WO2022057874A1 - 一种植树装置和植树方法 - Google Patents
一种植树装置和植树方法 Download PDFInfo
- Publication number
- WO2022057874A1 WO2022057874A1 PCT/CN2021/118933 CN2021118933W WO2022057874A1 WO 2022057874 A1 WO2022057874 A1 WO 2022057874A1 CN 2021118933 W CN2021118933 W CN 2021118933W WO 2022057874 A1 WO2022057874 A1 WO 2022057874A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- tree
- self
- planting device
- stabilizing
- planting
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01G—HORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
- A01G13/00—Protecting plants
- A01G13/02—Protective coverings for plants; Coverings for the ground; Devices for laying-out or removing coverings
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01G—HORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
- A01G29/00—Root feeders; Injecting fertilisers into the roots
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01G—HORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
- A01G9/00—Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
- A01G9/02—Receptacles, e.g. flower-pots or boxes; Glasses for cultivating flowers
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H11/00—Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H21/00—Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
- D21H21/14—Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by function or properties in or on the paper
- D21H21/18—Reinforcing agents
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H27/00—Special paper not otherwise provided for, e.g. made by multi-step processes
Definitions
- the present application relates to the technical field of tree planting, and in particular, to a tree planting device and a tree planting method.
- the wind-sand hazard areas of desertification in my country are mainly located in the north along the Great Wall, south of Yinshan where wind-sand ravages, east of Helan Mountain, west of the line of Shuozhou and Hohhot, with the Ordos wind-sand plateau as the main body, covering an area of about 200,000 square kilometers, accounting for about 200,000 square kilometers of the whole region. 1/3 of .
- the desertified land area in the sandstorm area reaches 118,000 square kilometers, accounting for about 57% of the total area of the sandstorm area.
- the severely desertified area is about 36,000 square kilometers, mainly Mu Us Sandy Land, Kubuqi Desert and Hedong Sandy Land (referring to the eastern part of the Yellow River Reach in Ningxia), accounting for 17.4% of the total area of the sandy area.
- the amount of sand entering into the sand alone is 160 million tons, accounting for about 1/10 of the annual sediment transport of the Yellow River.
- the sand hazard area also includes the areas on the edge of the desert that affect the life and production of oasis residents, such as the Tengger Desert and the Hexi Corridor on the edge of the Kumtag Desert.
- the present application provides a self-stabilizing tree planting device, which effectively solves the problem that when using traditional devices and traditional methods to plant trees in flowing desert or soil areas, the plants therein are easily covered, moved, or blown up by the wind. Technical issues with which plants cannot be grown in unstable desert or soil areas.
- the present application also provides a plant fiber-based controllable permeable material and a preparation method thereof, which can effectively solve the technical defects that traditional water storage containers made of plastic cannot be degraded in nature, cause environmental pollution, and cannot control the irrigation rate.
- the plant fiber-based controllable water permeability material can be used to prepare a tree planting device.
- a first aspect of the present application provides a self-stabilizing tree planting device, the self-stabilizing tree planting device comprising:
- a tree planting pot a tree planting cavity, a first limiter, a second limiter and an isolation part;
- the tree-planting pot includes a pot mouth, a pot body and a pot bottom, the pot bottom is provided with the tree-planting cavity along the direction of the pot mouth, and the tree-planting cavity includes a column body with two ends communicating; the inner side wall of the pot body forming a filling cavity with the outer sidewall of the cylinder;
- the first limiting piece is arranged on the inner side wall of the basin, the second limiting piece is arranged on the outer side wall of the column body; the first limiting piece and the second limiting piece are arranged
- the shape of the isolation part matches the projected shape of the filling cavity; so that the isolation part can be fixed on the first limiting member and the second limiting member, and then the The isolation part divides the filling cavity into a first sub-filling cavity and a second sub-filling cavity; wherein, the isolation part is an isolation part through which water can pass through and sand cannot pass through.
- the first limiting member and the second limiting member are annular walls, and the annular wall is arranged around the inner side wall of the basin body; the annular wall is arranged around the cylinder body the outer side wall.
- the first limiting member and the second limiting member are bumps, the bumps are disposed on the inner side wall of the basin body at intervals or continuously, and the bumps are spaced or continuously around arranged on the outer side wall of the cylinder.
- the first limiting member and the second limiting member are inner grooves, the inner grooves are continuously arranged around the inner side wall of the basin, and the inner grooves are continuously arranged around on the outer side wall of the cylinder.
- the number of the first limiting members is several, and the plurality of the first limiting members are arranged on the inner side wall of the basin body at intervals along the axial direction of the basin body;
- the number of the second limiting members is several, and a plurality of the second limiting members are arranged on the outer side wall of the cylinder body at intervals along the axial direction of the cylinder body.
- the tree-planting pot and the tree-planting cavity are integral structures.
- the tree-planting pot and the tree-planting cavity are separate structures
- the self-stabilizing tree-planting device includes a first sub-tree-planting device and a second sub-tree-planting device, the first sub-tree-planting device and the second sub-tree-planting device.
- the two sub-tree planting devices are relatively fixedly installed to form the tree planting pot and the tree planting cavity.
- the basin body is a gradually expanding structure along the direction of the basin mouth.
- the basin body is a circular truncated truncated truncated along the direction of the basin mouth or a prismatic truncated truncated truncated truncated along the direction of the basin mouth.
- the basin body is a cylindrical body or a rectangular body.
- the basin bottom is provided with irrigation components along the periphery of the port of the cylinder.
- the irrigation component includes an irrigation hole and a water guide line, one end of the water guide line is disposed inside the pot bottom through the irrigation hole, and the other end of the water guide line is attached through the irrigation hole on the outside of the pelvic floor.
- the isolation member includes an isolation plate, and the isolation plate is provided with micropores through which water can pass and sand cannot pass.
- the isolation component includes an isolation net and an isolation material layer, the isolation material layer is fixed on the surface of the isolation net, and the isolation material layer is a material layer through which water can pass and sand cannot pass.
- the insulating material layer is a non-woven fabric through which water can pass through and sand cannot pass, or a gauze through which water can pass through and cannot pass through sand.
- the self-stabilizing tree planting device is made of degradable material.
- the self-stabilizing tree-planting device further includes a protective cover
- the protective cover includes a columnar body matched with the columnar body, the protective cover is arranged inside the tree-planting cavity, and The protective cover protrudes from a port of the tree planting cavity in a direction close to the pot mouth.
- a protective cover is provided on the protective cover.
- the protective cover is provided with ventilation holes.
- a second aspect of the present application provides a plant fiber-based controllable water-permeable material, comprising:
- the mixed paper material is wet-formed and then dried to obtain a plant fiber-based controllable water-permeable material
- the added amount of the water repellent is 0.1% to 28% of the absolute dry mass of the plant fiber slurry
- the added amount of the reinforcing agent is 0.2% to 10% of the absolute dry mass of the plant fiber slurry.
- the fibers of the plant fiber slurry are selected from waste paper fibers and native plant fibers.
- softwood pulp and hardwood pulp derived from wood are also suitable for the manufacture of the plant fiber-based controllable permeable material of the present application, but from the perspective of price and protection of forest resources, it is not recommended to be used preferentially.
- the waste paper fibers are selected from waste corrugated box fibers, waste newspaper fibers or office waste paper fibers.
- the beating degree of the plant fiber slurry is 14-60°SR.
- the beating degree of the plant fiber slurry is 20-60°SR.
- the beating degree of the plant fiber slurry is 25-40°SR.
- the water repellent is selected from one or more of paraffin, rosin, alkyl ketene dimer, alkenyl succinic anhydride, styrene-maleic anhydride copolymer and styrene-acrylate .
- styrene-acrylate can not only improve the hydrophobicity of plant fiber-based materials, but also form a discontinuous film between fibers to control the penetration of liquids such as water.
- the water repellent is selected from styrene-acrylate or/and alkyl ketene dimer.
- the reinforcing agent is selected from urea-formaldehyde resin, melamine-formaldehyde resin, polyamide polyamine-epichlorohydrin resin, polyethyleneimine, carboxymethyl starch, carboxymethyl cellulose and sodium polyacrylate one or more.
- polyamide polyamine-epichlorohydrin resin is a cationic polymer, which has the effect of improving the retention of anionic substances, and the addition amount of polyamide polyamine-epichlorohydrin resin affects the water permeability rate and material strength of the material. very large.
- the reinforcing agent is selected from one or more of urea-formaldehyde resin, polyamide polyamine-epichlorohydrin resin and carboxymethyl cellulose.
- the mixed paper material further includes a pore regulator; the added amount of the pore regulator is 0% to 4% of the absolute dry mass of the plant fiber slurry.
- the pore regulator is selected from one or more of cationic polyacrylamide, cationic starch, bentonite and colloidal silica.
- cationic polyacrylamide mainly improves the retention rate of fine fibers and fillers by changing the flocculation state of papermaking pulp, and also reduces the loss of water repellent, and at the same time controls the distribution of fibers in the material, forming "islands" inside the material structure, changing the open porosity and pore size of the material, thereby adjusting the water permeation rate.
- the pore modifier is selected from cationic polyacrylamide.
- the added amount of the pore regulator is 0.01% to 1% of the absolute dry mass of the plant fiber slurry.
- the added amount of the pore regulator is 1% of the absolute dry mass of the plant fiber slurry.
- the added amount of the reinforcing agent is 2% to 3% of the absolute dry mass of the plant fiber slurry.
- the added amount of the water-repellent agent is 4.5% to 15% of the absolute dry mass of the plant fiber slurry.
- the reinforcing agent and the pore modifier can also adjust the water permeation rate of the plant fiber-based material by increasing the retention rate of the water-repellent agent in the plant fiber-based controllable water-permeable material.
- the mixed paper stock further includes an antibacterial agent.
- the antibacterial agent is selected from one or more of o-phenylphenol, carbendazim, chlorothalonil, isothiazolinone and dithiocyanomethane.
- Carbendazim is also known as methyl N-benzimidazol-2-ylcarbamate (C 9 H 9 N 3 O 2 ).
- Chlorothalonil is also known as tetrachloroisophthalonitrile.
- the antibacterial agent is selected from dithiocyanomethane.
- the added amount of the antibacterial agent is 0% to 2.0% of the absolute dry mass of the plant fiber slurry.
- the added amount of the antibacterial agent is 0.02% of the absolute dry mass of the plant fiber slurry.
- the plant fiber pulp, polyamide polyamine-epichlorohydrin resin, carboxymethyl cellulose and styrene-acrylate are mixed, and formed by wet paper forming, and then dried to obtain a Water control material.
- the added amount of polyamide polyamine-epichlorohydrin resin is 1.5% of the absolute dry pulp mass of the plant fiber pulp; the added amount of styrene-acrylate is the absolute dry pulp of the plant fiber pulp 5% of the mass; the addition amount of carboxymethyl cellulose is 0.5% of the absolute dry pulp mass of the plant fiber pulp.
- the plant fiber pulp, alkyl ketene dimer, styrene-acrylate and polyamide polyamine-epichlorohydrin resin are mixed, formed by wet paper, and then dried to obtain plant fiber Base controllable permeable material.
- the added amount of polyamide polyamine-epichlorohydrin resin is 2% of the absolute dry pulp mass of the plant fiber pulp; the added amount of the alkyl ketene dimer is the absolute dry mass of the plant fiber pulp 0.5% of the mass of the pulp; the addition amount of styrene acrylate is 4% of the mass of the absolute dry pulp of the plant fiber pulp.
- the plant fiber pulp, urea-formaldehyde resin, cationic polyacrylamide and styrene-acrylate are mixed, formed by wet sheeting, and then dried to obtain a plant fiber-based controllable water permeable material.
- the added amount of urea-formaldehyde resin is 3% of the absolute dry pulp mass of the plant fiber pulp; the added amount of styrene-acrylate is 15% of the absolute dry pulp mass of the plant fiber pulp; cationic polymer The added amount of acrylamide is 1% of the absolute dry pulp mass of the vegetable fiber pulp.
- the plant fiber pulp, urea-formaldehyde resin, cationic polyacrylamide, styrene-acrylate and dithiocyanomethane are mixed, and formed by wet sheeting, and then dried to obtain a plant fiber-based controllable water permeability. Material.
- the added amount of urea-formaldehyde resin is 3% of the absolute dry pulp mass of the plant fiber pulp; the added amount of styrene-acrylate is 15% of the absolute dry pulp mass of the plant fiber pulp; cationic polymer
- the addition amount of acrylamide is 1% of the absolute dry pulp mass of the plant fiber pulp; the addition amount of dithiocyanomethane is 0.02% of the absolute dry pulp mass of the plant fiber pulp.
- the preparation method of the above-mentioned plant fiber-based controllable water-permeable material comprising the following steps:
- Step 1 Mix plant fiber pulp, water repellent, reinforcing agent, pore regulator and antibacterial agent to obtain mixed paper stock;
- step 2 the mixed paper material is wet-formed into shape, and then dried to obtain a plant fiber-based controllable water-permeable material.
- the preparation method of the plant fiber-based controllable permeable material comprises the following steps:
- Step 1 Mix plant fiber slurry and water-repellent agent to obtain a mixed paper material; the added amount of the water-repellent agent is 0.1% to 28% of the absolute dry mass of the plant fiber slurry; The addition amount is 0.2% to 10% of the absolute dry mass of the plant fiber slurry;
- step 2 the mixed paper material is wet-formed into shape, and then dried to obtain a plant fiber-based controllable water-permeable material.
- the drying method is hot pressing drying or drying tunnel drying.
- increasing the drying temperature after forming and accelerating the aging can improve the strength and water resistance of the material; strengthening the vacuum dehydration, using a certain pressure dehydration and drying method can improve the tightness of the paper pattern, which is beneficial to control the water penetration rate.
- the drying temperature is 80-190° C.; and the drying time is 1-60 minutes.
- the drying temperature is 140 ⁇ 180° C.; and the drying time is 20 ⁇ 40 minutes.
- drying after forming and increasing the drying temperature will affect its internal structure of the paper sheet, thereby controlling the water permeability of the plant fiber-based water-controllable water-permeable material of the present application.
- the selected reinforcing agent can enhance the bonding force between fibers, and the water-repellent agent can form a hydrophobic film on the surface and internal pores of the paper sheet, thereby controlling the water permeability of the plant fiber-based controllable water permeable material of the present application. performance.
- step 1 further includes: mixing plant fiber pulp, water repellant and reinforcing agent to obtain a mixed paper material; the addition amount of the reinforcing agent is 0.2 of the absolute dry mass of the plant fiber pulp % ⁇ 10%.
- the reinforcing agent is selected from one or more of urea-formaldehyde resin, melamine-formaldehyde resin, polyamide polyamine-epichlorohydrin resin, polyethyleneimine, carboxymethyl starch, carboxymethyl cellulose and sodium polyacrylate .
- step 1 further includes: taking plant fiber slurry, water repellant, reinforcing agent and pore regulator to obtain a mixed paper material; the added amount of the reinforcing agent is the absolute dryness of the plant fiber slurry 0.2% to 10% of the mass.
- the reinforcing agent is selected from one or more of urea-formaldehyde resin, melamine-formaldehyde resin, polyamide polyamine-epichlorohydrin resin, polyethyleneimine, carboxymethyl starch, carboxymethyl cellulose and sodium polyacrylate ; the added amount of the pore regulator is 0% to 4% of the absolute dry mass of the plant fiber slurry; the pore regulator is selected from cationic polyacrylamide, cationic starch, bentonite and colloidal silicon dioxide one or more.
- step 1 further includes: taking plant fiber slurry, water repellant, reinforcing agent, pore regulator and antibacterial agent to obtain a mixed paper material; the added amount of the reinforcing agent is the plant fiber slurry 0.2% to 10% of the absolute dry mass.
- the reinforcing agent is selected from one or more of urea-formaldehyde resin, melamine-formaldehyde resin, polyamide polyamine-epichlorohydrin resin, polyethyleneimine, carboxymethyl starch, carboxymethyl cellulose and sodium polyacrylate ; the added amount of the pore regulator is 0% to 4% of the absolute dry mass of the plant fiber slurry; the pore regulator is selected from cationic polyacrylamide, cationic starch, bentonite and colloidal silicon dioxide one or more; the added amount of the antibacterial agent is 0% to 2.0% of the absolute dry mass of the plant fiber slurry; the antibacterial agent is selected from o-phenylphenol, carbendazim, chlorothalonil, One or more of isothiazolinone and dithiocyanomethane.
- the plant fiber-based controllable water permeable material provided in the present application can be used for irrigating plants, and some or all of the components of the self-stabilizing plant device of the present application use the plant fiber-based controllable water permeable material.
- the plant fiber-based controllable water-permeable material provided by the present application is naturally degradable in nature.
- a third aspect of the present application provides a tree planting method, using the self-stabilizing tree planting device, the method includes the following:
- Step 1 Dig a device pit on the ground for placing the self-stabilizing tree-planting device, the depth of the device pit is less than the height of the tree-planting pot of the self-stabilizing tree-planting device,
- Step 2 dig a tree-planting pit for tree-planting in the middle of the device pit, and inject water into the tree-planting pit;
- Step 3 transplanting the plant to be planted into the water-filled tree-planting pit, and filling the tree-planting pit with soil, so that the soil covers the roots of the plant to be planted;
- Step 4 placing the self-stabilizing tree-planting device on the filled tree-planting pit, so that the tree-planting cavity wraps the stem of the plant to be planted;
- Step 5 Inject water into the first sub-filling cavity, then fix the isolation member on the first limiting member and the second limiting member, and inject sand or/and soil into the in the second sub-filling cavity;
- Step 6 filling the pot mouth of the self-stabilizing tree planting device with sand.
- the present application has the following advantages:
- the self-stabilizing tree-planting device of the present application can fix plants in flowing desert or soil areas, such as sand hazard areas, desert areas or slope areas, so that the flowing desert or soil cannot bury or move the self-stabilizing tree-planting device.
- dig a device pit on the ground for placing the self-stabilizing tree-planting device and the depth of the device pit is less than the height of the tree-planting pot of the self-stabilizing tree-planting device; water; transplant the plant to be planted into the water-filled tree-planting pit, and fill the tree-planting pit with soil, so that the soil covers the roots of the plant to be planted; place the self-stabilizing tree-planting device on the filled tree-planting pit, so that the tree-planting cavity is wrapped
- the stem of the plant to be planted inject water into the first sub-filling cavity, then fix the isolation member on the first and second limiting pieces, and inject sand or/and soil into the second sub-filling cavity; Fill the pot mouth of the self-stabilizing
- the inner side wall of the pot body and the outer side wall of the cylinder of the self-stabilizing tree planting device provided by the present application are provided with filling cavities, therefore, water and sand can be injected into the filling cavities, and water and sand can be separated by isolation parts.
- the first sub-filling cavity of the self-stabilizing tree planting device of the present application is filled with water
- the second sub-filling cavity is filled with soil or/and sand
- the pot body of the tree-planting pot of the present application is buried under the surface, so that the water in the second sub-filling cavity is filled.
- the sand and the sand outside the basin form an integral body, and the self-stabilizing tree-planting device is fixed in the surface under the action of the mutual tension of the sand and soil inside and outside the basin, so that the self-stabilizing tree-planting device of the present application is not buried or moved, and the plants can continue to grow. grow.
- the water repellant is a key factor affecting the water-permeable performance, making the surface of the pulp fiber hydrophobic, and at the same time adjusting the pore size of the material;
- the fiber distribution has an influence, which can change the porosity and penetration path of the plant fiber-based controllable water permeable material;
- the reinforcing agent can enhance the bonding force between the fibers to increase the strength of the material;
- the addition of the antibacterial agent can effectively control the biodegradation rate of the material.
- plant fiber-based controllable water permeability with different service life, different water permeability rate and degradation rate under different soil humidity was prepared.
- Material In actual use, different plant fiber-based controllable permeable materials can be selected according to the types of plants planted, the needs of different regions, and the humidity of different soils.
- Plant fiber-based controllable permeable material with high rate when soil humidity is high and plant roots need less water, use plant fiber-based controllable permeable material with low water permeability; for plants that require long-term irrigation, use long-life, water-supplying materials Plant fiber-based controllable water-permeability material with a long time limit (it will naturally degrade after a long time of use).
- FIG. 1 is a front structural view of a self-stabilizing tree planting device provided by an embodiment of the present application
- Fig. 2 is the reverse side structure diagram of the self-stabilizing tree planting device provided by the embodiment of the present application;
- FIG. 3 is a structural diagram of an isolation component of a self-stabilizing tree planting device provided by an embodiment of the present application.
- FIG. 4 is a front view of a self-stabilizing tree planting device provided by an embodiment of the present application.
- FIG. 5 is a front view of the tree-planting cavity of the self-stabilizing tree-planting device provided by the embodiment of the present application;
- FIG. 6 is a front perspective structural view of a self-stabilizing tree planting device with a split structure provided by an embodiment of the present application
- FIG. 7 is a reverse perspective structural view of the self-stabilizing tree planting device with a split structure provided by an embodiment of the present application.
- FIG. 8 is a front perspective structural view of a first sub-tree planting device of the self-stabilizing tree planting device with a split structure provided in an embodiment of the present application;
- FIG. 9 is a structural diagram of an irrigation component of a self-stabilizing tree planting device provided by an embodiment of the present application.
- FIG. 10 is a structural diagram of an isolation component of a self-stabilizing tree planting device provided by an embodiment of the application.
- FIG. 11 is a structural diagram of a protective cover provided by an embodiment of the present application.
- FIG. 12 is a scanning electron microscope analysis of the material surfaces of Sample 1 and Sample 3 provided in Example 1 and Example 3 of the present application, wherein picture A is sample 1 and picture B is sample 3.
- FIG. 12 is a scanning electron microscope analysis of the material surfaces of Sample 1 and Sample 3 provided in Example 1 and Example 3 of the present application, wherein picture A is sample 1 and picture B is sample 3.
- FIG. 12 is a scanning electron microscope analysis of the material surfaces of Sample 1 and Sample 3 provided in Example 1 and Example 3 of the present application, wherein picture A is sample 1 and picture B is sample 3.
- FIG. 13 shows the change of water permeability of sample 1 provided in Example 1 of the present application.
- FIG. 14 shows the change of water permeability of sample 2 provided in Example 2 of the present application.
- Figure 15 shows the biodegradation in soil of Sample 3 and Sample 4 provided in Examples 3 and 4 of this application.
- Figure 16 shows the change of water permeability in the soil of Sample 4 provided in Example 4 of this application after being degraded for 6 weeks.
- the terms “installed”, “connected” and “connected” should be understood in a broad sense, for example, it may be a fixed connection or a Removable connection, or integral connection; can be mechanical connection, can also be electrical connection; can be directly connected, can also be indirectly connected through an intermediate medium, can be internal communication between two components.
- the wind resistance is small, and it is easy to form a flowing desert or soil area.
- the plants in the sand hazard area or desert area are easily moved and blown up by the wind. Or covered with sand, preventing plants from growing in the area.
- the embodiment of the present application includes a tree planting pot 1, a tree planting cavity 2, a first limiting member, a second limiting member and an isolation member 3;
- the tree-planting pot includes a pot mouth 1-1, a pot body 1-2 and a pot bottom 1-3, the pot bottom 1-3 is provided with a tree-planting cavity along the direction of the pot mouth 1-1, and the tree-planting cavity includes a column body 2 connected at both ends.
- the inner side wall of the basin body 1-2 and the outer side wall of the cylinder body 2 form a filling cavity A; ;
- the first limiting piece is matched with the position where the second limiting piece is set; the shape of the isolating part matches the projected shape of the filling cavity; so that the isolating part 3 can be fixed on the first limiting piece and the second limiting piece , and then the isolation part 3 separates the filling cavity into a first sub-filling cavity and a second sub-filling cavity; wherein, the isolation part 3 is an isolation part through which water can pass through and sand cannot pass.
- the self-stabilizing tree planting device of the present application can anchor plants in a sandstorm hazard area or desert area, so that the wind cannot blow the plants up. Please refer to Figures 1 to 5.
- the depth of the device pit is less than the height H of the tree planting pot of the self-stabilizing tree planting device; dig a hole in the middle of the device pit for A tree-planting pit for planting trees, and water is injected into the tree-planting pit; the plants to be planted are transplanted into the water-filled tree-planting pit, and the tree-planting pit is filled with soil, so that the soil covers the roots of the plants to be planted; the self-stabilizing tree-planting device is placed after filling On the tree-planting pit, make the tree-planting cavity 2 wrap the stem of the plant to be planted; inject water into the first sub-filling cavity, then fix the isolation member 3 on the first limiter and the second limiter, and sand or / And the soil is injected into the second sub-filling cavity; the pot mouth 1-1 of the self-stabilizing tree planting device is filled with sand.
- the inner side wall of the pot body 1-2 and the outer side wall of the column body 2 of the self-stabilizing tree planting device provided by the present application are provided with a filling cavity A. Therefore, water and sand can be injected into the filling cavity A, and the water and sand can be separated by an isolation member. 3 separated.
- the two ports 2-1 and 2-2 of the column body 2 are connected; the height of the column body 2 can be the same as the height H of the tree planting pot, and the height of the column body 2 can also be higher than the height H of the tree planting pot.
- the column body 2 is cylindrical, and the cylindrical column body 2 is beneficial to be fitted over the stem of the plant, and is also beneficial to fit the stem of the plant.
- the first sub-filling cavity is disposed close to the pelvic floor 1-2, and the second sub-filling cavity is disposed close to the pelvic mouth 1-1.
- the pot body of the tree planting pot of the present application is buried under the surface, and the second sub-filling cavity is filled with soil or/and sand, so that the sand in the second sub-filling cavity and the sand outside the pot form an integral body, and the inner and outer sand of the pot body are mutually Under the action of tension, the self-stabilizing tree-planting device is fixed in the surface, and the self-stabilizing tree-planting device of the present application can be fixed in a flowing desert or soil area, such as a wind-sand hazard area or desert area, and flowing sand in a flowing desert or soil area
- the self-stabilizing tree-planting device is fixed on the surface, and the flowing desert or the flowing sand of the soil is not easy to move the self-stabilizing tree-planting device, or cover it, or be blown away.
- the plants in the tree-planting cavity of the stable tree-planting device can be fixed in the ground surface, and finally,
- the self-stabilizing tree planting device of the present application can adjust the positions of the first limiting member and the second limiting member to divide the filling cavity A into a first sub-filling cavity and a second sub-filling cavity with different volumes, such as the second sub-filling cavity
- the volume ratio of the cavity to the first sub-filled cavity is 1:1
- the volume ratio of the second sub-filled cavity to the first sub-filled cavity is (1-10): 1, etc., so that the sand damage can be affected by different wind speeds and different degrees of drought.
- a self-stabilizing tree planting device with a larger filling cavity than the first sub-filling cavity, the second sub-filling cavity of the self-stabilizing tree planting device of the present application is larger and can be filled with more sand or/and soil, thereby increasing the self-stabilizing type
- the total weight of the tree planting device, the self-stabilizing tree planting device can be anchored in the sand hazard area or desert area, and is not easily blown away by the wind when used.
- the basin 1-1 can collect rainwater, and the collected rainwater can flow into the first sub-filling cavity along the sand and/or soil of the second sub-filling cavity;
- the blocking effect of sand or/and soil in the second sub-filling cavity can slow down the evaporation rate of the water in the first sub-filling cavity; when the water in the first sub-filling cavity evaporates, the water in the first sub-filling cavity will flow smoothly.
- the sand and/or soil in the isolation part and the second sub-filling cavity evaporate to the periphery of the tree-planting pit to ensure the soil moisture in the tree-planting pit area; irrigation parts can also be set at the bottom of the pot 1-3, and the water in the first sub-filling cavity can be The moistness of the soil in the tree-planting pit area can also be ensured by the slow penetration of the irrigation component into the soil of the tree-planting pit.
- the present application can anchor the plants located in the tree-planting cavity in the wind-sand hazard area or desert area from the isolation component of the stable tree-planting device, the first sub-filling cavity filling water and the second sub-filling cavity soil or/and sand, and at the same time,
- the isolation part can slow down the evaporation of the water in the first sub-filled cavity, and maintain the soil moisture in the tree-planting pit area.
- the volume ratio of the second sub-filling cavity to the first sub-filling cavity may be 1:1, 1.5:1, 2:1, 2.5:1, 3:1, 3.5:1, 4:1, 4.5:1 , 5:1, 5.5:1, 6:1, 6.5:1, 7:1, 7.5:1, 8:1, 8.5:1, 9:1, 9.5:1 or 10:1;
- a self-stabilizing tree planting device with a suitable volume ratio of the second sub-filling cavity to the first sub-filling cavity is selected for factors such as the amount of wind and sand in the hazardous area or desert area, and the amount of rainfall.
- the first limiting member and the second limiting member of the self-stabilizing tree planting device of the present application are commonly used devices that can be used to block and fix the isolation member, and the description of the present application provides several common structures.
- the present application provides a first structure of a first limiting member and a second limiting member.
- the first limiting member 4 and the second limiting member 5 are
- the annular wall is arranged around the inner side wall of the basin body 1 - 2 ; the annular wall is arranged around the outer side wall of the cylinder body 2 .
- the arrangement of the annular wall makes the inner side wall of the basin body 1-2 gradually expand towards the direction of the basin mouth 1-1.
- the user can easily place and fix the isolation part 3 on the top of the annular wall, so that the operation of using the isolation part 3 to separate the filling cavity into the first sub-filling cavity and the second sub-filling cavity is very simple; , the volume of the first sub-filling cavity and the second sub-filling cavity can also be adjusted by adjusting the width and height of the annular wall.
- the width and height of the annular wall of the outer side wall of the column body 2 are wider and higher, so that the volume of the first sub-filling cavity can be reduced.
- the present application provides a second structure of a first limiting member and a second limiting member.
- the first limiting member and the second limiting member are bumps, and the bumps are arranged at intervals or continuously around the basin body 1- On the inner sidewall of 2, the bumps are arranged on the outer sidewall of the column body 2 at intervals or continuously around.
- the protruding blocks are continuously arranged around the inner side wall of the basin body 1-2 to form protruding strips, and the protruding blocks are continuously arranged around the outer side wall of the column body 2 to form protruding strips; therefore, the isolation member 3 can be easily placed and fixed on the spaced protruding blocks or on the ridges.
- the present application provides a third structure of the first limiting member and the second limiting member.
- the first limiting member and the second limiting member are inner grooves, and the inner grooves are continuously arranged around the inner side wall of the basin body.
- the inner groove is continuously arranged on the outer side wall of the cylinder, the positions of the inner grooves of the first limiting member and the second limiting member correspond to each other, and the isolation member 3 can abut on the inner side wall of the basin and the outer side of the cylinder. in the inner groove of the wall.
- the area of the isolation member 3 is consistent with the cross-section formed by the inner groove. Since the self-stabilizing tree planting device of the present application has a certain deformability, the isolation member 3 is inserted into the basin body 1-2 from the basin mouth 1-1. At the position of the inner groove, the self-stabilizing tree planting device undergoes slight deformation, so that the isolation member 3 is embedded in the inner groove of the inner side wall of the pot and the outer side wall of the column.
- the number of the first limiting members in the present application is several, and the plurality of first limiting members are arranged on the inner side wall of the basin body 1-2 at intervals along the axial direction of the basin body 1-2; the number of the second limiting members There are several, and several second limiters are arranged on the outer side wall of the cylinder 2 at intervals along the axial direction of the cylinder 2; the positions of all the first limiters and all the second limiters correspond one-to-one , so that the isolation component can be fixed on the first limiting piece and the second limiting piece.
- the position of the isolation member 3 in the filling cavity A is adjusted, thereby adjusting the volumes of the first sub-filling cavity and the second sub-filling cavity.
- the self-stabilizing tree-planting device of the present application may be an integrated structure of a tree-planting pot 1 and a tree-planting cavity 2 .
- the tree planting pot 1 and the tree planting cavity 2 can be integrally formed by a designed mold.
- the tree-planting pot 1 and the tree-planting cavity 2 of the present application can also be of a split structure.
- the two sub-tree-planting devices are installed together to form a complete tree-planting pot 1 and tree-planting cavity 2 structure.
- the split structure of the embodiment of the present application can facilitate the staff to set the two sub-tree planting devices on the stem of the plant to be planted.
- three, four or five identical sub-tree planting devices can also be designed, and three, four or five identical sub-tree planting devices can be installed together to form a complete tree-planting pot 1 and tree-planting cavity 2 structure.
- FIG. 6 is a front perspective structural view of the self-stabilizing tree planting device with a split structure provided by an embodiment of the application
- FIG. 7 is a schematic diagram of the self-stabilizing tree planting device with a split structure provided in an embodiment of the application
- Figure 8 is a front perspective structural view of the first sub-tree planting device of the self-stabilizing tree-planting device of the split structure provided by the embodiment of the application.
- the tree-planting pot and the tree-planting cavity of the self-stabilizing tree-planting device of the present application can be Split structure, self-stabilizing tree planting device includes a first sub tree planting device 6 and a second sub tree planting device 7, the first sub tree planting device 6 and the second sub tree planting device 7 are relatively fixedly installed to form a complete tree planting pot and a complete tree planting cavity .
- connection between the first sub tree planting device 6 and the second sub tree planting device 7 is provided with a connector, and the first sub tree planting device 6 and the second sub tree planting device 7 are disassembled and assembled through the connector.
- the basin body 1-2 of the present application is a gradually expanding structure along the direction of the basin mouth 1-1.
- the volume of the first sub-filling cavity and the second sub-filling cavity can be controlled by adjusting the shape of the basin body 1-2.
- the expanding structure in the direction of port 1-1 can expand the volume of the second sub-filling cavity.
- the basin body 1-2 is a circular truncated truncated truncated along the direction of the basin mouth 1-1 or a prismatic truncated truncated gradually expanded along the direction of the basin mouth.
- the basin body 1-2 is a stepped structure basin body that gradually expands along the direction of the basin mouth 1-1.
- the side wall of the basin body 1-2 is set to gradually expand along the direction of the basin mouth 1-1.
- the contact area between the basin body 1-2 and the sandstorm hazard area or desert area is larger, and since the side wall of the basin body 1-2 is not a continuous side wall, the size of the basin body 1-2 and the sandstorm hazard area are increased. Or the friction in the desert area, so that the basin body 1-2 is not easy to be blown up.
- the basin body of the present application can be a cylindrical body or a rectangular body.
- the basin bottom 1-3 of the present application is provided with irrigation components along the periphery of the port 2-2 of the cylinder.
- FIG. 9 is a structural diagram of an irrigation component of a self-stabilizing tree planting device provided by an embodiment of the application.
- the irrigation component includes an irrigation hole 8 and a water guide line.
- the inner side of the water diversion line is attached to the outer side of the basin bottom 1-3 through the irrigation hole 8.
- the outside of the basin bottom 1-3 is provided with a water guide limiting groove 9, and the water guide limiting groove 9 is used to fix the water guide on the outside of the basin bottom 1-3.
- the water in the first sub-filling cavity can slowly penetrate into the soil of the tree-planting pit through the water diversion line, which can effectively ensure the moisture of the soil in the tree-planting pit area.
- the isolation component of the present application includes an isolation plate, and the isolation plate is provided with micropores through which water can pass and sand cannot pass, and the pore size of the micropores is smaller than the particle size of the sand.
- FIG. 10 is a structural diagram of the isolation component of the self-stabilizing tree planting device provided by the embodiment of the application.
- the isolation component includes an isolation net 10 and an isolation material layer 11.
- the isolation material layer 11 is fixed on the surface of the isolation net 10, and the isolation The material layer 11 is a material layer through which water can pass and sand cannot.
- the isolation net 10 plays the role of supporting the isolation material layer 11 , and the isolation material layer 11 can be fixed on the surface of the isolation net 10 by means of bonding, placing, hot pressing, clamping and the like.
- the insulating material layer 11 is fixed on the first limiting member and the second limiting member in the direction of the basin 1-1.
- the isolation material layer 11 is a non-woven fabric through which water can pass through and sand cannot pass, or a gauze through which water can pass through and cannot pass through sand.
- the self-stabilizing tree-planting device of the present application is made of degradable materials, and the degradable material can make the self-stabilizing tree-planting device degrade naturally without polluting the environment.
- At least some or all of the components of the self-stabilizing tree planting device of the present application are made of plant fiber-based controllable materials, and have different water permeation rates and degradation rates according to different soil humidity.
- FIG. 11 is a structural diagram of a protective cover provided by an embodiment of the present application.
- the self-stabilizing tree planting device of the present application further includes a protective cover 12, the protective cover 12 includes a column body matched with the column body, the protective cover 12 is arranged inside the tree planting cavity 2, and the protective cover 12 protrudes from the tree planting cavity near the pot mouth
- the height of the protective cover 12 is greater than the height of the tree-planting cavity 2, so that the protective cover 12 can protrude from the port 2-1 of the tree-planting cavity near the pot mouth direction, and the protective cover 12 can prevent the sand from the tree-planting cavity.
- Port 2-1 of the cavity enters the tree planting cavity.
- the protective cover 12 of the present application is provided with a protective cover 13; the protective cover 12 is provided with ventilation holes 14, the diameter of the ventilation holes 14 is smaller than the particle size of the sand grains, and the ventilation holes 14 can prevent the sand grains from The protective cover enters the tree planting cavity, and on the other hand, it can also play a role in ventilation.
- a tree planting method provided by the application, using the above-mentioned self-stabilizing tree planting device, comprises the following steps:
- Step 1 Dig a device pit on the ground for placing the self-stabilizing tree planting device.
- the depth of the device pit is less than the height of the self-stabilizing tree planting device.
- Step 2 Dig a tree-planting pit for tree-planting in the middle of the device pit, and inject water into the tree-planting pit;
- Step 3 transplanting the plant to be planted into the water-filled tree-planting pit, and filling the tree-planting pit with soil, so that the soil covers the roots of the plant to be planted;
- Step 4 placing the self-stabilizing tree-planting device on the filled tree-planting pit, so that the tree-planting cavity wraps the stem of the plant to be planted;
- Step 5 Inject water into the first sub-filling cavity, then fix the isolation member on the first limiting member and the second limiting member, and inject sand or/and soil into the second sub-filling cavity;
- Step 6 Fill the pot mouth of the self-stabilizing tree planting device with sand.
- the first sub-filling cavity of the self-stabilizing tree planting device is filled with a large amount of water
- the second sub-filling cavity of the self-stabilizing tree planting device is filled with a large amount of sand or/and soil, which increases the self-stabilizing tree planting.
- the total weight of the device, and most importantly, the second sub-filling cavity of the self-stabilizing tree planting device is filled with a large amount of sand or/and soil, and the pot is buried under the surface, so that the sand and pot in the second sub-filling cavity are filled
- the sand outside the body is integrated, and the self-stabilizing tree-planting device is fixed on the surface under the action of the mutual tension of the sand and soil inside and outside the basin.
- the self-stabilizing tree-planting device can be stably fixed in the flowing desert or soil area, so that the flowing desert or
- the self-stabilizing tree-planting device cannot be moved in the soil area, so that the plants placed in the tree-planting cavity are fixed in the flowing desert or soil area, which effectively solves the problem of the flowing desert or soil area, such as the wind-sand hazard area or the plants in the desert area are easily destroyed.
- Technical issues that move, cover, or be uprooted by the wind, preventing plants from growing in flowing desert or soil areas.
- the following examples further describe clearly and completely.
- the present application provides a plant fiber-based controllable water permeable material and a preparation method. Wherein, the raw materials or reagents used in the examples are all self-made or commercially available.
- the raw materials in the following examples are materials in the field of papermaking.
- the concentration of polyamide polyamine-epichlorohydrin resin is an aqueous solution with a concentration of 10wt%-20wt%; the solid content of styrene-acrylate is 35wt%-60wt% emulsion; the cationic polyacrylamide is a solid state with a molecular weight of 500-12 million, Cationic group: 10-70%; carboxymethyl cellulose is powder, degree of substitution is 0.15-0.5; urea-formaldehyde resin is an aqueous solution of 40-60wt%; alkyl ketene dimer is an emulsion with a solid content of 15-25wt% .
- the addition amount of each raw material is the ratio of the mass of the absolute dry state to the mass of the slurry.
- Soak raw materials such as waste corrugated boxes, waste newspapers and office waste paper in water, and use a pulper to disperse them.
- the pulp collected after beating is waste paper fiber pulp for use.
- the agricultural straw pulp is disintegrated by a pulper, and the pulp collected after beating is the agricultural straw fiber pulp for use.
- the first plant fiber-based controllable permeable material is as follows:
- the waste paper fiber slurry (beating degree is 30°SR), polyamide polyamine-epichlorohydrin resin, carboxymethyl cellulose and styrene-acrylate is mixed to obtain a mixed paper stock, wherein the polyamide polyamine -
- the addition amount of epichlorohydrin resin is 1.5% of the absolute dry pulp mass of the waste paper fiber pulp; the addition amount of styrene-acrylate is 5% of the absolute dry pulp mass of the waste paper fiber pulp; Carboxymethyl
- the amount of cellulose added is 0.5% of the absolute dry pulp mass of the waste paper fiber pulp.
- the mixed paper material was formed by wet sheeting, and then hot-pressed and dried.
- the drying temperature was 180° C. and the drying time was 20 minutes.
- the second type of plant fiber-based controllable permeable material is as follows:
- the mixed paper material was formed by wet papermaking, and then dried in a drying tunnel at a drying temperature of 160°C and a drying time of 30 minutes to obtain a plant fiber-based controllable water-permeable material, marked as sample 2.
- the third plant fiber-based controllable permeable material is as follows:
- the mixed paper material was formed by wet sheeting, and then hot-pressed and dried.
- the drying temperature was 140° C. and the drying time was 40 minutes.
- the fourth plant fiber-based controllable permeable material is as follows:
- the mixed paper material was formed by wet sheeting, and then hot-pressed and dried.
- the drying temperature was 140° C. and the drying time was 40 minutes.
- FIG. 1 Scanning electron microscope (SEM) analysis was performed on Sample 1 and Sample 3 provided in Example 1 and Example 3, and the results are shown in FIG. 1 .
- Picture A is Sample 1 and Picture B is Sample 3.
- a in Figure 1 can be seen that the mixed slurry of plant fiber slurry, water repellent and reinforcing agent is formed by wet lamination, and then dried to form a connection between the fiber and the fiber of the plant fiber-based controllable water permeable material.
- a compact and flat film with reduced porosity of the material; B in Figure 1 can see the mixed slurry of plant fiber slurry, water repellent, pore regulator and reinforcing agent, which was formed by wet lamination, and then dried to make it.
- a tight and smooth film is also formed between the fibers of the plant fiber-based controllable water permeable material, and the porosity of the material is reduced. It can be seen that the plant fiber-based controllable water permeability material of the present application is different in structure and performance from the common paper material, and can effectively control the water permeability.
- This experimental example analyzes the performance of samples 1 to 4 provided in Examples 1-4.
- the water permeation rate measuring device is an existing conventional instrument for measuring the water permeation rate, which will not be described in detail in this experimental example.
- the water permeability rate of sample 1 is relatively large in the first 4 days, and then its water permeability rate is stable below 1 liter/m2 ⁇ day. If the water volume of the container is calculated as 20 liters, it can be seen from the calculation that the water supply time limit of sample 1 is 120 days, can be used as an irrigation container for plants.
- Figure 4 shows that sample 4 has a low degradation rate of the plant fiber-based controllable permeable material due to the addition of antibacterial agents, thereby prolonging the degradation time of the plant fiber-based controllable permeable material in the natural environment, that is, prolonging the plant fiber-based controllable permeable material.
- the water permeability rate of sample 4 is relatively large in the first 5 days, and its water permeability rate is stable after 5 days. In the subsequent experimental time, the water permeability rate is below 1 liter/m2 ⁇ day. It can be seen that the plant fiber of the present application The controllable water-permeable material based on the soil still has certain water-permeability after soil biodegradation.
- This comparative example provides the first reference material, and the specific preparation method is as follows:
- the agricultural straw fiber slurry was directly formed by wet sheeting, and then dried in a drying tunnel to obtain a control material 1.
- the beating degree of the agricultural straw fiber slurry is 40°SR
- the drying method is drying tunnel
- the drying temperature is 160°C
- the drying time is 30 minutes.
- the obtained control material 1 had low wet strength, large and uncontrollable water permeability, and could not meet the requirements for use.
- This comparative example provides a second reference material, and the specific preparation method is as follows:
- the mixed paper material was formed by wet sheeting, and then hot-pressed and dried at a drying temperature of 180° C. and a drying time of 20 minutes, to prepare a control material 2.
- control material 2 obtained under this condition will not permeate within 6 months after being filled with water, and cannot meet the requirement of controllable permeation rate.
- At least one (item) refers to one or more, and "a plurality” refers to two or more.
- “And/or” is used to describe the relationship between related objects, indicating that there can be three kinds of relationships, for example, “A and/or B” can mean: only A, only B, and both A and B exist , where A and B can be singular or plural.
- the character “/” generally indicates that the associated objects are an “or” relationship.
- At least one item(s) below” or similar expressions thereof refer to any combination of these items, including any combination of single item(s) or plural items(s).
- At least one (a) of a, b or c can mean: a, b, c, "a and b", “a and c", “b and c", or "a and b and c" ", where a, b, c can be single or multiple.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Environmental Sciences (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Cultivation Receptacles Or Flower-Pots, Or Pots For Seedlings (AREA)
Abstract
一种自稳定型植树装置,包括:植树盆(1)、植树腔(2)、第一限位件、第二限位件和隔离部件(3);植树盆(1)包括盆口(1-1)、盆体(1-2)和盆底(1-3),盆底(1-3)沿盆口(1-1)方向设有植树腔(2),植树腔(2)包括两端相通的柱体;盆体(1-2)的内侧壁和柱体的外侧壁形成填充腔(A);隔离部件(3)可固定在第一限位件和第二限位件上,隔离部件(3)对填充腔(A)分隔成第一子填充腔和第二子填充腔。
Description
本申请基于并要求2020年09年17日在中国国家知识产权局提交的中国专利申请第202010978868.4号、以及2021年2月5日在中国国家知识产权局提交的中国专利申请202110162779.7号的优先权,其全部内容通过引用包含于此。
本申请涉及植树的技术领域,尤其涉及一种植树装置和植树方法。
由于人类生产、生活、战争、农业等活动,自然的荒漠化过程受到了很大影响,旱地生态系统持续退化,全球约有三分之一的人口生活在干旱地区,沙漠化严重威胁到了人类福祉的改善,使人类面临严重的环境挑战。我国是世界上土地荒漠化最为严重的国家之一,中国荒漠化面积达262万平方公里,相当于国土陆地面积的27%,比中国的耕地面积总和还要大。干旱半干旱地区是我国陆地生态系统的脆弱点和敏感点,其是解决我国绿化问题的重点区域;而干旱、半干旱荒漠区,由于水分不足,植物在立地条件下成活相当困难,是绿化的重中之重。
我国荒漠化的风沙危害区主要位于长城沿线以北,阴山以风沙肆虐南,贺兰山以东,朔州市、呼和浩特一线以西,以鄂尔多斯风沙高原为主体,面积约20万平方公里,约占全区面积的1/3。在风沙区内沙漠化土地面积达11.8万平方公里,约占风沙区总面积的57%。严重沙漠化面积约为3.6万平方公里,主要为毛乌素沙地、库布齐沙漠及河东沙地(指宁夏黄河段东部),占风沙区总面积的17.4%。在风沙区,仅风沙填积的入黄沙量即达1.6亿吨,约占黄河年输沙量的1/10。此外,风沙危害区还包括沙漠边缘影响绿洲居民生活生产的地带,如腾格里沙漠、库姆塔格沙漠边缘的河西走廊地带等。
目前,防沙治沙成为我国当下的重要任务,而治理沙漠的根本所在是防风、固沙和固水。但是,由于风沙危害区或沙漠地区的地表物质层少,其风阻小,风容易对地表所产生的剪切力和冲击力引起细小的土粒与较大的团粒或土块分离,甚至从岩石表面剥离碎屑,使岩石表面出现擦痕和蜂窝,继之土粒或沙粒被风挟带形成风沙流,当风速降低之后土粒或砂粒从空气中沉降下来,形成很多沙丘。在风的作用下,在沙漠地区或坡体区域形成流动的沙漠或土壤地区,容易对种植在其中的植物造成覆盖或移动,导致不稳定的沙漠或土壤地区的植物很容易被风连根吹起,或被覆盖,或被移动,对流动的沙漠或土壤地区的防风、固沙和固水工作带来极大的困难。
发明内容
本申请提供了一种自稳定型植树装置,有效解决采用传统装置和传统方法在流动的沙漠或土壤地区中植树时,其中的植物容易被覆盖,被移动,或被风连根吹起,导致植物无法在不稳定的沙漠或土壤地区种植的技术问题。
本申请的还提供一种植物纤维基可控透水材料及其制备方法,能有效解决传统的塑料制成的储水容器在自然中无法降解,导致环境污染,以及无法控制其灌溉速率的技术缺陷。该植物纤维基可控透水材料可用于制备植树装置。
本申请第一方面提供了一种自稳定型植树装置,所述自稳定型植树装置包括:
植树盆、植树腔、第一限位件、第二限位件和隔离部件;
所述植树盆包括盆口、盆体和盆底,所述盆底沿所述盆口方向设有所述植树腔,所述植树腔包括两端相通的柱体;所述盆体的内侧壁和所述柱体的外侧壁形成填充腔;
所述第一限位件设置在所述盆体的内侧壁,所述第二限位件设置在所述柱体的外侧壁;所述第一限位件与所述第二限位件设置的位置相配合;所述隔离部件的形状与所述填充腔的投影形状相配合;使得所述隔离部件可固定在所述第一限位件和所述第二限位件上,进而所述隔离部件对所述填充腔分隔成第 一子填充腔和第二子填充腔;其中,所述隔离部件为水可通过沙不可通过的隔离部件。
一实施例中,所述第一限位件和所述第二限位件为环形壁,所述环形壁环绕设置在所述盆体的内侧壁;所述环形壁环绕设置在所述柱体的外侧壁。
一实施例中,所述第一限位件和所述第二限位件为凸块,所述凸块间隔或连续环绕设置在所述盆体的内侧壁,所述凸块间隔或连续环绕设置在所述柱体的外侧壁。
一实施例中,所述第一限位件和所述第二限位件为内凹槽,所述内凹槽连续环绕设置在所述盆体的内侧壁,所述内凹槽连续环绕设置在所述柱体的外侧壁。
一实施例中,所述第一限位件的数量为若干个,若干个所述第一限位件沿所述盆体的轴向方向间隔设置在所述盆体的内侧壁;所述第二限位件的数量为若干个,若干个所述第二限位件沿所述柱体的轴向方向间隔设置在所述柱体的外侧壁。
一实施例中,所述植树盆和所述植树腔为一体式结构。
一实施例中,所述植树盆和所述植树腔为分体式结构,所述自稳定型植树装置包括第一子植树装置和第二子植树装置,所述第一子植树装置和所述第二子植树装置相对固定安装形成所述植树盆和所述植树腔。
一实施例中,所述盆体为沿所述盆口方向渐扩结构。
一实施例中,所述盆体为沿所述盆口方向渐扩的圆台或沿所述盆口方向渐扩的棱台。
一实施例中,所述盆体为圆柱体或矩形体。
一实施例中,所述盆底沿所述柱体的端口的外周设有灌溉部件。
一实施例中,所述灌溉部件包括灌溉孔和引水线,所述引水线的一端贯穿所述灌溉孔设置在所述盆底的内侧,所述引水线的另一端贯穿所述灌溉孔贴附在所述盆底的外侧。
一实施例中,所述隔离部件包括隔离板,所述隔离板上设有水可通过沙不可通过的微孔。
一实施例中,所述隔离部件包括隔离网和隔离材料层,所述隔离材料层固定在所述隔离网的表面,所述隔离材料层为水可通过沙不可通过的材料层。
一实施例中,所述隔离材料层为水可通过沙不可通过的无纺布,或水可通过沙不可通过的纱布。
一实施例中,所自稳定型植树装置由可降解材料制成。
进一步的,作为优选,所述的自稳定型植树装置,还包括防护罩,所述防护罩包括与所述柱体相配合的柱状体,所述防护罩设置在所述植树腔的内部,且所述防护罩突出于所述植树腔的靠近所述盆口方向的端口。
一实施例中,所述防护罩上设置有保护盖。
一实施例中,所述防护罩上开设有透气孔。
本申请第二方面提供了一种植物纤维基可控透水材料,包括:
取植物纤维浆料、抗水剂和增强剂混合,得到混合纸料;
将所述混合纸料经湿法抄造成形,然后干燥制得植物纤维基可控透水材料;
所述抗水剂的添加量为所述植物纤维浆料的绝干质量的0.1%~28%;
所述增强剂的添加量为所述植物纤维浆料的绝干质量的0.2%~10%。
一实施例中,所述植物纤维浆料的纤维选自废纸纤维和原生植物纤维。当然,来自于木材的针叶木浆、阔叶木浆也适合于本申请植物纤维基可控透水材料的制造,但从价格和保护森林资源的角度考虑,不建议优先使用。
一实施例中,所述废纸纤维选自废旧瓦楞纸箱纤维、废旧报纸纤维或办公废纸纤维。
一实施例中,所述植物纤维浆料的打浆度为14~60°SR。
一实施例中,所述植物纤维浆料的打浆度为20~60°SR。
一实施例中,所述植物纤维浆料的打浆度为25~40°SR。
一实施例中,所述抗水剂选自石蜡、松香、烷基烯酮二聚体、烯基琥珀酸酐、苯乙烯-马来酸酐共聚物及苯乙烯-丙烯酸酯中的一种或多种。
在本申请,苯乙烯-丙烯酸酯在本申请中不但能够提高植物纤维基材料的疏水性,而且也可以在纤 维与纤维之间形成非连续的薄膜,以控制水等液体的渗透。
一实施例中,所述抗水剂选自苯乙烯-丙烯酸酯或/和烷基烯酮二聚体。
一实施例中,所述增强剂选自脲醛树脂、三聚氰胺-甲醛树脂、聚酰胺多胺-表氯醇树脂、聚乙烯亚胺、羧甲基淀粉、羧甲基纤维素和聚丙烯酸钠中的一种或多种。
其中,聚酰胺多胺-表氯醇树脂是阳离子聚合物,对于阴离子性质的物质具有提高留着的作用,聚酰胺多胺-表氯醇树脂的添加量对材料的透水速率和材料强度均影响很大。
一实施例中,所述增强剂选自脲醛树脂、聚酰胺多胺-表氯醇树脂和羧甲基纤维素中的一种或多种。
一实施例中,所述混合纸料还包括孔隙调节剂;所述孔隙调节剂的添加量为所述植物纤维浆料的绝干质量的0%~4%。
一实施例中,所述孔隙调节剂选自阳离子聚丙烯酰胺、阳离子淀粉、膨润土和胶体二氧化硅中的一种或多种。
其中,阳离子聚丙烯酰胺主要是通过改变造纸浆料的絮凝状态来提高细小纤维和填料的留着率,也减少了抗水剂的流失,同时控制材料中纤维分布,在材料内部形成“海岛”结构,改变材料的开口孔隙率和孔径,从而调节透水速率。
一实施例中,所述孔隙调节剂选自阳离子聚丙烯酰胺。
一实施例中,所述孔隙调节剂的添加量为所述植物纤维浆料的绝干质量的0.01%~1%。
一实施例中,所述孔隙调节剂的添加量为所述植物纤维浆料的绝干质量的1%。
一实施例中,所述增强剂的添加量为所述植物纤维浆料的绝干质量的2%~3%。
一实施例中,所述抗水剂的添加量为所述植物纤维浆料的绝干质量的4.5%~15%。
在本申请,增强剂和孔隙调节剂还能通过增加抗水剂在植物纤维基可控透水材料中留着率,以调节植物纤维基材料的透水速率。
一实施例中,所述混合纸料中还包括抗菌剂。
一实施例中,所述抗菌剂选自邻苯基苯酚、多菌灵、百菌清、异噻唑啉酮和二硫氰基甲烷中的一种或多种。
多菌灵又名为N-苯并咪唑-2-基氨基甲酸甲酯(C
9H
9N
3O
2)。百菌清又名四氯间苯二腈。
一实施例中,所述抗菌剂选自二硫氰基甲烷。
一实施例中,所述抗菌剂的添加量为所述植物纤维浆料的绝干质量的0%~2.0%。
一实施例中,所述抗菌剂的添加量为所述植物纤维浆料的绝干质量的0.02%。
一实施例中,取植物纤维浆料、聚酰胺多胺-表氯醇树脂、羧甲基纤维素和苯乙烯-丙烯酸酯混合,采用湿法抄造成形,然后进行干燥,制得植物纤维基可控透水材料。
一实施例中,聚酰胺多胺-表氯醇树脂的添加量为植物纤维浆料的绝干浆料质量的1.5%;苯乙烯-丙烯酸酯的添加量为植物纤维浆料的绝干浆料质量的5%;羧甲基纤维素的添加量为植物纤维浆料的绝干浆料质量的0.5%。
一实施例中,取植物纤维浆料、烷基烯酮二聚体、苯乙烯-丙烯酸酯和聚酰胺多胺-表氯醇树脂混合,采用湿法抄造成形,然后进行干燥,制得植物纤维基可控透水材料。
一实施例中,聚酰胺多胺-表氯醇树脂的添加量为植物纤维浆料的绝干浆料质量的2%;烷基烯酮二聚体的添加量为植物纤维浆料的绝干浆料质量的0.5%;苯乙烯丙烯酸酯的添加量为植物纤维浆料的绝干浆料质量的4%。
一实施例中,取植物纤维浆料、脲醛树脂、阳离子聚丙烯酰胺和苯乙烯-丙烯酸酯混合,采用湿法抄造成形,然后进行干燥,制得植物纤维基可控透水材料。
一实施例中,脲醛树脂的添加量为植物纤维浆料的绝干浆料质量的3%;苯乙烯-丙烯酸酯的添加量为植物纤维浆料的绝干浆料质量的15%;阳离子聚丙烯酰胺的添加量为植物纤维浆料的绝干浆料质量的1%。
一实施例中,取植物纤维浆料、脲醛树脂、阳离子聚丙烯酰胺、苯乙烯-丙烯酸酯和二硫氰基甲烷混合,采用湿法抄造成形,然后进行干燥,制得植物纤维基可控透水材料。
一实施例中,脲醛树脂的添加量为植物纤维浆料的绝干浆料质量的3%;苯乙烯-丙烯酸酯的添加量为植物纤维浆料的绝干浆料质量的15%;阳离子聚丙烯酰胺的添加量为植物纤维浆料的绝干浆料质量的1%;二硫氰基甲烷添加量为植物纤维浆料的绝干浆料质量的0.02%。
上述植物纤维基可控透水材料的制备方法,包括以下步骤:
步骤1、取植物纤维浆料、抗水剂、增强剂、孔隙调节剂和抗菌剂混合,得到混合纸料;
步骤2、将所述混合纸料经湿法抄造成形,然后干燥制得植物纤维基可控透水材料。
一实施例中,所述植物纤维基可控透水材料的制备方法,包括以下步骤:
步骤1、取植物纤维浆料和抗水剂混合,得到混合纸料;所述抗水剂的添加量为所述植物纤维浆料的绝干质量的0.1%~28%;所述增强剂的添加量为所述植物纤维浆料的绝干质量的0.2%~10%;
步骤2、将所述混合纸料经湿法抄造成形,然后干燥制得植物纤维基可控透水材料。
一实施例中,所述干燥方式为热压干燥或烘道干燥。
其中,提高抄造成型后的干燥温度,加速熟化,可以提高材料强度和抗水效果;加强真空脱水,使用有一定压力的脱水和干燥方式可以提高纸样的紧度,有利于控制透水速率。
一实施例中,所述干燥的温度为80~190℃;所述干燥的干燥时间为1~60分钟。
一实施例中,所述干燥的温度为140~180℃;所述干燥的干燥时间为20~40分钟。
本申请发现,在抄造成型后,进行干燥,提高干燥处理温度会对其在纸页内部的结构产生影响,从而控制本申请植物纤维基可控透水材料的透水性能。将混合纸料进行干燥时,所选用的增强剂可以增强纤维间的结合力,抗水剂能在纸页表面和内部孔隙形成疏水膜,从而控制本申请的植物纤维基可控透水材料的透水性能。
一实施例中,步骤1中还包括:取植物纤维浆料、抗水剂和增强剂混合,得到混合纸料;所述增强剂的添加量为所述植物纤维浆料的绝干质量的0.2%~10%。所述增强剂选自脲醛树脂、三聚氰胺-甲醛树脂、聚酰胺多胺-表氯醇树脂、聚乙烯亚胺、羧甲基淀粉、羧甲基纤维素和聚丙烯酸钠中的一种或多种。
一实施例中,步骤1中还包括:取植物纤维浆料、抗水剂、增强剂和孔隙调节剂,得到混合纸料;所述增强剂的添加量为所述植物纤维浆料的绝干质量的0.2%~10%。所述增强剂选自脲醛树脂、三聚氰胺-甲醛树脂、聚酰胺多胺-表氯醇树脂、聚乙烯亚胺、羧甲基淀粉、羧甲基纤维素和聚丙烯酸钠中的一种或多种;所述孔隙调节剂的添加量为所述植物纤维浆料的绝干质量的0%~4%;所述孔隙调节剂选自阳离子聚丙烯酰胺、阳离子淀粉、膨润土和胶体二氧化硅中的一种或多种。
一实施例中,步骤1中还包括:取植物纤维浆料、抗水剂、增强剂、孔隙调节剂和抗菌剂,得到混合纸料;所述增强剂的添加量为所述植物纤维浆料的绝干质量的0.2%~10%。所述增强剂选自脲醛树脂、三聚氰胺-甲醛树脂、聚酰胺多胺-表氯醇树脂、聚乙烯亚胺、羧甲基淀粉、羧甲基纤维素和聚丙烯酸钠中的一种或多种;所述孔隙调节剂的添加量为所述植物纤维浆料的绝干质量的0%~4%;所述孔隙调节剂选自阳离子聚丙烯酰胺、阳离子淀粉、膨润土和胶体二氧化硅中的一种或多种;所述抗菌剂的添加量为所述植物纤维浆料的绝干质量的0%~2.0%;所述抗菌剂选自邻苯基苯酚、多菌灵、百菌清、异噻唑啉酮和二硫氰基甲烷中的一种或多种。
本申请提供的植物纤维基可控透水材料可以用于灌溉植物中,本申请的自稳定植物装置的部分部件或者全部部件采用植物纤维基可控透水材料。
本申请提供的植物纤维基可控透水材料在自然界中可自然降解。
本申请第三方面提供了一种植树方法,应用所述的自稳定型植树装置,所述方法包括以下:
步骤1、在地表挖一个放置所述自稳定型植树装置的装置坑,所述装置坑的深度小于所述自稳定型植树装置的植树盆高度,
步骤2、在所述装置坑的中间挖一个用于植树的植树坑,并在所述植树坑中注水;
步骤3、将待种植物移植至已注水的所述植树坑中,并用土填充所述植树坑,使得土壤覆盖所述待种植物的根部;
步骤4、将所述自稳定型植树装置放置于填充后的所述植树坑上,使得所述植树腔包裹所述待种植植物的茎;
步骤5、将水注入所述第一子填充腔中,然后将所述隔离部件固定在所述第一限位件和所述第二限位件上,以及将沙或/和土壤注入所述第二子填充腔中;
步骤6、将沙把所述自稳定型植树装置的盆口填埋。
从以上技术方案可以看出,本申请具有以下优点:
本申请的自稳定型植树装置能将植物固定在流动的沙漠或土壤地区,如风沙危害区、沙漠地区或坡体区,使得流动的沙漠或土壤不能将自稳定型植树装置覆埋或移动。使用时,在地表挖一个放置自稳定型植树装置的装置坑,装置坑的深度小于自稳定型植树装置的植树盆高度;在装置坑的中间挖一个用于植树的植树坑,并在植树坑中注水;将待种植物移植至已注水的植树坑中,并用土填充植树坑,使得土壤覆盖待种植物的根部;将自稳定型植树装置放置于填充后的植树坑上,使得植树腔包裹待种植植物的茎;将水注入第一子填充腔中,然后将隔离部件固定在第一限位件和第二限位件上,以及将沙或/和土壤注入第二子填充腔中;将沙把自稳定型植树装置的盆口填埋。
本申请提供的自稳定型植树装置的盆体的内侧壁和柱体的外侧壁设置了填充腔,因此,可在填充腔中注入水和沙,并将水和沙用隔离部件分隔开。本申请的自稳定型植树装置的第一子填充腔填充水,第二子填充腔填充土壤或/和沙,本申请的植树盆的盆体填埋在地表下,使得第二子填充腔中的沙土和盆体外的沙土形成一体,盆体的内外沙土的相互张力作用下将自稳定型植树装置固定在地表中,使得本申请的自稳定型植树装置不被覆埋和不被移动,植物能继续生长。
本申请提供的植物纤维基可控透水材料中,抗水剂是影响透水性能的关键因素,使得纸浆纤维表面具有疏水性,同时调节材料孔径大小;孔隙调节剂对植物纤维基可控透水材料中纤维分布有影响,可以改变植物纤维基可控透水材料的孔隙率和渗透路径;增强剂可以增强纤维间的结合力以增加材料的强度;抗菌剂的加入可以有效控制材料的生物降解速率。因此,通过调整植物纤维浆料、抗水剂、增强剂、孔隙调节剂和抗菌剂的体系制得具有不同使用寿命、在不同土壤湿度下具有不同透水速率和降解速率的植物纤维基可控透水材料。在实际使用中,可根据种植的植物种类,不同的地区需要,不同的土壤的湿度,选用不同的植物纤维基可控透水材料,例如土壤湿度低,植物的根部需要较多水分时,选用透水率高的植物纤维基可控透水材料;土壤湿度高,植物的根部需要较少水分时,选用透水率低的植物纤维基可控透水材料;需要长时间灌溉的植物,选用寿命长的,供水时限长的植物纤维基可控透水材料(使用长时间后才会自然降解)。
图1为本申请实施例提供的自稳定型植树装置的正面结构图;
图2为本申请实施例提供的自稳定型植树装置的反面结构图;
图3为本申请实施例提供的自稳定型植树装置的隔离部件的结构图;
图4为本申请实施例提供的自稳定型植树装置的正视图;
图5为本申请实施例提供的自稳定型植树装置的植树腔的正视图;
图6为本申请实施例提供的分体式结构的自稳定型植树装置的正面立体结构图;
图7为本申请实施例提供的分体式结构的自稳定型植树装置的反面立体结构图;
图8为本申请实施例提供的分体式结构的自稳定型植树装置的第一子植树装置正面立体结构图;
图9为本申请实施例提供的自稳定型植树装置的灌溉部件结构图;
图10为本申请实施例提供的自稳定型植树装置的隔离部件结构图;
图11为本申请实施例提供的防护罩的结构图。
图12为本申请实施例1和实施例3提供的样品1和样品3的材料表面扫描电子显微镜分析,其中,A图为样品1,B图为样品3。
图13为本申请实施例1提供的样品1的透水率变化情况。
图14为本申请实施例2提供的样品2的透水率变化情况。
图15为本申请实施例3和4提供的样品3和样品4的土壤中生物降解情况。
图16为本申请实施例4提供的样品4的土壤中降解6周后的透水速率变化情况。
下面将结合附图对本申请实施例的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请实施例一部分实施例,而不是全部的实施例。基于本申请实施例中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请实施例保护的范围。
在本申请实施例的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本申请实施例的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请实施例中的具体含义。
由于风沙危害区或沙漠地区的地表物质层(如土壤)少,风的阻力小,容易形成流动的沙漠或土壤地区,风沙危害区或沙漠地区的植物容易被移动,被风连根吹起,或被沙土覆盖,导致植物无法在该地区生长。
本申请发现流动的沙漠或土壤地区的植物,如风沙危害区或沙漠地区,容易被移动,或被风连根吹起,或被沙土覆盖的原因是,由于植物的根部很难深插到流动的沙漠或土壤地区中,使得植物无法固定在这些地区的地表上,导致流动的沙漠或土壤地区很容易将植物移动,或被连根拔起,或被沙土覆盖,因此,本申请发现将植物固定在流动的沙漠或土壤地区中,使得植物不被移动,不被覆埋或连根拔起,能解决现有的技术问题。
本申请应用于风沙危害区或沙漠地区的植树工作中,请参阅图1~图5,本申请实施例包括植树盆1、植树腔2、第一限位件、第二限位件和隔离部件3;植树盆包括盆口1-1、盆体1-2和盆底1-3,盆底1-3沿盆口1-1方向设有植树腔,植树腔包括两端相通的柱体2;盆体1-2的内侧壁和柱体2的外侧壁形成填充腔A;第一限位件设置在盆体1-2的内侧壁,第二限位件设置在柱体2的外侧壁;第一限位件与第二限位件设置的位置相配合;隔离部件的形状与填充腔的投影形状相配合;使得隔离部件3可固定在第一限位件和第二限位件上,进而隔离部件3对填充腔分隔成第一子填充腔和第二子填充腔;其中,隔离部件3为水可通过沙不可通过的隔离部件。
本申请的自稳定型植树装置能将植物锚固在风沙危害区或沙漠地区中,使得风不能将植物吹起。请参阅图1~图5,使用时,在地表挖一个放置自稳定型植树装置的装置坑,装置坑的深度小于自稳定型植树装置的植树盆高度H;在装置坑的中间挖一个用于植树的植树坑,并在植树坑中注水;将待种植物移植至已注水的植树坑中,并用土填充植树坑,使得土壤覆盖待种植物的根部;将自稳定型植树装置放置于填充后的植树坑上,使得植树腔2包裹待种植植物的茎;将水注入第一子填充腔中,然后将隔离部件3固定在第一限位件和第二限位件上,以及将沙或/和土壤注入第二子填充腔中;将沙把自稳定型植树装置的盆口1-1填埋。本申请提供的自稳定型植树装置的盆体1-2的内侧壁和柱体2的外侧壁设置了填充腔A,因此,可在填充腔A中注入水和沙,并将水和沙用隔离部件3分隔开。
其中,柱体2的两个端口2-1和2-2相通;柱体2的高度可以与植树盆高度H相同,柱体2的高度也可以比植树盆高度H高。
具体的,柱体2为圆柱状,圆柱状的柱体2有利于套在植物的茎部,也有利于贴合植物的茎部。
具体的,第一子填充腔靠近盆底1-2设置,第二子填充腔靠近盆口1-1设置。
本申请的植树盆的盆体填埋在地表下,其第二子填充腔填充土壤或/和沙,使得第二子填充腔中的沙土和盆体外的沙土形成一体,盆体的内外沙土的相互张力作用下将自稳定型植树装置固定在地表中,本申请的自稳定型植树装置可固定在流动的沙漠或土壤地区中,如风沙危害区或沙漠地区,流动的沙漠或土壤地区的流动沙土作用自稳定型植树装置时,自稳定型植树装置固定在地表中,流动的沙漠或土壤 的流动沙土不容易将自稳定型植树装置移动,或被覆埋,或被吹走,进而使得种植在自稳定型植树装置的植树腔的植物能固定在地表中,最终,本申请自稳定型植树装置可将植物固定流动的沙漠或土壤地区中,使得植物能继续生长。
本申请的自稳定型植树装置可以调节第一限位件和第二限位件的位置,将填充腔A分隔成体积不同的第一子填充腔和第二子填充腔,例如第二子填充腔与第一子填充腔的体积比为1:1,第二子填充腔与第一子填充腔的体积比为(1~10):1等,从而根据不同风速和不同干旱程度的风沙危害区或沙漠地区,选择第一子填充腔和第二子填充腔的体积比不同的自稳定型植树装置,譬如当某一的风沙危害区或沙漠地区的风速很大时,可以选择第二子填充腔比第一子填充腔的体积大的自稳定型植树装置,本申请自稳定型植树装置的第二子填充腔较大,可填充更多的沙或/和土,从而增加自稳定型植树装置的总重量,自稳定型植树装置可锚定在风沙危害区或沙漠地区中,使用时不容易被风吹走。
当风沙危害区或沙漠地区下雨时,盆口1-1能收集雨水,收集到的雨水可顺着第二子填充腔的沙或/和土流到第一子填充腔中;由于隔离部件和第二子填充腔的沙或/和土的阻挡作用,可以减缓第一子填充腔的水的蒸发速度;当第一子填充腔的水发生蒸发作用,第一子填充腔的水会顺着隔离部件、第二子填充腔的沙或/和土蒸发到植树坑的外周,保证植树坑区域土壤的湿润度;盆底1-3也可设置灌溉部件,第一子填充腔的水可以通过灌溉部件缓慢渗透到植树坑的土壤,也能保证植树坑区域土壤的湿润度。
可见,本申请自稳定型植树装置的隔离部件、第一子填充腔填充水和第二子填充腔土壤或/和沙起到将位于植树腔的植物锚固在风沙危害区或沙漠地区中,同时,隔离部件可减缓第一子填充腔的水的蒸发,保持植树坑区域土壤湿度等作用。
具体的,第二子填充腔与第一子填充腔的体积比可以为1:1、1.5:1、2:1、2.5:1、3:1、3.5:1、4:1、4.5:1、5:1、5.5:1、6:1、6.5:1、7:1、7.5:1、8:1、8.5:1、9:1、9.5:1或10:1;使用者可根据风沙危害区或沙漠地区的风沙量,降雨量等因素选择第二子填充腔与第一子填充腔的体积比合适的自稳定型植树装置。
本申请自稳定型植树装置的第一限位件和第二限位件为现有常用的可用于阻挡固定隔离部件的装置,本申请说明书提供了几种常用结构。
为了便于理解,请参阅图1,如图1所示,本申请提供了第一种第一限位件和第二限位件的结构,第一限位件4和第二限位件5为环形壁,环形壁环绕设置在盆体1-2的内侧壁;环形壁环绕设置在柱体2的外侧壁。从图1可知,环形壁的设置使得盆体1-2的内侧壁向盆口1-1方向渐扩的阶梯状结构,环形壁的设置使得柱体2的外侧壁向盆口1-1方向渐缩的阶梯状结构,使用者很容易将隔离部件3放置固定在环形壁的顶部,使得采用隔离部件3对填充腔分隔成第一子填充腔和第二子填充腔的操作十分简单;同时,也可以通过调节环形壁的宽度和高度,从而调节第一子填充腔和第二子填充腔的体积,例如,盆体1-2的内侧壁的环形壁的宽度更宽和高度更高,柱体2的外侧壁的环形壁的宽度更宽和高度更高,可使得第一子填充腔的体积变小。
本申请提供了第二种第一限位件和第二限位件的结构,第一限位件和所述第二限位件为凸块,凸块间隔或连续环绕设置在盆体1-2的内侧壁,凸块间隔或连续环绕设置在柱体2的外侧壁。凸块连续环绕设置在盆体1-2的内侧壁形成凸条,凸块连续环绕设置在柱体2的外侧壁形成凸条;因此,隔离部件3很容易放置固定在间隔设置的凸块或凸条上。
本申请提供了第三种第一限位件和第二限位件的结构,第一限位件和第二限位件为内凹槽,内凹槽连续环绕设置在盆体的内侧壁,内凹槽连续环绕设置在柱体的外侧壁,第一限位件和第二限位件的内凹槽的位置相对应,隔离部件3可抵接在盆体的内侧壁和柱体的外侧壁的内凹槽中。隔离部件3的面积与内凹槽形成的横截面一致,由于本申请的自稳定型植树装置具备一定的形变能力,隔离部件3从盆口1-1插入盆体1-2中,当插到内凹槽的位置,自稳定型植树装置发生细微的形变,使得隔离部件3嵌入盆体的内侧壁和柱体的外侧壁的内凹槽中。
本申请的第一限位件的数量为若干个,若干个第一限位件沿盆体1-2的轴向方向间隔设置在盆体1-2的内侧壁;第二限位件的数量为若干个,若干个第二限位件沿柱体2的轴向方向间隔设置在柱体2的外侧壁;所有的第一限位件和所有的第二限位件设置的位置一一对应,使得隔离部件可固定在第一限 位件和第二限位件上。本申请通过设置多个第一限位件和多个第二限位件,从而调节隔离部件3在填充腔A的位置,进而调节第一子填充腔和第二子填充腔的体积。
请参阅图1,本申请的自稳定型植树装置可以为植树盆1和植树腔2为一体式结构。植树盆1和植树腔2可以通过设计的模具一体成型制得。
本申请的植树盆1和植树腔2也可以是分体式结构,通过设计两个相同的子植树装置,将两个子植树装置配合安装形成完整的植树盆1和植树腔2结构。本申请实施例的分体式结构能便于工作人员将两个子植树装置套在待种植物的茎部。当然,本申请实施例也可以设计三个、四个或五个相同的子植树装置,三个、四个或五个相同的子植树装置配合安装形成完整的植树盆1和植树腔2结构。
请参阅图6~8,图6为本申请实施例提供的分体式结构的自稳定型植树装置的正面立体结构图,图7为本申请实施例提供的分体式结构的自稳定型植树装置的反面立体结构图,图8为本申请实施例提供的分体式结构的自稳定型植树装置的第一子植树装置正面立体结构图,本申请的自稳定型植树装置的植树盆和植树腔可以为分体式结构,自稳定型植树装置包括第一子植树装置6和第二子植树装置7,第一子植树装置6和第二子植树装置7相对固定安装形成完整的植树盆和完整的植树腔。
其中,第一子植树装置6和第二子植树装置7之间的连接处设有连接件,通过连接件对第一子植树装置6和第二子植树装置7进行拆装。
本申请的盆体1-2为沿盆口1-1方向渐扩结构,本申请可以通过调控盆体1-2的形状从而控制第一子填充腔和第二子填充腔的体积,沿盆口1-1方向渐扩结构可以扩大第二子填充腔的体积。
具体的,盆体1-2为沿盆口1-1方向渐扩的圆台或沿盆口方向渐扩的棱台。
进一步的,请参阅图4,盆体1-2为沿盆口1-1方向渐扩的台阶状结构盆体,当盆体1-2的侧壁设置成沿盆口1-1方向渐扩的台阶状时,盆体1-2与风沙危害区或沙漠地区的接触面积更大,而且由于盆体1-2的侧壁不是连续的侧壁,增大盆体1-2与风沙危害区或沙漠地区的摩擦力,使得盆体1-2不容易被吹起。
本申请的盆体可以为圆柱体或矩形体。
本申请的盆底1-3沿柱体的端口2-2的外周设有灌溉部件。
请参阅图9,图9为本申请实施例提供的自稳定型植树装置的灌溉部件结构图,灌溉部件包括灌溉孔8和引水线,引水线的一端贯穿灌溉孔8设置在盆底1-3的内侧,引水线的另一端贯穿灌溉孔8贴附在盆底1-3的外侧。
具体的,盆底1-3的外侧设有引水线限位槽9,引水线限位槽9用于将引水线固定在盆底1-3的外侧。第一子填充腔的水可以通过引水线缓慢渗透到植树坑的土壤,能有效保证植树坑区域土壤的湿润度。
本申请的隔离部件包括隔离板,隔离板上设有水可通过沙不可通过的微孔,微孔的孔径小于沙的粒径。
请参阅图10,图10为本申请实施例提供的自稳定型植树装置的隔离部件结构图,隔离部件包括隔离网10和隔离材料层11,隔离材料层11固定在隔离网10的表面,隔离材料层11为水可通过沙不可通过的材料层。隔离网10起到支撑隔离材料层11的作用,隔离材料层11可通过粘结、放置、热压、夹固等方式固定在隔离网10的表面。隔离材料层11向盆口1-1方向固定在第一限位件和第二限位件上。
具体的,隔离材料层11为水可通过沙不可通过的无纺布,或水可通过沙不可通过的纱布。
本申请的自稳定型植树装置由可降解材料制成,降解材料可使得自稳定型植树装置能自然降解,不污染环境。
本申请的自稳定型植树装置的至少部分部件或者全部部件由植物纤维基可控材料制成,根据不同土壤湿度下具有不同透水速率和降解速率。
请参阅图11,图11为本申请实施例提供的防护罩的结构图。
本申请的自稳定型植树装置还包括防护罩12,防护罩12包括与柱体相配合的柱状体,防护罩12设置在植树腔2的内部,且防护罩12突出于植树腔的靠近盆口方向的端口2-1,防护罩12的高度比植树腔2的高度大,使得防护罩12能突出于植树腔的靠近盆口方向的端口2-1,进而防护罩12能防止沙粒从植树腔的端口2-1进入植树腔。
请参阅图11,本申请的防护罩12上设置有保护盖13;防护罩12上开设有透气孔14,透气孔14的孔径小于沙粒的粒径,透气孔14一方面能防止沙粒从防护罩进入植树腔,另一方面还能起到透气的作用。
本申请提供的一种植树方法,应用上述自稳定型植树装置,包括以下步骤:
步骤1、在地表挖一个放置自稳定型植树装置的装置坑,装置坑的深度小于自稳定型植树装置的高度,
步骤2、在装置坑的中间挖一个用于植树的植树坑,并在植树坑中注水;
步骤3、将待种植物移植至已注水的植树坑中,并用土填充植树坑,使得土壤覆盖待种植物的根部;
步骤4、将自稳定型植树装置放置于填充后的植树坑上,使得植树腔包裹待种植植物的茎;
步骤5、将水注入第一子填充腔中,然后将隔离部件固定在第一限位件和第二限位件上,以及将沙或/和土壤注入第二子填充腔中;
步骤6、将沙把自稳定型植树装置的盆口填埋。
植树完成后,由于自稳定型植树装置的第一子填充腔填充了大量的水,自稳定型植树装置的第二子填充腔填充了大量的沙或/和土,增大了自稳定型植树装置的总重量,最重要的是,自稳定型植树装置的第二子填充腔填充了大量的沙或/和土,盆体填埋在地表下,使得第二子填充腔中的沙土和盆体外的沙土形成一体,盆体的内外沙土的相互张力作用下将自稳定型植树装置固定在地表中,最终,自稳定型植树装置能稳定固定在流动的沙漠或土壤地区,使得流动的沙漠或土壤地区无法将自稳定型植树装置移动,从而将置于植树腔的植物固定在流动的沙漠或土壤地区中,有效解决了流动的沙漠或土壤地区,如风沙危害区或沙漠地区的植物容易被移动、被覆埋,或被风连根吹起,导致植物无法在流动的沙漠或土壤地区种植的技术问题。
以下实施例进一步清楚、完整的描述本申请提供了一种植物纤维基可控透水材料以及制备方法。其中,实施例中用于所用原料或试剂均为自制或市售。
以下实施例中的原料譬如聚酰胺多胺-表氯醇树脂、阳离子聚丙烯酰胺、阳离子聚丙烯酰胺、羧甲基纤维素、脲醛树脂、烷基烯酮二聚体为造纸领域的物质。
聚酰胺多胺-表氯醇树脂的浓度为10wt%-20wt%的水溶液;苯乙烯-丙烯酸酯的固含量为35wt%-60wt%乳液;阳离子聚丙烯酰胺为固态状,分子量500-1200万,阳离子基团:10-70%;羧甲基纤维素为粉末,取代度0.15-0.5;脲醛树脂为40-60wt%的水溶液;烷基烯酮二聚体为固含量为15-25wt%的乳液。各原料的添加量均为绝对干状态是的质量与浆料的质量比。
将废旧瓦楞纸箱、废报纸和办公废纸等原料加水浸泡,使用碎浆机进行疏解,打浆后收集的浆料为废纸纤维浆料,备用。
将农业秸秆纸浆,使用碎浆机进行疏解,打浆后收集的浆料为农业秸秆纤维浆料,备用。
实施例1
第一种植物纤维基可控透水材料,具体制备方法如下:
将取废纸纤维浆料(打浆度为30°SR)、聚酰胺多胺-表氯醇树脂、羧甲基纤维素和苯乙烯-丙烯酸酯混合,得到混合纸料,其中,聚酰胺多胺-表氯醇树脂的添加量为废纸纤维浆料的绝干浆料质量的1.5%;苯乙烯-丙烯酸酯的添加量为废纸纤维浆料绝干浆料质量的5%;羧甲基纤维素的添加量为废纸纤维浆料绝干浆料质量的0.5%。
混合纸料采用湿法抄造成形,然后进行热压干燥,干燥温度为180℃,干燥时间为20分钟,制得植物纤维基可控透水材料,标记为样品1。
实施例2
第二种植物纤维基可控透水材料,具体制备方法如下:
取农业秸秆纤维浆料(打浆度为40°SR)、烷基烯酮二聚体、苯乙烯-丙烯酸酯和聚酰胺多胺-表氯醇树脂混合,得到混合纸料,其中,聚酰胺多胺-表氯醇树脂的添加量为农业秸秆纤维浆料的绝干浆料质量的2%;烷基烯酮二聚体的添加量为农业秸秆纤维浆料的绝干浆料质量的0.5%;苯乙烯-丙烯酸酯的添加量为农业秸秆纤维浆料的绝干浆料质量的4%。
混合纸料采用湿法抄造造纸成形,然后进行烘道干燥,干燥温度为160℃,干燥时间为30分钟,制得植物纤维基可控透水材料,标记为样品2。
实施例3
第三种植物纤维基可控透水材料,具体制备方法如下:
取废纸纤维浆料(打浆度为25°SR)、脲醛树脂、阳离子聚丙烯酰胺和苯乙烯-丙烯酸酯混合,得到混合纸料,其中,脲醛树脂的添加量为废纸纤维浆料的绝干浆料质量的3%;苯乙烯-丙烯酸酯的添加量为废纸纤维浆料的绝干浆料质量的15%;阳离子聚丙烯酰胺的添加量为废纸纤维浆料的绝干浆料质量的1%。
混合纸料采用湿法抄造成形,然后进行热压干燥,干燥温度为140℃,干燥时间为40分钟,制得植物纤维基可控透水材料,标记为样品3。
实施例4
第四种植物纤维基可控透水材料,具体制备方法如下:
取废纸纤维浆料(打浆度为25°SR)、脲醛树脂、阳离子聚丙烯酰胺和苯乙烯-丙烯酸酯混合,并添加二硫氰基甲烷,得到混合纸料,其中,脲醛树脂的添加量为废纸纤维浆料的绝干浆料质量的3%;苯乙烯-丙烯酸酯的添加量为废纸纤维浆料的绝干浆料质量的15%;阳离子聚丙烯酰胺的添加量为废纸纤维浆料的绝干浆料质量的1%;二硫氰基甲烷添加量为废纸纤维浆料的绝干浆料质量的0.02%。
混合纸料采用湿法抄造成形,然后进行热压干燥,干燥温度为140℃,干燥时间为40分钟,制得植物纤维基可控透水材料,标记为样品4。
实验例1
对实施例1和实施例3提供的样品1和样品3进行扫描电子显微镜(SEM)分析,结果如图1所示,A图为样品1,B图为样品3。图1中的A可以看出植物纤维浆料、抗水剂和增强剂的混合浆料,经湿法抄造成形,然后干燥制得植物纤维基可控透水材料的纤维和纤维之间形成了连接紧密和平整的膜,且材料的孔隙率降低;图1中的B可以看出植物纤维浆料、抗水剂、孔隙调节剂和增强剂的混合浆料,经湿法抄造成形,然后干燥制得植物纤维基可控透水材料的纤维和纤维之间亦形成了紧密和平整的膜,且材料孔隙率降低。可见,本申请的植物纤维基可控透水材料与通常的纸材料结构和性能是不同的,能够有效的控制水的透过率。
实验例2
本实验例对实施例1-4提供的样品1至样品4的性能分析。
1、将样品1放置在透水速率测定装置上进行透水性能的测试,试验时间为30天,定时记下透过的水量并计算单位时间单位面积透过的水量,结果如图2所示。透水速率测定装置为现有常规的测定透水速率的仪器,本实验例不作具体赘述。
从图2可知,样品1前4天的透水速率较大,之后其透水速率稳定在1升/平方米·天以下,若容器盛水量按20升计,经过计算可知,样品1的供水时限是120天,可作为植物的灌溉容器使用。
2、将样品2放置在透水速率测定装置上进行透水性能的测试,试验时间为33天,定时记下透过的水量并计算单位时间单位面积透过的水量,结果如图3所示。
从图3可知,样品2在前3天的透水速率逐渐下降,之后其透水速率亦稳定在1升/平方米·天以下。可知,样品2也可以作为植物的灌溉容器使用。
3、测定样品3和样品4在土壤中的降解特性,包括:分别将样品3和样品4裁剪为多个大小和质量相同的试样,称量并标记,将所有试样埋在相同的泥土中,每隔三天对埋有试样的泥土浇水,使土壤保持一定的湿度。定期取出样品3试样和样品4试样,把试样上的泥土和微生物清洗掉,干燥后测定质量,计算样品3和样品4的质量损失率,结果如图4所示,横坐标为降解时间(周),纵坐标为质量损失率(%)。图4可知,样品4因为添加了抗菌剂,制得的植物纤维基可控透水材料的降解速率低,从而延长了植物纤维基可控透水材料在自然环境中的降解时间,也就是延长了植物纤维基可控透水材料的使用寿命。
4、将样品4埋在泥土中,每隔三天对埋有试样的泥土浇水,使土壤保持一定的湿度,样品4在土 壤中生物降解6周后取出,将样品4的泥土和微生物清洗掉,在空气中风干后进行透水速率测定,定时记下透过的水量并计算单位时间单位面积透过的水量,结果如图5所示。
从图5可知,样品4在前5天的透水速率较大,5天之后其透水速率稳定,在随后实验时间内,透水率在1升/平方米·天以下,可见,本申请的植物纤维基可控透水材料在土壤生物降解后仍具有一定的透水性能。
对比例1
本对比例提供了第一种对照材料,具体制备方法如下:
将农业秸秆纤维浆料直接采用湿法抄造成形,然后进行烘道干燥,制得对照材料1。
其中,农业秸秆纤维浆料的打浆度为40°SR,干燥方式为烘道干燥,干燥温度为160℃,干燥时间为30分钟。得到的对照材料1的湿强度低,透水率很大且无法控制,不能满足使用要求。
对比例2
本对比例提供了第二种对照材料,具体制备方法如下:
将废纸纤维浆料(打浆度为30°SR)、聚酰胺多胺-表氯醇树脂、羧甲基纤维素和苯乙烯-丙烯酸酯抗水剂混合,得到混合纸料,其中,聚酰胺多胺-表氯醇树脂的添加量为废纸纤维浆料的绝干浆料质量的15%;苯乙烯-丙烯酸酯抗水剂的添加量为废纸纤维浆料绝干浆料质量的30%;羧甲基纤维素的添加量为废纸纤维浆料绝干浆料质量的0.8%。
混合纸料采用湿法抄造成形,然后进行热压干燥,干燥温度为180℃,干燥时间为20分钟,制得对照材料2。
此条件下得到的对照材料2盛满水后6个月内不会发生透水,不能满足透水速率可控的要求。
本申请的说明书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
应当理解,在本申请中,“至少一个(项)”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/或B”可以表示:只存在A,只存在B以及同时存在A和B三种情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,“a和b”,“a和c”,“b和c”,或“a和b和c”,其中a,b,c可以是单个,也可以是多个。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。
Claims (28)
- 一种自稳定型植树装置,其特征在于,包括:植树盆、植树腔、第一限位件、第二限位件和隔离部件;所述植树盆包括盆口、盆体和盆底,所述盆底沿所述盆口方向设有所述植树腔,所述植树腔包括两端相通的柱体;所述盆体的内侧壁和所述柱体的外侧壁形成填充腔;所述第一限位件设置在所述盆体的内侧壁,所述第二限位件设置在所述柱体的外侧壁;所述第一限位件与所述第二限位件设置的位置相配合;所述隔离部件的形状与所述填充腔的投影形状相配合;使得所述隔离部件可固定在所述第一限位件和所述第二限位件上,进而所述隔离部件对所述填充腔分隔成第一子填充腔和第二子填充腔;其中,所述隔离部件为水可通过沙不可通过的隔离部件。
- 根据权利要求1所述的自稳定型植树装置,其特征在于,所述第一限位件和所述第二限位件为环形壁,所述环形壁环绕设置在所述盆体的内侧壁;所述环形壁环绕设置在所述柱体的外侧壁。
- 根据权利要求1所述的自稳定型植树装置,其特征在于,所述第一限位件和所述第二限位件为凸块,所述凸块间隔或连续环绕设置在所述盆体的内侧壁,所述凸块间隔或连续环绕设置在所述柱体的外侧壁。
- 根据权利要求1所述的自稳定型植树装置,其特征在于,所述第一限位件和所述第二限位件为内凹槽,所述内凹槽连续环绕设置在所述盆体的内侧壁,所述内凹槽连续环绕设置在所述柱体的外侧壁。
- 根据权利要求1所述的自稳定型植树装置,其特征在于,所述第一限位件的数量为若干个,若干个所述第一限位件沿所述盆体的轴向方向间隔设置在所述盆体的内侧壁;所述第二限位件的数量为若干个,若干个所述第二限位件沿所述柱体的轴向方向间隔设置在所述柱体的外侧壁。
- 根据权利要求1所述的自稳定型植树装置,其特征在于,所述植树盆和所述植树腔为一体式结构。
- 根据权利要求1所述的自稳定型植树装置,其特征在于,所述植树盆和所述植树腔为分体式结构,所述自稳定型植树装置包括第一子植树装置和第二子植树装置,所述第一子植树装置和所述第二子植树装置相对固定安装形成所述植树盆和所述植树腔。
- 根据权利要求1所述的自稳定型植树装置,其特征在于,所述盆体为沿所述盆口方向渐扩结构。
- 根据权利要求8所述的自稳定型植树装置,其特征在于,所述盆体为沿所述盆口方向渐扩的圆台或沿所述盆口方向渐扩的棱台。
- 根据权利要求1所述的自稳定型植树装置,其特征在于,所述盆体为圆柱体或矩形体。
- 根据权利要求1所述的自稳定型植树装置,其特征在于,所述盆底沿所述柱体的端口的外周设有灌溉部件。
- 根据权利要求11所述的自稳定型植树装置,其特征在于,所述灌溉部件包括灌溉孔和引水线,所述引水线的一端贯穿所述灌溉孔设置在所述盆底的内侧,所述引水线的另一端贯穿所述灌溉孔贴附在所述盆底的外侧。
- 根据权利要求1所述的自稳定型植树装置,其特征在于,所述隔离部件包括隔离板,所述隔离板上设有水可通过沙不可通过的微孔。
- 根据权利要求1所述的自稳定型植树装置,其特征在于,所述隔离部件包括隔离网和隔离材料层,所述隔离材料层固定在所述隔离网的表面,所述隔离材料层为水可通过沙不可通过的材料层。
- 根据权利要求14所述的自稳定型植树装置,其特征在于,所述隔离材料层为水可通过沙不可通过的无纺布,或水可通过沙不可通过的纱布。
- 根据权利要求1所述的自稳定型植树装置,其特征在于,所述自稳定型植树装置由可降解材料制成。
- 根据权利要求1至16任意一项所述的自稳定型植树装置,其特征在于,还包括防护罩,所述防护罩包括与所述柱体相配合的柱状体,所述防护罩设置在所述植树腔的内部,且所述防护罩突出于所述植树腔的靠近所述盆口方向的端口。
- 根据权利要求17所述的自稳定型植树装置,其特征在于,所述防护罩上设置有保护盖。
- 根据权利要求17所述的自稳定型植树装置,其特征在于,所述防护罩上开设有透气孔。
- 根据权利要求1所述的自稳定型植树装置,其特征在于,所述自稳定型植树装置的部分部件或者全部部件由植物纤维基可控透水材料制成,所述的植物纤维基可控透水材料,包括:取植物纤维浆料、抗水剂和增强剂混合,得到混合纸料;将所述混合纸料经湿法抄造成形,然后干燥制得植物纤维基可控透水材料;所述抗水剂的添加量为所述植物纤维浆料的绝干质量的0.1%~28%;所述增强剂的添加量为所述植物纤维浆料的绝干质量的0.2%~10%。
- 根据权利要求20所述的自稳定型植树装置,其特征在于,所述抗水剂选自石蜡、松香、烷基烯酮二聚体、烯基琥珀酸酐、苯乙烯-马来酸酐共聚物及苯乙烯-丙烯酸酯中的一种或多种。
- 根据权利要求20所述的自稳定型植树装置,其特征在于,所述增强剂选自脲醛树脂、三聚氰胺-甲醛树脂、聚酰胺多胺-表氯醇树脂、聚乙烯亚胺、羧甲基淀粉、羧甲基纤维素和聚丙烯酸钠中的一种或多种。
- [根据细则91更正 04.01.2022]
根据权利要求20至22任意一项所述的自稳定型植树装置,其特征在于,所述混合纸料还包括孔隙调节剂;所述孔隙调节剂的添加量为所述植物纤维浆料的绝干质量的0%~4%。 - 根据权利要求24所述的自稳定型植树装置,其特征在于,所述孔隙调节剂选自阳离子聚丙烯酰胺、阳离子淀粉、膨润土和胶体二氧化硅中的一种或多种。
- 根据权利要求20至25任意一项所述的自稳定型植树装置,其特征在于,所述混合纸料中还包括抗菌剂;所述抗菌剂的添加量为所述植物纤维浆料的绝干质量的0%~2.0%。
- 根据权利要求26所述的自稳定型植树装置,其特征在于,所述抗菌剂选自邻苯基苯酚、多菌灵、百菌清、异噻唑啉酮和二硫氰基甲烷中的一种或多种。
- 根据权利要求20所述的自稳定型植树装置,其特征在于,所述干燥的温度为80~190℃;所述干燥的干燥时间为1~60分钟。
- 一种植树方法,其特征在于,应用权利要求1至28任意一项所述的自稳定型植树装置,所述方法包括以下:步骤1、在地表挖一个放置所述自稳定型植树装置的装置坑,所述装置坑的深度小于所述自稳定型植树装置的植树盆高度,步骤2、在所述装置坑的中间挖一个用于植树的植树坑,并在所述植树坑中注水;步骤3、将待种植物移植至已注水的所述植树坑中,并用土填充所述植树坑,使得土壤覆盖所述待种植物的根部;步骤4、将所述自稳定型植树装置放置于填充后的所述植树坑上,使得所述植树腔包裹所述待种植植物的茎;步骤5、将水注入所述第一子填充腔中,然后将所述隔离部件固定在所述第一限位件和所述第二限位件上,以及将沙或/和土壤注入所述第二子填充腔中;步骤6、将沙把所述自稳定型植树装置的盆口填埋。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010978868.4A CN111919646B (zh) | 2020-09-17 | 2020-09-17 | 一种自稳定型植树装置和植树方法 |
CN202010978868.4 | 2020-09-17 | ||
CN202110162779.7A CN112982026B (zh) | 2021-02-05 | 2021-02-05 | 一种植物纤维基可控透水材料及其制备方法 |
CN202110162779.7 | 2021-02-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022057874A1 true WO2022057874A1 (zh) | 2022-03-24 |
Family
ID=80775907
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/118933 WO2022057874A1 (zh) | 2020-09-17 | 2021-09-17 | 一种植树装置和植树方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2022057874A1 (zh) |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201585290U (zh) * | 2009-12-09 | 2010-09-22 | 罗勇堂 | 自动引水追液肥花盆 |
CN102754572A (zh) * | 2011-04-26 | 2012-10-31 | 北京化工大学 | 一种植物培育基体及其制造和应用 |
CN204146114U (zh) * | 2014-06-23 | 2015-02-11 | 南京三生万物环保科技有限公司 | 一种简易苗木防护罩 |
JP3203743U (ja) * | 2016-02-03 | 2016-04-14 | 近藤 正志 | 植木鉢 |
CN205511095U (zh) * | 2016-01-22 | 2016-08-31 | 岭南新科生态科技研究院(北京)有限公司 | 用于荒漠化地区稳定植物根系的填料体 |
CN206728672U (zh) * | 2017-03-10 | 2017-12-12 | 广州花云网络科技有限公司 | 植物根系生长测试容器 |
CN108260442A (zh) * | 2018-01-19 | 2018-07-10 | 中国科学院成都生物研究所 | 一种可实现植物根系动态原位观测的可扩展装置 |
CN208273685U (zh) * | 2018-04-02 | 2018-12-25 | 深圳职业技术学院 | 一种雾化灌溉式蓄水花盆 |
CN110485202A (zh) * | 2019-08-27 | 2019-11-22 | 中轻特种纤维材料有限公司 | 一种全热交换纸的生产方法 |
CN210445183U (zh) * | 2019-07-22 | 2020-05-05 | 西藏俊富环境恢复有限公司 | 一种无灌溉植树装置 |
CN111919646A (zh) * | 2020-09-17 | 2020-11-13 | 西藏俊富环境恢复有限公司 | 一种自稳定型植树装置和植树方法 |
CN112568008A (zh) * | 2020-12-15 | 2021-03-30 | 西藏俊富环境恢复有限公司 | 一种储水装置、植树装置和植树方法 |
CN112982026A (zh) * | 2021-02-05 | 2021-06-18 | 西藏俊富环境恢复有限公司 | 一种植物纤维基可控透水材料及其制备方法 |
-
2021
- 2021-09-17 WO PCT/CN2021/118933 patent/WO2022057874A1/zh active Application Filing
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201585290U (zh) * | 2009-12-09 | 2010-09-22 | 罗勇堂 | 自动引水追液肥花盆 |
CN102754572A (zh) * | 2011-04-26 | 2012-10-31 | 北京化工大学 | 一种植物培育基体及其制造和应用 |
CN204146114U (zh) * | 2014-06-23 | 2015-02-11 | 南京三生万物环保科技有限公司 | 一种简易苗木防护罩 |
CN205511095U (zh) * | 2016-01-22 | 2016-08-31 | 岭南新科生态科技研究院(北京)有限公司 | 用于荒漠化地区稳定植物根系的填料体 |
JP3203743U (ja) * | 2016-02-03 | 2016-04-14 | 近藤 正志 | 植木鉢 |
CN206728672U (zh) * | 2017-03-10 | 2017-12-12 | 广州花云网络科技有限公司 | 植物根系生长测试容器 |
CN108260442A (zh) * | 2018-01-19 | 2018-07-10 | 中国科学院成都生物研究所 | 一种可实现植物根系动态原位观测的可扩展装置 |
CN208273685U (zh) * | 2018-04-02 | 2018-12-25 | 深圳职业技术学院 | 一种雾化灌溉式蓄水花盆 |
CN210445183U (zh) * | 2019-07-22 | 2020-05-05 | 西藏俊富环境恢复有限公司 | 一种无灌溉植树装置 |
CN110485202A (zh) * | 2019-08-27 | 2019-11-22 | 中轻特种纤维材料有限公司 | 一种全热交换纸的生产方法 |
CN111919646A (zh) * | 2020-09-17 | 2020-11-13 | 西藏俊富环境恢复有限公司 | 一种自稳定型植树装置和植树方法 |
CN112568008A (zh) * | 2020-12-15 | 2021-03-30 | 西藏俊富环境恢复有限公司 | 一种储水装置、植树装置和植树方法 |
CN112982026A (zh) * | 2021-02-05 | 2021-06-18 | 西藏俊富环境恢复有限公司 | 一种植物纤维基可控透水材料及其制备方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
FI96263C (fi) | Kasvukenno, kuten kasvutulppa | |
CN100564759C (zh) | 种植屋面及其施工方法 | |
KR100828167B1 (ko) | 옥상 녹화용 식생기반재, 이를 포함하는 식생매트 및 그 제조 방법 | |
CN206635720U (zh) | 一种多功能反滤植生生态混凝土护坡结构 | |
EA029578B1 (ru) | Искусственный дерн смешанного типа | |
US20180014476A1 (en) | Reducing water evaporation and enhancing plant growth using a hydrophbic capillary layer formed with hydrophobic soil | |
CN109661171A (zh) | 板状结构、储器和方法 | |
JP2971868B1 (ja) | 無土壌植栽用セラミックブロック及びその使用方法 | |
CN106069531A (zh) | 滨海盐碱地苗木种植方法 | |
CN108770672A (zh) | 一种用于屋顶绿化的生态种植砖 | |
WO2022057874A1 (zh) | 一种植树装置和植树方法 | |
KR100510256B1 (ko) | 식생블럭을 이용한 인공지반 녹화방법 및 그 장치 | |
CN108589746A (zh) | 一种绿色喷锚和生态植被相结合的边坡防护方法 | |
AU688078B2 (en) | Pourable vegetation soil substrate, process for the production thereof and the use thereof | |
WO2022127758A1 (zh) | 一种储水装置、植树装置和植树方法 | |
JP4883673B2 (ja) | 緑化用培地構造 | |
CN216108913U (zh) | 一种缓释雨水的生态多孔纤维棉、花箱及雨水花园 | |
KR101698129B1 (ko) | 식재 지반 조성을 위한 에코파이프 설치방법 | |
JPH11256547A (ja) | 湛水池等水位変動域の法面緑化基盤材 | |
KR102253805B1 (ko) | 호안유공블록과 그 제조방법 | |
CN202019605U (zh) | 一种蓄水无土盆景栽培装置 | |
JP2003169545A (ja) | 多肉植物類による薄層緑化方法 | |
KR102343776B1 (ko) | 수분공급구조를 갖는 호안유공블록과 그 설치방법 | |
CN215957306U (zh) | 一种基于陶粒的植物种植结构 | |
KR20010065760A (ko) | 옥상녹화시스템의 구조 및 그의 시공방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21868696 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21868696 Country of ref document: EP Kind code of ref document: A1 |