[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022059151A1 - 顔認証方法、顔認証プログラム、および顔認証装置 - Google Patents

顔認証方法、顔認証プログラム、および顔認証装置 Download PDF

Info

Publication number
WO2022059151A1
WO2022059151A1 PCT/JP2020/035334 JP2020035334W WO2022059151A1 WO 2022059151 A1 WO2022059151 A1 WO 2022059151A1 JP 2020035334 W JP2020035334 W JP 2020035334W WO 2022059151 A1 WO2022059151 A1 WO 2022059151A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
degree
reflection
change
face
Prior art date
Application number
PCT/JP2020/035334
Other languages
English (en)
French (fr)
Inventor
智明 松濤
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to EP20954136.6A priority Critical patent/EP4216149A4/en
Priority to JP2022550277A priority patent/JP7389392B2/ja
Priority to PCT/JP2020/035334 priority patent/WO2022059151A1/ja
Publication of WO2022059151A1 publication Critical patent/WO2022059151A1/ja
Priority to US18/178,798 priority patent/US20230206686A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/16Human faces, e.g. facial parts, sketches or expressions
    • G06V40/168Feature extraction; Face representation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/30Authentication, i.e. establishing the identity or authorisation of security principals
    • G06F21/31User authentication
    • G06F21/32User authentication using biometric data, e.g. fingerprints, iris scans or voiceprints
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/60Extraction of image or video features relating to illumination properties, e.g. using a reflectance or lighting model
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/16Human faces, e.g. facial parts, sketches or expressions
    • G06V40/172Classification, e.g. identification
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/40Spoof detection, e.g. liveness detection

Definitions

  • the present invention relates to a face recognition method, a face recognition program, and a face recognition device.
  • Biometrics may be used to identify individuals.
  • Biometric authentication uses biometric information that represents the physical characteristics of an individual to perform personal authentication.
  • Face recognition is one of the biometrics.
  • Face recognition is a technique for identifying an individual by comparing biometric information representing the facial features of the individual.
  • face recognition uses an individual's face image
  • a third party to impersonate using a photo of another person's face.
  • SNS Social Networking Service
  • a malicious third party can impersonate another person and be authenticated by holding the face image of another person in front of the camera of the face recognition system.
  • the purpose of this case is to make it easy to detect the replacement of shooting targets during authentication.
  • One proposal provides a face recognition method in which a computer performs the following processing.
  • the computer acquires multiple time-series images from the camera.
  • the computer determines the degree of contour change, which represents the difference in contours contained in the facial images reflected in each of the first and second images that are continuous in chronological order, and the light between the first image and the second image.
  • the degree of change in reflection which represents the difference in reflection characteristics, is calculated.
  • the computer determines whether or not the shooting target of the camera has been replaced based on the degree of contour change and the degree of reflection change.
  • the first embodiment is a face recognition method that can easily detect a change in face recognition during authentication of a shooting target by a camera.
  • FIG. 1 is a diagram showing an example of a face recognition method.
  • FIG. 1 shows a face recognition device 10 for realizing a face recognition method.
  • the face recognition device 10 can implement the face recognition method, for example, by executing a face recognition program.
  • the face recognition device 10 has a storage unit 11 and a processing unit 12.
  • the storage unit 11 is, for example, a memory or a storage device included in the face recognition device 10.
  • the processing unit 12 is, for example, a processor or an arithmetic circuit included in the face recognition device 10.
  • the storage unit 11 stores edge statistic information and pixel value statistic information for each of the images 4a, 4b, 4c, ... Taken by the camera 3.
  • the edge statistic information is information obtained by statistically processing the brightness value of each pixel in the image so that the edge (the portion where the brightness changes significantly) appearing on the contour of the face becomes clear.
  • the contour of the face may be the contour of a part of the face (for example, the nose).
  • the pixel value statistical information is information obtained by statistically processing the luminance value of each pixel in the image so that the light reflection characteristic becomes clear.
  • the pixel value statistic information is calculated using, for example, only the pixels in the region where the face of a person is shown. Further, the pixel value statistic information may be calculated using only the pixels in the region where, for example, a part of the face (for example, the cheek) is reflected.
  • the processing unit 12 performs authentication processing of the user 1 in front of the camera 3 based on the plurality of images 4a, 4b, 4c, ... Acquired from the camera 3. For example, the processing unit 12 acquires a plurality of time-series images 4a, 4b, 4c, ... From the camera 3.
  • the processing unit 12 performs face recognition processing based on the biological features represented by the face image reflected in the image (third image) of the plurality of images 4a, 4b, 4c, ....
  • the face authentication process is a process of performing user authentication based on the face image reflected in the acquired image. For example, the processing unit 12 compares the feature amount representing the feature of the user's face image registered in advance with the feature amount of the face image reflected in the acquired image, and if the similarity is equal to or more than a predetermined value, the feature amount is acquired. It is recognized that the face image shown in the image is the face image of the user registered in advance. Face recognition is successful when such certification is made.
  • the processing unit 12 has a contour change degree indicating a difference in the contours of the facial images reflected in each of two consecutive images (first image 5 and second image 6 or second image 7) in chronological order, and a first.
  • the degree of reflection change representing the difference in the light reflection characteristics between the image 5 and the second image 6 or the second image 7 is calculated.
  • the processing unit 12 calculates the edge statistic and the pixel value statistic of the image of the frame in real time every time one frame of the moving image taken by the camera 3 is acquired.
  • the processing unit 12 stores the calculated edge statistic and the pixel value statistic in the storage unit 11.
  • the processing unit 12 calculates the degree of contour change based on the edge statistic of the first image 5 most recently in the past and the edge statistic of the newly acquired second image 6 or the second image 7.
  • the processing unit 12 calculates the degree of reflection change based on the pixel value statistic of the first image 5 most recently in the past and the pixel value statistic of the newly acquired second image 6 or the second image 7.
  • the processing unit 12 determines whether or not the shooting target of the camera 3 has been replaced based on the degree of contour change and the degree of reflection change. For example, the processing unit 12 determines that there is a replacement when the contour change degree is equal to or higher than the first threshold value and when the reflection change degree is equal to or higher than the second threshold value.
  • the processing unit 12 instructs a person captured by the camera 3 to perform a predetermined operation while acquiring a plurality of images 4a, 4b, 4c, ....
  • the processing unit 12 gives an operation instruction by voice output or screen display.
  • the processing unit 12 performs an operation determination process for determining whether or not a predetermined operation has been performed, based on an image (fourth image) acquired after the operation is instructed.
  • processing unit 12 determines that the face authentication process has succeeded in authentication and the operation determination process has performed a predetermined operation, the processing unit 12 executes the process according to the successful authentication.
  • Processing according to successful authentication is, for example, unlocking a door, lifting restrictions on the use of equipment, withdrawing cash or remittance by ATM.
  • the processing unit 12 of the face recognition device 10 performs face recognition processing. If the face recognition is successful, the processing unit 12 instructs the user 1 to perform an operation such as "turn to the right". Upon receiving the operation instruction, the user 1 moves the photograph 2 from the front of the camera 3 so that his / her face is captured by the camera 3. Then, the user 1 performs an operation according to the instruction.
  • the processing unit 12 After the operation instruction, the processing unit 12 performs a replacement determination and an operation determination each time an image of one frame is acquired from the camera 3. While Photo 2 is in front of the camera 3, both the degree of contour change and the degree of reflection change are small, and no replacement is detected. Further, since the operation as instructed cannot be performed in the image of Photo 2, the operation as instructed is not detected by the operation determination.
  • the image captured by the camera 3 becomes, for example, the image 4c in which the face of the user 1 is captured from the image 4b in which the photograph 2 is captured.
  • the replacement can be easily detected based on the degree of contour change. For example, when the blur is large, the transition from the first image 5 to the second image 6 occurs. If the blur is large, the position and thickness of the contour will change significantly. Therefore, the degree of contour change becomes large, and the replacement is detected.
  • the replacement can be easily detected based on the degree of change in reflection. For example, when the blur is small, the transition from the first image 5 to the second image 7 occurs. If the blur is small, the pixel value statistic indicating the reflection characteristic of the face image in the image can be calculated with high accuracy. The unevenness of the face and the color of the skin differ from person to person, and when the face to be photographed by the camera 3 is exchanged, the light reflection characteristics are clearly different even if the two human faces are exchanged. Therefore, the degree of change in reflection becomes large, and replacement is detected.
  • the processing unit 12 sets a series of images acquired in a time series within a period including, for example, the acquisition of the third image used for the face authentication process and the acquisition of the fourth image used for the operation determination process. For each, the contour change degree and the reflection change degree are calculated, and it is determined whether or not the replacement has occurred. As a result, it is possible to reliably suppress the fraudulent act of replacing the face with one's own face and succeeding in the motion determination after the face authentication is successful using the photograph 2.
  • the processing unit 12 may determine that the replacement has occurred when the value (for example, the total) calculated based on the contour change degree and the reflection change degree is equal to or higher than the third threshold value. good. For example, even if the degree of contour change is less than the first threshold value, if the value is not small to some extent, the cause of the image blurring may be both due to replacement or due to the movement of the face of a raw person. Therefore, when both the degree of contour change and the degree of reflection change are large to some extent, it is determined that there is a replacement, so that the accuracy of detecting fraudulent activity can be improved.
  • the value for example, the total
  • the processing unit 12 may calculate the reflection score of the specular reflection component and the diffuse reflection component of the first image or the second image, and use them for the replacement determination.
  • the specular reflection component is a reflection component of light having the same angle of incidence and angle of reflection. Specular reflection is also called regular reflection.
  • Diffuse reflection is a component of light reflection excluding specular reflection. Diffuse reflection is also called diffuse reflection.
  • the processing unit 12 determines whether or not the shooting target of the camera has been replaced based on the comparison result between the reflection score and the fourth threshold value.
  • the reflection score is, for example, so large that the face in the image looks like a forgery. In this case, the processing unit 12 determines that the replacement of the shooting target of the camera 3 has occurred when the reflection score is equal to or higher than the fourth threshold value.
  • the authentication process can be failed and fraud detection can be detected.
  • the accuracy can be improved.
  • the second embodiment is an authentication system that can detect the replacement of the authentication target during face authentication.
  • a biometric authentication system is used for access control to devices such as bank ATMs (Automatic Teller Machines), room entry management, border control, and the like.
  • FIG. 2 is a diagram showing an example of a biometric authentication system.
  • FIG. 2 shows an example of room entry management in the office 40 using a biometric authentication system.
  • a face recognition device 100 is installed next to the door 41 of the office 40. The face recognition device 100 performs personal authentication based on the user's face image, and controls the electronic lock of the door 41 according to the authentication result.
  • the face recognition device 100 is connected to the server 200 via, for example, the network 20.
  • the server 200 stores feature amount data for face authentication obtained from a face image of a user who is permitted to enter the office 40. Further, the server 200 collates the feature amount data for face authentication with the feature amount data obtained from the face image of the user who wishes to enter the room, and determines whether or not the corresponding user is the same person as the user registered in advance. It can also be determined.
  • the face recognition device 100 for example, photographs the face of a user who is about to enter the room, and generates feature amount data for face recognition from the obtained face image. Then, the face recognition device 100 transmits the generated feature amount data to the server 200, and requests collation with the feature amount data of the user who is permitted to enter the room. If, as a result of the verification of the server 200, it is determined that the user is the same person as the user who is allowed to enter the room, the face recognition device 100 confirms that the person in the camera is a raw person, and that is the case. Is confirmed, the lock of the electronic lock of the door 41 is released.
  • FIG. 3 is a diagram showing an example of the hardware of the face recognition device.
  • the face recognition device 100 is entirely controlled by the processor 101.
  • a memory 102 and a plurality of peripheral devices are connected to the processor 101 via a bus 108.
  • the processor 101 may be a multiprocessor.
  • the processor 101 is, for example, a CPU (Central Processing Unit), an MPU (Micro Processing Unit), or a DSP (Digital Signal Processor).
  • At least a part of the functions realized by the processor 101 executing a program may be realized by an electronic circuit such as an ASIC (Application Specific Integrated Circuit) or a PLD (Programmable Logic Device).
  • ASIC Application Specific Integrated Circuit
  • PLD Programmable Logic Device
  • the memory 102 is used as the main storage device of the face recognition device 100. At least a part of an OS (Operating System) program or an application program to be executed by the processor 101 is temporarily stored in the memory 102. Further, various data used for processing by the processor 101 are stored in the memory 102.
  • a volatile semiconductor storage device such as a RAM (RandomAccessMemory) is used.
  • Peripheral devices connected to the bus 108 include a storage device 103, a voice reproduction device 104, an input interface 105, a device connection interface 106, and a network interface 107.
  • the storage device 103 electrically or magnetically writes and reads data to and from the built-in recording medium.
  • the storage device 103 is used as an auxiliary storage device for a computer.
  • the storage device 103 stores an OS program, an application program, and various data.
  • an HDD Hard Disk Drive
  • an SSD Solid State Drive
  • a speaker 21 is connected to the audio reproduction device 104.
  • the voice reproduction device 104 converts digital voice data into an analog voice signal according to a command from the processor 101, and outputs the digital voice data to the speaker 21. As a result, sound is output from the speaker 21.
  • An operation key 22 is connected to the input interface 105.
  • the input interface 105 transmits the signal sent from the operation key 22 to the processor 101.
  • the device connection interface 106 is a communication interface for connecting peripheral devices to the face recognition device 100.
  • the camera 23 and the electronic lock unit 24 can be connected to the device connection interface 106.
  • the camera 23 captures an image using an image pickup device such as a CCD (Charge-Coupled Device).
  • the device connection interface 106 transfers image data for each frame taken by the camera 23 to, for example, a memory 102.
  • the electronic lock unit 24 locks and unlocks the key of the door 41 (see FIG. 2) in response to an input signal.
  • the electronic lock unit 24 controls a motor built in the key mechanism of the door 41 to unlock the key.
  • the network interface 107 is connected to the network 20.
  • the network interface 107 transmits / receives data to / from the server 200 via the network 20.
  • the network interface 107 is a wired communication interface connected to a wired communication device such as a switch or a router with a cable. Further, the network interface 107 may be a wireless communication interface that is communicated and connected to a wireless communication device such as a base station or an access point by radio waves.
  • the face recognition device 100 can realize the processing function of the second embodiment by the hardware as described above.
  • the face recognition device 10 shown in the first embodiment can also be realized by the same hardware as the face recognition device 100 shown in FIG.
  • the face recognition device 100 realizes the processing function of the second embodiment, for example, by executing a program recorded on a computer-readable recording medium.
  • the program describing the processing content to be executed by the face recognition device 100 can be recorded on various recording media.
  • a program to be executed by the face recognition device 100 can be stored in the storage device 103.
  • the processor 101 loads at least a part of the program in the storage device 103 into the memory 102 and executes the program.
  • a graphic processing device can be connected to the bus 108 and the display device can be connected to the graphic processing device.
  • FIG. 4 is a diagram showing an example of server hardware.
  • the entire device of the server 200 is controlled by the processor 201.
  • the memory 202 and a plurality of peripheral devices are connected to the processor 201 via the bus 209.
  • the processor 201 may be a multiprocessor.
  • Processor 201 is, for example, a CPU, MPU, or DSP. At least a part of the functions realized by the processor 201 by executing the program may be realized by an electronic circuit such as an ASIC or PLD.
  • the memory 202 is used as the main storage device of the server 200. At least a part of the OS program and the application program to be executed by the processor 201 is temporarily stored in the memory 202. Further, various data used for processing by the processor 201 are stored in the memory 202. As the memory 202, a volatile semiconductor storage device such as RAM is used.
  • Peripheral devices connected to the bus 209 include a storage device 203, a graphic processing device 204, an input interface 205, an optical drive device 206, a device connection interface 207, and a network interface 208.
  • the storage device 203 electrically or magnetically writes and reads data to and from the built-in recording medium.
  • the storage device 203 is used as an auxiliary storage device for a computer.
  • the storage device 203 stores an OS program, an application program, and various data.
  • an HDD or SSD can be used as the storage device 203.
  • a monitor 31 is connected to the graphic processing device 204.
  • the graphic processing device 204 causes the image to be displayed on the screen of the monitor 31 according to the instruction from the processor 201.
  • the monitor 31 includes a display device using an organic EL (ElectroLuminescence), a liquid crystal display device, and the like.
  • a keyboard 32 and a mouse 33 are connected to the input interface 205.
  • the input interface 205 transmits a signal sent from the keyboard 32 and the mouse 33 to the processor 201.
  • the mouse 33 is an example of a pointing device, and other pointing devices can also be used. Other pointing devices include touch panels, tablets, touchpads, trackballs and the like.
  • the optical drive device 206 reads the data recorded on the optical disk 34 or writes the data to the optical disk 34 by using a laser beam or the like.
  • the optical disk 34 is a portable recording medium on which data is recorded so that it can be read by reflection of light.
  • the optical disk 34 includes a DVD (Digital Versatile Disc), a DVD-RAM, a CD-ROM (Compact Disc Read Only Memory), a CD-R (Recordable) / RW (ReWritable), and the like.
  • the device connection interface 207 is a communication interface for connecting peripheral devices to the server 200.
  • a memory device 35 or a memory reader / writer 36 can be connected to the device connection interface 207.
  • the memory device 35 is a recording medium equipped with a communication function with the device connection interface 207.
  • the memory reader / writer 36 is a device that writes data to or reads data from the memory card 37.
  • the memory card 37 is a card-type recording medium.
  • the network interface 208 is connected to the network 20.
  • the network interface 208 transmits / receives data to / from another computer or communication device via the network 20.
  • the network interface 208 is a wired communication interface connected to a wired communication device such as a switch or a router with a cable. Further, the network interface 208 may be a wireless communication interface that is communicated and connected to a wireless communication device such as a base station or an access point by radio waves.
  • the server 200 can provide the face recognition device 100 with a program to be executed by the face recognition device 100 via the network 20.
  • a program describing the processing content to be executed by the face recognition device 100 can be recorded on a portable recording medium such as an optical disk 34, a memory device 35, and a memory card 37.
  • the server 200 transmits the program stored in the portable recording medium to the face recognition device 100.
  • the face recognition device 100 can be executed after the program sent from the server 200 is installed in the storage device 203.
  • FIG. 5 is a block diagram showing an example of the functions of each device.
  • the server 200 has a storage unit 210.
  • the storage unit 210 stores the face image feature amount data 211.
  • the facial image feature amount data 211 is data obtained by quantifying the feature amount extracted from the facial image of a user who is permitted to enter the office.
  • the storage unit 210 is realized by using, for example, a part of the storage area of the storage device 203 of the server 200.
  • the face recognition device 100 includes a storage unit 110, an image acquisition unit 120, a collation unit 130, an operation instruction unit 140, a change degree calculation unit 150, a replacement determination unit 160, an operation detection unit 170, a key control unit 180, and a registration unit 190.
  • the storage unit 110 is realized by using, for example, a part of the storage area of the storage device 103 of the face recognition device 100.
  • the processor 101 has a predetermined program. It is realized by executing.
  • the storage unit 110 stores the edge statistic data 111 and the pixel value statistic data 112.
  • the edge statistic data 111 is information indicating the contour of the face obtained by analyzing the face image for each frame.
  • the pixel value statistic data 112 is information indicating the reflection of the light of the face obtained by analyzing the face image for each frame.
  • the image acquisition unit 120 acquires an image from the camera 23.
  • the frame rate for acquiring an image from the camera 23 depends on the time required for face recognition using the image of one frame. For example, the frame rate for image acquisition is about 5 to 10 frames per second.
  • the image acquisition unit 120 transmits the image of the frame used for face authentication to the collation unit 130. Further, the image acquisition unit 120 transmits an image of the frame used for determining whether or not the operation is performed as instructed (operation determination) to the change degree calculation unit 150.
  • the instructed actions include turning to a specified direction, shaking the face vertically or horizontally, and opening and closing the eyes and mouth.
  • the collation unit 130 When the collation unit 130 receives the image used for face authentication, the collation unit 130 performs user authentication using the received image. For example, the collation unit 130 calculates the feature amount of the face reflected in the received image.
  • the feature amount calculation process for face recognition is a process that takes longer than the extraction of information showing contours or information showing reflection characteristics.
  • the collation unit 130 cooperates with the server 200 to collate the calculated feature amount with the feature amount of the face image shown in the face image feature amount data of the server 200.
  • the collation unit 130 calculates the feature amount of the face image reflected in the received image and transmits the feature amount to the server 200.
  • the server 200 collates the received feature amount with the feature amount of each user in the storage unit 210.
  • the server 200 faces the face. Judge that the authentication was successful.
  • the server 200 transmits the determination result to the collating unit 130.
  • the collation unit 130 may acquire the face image feature amount data 211 stored in the storage unit 210 from the server 200 and perform the collation process.
  • the operation instruction unit 140 outputs an operation instruction to the user who is going to enter the room when the face authentication is successful. For example, the operation instruction unit 140 outputs a voice instructing an operation via the speaker 21.
  • the change degree calculation unit 150 When the change degree calculation unit 150 acquires an image for motion determination from the image acquisition unit 120, the change degree calculation unit 150 changes the contour change degree indicating the degree of change in the contour information with the past image and the change in the light reflection characteristic with the past image.
  • the degree of change in reflection which indicates the degree of, is calculated.
  • the change degree calculation unit 150 calculates the edge statistic and the pixel value statistic of the acquired image.
  • the change degree calculation unit 150 acquires the edge statistic and the pixel value statistic obtained from the latest past image from the storage unit 110.
  • the change degree calculation unit 150 calculates the difference between the edge statistic of the past image and the edge statistic of the latest image, and sets the value indicating the difference as the contour change degree.
  • the change degree calculation unit 150 calculates the difference between the pixel value statistic of the past image and the pixel value statistic of the latest image, and sets the value indicating the difference as the reflection change degree.
  • the replacement determination unit 160 determines whether or not the shooting target of the camera 23 is replaced based on the degree of contour change and the degree of reflection change. For example, the replacement determination unit 160 determines whether or not the shooting target of the camera 23 at the time of face recognition is replaced with another person, a photograph, or the like after the face recognition is successful.
  • the motion detection unit 170 acquires images of continuous frames from the image acquisition unit 120, and detects that the user has performed the instructed motion. For example, when it is instructed to turn the face to the left or right, the movement can be detected by the change in the distance between the left and right polygonal lines of the contour of the face and the straight line passing up and down the nose. For example, it is assumed that the user is instructed to turn to the right and operates according to the instruction. In this case, the distance between the vertical tangent of the contour on the right side of the face (left side in the image) and the straight line passing through the nose is narrowed, and the distance between the vertical tangent line of the contour on the left side of the face (right side in the image) and the straight line passing through the nose. Spreads. By detecting such a change in the interval such as a straight line, it can be determined whether or not the operation as instructed is performed.
  • the motion detection unit 170 instructs the key control unit 180, for example, to unlock the key if the replacement is not detected. Further, when the user requests the registration of the face image feature amount for collation, the motion detection unit 170 transmits the user's face image feature amount to the registration unit 190 if the replacement is not detected.
  • the key control unit 180 unlocks the key of the door 41 according to the instruction from the motion detection unit 170. For example, the key control unit 180 transmits an unlocking instruction to the electronic lock unit 24. Then, the electronic lock unit 24 unlocks the door 41.
  • the registration unit 190 calculates the image feature amount of the user's face image based on the image acquired by the image acquisition unit 120 according to the instruction from the motion detection unit 170. Then, the registration unit 190 transmits the calculated image feature amount to the server 200.
  • the server 200 stores the image feature amount in the storage unit 210.
  • FIG. 6 is a diagram showing an example of data possessed by the storage unit of the face recognition device.
  • the edge statistic data 111 stores the edge statistic of the corresponding frame in chronological order in association with the frame number.
  • the edge statistic is, for example, a histogram of higher-order local autocorrelation (HLAC).
  • HLAC local autocorrelation
  • the relationship with surrounding pixels is classified into one of 25 patterns for each pixel.
  • a 25th-order vector having the appearance frequency of each pattern (the number of pixels serving as the pattern) as a component (non-negative integer value) is stored in the edge statistic data 111 as an edge statistic.
  • the pixel value statistic data 112 the pixel value statistic of the corresponding frame is stored in chronological order in association with the frame number.
  • the pixel value statistic is, for example, a histogram of LBP (Local Binary Pattern).
  • LBP Large Binary Pattern
  • a value of 0 to 255 is calculated for each pixel based on the magnitude relationship with surrounding pixels.
  • a 256th-order vector whose component (non-negative integer value) is the appearance frequency of each value (the number of pixels that become the value) is stored in the pixel value statistic data 112 as the pixel value statistic.
  • the vector component indicating the statistic is a non-negative integer value, but the vector component can also be a real value depending on the statistic used.
  • the door 41 is unlocked only when the biometric authentication system having such a function can authenticate the user who is going to enter the office 40 as a user who is permitted to enter the room. At this time, the user may attempt to illegally authenticate using the photograph of another person.
  • FIG. 7 is a diagram showing an example of fraudulent activity.
  • User 42 is in front of the door 41 with the photo 43 in his hand.
  • Photo 43 shows another user who is allowed to enter the office 40.
  • the user 42 is not allowed to enter the office 40.
  • the user 42 attempts face recognition by holding the photo 43 in front of the camera 23.
  • the face recognition device 100 that recognizes that the face is captured in front of the camera 23 performs face recognition based on the image taken by the camera 23, outputs an operation instruction from the speaker 21, and makes an operation determination.
  • FIG. 8 is a diagram showing an outline of the authentication procedure.
  • the face recognition device 100 performs face recognition based on the face image captured in the photo 43.
  • the face recognition device 100 outputs an operation instruction such as "Please turn to the right" from the speaker 21.
  • the user 42 who receives the operation instruction removes the photo 43 from the front of the camera 23, and performs the operation as instructed at the position where the face of the user 42 is reflected in the camera 23.
  • the face recognition device 100 determines whether or not the operation is as instructed based on the movement of the image of the user 42 captured by the camera 23.
  • the shooting target of the camera 23 is replaced with the face of the user 42 from the photo 43.
  • the face of the raw user 42 is replaced with an action to make the person in the photograph look like the action, which is considered to be a fraudulent act.
  • the frame rate for acquiring an image from the camera 23 depends on the processing time of face recognition, and is about 5 to 10 frames per second. Therefore, there is a good possibility that the camera 23 does not capture the state of removing the photo 43 from the front of the camera 23. Therefore, it is difficult to detect the replacement by detecting the image showing the state in which the shooting target of the camera 23 is replaced.
  • the face recognition device 100 combines the degree of contour change and the degree of reflection change to detect fraudulent activity as shown in FIG.
  • the degree of contour change detects the change in the reflection of light, and the difference between the reflection of light in a flat photograph and the reflection of light in a raw human face can be appropriately grasped.
  • the degree of change in reflection lacks accuracy when the image blur is large, and there is a possibility that a correct judgment cannot be made.
  • FIG. 9 is a diagram showing an example of an image for each frame when the blur of the image is small.
  • the face recognition device 100 acquires the image 51, the image 52, the image 53, and the image 54 in chronological order. Images 51 and 52 show facial images of the person in Photo 43. Images 53 and 54 show the raw facial image of the user 42.
  • the reflection characteristics of the images 51 to 54 can be correctly expressed by the pixel value statistics. Therefore, the light reflection characteristics greatly change between the image 52 in which a flat photograph is taken and the image 53 in which a raw face is taken. As a result, the degree of change in reflection when the image 52 and the image 53 are compared increases.
  • the degree of contour change is small. That is, if the user 42 prepares an appropriate photograph 43 according to the position and size of his / her face captured by the camera 23, it is possible to avoid the replacement detection using the degree of contour change. As described above, even when it is difficult to detect the replacement with the contour change degree, it is possible to detect the replacement by using the reflection change degree.
  • FIG. 10 is a diagram showing an example of an image for each frame when the image blur is large.
  • the face recognition device 100 acquires the image 55, the image 56, the image 57, and the image 58 in time series. Images 55 and 56 show facial images of the person in Photo 43. Images 57 and 58 show the raw facial image of the user 42.
  • the reflection characteristics of the images 55 to 58 may not be detected correctly by the pixel value statistics. For example, in the image 57, due to the influence of blurring, the portion that should be reflected brightly is darkened, and the reflection characteristic is close to that of the image 56. That is, if the blur is large, the accuracy of the reflection change degree drops.
  • the detection of replacement based on the degree of reflection change and the detection of replacement based on the degree of contour change are in a mutually complementary relationship. By applying both methods, the accuracy of replacement detection can be improved.
  • FIG. 11 is a flowchart showing an example of the procedure of the authentication process. Hereinafter, the process shown in FIG. 11 will be described along with the step numbers.
  • the image acquisition unit 120 acquires an image taken by the camera 23.
  • the image acquisition unit 120 transmits the acquired image to the collation unit 130.
  • the collation unit 130 cooperates with the server 200, and is shown in the feature amount indicating the feature of the face image captured in the image received from the image acquisition unit 120 and the face image feature amount data 211 stored in the server 200. Compare with the feature amount.
  • the collation unit 130 determines whether or not the face recognition is successful as a result of the collation. For example, in the collation unit 130, the feature amount of the face image reflected in the image received from the image acquisition unit 120 matches the feature amount of the face image of any user who is permitted to enter the room (or the similarity is equal to or higher than a predetermined value). If), it is determined that the face recognition was successful. If the face recognition is successful, the collating unit 130 advances the process to step S104. If the face recognition fails, the collation unit 130 ends the authentication process.
  • the operation instruction unit 140 outputs an operation instruction to the user 42 via the speaker 21 according to the determination result that the face authentication by the collation unit 130 is successful.
  • the operation instruction unit 140 randomly selects one operation candidate from a plurality of operation candidates prepared in advance, and outputs an operation instruction based on the voice data corresponding to the selected operation candidate.
  • Step S105 The image acquisition unit 120 acquires an image from the camera 23. Then, the image acquisition unit 120 recognizes that the operation instruction is output from the operation instruction unit 140, and transmits the acquired image to the change degree calculation unit 150.
  • the change degree calculation unit 150 calculates the edge statistic and the pixel value statistic of the acquired image. For example, the change degree calculation unit 150 calculates the histogram of the HLAC as an edge statistic. Further, the change degree calculation unit 150 calculates the histogram of the LBP as a pixel value statistic.
  • the change degree calculation unit 150 refers to the storage unit 110 and determines whether or not there is a statistic calculated from an image of a past frame. If there is a past statistic, the change degree calculation unit 150 advances the process to step S108. Further, the change degree calculation unit 150 advances the process to step S105 when there is no past statistic.
  • the change degree calculation unit 150 calculates the contour change degree and the reflection change degree. For example, the change degree calculation unit 150 acquires the edge statistic of the latest frame in the past from the storage unit 110. The change degree calculation unit 150 calculates the contour change degree based on the edge statistic acquired from the storage unit 110 and the edge statistic calculated in step S106. For example, the degree of change calculation unit 150 can use the distance between the vectors of the two edge statistics as the degree of contour change. Further, the change degree calculation unit 150 may use the reciprocal of the similarity between the vectors of the two edge statistics as the contour change degree. If the vectors are normalized, the similarity of the vectors is determined, for example, by the inner product of the vectors.
  • the change degree calculation unit 150 acquires the pixel value statistics of the latest past frames from the storage unit 110.
  • the change degree calculation unit 150 calculates the reflection change degree based on the pixel value statistic acquired from the storage unit 110 and the pixel value statistic calculated in step S106.
  • the change degree calculation unit 150 can use the distance between the vectors of the two pixel value statistics as the reflection change degree.
  • the change degree calculation unit 150 may use the reciprocal of the similarity of the vectors of the two pixel value statistics as the reflection change degree.
  • the replacement determination unit 160 performs the replacement determination processing based on the contour change degree and the reflection change degree calculated by the change degree calculation unit 150.
  • the replacement determination process determines whether or not the shooting target of the camera 23 has been replaced. The details of the replacement determination process will be described later (see FIG. 12).
  • Step S110 The replacement determination unit 160 determines whether or not the replacement has been detected. When the replacement determination unit 160 detects the replacement, the replacement determination unit 160 ends the authentication process. If the replacement determination unit 160 does not detect the replacement, the process proceeds to step S111.
  • the motion detection unit 170 acquires an image from the image acquisition unit 120 and detects the specified motion. For example, when a motion to turn to the right is specified, the motion detection unit 170 can determine whether or not to turn to the right by comparing the positional relationship between the contour of the face and the nose in the image with the past image. When the motion detection unit 170 detects the designated motion, the motion detection unit 170 advances the process to step S112. If the motion detection unit 170 cannot detect the designated motion, the motion detection unit 170 advances the process to step S105.
  • Step S112 The key control unit 180 or the registration unit 190 executes post-authentication processing. For example, when the user 42 enters the room, the key control unit 180 controls the door 41 to be unlocked. In this way, when the face recognition is successful and the replacement is not detected and the operation as instructed is detected, a predetermined process such as unlocking the door 41 is executed. Next, the replacement determination process will be described in detail.
  • FIG. 12 is a flowchart showing an example of the procedure of the replacement determination process. Hereinafter, the process shown in FIG. 12 will be described along with the step numbers.
  • the replacement determination unit 160 determines whether or not the contour change degree is equal to or higher than the threshold value Th1. If the replacement determination unit 160 has a threshold value Th1 or higher, the replacement determination unit 160 proceeds to step S122. Further, if the replacement determination unit 160 is less than the threshold value Th1, the process proceeds to step S123.
  • the replacement determination unit 160 determines that the shooting target of the camera 23 has been replaced, and ends the process. [Step S123] The replacement determination unit 160 determines whether or not the contour change degree is the threshold value Th2 or more (threshold value Th2 ⁇ threshold value Th1). If the replacement determination unit 160 has a threshold value Th2 or higher, the replacement determination unit 160 proceeds to step S124. Further, if the replacement determination unit 160 is less than the threshold value Th2, the process proceeds to step S126.
  • Step S124 The replacement determination unit 160 determines whether or not the sum of the contour change degree and the reflection change degree is the threshold value Th3 or more (threshold value Th3> threshold value Th2). If the replacement determination unit 160 has a threshold value Th3 or higher, the replacement determination unit 160 proceeds to step S125. If the replacement determination unit 160 is less than the threshold value Th3, the replacement determination unit 160 ends the replacement determination process.
  • the replacement determination unit 160 determines that the shooting target of the camera 23 has been replaced, and ends the process. [Step S126] The replacement determination unit 160 determines whether or not the reflection change degree is the threshold value Th4 or more. If the replacement determination unit 160 has a threshold value Th4 or higher, the replacement determination unit 160 proceeds to step S127. If the replacement determination unit 160 is less than the threshold value Th4, the replacement determination unit 160 ends the replacement determination process.
  • the replacement determination unit 160 determines that the shooting target of the camera 23 has been replaced, and ends the process.
  • the threshold value Th1 shown in FIG. 12 is an example of the first threshold value in the first embodiment.
  • the threshold Th4 is an example of the second threshold in the first embodiment.
  • the threshold Th3 is an example of the third threshold in the first embodiment.
  • the replacement when at least one of the contour change degree and the reflection change degree is equal to or higher than the respective threshold values, the replacement is detected.
  • the replacement it is possible to detect the replacement with high accuracy without being affected by the blurring of the image. That is, if the blurring of the image is small, the replacement can be detected with high accuracy based on the degree of change in reflection. If the image blur is large, the replacement is detected based on the degree of contour change. Therefore, even if the user 42 tries to avoid the replacement detection due to the reflection change degree by using the blur of the image, it is determined that the replacement is based on the contour change degree, and the unauthorized passing of the authentication is suppressed.
  • the replacement is detected.
  • the sum of the degree of contour change and the degree of reflection change it is possible to appropriately detect the replacement even if it is not known whether or not the replacement has been performed by only one of them.
  • the cause of small blurring can be both the case of replacement and the case of the movement of the face of a raw person. Even in such a case, the presence or absence of replacement can be appropriately determined by the sum of both the degree of contour change and the degree of reflection change.
  • the calculation of the degree of reflection change and the degree of contour change only needs to compare two consecutive images in chronological order.
  • the feature amount of the face image reflected in the acquired image is collated with the feature amount of a large number of users stored in the server 200, and the processing amount increases. Therefore, by performing the alternate detection using the degree of change in reflection and the degree of change in contour, the calculation cost can be reduced as compared with the feature amount extraction for face recognition. Since the calculation cost is low, it is possible to calculate every frame, and it is possible to carry out the replacement detection process in real time.
  • FIG. 13 is a diagram showing an example of normalization between the degree of contour change and the degree of reflection change.
  • the HLAC histogram is used as the edge statistic
  • the LBP histogram is used as the pixel value statistic.
  • a threshold value "Th_hlac” is set in advance for the HLAC distance "Dist_hlac”.
  • the threshold value "Th_hlac” is, for example, the threshold value "Th1" shown in FIG.
  • the contour change degree "V_co” is set to "1".
  • the replacement determination unit 160 sets the contour change degree "V_co” to "Dist_hlac / Th_hlac”.
  • a threshold value "Th_lbp” is set in advance for the LBP distance "Dist_lbp".
  • the threshold value "Th_lbp” is, for example, the threshold value "Th4" shown in FIG.
  • the replacement determination unit 160 sets the reflection change degree “V_re” to “1” when “Dist_lbp ⁇ Th_lbp” is satisfied. When the replacement determination unit 160 does not satisfy "Dist_lbp ⁇ Th_lbp", the replacement determination unit 160 sets the reflection change degree "V_re” to "Dist_lbp / Th_lbp".
  • the replacement detection process by the face recognition device 100 does not require pre-registration of user's personal information for replacement detection, and can also be used when registering the feature amount of the face image. Even when the feature amount of the face image of the user 42 is registered in the server 200, the feature amount of the face image is registered in the image of the photograph 43 of another person by detecting the replacement of the shooting target of the camera 23. It can be deterred. For example, when the user 42 inputs a predetermined password using the operation key 22 of the face authentication device 100, the face authentication device 100 enters the input mode of the image feature amount of the new face image. If a face is photographed in front of the camera 23 in this state, the feature amount of the captured face image is registered in the server 200.
  • the face recognition device 100 suppresses the registration of an illegal face image feature amount by performing an operation determination accompanied by a replacement detection even when the face image feature amount is registered.
  • FIG. 14 is a flowchart showing an example of the procedure of the face image feature amount registration process.
  • steps S132 to S139 are the same as the processes of steps S104 to S111 shown in FIG. 11, respectively.
  • steps S131 and S140 which are different from the processes of FIG. 11, will be described.
  • Step S131 The image acquisition unit 120 acquires an image to be registered from the camera 23.
  • the image acquisition unit 120 transmits the acquired image to the registration unit 190.
  • steps S132 to S139 the operation instruction, the replacement determination based on the image after the operation instruction, and the detection of the operation as instructed are performed.
  • the process proceeds to step S140.
  • Step S140 The registration unit 190 registers the feature amount of the face image in the image acquired from the image acquisition unit 120 in the server 200. By performing the operation determination process accompanied by the replacement detection even when the facial image feature amount is registered in this way, the registration of the facial image feature amount by the photograph 43 of another person is suppressed.
  • the reflection score indicating whether or not the pixel has a reflection like a counterfeit is alternately used for detection.
  • the reflection score is calculated based on the specular reflection component and the diffuse reflection component obtained from the image.
  • the face recognition device 100 or the server 200 generates a machine learning model using pixel value statistics of a specular reflection component and a diffuse reflection component calculated in advance from a large number of images of real and counterfeit objects.
  • the generated model is, for example, a calculation model in which a specular reflection component and a diffuse reflection component (or a statistic of their pixel values) of an image are input to calculate a reflection score indicating a counterfeit property.
  • the calculated reflex score is designed so that, for example, the value becomes larger as if it were a forgery. For example, if the image taken is a photographic image, the specular reflection component becomes large on the entire screen. By reflecting such a tendency in the model, the reflection score for the image of the photograph is increased.
  • the change degree calculation unit 150 of the face recognition device 100 calculates the reflection score using a model prepared in advance when calculating the contour change degree and the reflection change degree. Then, the replacement determination unit 160 performs the replacement determination processing using the contour change degree, the reflection change degree, and the reflection score.
  • FIG. 15 is a flowchart showing an example of the procedure of the authentication process when the reflection score is used.
  • steps S201 to S207 and S210 to S212 are the same as the processes of steps S101 to S107 and S110 to S112 shown in FIG. 11, respectively.
  • steps S208 and S209 which are different from the processes of FIG. 11, will be described.
  • the change degree calculation unit 150 calculates the contour change degree, the reflection change degree, and the reflection score.
  • the method of calculating the degree of contour change and the degree of reflection change is the same as the process of step S108 shown in FIG.
  • the change degree calculation unit 150 separates the components of each pixel of the image acquired in step S205 into a specular reflection component and a diffuse reflection component in order to calculate the reflection score.
  • the change degree calculation unit 150 inputs the specular reflection component and the diffuse reflection component (or the statistic of their pixel values) into the model for calculating the reflection score, and calculates the reflection score by performing the calculation according to the model. do.
  • Step S209 The replacement determination unit 160 performs the replacement determination process based on the contour change degree, the reflection change degree, and the reflection score calculated by the change degree calculation unit 150.
  • FIG. 16 is a flowchart showing an example of the procedure of the replacement determination process when the reflection score is used.
  • steps S223 to S229 are the same as the processes of steps S121 to S127 of the processes shown in FIG. 12, respectively.
  • steps S221 and S222 which are different from the processes of FIG. 12, will be described.
  • Step S221 The replacement determination unit 160 determines whether or not the reflection score calculated by the change degree calculation unit 150 is the threshold value Th5 or more. If the replacement determination unit 160 has a threshold value Th5 or higher, the replacement determination unit 160 proceeds to step S222. If the replacement determination unit 160 is less than the threshold value Th5, the replacement determination unit 160 proceeds to step S223.
  • the replacement determination unit 160 determines that the shooting target of the camera 23 has been replaced, and ends the process. By determining the presence or absence of replacement using the reflection score in this way, the determination accuracy can be improved.
  • the threshold value Th5 shown in FIG. 16 is an example of the fourth threshold value in the first embodiment.
  • the motion determination process accompanied by the replacement determination is performed after the face authentication is successful by the face image collation process, but the collation process may be performed after the motion determination process.
  • the face recognition device 100 stores, for example, an image acquired during the operation determination process in the memory 102 or the storage device 103, and performs a collation process for face recognition using the saved image.
  • the user 42 may hold the photo 43 in front of the camera 23 at an arbitrary timing after the operation instruction is output. If the face recognition device 100 has at least one image that succeeds in face recognition in the image acquired during the operation determination process, the face recognition device 100 may succeed in face recognition. Even in such a case, fraudulent activity can be suppressed by performing a replacement determination during the operation determination process.
  • FIG. 17 is a flowchart showing an example of the procedure of the authentication process for collating the image during the operation determination.
  • steps S301 and S303 to S308 are the same as the processes of steps S104 and S106 to S111 shown in FIG. 11, respectively.
  • steps S310 and S311 are the same as the processes of steps S103 and S112 shown in FIG. 11, respectively.
  • steps S302 and S309 which are different from the processes of FIG. 11, will be described.
  • Step S302 The image acquisition unit 120 acquires an image from the camera 23. Then, the image acquisition unit 120 recognizes that the operation instruction is output from the operation instruction unit 140, transmits the acquired image to the change degree calculation unit 150, and stores the acquired image in the memory 102 or the storage device 103. do.
  • Image acquisition in step S302 is repeatedly executed until the operation specified in step S308 is detected, and the acquired images are stored in the memory 102 or the storage device 103.
  • the process proceeds to step S309.
  • the collation unit 130 cooperates with the server 200, and features a feature amount indicating the features of the face image captured in the image stored in the memory 102 or the storage device 103, and face image feature amount data stored in the server 200. It is collated with the feature amount shown in 211.
  • the collation unit 130 selects one or more images suitable for collation from the plurality of stored images.
  • An image suitable for collation is, for example, an image showing a face from the front with less blurring.
  • the collation unit 130 collates the feature amount indicating the feature of the face image reflected in the selected image with the feature amount shown in the face image feature amount data 211 stored in the server 200. If face recognition is successful by collation, processing such as unlocking will be executed.
  • the degree of change in the LBP histogram is calculated as the degree of change in reflection, but other statistics may be used.
  • the correlation of the luminance values between two images consecutive in time series may be used as the degree of reflection change.
  • the degree of change of the HLAC histogram is calculated as the degree of contour change, but other statistics may be used.
  • the correlation of Laplacian between two images continuous in time series may be used as the degree of contour change.
  • the pixel value statistic is calculated based on the face image of the region where the face is shown, but the pixel value statistic is calculated based on the image of a part of the face. May be calculated.
  • the pixel value statistic may be calculated from an image around the cheek that is not easily affected by other things.
  • the position of the cheek can be specified from the relative positional relationship with the eyes, nose, and mouth, for example. If the pixel value statistic is calculated using the image of the cheek, the influence of the shaking of the hair is less than that of the entire face, and the accuracy of the degree of change in reflex is improved.
  • the edge statistic of the entire face is calculated, but the edge statistic of a part of the face may be calculated.
  • edge statistics may be calculated from around the nose, which is less susceptible to other effects. If the edge statistic is calculated using the image around the nose, the influence of the shaking of the hair is less than that of the entire face, and the accuracy of the contour change is improved.
  • the face recognition device 100 is used for entrance control to the office 40, but it can also be used for other purposes.
  • the function shown in the face recognition device 100 can be applied to the identity verification of the account holder in the ATM, the identity verification of the user in various devices such as a computer, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Human Computer Interaction (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Security & Cryptography (AREA)
  • General Health & Medical Sciences (AREA)
  • Software Systems (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Collating Specific Patterns (AREA)

Abstract

認証途中での撮影対象の入れ替わりを容易に検出できるようにする。 顔認証装置(10)は、カメラ(3)から時系列の複数の画像(4a,4b,4c,・・・)を取得する。次に顔認証装置(10)は、時系列で連続する第1画像(5)と第2画像(6,7)とのそれぞれに写り込んだ顔画像に含まれる輪郭の違いを表す輪郭変化度を算出する。また顔認証装置(10)は、第1画像(5)と第2画像(6,7)との光の反射特性の違いを表す反射変化度を算出する。そして顔認証装置(10)は、輪郭変化度と反射変化度とに基づいて、カメラ(3)の撮影対象の入れ替わりが発生したかどうかを判定する。

Description

顔認証方法、顔認証プログラム、および顔認証装置
 本発明は、顔認証方法、顔認証プログラム、および顔認証装置に関する。
 個人の識別に生体認証が用いられることがある。生体認証は、個人の身体的特徴を表す生体情報を用いて個人認証を行うものである。生体認証の1つに顔認証がある。顔認証は、個人の顔の特徴を表す生体情報の比較により個人を識別する技術である。
 顔認証は個人の顔画像を用いるため、別人の顔が写った写真を用いた第三者によるなりすましが可能である。例えばSNS(Social Networking Service)などを介して他人の顔画像を入手することは容易である。悪意のある第三者は、他人の顔画像を顔認証システムのカメラの前にかざすことで、他人に成りすまして認証を受けることができる。
 他人のなりすましを抑止する技術としては、例えば撮影装置で撮影した画像が人間を撮影した画像であるかどうかを判定し、人間を撮影した画像でなければ処理を中止することで、セキュリティの向上を図った個人識別装置が提案されている。
 画像から、その画像に写ったものの特徴を抽出する技術としては、例えば輪郭の抽出技術、反射特性の算出技術などがある。例えば元の画像を鏡面反射成分と拡散反射成分とに分離する技術も提案されている。
特開2004-054788号公報
Daisuke Miyazaki, Robby T. Tan, Kenji Hara, Katsushi Ikeuchi, "Polarization-based Inverse Rendering from a Single View", Proceedings Ninth IEEE International Conference on Computer Vision, pp.982-987, Nice, France, 2003.10
 他人の写真を用いたなりすましに対する対策として、例えば利用者に指定動作を行わせることが考えられる。例えば右を向くといった動作を指定し、カメラに写った利用者が指定通りの動作をした場合、カメラに写っているのが写真ではなく生の人間であると判断できる。
 しかし、動作検出中に写真と生の人間とが入れ替わると、不正認証に成功する可能性がある。例えば始め写真をカメラにかざした後にカメラの前で生の顔に入れ替わって指定された動作をすることで、写真に写った人物が動作をしたように見せかけることができる。従来の技術では、認証の途中でカメラの撮影対象を入れ替えることによる不正行為を検出するのが困難である。
 1つの側面では、本件は、認証途中での撮影対象の入れ替わりを容易に検出できるようにすることを目的とする。
 1つの案では、コンピュータが以下の処理を実行する顔認証方法が提供される。
 コンピュータは、カメラから時系列の複数の画像を取得する。次にコンピュータは、時系列で連続する第1画像と第2画像とのそれぞれに写り込んだ顔画像に含まれる輪郭の違いを表す輪郭変化度、および第1画像と第2画像との光の反射特性の違いを表す反射変化度を算出する。そしてコンピュータは、輪郭変化度と反射変化度とに基づいて、カメラの撮影対象の入れ替わりが発生したかどうかを判定する。
 1態様によれば、認証途中での撮影対象の入れ替わりを容易に検出可能となる。
 本発明の上記および他の目的、特徴および利点は本発明の例として好ましい実施の形態を表す添付の図面と関連した以下の説明により明らかになるであろう。
顔認証法の一例を示す図である。 生体認証システムの一例を示す図である。 顔認証装置のハードウェアの一例を示す図である。 サーバのハードウェアの一例を示す図である。 各装置の機能の一例を示すブロック図である。 顔認証装置の記憶部が有するデータの一例を示す図である。 不正行為の一例を示す図である。 認証手順の概要を示す図である。 画像のブレが小さい場合におけるフレームごとの画像の一例を示す図である。 画像のブレが大きい場合におけるフレームごとの画像の一例を示す図である。 認証処理の手順の一例を示すフローチャートである。 入れ替わり判定処理の手順の一例を示すフローチャートである。 輪郭変化度と反射変化度との正規化の一例を示す図である。 顔画像特徴量登録処理の手順の一例を示すフローチャートである。 反射スコアを利用する場合の認証処理の手順の一例を示すフローチャートである。 反射スコアを利用する場合の入れ替わり判定処理の手順の一例を示すフローチャートである。 動作判定中の画像で照合を行う認証処理の手順の一例を示すフローチャートである。
 以下、本実施の形態について図面を参照して説明する。なお各実施の形態は、矛盾のない範囲で複数の実施の形態を組み合わせて実施することができる。
 〔第1の実施の形態〕
 まず第1の実施の形態について説明する。第1の実施の形態は、顔認証におけるカメラでの撮影対象の認証途中での入れ替わりを容易に検知できる顔認証方法である。
 図1は、顔認証法の一例を示す図である。図1には、顔認証方法を実現するための顔認証装置10が示されている。顔認証装置10は、例えば顔認証プログラムを実行することにより、顔認証方法を実施することができる。
 顔認証装置10は、記憶部11と処理部12とを有する。記憶部11は、例えば顔認証装置10が有するメモリ、またはストレージ装置である。処理部12は、例えば顔認証装置10が有するプロセッサ、または演算回路である。
 記憶部11は、カメラ3で撮影した画像4a,4b,4c,・・・ごとのエッジ統計量情報と画素値統計量情報とを記憶する。エッジ統計量情報は、画像内の各画素の輝度値を、顔の輪郭に現れるエッジ(輝度が大きく変化する部分)が明確となるように統計処理した情報である。顔の輪郭は、顔の一部の部位(例えば鼻)の輪郭でもよい。画素値統計量情報は、画像内の各画素の輝度値を、光の反射特性が明確となるように統計処理した情報である。画素値統計量情報は、例えば人物の顔が写っている領域の画素のみを用いて算出される。また画素値統計量情報は、例えば顔の一部の部位(例えば頬)が写っている領域の画素のみを用いて算出してもよい。
 処理部12は、カメラ3から取得した複数の画像4a,4b,4c,・・・に基づいて、カメラ3の前にいるユーザ1の認証処理を行う。例えば処理部12は、カメラ3から時系列の複数の画像4a,4b,4c,・・・を取得する。
 処理部12は、複数の画像4a,4b,4c,・・・のうちの画像(第3画像)に写る顔画像に表される生体的特徴に基づいて、顔認証処理を行う。顔認証処理は、取得した画像に写る顔画像に基づいてユーザ認証を行う処理である。例えば処理部12は、予め登録されているユーザの顔画像の特徴を表す特徴量と、取得した画像に写る顔画像の特徴量とを比較し、類似度が所定値以上であれば、取得した画像に写る顔画像が予め登録されているユーザの顔画像であると認定する。このような認定がなされたとき、顔認証は成功となる。
 また処理部12は、時系列で連続する2つの画像(第1画像5と第2画像6または第2画像7)それぞれに写り込んだ顔画像の輪郭の違いを表す輪郭変化度、および第1画像5と第2画像6または第2画像7との光の反射特性の違いを表す反射変化度を算出する。
 例えば処理部12は、カメラ3で撮影した動画像の1フレームが取得されるごとに、リアルタイムにそのフレームの画像のエッジ統計量と画素値統計量とを計算する。処理部12は、計算したエッジ統計量と画素値統計量とを記憶部11に格納する。また処理部12は、過去の直近の第1画像5のエッジ統計量と、新たに取得した第2画像6または第2画像7のエッジ統計量とに基づいて輪郭変化度を算出する。さらに処理部12は、過去の直近の第1画像5の画素値統計量と、新たに取得した第2画像6または第2画像7の画素値統計量とに基づいて反射変化度を算出する。
 そして処理部12は、輪郭変化度と反射変化度とに基づいて、カメラ3の撮影対象の入れ替わりが発生したかどうかを判定する。例えば処理部12は、輪郭変化度が第1閾値以上の場合、および反射変化度が第2閾値以上の場合に、入れ替わりありと判定する。
 また処理部12は、複数の画像4a,4b,4c,・・・の取得中に、カメラ3に写る人物に対して所定の動作を指示する。例えば処理部12は、顔認証に成功したとき、動作指示を音声出力または画面表示で行う。処理部12は、動作の指示後に取得した画像(第4画像)に基づいて、所定の動作が実施されたか否かを判断する動作判定処理を行う。
 処理部12は、顔認証処理で認証に成功し、かつ動作判定処理で所定の動作が実施されたと判断した場合、認証成功に応じた処理を実行する。認証成功に応じた処理は、例えばドアの解錠、機器の使用制限の解除、ATMによる現金引き出しまたは送金などである。
 このような顔認証装置10により、顔認証を伴う認証処理の過程でカメラ3での撮影対象が入れ替わった場合に、撮影対象の入れ替わりを容易に検出することができる。例えばユーザ1が、ユーザ認証を受けることができる他人の写真2で顔認証を受け、その後、自身の生の顔で動作指示に従った動作をすることで、不正認証を試みる場合を想定する。
 まずユーザ1が写真2をカメラ3の前にかざすと、顔認証装置10の処理部12が顔認証処理を行う。顔認証に成功すると、処理部12は「右を向いて下さい」のような動作をユーザ1に指示する。動作の指示を受けたユーザ1は、カメラ3の前から写真2をどかし、自身の顔がカメラ3に写るようにする。そしてユーザ1は、指示に従った動作を行う。
 処理部12は、動作指示後、カメラ3から1フレームの画像を取得するごとに、入れ替わり判定と動作判定とを行う。カメラ3の前に写真2がある間は、輪郭変化度と反射変化度との両方が小さく、入れ替わりは検出されない。また写真2の画像で指示通りの動作をさせることはできないため、動作判定により指示通りの動作が検出されることもない。
 ユーザ1がカメラ3の前から写真2を取り除くと、カメラ3に写る画像は例えば写真2が写された画像4bからユーザ1の顔が写された画像4cとなる。このとき、画像のブレが大きければ輪郭変化度に基づいて、容易に入れ替わりを検出できる。例えばブレが大きい場合、第1画像5から第2画像6に遷移する。ブレが大きいと輪郭の位置や太さが大きく変化する。そのため輪郭変化度が大きくなり、入れ替わりが検出される。
 また画像のブレが小さければ反射変化度に基づいて、容易に入れ替わりを検出できる。例えばブレが小さい場合、第1画像5から第2画像7に遷移する。ブレが小さければ、画像に写っている顔画像の反射特性を示す画素値統計量を高精度に算出できる。顔の凹凸や肌の色は人によって異なり、カメラ3の撮影対象となる顔が入れ替わると、それが二人の人間の生の顔の入れ替えであったとしても光の反射特性は明確に異なる。そのため反射変化度が大きくなり、入れ替わりが検出される。
 ここで処理部12は、例えば顔認証処理に用いた第3画像の取得時と動作判定処理に用いた第4画像の取得時とを含む期間内に取得された時系列で連続する画像の組ごとに、輪郭変化度と反射変化度との算出、および入れ替わりが発生したかどうかの判定を行う。これにより、写真2を用いて顔認証を成功させた後に、自身の顔に入れ替わり動作判定を成功させるという不正行為を、確実に抑止することができる。
 また処理部12は、入れ替わりが発生したかどうかの判定において、輪郭変化度と反射変化度とに基づいて算出した値(例えば合計)が第3閾値以上の場合に、入れ替わりありと判定してもよい。例えば輪郭変化度が第1閾値未満であっても、ある程度の小さくない値の場合、生じている画像のブレの原因として、入れ替わりによるものか生の人物の顔の動きによるものの両方が考えられる。そのため、輪郭変化度と反射変化度との両方がある程度大きな値の場合には入れ替わりありと判定することで、不正行為の検出精度を向上させることができる。
 さらに処理部12は、第1画像または第2画像の鏡面反射成分と拡散反射成分との反射スコアを算出し、それらを入れ替わり判定に利用してもよい。鏡面反射成分は、入射角と反射角が等しい光の反射成分である。鏡面反射は正反射とも呼ばれる。拡散反射は、光の反射のうち鏡面反射を除いた成分である。拡散反射は乱反射とも呼ばれる。
 例えば処理部12は、反射スコアと第4閾値との比較結果に基づいて、カメラの撮影対象の入れ替わりが発生したかどうかを判定する。反射スコアは、例えば、画像に写っている顔が偽造物らしいほど大きな値となる。この場合、処理部12は、反射スコアが第4閾値以上の場合にカメラ3の撮影対象の入れ替わりが発生したと判定する。
 反射スコアを用いて入れ替わり判定を行うことで、鏡面反射成分と拡散反射成分とに基づいて偽造物を判定可能な画像が含まれる場合には、認証処理を失敗させることができ、不正行為の検出精度を向上させることができる。
 〔第2の実施の形態〕
 次に第2の実施の形態について説明する。第2の実施の形態は、顔認証途中での認証対象の入れ替えを検出できるようにした認証システムである。このような生体認証システムは、銀行ATM(Automatic Teller Machine)などの機器へのアクセスコントロール、入室管理、ボーダーコントロールなどで利用される。
 図2は、生体認証システムの一例を示す図である。図2には、生体認証システムを利用したオフィス40への入室管理の例を示している。オフィス40のドア41の横には顔認証装置100が設置されている。顔認証装置100は、ユーザの顔画像に基づいて個人認証を行い、認証結果に応じてドア41の電子錠を制御する。
 顔認証装置100は、例えばネットワーク20を介してサーバ200に接続されている。サーバ200は、オフィス40への入室が許可されたユーザの顔画像から得られた顔認証用の特徴量データを記憶している。またサーバ200は、顔認証用の特徴量データと、入室を希望するユーザの顔画像から得られた特徴量データとを照合し、該当ユーザが、予め登録されたユーザと同一人物か否かを判定することもできる。
 顔認証装置100は、例えば入室しようとするユーザの顔を撮影し、得られた顔画像から顔認証用の特徴量データを生成する。そして顔認証装置100は、生成した特徴量データをサーバ200に送信し、入室が許可されているユーザの特徴量データとの照合を依頼する。サーバ200の照合の結果、入室が許可されているユーザと同一人物であると判断された場合、顔認証装置100は、カメラに写っているのが生の人間であることを確認し、そのことが確認できたときにドア41の電子錠のロックを解除する。
 図3は、顔認証装置のハードウェアの一例を示す図である。顔認証装置100は、プロセッサ101によって装置全体が制御されている。プロセッサ101には、バス108を介してメモリ102と複数の周辺機器が接続されている。プロセッサ101は、マルチプロセッサであってもよい。プロセッサ101は、例えばCPU(Central Processing Unit)、MPU(Micro Processing Unit)、またはDSP(Digital Signal Processor)である。プロセッサ101がプログラムを実行することで実現する機能の少なくとも一部を、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)などの電子回路で実現してもよい。
 メモリ102は、顔認証装置100の主記憶装置として使用される。メモリ102には、プロセッサ101に実行させるOS(Operating System)のプログラムやアプリケーションプログラムの少なくとも一部が一時的に格納される。また、メモリ102には、プロセッサ101による処理に利用する各種データが格納される。メモリ102としては、例えばRAM(Random Access Memory)などの揮発性の半導体記憶装置が使用される。
 バス108に接続されている周辺機器としては、ストレージ装置103、音声再生装置104、入力インタフェース105、機器接続インタフェース106およびネットワークインタフェース107がある。
 ストレージ装置103は、内蔵した記録媒体に対して、電気的または磁気的にデータの書き込みおよび読み出しを行う。ストレージ装置103は、コンピュータの補助記憶装置として使用される。ストレージ装置103には、OSのプログラム、アプリケーションプログラム、および各種データが格納される。なお、ストレージ装置103としては、例えばHDD(Hard Disk Drive)やSSD(Solid State Drive)を使用することができる。
 音声再生装置104には、スピーカ21が接続されている。音声再生装置104は、プロセッサ101からの命令に従って、デジタルの音声データをアナログの音声信号に変換し、スピーカ21に出力する。これによりスピーカ21から音声が出力される。
 入力インタフェース105には、操作キー22が接続されている。入力インタフェース105は、操作キー22から送られてくる信号をプロセッサ101に送信する。
 機器接続インタフェース106は、顔認証装置100に周辺機器を接続するための通信インタフェースである。例えば機器接続インタフェース106には、カメラ23および電子錠ユニット24を接続することができる。カメラ23は、CCD(Charge-Coupled Device)などの撮像素子を用いて画像を撮影する。機器接続インタフェース106は、カメラ23が撮影した1フレームごとの画像データを、例えばメモリ102に転送する。電子錠ユニット24は、入力信号に応じてドア41(図2参照)の鍵の施錠と解錠とを行う。例えば電子錠ユニット24は、プロセッサ101からの解錠の信号を機器接続インタフェース106経由で受信すると、ドア41の鍵機構に内蔵されたモータを制御し、鍵を解錠する。
 ネットワークインタフェース107は、ネットワーク20に接続されている。ネットワークインタフェース107は、ネットワーク20を介してサーバ200との間でデータの送受信を行う。ネットワークインタフェース107は、例えばスイッチやルータなどの有線通信装置にケーブルで接続される有線通信インタフェースである。またネットワークインタフェース107は、基地局やアクセスポイントなどの無線通信装置に電波によって通信接続される無線通信インタフェースであってもよい。
 顔認証装置100は、以上のようなハードウェアによって、第2の実施の形態の処理機能を実現することができる。なお、第1の実施の形態に示した顔認証装置10も、図3に示した顔認証装置100と同様のハードウェアにより実現することができる。
 顔認証装置100は、例えばコンピュータ読み取り可能な記録媒体に記録されたプログラムを実行することにより、第2の実施の形態の処理機能を実現する。顔認証装置100に実行させる処理内容を記述したプログラムは、様々な記録媒体に記録しておくことができる。例えば、顔認証装置100に実行させるプログラムをストレージ装置103に格納しておくことができる。プロセッサ101は、ストレージ装置103内のプログラムの少なくとも一部をメモリ102にロードし、プログラムを実行する。
 なお図3に示した顔認証装置100には表示装置が接続されていないが、バス108にグラフィック処理装置を接続し、そのグラフィック処理装置に表示装置を接続することもできる。
 図4は、サーバのハードウェアの一例を示す図である。サーバ200は、プロセッサ201によって装置全体が制御されている。プロセッサ201には、バス209を介してメモリ202と複数の周辺機器が接続されている。プロセッサ201は、マルチプロセッサであってもよい。プロセッサ201は、例えばCPU、MPU、またはDSPである。プロセッサ201がプログラムを実行することで実現する機能の少なくとも一部を、ASIC、PLDなどの電子回路で実現してもよい。
 メモリ202は、サーバ200の主記憶装置として使用される。メモリ202には、プロセッサ201に実行させるOSのプログラムやアプリケーションプログラムの少なくとも一部が一時的に格納される。また、メモリ202には、プロセッサ201による処理に利用する各種データが格納される。メモリ202としては、例えばRAMなどの揮発性の半導体記憶装置が使用される。
 バス209に接続されている周辺機器としては、ストレージ装置203、グラフィック処理装置204、入力インタフェース205、光学ドライブ装置206、機器接続インタフェース207およびネットワークインタフェース208がある。
 ストレージ装置203は、内蔵した記録媒体に対して、電気的または磁気的にデータの書き込みおよび読み出しを行う。ストレージ装置203は、コンピュータの補助記憶装置として使用される。ストレージ装置203には、OSのプログラム、アプリケーションプログラム、および各種データが格納される。なお、ストレージ装置203としては、例えばHDDやSSDを使用することができる。
 グラフィック処理装置204には、モニタ31が接続されている。グラフィック処理装置204は、プロセッサ201からの命令に従って、画像をモニタ31の画面に表示させる。モニタ31としては、有機EL(Electro Luminescence)を用いた表示装置や液晶表示装置などがある。
 入力インタフェース205には、キーボード32とマウス33とが接続されている。入力インタフェース205は、キーボード32やマウス33から送られてくる信号をプロセッサ201に送信する。なお、マウス33は、ポインティングデバイスの一例であり、他のポインティングデバイスを使用することもできる。他のポインティングデバイスとしては、タッチパネル、タブレット、タッチパッド、トラックボールなどがある。
 光学ドライブ装置206は、レーザ光などを利用して、光ディスク34に記録されたデータの読み取り、または光ディスク34へのデータの書き込みを行う。光ディスク34は、光の反射によって読み取り可能なようにデータが記録された可搬型の記録媒体である。光ディスク34には、DVD(Digital Versatile Disc)、DVD-RAM、CD-ROM(Compact Disc Read Only Memory)、CD-R(Recordable)/RW(ReWritable)などがある。
 機器接続インタフェース207は、サーバ200に周辺機器を接続するための通信インタフェースである。例えば機器接続インタフェース207には、メモリ装置35やメモリリーダライタ36を接続することができる。メモリ装置35は、機器接続インタフェース207との通信機能を搭載した記録媒体である。メモリリーダライタ36は、メモリカード37へのデータの書き込み、またはメモリカード37からのデータの読み出しを行う装置である。メモリカード37は、カード型の記録媒体である。
 ネットワークインタフェース208は、ネットワーク20に接続されている。ネットワークインタフェース208は、ネットワーク20を介して、他のコンピュータまたは通信機器との間でデータの送受信を行う。ネットワークインタフェース208は、例えばスイッチやルータなどの有線通信装置にケーブルで接続される有線通信インタフェースである。またネットワークインタフェース208は、基地局やアクセスポイントなどの無線通信装置に電波によって通信接続される無線通信インタフェースであってもよい。
 サーバ200は、顔認証装置100に対して実行させるプログラムを、ネットワーク20を介して顔認証装置100に提供することができる。例えば顔認証装置100に実行させる処理内容を記述したプログラムを、光ディスク34、メモリ装置35、メモリカード37などの可搬型記録媒体に記録しておくこともできる。サーバ200は、可搬型記録媒体に格納されたプログラムを顔認証装置100に送信する。顔認証装置100は、サーバ200から送られたプログラムをストレージ装置203にインストールした後、実行可能となる。
 次に生体認証システムにおける各装置が有する機能について説明する。
 図5は、各装置の機能の一例を示すブロック図である。サーバ200は記憶部210を有している。記憶部210は、顔画像特徴量データ211を記憶する。顔画像特徴量データ211は、オフィスへの入室が許可されているユーザの顔画像から抽出した特徴量を数値化したデータである。記憶部210は、例えばサーバ200が有するストレージ装置203の記憶領域の一部を用いて実現される。
 顔認証装置100は、記憶部110、画像取得部120、照合部130、動作指示部140、変化度算出部150、入れ替わり判定部160、動作検出部170、鍵制御部180、および登録部190を有する。このうち記憶部110は、例えば顔認証装置100が有するストレージ装置103の記憶領域の一部を用いて実現される。また画像取得部120、照合部130、動作指示部140、変化度算出部150、入れ替わり判定部160、動作検出部170、鍵制御部180、および登録部190は、例えばプロセッサ101が所定のプログラムを実行することにより実現される。
 記憶部110は、エッジ統計量データ111と画素値統計量データ112とを記憶する。エッジ統計量データ111は、フレームごとの顔画像を解析して得られた顔の輪郭を示す情報である。画素値統計量データ112は、フレームごとの顔画像を解析して得られた顔の光の反射を示す情報である。
 画像取得部120は、カメラ23から画像を取得する。カメラ23から画像を取得するフレームレートは、1フレームの画像を用いた顔認証に要する時間に依存する。例えば画像取得のフレームレートは、1秒間に5~10フレーム程度である。
 画像取得部120は、顔認証に用いるフレームの画像を照合部130に送信する。また画像取得部120は、指示通りの動作をしたか否かの判定(動作判定)に用いるフレームの画像を変化度算出部150に送信する。指示される動作は、指定の方向を向く、縦や横に顔を振る、目や口を開閉するなどである。
 照合部130は、顔認証に用いる画像を受信すると、受信した画像を用いたユーザ認証を行う。例えば照合部130は、受信した画像に写った顔の特徴量を算出する。なお顔認証のための特徴量の算出処理は、輪郭を示す情報または反射特性を示す情報の抽出に比べて時間がかかる処理である。照合部130は、サーバ200と連係して、算出した特徴量と、サーバ200が有する顔画像特徴量データに示される顔画像の特徴量とを照合する。
 例えば照合部130は、受信した画像に写った顔画像の特徴量を計算し、その特徴量をサーバ200に送信する。サーバ200は、受信した特徴量と、記憶部210内の各ユーザの特徴量とを照合する。サーバ200は、入室が許可されているユーザのいずれかの顔画像の特徴量と、画像取得部120から取得した顔画像の特徴量とが一致(あるいは類似度が所定値以上)した場合、顔認証に成功したと判定する。サーバ200は判定結果を照合部130に送信する。なお、照合部130が、サーバ200から記憶部210に格納されている顔画像特徴量データ211を取得し、照合処理を行ってもよい。
 動作指示部140は、顔認証に成功した場合に、入室しようとするユーザに対して動作指示を出力する。例えば動作指示部140は、スピーカ21を介して動作を指示する音声を出力する。
 変化度算出部150は、画像取得部120から動作判定用の画像を取得すると、過去の画像との輪郭情報の変化の度合いを示す輪郭変化度と、過去の画像との光の反射特性の変化の度合いを示す反射変化度とを算出する。例えば変化度算出部150は、取得した画像のエッジ統計量と画素値統計量とを算出する。次に変化度算出部150は、記憶部110から、過去の直近の画像から得られたエッジ統計量と画素値統計量とを取得する。そして変化度算出部150は、過去の画像のエッジ統計量と最新の画像のエッジ統計量との差を計算し、差を示す値を輪郭変化度とする。また変化度算出部150は、過去の画像の画素値統計量と最新の画像の画素値統計量との差を計算し、差を示す値を反射変化度とする。
 入れ替わり判定部160は、輪郭変化度と反射変化度とに基づいて、カメラ23の撮影対象の入れ替わりの有無を判定する。例えば入れ替わり判定部160は、顔認証に成功した後に、顔認証の際のカメラ23の撮影対象が他の人または写真などに入れ替わっているかどうかを判定する。
 動作検出部170は、画像取得部120から連続するフレームの画像を取得し、ユーザが指示された動作を行ったことを検出する。例えば顔を左右のいずれかに向けることを指示した場合、顔の輪郭の左右の折線と鼻筋を上下に通る直線との間隔の変化によって、動作を検出することができる。例えば右方向を向くことが指示され、ユーザが指示に従った動作をしたものとする。この場合、顔の右側(画像では左側)の輪郭の垂直な接線と鼻を通る直線との間隔が狭まり、顔の左側(画像では右側)の輪郭の垂直な接線と鼻を通る直線との間隔が広がる。このような直線等の間隔の変化を検出することで、指示通りの動作が行われたか否かを判断できる。
 動作検出部170は、ユーザが入室しようとしている場合、入れ替わりを検出しなければ、例えば鍵制御部180に対して鍵の解錠を指示する。またユーザが照合用の顔画像特徴量の登録を要求している場合、動作検出部170は、入れ替わりを検出しなければ、登録部190にユーザの顔画像特徴量を送信する。
 鍵制御部180は、動作検出部170からの指示に従って、ドア41の鍵を解錠させる。例えば鍵制御部180は、電子錠ユニット24に対して解錠指示を送信する。すると電子錠ユニット24はドア41のロックを外す。
 登録部190は、動作検出部170からの指示に従って、画像取得部120が取得した画像に基づいてユーザの顔画像の画像特徴量を算出する。そして登録部190は、算出した画像特徴量をサーバ200に送信する。サーバ200は、その画像特徴量を記憶部210に格納する。
 図6は、顔認証装置の記憶部が有するデータの一例を示す図である。エッジ統計量データ111には、フレーム番号に対応付けて、該当フレームのエッジ統計量が時系列順に格納されている。エッジ統計量は、例えば高次局所自己相関(HLAC:Higher-order Local AutoCorrelation)のヒストグラムである。HLACでは、画素ごとに、周囲の画素との関係が25個のパターンのいずれかに分類される。そして各パターンの出現頻度(そのパターンとなる画素の数)を成分(非負整数値)とする25次のベクトルが、エッジ統計量としてエッジ統計量データ111に格納される。
 画素値統計量データ112には、フレーム番号に対応付けて、該当フレームの画素値統計量が時系列順に格納されている。画素値統計量は、例えばLBP(Local Binary Pattern)のヒストグラムである。LBPでは、画素ごとに、周囲の画素との大小関係に基づいて0~255のいずれかの値が算出される。そして各値の出現頻度(その値となる画素の数)を成分(非負整数値)とする256次のベクトルが、画素値統計量として画素値統計量データ112に格納される。
 なお図6の例ではヒストグラムを統計量としているため、統計量を示すベクトルの成分は非負整数値であるが、使用する統計量によってはベクトルの成分は実数値にもなり得る。
 このような機能を有する生体認証システムにより、オフィス40に入室しようとするユーザについて入室が許可されたユーザであると認証できた場合にのみ、ドア41が解錠される。このときユーザが、別人の写真を用いて不正に認証を受けようとする場合があり得る。
 図7は、不正行為の一例を示す図である。ユーザ42は写真43を手に持ってドア41の前にいる。写真43には、オフィス40への入室が許可されている他のユーザが写っている。なおユーザ42は、オフィス40への入室が許可されていない。
 ユーザ42は、写真43をカメラ23の前にかざすことで顔認証を試みるものとする。カメラ23の前に顔が写ったことを認識した顔認証装置100は、カメラ23が撮影した画像に基づいて顔認証を行うと共にスピーカ21から動作指示を出力し、動作判定を行う。
 図8は、認証手順の概要を示す図である。写真43の画像がカメラ23に写ると、顔認証装置100は、写真43に写っている顔画像に基づいて顔認証を行う。顔認証装置100は、顔認証に成功するとスピーカ21から、例えば「右を向いて下さい」というような動作指示を出力する。動作指示を受けたユーザ42は、カメラ23の前から写真43を取り除き、ユーザ42の顔がカメラ23に写る位置で指示通りの動作を行う。顔認証装置100は、カメラ23に写るユーザ42の画像の動きに基づいて、指示通りの動作をしたか否かを判断する。
 図8の例では、カメラ23の撮影対象が、写真43からユーザ42の顔に入れ替えられている。このように、写真43をかざした後に、生のユーザ42の顔に入れ替わって動作をすることで、写真の人物が動作をしたように見せかけるという不正行為が考えられる。
 なお前述のようにカメラ23から画像を取得するフレームレートは顔認証の処理時間に依存し、1秒間に5~10フレーム程度となる。そのためカメラ23の前から写真43を取り除く途中の様子がカメラ23で撮影されない可能性が十分にある。そのため、カメラ23の撮影対象を入れ替えている様子を示す画像を検出して入れ替えを検知するのは困難である。
 また正規のユーザの顔画像(例えば右を向いた顔画像)の特徴量を予めサーバ200に登録しておいて、動作指示後の画像でも顔認証をすることも考えられるが、処理負荷が過大となってしまう。また動作指示のすべてのパターンについてユーザの顔画像の特徴量を登録させるのは、ユーザの登録の手間を考えると実用的ではない。
 そこで顔認証装置100は、輪郭変化度と反射変化度とを組み合わせて、図8に示すような不正行為を検出する。輪郭変化度と反射変化度とを組み合わせたことで、確実な入れ替え検知が可能となる。すなわち反射変化度は光の反射の変化を検出するものであり、平面の写真での光の反射と生の人間の顔での光の反射との違いを適切に捉えることができる。ただし反射変化度は、画像のブレが大きいときには精度を欠き、正しい判断がされない可能性がある。
 図9は、画像のブレが小さい場合におけるフレームごとの画像の一例を示す図である。図9の例では、顔認証装置100は、時系列に画像51、画像52、画像53、画像54を取得している。画像51,52には、写真43の人物の顔画像が写っている。画像53,54には、ユーザ42の生の顔画像が写っている。
 ブレが小さい場合、画像51~54の反射特性を画素値統計量で正しく表すことができる。そのため平面の写真を写した画像52から生の顔を写した画像53との間では、光の反射特性が大きく変わる。その結果、画像52と画像53とを比較した時の反射変化度が大きくなる。
 なお画像52と画像53との間では、顔の位置および大きさがあまり変わらないため、輪郭変化度は小さい。すなわちユーザ42は、カメラ23に写る自身の顔の位置および大きさに合わせた適切な写真43を用意しておけば、輪郭変化度を用いた入れ替わり検知を回避することが可能である。このように輪郭変化度では入れ替わりの検知が困難な場合であっても、反射変化度を用いることで入れ替わりの検知が可能となる。
 図10は、画像のブレが大きい場合におけるフレームごとの画像の一例を示す図である。図10の例では、顔認証装置100は、時系列に画像55、画像56、画像57、画像58を取得している。画像55,56には、写真43の人物の顔画像が写っている。画像57,58には、ユーザ42の生の顔画像が写っている。
 ブレが大きい場合、画像55~58の反射特性を画素値統計量で正しく検出できない場合がある。例えば画像57ではブレの影響で、本来明るく反射するべき部分が暗くなっており、反射特性が画像56に近づいている。すなわちブレが大きいと反射変化度の確度は落ちてしまう。
 他方、ブレが大きいと顔の輪郭線の位置および太さが大きく変化する。その結果、画像56と画像57とを比較したときの輪郭変化度が大きくなる。そのため輪郭変化度を用いて入れ替わりを検知すれば、ブレが大きい場合でも入れ替わりの有無を適切に判定できる。
 このように反射変化度による入れ替わりの検知と輪郭変化度による入れ替わりの検知とは、相互補完の関係にある。そして両手法を適用することで、入れ替わり検知の精度を向上させることができる。
 次に顔認証装置100における認証処理の手順について具体的に説明する。
 図11は、認証処理の手順の一例を示すフローチャートである。以下、図11に示す処理をステップ番号に沿って説明する。
 [ステップS101]画像取得部120は、カメラ23が撮影した画像を取得する。画像取得部120は、取得した画像を照合部130に送信する。
 [ステップS102]照合部130はサーバ200と連係し、画像取得部120から受信した画像に写った顔画像の特徴を示す特徴量と、サーバ200に格納されている顔画像特徴量データ211に示される特徴量とを照合する。
 [ステップS103]照合部130は、照合の結果、顔認証に成功したか否かを判定する。例えば照合部130は、画像取得部120から受信した画像に写る顔画像の特徴量が、入室が許可されているいずれかのユーザの顔画像の特徴量と一致した(あるいは類似度が所定値以上となった)場合、顔認証に成功したと判定する。照合部130は、顔認証に成功した場合、処理をステップS104に進める。また照合部130は、顔認証に失敗した場合、認証処理を終了する。
 [ステップS104]動作指示部140は、照合部130による顔認証が成功したとの判定結果に応じ、スピーカ21を介してユーザ42への動作指示を出力する。動作指示部140は、例えば予め用意されている複数の動作候補からランダムに1つの動作候補を選択し、選択した動作候補に対応する音声データに基づいて動作指示を出力する。
 [ステップS105]画像取得部120は、カメラ23から画像を取得する。そして画像取得部120は、動作指示部140から動作指示が出力されていることを認識し、取得した画像を変化度算出部150に送信する。
 [ステップS106]変化度算出部150は、取得した画像のエッジ統計量と画素値統計量とを算出する。例えば変化度算出部150は、HLACのヒストグラムをエッジ統計量として算出する。また変化度算出部150は、LBPのヒストグラムを画素値統計量として算出する。
 [ステップS107]変化度算出部150は、記憶部110を参照し、過去のフレームの画像から算出された統計量があるか否かを判断する。変化度算出部150は、過去の統計量がある場合、処理をステップS108に進める。また変化度算出部150は、過去の統計量がない場合、処理をステップS105に進める。
 [ステップS108]変化度算出部150は、輪郭変化度と反射変化度とを算出する。例えば変化度算出部150は、記憶部110から、過去の直近のフレームのエッジ統計量を取得する。変化度算出部150は、記憶部110から取得したエッジ統計量と、ステップS106で算出したエッジ統計量とに基づいて輪郭変化度を計算する。例えば変化度算出部150は、2つのエッジ統計量のベクトルの距離を輪郭変化度とすることができる。また変化度算出部150は、2つのエッジ統計量のベクトルの類似度の逆数を輪郭変化度としてもよい。ベクトルが正規化されている場合、ベクトルの類似度は、例えばベクトルの内積によって求められる。
 また変化度算出部150は、記憶部110から、過去の直近のフレームの画素値統計量を取得する。変化度算出部150は、記憶部110から取得した画素値統計量と、ステップS106で算出した画素値統計量とに基づいて反射変化度を計算する。例えば変化度算出部150は、2つの画素値統計量のベクトルの距離を反射変化度とすることができる。また変化度算出部150は、2つの画素値統計量のベクトルの類似度の逆数を反射変化度としてもよい。
 [ステップS109]入れ替わり判定部160は、変化度算出部150が算出した輪郭変化度と反射変化度とに基づいて、入れ替わり判定処理を行う。入れ替わり判定処理により、カメラ23の撮影対象が入れ替わったか否かが判定される。入れ替わり判定処理の詳細は後述する(図12参照)。
 [ステップS110]入れ替わり判定部160は、入れ替わりを検出したか否かを判断する。入れ替わり判定部160は、入れ替わりを検出した場合、認証処理を終了する。また入れ替わり判定部160は、入れ替わりを検出しなかった場合、処理をステップS111に進める。
 [ステップS111]動作検出部170は、画像取得部120から画像を取得し、指定した動作の検出を行う。例えば右を向く動作を指定した場合、動作検出部170は、画像に写る顔の輪郭と鼻との位置関係を過去の画像と比較することで、右を向いたか否かを判断できる。動作検出部170は、指定した動作を検出した場合、処理をステップS112に進める。また動作検出部170は、指定した動作を検出できなかった場合、処理をステップS105に進める。
 [ステップS112]鍵制御部180または登録部190は、認証後の処理を実行する。例えばユーザ42の入室時であれば、鍵制御部180はドア41を解錠制御する。
 このようにして、顔認証に成功し、かつ入れ替わりが検出されずに指示通りの動作を検出した場合、ドア41の解錠などの所定の処理が実行される。次に、入れ替わり判定処理について詳細に説明する。
 図12は、入れ替わり判定処理の手順の一例を示すフローチャートである。以下、図12に示す処理をステップ番号に沿って説明する。
 [ステップS121]入れ替わり判定部160は、輪郭変化度が閾値Th1以上か否かを判断する。入れ替わり判定部160は、閾値Th1以上であれば処理をステップS122に進める。また入れ替わり判定部160は、閾値Th1未満であれば処理をステップS123に進める。
 [ステップS122]入れ替わり判定部160は、カメラ23の撮影対象の入れ替わりありと判定し、処理を終了する。
 [ステップS123]入れ替わり判定部160は、輪郭変化度が閾値Th2以上か否かを判断する(閾値Th2<閾値Th1)。入れ替わり判定部160は、閾値Th2以上であれば処理をステップS124に進める。また入れ替わり判定部160は、閾値Th2未満であれば処理をステップS126に進める。
 [ステップS124]入れ替わり判定部160は、輪郭変化度と反射変化度との和が閾値Th3以上か否かを判断する(閾値Th3>閾値Th2)。入れ替わり判定部160は、閾値Th3以上であれば処理をステップS125に進める。入れ替わり判定部160は、閾値Th3未満であれば入れ替わり判定処理を終了する。
 [ステップS125]入れ替わり判定部160は、カメラ23の撮影対象の入れ替わりありと判定し、処理を終了する。
 [ステップS126]入れ替わり判定部160は、反射変化度が閾値Th4以上か否かを判断する。入れ替わり判定部160は、閾値Th4以上であれば処理をステップS127に進める。また入れ替わり判定部160は、閾値Th4未満であれば入れ替わり判定処理を終了する。
 [ステップS127]入れ替わり判定部160は、カメラ23の撮影対象の入れ替わりありと判定し、処理を終了する。
 なお図12に示した閾値Th1は第1の実施の形態における第1閾値の一例である。閾値Th4は第1の実施の形態における第2閾値の一例である。閾値Th3は第1の実施の形態における第3閾値の一例である。
 このようにして、輪郭変化度と反射変化度との少なくとも一方がそれぞれの閾値以上の場合には、入れ替わりが検出される。これにより、画像のブレの影響を受けずに、入れ替わりを高精度に検出することができる。すなわち画像のブレが小さければ、反射変化度に基づいて、高精度に入れ替わりを検出できる。また画像のブレが大きい場合、輪郭変化度に基づいて入れ替わりが検出される。そのため、ユーザ42が画像のブレを利用して反射変化度による入れ替わり検出を回避しようとしても、輪郭変化度に基づいて入れ替わりと判断され、不正に認証をパスすることが抑止される。
 また輪郭変化度と反射変化度との和が大きすぎる場合にも入れ替わりが検出される。輪郭変化度と反射変化度との和を用いることで、一方だけでは入れ替えが行われたかどうかが分からない場合でも適切に入れ替わりを検出できる。
 例えば小さなブレが生じている原因として、入れ替わりによる場合と、生の人物の顔の動きによる場合との両方が考えられる。このような場合でも、輪郭変化度と反射変化度との両方の和によって入れ替わりの有無を適切に判断できる。
 しかも、反射変化度および輪郭変化度の計算は、時系列に連続する2つの画像を比較するだけで済む。それに対して、顔認証による個人の特定では、取得した画像に写る顔画像の特徴量をサーバ200に格納された多数のユーザの特徴量と照合することとなり、処理量が多くなる。そのため反射変化度および輪郭変化度を用いて入れ替わり検出を行ったことで、顔認証のための特徴量抽出に比べて計算コストが少なくて済む。計算コストが少ないため、毎フレームで計算することが可能であり、入れ替わりの検出処理をリアルタイムに実施することが可能である。
 なお、輪郭変化度と反射変化度との和の計算では、輪郭変化度と反射変化度とを正規化することで、輪郭変化度と反射変化度との影響を等しくすることができる。
 図13は、輪郭変化度と反射変化度との正規化の一例を示す図である。図13の例ではエッジ統計量としてHLACヒストグラムを用い、画素値統計量としてLBPヒストグラムを用いた場合を想定している。
 HLACの距離「Dist_hlac」に対して、予め閾値「Th_hlac」が定められる。閾値「Th_hlac」は、例えば図12に示した閾値「Th1」である。入れ替わり判定部160は、「Dist_hlac≧Th_hlac」を満たす場合、輪郭変化度「V_co」を「1」とする。入れ替わり判定部160は、「Dist_hlac≧Th_hlac」が満たされない場合、輪郭変化度「V_co」を「Dist_hlac/Th_hlac」とする。
 またLBPの距離「Dist_lbp」に対して、予め閾値「Th_lbp」が定められる。閾値「Th_lbp」は、例えば図12に示した閾値「Th4」である。入れ替わり判定部160は、「Dist_lbp≧Th_lbp」を満たす場合、反射変化度「V_re」を「1」とする。入れ替わり判定部160は、「Dist_lbp≧Th_lbp」が満たされない場合、反射変化度「V_re」を「Dist_lbp/Th_lbp」とする。
 このように輪郭変化度と反射変化度とを正規化することで、輪郭変化度と反射変化度との和に対するそれぞれの影響が対等となる。そして、輪郭変化度と反射変化度との和を閾値Th3と比較したとき、輪郭変化度の大きさと反射変化度の大きさとが対等に評価される。
 なお顔認証装置100による入れ替わりの検出処理は、入れ替わり検知のためのユーザ個人の情報の事前登録は不要であり、顔画像の特徴量の登録時にも利用可能である。ユーザ42の顔画像の特徴量をサーバ200に登録する際にも、カメラ23の撮影対象の入れ替わりを検出することで、他人の写真43の画像で顔画像の特徴量が登録されてしまうことを抑止できる。例えば顔認証装置100の操作キー22を用いてユーザ42が所定のパスワードを入力すると、顔認証装置100は、新たな顔画像の画像特徴量の入力モードになる。この状態で、カメラ23の前に顔を写せば、写った顔画像の特徴量がサーバ200に登録される。この際、ユーザ42が、他人が写った写真43をカメラ23の前に差し出すと、その他人の顔画像の特徴量がサーバ200に登録される可能性がある。そこで顔認証装置100は、顔画像特徴量の登録時においても入れ替わり検出を伴う動作判定を行うことで、不正な顔画像特徴量の登録を抑止する。
 図14は、顔画像特徴量登録処理の手順の一例を示すフローチャートである。図14に示した処理のうちステップS132~S139は、それぞれ図11に示した処理のステップS104~S111の処理と同じである。以下、図11の処理と異なるステップS131とステップS140の処理について説明する。
 [ステップS131]画像取得部120は、カメラ23から登録対象の画像を取得する。画像取得部120は、取得した画像を登録部190に送信する。その後、ステップS132からS139において動作指示、および動作指示後の画像による入れ替わり判定、指示通りの動作の検出が行われる。そして入れ替わりが検出されることなく指示通りの動作が検出された場合、処理がステップS140に進められる。
 [ステップS140]登録部190は、画像取得部120から取得した画像に写っている顔画像の特徴量をサーバ200に登録する。
 このように顔画像特徴量の登録時にも入れ替わり検出を伴う動作判定処理を実施することで、他人の写真43による顔画像の特徴量の登録が抑止される。
 〔第3の実施の形態〕
 次に第3の実施の形態について説明する。第3の実施の形態は、輪郭変化度と反射変化度に加え、画素中に偽造物らしい反射をもつかを示す反射スコアを入れ替わり検出に利用するものである。反射スコアは、画像から得られる鏡面反射成分と拡散反射成分とに基づいて算出される。
 例えば顔認証装置100またはサーバ200は、予め多数の本物と偽造物の画像から算出した鏡面反射成分と拡散反射成分における画素値統計量を用いて機械学習のモデルを生成しておく。生成されるモデルは、例えば画像の鏡面反射成分と拡散反射成分(あるいはそれらの画素値の統計量)を入力として、偽造物らしさを示す反射スコアを算出する計算モデルである。算出される反射スコアは、例えば偽造物らしいほど値が大きくなるように設計される。例えば撮影したのが写真の画像であれば画面全体で鏡面反射成分が大きくなる。このような傾向がモデルに反映されることで、写真の画像に対する反射スコアが大きくなる。
 顔認証装置100の変化度算出部150は、輪郭変化度と反射変化度とを算出する際に、予め用意されたモデルを用いて反射スコアを算出する。そして入れ替わり判定部160は、輪郭変化度と反射変化度と反射スコアとを用いて入れ替わり判定処理を実施する。
 図15は、反射スコアを利用する場合の認証処理の手順の一例を示すフローチャートである。図14に示した処理のうちステップS201~S207,S210~S212は、それぞれ図11に示した処理のステップS101~S107,S110~S112の処理と同じである。以下、図11の処理と異なるステップS208とステップS209の処理について説明する。
 [ステップS208]変化度算出部150は、輪郭変化度と反射変化度と反射スコアとを算出する。輪郭変化度と反射変化度との算出方法は、図11に示したステップS108の処理と同様である。変化度算出部150は、反射スコアを算出するために、ステップS205で取得した画像の各画素の成分を、鏡面反射成分と拡散反射成分とに分離する。次に変化度算出部150は、鏡面反射成分と拡散反射成分(あるいはそれらの画素値の統計量)を反射スコア算出用のモデルに入力し、モデルに従った計算を行うことで反射スコアを算出する。
 [ステップS209]入れ替わり判定部160は、変化度算出部150が算出した輪郭変化度と反射変化度と反射スコアとに基づいて、入れ替わり判定処理を行う。
 図16は、反射スコアを利用する場合の入れ替わり判定処理の手順の一例を示すフローチャートである。図16に示した処理のうちステップS223~S229は、それぞれ図12に示した処理のステップS121~S127の処理と同じである。以下、図12の処理と異なるステップS221とステップS222の処理について説明する。
 [ステップS221]入れ替わり判定部160は、変化度算出部150が算出した反射スコアが閾値Th5以上か否かを判断する。入れ替わり判定部160は、閾値Th5以上であれば処理をステップS222に進める。また入れ替わり判定部160は、閾値Th5未満であれば処理をステップS223に進める。
 [ステップS222]入れ替わり判定部160は、カメラ23の撮影対象の入れ替わりありと判定し、処理を終了する。
 このように反射スコアを用いて入れ替わりの有無を判定することで、判定精度を向上させることができる。なお図16に示した閾値Th5は第1の実施の形態における第4閾値の一例である。
 〔第4の実施の形態〕
 第2・第3の実施の形態では、顔画像による照合処理によって顔認証に成功した後に、入れ替わり判定を伴う動作判定処理を行っているが、動作判定処理の後に照合処理を行う場合もある。その場合、顔認証装置100は、例えば動作判定処理中に取得した画像をメモリ102またはストレージ装置103に保存しておき、保存しておいた画像を用いて顔認証のための照合処理を行う。
 このとき、ユーザ42が、動作指示が出力された後の任意のタイミングで、カメラ23の前に写真43をかざす可能性がある。顔認証装置100は、動作判定処理中に取得した画像内に、顔認証に成功する画像が1つでもあれば、顔認証を成功させてしまう可能性がある。このような場合であっても、動作判定処理中に入れ替わり判定を行うことで、不正行為を抑止することができる。
 図17は、動作判定中の画像で照合を行う認証処理の手順の一例を示すフローチャートである。図17に示した処理のうちステップS301,S303~S308は、それぞれ図11に示したステップS104,S106~S111の処理と同じである。またステップS310,S311は、それぞれ図11に示したステップS103,S112の処理と同じである。以下、図11の処理と異なるステップS302とステップS309の処理について説明する。
 [ステップS302]画像取得部120は、カメラ23から画像を取得する。そして画像取得部120は、動作指示部140から動作指示が出力されていることを認識し、取得した画像を変化度算出部150に送信すると共に、取得した画像をメモリ102またはストレージ装置103に格納する。
 ステップS308で指定された動作が検出されるまでステップS302における画像取得が繰り返し実行され、取得された画像は、メモリ102またはストレージ装置103に蓄積される。ステップS308で指定された動作が検出されると、処理がステップS309に進められる。
 [ステップS309]照合部130はサーバ200と連係し、メモリ102またはストレージ装置103に蓄積された画像に写った顔画像の特徴を示す特徴量と、サーバ200に格納されている顔画像特徴量データ211に示される特徴量とを照合する。例えば照合部130は、蓄積された複数の画像のうち、照合に適切な1以上の画像を選択する。照合に適切な画像は、例えば正面からの顔が写っているブレの少ない画像である。そして照合部130は、選択した画像に写った顔画像の特徴を示す特徴量と、サーバ200に格納されている顔画像特徴量データ211に示される特徴量とを照合する。照合によって顔認証に成功すれば、解錠などの処理が実行されることとなる。
 このような照合処理において、ユーザ42が、動作指示が出力された後の任意のタイミングでカメラ23の前に写真43をかざし、ブレが生じ内容に一定時間動かさずに留めたものとする。この場合、動作途中の生の顔の画像はブレ易いため、入れ替わり判定処理が行われていないと、正面からの顔が写ったブレの少ない写真43の画像が照合用の画像として選択される可能性が高い。それに対し図17の処理では動作判定中に入れ替わり判定処理を行っているため、カメラ23の撮影対象が入れ替わったことを反射変化度に基づいて検出でき、不正行為によって認証に成功してしまうことを抑止できる。
 〔その他の実施の形態〕
 第2~第4の実施の形態では反射変化度として、LBPヒストグラムの変化度を計算しているが、他の統計量を用いてもよい。例えば時系列に連続する2つの画像間の輝度値の相関を反射変化度としてもよい。
 また第2~第4の実施の形態では輪郭変化度として、HLACヒストグラムの変化度を計算しているが、他の統計量を用いてもよい。例えば時系列に連続する2つの画像間のラプラシアンの相関を輪郭変化度としてもよい。
 また第2~第4の実施の形態では、顔が写っている領域の顔画像に基づいて画素値統計量を計算しているが、顔の一部の領域の画像に基づいて画素値統計量を計算してもよい。例えば他の影響を受けにくい頬の周辺の画像から画素値統計量を計算してもよい。頬の位置は、例えば目、鼻、口との相対的な位置関係から特定できる。頬の画像を用いて画素値統計量を計算すれば、顔全体よりも髪の毛の揺れなどの影響が少なくて済み、反射変化度の精度が向上する。
 また第2~第4の実施の形態では、顔全体のエッジ統計量を計算しているが、顔の一部の領域のエッジ統計量を計算してもよい。例えば他の影響を受けにくい鼻の周辺からエッジ統計量を算出してもよい。鼻の周辺の画像を用いてエッジ統計量を計算すれば、顔全体よりも髪の毛の揺れなどの影響が少なくて済み、輪郭変化度の精度が向上する。
 また第2・第3の実施の形態は、顔認証装置100をオフィス40への入室管理に用いているが、他の用途にも利用することができる。例えばATMにおける口座名義人の本人確認、コンピュータなどの各種機器におけるユーザの本人確認などに、顔認証装置100に示した機能を適用することができる。
 上記については単に本発明の原理を示すものである。さらに、多数の変形、変更が当業者にとって可能であり、本発明は上記に示し、説明した正確な構成および応用例に限定されるものではなく、対応するすべての変形例および均等物は、添付の請求項およびその均等物による本発明の範囲とみなされる。
 1 ユーザ
 2 写真
 3 カメラ
 4a,4b,4c,・・・ 画像
 5 第1画像
 6,7 第2画像
 10 顔認証装置
 11 記憶部
 12 処理部
 

Claims (8)

  1.  コンピュータが、
     カメラから時系列の複数の画像を取得し、
     時系列で連続する第1画像と第2画像とのそれぞれに写り込んだ顔画像に含まれる輪郭の違いを表す輪郭変化度、および前記第1画像と前記第2画像との光の反射特性の違いを表す反射変化度を算出し、
     前記輪郭変化度と前記反射変化度とに基づいて、前記カメラの撮影対象の入れ替わりが発生したかどうかを判定する、
     顔認証方法。
  2.  前記コンピュータが、さらに、
     前記複数の画像のうちの第3画像に写る顔画像に表される生体的特徴に基づく顔認証処理と、前記カメラの撮影対象の人物に対する所定の動作の指示後に取得した第4画像に基づいて前記所定の動作が実施されたか否かを判断する動作判定処理とを行い、
     前記顔認証処理で認証に成功し、かつ前記動作判定処理で前記所定の動作が実施されたと判断した場合、認証成功に応じた処理を実行する、
     請求項1記載の顔認証方法。
  3.  前記第3画像の取得時と前記第4画像の取得時とを含む期間内に取得された時系列で連続する画像の組ごとに、前記反射変化度および前記輪郭変化度の算出、および入れ替わりが発生したかどうかの判定を行う、
     請求項2記載の顔認証方法。
  4.  入れ替わりが発生したかどうかの判定では、前記輪郭変化度が第1閾値以上の場合、および前記反射変化度が第2閾値以上の場合に、入れ替わりありと判定する、
     請求項1ないし3のいずれかに記載の顔認証方法。
  5.  入れ替わりが発生したかどうかの判定では、前記輪郭変化度と前記反射変化度との和が第3閾値以上の場合に、入れ替わりありと判定する、
     請求項1ないし4のいずれかに記載の顔認証方法。
  6.  前記コンピュータが、さらに、
     前記第1画像または前記第2画像の鏡面反射成分と拡散反射成分との反射スコアを算出し、
     入れ替わりが発生したかどうかの判定では、前記反射スコアと第4閾値との比較結果に基づいて、前記カメラの撮影対象の入れ替わりが発生したかどうかを判定する、
     請求項1ないし5のいずれかに記載の顔認証方法。
  7.  コンピュータに、
     カメラから時系列の複数の画像を取得し、
     時系列で連続する第1画像と第2画像とのそれぞれに写り込んだ顔画像に含まれる輪郭の違いを表す輪郭変化度、および前記第1画像と前記第2画像との光の反射特性の違いを表す反射変化度を算出し、
     前記輪郭変化度と前記反射変化度とに基づいて、前記カメラの撮影対象の入れ替わりが発生したかどうかを判定する、
     処理を実行させる顔認証プログラム。
  8.  カメラから時系列の複数の画像を取得し、時系列で連続する第1画像と第2画像とのそれぞれに写り込んだ顔画像に含まれる輪郭の違いを表す輪郭変化度、および前記第1画像と前記第2画像との光の反射特性の違いを表す反射変化度を算出し、前記輪郭変化度と前記反射変化度とに基づいて、前記カメラの撮影対象の入れ替わりが発生したかどうかを判定する処理部、
     を有する顔認証装置。
PCT/JP2020/035334 2020-09-17 2020-09-17 顔認証方法、顔認証プログラム、および顔認証装置 WO2022059151A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20954136.6A EP4216149A4 (en) 2020-09-17 2020-09-17 FACE AUTHENTICATION METHOD, FACE AUTHENTICATION PROGRAM AND FACE AUTHENTICATION APPARATUS
JP2022550277A JP7389392B2 (ja) 2020-09-17 2020-09-17 顔認証方法、顔認証プログラム、および顔認証装置
PCT/JP2020/035334 WO2022059151A1 (ja) 2020-09-17 2020-09-17 顔認証方法、顔認証プログラム、および顔認証装置
US18/178,798 US20230206686A1 (en) 2020-09-17 2023-03-06 Face authentication method, storage medium, and face authentication device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/035334 WO2022059151A1 (ja) 2020-09-17 2020-09-17 顔認証方法、顔認証プログラム、および顔認証装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/178,798 Continuation US20230206686A1 (en) 2020-09-17 2023-03-06 Face authentication method, storage medium, and face authentication device

Publications (1)

Publication Number Publication Date
WO2022059151A1 true WO2022059151A1 (ja) 2022-03-24

Family

ID=80776604

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/035334 WO2022059151A1 (ja) 2020-09-17 2020-09-17 顔認証方法、顔認証プログラム、および顔認証装置

Country Status (4)

Country Link
US (1) US20230206686A1 (ja)
EP (1) EP4216149A4 (ja)
JP (1) JP7389392B2 (ja)
WO (1) WO2022059151A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116959074B (zh) * 2023-07-31 2024-09-10 中国医学科学院北京协和医院 一种基于多光谱成像的人体皮肤检测方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004054788A (ja) 2002-07-23 2004-02-19 Omron Corp 個人認証システムにおける不正登録防止装置
JP2004234355A (ja) * 2003-01-30 2004-08-19 Toshiba Corp 人物認識装置、人物認識方法および通行制御装置
JP2009237629A (ja) * 2008-03-25 2009-10-15 Seiko Epson Corp 画像処理方法、画像処理装置、及び画像処理プログラム
JP2015176555A (ja) * 2014-03-18 2015-10-05 株式会社Nttドコモ 通信端末及び通信端末の認証方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013100898A1 (en) * 2011-12-27 2013-07-04 Intel Corporation Turing test based user authentication and user presence verification system, device, and method
US8457367B1 (en) * 2012-06-26 2013-06-04 Google Inc. Facial recognition
JP6809226B2 (ja) * 2014-10-15 2021-01-06 日本電気株式会社 生体検知装置、生体検知方法、および、生体検知プログラム
CA3040971A1 (en) * 2016-10-20 2018-04-26 Applied Recognition Inc. Face authentication to mitigate spoofing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004054788A (ja) 2002-07-23 2004-02-19 Omron Corp 個人認証システムにおける不正登録防止装置
JP2004234355A (ja) * 2003-01-30 2004-08-19 Toshiba Corp 人物認識装置、人物認識方法および通行制御装置
JP2009237629A (ja) * 2008-03-25 2009-10-15 Seiko Epson Corp 画像処理方法、画像処理装置、及び画像処理プログラム
JP2015176555A (ja) * 2014-03-18 2015-10-05 株式会社Nttドコモ 通信端末及び通信端末の認証方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DAISUKE MIYAZAKIROBBY T. TANKENJI HARAKATSUSHI IKEUCHI: "Polarization-based Inverse Rendering from a Single View", PROCEEDINGS OF THE NINTH IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION, pages 982 - 987
GANDHE S. T., TALELE K. T., KESKAR A. G.: "Face Recognition Using Contour Matching", IAENG INTERNATIONAL JOURNAL OF COMPUTER SCIENCE, 20 May 2008 (2008-05-20), XP055919774, Retrieved from the Internet <URL:http://iaeng.org/IJCS/issues_v35/issue_2/IJCS_35_2_06.pdf> [retrieved on 20220510] *
See also references of EP4216149A4

Also Published As

Publication number Publication date
JP7389392B2 (ja) 2023-11-30
EP4216149A4 (en) 2023-11-08
JPWO2022059151A1 (ja) 2022-03-24
EP4216149A1 (en) 2023-07-26
US20230206686A1 (en) 2023-06-29

Similar Documents

Publication Publication Date Title
US9922238B2 (en) Apparatuses, systems, and methods for confirming identity
CN109948408B (zh) 活性测试方法和设备
Jee et al. Liveness detection for embedded face recognition system
US20210287026A1 (en) Method and apparatus with liveness verification
US8280120B2 (en) Fraud resistant biometric financial transaction system and method
Hadid Face biometrics under spoofing attacks: Vulnerabilities, countermeasures, open issues, and research directions
KR20180022019A (ko) 라이브니스 검사 방법 및 장치
US10922399B2 (en) Authentication verification using soft biometric traits
CN107111755B (zh) 基于活跃度评价的视频假冒检测方法和系统
EP4343689A1 (en) Body part authentication system and authentication method
JP4899552B2 (ja) 認証装置、認証方法、認証プログラム、これを記録したコンピュータ読み取り可能な記録媒体
KR100825689B1 (ko) 얼굴 위장 판별 방법
Bresan et al. Facespoof buster: a presentation attack detector based on intrinsic image properties and deep learning
JP4760049B2 (ja) 顔認証装置、その顔認証方法、その顔認証装置を組み込んだ電子機器およびその顔認証プログラムを記録した記録媒体
CN108491768A (zh) 角膜反射人脸认证抗欺诈攻击方法、人脸特征认证系统
US20230206686A1 (en) Face authentication method, storage medium, and face authentication device
Benlamoudi Multi-modal and anti-spoofing person identification
WO2004097743A1 (ja) 偽眼識別方法および装置、偽眼識別プログラム、虹彩認証方法、偽造印刷物識別方法、並びに画像識別方法
KR102579610B1 (ko) Atm 이상행동감지 장치 및 그 장치의 구동방법
US11842573B1 (en) Methods and systems for enhancing liveness detection of image data
RU2791846C2 (ru) Способ и устройство для принятия решения о выполнении операции на основе групп выражений лица и электронное устройство
Ramachandra et al. Implementation of Face Feature Algorithms for Authentication of a Person (IFFAP)
Singh et al. Adapted Facial Recognition And Spoofing Detection For Management Decision Making System: A Visually Impaired People Perspective
Al-Omar et al. A Review On Live Remote Face Recognition and Access Provision Schemes
Akinnuwesi Boluwaji et al. AUTOMATED STUDENTS'ATTEDANCE TAKING IN TERTIARY INSTITUTION USING HYBRIDIZED FACIAL RECOGNITION ALGORITHM

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20954136

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022550277

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020954136

Country of ref document: EP

Effective date: 20230417