- the dispersion parameter is positive or negative over the entire wavelength range, and the delay fiber 61 is long enough to obtain the desired wavelength resolution. If so, uniqueness between the elapsed time and the wavelength can be realized in that wavelength range.
- the wavelength dispersion of the fiber is not constant with respect to the wavelength, so that the time difference differs depending on the wavelength.
- a fiber length on the order of km is usually required, which may increase the loss.
- the emission end unit 62 includes an element such as a collimator lens, and is a unit that overlaps and irradiates the pulsed light transmitted by each delay fiber 61 in the object S.
- “Overlapping irradiation” means that when the object S is stationary, it is irradiated while forming a spatially overlapping state.
- the synthetic pulse light L3 is applied to the object S while the object S is moving, the pulse light emitted from one delay fiber 61 and the pulse light emitted from another delay fiber 61 are the objects. It may be irradiated to different places on S.
- the spectroscopic measuring device of this embodiment is a device for measuring the transmission spectrum of the object S
- the light receiver 3 is provided at a position where the transmitted light from the object S is received.
- the receiver 5 is translucent or has slits or holes, and the receiver 3 is provided at a position where the light transmitted through the object S and the receiver 5 is received.
- the receiver 5 may be provided with a moving mechanism. For example, a configuration is conceivable in which a belt conveyor, an outer peripheral portion of a rotating disk, or the like has a portion through which light is transmitted, and a sample can be placed in the transmissive portion.
- a general-purpose PC is used in this embodiment.
- an AD converter 31 is provided between the light receiver 3 and the calculation means 4, and the output of the light receiver 3 is input to the calculation means 4 via the AD converter 31.
- the arithmetic means 4 includes a processor 41 and a storage unit (hard disk, memory, etc.) 42.
- a measurement program 43 that processes output data from the receiver 3 to calculate a spectrum and other necessary programs are installed in the storage unit 42.
- FIG. 7 is a diagram schematically showing a main part of an example of a measurement program included in a spectroscopic measuring device.
- the reference spectral intensity is used in the calculation of the transmission spectrum.
- the reference spectrum intensity is a value for each wavelength that serves as a reference for calculating the transmission spectrum, and is acquired in advance by performing measurement in a state where the object S is not placed on the receiver 5.
- the reference spectral intensity is a value for each time resolution ⁇ t and is stored as a reference intensity for each time (t 1 , t 2 , t 3 , 7) For each ⁇ t (V 1 , V 2 , V 3 , ). ).
- the reference intensities V 1 , V 2 , V 3 , ... at each time t 1 , t 2 , t 3 , ... are the intensities of the corresponding wavelengths ⁇ 1 , ⁇ 2 , ⁇ 3 , ... (Spectrum).
- the relationship between the elapsed time, that is, the time t 1 , t 2 , t 3 , ... In the combined pulse and the wavelength has been investigated in advance, and the values V 1 , V 2 , V 3 , ... At each time are each. It is treated as a value of ⁇ 1 , ⁇ 2 , ⁇ 3 , ....
- the output from the light receiver 3 that has received the light that has passed through the object S is stored in the memory as the values (measured values) of t 1 , t 2 , t 3 , ... At each time in the same manner via the AD converter 31. (V 1 , v 2 , v 3 , ). Each measured value is compared to the reference spectral intensity (v 1 / V 1 , v 2 / V 2 , v 3 / V 3 , ...) And the result is a transmission spectrum (reciprocal logarithm if necessary). To be taken as the absorption spectrum).
- the measurement program 43 is programmed to perform the above arithmetic processing.
- a reference time is separately assigned.
- pulse oscillation in the short pulse laser source 21 is detected, a trigger signal is generated, and the time of the trigger signal is input to the calculation means 4 as a reference time.
- the object S is placed on the receiver 5 and the wideband light source device 20 is operated.
- the short pulse light L1 from the short pulse laser source 21 is widened by the high non-linear element 22 to become a wide band pulse light (SC light) L2 and is incident on the array waveguide diffraction grating 1.
- SC light wide band pulse light
- it is divided into light of each wavelength in the array waveguide diffraction grating 1, and is transmitted from each emission side waveguide 16 to each delay fiber 61.
- a delay is generated according to the length and the material, and the combined pulse light L3 is emitted to the object S.
- the transmitted light of the object S irradiated with the synthetic pulse light L3 reaches the receiver 3 to generate an output.
- the output of the light receiver 3 is input to the arithmetic means via the AD converter 31, and the measurement program 43 is executed to obtain the transmission spectrum of the object S.
- the core width of the incident end of each emitting side waveguide 16 in the array waveguide diffraction grating 1 is optimized so as to exhibit the dimming action as described above.
- the dimming action may be a dimming action for increasing the vertical axis resolution of the measured light. The higher the vertical resolution of the measured light, the smaller the intensity change can be captured.
- the measuring device that outputs the intensity information received by the light receiver is a digital signal
- the number of divisions on the vertical axis is a constant value such as 8 bits (256 divisions) or 12 bits (4096 divisions) for each measuring device.
- the sensitivity of the photoreceiver is set according to this peak value, and the range of the vertical axis, which is a fixed number of divisions, expands and the vertical axis resolution is lowered. ..
- the sensitivity according to a level that is not a peak strong light is incident on the receiver, which may cause damage. Therefore, if the spectrum of the measurement light is flat, high-precision measurement is possible.
- the spectroscopic measuring device of the embodiment exerts a dimming action in the arrayed waveguide diffraction grating 1.
- the incident end of the emitting side waveguide that exerts the dimming action together with the wavelength dividing action is referred to as a dimming combined incident end.
- the incident end core width of the emitting side waveguide 16 is the incident side waveguide 12 for the channel having a high intensity wavelength (for example, peak wavelength). It is smaller than the emission end core width. Therefore, the incident end of the emitting side waveguide 16 is a dimming combined incident end.
- the incident end of the emitting side waveguide 16 is larger than the emitting end of the incident side waveguide 12. Therefore, the incident end of the emitting side waveguide 16 is also a dimming combined incident end. Due to the dimming action exerted by these configurations, the measurement spectrum of the synthetic pulse light L3, which is the measurement light, is flattened, and more preferable spectroscopic measurement can be performed.
- the wideband pulsed light L2 is SC light
- the SC light when the SC light is generated, the light having the wavelength ⁇ o of the original short pulse laser light L1 tends to remain with a high peak intensity. Therefore, for the channel corresponding to the wavelength ⁇ o of the short pulse laser beam L1, it is particularly effective to make the incident end of the light emitting side waveguide 16 smaller than the light emitting end of the incident side waveguide 12 to dimming.
- dimming can be dimmed by using a filter (notch filter or the like) that selectively dims the wavelength, but in the configuration of dimming in the array waveguide diffraction grating 1, a filter or the like is separately used.
- the transmission when the horizontal axis is the wavelength as shown in FIG. Since the half width of the rate is widened, the wavelength resolution is lowered.
- quantitative analysis is performed by a statistical method such as chemometrics in near-infrared spectroscopy, the effect of the decrease in wavelength resolution due to the widening of the incident end of the emitting side waveguide 16 on the measurement accuracy as described above is It is known to be small, and the merit of increasing the vertical axis resolution is far greater.
- the arrayed waveguide diffraction grating is preferably an element capable of wavelength division in a wavelength range of at least 200 nm in the range of 800 to 1700 nm, for example.
- the array waveguide diffraction grating ensures that light in a wavelength range of at least 200 nm in the range of 800 to 1700 nm is sequentially focused at different positions depending on the wavelength on the end surface of the second slab waveguide 15.
- Each functional waveguide 12 to 16 is configured.
- the broadband light source device 20 includes a short pulse laser source 21 and a high nonlinear element 22 for emitting SC light, as well as an ASE (Amplified Spontaneous Emission) light source and an SLD (Super luminescent diode) light source.
- a configuration may be adopted in which the light from any of the light sources is wavelength-divided by the array waveguide diffraction grid 1 and delayed by each delay fiber 61.
- the ASE light source is light generated in the fiber, it has a high affinity with the array waveguide diffraction grating 1, can be incident on the incident side waveguide 12 with low loss, and emits synthetic pulse light L3 with high efficiency. be able to.
- the SLD light source also takes out the light emitted from the narrow active layer, it can be incidentally incident on the array waveguide diffraction grating 1 with low loss, and the synthetic pulse light L3 can be emitted with high efficiency.
- the measurement of the transmission spectrum is taken up as an example of the spectroscopic measurement, it may be the measurement of the reflection spectrum or the measurement of the scattering spectrum.
- the light receiver is arranged at a position where the reflected light from the object is received or a position where the scattered light is received.
- the reference light for the purpose of reducing the influence of the temporal intensity fluctuation of the light source, it is conceivable to take the reference light in the spectroscopic measurement.
- the configuration is such that the light from the emission end unit 62 is split by a beam splitter, one is irradiated to the object S for measurement, and the other is received by a reference receiver without passing through the object S for reference. There can be.
- a reference sample may be placed in front of the reference light receiver, and the transmitted light of the reference sample may be used as the reference spectrum.
- the reference sample preferably has a flat transmission spectrum in the measurement wavelength range, and a scatterer such as a diffuser is often used.
- the output of the reference receiver acquired at the same time as the measurement light is used as the reference spectrum intensity, and the ratio between the reference spectrum and the measurement spectrum is taken.
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Pathology (AREA)
- Immunology (AREA)
- Engineering & Computer Science (AREA)
- Optics & Photonics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Theoretical Computer Science (AREA)
- Mathematical Physics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Optical Integrated Circuits (AREA)
- Spectrometry And Color Measurement (AREA)
- Optical Couplings Of Light Guides (AREA)
Abstract
[Problem] To allow for accurate measurement by adding a function for adjusting the amount of light emitted when an arrayed waveguide grating is used for spectrometry. [Solution] Phase differences occur in light transmitted from an entry-side waveguide 12 through a first slab waveguide 13 and then through an arrayed waveguide 14. Due to the phase differences, the light emitted from the arrayed waveguide 14 is focused at different locations at a terminus end surface 151 of a second slab waveguide 15 depending on wavelength, and is then transmitted and emitted through exit-side waveguides 16 having entry ends provided at the respective locations. The entry end of at least one of the exit-side waveguides 16 has a different core width from an exit end of the entry-side waveguide 12, producing a light adjustment effect as well as a wavelength division effect.
Description
この出願の発明は、アレイ導波路回折格子及びアレイ導波路回折格子の応用技術に関するものである。
The invention of this application relates to an arrayed waveguide diffraction grating and an applied technique of the array waveguide diffraction grating.
アレイ導波路回折格子は、PLC(planar lightwave circuit,平面光回路)の一種であり分光・合波作用を持つ素子である。光通信の分野において波長分割多重通信を行うために使用されている。
Arrayed waveguide grating is a kind of PLC (planar lightwave circuit) and is an element having spectroscopic and combined wave action. It is used for wavelength division multiplexing communication in the field of optical communication.
図8は、従来の一般的なアレイ導波路回折格子の概略図である。アレイ導波路回折格子は、プレーナ技術を応用して製造される素子であり、基板11上に各種機能導波路12~16を形成することで製造される。各機能導波路は、入射側導波路12と、入射側導波路12の出射端に接続された第一スラブ導波路13と、第一スラブ導波路13の終端面に接続されたアレイ導波路14と、アレイ導波路14の出射端に接続された第二スラブ導波路15と、第二スラブ導波路15の終端面に入射端が設けられた複数の出射側導波路16となっている。
FIG. 8 is a schematic diagram of a conventional general arrayed waveguide diffraction grating. The array waveguide diffraction grating is an element manufactured by applying planar technology, and is manufactured by forming various functional waveguides 12 to 16 on a substrate 11. Each functional waveguide includes an incident side waveguide 12, a first slab waveguide 13 connected to the exit end of the incident side waveguide 12, and an array waveguide 14 connected to the end surface of the first slab waveguide 13. A second slab waveguide 15 connected to the emission end of the array waveguide 14, and a plurality of emission side waveguides 16 having an incident end provided at the end surface of the second slab waveguide 15.
アレイ導波路14は、隣接する導波路に対して長さが一定量ずつ異なる多数の導波路が配列された構造を有する。第一スラブ導波路13は自由空間であり、入射側導波路12の出射端から入射した光は、第一スラブ導波路で広がり、同位相でアレイ導波路14の各導波路に入射する。アレイ導波路14の終端に達した光は、光路長の差分だけ位相がそれぞれずれた状態で第二スラブ導波路15に出射される。第二スラブ導波路15も自由空間であり、アレイ導波路14の各導波路から出射した光は、互いに干渉し断面円弧状の終端面に達する。この際、位相差のために終端面には光は波長に応じた位置でそれぞれ集光する。即ち、終端面の各位置では、順次異なる波長の光が集光する。このため、終端面に接続された各出射側導波路16には、順次異なる波長の光が入射するようになり、光が波長に応じて空間的に分割される。尚、以下の説明において、各出射端導波路16は、順次異なる波長の光を出射するので、「チャンネル」と呼ぶことがある。
The array waveguide 14 has a structure in which a large number of waveguides having different lengths by a fixed amount are arranged with respect to adjacent waveguides. The first slab waveguide 13 is a free space, and the light incident from the exit end of the incident side waveguide 12 spreads in the first slab waveguide and is incident on each waveguide of the array waveguide 14 in the same phase. The light that has reached the end of the array waveguide 14 is emitted to the second slab waveguide 15 in a state where the phases are out of phase by the difference in the optical path length. The second slab waveguide 15 is also a free space, and the light emitted from each waveguide of the array waveguide 14 interferes with each other and reaches the end surface having an arcuate cross section. At this time, due to the phase difference, the light is focused on the terminal surface at a position corresponding to the wavelength. That is, light having different wavelengths is sequentially focused at each position on the terminal surface. Therefore, light having different wavelengths is sequentially incident on each emitting side waveguide 16 connected to the terminal surface, and the light is spatially divided according to the wavelength. In the following description, each emission end waveguide 16 sequentially emits light having a different wavelength, and thus may be referred to as a “channel”.
アレイ導波路回折格子を分光スペクトル測定(分光測定)に用いる場合、各出射端導波路から出射する異なる波長のスペクトルが、測定に用いる波長領域(測定波長領域)を形成する。このとき、測定波長領域(例えば900nmから1300nmに亘る400nmの波長領域)においては、その領域全体に亘って光量は均一であることが望ましい。その理由は以下のとおりである。
When an arrayed waveguide diffraction grating is used for spectroscopic spectrum measurement (spectral measurement), spectra of different wavelengths emitted from each emission end waveguide form a wavelength region (measurement wavelength region) used for measurement. At this time, in the measurement wavelength region (for example, the wavelength region of 400 nm extending from 900 nm to 1300 nm), it is desirable that the amount of light is uniform over the entire region. The reason is as follows.
まず、ある波長のみ光量が少ないと、その波長でのSN比が低下し測定精度が低下する。また、ある波長のみ光量が多いと、受光器の受光感度を、その光量に合わせて(その光量が測定レンジを超えないように)下げることになり、そうなると、他の波長での測定精度が低下する。そのために、それぞれの出射側導波路から出射する各波長の光量をそろえたい。しかし、実際には、各出射側導波路から出射する各波長の光強度は均一ではなく、広い測定波長領域を設定すると、全体のスペクトル強度に対し相対的に暗い波長域が必ず存在する。また、受光器の分高感度にも波長依存があるため、光源と検出器の組み合わせにより測定SNが低くなる波長域が存在する。このような場合、暗い波長域、SNが低くなる波長域に該当するチャネルの透過光量を増やしたい。
First, if the amount of light is small only at a certain wavelength, the SN ratio at that wavelength will decrease and the measurement accuracy will decrease. In addition, if the amount of light is large only at a certain wavelength, the light receiving sensitivity of the light receiver will be lowered according to the amount of light (so that the amount of light does not exceed the measurement range), and if this happens, the measurement accuracy at other wavelengths will decrease. do. Therefore, we want to make the amount of light of each wavelength emitted from each emitting side waveguide uniform. However, in reality, the light intensity of each wavelength emitted from each emitting side waveguide is not uniform, and when a wide measurement wavelength region is set, a wavelength region relatively dark with respect to the overall spectral intensity always exists. Further, since the sensitivity of the light receiver also depends on the wavelength, there is a wavelength range in which the measurement SN becomes low depending on the combination of the light source and the detector. In such a case, it is desired to increase the amount of transmitted light of the channel corresponding to the dark wavelength region and the wavelength region where the SN is low.
また、広帯域光源には非常に鋭いピークを持つものがある。例えば、アレイ導波路回折格子での分光測定に適したスーパーコンティニュウム光源のスペクトルには、シード光に由来する鋭いピークが存在する。分光スペクトル測定において、分光測定装置の測定レンジは最大値に合わせて設定されるため、特異的に高いピークがあると、低いレベルの縦軸分解能が低くなってしまう。このような場合は、所望の波長に該当するチャネルの透過光量を減らしたい。しかし、従来のアレイ導波路回折格子においては、各出射端導波路から出射する各波長の光量をそろえることは、考えられていない。
本願の発明は、このような課題を解決するために為されたものであり、アレイ導波路回折格子を分光測定に用いる場合に、出射光量を調節する機能を付加することで精度よく測定できるようにすることを目的としている。 Also, some wideband light sources have very sharp peaks. For example, the spectrum of a supercontinuum light source suitable for spectroscopic measurements on an arrayed waveguide diffraction grating has sharp peaks derived from seed light. In spectroscopic spectrum measurement, the measurement range of the spectroscopic measuring device is set according to the maximum value, so that if there is a specifically high peak, the vertical axis resolution at a low level becomes low. In such a case, it is desired to reduce the amount of transmitted light of the channel corresponding to the desired wavelength. However, in the conventional arrayed waveguide diffraction grating, it is not considered to make the amount of light of each wavelength emitted from each emission end waveguide uniform.
The present invention has been made to solve such a problem, and when an arrayed waveguide diffraction grating is used for spectroscopic measurement, it can be measured accurately by adding a function of adjusting the amount of emitted light. The purpose is to.
本願の発明は、このような課題を解決するために為されたものであり、アレイ導波路回折格子を分光測定に用いる場合に、出射光量を調節する機能を付加することで精度よく測定できるようにすることを目的としている。 Also, some wideband light sources have very sharp peaks. For example, the spectrum of a supercontinuum light source suitable for spectroscopic measurements on an arrayed waveguide diffraction grating has sharp peaks derived from seed light. In spectroscopic spectrum measurement, the measurement range of the spectroscopic measuring device is set according to the maximum value, so that if there is a specifically high peak, the vertical axis resolution at a low level becomes low. In such a case, it is desired to reduce the amount of transmitted light of the channel corresponding to the desired wavelength. However, in the conventional arrayed waveguide diffraction grating, it is not considered to make the amount of light of each wavelength emitted from each emission end waveguide uniform.
The present invention has been made to solve such a problem, and when an arrayed waveguide diffraction grating is used for spectroscopic measurement, it can be measured accurately by adding a function of adjusting the amount of emitted light. The purpose is to.
上記課題を解決するため、この明細書において、アレイ導波路回折格子、広帯域光源装置、分光測定装置の各発明が開示される。
開示された発明に係るアレイ導波路回折格子は、入射側導波路と、入射側導波路の出射端に接続された第一スラブ導波路と、第一スラブ導波路の終端面に接続されたアレイ導波路と、アレイ導波路の出射端に接続された第二スラブ導波路と、第二スラブ導波路の終端面に入射端が設けられた複数の出射側導波路とを備えている。アレイ導波路は、光路長が一定量ずつ異なる複数の導波路が配列された構造を有している。各出射側導波路の入射端は、アレイ導波路を光が伝搬する際に生じた位相差により波長に応じて異なる位置に集光する際のその各異なる位置に設けられている。そして、複数の出射側導波路のうち、少なくとも一つの導波路の入射端のコア幅が、入射側導波路の出射端のコア幅と異なっている。
このアレイ導波路回折格子は、出射側導波路の入射端のコア幅が、入射側導波路の出射端のコア幅よりも広いという構成を持ち得る。
このアレイ導波路回折格子は、出射側導波路の入射端のコア幅が、入射側導波路の出射端のコア幅よりも狭いという構成を持ち得る。
また、開示された別の発明に係るアレイ導波路回折格子は、入射側導波路と、入射側導波路の出射端に接続された第一スラブ導波路と、第一スラブ導波路の終端面に接続されたアレイ導波路と、アレイ導波路の出射端に接続された第二スラブ導波路と、第二スラブ導波路の終端面に入射端が設けられた複数の出射側導波路とを備え、アレイ導波路は、光路長が一定量ずつ異なる複数の導波路が配列された構造を有しており、各出射側導波路の入射端は、アレイ導波路を光が伝搬する際に生じた位相差により波長に応じて異なる位置に集光する際のその各異なる位置に設けられたアレイ導波路回折格子である。そして、このアレイ導波路回折格子は、少なくとも一つの出射側導波路の入射端のコア幅が、他の出射側導波路の入射端のコア幅と異なっている。
また、上記各アレイ導波路回折格子は、第二スラブ導波路の終端面において800nm以上1700nm以下の範囲内の少なくとも200nmの幅の波長域の光が波長に応じて順次異なる位置に集光するよう各導波路及び各スラブ導波路が形成されているという構成を持ち得る。 In order to solve the above problems, the inventions of the array waveguide diffraction grating, the broadband light source device, and the spectroscopic measurement device are disclosed in this specification.
The array waveguide grating according to the disclosed invention is an array connected to an incident side waveguide, a first slab waveguide connected to an exit end of the incident side waveguide, and an end surface of the first slab waveguide. It includes a waveguide, a second slab waveguide connected to the exit end of the array waveguide, and a plurality of exit side waveguides having an incident end at the end surface of the second slab waveguide. The array waveguide has a structure in which a plurality of waveguides having different optical path lengths by a fixed amount are arranged. The incident end of each emitting side waveguide is provided at each different position when condensing light at a different position depending on the wavelength due to the phase difference generated when light propagates through the array waveguide. The core width of the incident end of at least one of the plurality of emitting side waveguides is different from the core width of the emitting end of the incident side waveguide.
This array waveguide diffraction grating may have a configuration in which the core width of the incident end of the emitting side waveguide is wider than the core width of the emitting end of the incident side waveguide.
This array waveguide diffraction grating may have a configuration in which the core width of the incident end of the emitting side waveguide is narrower than the core width of the emitting end of the incident side waveguide.
Further, the arrayed waveguide grating according to another disclosed invention is provided on the incident side waveguide, the first slab waveguide connected to the exit end of the incident side waveguide, and the end surface of the first slab waveguide. It comprises a connected array waveguide, a second slab waveguide connected to the exit end of the array waveguide, and a plurality of exit side waveguides having an incident end at the end surface of the second slab waveguide. The array waveguide has a structure in which a plurality of waveguides having different optical path lengths by a fixed amount are arranged, and the incident end of each emission side waveguide is the position generated when light propagates through the array waveguide. It is an array waveguide diffraction grating provided at each different position when condensing light at different positions depending on the wavelength due to the phase difference. In this arrayed waveguide diffraction grating, the core width of the incident end of at least one emitting side waveguide is different from the core width of the incident end of the other emitting side waveguide.
Further, in each of the array waveguide diffraction gratings, light in a wavelength range having a width of at least 200 nm within the range of 800 nm or more and 1700 nm or less is sequentially focused at different positions depending on the wavelength on the terminal surface of the second slab waveguide. It may have a configuration in which each waveguide and each slab waveguide are formed.
開示された発明に係るアレイ導波路回折格子は、入射側導波路と、入射側導波路の出射端に接続された第一スラブ導波路と、第一スラブ導波路の終端面に接続されたアレイ導波路と、アレイ導波路の出射端に接続された第二スラブ導波路と、第二スラブ導波路の終端面に入射端が設けられた複数の出射側導波路とを備えている。アレイ導波路は、光路長が一定量ずつ異なる複数の導波路が配列された構造を有している。各出射側導波路の入射端は、アレイ導波路を光が伝搬する際に生じた位相差により波長に応じて異なる位置に集光する際のその各異なる位置に設けられている。そして、複数の出射側導波路のうち、少なくとも一つの導波路の入射端のコア幅が、入射側導波路の出射端のコア幅と異なっている。
このアレイ導波路回折格子は、出射側導波路の入射端のコア幅が、入射側導波路の出射端のコア幅よりも広いという構成を持ち得る。
このアレイ導波路回折格子は、出射側導波路の入射端のコア幅が、入射側導波路の出射端のコア幅よりも狭いという構成を持ち得る。
また、開示された別の発明に係るアレイ導波路回折格子は、入射側導波路と、入射側導波路の出射端に接続された第一スラブ導波路と、第一スラブ導波路の終端面に接続されたアレイ導波路と、アレイ導波路の出射端に接続された第二スラブ導波路と、第二スラブ導波路の終端面に入射端が設けられた複数の出射側導波路とを備え、アレイ導波路は、光路長が一定量ずつ異なる複数の導波路が配列された構造を有しており、各出射側導波路の入射端は、アレイ導波路を光が伝搬する際に生じた位相差により波長に応じて異なる位置に集光する際のその各異なる位置に設けられたアレイ導波路回折格子である。そして、このアレイ導波路回折格子は、少なくとも一つの出射側導波路の入射端のコア幅が、他の出射側導波路の入射端のコア幅と異なっている。
また、上記各アレイ導波路回折格子は、第二スラブ導波路の終端面において800nm以上1700nm以下の範囲内の少なくとも200nmの幅の波長域の光が波長に応じて順次異なる位置に集光するよう各導波路及び各スラブ導波路が形成されているという構成を持ち得る。 In order to solve the above problems, the inventions of the array waveguide diffraction grating, the broadband light source device, and the spectroscopic measurement device are disclosed in this specification.
The array waveguide grating according to the disclosed invention is an array connected to an incident side waveguide, a first slab waveguide connected to an exit end of the incident side waveguide, and an end surface of the first slab waveguide. It includes a waveguide, a second slab waveguide connected to the exit end of the array waveguide, and a plurality of exit side waveguides having an incident end at the end surface of the second slab waveguide. The array waveguide has a structure in which a plurality of waveguides having different optical path lengths by a fixed amount are arranged. The incident end of each emitting side waveguide is provided at each different position when condensing light at a different position depending on the wavelength due to the phase difference generated when light propagates through the array waveguide. The core width of the incident end of at least one of the plurality of emitting side waveguides is different from the core width of the emitting end of the incident side waveguide.
This array waveguide diffraction grating may have a configuration in which the core width of the incident end of the emitting side waveguide is wider than the core width of the emitting end of the incident side waveguide.
This array waveguide diffraction grating may have a configuration in which the core width of the incident end of the emitting side waveguide is narrower than the core width of the emitting end of the incident side waveguide.
Further, the arrayed waveguide grating according to another disclosed invention is provided on the incident side waveguide, the first slab waveguide connected to the exit end of the incident side waveguide, and the end surface of the first slab waveguide. It comprises a connected array waveguide, a second slab waveguide connected to the exit end of the array waveguide, and a plurality of exit side waveguides having an incident end at the end surface of the second slab waveguide. The array waveguide has a structure in which a plurality of waveguides having different optical path lengths by a fixed amount are arranged, and the incident end of each emission side waveguide is the position generated when light propagates through the array waveguide. It is an array waveguide diffraction grating provided at each different position when condensing light at different positions depending on the wavelength due to the phase difference. In this arrayed waveguide diffraction grating, the core width of the incident end of at least one emitting side waveguide is different from the core width of the incident end of the other emitting side waveguide.
Further, in each of the array waveguide diffraction gratings, light in a wavelength range having a width of at least 200 nm within the range of 800 nm or more and 1700 nm or less is sequentially focused at different positions depending on the wavelength on the terminal surface of the second slab waveguide. It may have a configuration in which each waveguide and each slab waveguide are formed.
また、開示された発明に係る広帯域光源装置は、広帯域光源と、広帯域光源から出射された光が入射する位置に設けられた上記いずれかのアレイ導波路回折格子とを備えており、上記いずれかのアレイ導波路回折格子により波長分割された広帯域光を出射する。
また、開示された発明に係る分光測定装置は、上記広帯域光源装置と、この広帯域光源装置から出射された広帯域光が照射された対象物からの光を受光する位置に配置された受光器と、受光器からの出力を処理して対象物の分光特性を得る演算手段とを備えている。
この分光測定装置は、広帯域光源装置が、経過時間と光の波長とが1対1で対応している光を広帯域光として出射する装置であり、演算手段が、受光器からの出力の時間的変化を波長に変換する処理を行う手段であるという構成を持ち得る。
この分光測定装置は、広帯域光源装置において、アレイ導波路回折格子の各出射側導波路に遅延ファイバが接続されており、各遅延ファイバは、伝送される光の波長に応じた遅延量を実現するファイバであるという構成を持ち得る。 Further, the wideband light source device according to the disclosed invention includes a wideband light source and any of the above arrayed waveguide diffraction gratings provided at a position where light emitted from the wideband light source is incident, and any of the above. It emits wideband light whose wavelength is divided by the arrayed waveguide grating.
Further, the spectroscopic measuring apparatus according to the disclosed invention includes the above-mentioned broadband light source apparatus, a receiver arranged at a position where the broadband light emitted from the broadband light source apparatus receives light from an object irradiated with the broadband light, and the light receiver. It is equipped with an arithmetic means for processing the output from the light source to obtain the spectral characteristics of the object.
This spectroscopic measurement device is a device in which a broadband light source device emits light having a one-to-one correspondence between an elapsed time and a wavelength of light as wide band light, and a calculation means is a device for temporal output from a receiver. It may have a configuration that it is a means for performing a process of converting a change into a wavelength.
In this spectroscopic measurement device, a delay fiber is connected to each emission side waveguide of the array waveguide diffraction grating in the broadband light source device, and each delay fiber realizes a delay amount according to the wavelength of the transmitted light. It may have a configuration of being a fiber.
また、開示された発明に係る分光測定装置は、上記広帯域光源装置と、この広帯域光源装置から出射された広帯域光が照射された対象物からの光を受光する位置に配置された受光器と、受光器からの出力を処理して対象物の分光特性を得る演算手段とを備えている。
この分光測定装置は、広帯域光源装置が、経過時間と光の波長とが1対1で対応している光を広帯域光として出射する装置であり、演算手段が、受光器からの出力の時間的変化を波長に変換する処理を行う手段であるという構成を持ち得る。
この分光測定装置は、広帯域光源装置において、アレイ導波路回折格子の各出射側導波路に遅延ファイバが接続されており、各遅延ファイバは、伝送される光の波長に応じた遅延量を実現するファイバであるという構成を持ち得る。 Further, the wideband light source device according to the disclosed invention includes a wideband light source and any of the above arrayed waveguide diffraction gratings provided at a position where light emitted from the wideband light source is incident, and any of the above. It emits wideband light whose wavelength is divided by the arrayed waveguide grating.
Further, the spectroscopic measuring apparatus according to the disclosed invention includes the above-mentioned broadband light source apparatus, a receiver arranged at a position where the broadband light emitted from the broadband light source apparatus receives light from an object irradiated with the broadband light, and the light receiver. It is equipped with an arithmetic means for processing the output from the light source to obtain the spectral characteristics of the object.
This spectroscopic measurement device is a device in which a broadband light source device emits light having a one-to-one correspondence between an elapsed time and a wavelength of light as wide band light, and a calculation means is a device for temporal output from a receiver. It may have a configuration that it is a means for performing a process of converting a change into a wavelength.
In this spectroscopic measurement device, a delay fiber is connected to each emission side waveguide of the array waveguide diffraction grating in the broadband light source device, and each delay fiber realizes a delay amount according to the wavelength of the transmitted light. It may have a configuration of being a fiber.
以下に説明する通り、開示された発明に係るアレイ導波路回折格子では、第一スラブ導波路が接続された入射側導波路の出射端のコア幅と、少なくとも一つの出射側導波路の入射端のコア幅とが異なっているので、この少なくとも一つの出射側導波路の入射端において調光作用が発揮される。
また、出射側導波路の入射端のコア幅を、入射側導波路の出射端のコア幅より広くすると、当該出射側導波路を通して出射する光の量が多くなるので、スペクトルにおいて弱い波長の光強度を補償することができる。
また、出射側導波路の入射端のコア幅を、入射側導波路の出射端のコア幅より狭くすると、当該出射側導波路を通して出射する光の量が少なくすることができるので、スペクトルにおいて強い波長の光強度を低減させることができる。
また、開示された発明に係るアレイ導波路回折格子では、少なくとも一つの出射側導波路の入射端のコア幅は、他の出射側導波路の入射端のコア幅と異なっているので、アレイ導波路回折格子に入射する光の波長間での強度の調整を行うことができる。
また、このようなアレイ導波路回折格子において、第二スラブ導波路の終端面において800nm以上1700nm以下の範囲内の少なくとも200nmの幅の波長域の光が波長に応じて順次異なる位置に集光するよう各導波路及び各スラブ導波路が形成されていると、材料分析のための近赤外分光測定用として特に好適なアレイ導波路回折格子となる。 As described below, in the array waveguide grating according to the disclosed invention, the core width of the exit end of the incident side waveguide to which the first slab waveguide is connected and the incident end of at least one emission side waveguide. Since the core width is different from that of the above, the dimming action is exhibited at the incident end of the at least one emitting side waveguide.
Further, if the core width of the incident end of the emitting side waveguide is wider than the core width of the emitting end of the incident side waveguide, the amount of light emitted through the emitting side waveguide increases, so that the light having a weak wavelength in the spectrum is used. The strength can be compensated.
Further, if the core width of the incident end of the emitting side waveguide is narrower than the core width of the emitting end of the incident side waveguide, the amount of light emitted through the emitting side waveguide can be reduced, so that the spectrum is strong. The light intensity of the wavelength can be reduced.
Further, in the array waveguide diffraction grating according to the disclosed invention, since the core width of the incident end of at least one emitting side waveguide is different from the core width of the incident end of the other emitting side waveguide, the array guide is used. The intensity can be adjusted between the wavelengths of the light incident on the waveguide diffraction grating.
Further, in such an arrayed waveguide diffraction grating, light in a wavelength range having a width of at least 200 nm within the range of 800 nm or more and 1700 nm or less is sequentially focused at different positions depending on the wavelength at the end surface of the second slab waveguide. When each waveguide and each slab waveguide are formed, the arrayed waveguide diffraction grating is particularly suitable for near-infrared spectroscopic measurement for material analysis.
また、出射側導波路の入射端のコア幅を、入射側導波路の出射端のコア幅より広くすると、当該出射側導波路を通して出射する光の量が多くなるので、スペクトルにおいて弱い波長の光強度を補償することができる。
また、出射側導波路の入射端のコア幅を、入射側導波路の出射端のコア幅より狭くすると、当該出射側導波路を通して出射する光の量が少なくすることができるので、スペクトルにおいて強い波長の光強度を低減させることができる。
また、開示された発明に係るアレイ導波路回折格子では、少なくとも一つの出射側導波路の入射端のコア幅は、他の出射側導波路の入射端のコア幅と異なっているので、アレイ導波路回折格子に入射する光の波長間での強度の調整を行うことができる。
また、このようなアレイ導波路回折格子において、第二スラブ導波路の終端面において800nm以上1700nm以下の範囲内の少なくとも200nmの幅の波長域の光が波長に応じて順次異なる位置に集光するよう各導波路及び各スラブ導波路が形成されていると、材料分析のための近赤外分光測定用として特に好適なアレイ導波路回折格子となる。 As described below, in the array waveguide grating according to the disclosed invention, the core width of the exit end of the incident side waveguide to which the first slab waveguide is connected and the incident end of at least one emission side waveguide. Since the core width is different from that of the above, the dimming action is exhibited at the incident end of the at least one emitting side waveguide.
Further, if the core width of the incident end of the emitting side waveguide is wider than the core width of the emitting end of the incident side waveguide, the amount of light emitted through the emitting side waveguide increases, so that the light having a weak wavelength in the spectrum is used. The strength can be compensated.
Further, if the core width of the incident end of the emitting side waveguide is narrower than the core width of the emitting end of the incident side waveguide, the amount of light emitted through the emitting side waveguide can be reduced, so that the spectrum is strong. The light intensity of the wavelength can be reduced.
Further, in the array waveguide diffraction grating according to the disclosed invention, since the core width of the incident end of at least one emitting side waveguide is different from the core width of the incident end of the other emitting side waveguide, the array guide is used. The intensity can be adjusted between the wavelengths of the light incident on the waveguide diffraction grating.
Further, in such an arrayed waveguide diffraction grating, light in a wavelength range having a width of at least 200 nm within the range of 800 nm or more and 1700 nm or less is sequentially focused at different positions depending on the wavelength at the end surface of the second slab waveguide. When each waveguide and each slab waveguide are formed, the arrayed waveguide diffraction grating is particularly suitable for near-infrared spectroscopic measurement for material analysis.
また、開示された発明に係る広帯域光源装置によれば、開示された発明に係るアレイ導波路回折格子を備えるので、発光スペクトルにおいて弱い波長の光強度を増加させることも、強い波長の光強度を低減させることができる。このため、波長に応じて空間的に分割された光であってスペクトル強度の均一な光を出射する広帯域光源装置が提供される。
また、開示された発明に係る分光測定装置によれば、開示された発明に係るアレイ導波路回折格子を備えた広帯域光源装置から出射された光を対象物に照射して分光測定するので、任意の波長の強度が調整された光により分光測定が行える。この際に、フィルタのような素子を別途設けることは不要であり、低コストでシンプルな構成となる。
また、広帯域光源装置が経過時間と光の波長とが1対1で対応している光を出射する装置であり、演算手段が受光器からの出力の時間的変化を波長に変換する処理を行う手段である構成では、高速の分光測定が行えるという効果がさらに得られる。
この際、アレイ導波路回折格子の各出射側導波路に遅延ファイバが接続されており、各遅延ファイバは、各出射側導波路を通して伝送される光の波長に応じた遅延量を実現するファイバであると、波長分解能を測定波長域に亘って均一にすることが容易となる。 Further, according to the wideband light source device according to the disclosed invention, since the array waveguide diffraction grating according to the disclosed invention is provided, it is possible to increase the light intensity of a weak wavelength in the emission spectrum, and to increase the light intensity of a strong wavelength. It can be reduced. Therefore, there is provided a wideband light source device that emits light that is spatially divided according to wavelength and has a uniform spectral intensity.
Further, according to the spectroscopic measurement device according to the disclosed invention, the object is irradiated with the light emitted from the broadband light source device provided with the array waveguide diffraction grating according to the disclosed invention, and the object is spectrally measured. Spectroscopic measurement can be performed with light whose wavelength intensity is adjusted. At this time, it is not necessary to separately provide an element such as a filter, and the configuration is low cost and simple.
Further, the broadband light source device is a device that emits light having a one-to-one correspondence between the elapsed time and the wavelength of the light, and the arithmetic means performs a process of converting the temporal change of the output from the light receiver into a wavelength. In the configuration as a means, the effect of being able to perform high-speed spectroscopic measurement is further obtained.
At this time, a delay fiber is connected to each emission side waveguide of the array waveguide diffraction grating, and each delay fiber is a fiber that realizes a delay amount according to the wavelength of light transmitted through each emission side waveguide. If there is, it becomes easy to make the wavelength resolution uniform over the measurement wavelength range.
また、開示された発明に係る分光測定装置によれば、開示された発明に係るアレイ導波路回折格子を備えた広帯域光源装置から出射された光を対象物に照射して分光測定するので、任意の波長の強度が調整された光により分光測定が行える。この際に、フィルタのような素子を別途設けることは不要であり、低コストでシンプルな構成となる。
また、広帯域光源装置が経過時間と光の波長とが1対1で対応している光を出射する装置であり、演算手段が受光器からの出力の時間的変化を波長に変換する処理を行う手段である構成では、高速の分光測定が行えるという効果がさらに得られる。
この際、アレイ導波路回折格子の各出射側導波路に遅延ファイバが接続されており、各遅延ファイバは、各出射側導波路を通して伝送される光の波長に応じた遅延量を実現するファイバであると、波長分解能を測定波長域に亘って均一にすることが容易となる。 Further, according to the wideband light source device according to the disclosed invention, since the array waveguide diffraction grating according to the disclosed invention is provided, it is possible to increase the light intensity of a weak wavelength in the emission spectrum, and to increase the light intensity of a strong wavelength. It can be reduced. Therefore, there is provided a wideband light source device that emits light that is spatially divided according to wavelength and has a uniform spectral intensity.
Further, according to the spectroscopic measurement device according to the disclosed invention, the object is irradiated with the light emitted from the broadband light source device provided with the array waveguide diffraction grating according to the disclosed invention, and the object is spectrally measured. Spectroscopic measurement can be performed with light whose wavelength intensity is adjusted. At this time, it is not necessary to separately provide an element such as a filter, and the configuration is low cost and simple.
Further, the broadband light source device is a device that emits light having a one-to-one correspondence between the elapsed time and the wavelength of the light, and the arithmetic means performs a process of converting the temporal change of the output from the light receiver into a wavelength. In the configuration as a means, the effect of being able to perform high-speed spectroscopic measurement is further obtained.
At this time, a delay fiber is connected to each emission side waveguide of the array waveguide diffraction grating, and each delay fiber is a fiber that realizes a delay amount according to the wavelength of light transmitted through each emission side waveguide. If there is, it becomes easy to make the wavelength resolution uniform over the measurement wavelength range.
次に、この出願の発明を実施するための形態(実施形態)について説明する。
図1は、実施形態のアレイ導波路回折格子の概略図である。図1に示すアレイ導波路回折格子は、図8に示すものと同様、基板11上に形成された各機能導波路12~16で構成されており、各機能導波路は、入射側導波路12と、入射側導波路の出射端に接続された第一スラブ導波路13と、第一スラブ導波路13の終端面131に接続されたアレイ導波路14と、アレイ導波路14の出射端に接続された第二スラブ導波路15と、第二スラブ導波路15の終端面151に入射端が設けられた複数の出射側導波路16となっている。 Next, an embodiment (embodiment) for carrying out the invention of this application will be described.
FIG. 1 is a schematic diagram of an arrayed waveguide diffraction grating of an embodiment. The array waveguide grating shown in FIG. 1 is composed of thefunctional waveguides 12 to 16 formed on the substrate 11 in the same manner as that shown in FIG. 8, and each functional waveguide is the incident side waveguide 12. The first slab waveguide 13 connected to the exit end of the incident side waveguide, the array waveguide 14 connected to the end surface 131 of the first slab waveguide 13, and the array waveguide 14 connected to the exit end. The second slab waveguide 15 is provided, and a plurality of emission side waveguides 16 having incident ends provided on the end surface 151 of the second slab waveguide 15.
図1は、実施形態のアレイ導波路回折格子の概略図である。図1に示すアレイ導波路回折格子は、図8に示すものと同様、基板11上に形成された各機能導波路12~16で構成されており、各機能導波路は、入射側導波路12と、入射側導波路の出射端に接続された第一スラブ導波路13と、第一スラブ導波路13の終端面131に接続されたアレイ導波路14と、アレイ導波路14の出射端に接続された第二スラブ導波路15と、第二スラブ導波路15の終端面151に入射端が設けられた複数の出射側導波路16となっている。 Next, an embodiment (embodiment) for carrying out the invention of this application will be described.
FIG. 1 is a schematic diagram of an arrayed waveguide diffraction grating of an embodiment. The array waveguide grating shown in FIG. 1 is composed of the
実施形態のアレイ導波路回折格子の大きな特徴点は、第一スラブ導波路13に接続された入射側導波路12の出射端のコア幅と、少なくとも一つの出射側導波路16の入射端のコア幅とが異なっている点である。つまり、図1に拡大して示すように、入射側導波路12の出射端のコア幅をD1とし、ある一つの出射側導波路16の入射端のコア幅をD2とすると、D1≠D2となっている。なお、コア幅の直交方向であるコア厚(高さ)については、接続するファイバへのマッチングのために変える例もあるが、製造上の理由により基本的には一定である。
The major features of the array waveguide diffraction grating of the embodiment are the core width of the exit end of the incident side waveguide 12 connected to the first slab waveguide 13 and the core of the incident end of at least one emission side waveguide 16. The point is that it is different from the width. That is, as shown in an enlarged view in FIG. 1, if the core width of the exit end of the incident side waveguide 12 is D1 and the core width of the incident end of one emitting side waveguide 16 is D2, then D1 ≠ D2. It has become. The core thickness (height) in the orthogonal direction of the core width may be changed for matching with the fiber to be connected, but it is basically constant for manufacturing reasons.
図8に示す従来のアレイ導波路回折格子では、ピーク強度を重視する観点から、出射側導波路16の入射端のコア幅は、全て入射側導波路12の出射端のコア幅と同一となっている。まず、この点について図8を使用して説明する。
図8には、入射側導波路12から第一スラブ導波路13に入射する際の光Lが示されている。入射側導波路12は、光ファイバと同様、屈折率差を利用して光を伝送する伝送路である。即ち、基板11の材料に対して高い屈折率を有する材料で形成されている(この部分がコアと呼ばれる)。また、導波路外周部は基板11と同じ屈折率の材料で埋められている(この部分はクラッドと呼ばれる)。コアを伝搬可能な最大入射角度をθmaxとすると、開口数NAはn×sinθmaxと定義される。ここでnは入射媒質の屈折率で空気ならば1である。また、導波路においてコア幅DとNAの積は保存される。上述したようにコアの断面形状は方形であり、コア厚み方向もこの保存が成り立つが、ここでは、コア厚み(高さ)は同一である素子を想定しコア幅の違いに注目して説明する。 In the conventional array waveguide grating shown in FIG. 8, the core width of the incident end of the emittingside waveguide 16 is the same as the core width of the emitting end of the incident side waveguide 12 from the viewpoint of emphasizing the peak intensity. ing. First, this point will be described with reference to FIG.
FIG. 8 shows the light L when incident on thefirst slab waveguide 13 from the incident side waveguide 12. The incident-side waveguide 12 is a transmission path for transmitting light by utilizing the difference in refractive index, as in the case of an optical fiber. That is, it is made of a material having a high refractive index with respect to the material of the substrate 11 (this portion is called a core). Further, the outer peripheral portion of the waveguide is filled with a material having the same refractive index as that of the substrate 11 (this portion is called a clad). The numerical aperture NA is defined as n × sin θ max , where θ max is the maximum angle of incidence that can propagate through the core. Here, n is the refractive index of the incident medium, which is 1 for air. Also, the product of the core width D and NA is preserved in the waveguide. As described above, the cross-sectional shape of the core is square, and this preservation holds true in the direction of the core thickness, but here, we will focus on the difference in core width assuming elements with the same core thickness (height). ..
図8には、入射側導波路12から第一スラブ導波路13に入射する際の光Lが示されている。入射側導波路12は、光ファイバと同様、屈折率差を利用して光を伝送する伝送路である。即ち、基板11の材料に対して高い屈折率を有する材料で形成されている(この部分がコアと呼ばれる)。また、導波路外周部は基板11と同じ屈折率の材料で埋められている(この部分はクラッドと呼ばれる)。コアを伝搬可能な最大入射角度をθmaxとすると、開口数NAはn×sinθmaxと定義される。ここでnは入射媒質の屈折率で空気ならば1である。また、導波路においてコア幅DとNAの積は保存される。上述したようにコアの断面形状は方形であり、コア厚み方向もこの保存が成り立つが、ここでは、コア厚み(高さ)は同一である素子を想定しコア幅の違いに注目して説明する。 In the conventional array waveguide grating shown in FIG. 8, the core width of the incident end of the emitting
FIG. 8 shows the light L when incident on the
前述したように、入射側導波路12から出射した光は、第一スラブ導波路13を広がって同位相でアレイ導波路14に入射し、アレイ導波路14を伝搬する過程で位相差が生じ、位相差を持って各導波路の出射端から第二スラブ導波路15に出射され、波長に応じた終端面151上の位置にそれぞれ集光する。そして、終端面151上に入射端が配置された各出射側導波路16は、空間的に分割された各波長の光を取り込んで出射させる。
As described above, the light emitted from the incident side waveguide 12 spreads through the first slab waveguide 13 and enters the array waveguide 14 in the same phase, and a phase difference occurs in the process of propagating through the array waveguide 14. It is emitted from the emission end of each waveguide to the second slab waveguide 15 with a phase difference, and is focused on a position on the end surface 151 according to the wavelength. Then, each emitting side waveguide 16 having an incident end arranged on the terminal surface 151 takes in and emits light of each wavelength spatially divided.
上記のような光の伝搬の各局面において、入射側導波路12の出射端におけるコア幅D×NAは常に保存される。NAはコアとクラッドの屈折率で決まっており通常面内で均一であるので、最も低損失に分波するには、各導波路の入出射端のコア幅を同一にすればよい。導波路がテーパー形状を持ち、端部と内側とで幅が異なる場合があるが、ここでは各出射端におけるコア幅を指す。テーパー形状を持つ場合、入射側導波路12の出射部におけるテーパー形状と、出射側導波路の入射部におけるテーパー形状とは、等しいことがより望ましい。
In each aspect of light propagation as described above, the core width D × NA at the emission end of the incident side waveguide 12 is always preserved. Since NA is determined by the refractive index of the core and the clad and is usually uniform in the plane, the core width at the input / output ends of each waveguide may be the same in order to demultiplex the waves with the lowest loss. The waveguide has a tapered shape, and the width may differ between the end and the inside, but here it refers to the core width at each emission end. When having a tapered shape, it is more desirable that the tapered shape at the emitting portion of the incident side waveguide 12 and the tapered shape at the incident portion of the emitting side waveguide 12 are equal to each other.
一方、本願の発明者は、このような従来技術の常識的な発想に反し、出射側導波路16の入射端を入射側導波路12の出射端とは異なるコア幅としたアレイ導波路回折格子の構成を想到するに至った。出射側導波路16の入射端を入射側導波路12の出射端とは異なるコア幅としたのは、波長分割作用とともに調光作用(光強度の調節作用)をアレイ導波路回折格子に持たせようという発想に基づく。以下、この点について説明する。
On the other hand, the inventor of the present application, contrary to the conventional idea of the prior art, has an array waveguide diffraction grating in which the incident end of the emitting side waveguide 16 has a core width different from that of the emitting end of the incident side waveguide 12. I came up with the composition of. The reason why the incident end of the emitting side waveguide 16 has a core width different from that of the emitting end of the incident side waveguide 12 is that the array waveguide diffraction grating has a dimming action (light intensity adjusting action) as well as a wavelength dividing action. Based on the idea of This point will be described below.
発明者の研究によると、ある出射側導波路16の入射端を入射側導波路12の出射端に対して異なるコア幅とすると、透過率をコントロールできることが示された。図2は、この点を示した概略図であり、出射側導波路16の入射端を入射側導波路12の出射端に対して異なるコア幅とした場合の当該出射側導波路16の透過率について示した図である。
According to the research of the inventor, it has been shown that the transmittance can be controlled by setting the incident end of a certain emitting side waveguide 16 to have a different core width from the emitting end of the incident side waveguide 12. FIG. 2 is a schematic view showing this point, and the transmittance of the emitting side waveguide 16 when the incident end of the emitting side waveguide 16 has a different core width from the emitting end of the incident side waveguide 12. It is a figure which showed about.
図2(1)のグラフにおいて、横軸は波長、縦軸は透過率である。図2(2)は、図2(1)の結果を得た際の実験について示した概略図である。図2(2)に示すように、この実験では、スペクトルが既知である光を入射側導波路12に入射させ、あるチャンネルにおける出射光の強度を検出した。この際、そのチャンネルについて、出射側導波路16の入射端のコア幅が入射側導波路12の出射端コア幅と同じである従来構成のもの(従来タイプ)と、入射側導波路12の出射端コア幅に比べて広くしたもの(幅広タイプ)と、さらに、入射側導波路12の出射端コア幅に比べて狭くしたもの(幅狭タイプ)との三つを用意し、実験を行った。
In the graph of FIG. 2 (1), the horizontal axis is the wavelength and the vertical axis is the transmittance. FIG. 2 (2) is a schematic diagram showing an experiment when the result of FIG. 2 (1) is obtained. As shown in FIG. 2 (2), in this experiment, light having a known spectrum was incident on the incident side waveguide 12, and the intensity of the emitted light in a certain channel was detected. At this time, with respect to the channel, a conventional configuration (conventional type) in which the core width of the incident end of the emitting side waveguide 16 is the same as the exit end core width of the incident side waveguide 12 and the emission of the incident side waveguide 12 Experiments were conducted by preparing three types, one that was wider than the end core width (wide type) and the other that was narrower than the emission end core width of the incident side waveguide 12. ..
図2(1)のグラフにおいて、透過率は、広狭を設定したチャンネルの出射側導波路16から出射した光のスペクトルをスペクトラムアナライザ9で測定し、各波長の光強度を入射側導波路12に入射する前の各波長の光強度と比較することで得ている。図2(1)において、実線(a)は従来タイプの構成における光透過率を示し、破線(b)は幅広タイプの構成における光透過率を示し、破線(c)は幅狭タイプの光透過率を示す。
In the graph of FIG. 2 (1), the transmittance is measured by measuring the spectrum of the light emitted from the emitting side waveguide 16 of the channel whose width is set by the spectrum analyzer 9, and the light intensity of each wavelength is set to the incident side waveguide 12. It is obtained by comparing with the light intensity of each wavelength before the incident. In FIG. 2 (1), the solid line (a) shows the light transmittance in the conventional type configuration, the broken line (b) shows the light transmittance in the wide type configuration, and the broken line (c) shows the light transmittance of the narrow type. Shows the rate.
図2(1)に示すように、幅狭タイプ(c)の場合、透過率のピーク及び全体の透過光量(スペクトル面積)とも、従来タイプ(a)と比較して低下している。これは、D×NAの保存からして当然の結果である。一方、興味深いことに、幅広タイプ(b)の場合、透過率のピークは低下するが、透過光量は従来タイプ(a)に比べて多くなっている。即ち、図2(1)に示すように、幅広タイプ(b)の場合、スペクトル面積は従来タイプ(a)に比べて多い。これは、D×NAの保存によりコア幅Dが広くなると出射側導波路16への入射許容角度が小さくなるためスペクトル中心波長での透過率が低下するが、出射側導波路16の入射端コア幅を広くしたことで、より広い波長が出射側導波路16に入るようになりスペクトル面積で見ると大きくなるためである。
As shown in FIG. 2 (1), in the case of the narrow type (c), both the peak transmittance and the total amount of transmitted light (spectral area) are lower than those of the conventional type (a). This is a natural result from the preservation of D × NA. On the other hand, interestingly, in the case of the wide type (b), the peak of the transmittance is lowered, but the amount of transmitted light is larger than that of the conventional type (a). That is, as shown in FIG. 2 (1), in the case of the wide type (b), the spectral area is larger than that of the conventional type (a). This is because when the core width D becomes wider due to the preservation of D × NA, the permissible angle of incidence on the light emitting side waveguide 16 becomes smaller, so that the transmittance at the center wavelength of the spectrum decreases, but the incident end core of the light emitting side waveguide 16 This is because the wider wavelength allows a wider wavelength to enter the emitting side waveguide 16 and becomes larger in terms of the spectral area.
いずれにしても、出射側導波路16の入射端のコア幅を入射側導波路12の出射端のコア幅に比べて広くしておくと、透過率のピークは下がるものの1チャンネル全体の透過光量は多くなることが確認された。これは、アレイ導波路回折格子における新規の知見である。図3及び図4は、このような知見をより詳しく調べた実験について示した概略図である。
In any case, if the core width of the incident end of the emitting side waveguide 16 is made wider than the core width of the emitting end of the incident side waveguide 12, the transmittance peak is lowered, but the transmitted light amount of the entire channel is reduced. Was confirmed to increase. This is a new finding in arrayed waveguide diffraction gratings. 3 and 4 are schematic views showing an experiment in which such findings were investigated in more detail.
このうち、図3には、実験に用いたアレイ導波路回折格子における出射側導波路16の入射端付近の構造が概略的に描かれている。この実験では、出射側導波路16の入射端付近の構成が異なる二つのタイプのアレイ導波路回折格子が用いられた。一つのタイプは、図3(1)に示すように、斜線で示す各出射側導波路16の入射端コア幅Dが一定のもので、入射側導波路12の出射端コア幅に一致しているものである(以下、定幅タイプという)。もう一つのタイプは、図3(2)に示すように、斜線で示す出射側導波路16の入射端コア幅Dが図の左側(長波長側)ほど広くなっているものである(以下、幅変化タイプという)。図3のピッチはここでは重要でないが、スラブ導波路15の終端面151に位置する出射側導波路の入射端コアはある曲率の円弧上に位置しており、この位置によって各チャンネルの中心波長が決まる。試作した設計ではピッチが漸次変化するよう設計し、中心波長間隔が等間隔でない。
Of these, FIG. 3 schematically depicts the structure near the incident end of the emitting side waveguide 16 in the array waveguide diffraction grating used in the experiment. In this experiment, two types of arrayed waveguide diffraction gratings with different configurations near the incident end of the emitting side waveguide 16 were used. In one type, as shown in FIG. 3 (1), the incident end core width D of each emitting side waveguide 16 indicated by diagonal lines is constant, which coincides with the emitting end core width of the incident side waveguide 12. (Hereafter, it is called a constant width type). In the other type, as shown in FIG. 3 (2), the incident end core width D of the emitted side waveguide 16 shown by the diagonal line becomes wider toward the left side (long wavelength side) of the figure (hereinafter, the same type). Width change type). The pitch in FIG. 3 is not important here, but the incident end core of the emitting side waveguide located at the end surface 151 of the slab waveguide is located on an arc of a certain curvature, and this position determines the center wavelength of each channel. Is decided. In the prototype design, the pitch is designed to change gradually, and the center wavelength intervals are not evenly spaced. It was
図4には、図3に示す各タイプのアレイ導波路回折格子において得られた光透過率と、透過光量とが示されている。図4(1)が光透過率、(2)が透過光量を示す。透過光量は、各チャンネルでの透過率スペクトル面積である。
図4(1)(2)では、煩雑さを避けるため、幾つかのチャンネルでの値のみを示している。図4(1)(2)に示すように、幅変化タイプの場合、定幅タイプに比べ、長波長側において、即ち、出射側導波路の入射端のコア幅が広くなるにつれて、透過率ピークが低くなり、それとともに、半値幅が広がって透過光量が顕著に増大している。 FIG. 4 shows the light transmittance obtained in each type of array waveguide grating shown in FIG. 3 and the amount of transmitted light. FIG. 4 (1) shows the light transmittance, and FIG. 4 (2) shows the amount of transmitted light. The amount of transmitted light is the transmittance spectrum area in each channel.
In FIGS. 4 (1) and 4 (2), only the values in some channels are shown in order to avoid complication. As shown in FIGS. 4 (1) and 4 (2), in the case of the width change type, the transmittance peaks on the long wavelength side, that is, as the core width at the incident end of the emitting side waveguide becomes wider than that of the constant width type. Along with this, the half-value width widens and the amount of transmitted light increases remarkably.
図4(1)(2)では、煩雑さを避けるため、幾つかのチャンネルでの値のみを示している。図4(1)(2)に示すように、幅変化タイプの場合、定幅タイプに比べ、長波長側において、即ち、出射側導波路の入射端のコア幅が広くなるにつれて、透過率ピークが低くなり、それとともに、半値幅が広がって透過光量が顕著に増大している。 FIG. 4 shows the light transmittance obtained in each type of array waveguide grating shown in FIG. 3 and the amount of transmitted light. FIG. 4 (1) shows the light transmittance, and FIG. 4 (2) shows the amount of transmitted light. The amount of transmitted light is the transmittance spectrum area in each channel.
In FIGS. 4 (1) and 4 (2), only the values in some channels are shown in order to avoid complication. As shown in FIGS. 4 (1) and 4 (2), in the case of the width change type, the transmittance peaks on the long wavelength side, that is, as the core width at the incident end of the emitting side waveguide becomes wider than that of the constant width type. Along with this, the half-value width widens and the amount of transmitted light increases remarkably.
このように、出射側導波路16の入射端を入射側導波路12の出射端コア幅よりも広くすると、ピーク透過率が低下するものの、1チャンネルあたりの透過率スペクトル面積(透過光量)は増大する。透過光量の増大は、その出射側導波路16から出射される光の量の増大を意味する。実施形態のアレイ導波路回折格子は、これらの知見に基づくものであり、透過光量を小さくしたい波長を含むチャンネルについては、出射側導波路16の入射端を入射側導波路12の出射端よりコア幅を狭くし、透過光量を大きくしたい波長を含むチャンネルについては出射側導波路16の入射端を入射側導波路12の出射端よりもコア幅を広くした構造としている。即ち、各出射端導波路の入射端のコア幅を適宜選定することにより、アレイ導波路回折格子において波長分割の機能に加えて調光作用も持たせた構成としている。
In this way, when the incident end of the emitting side waveguide 16 is wider than the emitting end core width of the incident side waveguide 12, the peak transmittance decreases, but the transmittance spectrum area (transmitted light amount) per channel increases. do. An increase in the amount of transmitted light means an increase in the amount of light emitted from the emitting side waveguide 16. The array waveguide grating of the embodiment is based on these findings, and for a channel containing a wavelength for which the amount of transmitted light is desired to be reduced, the incident end of the emitting side waveguide 16 is cored from the emitting end of the incident side waveguide 12. For channels containing wavelengths for which the width is to be narrowed and the amount of transmitted light is to be increased, the incident end of the emitting side waveguide 16 has a structure in which the core width is wider than the emitting end of the incident side waveguide 12. That is, by appropriately selecting the core width of the incident end of each emission end waveguide, the array waveguide diffraction grating is configured to have a dimming function in addition to the wavelength division function.
尚、上記実施形態において、入射側導波路12の出射端に対して入射端のコア幅を変える出射側導波路16は、一つのみでも良く、二つ又はそれ以上であっても良い。全ての出射側導波路16の入射端を入射側導波路12の出射端に対してコア幅を変えても良い。例えば、全ての出射側導波路16の入射端を入射側導波路12の出射端に対して狭くし、波長分割作用に加えて全体の光を弱める減光作用を発揮させても良い。また、全ての出射側導波路16の入射端を入射側導波路12の出射端に対して広くし、波長分割の際の全体の(全波長での)透過光量を多くするようにしても良い。
In the above embodiment, the number of the emitting side waveguide 16 that changes the core width of the incident end with respect to the emitting end of the incident side waveguide 12 may be only one, or may be two or more. The core width of all the incident ends of the emitting side waveguide 16 may be changed with respect to the emitting end of the incident side waveguide 12. For example, the incident ends of all the emitting side waveguides 16 may be narrowed with respect to the emitting ends of the incident side waveguides 12 to exert a dimming action of weakening the entire light in addition to the wavelength dividing action. Further, the incident ends of all the emitting side waveguides 16 may be widened with respect to the emitting ends of the incident side waveguides 12 to increase the total amount of transmitted light (at all wavelengths) at the time of wavelength division. ..
一方、ある波長範囲の光について選択的に減光したり、又は透過光量を多くしたりする場合、特定の出射側導波路16の入射端が他の出射側導波路16の入射端に対して異なるコア幅であれば足りる。つまり、比較の対象は、入射側導波路12の出射端でなくとも良い。したがって、例えば、全ての出射側導波路16の入射端が入射側導波路12の出射端に比べて小さくなっている構成においてさらに特定の出射側導波路16の入射端が他より狭かったり、又は広かったりしても良い。また、全ての出射側導波路16の入射端が入射側導波路12の出射端に比べて広くなっている構成においてさらに特定の出射側導波路16の入射端が他より狭かったり、又は広かったりしても良い。
On the other hand, when the light in a certain wavelength range is selectively dimmed or the amount of transmitted light is increased, the incident end of a specific emitting side waveguide 16 is relative to the incident end of another emitting side waveguide 16. Different core widths are sufficient. That is, the object of comparison does not have to be the emission end of the incident side waveguide 12. Therefore, for example, in a configuration in which the incident ends of all the emitting side waveguides 16 are smaller than the emitting ends of the incident side waveguide 12, the incident ends of the specific emitting side waveguide 16 are narrower than the others, or It may be wide. Further, in a configuration in which the incident ends of all the emitting side waveguides 16 are wider than the emitting ends of the incident side waveguide 12, the incident ends of the specific emitting side waveguide 16 may be narrower or wider than the others. You may.
次にこのような実施形態のアレイ導波路回折格子の好適な応用例について説明する。まず、広帯域光源と組み合わせて構成した広帯域光源装置について説明する。
図5は、実施形態の広帯域光源装置の概略図である。図5に示す広帯域光源装置は、広帯域光源2と、アレイ導波路回折格子1とを備えている。 Next, a suitable application example of the arrayed waveguide diffraction grating of such an embodiment will be described. First, a wideband light source device configured in combination with a wideband light source will be described.
FIG. 5 is a schematic view of the wideband light source device of the embodiment. The wideband light source device shown in FIG. 5 includes a widebandlight source 2 and an arrayed waveguide diffraction grating 1.
図5は、実施形態の広帯域光源装置の概略図である。図5に示す広帯域光源装置は、広帯域光源2と、アレイ導波路回折格子1とを備えている。 Next, a suitable application example of the arrayed waveguide diffraction grating of such an embodiment will be described. First, a wideband light source device configured in combination with a wideband light source will be described.
FIG. 5 is a schematic view of the wideband light source device of the embodiment. The wideband light source device shown in FIG. 5 includes a wideband
広帯域光源2は、アレイ導波路回折格子1を波長分割素子として使用するので、分割する意義のある程度に広い帯域の光を出射する光源という意味である。各種LED光源や各種ランプを広帯域光源2として使用できる。レーザー源を使用する場合であっても、ある程度広い帯域の光を出射するものであったり、後述するようなスーパーコンティニウム光を出射するものであったりした場合、広帯域光源2として使用できる。
特にスーパーコンティニウム光源は、波長400nm~2400nmと非常に広帯域であり、ファイバ出射であることから光導波路へ高効率で光を入射できる点で好適である。
このような広帯域光源2は、特有の発光スペクトルを有しており、多くの場合、スペクトル強度は完全に均一ではない。均一ではない発光スペクトルの一例が、図5(A)に示されている。 Since the widebandlight source 2 uses the array waveguide diffraction grating 1 as a wavelength dividing element, it means a light source that emits light in a wide band to some extent of the significance of the division. Various LED light sources and various lamps can be used as the wideband light source 2. Even when a laser source is used, it can be used as a wideband light source 2 if it emits light in a wide band to some extent or emits supercontinuum light as described later.
In particular, the supercontinuum light source has a very wide band wavelength of 400 nm to 2400 nm, and is suitable because it emits light from a fiber and can light light into an optical waveguide with high efficiency.
Such a widebandlight source 2 has a peculiar emission spectrum, and in many cases, the spectral intensity is not completely uniform. An example of a non-uniform emission spectrum is shown in FIG. 5 (A).
特にスーパーコンティニウム光源は、波長400nm~2400nmと非常に広帯域であり、ファイバ出射であることから光導波路へ高効率で光を入射できる点で好適である。
このような広帯域光源2は、特有の発光スペクトルを有しており、多くの場合、スペクトル強度は完全に均一ではない。均一ではない発光スペクトルの一例が、図5(A)に示されている。 Since the wideband
In particular, the supercontinuum light source has a very wide band wavelength of 400 nm to 2400 nm, and is suitable because it emits light from a fiber and can light light into an optical waveguide with high efficiency.
Such a wideband
このような広帯域光源2とともに用いられるアレイ導波路回折格子1は、波長分割機能とともに広帯域光源2の発光スペクトルを補正する調光作用を持つものとなっている。具体的には、広帯域光源2の発光スペクトルにおいて平均強度(波長平均した強度)より高い強度の波長に対応したチャンネルについては透過率を低くしている。平均より高い強度の波長の典型的な例は、図5(A)に示すように強度がスパイク状の高くなっている部分でのピーク波長である。また、平均よりも強度が低い波長に対応したチャンネルについては、透過光量を高くしている。
The arrayed waveguide diffraction grating 1 used together with such a wideband light source 2 has a wavelength division function and a dimming function for correcting the emission spectrum of the wideband light source 2. Specifically, the transmittance is lowered for the channel corresponding to the wavelength having the intensity higher than the average intensity (wavelength averaged intensity) in the emission spectrum of the broadband light source 2. A typical example of a wavelength having a higher intensity than the average is the peak wavelength at the portion where the intensity is spiked and high as shown in FIG. 5 (A). Further, the transmitted light amount is increased for the channel corresponding to the wavelength whose intensity is lower than the average.
「波長に対応したチャンネル」とは、上述したように、当該波長の光が集光する位置に入射端が設けられた出射側導波路16ということである。「透過率を低くしている」とは、前述したように、出射側導波路16の入射端コア幅を入射側導波路12の出射端コア幅よりも狭くしているということである。「透過光量を多くしている」とは、前述したように、出射側導波路16の入射端コア幅を入射側導波路12の出射端コア幅よりも広くしているということである。図5(B)において、各チャンネルの透過率が示されている。
As described above, the "channel corresponding to the wavelength" is the emitting side waveguide 16 in which the incident end is provided at the position where the light of the wavelength is focused. "The transmittance is lowered" means that, as described above, the incident end core width of the emitting side waveguide 16 is narrower than the emitting end core width of the incident side waveguide 12. "Increasing the amount of transmitted light" means that, as described above, the width of the incident end core of the emitting side waveguide 16 is wider than the width of the emitting end core of the incident side waveguide 12. In FIG. 5B, the transmittance of each channel is shown.
図5(C)には、さらに、このようなアレイ導波路回折格子1の各出射側導波路16から出射された各波長の光の強度が示されている。即ち、図5(A)に示すようなスペクトルの光は、図5(B)に示すチャンネル透過率を有するアレイ導波路回折格子1に通される結果、図5(C)に示すように、波長分割とともに強度調節がされた状態で出射される。図5(C)に示すように、出射光のスペクトルは、波長分割のために飛び飛びであるが、ピーク強度の均一性が高められた状態となっている。
尚、図5(B)には、小さな多数のパルス波形が裾において少し重なった状態で示されているが、各パルス波形が各チャンネルでの透過率を示している。 FIG. 5C further shows the intensity of light of each wavelength emitted from each emittingside waveguide 16 of such an array waveguide diffraction grating 1. That is, as a result of passing light having a spectrum as shown in FIG. 5 (A) through the array waveguide diffraction grating 1 having the channel transmittance shown in FIG. 5 (B), as shown in FIG. 5 (C), It is emitted in a state where the intensity is adjusted along with the wavelength division. As shown in FIG. 5C, the spectrum of the emitted light is scattered due to wavelength division, but the uniformity of the peak intensity is enhanced.
Note that FIG. 5B shows a large number of small pulse waveforms slightly overlapping at the hem, and each pulse waveform shows the transmittance in each channel.
尚、図5(B)には、小さな多数のパルス波形が裾において少し重なった状態で示されているが、各パルス波形が各チャンネルでの透過率を示している。 FIG. 5C further shows the intensity of light of each wavelength emitted from each emitting
Note that FIG. 5B shows a large number of small pulse waveforms slightly overlapping at the hem, and each pulse waveform shows the transmittance in each channel.
つまり、実施形態の広帯域光源装置は、広帯域光源2における発光スペクトル強度の不均一性を補正しつつ当該広帯域光を波長に応じて空間的に分割する装置となっている。このような広帯域光源装置は、種々の用途に使用できる。各波長の光が空間的に分割されているために、例えば選択された一つの波長の光のみを対象物に照射したり、選択された複数の波長の光のみを対象物に照射したりすることも可能である。この際、波長を切り替えた場合でも、対象物における照度の変化は小さく抑えられる。
That is, the wideband light source device of the embodiment is a device that spatially divides the wideband light according to the wavelength while correcting the non-uniformity of the emission spectrum intensity in the wideband light source 2. Such a wideband light source device can be used for various purposes. Since the light of each wavelength is spatially divided, for example, only the light of one selected wavelength is irradiated to the object, or only the light of a plurality of selected wavelengths is irradiated to the object. It is also possible. At this time, even when the wavelength is switched, the change in illuminance in the object can be suppressed to a small extent.
尚、図5に示す例では、広帯域光源2からの光をファイバ200で導いてアレイ導波路回折格子1の入射側導波路12に入射させる構成となっているが、種々の構成を採用し得る。例えば、広帯域光源2からの光をミラーで導いてレンズで集光してアレイ導波路回折格子1に入射させても良いし、ファイバ200をUV接着樹脂でアレイ導波路回折格子1に接合して入射させても良い。
In the example shown in FIG. 5, the light from the wideband light source 2 is guided by the fiber 200 and incident on the incident side waveguide 12 of the array waveguide diffraction grating 1, but various configurations can be adopted. .. For example, the light from the broadband light source 2 may be guided by a mirror, condensed by a lens, and incident on the array waveguide diffraction grating 1, or the fiber 200 may be bonded to the array waveguide diffraction grating 1 with a UV adhesive resin. It may be incident.
次に、上記のようなアレイ導波路回折格子の応用例として、アレイ導波路回折格子で波長分割された光を照射して分光測定を行う分光測定装置の例を採り上げる。
図6は、実施形態の分光測定装置の概略図である。実施形態の分光測定装置は、経過時間と光の波長とが1対1で対応している光を対象物Sに照射して分光測定する装置となっている。より具体的には、この分光測定装置は、広帯域光源装置20と、広帯域光源装置20からの光が照射された対象物Sからの光を受光する位置に配置された受光器3と、受光器3からの出力をスペクトルに変換する処理を行う演算手段4とを備えている。また、光の照射位置に対象物Sを保持する受け具5が設けられている。 Next, as an application example of the array waveguide diffraction grating as described above, an example of a spectroscopic measurement device that irradiates light wavelength-divided by the array waveguide diffraction grating to perform spectroscopic measurement will be taken up.
FIG. 6 is a schematic view of the spectroscopic measuring device of the embodiment. The spectroscopic measurement device of the embodiment is a device that irradiates the object S with light having a one-to-one correspondence between the elapsed time and the wavelength of the light for spectroscopic measurement. More specifically, this spectroscopic measuring device includes a broadbandlight source device 20, a receiver 3 arranged at a position where the light from the object S irradiated with the light from the broadband light source device 20 is received, and a receiver. It is provided with a calculation means 4 that performs a process of converting the output from 3 into a spectrum. Further, a receiver 5 for holding the object S at the light irradiation position is provided.
図6は、実施形態の分光測定装置の概略図である。実施形態の分光測定装置は、経過時間と光の波長とが1対1で対応している光を対象物Sに照射して分光測定する装置となっている。より具体的には、この分光測定装置は、広帯域光源装置20と、広帯域光源装置20からの光が照射された対象物Sからの光を受光する位置に配置された受光器3と、受光器3からの出力をスペクトルに変換する処理を行う演算手段4とを備えている。また、光の照射位置に対象物Sを保持する受け具5が設けられている。 Next, as an application example of the array waveguide diffraction grating as described above, an example of a spectroscopic measurement device that irradiates light wavelength-divided by the array waveguide diffraction grating to perform spectroscopic measurement will be taken up.
FIG. 6 is a schematic view of the spectroscopic measuring device of the embodiment. The spectroscopic measurement device of the embodiment is a device that irradiates the object S with light having a one-to-one correspondence between the elapsed time and the wavelength of the light for spectroscopic measurement. More specifically, this spectroscopic measuring device includes a broadband
広帯域光源装置20は、上記実施形態のものをより具現化したものとなっている。具体的には、広帯域光源装置20は、いわゆるスーパーコンティニウム光(以下、SC光という。)を出射する光源となっている。SC光は、パルスレーザからの光をファイバのような高非線形素子通し、非線形光学効果により波長を広帯域化させることで得られる光である。
The wideband light source device 20 is a more embodied version of the above embodiment. Specifically, the wideband light source device 20 is a light source that emits so-called supercontinuum light (hereinafter referred to as SC light). SC light is light obtained by passing light from a pulse laser through a highly nonlinear element such as a fiber and widening the wavelength by a nonlinear optical effect.
具体的には、広帯域光源装置20は、短パルスレーザ源21と、高非線形素子22とを備えている。短パルスレーザ源21としては、ファイバーレーザ、マイクロチップレーザ等を用いることができる。
高非線形素子22としては、ファイバが使用される場合が多い。例えば、フォトニッククリスタルファイバやその他のファイバも高非線形素子22として使用できる。ファイバのモードとしてはシングルモードの場合が多いが、マルチモードであっても十分な非線形性を示すものであれば、高非線形素子22として使用できる。 Specifically, the widebandlight source device 20 includes a short pulse laser source 21 and a highly nonlinear element 22. As the short pulse laser source 21, a fiber laser, a microchip laser, or the like can be used.
Fiber is often used as the highlynon-linear element 22. For example, a photonic crystal fiber and other fibers can also be used as the highly non-linear element 22. The fiber mode is often a single mode, but it can be used as a highly non-linear element 22 as long as it exhibits sufficient non-linearity even in a multi-mode.
高非線形素子22としては、ファイバが使用される場合が多い。例えば、フォトニッククリスタルファイバやその他のファイバも高非線形素子22として使用できる。ファイバのモードとしてはシングルモードの場合が多いが、マルチモードであっても十分な非線形性を示すものであれば、高非線形素子22として使用できる。 Specifically, the wideband
Fiber is often used as the highly
図6の下側に、各光の時間対強度、波長対強度との関係をそれぞれ示す。ここに示されているように、短パルスレーザ源21からの出射される短パルス光L1は、線幅50nm以下程度のほぼ単一波長(発振波長λo)の狭い波長幅である。この短パルス光L1が高非線形素子22に通されると、非線形光学効果により波長幅が広がった広帯域パルス光L2が出射される。但し、同じ時間において多くの波長が重なっている。即ち、この段階では、時間対波長の一意性は達成されていない。
The lower side of FIG. 6 shows the relationship between the time vs. intensity and the wavelength vs. intensity of each light. As shown here, the short pulse light L1 emitted from the short pulse laser source 21 has a narrow wavelength width of a substantially single wavelength (oscillation wavelength λo) having a line width of about 50 nm or less. When the short pulse light L1 is passed through the high nonlinear element 22, the wideband pulsed light L2 having a wide wavelength width due to the nonlinear optical effect is emitted. However, many wavelengths overlap at the same time. That is, at this stage, the uniqueness of time vs. wavelength has not been achieved.
実施形態の分光測定装置は、アレイ導波路回折格子を利用して光を波長に応じて分割し、波長毎に伝送素子で伝送しながら最適な遅延量を確保する構成を採用している。即ち、広帯域光源装置20は、高非線形素子22の出射側にアレイ導波路回折格子1を備えている。そして、図6に示すように、アレイ導波路回折格子1の各出射側導波路16に、長さの異なるファイバである遅延ファイバ61が接続されている。
The spectroscopic measuring device of the embodiment adopts a configuration in which light is divided according to wavelength by using an arrayed waveguide diffraction grating, and the optimum delay amount is secured while being transmitted by a transmission element for each wavelength. That is, the wideband light source device 20 includes an array waveguide diffraction grating 1 on the emission side of the high nonlinear element 22. Then, as shown in FIG. 6, a delay fiber 61, which is a fiber having a different length, is connected to each emission side waveguide 16 of the array waveguide diffraction grating 1.
各遅延ファイバ61は、最終的には一つに束ねられてバンドルファイバとなっている。バンドルファイバの出射端には出射端ユニット62が設けられており、各遅延ファイバ61から出射する光が対象物Sに集合的に照射される状態とされる。対象物Sに照射される光は、元の一つのパルス光であった広帯域パルス光L2を分割後に再び集めたものである。以下、この光を合成パルス光といい、図6にL3で示す。
Each delay fiber 61 is finally bundled into one to form a bundle fiber. An emission end unit 62 is provided at the emission end of the bundle fiber, and the light emitted from each delay fiber 61 is collectively irradiated to the object S. The light emitted to the object S is a recollection of the wideband pulsed light L2, which was the original single pulsed light, after being divided. Hereinafter, this light is referred to as synthetic pulse light and is shown by L3 in FIG.
上記各遅延ファイバ61には、アレイ導波路回折格子1で波長分割された光、即ち、順次異なる波長の光が入射するが、各遅延ファイバ61は、入射する光の波長に応じて適宜の長さ及び材質となっている。適宜の長さ及び材質とは、合成パルス光L3において経過時間と波長との1対1対応性が達成される遅延量となるように長さ及び材質が選定されるということである。シンプルな構成としては、各遅延ファイバ61はみな同じファイバ(同じコア材料で同じクラッド材料のファイバ)とされ、長さのみが異なる構成があり得る。例えば、各遅延ファイバ61が一般的なシリカファイバで1mずつ長さが異なる場合、各チャンネル毎の時間差は5nsとなる。つまり30チャンネルであれば、5ns間隔で30個のパルス列となってバンドルファイバから出射される。遅延ファイバ長さは、時間間隔×チャンネル数<光源の繰り返し周期となるように設定する。このようにすることで、あるトリガ信号からの経過時間と波長が対応するようになる。各遅延ファイバ61で生じた群遅延により、図6に示すように、合成パルス光L3において、経過時間と波長との一意性(1対1での対応性)が達成される。
アレイ導波路回折格子1で分割された光を各遅延ファイバ61で遅延させた後、バンドルファイバでなく、もう一つの別のアレイ導波路回折格子に逆入射させることで合波して出射させても良い。バンドルファイバを用いる場合、バンドルファイバはチャンネル数に応じた数のコアを有し、各コアから異なる波長が出射される。一方、別のアレイ導波路回折格子に逆入射させて出射させると、単一コアから合成パルス光が得られることになる。 Light wavelength-divided by the arraywaveguide diffraction grating 1, that is, light having different wavelengths is sequentially incident on each of the delay fibers 61, and each delay fiber 61 has an appropriate length depending on the wavelength of the incident light. It is made of wire and material. The appropriate length and material means that the length and material are selected so as to have a delay amount that achieves a one-to-one correspondence between the elapsed time and the wavelength in the combined pulsed light L3. As a simple configuration, each delay fiber 61 may be the same fiber (fiber of the same core material and the same clad material), and may have a configuration in which only the length is different. For example, when each delay fiber 61 is a general silica fiber and has a different length of 1 m, the time difference for each channel is 5 ns. That is, if there are 30 channels, 30 pulse trains are emitted from the bundle fiber at 5 ns intervals. The delay fiber length is set so that the time interval × the number of channels <the repetition period of the light source. By doing so, the elapsed time from a certain trigger signal corresponds to the wavelength. Due to the group delay generated in each delay fiber 61, uniqueness (one-to-one correspondence) between the elapsed time and the wavelength is achieved in the combined pulsed light L3, as shown in FIG.
After delaying the light divided by the arrayed waveguide grating 1 with eachdelay fiber 61, the light is back-incidented to another arrayed waveguide grating instead of the bundle fiber to combine and emit the light. Is also good. When a bundle fiber is used, the bundle fiber has a number of cores according to the number of channels, and different wavelengths are emitted from each core. On the other hand, when the light is emitted by back-incidently incident on another arrayed waveguide grating, synthetic pulsed light can be obtained from a single core.
アレイ導波路回折格子1で分割された光を各遅延ファイバ61で遅延させた後、バンドルファイバでなく、もう一つの別のアレイ導波路回折格子に逆入射させることで合波して出射させても良い。バンドルファイバを用いる場合、バンドルファイバはチャンネル数に応じた数のコアを有し、各コアから異なる波長が出射される。一方、別のアレイ導波路回折格子に逆入射させて出射させると、単一コアから合成パルス光が得られることになる。 Light wavelength-divided by the array
After delaying the light divided by the arrayed waveguide grating 1 with each
これらの場合、各遅延ファイバ61が全て同じ長さであっても、ファイバの波長分散を用いて時間対波長の一意性が達成され得る。例えば、各遅延ファイバ61が同じ材料の同じ長さのファイバであっても、波長域全域において分散パラメータが正または負であり、所望の波長分解能が得られるだけの十分な長さを有している場合、その波長域において経過時間と波長との一意性は実現できる。この手法では、ファイバの波長分散は波長に対し一定でないため、時間差が波長に依って異なることになる。また、通常kmオーダーのファイバ長さが必要となり損失が大きくなる可能性がある。
したがって、前述の各遅延ファイバ61の長さ調節による時間差を用いる手法は、経過時間の違いによる波長の違い(Δλ/Δt)を全波長域において均一にするという意義がある。また、ファイバ長さは5ns間隔(=1m)×30チャンネルであれば、最長で30mで達成できるため遅延ファイバ61での損失はごく僅かである。 In these cases, time-to-wavelength uniqueness can be achieved using the wavelength dispersion of the fibers, even if the delayedfibers 61 are all of the same length. For example, even if each delay fiber 61 is made of the same material and has the same length, the dispersion parameter is positive or negative over the entire wavelength range, and the delay fiber 61 is long enough to obtain the desired wavelength resolution. If so, uniqueness between the elapsed time and the wavelength can be realized in that wavelength range. In this method, the wavelength dispersion of the fiber is not constant with respect to the wavelength, so that the time difference differs depending on the wavelength. In addition, a fiber length on the order of km is usually required, which may increase the loss.
Therefore, the above-mentioned method using the time difference by adjusting the length of eachdelay fiber 61 has the significance of making the difference in wavelength (Δλ / Δt) due to the difference in elapsed time uniform in the entire wavelength range. Further, if the fiber length is 5 ns intervals (= 1 m) × 30 channels, the maximum loss can be 30 m, so that the loss in the delay fiber 61 is very small.
したがって、前述の各遅延ファイバ61の長さ調節による時間差を用いる手法は、経過時間の違いによる波長の違い(Δλ/Δt)を全波長域において均一にするという意義がある。また、ファイバ長さは5ns間隔(=1m)×30チャンネルであれば、最長で30mで達成できるため遅延ファイバ61での損失はごく僅かである。 In these cases, time-to-wavelength uniqueness can be achieved using the wavelength dispersion of the fibers, even if the delayed
Therefore, the above-mentioned method using the time difference by adjusting the length of each
尚、出射端ユニット62は、コリメータレンズ等の素子を含んでおり、各遅延ファイバ61で伝送されたパルス光が対象物Sにおいて重なって照射されるようにするユニットである。「重なって照射される」とは、対象物Sが静止している場合、空間的に重なった状態を形成しつつ照射されるという意味である。対象物Sが移動している状態で合成パルス光L3が対象物Sに照射される場合、一つの遅延ファイバ61から出射されるパルス光と別の遅延ファイバ61から出射されるパルス光が対象物S上の異なる場所に照射されることもある。
The emission end unit 62 includes an element such as a collimator lens, and is a unit that overlaps and irradiates the pulsed light transmitted by each delay fiber 61 in the object S. "Overlapping irradiation" means that when the object S is stationary, it is irradiated while forming a spatially overlapping state. When the synthetic pulse light L3 is applied to the object S while the object S is moving, the pulse light emitted from one delay fiber 61 and the pulse light emitted from another delay fiber 61 are the objects. It may be irradiated to different places on S.
この実施形態の分光測定装置は、対象物Sの透過スペクトルを測定する装置であるため、受光器3は、対象物Sからの透過光を受光する位置に設けられている。受け具5は透光性であるか、スリットや穴が設けられており、対象物S及び受け具5を透過した光を受光する位置に受光器3が設けられている。
受け具5は、移動機構を備えていてもよい。例えばベルトコンベアや回転円盤の外周部などに光が透過する部分を有し、その透過部にサンプルを設置できるようになっているような構成が考えられる。
演算手段4としては、この実施形態では汎用PCが使用されている。さらに、受光器3と演算手段4の間には、ADコンバータ31が設けられており、受光器3の出力はADコンバータ31を介して演算手段4に入力される。
演算手段4は、プロセッサ41や記憶部(ハードディスク、メモリ等)42を備えている。記憶部42には、受光器3からの出力データを処理してスペクトルを算出する測定プログラム43やその他の必要なプログラムがインストールされている。図7は、分光測定装置が備える測定プログラムの一例について主要部を概略的に示した図である。 Since the spectroscopic measuring device of this embodiment is a device for measuring the transmission spectrum of the object S, thelight receiver 3 is provided at a position where the transmitted light from the object S is received. The receiver 5 is translucent or has slits or holes, and the receiver 3 is provided at a position where the light transmitted through the object S and the receiver 5 is received.
Thereceiver 5 may be provided with a moving mechanism. For example, a configuration is conceivable in which a belt conveyor, an outer peripheral portion of a rotating disk, or the like has a portion through which light is transmitted, and a sample can be placed in the transmissive portion.
As the calculation means 4, a general-purpose PC is used in this embodiment. Further, anAD converter 31 is provided between the light receiver 3 and the calculation means 4, and the output of the light receiver 3 is input to the calculation means 4 via the AD converter 31.
Thearithmetic means 4 includes a processor 41 and a storage unit (hard disk, memory, etc.) 42. A measurement program 43 that processes output data from the receiver 3 to calculate a spectrum and other necessary programs are installed in the storage unit 42. FIG. 7 is a diagram schematically showing a main part of an example of a measurement program included in a spectroscopic measuring device.
受け具5は、移動機構を備えていてもよい。例えばベルトコンベアや回転円盤の外周部などに光が透過する部分を有し、その透過部にサンプルを設置できるようになっているような構成が考えられる。
演算手段4としては、この実施形態では汎用PCが使用されている。さらに、受光器3と演算手段4の間には、ADコンバータ31が設けられており、受光器3の出力はADコンバータ31を介して演算手段4に入力される。
演算手段4は、プロセッサ41や記憶部(ハードディスク、メモリ等)42を備えている。記憶部42には、受光器3からの出力データを処理してスペクトルを算出する測定プログラム43やその他の必要なプログラムがインストールされている。図7は、分光測定装置が備える測定プログラムの一例について主要部を概略的に示した図である。 Since the spectroscopic measuring device of this embodiment is a device for measuring the transmission spectrum of the object S, the
The
As the calculation means 4, a general-purpose PC is used in this embodiment. Further, an
The
透過スペクトルの算出に際しては、基準スペクトル強度が使用される。基準スペクトル強度は、透過スペクトルを算出するための基準となる波長毎の値であり、対象物Sを受け具5に配置しない状態で測定を行うことで予め取得される。基準スペクトル強度は、時間分解能Δtごとの値であり、Δtごとの各時刻(t1,t2,t3,・・・)の基準強度として記憶される(V1,V2,V3,・・・)。
The reference spectral intensity is used in the calculation of the transmission spectrum. The reference spectrum intensity is a value for each wavelength that serves as a reference for calculating the transmission spectrum, and is acquired in advance by performing measurement in a state where the object S is not placed on the receiver 5. The reference spectral intensity is a value for each time resolution Δt and is stored as a reference intensity for each time (t 1 , t 2 , t 3 , ...) For each Δt (V 1 , V 2 , V 3 , ...). ...).
各時刻t1,t2,t3,・・・での基準強度V1,V2,V3,・・・は、対応する各波長λ1,λ2,λ3,・・・の強度(スペクトル)である。経過時間即ち合成パルス内の時刻t1,t2,t3,・・・と波長との関係が予め調べられており、各時刻の値V1,V2,V3,・・・が各λ1,λ2,λ3,・・・の値であると取り扱われる。
そして、対象物Sを経た光を受光した受光器3からの出力は、ADコンバータ31を経て同様に各時刻t1,t2,t3,・・・の値(測定値)としてメモリに記憶される(v1,v2,v3,・・・)。各測定値は、基準スペクトル強度と比較され(v1/V1,v2/V2,v3/V3,・・・)、その結果が透過スペクトルとなる(必要に応じて逆数の対数を取って吸収スペクトルとする)。上記のような演算処理をするよう、測定プログラム43はプログラミングされている。
尚、合成パルスL3における経過時間を特定するため、基準時刻が別途付与される構成もあり得る。例えば、短パルスレーザ源21におけるパルス発振を検出してトリガ信号を発生させ、トリガ信号の時刻を基準時刻として演算手段4に入力する構成があり得る。 The reference intensities V 1 , V 2 , V 3 , ... at each time t 1 , t 2 , t 3 , ... Are the intensities of the corresponding wavelengths λ 1 , λ 2 , λ 3 , ... (Spectrum). The relationship between the elapsed time, that is, the time t 1 , t 2 , t 3 , ... In the combined pulse and the wavelength has been investigated in advance, and the values V 1 , V 2 , V 3 , ... At each time are each. It is treated as a value of λ 1 , λ 2 , λ 3 , ....
Then, the output from thelight receiver 3 that has received the light that has passed through the object S is stored in the memory as the values (measured values) of t 1 , t 2 , t 3 , ... At each time in the same manner via the AD converter 31. (V 1 , v 2 , v 3 , ...). Each measured value is compared to the reference spectral intensity (v 1 / V 1 , v 2 / V 2 , v 3 / V 3 , ...) And the result is a transmission spectrum (reciprocal logarithm if necessary). To be taken as the absorption spectrum). The measurement program 43 is programmed to perform the above arithmetic processing.
In addition, in order to specify the elapsed time in the combined pulse L3, there may be a configuration in which a reference time is separately assigned. For example, there may be a configuration in which pulse oscillation in the shortpulse laser source 21 is detected, a trigger signal is generated, and the time of the trigger signal is input to the calculation means 4 as a reference time.
そして、対象物Sを経た光を受光した受光器3からの出力は、ADコンバータ31を経て同様に各時刻t1,t2,t3,・・・の値(測定値)としてメモリに記憶される(v1,v2,v3,・・・)。各測定値は、基準スペクトル強度と比較され(v1/V1,v2/V2,v3/V3,・・・)、その結果が透過スペクトルとなる(必要に応じて逆数の対数を取って吸収スペクトルとする)。上記のような演算処理をするよう、測定プログラム43はプログラミングされている。
尚、合成パルスL3における経過時間を特定するため、基準時刻が別途付与される構成もあり得る。例えば、短パルスレーザ源21におけるパルス発振を検出してトリガ信号を発生させ、トリガ信号の時刻を基準時刻として演算手段4に入力する構成があり得る。 The reference intensities V 1 , V 2 , V 3 , ... at each time t 1 , t 2 , t 3 , ... Are the intensities of the corresponding wavelengths λ 1 , λ 2 , λ 3 , ... (Spectrum). The relationship between the elapsed time, that is, the time t 1 , t 2 , t 3 , ... In the combined pulse and the wavelength has been investigated in advance, and the values V 1 , V 2 , V 3 , ... At each time are each. It is treated as a value of λ 1 , λ 2 , λ 3 , ....
Then, the output from the
In addition, in order to specify the elapsed time in the combined pulse L3, there may be a configuration in which a reference time is separately assigned. For example, there may be a configuration in which pulse oscillation in the short
このような実施形態の分光測定装置を使用して分光測定する場合、受け具5上に対象物Sを載置し、広帯域光源装置20を動作させる。短パルスレーザ源21からの短パルス光L1は高非線形素子22により広帯域化して広帯域パルス光(SC光)L2となってアレイ導波路回折格子1に入射する。そして、アレイ導波路回折格子1において各波長の光に分割され、各出射側導波路16から各遅延ファイバ61に伝送される。各遅延ファイバ61では、長さや材料に応じた遅延が生じ、合成パルス光L3となって対象物Sに照射される。
合成パルス光L3が照射された対象物Sの透過光は、受光器3に達して出力を生じさせる。受光器3の出力は、ADコンバータ31を介して演算手段に入力され、測定プログラム43が実行されて対象物Sの透過スペクトルが得られる。 When spectroscopic measurement is performed using the spectroscopic measurement device of such an embodiment, the object S is placed on thereceiver 5 and the wideband light source device 20 is operated. The short pulse light L1 from the short pulse laser source 21 is widened by the high non-linear element 22 to become a wide band pulse light (SC light) L2 and is incident on the array waveguide diffraction grating 1. Then, it is divided into light of each wavelength in the array waveguide diffraction grating 1, and is transmitted from each emission side waveguide 16 to each delay fiber 61. In each delay fiber 61, a delay is generated according to the length and the material, and the combined pulse light L3 is emitted to the object S.
The transmitted light of the object S irradiated with the synthetic pulse light L3 reaches thereceiver 3 to generate an output. The output of the light receiver 3 is input to the arithmetic means via the AD converter 31, and the measurement program 43 is executed to obtain the transmission spectrum of the object S.
合成パルス光L3が照射された対象物Sの透過光は、受光器3に達して出力を生じさせる。受光器3の出力は、ADコンバータ31を介して演算手段に入力され、測定プログラム43が実行されて対象物Sの透過スペクトルが得られる。 When spectroscopic measurement is performed using the spectroscopic measurement device of such an embodiment, the object S is placed on the
The transmitted light of the object S irradiated with the synthetic pulse light L3 reaches the
このような実施形態の分光測定装置において、アレイ導波路回折格子1における各出射側導波路16の入射端のコア幅は、前述したように調光作用を発揮すべく最適化される。例えば、調光作用は、測定光の縦軸分解能を高くするための調光作用とされ得る。
測定光の縦軸分解能が高いほど、微小な強度変化を捉えることができる。受光器で受光した強度情報を出力する測定機器がデジタル信号の場合、縦軸分割数は8bit(256分割)や12bit(4096分割)など、測定機器ごとに一定の値となっている。測定光がある波長において特に高いピークを持つ場合、受光器の感度をこのピーク値に合わせて設定することになり、一定の分割数である縦軸の範囲が広がって縦軸分解能を下げてしまう。一方でピークでないレベルに合わせて感度設定しようとすると、受光器に強い光が入射してしまい、損傷が生じる場合もあり得る。このため、測定光のスペクトルがフラットであると、高精度な測定が可能となる。 In the spectroscopic measuring apparatus of such an embodiment, the core width of the incident end of each emittingside waveguide 16 in the array waveguide diffraction grating 1 is optimized so as to exhibit the dimming action as described above. For example, the dimming action may be a dimming action for increasing the vertical axis resolution of the measured light.
The higher the vertical resolution of the measured light, the smaller the intensity change can be captured. When the measuring device that outputs the intensity information received by the light receiver is a digital signal, the number of divisions on the vertical axis is a constant value such as 8 bits (256 divisions) or 12 bits (4096 divisions) for each measuring device. When the measured light has a particularly high peak at a certain wavelength, the sensitivity of the photoreceiver is set according to this peak value, and the range of the vertical axis, which is a fixed number of divisions, expands and the vertical axis resolution is lowered. .. On the other hand, if an attempt is made to set the sensitivity according to a level that is not a peak, strong light is incident on the receiver, which may cause damage. Therefore, if the spectrum of the measurement light is flat, high-precision measurement is possible.
測定光の縦軸分解能が高いほど、微小な強度変化を捉えることができる。受光器で受光した強度情報を出力する測定機器がデジタル信号の場合、縦軸分割数は8bit(256分割)や12bit(4096分割)など、測定機器ごとに一定の値となっている。測定光がある波長において特に高いピークを持つ場合、受光器の感度をこのピーク値に合わせて設定することになり、一定の分割数である縦軸の範囲が広がって縦軸分解能を下げてしまう。一方でピークでないレベルに合わせて感度設定しようとすると、受光器に強い光が入射してしまい、損傷が生じる場合もあり得る。このため、測定光のスペクトルがフラットであると、高精度な測定が可能となる。 In the spectroscopic measuring apparatus of such an embodiment, the core width of the incident end of each emitting
The higher the vertical resolution of the measured light, the smaller the intensity change can be captured. When the measuring device that outputs the intensity information received by the light receiver is a digital signal, the number of divisions on the vertical axis is a constant value such as 8 bits (256 divisions) or 12 bits (4096 divisions) for each measuring device. When the measured light has a particularly high peak at a certain wavelength, the sensitivity of the photoreceiver is set according to this peak value, and the range of the vertical axis, which is a fixed number of divisions, expands and the vertical axis resolution is lowered. .. On the other hand, if an attempt is made to set the sensitivity according to a level that is not a peak, strong light is incident on the receiver, which may cause damage. Therefore, if the spectrum of the measurement light is flat, high-precision measurement is possible.
近赤外分光においてはケモメトリクスのような統計的手法が採用される。近赤外域の吸収は微弱でありスペクトル上に僅かな変化しか現れない。このような場合、測定光には高い縦軸分解能が必要とされる。
In near-infrared spectroscopy, statistical methods such as chemometrics are adopted. Absorption in the near-infrared region is weak and only slight changes appear on the spectrum. In such a case, the measurement light requires high vertical resolution.
これらを考慮し、実施形態の分光測定装置は、アレイ導波路回折格子1において調光作用を発揮させている。以下、波長分割作用とともに調光作用を発揮させる出射側導波路の入射端を調光兼用入射端と呼ぶ。図5と同様に、高非線形素子22から出射する広帯域パルス光L2について、高い強度を持つ波長(例えばピーク波長)のチャンネルについては出射側導波路16の入射端コア幅は入射側導波路12の出射端コア幅に比べて小さくなっている。したがって、この出射側導波路16の入射端は調光兼用入射端である。また、広帯域パルス光L2において弱い波長に対応したチャンネルについては、出射側導波路16の入射端を入射側導波路12の出射端に比べて大きくなっている。したがって、この出射側導波路16の入射端も調光兼用入射端である。これら構成により発揮される調光作用により、測定光である合成パルス光L3の測定スペクトルがフラット化しより好ましい分光測定が行えるようになる。
In consideration of these, the spectroscopic measuring device of the embodiment exerts a dimming action in the arrayed waveguide diffraction grating 1. Hereinafter, the incident end of the emitting side waveguide that exerts the dimming action together with the wavelength dividing action is referred to as a dimming combined incident end. Similar to FIG. 5, for the wideband pulsed light L2 emitted from the high nonlinear element 22, the incident end core width of the emitting side waveguide 16 is the incident side waveguide 12 for the channel having a high intensity wavelength (for example, peak wavelength). It is smaller than the emission end core width. Therefore, the incident end of the emitting side waveguide 16 is a dimming combined incident end. Further, for the channel corresponding to the weak wavelength in the wideband pulse light L2, the incident end of the emitting side waveguide 16 is larger than the emitting end of the incident side waveguide 12. Therefore, the incident end of the emitting side waveguide 16 is also a dimming combined incident end. Due to the dimming action exerted by these configurations, the measurement spectrum of the synthetic pulse light L3, which is the measurement light, is flattened, and more preferable spectroscopic measurement can be performed.
この実施形態では広帯域パルス光L2はSC光であり、SC光の生成の際には元の短パルスレーザ光L1の波長λoの光が高いピーク強度を持って残留し易い。したがって、短パルスレーザ光L1の波長λoに対応したチャンネルについて、出射側導波路16の入射端を入射側導波路12の出射端に比べて小さくして減光する構成が特に効果的である。このような減光は、波長選択的に減光を行うフィルタ(ノッチフィルタ等)を使用して減光することもできるが、アレイ導波路回折格子1において減光する構成では、フィルタ等を別途配置する必要がなく、コスト低減や装置構成の複雑化回避の面でも好適である。
SC光源におけるピークは半値幅10nm以下である場合が多く、このような狭帯域ノッチフィルタは作成難易度が高いため、本手法はなお有効である。 In this embodiment, the wideband pulsed light L2 is SC light, and when the SC light is generated, the light having the wavelength λo of the original short pulse laser light L1 tends to remain with a high peak intensity. Therefore, for the channel corresponding to the wavelength λo of the short pulse laser beam L1, it is particularly effective to make the incident end of the light emittingside waveguide 16 smaller than the light emitting end of the incident side waveguide 12 to dimming. Such dimming can be dimmed by using a filter (notch filter or the like) that selectively dims the wavelength, but in the configuration of dimming in the array waveguide diffraction grating 1, a filter or the like is separately used. It does not need to be arranged, and is suitable in terms of cost reduction and avoidance of complication of device configuration.
Since the peak in the SC light source often has a half width of 10 nm or less and such a narrow band notch filter is difficult to create, this method is still effective.
SC光源におけるピークは半値幅10nm以下である場合が多く、このような狭帯域ノッチフィルタは作成難易度が高いため、本手法はなお有効である。 In this embodiment, the wideband pulsed light L2 is SC light, and when the SC light is generated, the light having the wavelength λo of the original short pulse laser light L1 tends to remain with a high peak intensity. Therefore, for the channel corresponding to the wavelength λo of the short pulse laser beam L1, it is particularly effective to make the incident end of the light emitting
Since the peak in the SC light source often has a half width of 10 nm or less and such a narrow band notch filter is difficult to create, this method is still effective.
尚、上記のようにアレイ導波路回折格子1の出射側導波路16の入射端を入射側導波路12の出射端よりも広くすると、図2に示すように横軸を波長にした際の透過率の半値幅が広がるので、波長分解能が低下する。しかしながら、近赤外分光におけるケモメトリクスのような統計的手法により定量分析を行う場合、上記のように出射側導波路16の入射端を広くすることによる波長分解能の低下が測定精度に与える影響は小さいことが判っており、縦軸分解能を上げるメリットの方が遙かに大きい。
As described above, when the incident end of the emitting side waveguide 16 of the array waveguide diffraction grating 1 is wider than the emitting end of the incident side waveguide 12, the transmission when the horizontal axis is the wavelength as shown in FIG. Since the half width of the rate is widened, the wavelength resolution is lowered. However, when quantitative analysis is performed by a statistical method such as chemometrics in near-infrared spectroscopy, the effect of the decrease in wavelength resolution due to the widening of the incident end of the emitting side waveguide 16 on the measurement accuracy as described above is It is known to be small, and the merit of increasing the vertical axis resolution is far greater.
また、近赤外域光の分光用という用途を想定すると、アレイ導波路回折格子は、例えば800~1700nmの範囲内の少なくとも200nmの幅の波長域において波長分割できる素子であることが好ましい。この場合、アレイ導波路回折格子は、第二スラブ導波路15の終端面において、800~1700nmの範囲内の少なくとも200nmの幅の波長域の光が波長に応じて順次異なる位置に集光するよう各機能導波路12~16が構成される。
Further, assuming an application for spectroscopy of near-infrared light, the arrayed waveguide diffraction grating is preferably an element capable of wavelength division in a wavelength range of at least 200 nm in the range of 800 to 1700 nm, for example. In this case, the array waveguide diffraction grating ensures that light in a wavelength range of at least 200 nm in the range of 800 to 1700 nm is sequentially focused at different positions depending on the wavelength on the end surface of the second slab waveguide 15. Each functional waveguide 12 to 16 is configured.
上記実施形態において、広帯域光源装置20としては、短パルスレーザ源21を備えて高非線形素子22によってSC光を出射するものの他、ASE(Amplified Spontaneous Emission)光源、SLD(Superluminescent diode)光源を備え、いずれかの光源からの光をアレイ導波路回折格子1で波長分割して各遅延ファイバ61で遅延させる構成が採用されることもあり得る。ASE光源は、ファイバ内で発生する光なので、アレイ導波路回折格子1との親和性が高く、低損失で入射側導波路12に入射させることができ、高効率で合成パルス光L3を出射させることができる。また、SLD光源も、狭い活性層での発光を取り出すのでアレイ導波路回折格子1に低損失で入射させることができ、高効率で合成パルス光L3を出射させることができる。
In the above embodiment, the broadband light source device 20 includes a short pulse laser source 21 and a high nonlinear element 22 for emitting SC light, as well as an ASE (Amplified Spontaneous Emission) light source and an SLD (Super luminescent diode) light source. A configuration may be adopted in which the light from any of the light sources is wavelength-divided by the array waveguide diffraction grid 1 and delayed by each delay fiber 61. Since the ASE light source is light generated in the fiber, it has a high affinity with the array waveguide diffraction grating 1, can be incident on the incident side waveguide 12 with low loss, and emits synthetic pulse light L3 with high efficiency. be able to. Further, since the SLD light source also takes out the light emitted from the narrow active layer, it can be incidentally incident on the array waveguide diffraction grating 1 with low loss, and the synthetic pulse light L3 can be emitted with high efficiency.
尚、分光測定の例として透過スペクトルの測定を採り上げたが、反射スペクトルの測定であっても良く、散乱スペクトルの測定であっても良い。これらの場合、受光器は、対象物からの反射光を受光する位置や、散乱光を受光する位置に配置される。
また、光源の時間的な強度変動の影響を低減する目的で、分光測定における参照光を取ることが考えられる。構成としては、出射端ユニット62からの光をビームスプリッタで分割し、一方を測定用として対象物Sに照射し、他方を参照用として対象物Sを経ることなく参照用受光器で受光する構成があり得る。参照光用受光器の手前に基準サンプルを設置し、基準サンプルの透過光を基準スペクトルとして用いてもよい。基準サンプルは、測定波長範囲においてフラットな透過スペクトルを有する方が好ましく、拡散板などの散乱体がよく用いられる。測定光と同時取得された参照用受光器の出力を基準スペクトル強度とし、基準スペクトルと測定スペクトルの比を取る。 Although the measurement of the transmission spectrum is taken up as an example of the spectroscopic measurement, it may be the measurement of the reflection spectrum or the measurement of the scattering spectrum. In these cases, the light receiver is arranged at a position where the reflected light from the object is received or a position where the scattered light is received.
Further, for the purpose of reducing the influence of the temporal intensity fluctuation of the light source, it is conceivable to take the reference light in the spectroscopic measurement. The configuration is such that the light from theemission end unit 62 is split by a beam splitter, one is irradiated to the object S for measurement, and the other is received by a reference receiver without passing through the object S for reference. There can be. A reference sample may be placed in front of the reference light receiver, and the transmitted light of the reference sample may be used as the reference spectrum. The reference sample preferably has a flat transmission spectrum in the measurement wavelength range, and a scatterer such as a diffuser is often used. The output of the reference receiver acquired at the same time as the measurement light is used as the reference spectrum intensity, and the ratio between the reference spectrum and the measurement spectrum is taken.
また、光源の時間的な強度変動の影響を低減する目的で、分光測定における参照光を取ることが考えられる。構成としては、出射端ユニット62からの光をビームスプリッタで分割し、一方を測定用として対象物Sに照射し、他方を参照用として対象物Sを経ることなく参照用受光器で受光する構成があり得る。参照光用受光器の手前に基準サンプルを設置し、基準サンプルの透過光を基準スペクトルとして用いてもよい。基準サンプルは、測定波長範囲においてフラットな透過スペクトルを有する方が好ましく、拡散板などの散乱体がよく用いられる。測定光と同時取得された参照用受光器の出力を基準スペクトル強度とし、基準スペクトルと測定スペクトルの比を取る。 Although the measurement of the transmission spectrum is taken up as an example of the spectroscopic measurement, it may be the measurement of the reflection spectrum or the measurement of the scattering spectrum. In these cases, the light receiver is arranged at a position where the reflected light from the object is received or a position where the scattered light is received.
Further, for the purpose of reducing the influence of the temporal intensity fluctuation of the light source, it is conceivable to take the reference light in the spectroscopic measurement. The configuration is such that the light from the
1 アレイ導波路回折格子
11 基板
12 入射側導波路
13 第一スラブ導波路
131
14 アレイ導波路
15 第二スラブ導波路
16 出射側導波路
2 広帯域光源
20 広帯域光源装置
21 短パルスレーザ源
22 高非線形素子
3 受光器
31 ADコンバータ
4 演算手段
41 プロセッサ
42 記憶部
43 測定プログラム
5 受け具
61 遅延ファイバ
62 出射端ユニット
9 スペクトラムアナライザ
S 対象物 1 Arraywaveguide diffraction grating 11 Substrate 12 Incident side waveguide 13 First slab waveguide 131
14Array waveguide 15 Second slab waveguide 16 Emitting side waveguide 2 Wideband light source 20 Wideband light source device 21 Short pulse laser source 22 High non-linear element 3 Receiver 31 AD converter 4 Computational means 41 Processor 42 Storage unit 43 Measurement program 5 Tool 61 Delay fiber 62 Emission end unit 9 Spectrum analyzer S Object
11 基板
12 入射側導波路
13 第一スラブ導波路
131
14 アレイ導波路
15 第二スラブ導波路
16 出射側導波路
2 広帯域光源
20 広帯域光源装置
21 短パルスレーザ源
22 高非線形素子
3 受光器
31 ADコンバータ
4 演算手段
41 プロセッサ
42 記憶部
43 測定プログラム
5 受け具
61 遅延ファイバ
62 出射端ユニット
9 スペクトラムアナライザ
S 対象物 1 Array
14
Claims (9)
- 入射側導波路と、
入射側導波路の出射端に接続された第一スラブ導波路と、
第一スラブ導波路の終端面に接続されたアレイ導波路と、
アレイ導波路の出射端に接続された第二スラブ導波路と、
第二スラブ導波路の終端面に入射端が設けられた複数の出射側導波路と
を備え、
アレイ導波路は、光路長が一定量ずつ異なる複数の導波路が配列された構造を有しており、
各出射側導波路の入射端は、アレイ導波路を光が伝搬する際に生じた位相差により波長に応じて異なる位置に集光する際のその各異なる位置に設けられたアレイ導波路回折格子であって、
前記複数の出射側導波路のうち、少なくとも一つの導波路の入射端のコア幅が、入射側導波路の出射端のコア幅と異なっていることを特徴とするアレイ導波路回折格子。 Incoming side waveguide and
The first slab waveguide connected to the exit end of the incident side waveguide,
An array waveguide connected to the end plane of the first slab waveguide,
A second slab waveguide connected to the exit end of the array waveguide,
A plurality of emitting side waveguides having an incident end provided on the end surface of the second slab waveguide are provided.
The array waveguide has a structure in which a plurality of waveguides having different optical path lengths by a fixed amount are arranged.
The incident end of each emitting side waveguide is an array waveguide diffraction grating provided at each different position when condensing light at a different position depending on the wavelength due to the phase difference generated when light propagates through the array waveguide. And,
An array waveguide diffraction grating characterized in that the core width of the incident end of at least one of the plurality of emitting side waveguides is different from the core width of the emitting end of the incident side waveguide. - 前記出射側導波路の入射端のコア幅が、前記入射側導波路の出射端のコア幅よりも広いことを特徴とする請求項1記載のアレイ導波路回折格子。 The array waveguide diffraction grating according to claim 1, wherein the core width of the incident end of the emitting side waveguide is wider than the core width of the emitting end of the incident side waveguide.
- 前記出射側導波路の入射端のコア幅が、前記入射側導波路の出射端のコア幅よりも狭いことを特徴とする請求項1記載のアレイ導波路回折格子。 The array waveguide diffraction grating according to claim 1, wherein the core width of the incident end of the emitting side waveguide is narrower than the core width of the emitting end of the incident side waveguide.
- 入射側導波路と、
入射側導波路の出射端に接続された第一スラブ導波路と、
第一スラブ導波路の終端面に接続されたアレイ導波路と、
アレイ導波路の出射端に接続された第二スラブ導波路と、
第二スラブ導波路の終端面に入射端が設けられた複数の出射側導波路と
を備え、
アレイ導波路は、光路長が一定量ずつ異なる複数の導波路が配列された構造を有しており、
各出射側導波路の入射端は、アレイ導波路を光が伝搬する際に生じた位相差により波長に応じて異なる位置に集光する際のその各異なる位置に設けられたアレイ導波路回折格子であって、
少なくとも一つの出射側導波路の入射端のコア幅は、他の出射側導波路の入射端のコア幅と異なっていることを特徴とするアレイ導波路回折格子。 Incoming side waveguide and
The first slab waveguide connected to the exit end of the incident side waveguide,
An array waveguide connected to the end plane of the first slab waveguide,
A second slab waveguide connected to the exit end of the array waveguide,
A plurality of emitting side waveguides having an incident end provided on the end surface of the second slab waveguide are provided.
The array waveguide has a structure in which a plurality of waveguides having different optical path lengths by a fixed amount are arranged.
The incident end of each emitting side waveguide is an array waveguide diffraction grating provided at each different position when condensing light at a different position depending on the wavelength due to the phase difference generated when light propagates through the array waveguide. And,
An array waveguide diffraction grating characterized in that the core width of the incident end of at least one emitting side waveguide is different from the core width of the incident end of the other emitting side waveguide. - 前記第二スラブ導波路の終端面において800nm以上1700nm以下の範囲内の少なくとも200nmの幅の波長域の光が波長に応じて順次異なる位置に集光するようよう前記各導波路及び前記各スラブ導波路が形成されていることを特徴とする請求項1又は4記載のアレイ導波路回折格子。 Each waveguide and each slab guide so that light in a wavelength range having a width of at least 200 nm within the range of 800 nm or more and 1700 nm or less at the end surface of the second slab waveguide is sequentially focused at different positions depending on the wavelength. The array waveguide diffraction grating according to claim 1 or 4, wherein a waveguide is formed.
- 広帯域光源と、
広帯域光源から出射された光が入射する位置に設けられた請求項1又は4記載のアレイ導波路回折格子とを備えた広帯域光源装置であって、請求項1又は4記載のアレイ導波路回折格子により波長分割された広帯域光を出射することを特徴とする広帯域光源装置。 With a wideband light source,
The array waveguide diffraction grating according to claim 1 or 4, wherein the broadband light source apparatus includes the array waveguide diffraction grating according to claim 1 or 4 provided at a position where the light emitted from the broadband light source is incident. A wideband light source device characterized by emitting wideband light whose wavelength is divided by. - 請求項6に記載の広帯域光源装置と、
この広帯域光源装置から出射された前記広帯域光が照射された対象物からの光を受光する位置に配置された受光器と、
受光器からの出力を処理して対象物の分光特性を得る演算手段と
を備えていることを特徴とする分光測定装置。 The wideband light source device according to claim 6 and
A receiver arranged at a position to receive light from an object irradiated with the wideband light emitted from this wideband light source device, and a receiver.
A spectroscopic measuring device including an arithmetic means for processing an output from a light receiver to obtain spectral characteristics of an object. - 前記広帯域光源装置は、経過時間と光の波長とが1対1で対応している光を前記広帯域光として出射する装置であり、
前記演算手段は、前記受光器からの出力の時間的変化を波長に変換する処理を行う手段であることを特徴とする請求項7に記載の分光測定装置。 The wideband light source device is a device that emits light having a one-to-one correspondence between an elapsed time and a wavelength of light as the wideband light.
The spectroscopic measuring device according to claim 7, wherein the arithmetic means is a means for performing a process of converting a time change of an output from the light receiver into a wavelength. - 前記広帯域光源装置において、前記アレイ導波路回折格子の各出射側導波路に遅延ファイバが接続されており、各遅延ファイバは、伝送される光の波長に応じた遅延量を実現するファイバであることを特徴とする請求項8記載の分光測定装置。 In the broadband light source device, delay fibers are connected to each emission side waveguide of the array waveguide diffraction grating, and each delay fiber is a fiber that realizes a delay amount according to the wavelength of the transmitted light. 8. The spectroscopic measuring apparatus according to claim 8.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-161503 | 2020-09-25 | ||
JP2020161503A JP2022054350A (en) | 2020-09-25 | 2020-09-25 | Array waveguide diffraction grating, broadband light source device, and spectroscopic measurement device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022064875A1 true WO2022064875A1 (en) | 2022-03-31 |
Family
ID=80846414
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/029229 WO2022064875A1 (en) | 2020-09-25 | 2021-08-05 | Arrayed waveguide grating, broadband light source device, and spectrometer |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2022054350A (en) |
WO (1) | WO2022064875A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024180935A1 (en) * | 2023-02-28 | 2024-09-06 | 国立大学法人大阪大学 | Optical sampling pulse generation device and optical sampling pulse generation method |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0829815A (en) * | 1994-07-20 | 1996-02-02 | Nippon Telegr & Teleph Corp <Ntt> | White ultrashort pulse light source |
JP2002148458A (en) * | 2000-11-16 | 2002-05-22 | Nec Corp | Array waveguide grating, waveguide element, demultiplexing apparatus, multiplexing apparatus, and optical communication system |
JP2003195068A (en) * | 2001-12-21 | 2003-07-09 | Nec Corp | Array waveguide grating, array waveguide grating module, and optical communication system |
US20170122806A1 (en) * | 2015-10-01 | 2017-05-04 | National Security Technologies, Llc | Long-pulse-width variable-wavelength chirped pulse generator and method |
JP2019101315A (en) * | 2017-12-06 | 2019-06-24 | Nttエレクトロニクス株式会社 | Optical wavelength multiplexer/demultiplexer |
WO2020075441A1 (en) * | 2018-10-12 | 2020-04-16 | ウシオ電機株式会社 | Light source for spectroscopic analysis, spectroscopic analysis device, and spectroscopic analysis method |
WO2020075442A1 (en) * | 2018-10-12 | 2020-04-16 | ウシオ電機株式会社 | Wideband extended pulsed light source, spectrometry device, and spectrometry method |
WO2020196689A1 (en) * | 2019-03-27 | 2020-10-01 | ウシオ電機株式会社 | Light source device for optical measurement, spectroscopic measurement device, and spectroscopic measurement method |
-
2020
- 2020-09-25 JP JP2020161503A patent/JP2022054350A/en active Pending
-
2021
- 2021-08-05 WO PCT/JP2021/029229 patent/WO2022064875A1/en active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0829815A (en) * | 1994-07-20 | 1996-02-02 | Nippon Telegr & Teleph Corp <Ntt> | White ultrashort pulse light source |
JP2002148458A (en) * | 2000-11-16 | 2002-05-22 | Nec Corp | Array waveguide grating, waveguide element, demultiplexing apparatus, multiplexing apparatus, and optical communication system |
JP2003195068A (en) * | 2001-12-21 | 2003-07-09 | Nec Corp | Array waveguide grating, array waveguide grating module, and optical communication system |
US20170122806A1 (en) * | 2015-10-01 | 2017-05-04 | National Security Technologies, Llc | Long-pulse-width variable-wavelength chirped pulse generator and method |
JP2019101315A (en) * | 2017-12-06 | 2019-06-24 | Nttエレクトロニクス株式会社 | Optical wavelength multiplexer/demultiplexer |
WO2020075441A1 (en) * | 2018-10-12 | 2020-04-16 | ウシオ電機株式会社 | Light source for spectroscopic analysis, spectroscopic analysis device, and spectroscopic analysis method |
WO2020075442A1 (en) * | 2018-10-12 | 2020-04-16 | ウシオ電機株式会社 | Wideband extended pulsed light source, spectrometry device, and spectrometry method |
WO2020196689A1 (en) * | 2019-03-27 | 2020-10-01 | ウシオ電機株式会社 | Light source device for optical measurement, spectroscopic measurement device, and spectroscopic measurement method |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024180935A1 (en) * | 2023-02-28 | 2024-09-06 | 国立大学法人大阪大学 | Optical sampling pulse generation device and optical sampling pulse generation method |
Also Published As
Publication number | Publication date |
---|---|
JP2022054350A (en) | 2022-04-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7405175B2 (en) | Light source device for light measurement, spectrometer measurement device, and spectrometer measurement method | |
US8416416B2 (en) | Measuring method for SPR and system thereof | |
JP7172415B2 (en) | Broadband stretched pulse light source, spectroscopic measuring device and spectroscopic measuring method | |
JP7215060B2 (en) | Spectroscopic analysis light source, spectroscopic analysis device and spectroscopic analysis method | |
JPH01124723A (en) | Spectrograph | |
JP2006138734A (en) | Optical spectrum analyzer | |
WO2022064875A1 (en) | Arrayed waveguide grating, broadband light source device, and spectrometer | |
JP7147657B2 (en) | Broadband pulse light source device, spectroscopic measurement device and spectroscopic measurement method | |
WO2020235441A1 (en) | Broadband pulsed light source, spectrometry device, and spectrometry method | |
US12092520B2 (en) | Broadband pulsed light source apparatus | |
JP2007218860A (en) | Strain measuring device and strain measuring method | |
WO2022049986A1 (en) | Pulse spectroscopy device and multi-fiber radiation unit | |
WO2021024890A1 (en) | Broadband pulsed light source device, spectrometry device, spectrometry method, and spectroscopic analysis method | |
WO2023181575A1 (en) | Light source device and optical measurement device | |
WO2024052984A1 (en) | Light detection device | |
WO2024062790A1 (en) | Optical measurement device | |
JP2020159978A (en) | Spectroscopic measuring device and spectroscopic measuring method | |
JP2020159977A (en) | Broadband pulse light source device, spectral measurement device and spectral measurement method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21872007 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21872007 Country of ref document: EP Kind code of ref document: A1 |