WO2022054748A1 - Erythropoietin signaling inhibitor protein - Google Patents
Erythropoietin signaling inhibitor protein Download PDFInfo
- Publication number
- WO2022054748A1 WO2022054748A1 PCT/JP2021/032604 JP2021032604W WO2022054748A1 WO 2022054748 A1 WO2022054748 A1 WO 2022054748A1 JP 2021032604 W JP2021032604 W JP 2021032604W WO 2022054748 A1 WO2022054748 A1 WO 2022054748A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- amino acid
- epo
- acid sequence
- arginine
- seq
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7088—Compounds having three or more nucleosides or nucleotides
- A61K31/713—Double-stranded nucleic acids or oligonucleotides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/12—Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/19—Cytokines; Lymphokines; Interferons
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/22—Hormones
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P7/00—Drugs for disorders of the blood or the extracellular fluid
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/475—Growth factors; Growth regulators
- C07K14/505—Erythropoietin [EPO]
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/52—Cytokines; Lymphokines; Interferons
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/575—Hormones
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/74—Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/80—Vectors or expression systems specially adapted for eukaryotic hosts for fungi
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/80—Vectors or expression systems specially adapted for eukaryotic hosts for fungi
- C12N15/81—Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/10—Cells modified by introduction of foreign genetic material
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P21/00—Preparation of peptides or proteins
- C12P21/02—Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione
Definitions
- the present invention relates to an erythropoietin signaling inhibitor protein.
- Erythropoietin is a type of cytokine and is a hematopoietic factor that promotes the production of red blood cells. It is mainly produced in kidneys and tubular stromal cells, and acts on erythroblast progenitor cells in bone marrow to differentiate into erythrocytes. Erythropoietin binds to two extracellularly expressed erythropoietin receptors (EPORs) and promotes the phosphorylation of JAK2, which binds to the intracellular domain of the receptor, thereby transmitting cell proliferation signals downstream.
- EPORs extracellularly expressed erythropoietin receptors
- PV Polycythemia vera
- CML chronic myelogenous leukemia
- PV polycythemia vera
- ET essential platelet disease
- PMF primary myelofibrosis
- JAK2 is a tyrosine kinase that transmits signals of erythropoietin and thrombopoietin downstream, and most of the mutations in the JAK2 gene have valine at position 617 replaced with phenylalanine (V617F) (Non-Patent Document 1).
- V617F phenylalanine
- the JAK2 gene mutation activates the erythropoietin-independent and constitutive JAK2 signaling pathway mediated by the erythropoietin receptor, and the cells proliferate independently to develop polycythemia vera.
- PV is treated by phlebotomy and administration of the antimetabolite hydroxyurea to normalize the increased blood cell count.
- the prognosis of PV is relatively good, and prevention of thrombosis is the main treatment.
- JAK2 inhibitors have been launched on the market and have improved therapeutic effects such as alleviation of systemic symptoms such as reduction of splenomegaly, but have not improved the prognosis.
- JAK2 inhibitors inhibit not only mutant but also normal JAK2, so it has been pointed out that side effects such as decreased platelet count and anemia and increased risk of infectious diseases associated with leukopenia.
- An object of the present invention is to provide a drug that suppresses the growth of tumor cells by specifically targeting mutant JAK2 and inhibiting overactivated JAK2.
- the present inventors attempted to create a mutant EPO that acts on the EPO receptor (EPOR) and inhibits downstream JAK2 signaling with structural transformation of the EPO receptor (Fig. 27). As a result, it was clarified that the following mutant EPO inhibits EPOR-mediated JAK2 signaling.
- An EPO mutant that inhibits the EPO signal by converting the 103rd arginine (R) of erythropoietin (EPO) to aspartic acid (D) and glutamic acid (E) R103D, R103E.
- EPO mutants R103E / T107E, R103E / R110E in which the 107th threonine (T) and the 110th arginine were converted to glutamic acid in addition to R103E.
- This mutant EPO gets stuck in the dimer EPOR and causes the conversion of the dimer structure of the EPOR.
- JAK2 activity is inhibited and cell proliferation by JAK2 is inhibited by shifting the positional relationship between the dimer EPOR and the dimer JAK2 (JAK2V617F) that is complexed and activated in the cell by gene mutation. Therefore, it may be a therapeutic drug for polycythemia vera in which JAK2 gene mutation is observed in almost all cases, and EPOR is highly expressed and proliferated by the proliferation signal from wild-type EPO to JAK2. It is also expected to have a cell proliferation inhibitory effect on cancer cells of the wild-type EPO due to competition with wild-type EPO.
- the present invention has been completed based on these findings.
- the gist of the present invention is as follows. [1] The following erythropoietin mutant of (a) or (b). (a) From the amino acid sequence in which the 103rd arginine in the amino acid sequence of SEQ ID NO: 1 is replaced with another amino acid, which is an erythropoetin variant in which a mutation is introduced into human erythropoetin consisting of the amino acid sequence of SEQ ID NO: 1. And another amino acid substituted with arginine at position 103 is the variant that reduces or reverses the positive charge of arginine.
- the erythropoetin variant consisting of an amino acid sequence in which one or several amino acids other than the 103rd amino acid is deleted, substituted or added, and inhibits erythropoetin signaling
- the erythropoetin variant according to [1] or [2], wherein a mutation that makes a residue negatively charged has been introduced.
- the mutation that enhances the area around the 103rd arginine in the amino acid sequence of SEQ ID NO: 1 to a negative electrostatic potential is selected from the group consisting of the 107th threonine and the 110th arginine in the amino acid sequence of SEQ ID NO: 1.
- the mutation that makes a positively charged amino acid residue on the site 2 surface of human erythropoietin consisting of the amino acid sequence of SEQ ID NO: 1 negatively charged is the substitution of the 110th arginine in the amino acid sequence of SEQ ID NO: 1 and 110.
- the erythropoetin variant according to [3], wherein another amino acid substituted with the second arginine reduces or reverses the positive charge of the 110th arginine.
- the erythropoietin variant according to [6] wherein the 110th arginine in the amino acid sequence of SEQ ID NO: 1 is replaced with aspartic acid or glutamic acid.
- Any of the following erythropoietin mutants is the substitution of the 110th arginine in the amino acid sequence of SEQ ID NO: 1 and 110.
- An erythropoietin variant consisting of an amino acid sequence in which the 103rd arginine in the amino acid sequence of SEQ ID NO: 1 is replaced with aspartic acid.
- a polynucleotide comprising a nucleotide sequence encoding the erythropoetin variant according to any one of [8] or a sequence complementary thereto.
- the erythropoetin variant consisting of an amino acid sequence in which one or several amino acids other than the 103rd amino acid is deleted, substituted or added, and inhibits erythropoetin signaling [ 13] At least one selected from the group consisting of the erythropoetin mutant according to any one of [1] to [8], the polynucleotide according to [9], the vector according to [10], and the cell according to [11].
- a composition for inhibiting erythropoetin signaling including.
- a composition for inhibiting JAK2 activity including one.
- a composition for preventing and / or treating a disease associated with a JAK2 mutation which comprises one.
- the composition according to [16], wherein the disease associated with the JAK2 mutation is a tumor.
- the tumor is a myeloproliferative neoplasm or solid tumor.
- composition according to [18], wherein the myeloproliferative neoplasm is polycythemia vera, essential platelet disease or primary myelofibrosis.
- the erythropoietin mutant of the present invention can inhibit JAK2 activity and inhibit cell proliferation by JAK2.
- This specification includes the contents described in the Japanese patent application, Japanese Patent Application No. 2020-152102, and / or the drawings which are the basis of the priority of the present application.
- the JAK2 gene sequence (SEQ ID NO: 2) and PAM sequence around the mutation introduction site are shown.
- the PAM sequence is underlined and the site of mutation introduction is shown in bold.
- the ssODN sequence (SEQ ID NO: 3) is shown. Blue letters indicate synonymous substitutions, and red letters indicate mutation introduction sites.
- the detection of amino acid residues and distances present on the binding surface between EPO and EPOR at site2 is shown. Red ⁇ 3.0, 3.0 ⁇ Orange ⁇ 4.5, 4.5 ⁇ Yellow ⁇ 6.0, 6.0 ⁇ Green ⁇ 7.5, 7.5 ⁇ Cyan ⁇ 9.0, 9.0 ⁇ Blue [ ⁇ ], EPO and EPOR are shown by Space-filling. The hydrogen bonds inferred between EPO and EPOR are shown.
- the amino acid residues inferred to form hydrogen bonds between EPO (light red) and EPOR (light blue) at Site 2 are shown by space-filling (left) and stick (center).
- the state of hydrogen bonding is shown in a schematic diagram (right). It shows the inferred hydrophobic interaction between EPO and EPOR.
- the amino acid residues that were inferred to form a hydrophobic interaction between EPO (light red) and EPOR (light blue) are shown by space-filling (left) and stick (center).
- the hydrophobic interaction is shown in a schematic diagram (right).
- the electrostatic potentials of EPO and EPOR at site2 are shown. Negative charges are shown in red and positive charges are shown in blue.
- EPO mutation introduction site2-A and site2-B
- the surface shape of EPO contains site2-A (green) and site2-B (orange) selected as the location of mutation introduction, and the surface shape of EPOR (right) contains amino acid residues that interact with each other. Indicated.
- the direction of EPO mutation introduction site2-A and site2-B) is shown.
- the change in electrostatic potential of the surface structure of EPO by R103A and R103E is shown. Negative charges are shown in red and positive charges are shown in blue. Candidates for introducing mutations into site2-A are shown.
- the substituted residues are indicated by magenta, the neighboring EPOR residues are indicated by light blue, and the charge repulsion is indicated by the red dashed line.
- Candidates for introducing mutations into site2-B are shown.
- the residue of site2-B is green, Phe93 of EPOR is cyan, the substituted amino acid residue is magenta, and the hydrophobic interaction is shown by the dotted gray line.
- Candidates for introducing mutations into site2-B (mutations that cause steric hindrance with EPOR) are shown.
- the residue of site2-B is shown in green, the Phe93 of EPOR is shown by cyan, the substituted amino acid residue is shown by magenta, and the steric clash is shown by the red dotted line.
- Site2-B Candidates for introducing mutations into site2-B (mutations that disrupt the hydrophobic environment of the hydrophobic pocket of the EPO) are shown.
- the residue of site2-B is shown in green, the residue of EPOR Phe93 is shown in cyan, and the substituted amino acid residue is shown in magenta.
- the direction of EPO mutation introduction site2-A and site2-B is shown.
- Amino acid residues show an example of mutagenesis.
- the comparison of cell proliferation ability by mEPO1 ⁇ 10 (a.UT-7 / EPO, b. UT-7 / EPO, 0.03 U / mL in the presence of EPO, c.
- UT-7 / EPO / JAK2V617F is shown.
- the electrostatic potentials of EPO and EPOR at site2 are shown. Negative charges are shown in red and positive charges are shown in blue.
- a The electrostatic potential was mapped to the surface shapes of EPO and EPOR. Areas involved in the interaction are shown in circles.
- b The electrostatic potential of site 2 of wild-type EPO (WT) and mutant EPO (R103D, R103E) is shown. In the lower row, the replaced residue is shown by magenta, the neighboring EPOR residue is shown by light blue, and the charge repulsion is shown by the red dashed line.
- WT wild-type EPO
- R103D, R103E mutant EPO
- the interaction between EPO and EPOR near site2-A is shown.
- a two-residue mutant EPO with a negatively charged amino acid residue introduced near R103 is shown. Negative charges are shown in red and positive charges are shown in blue.
- b Peripheral structure of R103E / T107E.
- the mutation of the two-residue substitution in which the positive charge of EPO site2 is replaced with the negative charge is shown.
- Negative charges are shown in red and positive charges are shown in blue.
- a Mutation introduction position (top) and one-residue substitution
- R103E Electrostatic potential map of surface shape (bottom).
- b Electrostatic potential map of the surface shape of the mutant EPO with two-residue substitutions.
- the peripheral structure of the mutant EPO is shown.
- b Peripheral structure of K97E / R103E
- c Peripheral structure of R103E / R110E.
- the peripheral structure (R4E / R103E) of the mutant EPO is shown.
- a Peripheral structure of R4E / R103E.
- R4 and R103 are shown by Ball & Stick.
- R4 and E4 were merged.
- R4 is indicated by the blue side chain
- E4 is indicated by the red side chain.
- the three-dimensional structure of EPO and the position of candidate for introduction of mutation in the amino acid sequence are shown.
- the comparison of cell proliferation ability by mEPO4.1 ⁇ 4.11 (a.UT-7 / EPO, b.UT-7 / EPO, 0.03 U / mL in the presence of EPO, c.UT-7 / EPO / JAK2V617F) is shown.
- the comparison of cell proliferation ability by mEPO 4.4.10 (a.UT-7 / EPO, b.
- the present invention provides the following erythropoietin mutants (a) or (b).
- (a) From the amino acid sequence in which the 103rd arginine in the amino acid sequence of SEQ ID NO: 1 is replaced with another amino acid, which is an erythropoetin variant in which a mutation is introduced into human erythropoetin consisting of the amino acid sequence of SEQ ID NO: 1.
- another amino acid substituted with arginine at position 103 is the variant that reduces or reverses the positive charge of arginine.
- the erythropoetin variant consists of an amino acid sequence in which one or several amino acids other than the 103rd amino acid are deleted, substituted or added, and inhibits erythropoetin signaling.
- the 103rd arginine in the amino acid sequence of SEQ ID NO: 1 is replaced with another amino acid that reduces or reverses the positive charge of arginine.
- Another amino acid substituted with arginine at position 103 is aspartic acid, glutamic acid.
- erythropoetin variant of (b) one or several (for example, two or three) amino acids other than the 103rd amino acid were deleted, substituted or added in the amino acid sequence of the variant of (a). It consists of an amino acid sequence and can inhibit erythropoetin signaling. Inhibition of erythropoietin signaling by EPO mutants is that by adding EPO mutants to cells that proliferate in an EPO-dependent manner, EPO-dependent proliferation mediated by EPO receptors is suppressed, and JAK2 phosphorylation by EPO addition is suppressed. It can be confirmed by investigating that the subsequent phosphorylation of STAT5 and ERK1 / 2 is suppressed.
- Phosphorylation of STAT5 and ERK1 / 2 can be measured by immunodetection methods using phosphorylation-specific antibodies (Western blotting, immunoprecipitation, immunohistochemistry, ELISA, flow cytometry, etc.).
- the erythropoetin variant of (b) is preferably one having at least 80% or more sequence identity with the amino acid sequence of SEQ ID NO: 1, preferably 96% or more sequence identity, and more preferably 98% or more sequence. Have identity.
- the erythropoietin mutant of (a) or (b) shall be produced by incorporating the gene encoding the EPO into which the mutation has been introduced into an appropriate vector, introducing it into an appropriate host cell, and producing it as a recombinant protein. Can be done.
- a human erythropoetin site 2 consisting of a mutation in the amino acid sequence of SEQ ID NO: 1 that enhances the vicinity of the 103rd arginine to a negative electrostatic potential and / or the amino acid sequence of SEQ ID NO: 1 Mutations may be introduced that make the surface positively charged amino acid residues negatively charged.
- An example of a mutation in the amino acid sequence of SEQ ID NO: 1 that enhances the area around arginine at position 103 to a negative electrostatic potential is selected from the group consisting of threonine at position 107 and arginine at position 110 in the amino acid sequence of SEQ ID NO: 1. It is a substitution of at least one amino acid, and another amino acid substituted with the amino acid at the site reduces or reverses the positive charge of the amino acid at the site.
- an erythropoetin variant in which at least one amino acid selected from the group consisting of threonine at position 107 and arginine at position 110 in the amino acid sequence of SEQ ID NO: 1 is replaced with aspartic acid or glutamic acid is exemplified. be able to.
- An example of a mutation that makes a positively charged amino acid residue on the surface of human erythropoetin site 2 consisting of the amino acid sequence of SEQ ID NO: 1 negatively charged is the 110th arginine substitution in the amino acid sequence of SEQ ID NO: 1.
- the amino acid substituted with arginine in No. 110 reduces or reverses the positive charge of arginine at position 110.
- the site 2 of human erythropoietin is the surface of binding to the erythropoietin receptor present in human erythropoietin, and erythropoietin has two sites, site 1 having high affinity with the receptor and site 2 having low affinity with the receptor. Each of site1 and site2 interacts with one erythropoietin receptor to dimerize the receptor. Two JAK2s located in the cytoplasmic domain of the dimerized receptor approach and phosphorylate each other to activate and activate downstream signal transduction. (Syed RS, Reid SW, et al .: Efficiency of signaling through cytokine receptors depends critically on receptor orientation. Nature.
- an erythropoietin variant in which the 110th arginine in the amino acid sequence of SEQ ID NO: 1 is replaced with aspartic acid or glutamic acid can be exemplified.
- erythropoietin mutant of the present invention Preferred specific examples of the erythropoietin mutant of the present invention are listed below.
- An erythropoietin variant (mEPO3: R103D) consisting of an amino acid sequence in which the 103rd arginine in the amino acid sequence of SEQ ID NO: 1 is replaced with aspartic acid.
- An erythropoietin variant (mEPO4: R103E) consisting of an amino acid sequence in which the 103rd arginine in the amino acid sequence of SEQ ID NO: 1 is replaced with glutamic acid.
- An erythropoetin variant consisting of an amino acid sequence in which the 103rd arginine in the amino acid sequence of SEQ ID NO: 1 is replaced with aspartic acid or glutamic acid and the 107th threonine is replaced with aspartic acid or glutamic acid.
- the 103rd arginine is replaced with aspartic acid or glutamic acid
- the 107th threonine is replaced with aspartic acid or glutamic acid
- the 110th arginine is replaced with aspartic acid or glutamic acid.
- Erythropoetin variants consisting of amino acid sequences (mEPO4.4.10: R103E / T107E / R110E, R103D / T107E / R110E, R103D / T107E / R110D, R103D / T107D / R110E, R103D / T107D / R110D, R103E / T107E / R110D, R103E / T107D / R110E, R103E / T107D / R110D, R103E / T107D / R110D, R103E / T107D / R110D) (5)
- An erythropoetin variant consisting of an amino acid sequence in which the 103rd arginine in the amino acid sequence of SEQ ID NO: 1 is replaced with aspartic acid or glutamic acid and the 110th arginine is replaced with aspartic acid or glutamic acid.
- the present invention provides a polynucleotide containing a nucleotide sequence encoding the above-mentioned erythropoietin variant or a sequence complementary thereto.
- the polynucleotide of the present invention may be single-stranded or double-stranded.
- a double strand it consists of a polynucleotide containing a nucleotide sequence encoding the above-mentioned erythropoietin variant and a complementary strand thereof.
- the polynucleotide may be any of DNA, RNA, and a chimera of DNA and RNA, and the nucleotides constituting the polynucleotide may be modified.
- the polynucleotide of the present invention can be produced by artificial gene synthesis or a site-specific mutagenesis method.
- a recombinant vector is prepared by incorporating a polynucleotide containing a nucleotide sequence encoding the erythropoetin mutant of the present invention into a vector, and this is introduced into a host cell for transformation, and the transformed cell is cultured to obtain the present invention.
- Erythropoetin mutants can be produced.
- the present invention comprises culturing cells comprising a vector containing a polynucleotide comprising a nucleotide sequence encoding the erythropoietin variant of (a) or (b), the erythropoietin variant of (a) or (b).
- the present invention also provides a vector (recombinant vector) containing a polynucleotide containing a nucleotide sequence encoding the erythropoietin variant of a) or (b).
- the present invention also provides cells comprising a vector containing a polynucleotide comprising a nucleotide sequence encoding the erythropoietin variant of (a) or (b).
- the recombinant vector of the present invention can be prepared by inserting a polynucleotide containing a nucleotide sequence encoding the erythropoietin variant of (a) or (b) and a sequence complementary thereto into an appropriate vector.
- pcDNA3.1 As the vector, pcDNA3.1, pcDNA3.3, pcDNA.3.4, etc. can be used.
- a promoter, enhancer, splicing signal, poly A addition signal, selectable marker, SV40 replication origin, or the like may be added to the expression vector.
- the expression vector may be a fusion protein expression vector.
- Various fusion protein expression vectors are commercially available, pcDNA3.1 + C-6His, pcDNA3.1 + C-HA, pcDNA3.1 + C-DYK, pcDNA3.1 + C-Myc, pcDNA3.1 + N- 6His, pcDNA3.1 + N-HA, pcDNA3.1 + N-DYK, pcDNA3.1 + N-Myc and the like can be exemplified.
- Transformed cells can be obtained by introducing the recombinant vector of the present invention into a host cell.
- Examples of the host include CHO cells, BHK cells, HT-1080 cells, NS0 cells, SP2 / 0 cells, HEK293 cells, and the like.
- Transformed cells can be cultured in a medium, and the erythropoietin mutant of (a) or (b) can be collected from the culture.
- the medium may be recovered, and the erythropoietin variant of (a) or (b) may be separated and purified from the medium.
- the erythropoietin variant of (a) or (b) is produced in the transformed cell, the cell is lysed and the erythropoietin variant of (a) or (b) is isolated from the lysate. , Purify.
- the factor Xa is after isolation and purification of the fused erythropoietin variant.
- enzyme (enterokinase) treatment can cleave another protein to obtain the desired erythropoietin mutant of (a) or (b).
- Separation and purification of the erythropoietin mutant of (a) or (b) can be performed by a known method.
- known separation and purification methods differences in molecular weight such as methods using solubility such as salting out and solvent precipitation, dialysis method, ultrafiltration method, gel filtration method, and SDS-polyacrylamide gel electrophoresis can be used.
- the erythropoetin variant of the present invention, the polynucleotide of the present invention, the vector of the present invention and the cell of the present invention can be used to inhibit erythropoetin signaling.
- Erythropoietin signaling involves activation of JAK2 (ie, erythropoietin binds to the extracellularly expressed erythropoietin receptor and promotes the phosphorylation of JAK2 bound to the intracellular domain of the receptor.
- JAK2 ie, erythropoietin binds to the extracellularly expressed erythropoietin receptor and promotes the phosphorylation of JAK2 bound to the intracellular domain of the receptor.
- the proliferation signal is transmitted downstream.
- the present invention comprises a polynucleotide containing the erythropoietin variant of (a) and / or (b), a nucleotide sequence encoding the erythropoietin variant or a sequence complementary thereto, a vector containing the polynucleotide, and the vector.
- a composition for inhibiting erythropoietin signaling comprising at least one selected from the group consisting of containing cells.
- the present invention also comprises a polynucleotide containing the erythropoetin variant of (a) and / or (b), a nucleotide sequence encoding the erythropoetin variant or a sequence complementary thereto, a vector containing the polynucleotide, and the vector.
- a composition for inhibiting JAK2 activity comprising at least one selected from the group consisting of containing cells.
- the present invention comprises a polynucleotide containing the erythropoetin variant of (a) and / or (b), a nucleotide sequence encoding the erythropoetin variant or a sequence complementary thereto, a vector containing the polynucleotide and the vector.
- a composition for inhibiting cell proliferation by JAK2 which comprises at least one selected from the group consisting of containing cells.
- the vector contains a polynucleotide comprising a nucleotide sequence encoding the erythropoetin variant of (a) and / or (b)
- the vector is a nucleotide sequence encoding the erythropoetin variant of (a) and / or (b).
- the polynucleotide containing the above can be introduced into cells, and examples thereof include gene therapy vectors such as adenovirus, retrovirus, lentivirus, adeno-associated virus, Sendai virus, liposome, and plasmid.
- the polynucleotide or vector of the present invention introduced into cells self, allogeneic
- a method for introducing a gene of interest into a vector, a method for introducing a recombinant vector into a cell, a method for administering a recombinant vector or a gene-introduced cell to a human, and an administration site are known, and can be used in the present invention as it is or as it is. It can be modified and applied.
- genome editing technology may be used.
- artificial nucleases such as ZFN (zinc-finger nuclease), TALEN (transcription activator-like effector nuclease), and CRISPR / Cas9 (clustered regularly interspaced short palindromic repeats / CRISPR-associated protein 9) can be used.
- composition of the present invention can be used for pharmaceuticals, experimental reagents, and the like.
- Pharmaceuticals include prevention and prevention of diseases associated with JAK2 mutations, specifically tumors (eg, myeloproliferative neoplasms such as polycythemia vera, essential platelet disease, and primary myelofibrosis, and solid tumors). / Or can be used for treatment.
- EPO and EPOR are head and neck tumors, breast cancers, colon cancers, prostate cancers, ovarian cancers, uterine cancers and cervical cancer cells, neuroblastomas, stellate cell tumors and other solid nervous system tumors, as well as numerous. It is known to be expressed in malignant cell lines (Henke, M. et al. (2003) Lancet 362: 1255; Arcasoy, MO et al.
- the EPO variants of the present invention may be effective in the prevention and / or treatment of these cancers.
- erythropoetin variant of (a) and / or (b) from the group consisting of the erythropoetin variant of (a) and / or (b), a polynucleotide containing a nucleotide sequence encoding the variant or a sequence complementary thereto, a vector containing the polynucleotide, and a cell containing the vector.
- At least one (hereinafter referred to as "active ingredient”) is used alone or in combination with a pharmaceutically acceptable carrier, diluent or excipient as a pharmaceutical composition of a suitable dosage form for mammals.
- the dose can be administered orally or parenterally to (eg, humans, mice, rats, rabbits, guinea pigs, dogs, cats, monkeys, chimpanzees, sheep, goats, pigs, cows).
- the dose varies depending on the subject, target disease, symptoms, administration route, etc., but for example, for the prevention and treatment of myeloproliferative neoplasms (for example, true erythrocytosis, essential thrombosis or primary myelofibrosis).
- the active ingredient is a protein
- the dose is usually about 10 ⁇ g to 200 mg / kg body weight, preferably about 0.1 mg to 100 mg / kg body weight, and when the active ingredient is a polynucleotide.
- the dose of the active ingredient is usually about 1x10 4 to 1x10 12 cells, preferably 1x10 7 to 1x10 8 cells, preferably about once every day to 10 years. It is recommended to administer by intramuscular injection, subcutaneous injection, intravenous injection, preferably intravenous injection, at a frequency of about twice a week to once every five years. In the case of other parenteral administration and oral administration, an equivalent amount can be administered. If the symptoms are particularly severe, the dose may be increased according to the symptoms. The same applies when used for the prevention / treatment of solid tumors.
- compositions for oral administration include solid or liquid dosage forms, specifically tablets, pills, granules, powders, capsules, syrups, emulsions, suspensions and the like.
- Such a composition can be produced by a conventional method, and may contain a carrier, a diluent or an excipient usually used in the pharmaceutical field.
- carriers and excipients for tablets include lactose, starch, sucrose, magnesium stearate and the like.
- compositions for parenteral administration include injections, suppositories, etc.
- the injections include intravenous injections (liquid or lyophilized preparations), subcutaneous injections, intradermal injections, intramuscular injections, etc. It is preferable to use a dosage form such as a drip injection.
- Such injections are prepared by conventional methods, that is, by dissolving, suspending or emulsifying the active ingredient in a sterile aqueous or oily solution normally used for injections.
- Aqueous solutions for injection include physiological saline, isotonic solutions containing glucose and other adjuvants, and suitable solubilizing agents such as alcohols (eg, ethanol), polyalcohols (eg, propylene glycol, etc.).
- a nonionic surfactant for example, polysorbate 80, HCO-50 (polyoxythetylene (50 mol) added-of-hydrogenated castor oil)
- oily liquid examples include sesame oil and soybean oil, and benzyl benzoate, benzyl alcohol and the like may be used in combination as a solubilizing agent.
- the prepared injection solution is usually filled in a suitable ampoule. Suppositories used for rectal administration can be prepared by mixing the active ingredient with a conventional suppository base.
- the oral or parenteral pharmaceutical compositions described above may be prepared in dosage form in dosage form that is compatible with the dosage of the active ingredient.
- Examples of the dosage form of such a dosage unit include tablets, pills, capsules, injections (ampols), suppositories, etc., and the content of the active ingredient in each dosage unit dosage form is such that the active ingredient is a protein.
- the active ingredient is a protein.
- the active ingredient is usually about 5 ⁇ g to 100 mg
- when the active ingredient is a polynucleotide usually about 0.1 mg to 1000 mg
- the active ingredient is a vector containing a polynucleotide, usually about 1x10 10 to 1x10 15 genome copy
- the active ingredient is a vector.
- cells containing it is usually good to have about 2x10 5 to 3x10 8 cells. These contents can be changed as appropriate.
- Method 1 Preparation of UT-7 / EPO / JAK2V617F cells 1) Genome editing-Design of sgRNA and ssODN CRISPR direct, a gRNA design software, was used to design single guide RNA (sgRNA). First, off-target prediction was performed on the upstream 20 bases of the PAM sequence (NGG) existing around the 1849th guanine (G1849), which is the mutation introduction site of the JAK2 gene (Fig. 1), and four sgRNAs were designed (4 types of sgRNAs). table 1).
- # 1 sgRNA three types were commissioned and synthesized, excluding # 2 sgRNA, which has a high probability of 3-base mismatch. Since the efficiency of genome editing increases when cleavage by Cas9 (3 bases upstream of the PAM sequence) occurs near the mutation introduction site, # 3 sgRNA was used for the genome editing experiment.
- Single-stranded oligonucleic acid was used as the knock-in donor.
- G1849T which corresponds to the introduction of the V617F mutation in JAK2, and 93-base-long ssODN (Fig. 2) containing synonymous substitutions of T1848C to prevent re-cleavage by Cas9 were synthesized by contract.
- # 3 SEQ ID NO: 6 # 4: SEQ ID NO: 7
- a cell population having a cell viability of 90% or more was seeded on 10 96-well plates so as to become a single cell by the limiting dilution method, and cloning was performed. Clone grown in EPO-free IMDM / 10% FCS was transferred to a 6-well plate and expanded-cultured.
- Genomic DNA was extracted from cell pellet of 2x10 5 cells, and the region containing the mutation introduction site was PCR-amplified. A 598 bp PCR product was purified and directly sequenced, and the mutation transfer efficiency was quantified by the ABC-PCR method for clones in which the mutation was introduced at the target site.
- the fluorescent probe sequence and PCR primer sequence are shown below.
- Fluorescent probe (ABQP-JAKd-1): TAMRA-cctgtagtttacttactctcgtctccacaga-BODYPY-FL (SEQ ID NO: 8)
- PCR primer Forward primer (F-JAKd-1): 5'-atctatagtcatgctgaaagtaggagaaag-3'(SEQ ID NO: 9)
- Reverse primer (R-JAKd-1): 5'-ctgaatagtcctacagtgtttttcagttttca-3'(SEQ ID NO: 10) (Reference) Baxter EJ et al., Lancet, 2005, 365, 1054-1061
- the method is as follows. Genome sequence PCR products with known concentrations derived from wild-type JAK2 gene and mutant JAK2 gene with allervarden (mutant ratio) of 1%, 10%, 30%, 50%, 70%, 90% or 99 It was mixed so as to be%, and used as a template for a calibration curve. The amount of the mold was 105 copies. Genomic DNA 100 ng was used as a clone template.
- the composition of the reaction solution is as follows: template DNA 10 5 copies / reaction or clone-derived genomic DNA 100 ng / reaction, 100 nM probe (ABQP-JAKd-1), 500 nM forward primer (F-JAKd-1), 150 nM reverse primer ( R-JAKd-1), 0.2mM dNTP mix, 1 X TITANIUM Taq PCR buffer (Takara Bio Inc.), 1 X TITANIUM Taq DNA polymerase (Takara Bio Inc.).
- the reaction temperature conditions were 94 ° C., 3 minutes (dissociation reaction), then 94 ° C., 30 seconds ⁇ 62 ° C., 30 seconds ⁇ 72 ° C., 30 seconds for 50 cycles, 72 ° C., 2 minutes (extension reaction).
- the fluorescence intensities from BODYPY-FL and TAMRA were measured 5 times every 11 seconds at 95 ° C, 2 minutes, and 55 ° C, 2 minutes, and the fluorescence intensities at each temperature were calculated by the following formula.
- the expressed relative fluorescence intensity was calculated.
- the fluorescence intensity was measured using Thermal Cycler Dice Real Time System III (Takara Bio Inc.).
- the relative fluorescence intensity is when the fluorescence intensity of BODYPY-FL of each sample is Bs, the fluorescence intensity of TAMRA is Ts, the fluorescence intensity of BODYPY-FL of the negative control (without template) is Bp, and the fluorescence intensity of TAMRA is Tp. Calculated from (Bs-Bp) / (Tp-Ts).
- a calibration curve of allerbaden was prepared from the relative fluorescence intensity obtained from the PCR product having a known concentration, and the allerbaden value was measured from the relative fluorescence intensity of the cloned genomic DNA.
- a chemiluminescent reagent was added to the PVDF film, reacted for 10 minutes, and then photographed with LAS-3000 (Fujifilm Co., Ltd.).
- mutant EPO (mEPO1 ⁇ mEPO10) 1) Expression of mutant EPO
- the cells were cultured to 4 to 6 x 10 6 cells / mL, and passage was repeated 2-3 times or more before transfection. The cell number was adjusted to 3-4 x 10 6 cells / mL 1 day before transfection, and then shaken and cultured overnight. Cells were counted and adjusted to 125 mL culture flasks to 6 x 10 6 cells / mL in 25 mL of ExpiCHO Expression Medium. 40 ug of pcDNA3.4- (mEPO) was diluted with 1 mL of OptiPRO medium and added to a mixture of 0.92 mL of OptiPRO medium and 80uL of ExpiFectamine CHO Reagent.
- mEPO pcDNA3.4-
- ExpiCHO TM Enhancer 150uL and ExpiCHO TM Feed 7.5 mL were added and cultured for 12 days. After culturing, centrifugation was performed at 3000 rpm for 10 minutes to obtain a culture supernatant. This culture supernatant was filtered through a 0.45 um filter, and the supernatant further filtered through a 0.22 um filter was used for activity measurement.
- the HRP-labeled secondary antibody was diluted 10,000-fold with PBST / 5% BSA and soaked at room temperature for 1 hour.
- the PVDF membrane was washed 3 times with PBST for 10 minutes.
- the chemiluminescent reagent was added to the PVDF membrane and reacted for 10 minutes. Taken with LAS-3000 (Fuji Film Co., Ltd.).
- the culture supernatant was treated with glycosidase F, a sugar chain-cleaving enzyme, at 37 ° C. for 20 hours, and western blot was performed by the above method.
- the cells were cultured to 4 to 6 x 10 6 cells / mL, and passage was repeated 2-3 times or more before transfection. The cell number was adjusted to 3-4 x 10 6 cells / mL 1 day before transfection, and then shaken and cultured overnight. The cells were counted and adjusted to a 250 mL culture flask to 6 x 10 6 cells / mL in 50 mL of ExpiCHO Expression Medium. 40 ug of pcDNA3.4- (mEPO) was diluted with 2 mL of OptiPRO medium and added to a mixture of 1.84 mL of OptiPRO medium and 160uL of ExpiFectamine CHO Reagent.
- mEPO pcDNA3.4-
- mutant EPO and improved mutant EPO > Wild-type EPO APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGLRSLTTLLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR * 1 Residual mutation EPO > mEPO1 (R103A) APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGL A SLTTLLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR > mEPO2 (R103F) APPRLICDSRVLERYLLEAKEAENITTGC
- Electroporation was performed using the Neon Transfection System (Thermo Fisher) under the conditions of 1115 V, 30 ms, and 2 pulse.
- mutant EPO mutant EPO
- improved mutant EPO mutant EPO
- mutant EPO mutant EPO
- improved mutant EPO mutant EPO
- mutant EPO mutant EPO
- improved mutant EPO mutant EPO
- 30 mL of the culture supernatant of the CHO cells expressing the above was filtered, placed in 2 bottles of 15 mL each in Amicon 30 kDa, centrifuged at 3000 rpm for 30 minutes, concentrated to 5 mL, and subjected to ultrafiltration.
- the dilution ratio of the mutant EPO will be 200 times.
- 100 ⁇ L of ONE-Glo TM Reagent Promega was added to each well and incubated for 3 minutes to lyse the cells. Chemiluminescence of this plate by luciferase was measured with a luminometer and by dimerization of JAK2V617F via EPOR with the addition of mutant EPO (mEPO4) and improved mutant EPO (mEPO4.4, mEPO4.10, mEPO4.4.10). Inhibition of phosphorylation followed by STAT5 phosphorylation inhibition was evaluated.
- UT-7 / EPO / JAK2V617F cells A complex consisting of Cas9 protein, sgRNA, and ssODN was introduced into UT-7 / EPO cells by electroporation, and a V617F mutation was introduced into the JAK2 gene by genome editing. By repeating this three times in total, a cell line capable of growing in the absence of EPO was obtained.
- the allele-baden value of No.54-15 was the highest at 88%, but since it did not reach 100%, the allele-baden value was high and cell proliferation was good. On the other hand, the genome was edited for the third time. Cloning yielded 88 clones. 6 clones (No.11R-61-21, 11R-61-44, 11R-61-52, 54-15-17, 54-15-21, 54- As a result of quantifying the allele-baden value of 15-29), it was about 90% in all 6 clones, suggesting that it is a homozygous mutant.
- No. 54-15-17 which has a high allele Baden value, was found to be a homozygous mutant by single allele sequence analysis, and was named UT-7 / EPO / JAK2V617F cells that mimic PV disease.
- EPOR's Phe93 binds into the hydrophobic pocket formed by EPO's Leu5, Val11, Tyr15, and Leu108, and all carbons in the aromatic ring of Phe93 form a hydrophobic interaction with the carbon of the four residues of EPO. Was.
- Arg103 which has a positively charged side chain of EPO inferred to have hydrogen bonds, was present in the positive region, and Glu62 and Asp89, which had negatively charged side chains of EPOR, were present in the negative region. It is speculated that Arg103 of EPO and Glu62 and Asp89 of EPOR not only form hydrogen bonds but also cause positive or negative electrostatic potentials on their respective surfaces and contribute to electrostatic interaction.
- site 2 of EPO is bound to EPOR by three factors: hydrogen bond, hydrophobic interaction, and interaction between EPO (positive) and EPOR (negative) due to electrostatic potential.
- hydrogen bonds and hydrophobic interactions the hydrogen bonds between Arg103 of EPO and EPOR and the hydrophobic interaction between Phe93 of EPOR and EPO were considered to be particularly important interactions.
- EPO's Arg103 which is called site2-A here.
- site2-A the EPO Arg103 binds to the EPOR Glu62, Ala88, Asp89, Ser91 so as to enter the recess, and the Arg side chain forms a hydrogen bond with the EPOR Glu62, Ala88, Asp89, Ser91. It was (Fig. 7).
- the surface area of this EPOR depression had a negative electrostatic potential and was suitable for the binding of positive Arg103.
- the nitrogen of the guanidyl group having a positive charge on the side chain of Arg103 of EPO may be electrostatically bonded to the oxygen of the carbonyl group of the side chains of EPOR Glu62 and Asp89.
- Introducing a mutation into site2-A eliminates these interactions of Arg103, resulting in a mutation that eliminates hydrogen bonds, a mutation that reduces or reverses positive electrostatic potential, and a mutation that causes steric hindrance with EPOR. (Fig. 8, left).
- the position where the other mutation is introduced is Leu5, Val11, Tyr15, Leu108, which are inferred to have a hydrophobic interaction with Phe93 of EPOR, and these are called site2-B.
- site2-B these residues formed hydrophobic pockets, which are hydrophobic depressions, on the surface of site 2 of the EPO (Fig. 7).
- EPOR's Phe93 bound to fit in this hydrophobic pocket and formed a hydrophobic interaction with EPO's Leu5, Val11, Tyr15, Leu108. Therefore, we investigated mutations that eliminate the hydrophobic interaction of EPOR with Phe93 and mutations that prevent Phe93 from binding to the hydrophobic pocket by disrupting steric hindrance and hydrophobic environment in the hydrophobic pocket (Fig. 8).
- EPOR cannot bind to site2 of the mutant EPO and form the original dimer structure. Conceivable. Furthermore, it was expected to have the effect of inhibiting EPOR from approaching its original position with respect to EPO due to the repulsion of electrostatic potential and mutation that causes steric hindrance with EPOR.
- EPOR Phe93 was used for the substitution of Leu5 to Ala, Val, the substitution of Val11 to Ala, the substitution of Tyr15 to Ala, Val, Ile, Leu, and the substitution of Leu108 to Ala, Val.
- the disappearance of the hydrophobic interaction with was inferred.
- These mutations not only eliminate the direct hydrophobic interaction with Phe93, but also have the effect of destabilizing the binding of Phe93 by opening a gap in the tight binding between the hydrophobic pocket and Phe93. Thought. In order to leave as much space as possible between Phe93 and Phe93, it is preferable that the amino acid residue to be substituted is small, and Ala is considered to be the most suitable type of amino acid residue.
- the policy of widening the hydrophobic pocket to create a gap is to mutate Leu5 to Ala (L5A), mutation from Val11 to Ala (V11A), mutation from Tyr to Ala (Y15A), and mutation from Leu108 to Ala.
- Mutation (L108A) was considered as a candidate (Fig. 11).
- L108A 5 hydrophobic interactions
- L5A (4)
- V11A in terms of effectively eliminating hydrophobic interactions with one residue.
- (2 locations) Y15A (1 location) can be considered in that order.
- Phe93 interacts with four amino acid residues, it is considered effective to introduce multiple mutations when the effect of one-residue substitution is observed. It was speculated that neither mutation affected the three-dimensional structure of EPO.
- Tyr15 produced steric clash only by substitution with Trp, which has a bulky side chain, but substitution with Trp was excluded from the candidates because of steric hindrance within the structure of EPO itself.
- the Phe residue of the introduced EPO is a hydrophobic pocket, especially in the Val11 to Phe, Tyr mutation (V11F, V11Y) and the Leu108 to Phe, Tyr mutation (L108F, L108Y).
- tyrosine clash with multiple carbon atoms in the side chain of Phe93 of EPOR was inferred, it was speculated that it has the effect of inhibiting the binding of Phe93 to the pocket.
- substitution with Asn and Lys is not preferable because it forms a hydrogen bond with EPOR.
- Substitution of Tyr15 to hydrophilic residues did not reach the hydrophobic clusters of any of the amino acid residues, and it seemed difficult to obtain an effect enough to destroy the hydrophobic environment.
- the substitution from Leu108 to Ser, Thr the OH group of the side chain of Ser, Thr was introduced inside the hydrophobic pocket, and it was speculated that it was effective in destroying the hydrophobic environment.
- the replacement of Leu108 with Asn is considered to be effective because the hydrophilic side chains of Asn are arranged so as to fill the hydrophobic pocket.
- Leu108 has the largest hydrophobic interaction with Phe93, and it was inferred that mutations are effective in all three directions. I thought that the priority was high.
- EPOR is thought to form a dimer on the cell surface even in the absence of EPO. It has also been reported that when EPO binds to EPOR, it first binds at site1 and then at site2 (Matthews DJ et al. (1996) Proc Natl Acad Sci. 93: 9471). In order to separate the EPOR dimer structure bound to site 1 of the EPO and bind to each EPOR at the site 1 with high affinity, it is necessary to have a mutation that not only eliminates the binding ability of site 2 but also further separates the binding surface of EPOR. I thought it was.
- Figure 14 shows the direction of EPO mutation introduction at site2-A and site2-B, and candidates for mutant amino acids.
- Table 3 summarizes the candidates for mutant EPO.
- mutant EPO (mEPO1 ⁇ mEPO10) As a result of Western blotting of the culture supernatant of CHO cells, mEPO1-10 was expressed as a 27 kDa protein. Of these, when mEPO2, standard EPO (Std), and wild-type EPO (hEPO) were treated with Glycosidase F, which is a sugar chain-cleaving enzyme, the band shifted to 20 kDa. It was found that 10 was expressed in full length.
- mutant EPO activity (mEPO1 ⁇ mEPO10) As a result of measuring the EPO activity of the mutant EPO (mEPO1-10) by the MTT assay, UT-7 / EPO cells could not proliferate in the mEPO 1, 3, 4, 7 addition group, and the other mutant EPOs proliferated equivalent to EPO. It was possible (Fig. 15a).
- the vicinity of R103 is shown in red compared to R103E, and it is inferred that the mutation can enhance the area around Arg103 to a negative electrostatic potential.
- Figure 19 shows the peripheral structure of the mutation introduction site.
- the introduction of a negative charge around Arg103 is considered to have the effect of keeping EPOR away by inducing charge repulsion with this loop of EPOR.
- the introduction of negatively charged amino acid residues was considered to be effective.
- Thr107 and Arg110 with EPO triad substitution were considered to be effective because they invert the binding surface with EPOR to a wide negative electrostatic potential.
- Fig. 20 shows the electrostatic potential map of R4E / R103E, R14E / R103E, K97E / R103E, R103E / R110E in which these amino acid residues are replaced with Glu
- Fig. 21 shows the electrostatic potential maps of R14E / R103E, K97E / R103E, R103E / R110E. The peripheral structure is shown. It was confirmed that the electrostatic potential on the surface was negative compared to R103E.
- the peripheral structure is shown. It was confirmed that the electrostatic potential on the surface was negative compared to R103E.
- R4 is located in the helix below R103, and its side chain is not very close to EPOR (Fig. 22a). However, by substituting this amino acid with Glu, the side chain becomes closer to EPOR (Fig. 22b), and the negative charge of EPO site2 is also widely strengthened, so charge repulsion is expected.
- FIG. 23 shows the positions of mutation introduction candidates on the three-dimensional structure of EPO and on the amino acid sequence.
- Table 4 shows the candidates for the improved mutant EPO.
- the pGL4.52 [luc2P / STAT5 RE / Hygro] vector is a vector in which a STAT5 response sequence (STAT5 RE) is bound to a luciferase gene (luc2P) as a promoter sequence, and STAT5 phosphorylated by JAK2 translocates to the nucleus.
- STAT5 Since luc2P is expressed by binding to STAT5-RE, it is possible to measure STAT5 signaling by measuring luciferase activity.
- STAT5 is located downstream of EPOR, where EPO binds to two EPORs, resulting in dimerization and phosphorylation of JAK2, which binds to the intracellular domain of EPOR. Then, STAT5 is phosphorylated by phosphorylated JAK2, nuclear translocation occurs, and EPO-related gene expression occurs.
- the reporter cell line UT-7 / EPO / JAK2V617F / pSTAT5-luc prepared from disease model cells of polycythemia vera is EPO-independent and constitutively dimerized and phosphorylated by JAK2V617F mutation. ing.
- STAT5 phosphorylation and nuclear translocation occur, and luc2P having a STAT5 response sequence as a promoter is expressed.
- luc2P can inhibit JAK2 dimerization and phosphorylation by changing the positional relationship between the two EPORs, and subsequently inhibit STAT5 phosphorylation and nuclear translocation. It can be measured by a decrease in luciferase activity.
- mutant EPO in which the 103rd arginine of the EPO was converted to glutamic acid
- improved mutant EPO in which the 103rd arginine and the 107th threonine were converted to glutamic acid
- the 103rd and 110th arginines were used.
- the present invention can be used as a drug that suppresses the growth of tumor cells.
- ⁇ SEQ ID NO: 22> The amino acid sequence of mEPO4.2 (S100E / R103E) is shown.
- ⁇ SEQ ID NO: 23> The amino acid sequence of mEPO4.3 (R103E / T107D) is shown.
- ⁇ SEQ ID NO: 24> The amino acid sequence of mEPO4.4 (R103E / T107E) is shown.
- ⁇ SEQ ID NO: 25> The amino acid sequence of mEPO4.5 (R14D / R103E) is shown.
- ⁇ SEQ ID NO: 26> The amino acid sequence of mEPO4.6 (R14E / R103E) is shown.
- ⁇ SEQ ID NO: 27> The amino acid sequence of mEPO 4.7 (K97D / R103E) is shown.
- ⁇ SEQ ID NO: 28> The amino acid sequence of mEPO4.8 (K97E / R103E) is shown.
- ⁇ SEQ ID NO: 29> The amino acid sequence of mEPO4.9 (R103E / R110D) is shown.
- ⁇ SEQ ID NO: 30> The amino acid sequence of mEPO4.10 (R103E / R110E) is shown.
- ⁇ SEQ ID NO: 31> The amino acid sequence of mEPO4.11 (R4E / R103E) is shown.
- ⁇ SEQ ID NO: 32> The amino acid sequence of mEPO 4.4.10 (R103E / T107E / R110E) is shown.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- General Health & Medical Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Wood Science & Technology (AREA)
- Biotechnology (AREA)
- Biomedical Technology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- Medicinal Chemistry (AREA)
- Molecular Biology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Biophysics (AREA)
- Pharmacology & Pharmacy (AREA)
- Microbiology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Gastroenterology & Hepatology (AREA)
- Physics & Mathematics (AREA)
- Epidemiology (AREA)
- Plant Pathology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Mycology (AREA)
- Toxicology (AREA)
- Immunology (AREA)
- Endocrinology (AREA)
- Cell Biology (AREA)
- Hematology (AREA)
- Diabetes (AREA)
- Developmental Biology & Embryology (AREA)
- Virology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Provided is a drug that suppresses the growth of tumor cells by specifically targeting mutant JAK2 and inhibiting hyperactivated JAK2. The following mutant (a) or (b) of erythropoietin. (a) A mutant erythropoietin obtained by introducing a mutation into human erythropoietin comprising the amino acid sequence of SEQ ID NO: 1, said mutant comprising an amino acid sequence derived from the amino acid sequence of SEQ ID NO: 1 by substitution of the 103rd arginine by another amino acid, wherein the amino acid substituting for the 103rd arginine decreases or reverses the positive charge of arginine. (b) A mutant erythropoietin which comprises an amino acid sequence derived from the amino acid sequence of mutant (a) by deletion, substitution or addition of one to several amino acids other than the 103rd amino acid and which inhibits erythropoietin signaling.
Description
本発明は、エリスロポエチンシグナル伝達阻害タンパク質に関する。
The present invention relates to an erythropoietin signaling inhibitor protein.
エリスロポエチン(EPO)は、サイトカインの1種で赤血球の産生を促進する造血因子である。主に腎臓や尿細管間質細胞などで産生されており、骨髄中の赤芽球前駆細胞に作用し赤血球へと分化させる。エリスロポエチンは細胞外に発現している2つのエリスロポエチン受容体(EPOR)に結合し、受容体の細胞内ドメインに結合しているJAK2のリン酸化を促進することで細胞増殖シグナルを下流に伝達する。
Erythropoietin (EPO) is a type of cytokine and is a hematopoietic factor that promotes the production of red blood cells. It is mainly produced in kidneys and tubular stromal cells, and acts on erythroblast progenitor cells in bone marrow to differentiate into erythrocytes. Erythropoietin binds to two extracellularly expressed erythropoietin receptors (EPORs) and promotes the phosphorylation of JAK2, which binds to the intracellular domain of the receptor, thereby transmitting cell proliferation signals downstream.
この赤血球増殖に関連した疾患として真性赤血球増加症(PV)が挙げられる。PVは骨髄増殖性腫瘍(MPN)の1つで、血液中の赤血球が異常に増殖するがんである。MPNは、慢性骨髄性白血病(CML)、真性赤血球増加症(PV)、本態性血小板症(ET)、原発性骨髄線維症(PMF)等に分類されるが、PVの95%以上、ET、PMFの約半数にJAK2遺伝子の変異が見られている(非特許文献1)。JAK2はエリスロポエチンやトロンボポエチンのシグナルを下流に伝達するチロシンキナーゼであり、JAK2遺伝子の変異ではほとんどが617番目のバリンがフェニルアラニンに置換(V617F)されている(非特許文献1)。PV患者ではJAK2遺伝子変異のためエリスロポエチン非依存的かつ恒常的にエリスロポエチン受容体を介したJAK2シグナル伝達経路が活性化し細胞が自立増殖し真性赤血球増加症を発症する。
Polycythemia vera (PV) is mentioned as a disease related to this erythroid proliferation. PV is a myeloproliferative neoplasm (MPN), a cancer in which red blood cells in the blood grow abnormally. MPN is classified into chronic myelogenous leukemia (CML), polycythemia vera (PV), essential platelet disease (ET), primary myelofibrosis (PMF), etc., but 95% or more of PV, ET, Mutations in the JAK2 gene are found in about half of PMF (Non-Patent Document 1). JAK2 is a tyrosine kinase that transmits signals of erythropoietin and thrombopoietin downstream, and most of the mutations in the JAK2 gene have valine at position 617 replaced with phenylalanine (V617F) (Non-Patent Document 1). In PV patients, the JAK2 gene mutation activates the erythropoietin-independent and constitutive JAK2 signaling pathway mediated by the erythropoietin receptor, and the cells proliferate independently to develop polycythemia vera.
PVは、増加した血球数を正常化するための瀉血や代謝拮抗剤ヒドロキシウレアの投与により治療される。PVの予後は比較的良好とされており、血栓症の予防が治療の主眼となっている。近年ではJAK2阻害薬が上市され、脾腫の縮小をはじめとする全身症状の緩和などの治療効果を上げているが、予後の改善にはいたっていない。また一般的にJAK2阻害薬は、変異型のみでなく正常型のJAK2も阻害するため、血小板数の減少や貧血といった副作用や、白血球減少に伴う感染症リスクの上昇が指摘されている。
PV is treated by phlebotomy and administration of the antimetabolite hydroxyurea to normalize the increased blood cell count. The prognosis of PV is relatively good, and prevention of thrombosis is the main treatment. In recent years, JAK2 inhibitors have been launched on the market and have improved therapeutic effects such as alleviation of systemic symptoms such as reduction of splenomegaly, but have not improved the prognosis. In general, JAK2 inhibitors inhibit not only mutant but also normal JAK2, so it has been pointed out that side effects such as decreased platelet count and anemia and increased risk of infectious diseases associated with leukopenia.
本発明は、変異型JAK2を特異的に標的として過剰に活性化したJAK2を阻害することで腫瘍細胞の増殖を抑え込む医薬品を提供することを目的とする。
An object of the present invention is to provide a drug that suppresses the growth of tumor cells by specifically targeting mutant JAK2 and inhibiting overactivated JAK2.
本発明者らは、EPO受容体(EPOR)に作用し、EPO受容体の構造変換を伴って下流のJAK2シグナル伝達を阻害する変異EPOの創製を試みた(図27)。その結果、以下の変異EPOでEPORを介したJAK2シグナルを阻害することが明らかになった。
1)エリスロポエチン(EPO)の103番目のアルギニン(R)をアスパラギン酸(D)、グルタミン酸(E)に変換(R103D, R103E)することにより、EPOシグナルを阻害するEPO変異体。
2)R103Eに加えて107番目のトレオニン(T)、110番目のアルギニンをグルタミン酸に変換したEPO変異体(R103E/T107E, R103E/ R110E)。 The present inventors attempted to create a mutant EPO that acts on the EPO receptor (EPOR) and inhibits downstream JAK2 signaling with structural transformation of the EPO receptor (Fig. 27). As a result, it was clarified that the following mutant EPO inhibits EPOR-mediated JAK2 signaling.
1) An EPO mutant that inhibits the EPO signal by converting the 103rd arginine (R) of erythropoietin (EPO) to aspartic acid (D) and glutamic acid (E) (R103D, R103E).
2) EPO mutants (R103E / T107E, R103E / R110E) in which the 107th threonine (T) and the 110th arginine were converted to glutamic acid in addition to R103E.
1)エリスロポエチン(EPO)の103番目のアルギニン(R)をアスパラギン酸(D)、グルタミン酸(E)に変換(R103D, R103E)することにより、EPOシグナルを阻害するEPO変異体。
2)R103Eに加えて107番目のトレオニン(T)、110番目のアルギニンをグルタミン酸に変換したEPO変異体(R103E/T107E, R103E/ R110E)。 The present inventors attempted to create a mutant EPO that acts on the EPO receptor (EPOR) and inhibits downstream JAK2 signaling with structural transformation of the EPO receptor (Fig. 27). As a result, it was clarified that the following mutant EPO inhibits EPOR-mediated JAK2 signaling.
1) An EPO mutant that inhibits the EPO signal by converting the 103rd arginine (R) of erythropoietin (EPO) to aspartic acid (D) and glutamic acid (E) (R103D, R103E).
2) EPO mutants (R103E / T107E, R103E / R110E) in which the 107th threonine (T) and the 110th arginine were converted to glutamic acid in addition to R103E.
本変異EPOは2量体EPORにはまりこみ、EPORの2量体構造の変換を引き起こす。その後2量体EPORと遺伝子変異により細胞内で複合体形成し活性化した2量体JAK2(JAK2V617F)の位置関係をずらすことでJAK2活性を阻害し、JAK2による細胞増殖を阻害するものである。このためほぼ全例でJAK2遺伝子変異が認められる真性赤血球増加症の治療薬となる可能性があるのみならず、EPORが高発現して野生型EPOからJAK2への増殖シグナルにより増殖している他のがん細胞に対しても野生型EPOとの競合により細胞増殖阻害効果が期待される。本発明は、これらの知見により完成されたものである。
This mutant EPO gets stuck in the dimer EPOR and causes the conversion of the dimer structure of the EPOR. After that, JAK2 activity is inhibited and cell proliferation by JAK2 is inhibited by shifting the positional relationship between the dimer EPOR and the dimer JAK2 (JAK2V617F) that is complexed and activated in the cell by gene mutation. Therefore, it may be a therapeutic drug for polycythemia vera in which JAK2 gene mutation is observed in almost all cases, and EPOR is highly expressed and proliferated by the proliferation signal from wild-type EPO to JAK2. It is also expected to have a cell proliferation inhibitory effect on cancer cells of the wild-type EPO due to competition with wild-type EPO. The present invention has been completed based on these findings.
本発明の要旨は以下の通りである。
〔1〕以下の(a)又は(b)のエリスロポエチン変異体。
(a)配列番号1のアミノ酸配列からなるヒトエリスロポエチンに変異が導入されたエリスロポエチン変異体であって、配列番号1のアミノ酸配列における、103番目のアルギニンが別のアミノ酸に置換されているアミノ酸配列からなり、103番目のアルギニンと置換した別のアミノ酸は、アルギニンの正電荷を減少又は反転させるものである前記変異体
(b)(a)の変異体のアミノ酸配列において、103番目のアミノ酸以外の1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、エリスロポエチンシグナル伝達を阻害するエリスロポエチン変異体
〔2〕配列番号1のアミノ酸配列における、103番目のアルギニンが、アスパラギン酸又はグルタミン酸に置換されている〔1〕記載のエリスロポエチン変異体。
〔3〕さらに、配列番号1のアミノ酸配列における、103番目のアルギニン周辺を負の静電ポテンシャルに強化する変異及び/又は配列番号1のアミノ酸配列からなるヒトエリスロポエチンのsite 2表面の正電荷のアミノ酸残基を負電荷にする変異が導入された〔1〕又は〔2〕に記載のエリスロポエチン変異体。
〔4〕配列番号1のアミノ酸配列における、103番目のアルギニン周辺を負の静電ポテンシャルに強化する変異が、配列番号1のアミノ酸配列における、107番目のトレオニン及び110番目のアルギニンからなる群より選択される少なくとも1個のアミノ酸の置換であり、当該部位のアミノ酸と置換した別のアミノ酸は、当該部位のアミノ酸の正電荷を減少又は反転させるものである〔3〕記載のエリスロポエチン変異体。
〔5〕配列番号1のアミノ酸配列における、107番目のトレオニン及び110番目のアルギニンからなる群より選択される少なくとも1個のアミノ酸がアスパラギン酸又はグルタミン酸に置換されている〔4〕記載のエリスロポエチン変異体。
〔6〕配列番号1のアミノ酸配列からなるヒトエリスロポエチンのsite 2表面の正電荷のアミノ酸残基を負電荷にする変異が、配列番号1のアミノ酸配列における、110番目のアルギニンの置換であり、110番目のアルギニンと置換した別のアミノ酸は、110番目のアルギニンの正電荷を減少又は反転させるものである〔3〕記載のエリスロポエチン変異体。
〔7〕配列番号1のアミノ酸配列における、110番目のアルギニンがアスパラギン酸又はグルタミン酸に置換されている〔6〕記載のエリスロポエチン変異体。
〔8〕以下のいずれかのエリスロポエチン変異体。
(1)配列番号1のアミノ酸配列における、103番目のアルギニンがアスパラギン酸に置換されているアミノ酸配列からなるエリスロポエチン変異体
(2)配列番号1のアミノ酸配列における、103番目のアルギニンがグルタミン酸に置換されているアミノ酸配列からなるエリスロポエチン変異体
(3) 配列番号1のアミノ酸配列における、103番目のアルギニンがアスパラギン酸又はグルタミン酸に置換され、107番目のトレオニンがアスパラギン酸又はグルタミン酸に置換されているアミノ酸配列からなるエリスロポエチン変異体
(4) 配列番号1のアミノ酸配列における、103番目のアルギニンがアスパラギン酸又はグルタミン酸に置換され、107番目のトレオニンがアスパラギン酸又はグルタミン酸に置換され、110番目のアルギニンがアスパラギン酸又はグルタミン酸に置換されているアミノ酸配列からなるエリスロポエチン変異体
(5)配列番号1のアミノ酸配列における、103番目のアルギニンがアスパラギン酸又はグルタミン酸に置換され、110番目のアルギニンがアスパラギン酸又はグルタミン酸に置換されているアミノ酸配列からなるエリスロポエチン変異体
〔9〕〔1〕~〔8〕のいずれかに記載のエリスロポエチン変異体をコードするヌクレオチド配列又はそれに相補的な配列を含むポリヌクレオチド。
〔10〕〔9〕記載のポリヌクレオチドを含むベクター。
〔11〕〔10〕記載のベクターを含む細胞。
〔12〕〔11〕記載の細胞を培養することを含む、以下の(a)又は(b)のエリスロポエチン変異体を作製する方法。
(a)配列番号1のアミノ酸配列からなるヒトエリスロポエチンに変異が導入されたエリスロポエチン変異体であって、配列番号1のアミノ酸配列における、103番目のアルギニンが別のアミノ酸に置換されているアミノ酸配列からなり、103番目のアルギニンと置換した別のアミノ酸は、アルギニンの正電荷を減少又は反転させるものである前記変異体
(b)(a)の変異体のアミノ酸配列において、103番目のアミノ酸以外の1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、エリスロポエチンシグナル伝達を阻害するエリスロポエチン変異体
〔13〕〔1〕~〔8〕のいずれかに記載のエリスロポエチン変異体、〔9〕記載のポリヌクレオチド、〔10〕記載のベクター及び〔11〕記載の細胞からなる群より選択される少なくとも一つを含む、エリスロポエチンシグナル伝達を阻害するための組成物。
〔14〕〔1〕~〔8〕のいずれかに記載のエリスロポエチン変異体、〔9〕記載のポリヌクレオチド、〔10〕記載のベクター及び〔11〕記載の細胞からなる群より選択される少なくとも一つを含む、JAK2活性を阻害するための組成物。
〔15〕〔1〕~〔8〕のいずれかに記載のエリスロポエチン変異体、〔9〕記載のポリヌクレオチド、〔10〕記載のベクター及び〔11〕記載の細胞からなる群より選択される少なくとも一つを含む、JAK2による細胞増殖を阻害するための組成物。
〔16〕〔1〕~〔8〕のいずれかに記載のエリスロポエチン変異体、〔9〕記載のポリヌクレオチド、〔10〕記載のベクター及び〔11〕記載の細胞からなる群より選択される少なくとも一つを含む、JAK2変異が関与する疾患を予防及び/又は治療するための組成物。
〔17〕JAK2変異が関与する疾患が、腫瘍である〔16〕記載の組成物。
〔18〕腫瘍が骨髄増殖性腫瘍又は固型癌である〔17〕記載の組成物。
〔19〕骨髄増殖性腫瘍が、真性赤血球増加症、本態性血小板症又は原発性骨髄線維症である〔18〕記載の組成物。
〔20〕〔1〕~〔8〕のいずれかに記載のエリスロポエチン変異体、〔9〕記載のポリヌクレオチド、〔10〕記載のベクター及び〔11〕記載の細胞からなる群より選択される少なくとも一つを含む、医薬。 The gist of the present invention is as follows.
[1] The following erythropoietin mutant of (a) or (b).
(a) From the amino acid sequence in which the 103rd arginine in the amino acid sequence of SEQ ID NO: 1 is replaced with another amino acid, which is an erythropoetin variant in which a mutation is introduced into human erythropoetin consisting of the amino acid sequence of SEQ ID NO: 1. And another amino acid substituted with arginine at position 103 is the variant that reduces or reverses the positive charge of arginine.
(b) In the amino acid sequence of the variant of (a), the erythropoetin variant consisting of an amino acid sequence in which one or several amino acids other than the 103rd amino acid is deleted, substituted or added, and inhibits erythropoetin signaling [ 2] The erythropoetin variant according to [1], wherein the 103rd arginine in the amino acid sequence of SEQ ID NO: 1 is replaced with aspartic acid or glutamic acid.
[3] Further, in the amino acid sequence of SEQ ID NO: 1, a mutation that enhances the vicinity of the 103rd arginine to a negative electrostatic potential and / or a positively charged amino acid on thesite 2 surface of human erythropoetin consisting of the amino acid sequence of SEQ ID NO: 1. The erythropoetin variant according to [1] or [2], wherein a mutation that makes a residue negatively charged has been introduced.
[4] The mutation that enhances the area around the 103rd arginine in the amino acid sequence of SEQ ID NO: 1 to a negative electrostatic potential is selected from the group consisting of the 107th threonine and the 110th arginine in the amino acid sequence of SEQ ID NO: 1. The erythropoetin variant according to [3], wherein the substitution of at least one amino acid is carried out, and another amino acid substituted with the amino acid of the site concerned reduces or reverses the positive charge of the amino acid of the site concerned.
[5] The erythropoietin variant according to [4], wherein at least one amino acid selected from the group consisting of threonine at position 107 and arginine atposition 110 in the amino acid sequence of SEQ ID NO: 1 is replaced with aspartic acid or glutamic acid. ..
[6] The mutation that makes a positively charged amino acid residue on thesite 2 surface of human erythropoietin consisting of the amino acid sequence of SEQ ID NO: 1 negatively charged is the substitution of the 110th arginine in the amino acid sequence of SEQ ID NO: 1 and 110. The erythropoetin variant according to [3], wherein another amino acid substituted with the second arginine reduces or reverses the positive charge of the 110th arginine.
[7] The erythropoietin variant according to [6], wherein the 110th arginine in the amino acid sequence of SEQ ID NO: 1 is replaced with aspartic acid or glutamic acid.
[8] Any of the following erythropoietin mutants.
(1) An erythropoietin variant consisting of an amino acid sequence in which the 103rd arginine in the amino acid sequence of SEQ ID NO: 1 is replaced with aspartic acid.
(2) An erythropoietin variant consisting of an amino acid sequence in which the 103rd arginine in the amino acid sequence of SEQ ID NO: 1 is replaced with glutamic acid.
(3) An erythropoetin variant consisting of an amino acid sequence in which the 103rd arginine in the amino acid sequence of SEQ ID NO: 1 is replaced with aspartic acid or glutamic acid and the 107th threonine is replaced with aspartic acid or glutamic acid.
(4) In the amino acid sequence of SEQ ID NO: 1, the 103rd arginine is replaced with aspartic acid or glutamic acid, the 107th threonine is replaced with aspartic acid or glutamic acid, and the 110th arginine is replaced with aspartic acid or glutamic acid. Erythropoetin variant consisting of the amino acid sequence
(5) An erythropoetin variant consisting of an amino acid sequence in which the 103rd arginine in the amino acid sequence of SEQ ID NO: 1 is replaced with aspartic acid or glutamic acid and the 110th arginine is replaced with aspartic acid or glutamic acid [9] [1]. ]-[8] A polynucleotide comprising a nucleotide sequence encoding the erythropoetin variant according to any one of [8] or a sequence complementary thereto.
[10] A vector containing the polynucleotide according to [9].
[11] A cell containing the vector according to [10].
[12] A method for producing the following erythropoietin variant (a) or (b), which comprises culturing the cells according to [11].
(a) From the amino acid sequence in which the 103rd arginine in the amino acid sequence of SEQ ID NO: 1 is replaced with another amino acid, which is an erythropoetin variant in which a mutation is introduced into human erythropoetin consisting of the amino acid sequence of SEQ ID NO: 1. And another amino acid substituted with arginine at position 103 is the variant that reduces or reverses the positive charge of arginine.
(b) In the amino acid sequence of the variant of (a), the erythropoetin variant consisting of an amino acid sequence in which one or several amino acids other than the 103rd amino acid is deleted, substituted or added, and inhibits erythropoetin signaling [ 13] At least one selected from the group consisting of the erythropoetin mutant according to any one of [1] to [8], the polynucleotide according to [9], the vector according to [10], and the cell according to [11]. A composition for inhibiting erythropoetin signaling, including.
[14] At least one selected from the group consisting of the erythropoietin mutant according to any one of [1] to [8], the polynucleotide according to [9], the vector according to [10], and the cell according to [11]. A composition for inhibiting JAK2 activity, including one.
[15] At least one selected from the group consisting of the erythropoietin mutant according to any one of [1] to [8], the polynucleotide according to [9], the vector according to [10], and the cell according to [11]. A composition for inhibiting cell proliferation by JAK2, which comprises one.
[16] At least one selected from the group consisting of the erythropoietin mutant according to any one of [1] to [8], the polynucleotide according to [9], the vector according to [10], and the cell according to [11]. A composition for preventing and / or treating a disease associated with a JAK2 mutation, which comprises one.
[17] The composition according to [16], wherein the disease associated with the JAK2 mutation is a tumor.
[18] The composition according to [17], wherein the tumor is a myeloproliferative neoplasm or solid tumor.
[19] The composition according to [18], wherein the myeloproliferative neoplasm is polycythemia vera, essential platelet disease or primary myelofibrosis.
[20] At least one selected from the group consisting of the erythropoietin mutant according to any one of [1] to [8], the polynucleotide according to [9], the vector according to [10], and the cell according to [11]. Pharmaceuticals, including one.
〔1〕以下の(a)又は(b)のエリスロポエチン変異体。
(a)配列番号1のアミノ酸配列からなるヒトエリスロポエチンに変異が導入されたエリスロポエチン変異体であって、配列番号1のアミノ酸配列における、103番目のアルギニンが別のアミノ酸に置換されているアミノ酸配列からなり、103番目のアルギニンと置換した別のアミノ酸は、アルギニンの正電荷を減少又は反転させるものである前記変異体
(b)(a)の変異体のアミノ酸配列において、103番目のアミノ酸以外の1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、エリスロポエチンシグナル伝達を阻害するエリスロポエチン変異体
〔2〕配列番号1のアミノ酸配列における、103番目のアルギニンが、アスパラギン酸又はグルタミン酸に置換されている〔1〕記載のエリスロポエチン変異体。
〔3〕さらに、配列番号1のアミノ酸配列における、103番目のアルギニン周辺を負の静電ポテンシャルに強化する変異及び/又は配列番号1のアミノ酸配列からなるヒトエリスロポエチンのsite 2表面の正電荷のアミノ酸残基を負電荷にする変異が導入された〔1〕又は〔2〕に記載のエリスロポエチン変異体。
〔4〕配列番号1のアミノ酸配列における、103番目のアルギニン周辺を負の静電ポテンシャルに強化する変異が、配列番号1のアミノ酸配列における、107番目のトレオニン及び110番目のアルギニンからなる群より選択される少なくとも1個のアミノ酸の置換であり、当該部位のアミノ酸と置換した別のアミノ酸は、当該部位のアミノ酸の正電荷を減少又は反転させるものである〔3〕記載のエリスロポエチン変異体。
〔5〕配列番号1のアミノ酸配列における、107番目のトレオニン及び110番目のアルギニンからなる群より選択される少なくとも1個のアミノ酸がアスパラギン酸又はグルタミン酸に置換されている〔4〕記載のエリスロポエチン変異体。
〔6〕配列番号1のアミノ酸配列からなるヒトエリスロポエチンのsite 2表面の正電荷のアミノ酸残基を負電荷にする変異が、配列番号1のアミノ酸配列における、110番目のアルギニンの置換であり、110番目のアルギニンと置換した別のアミノ酸は、110番目のアルギニンの正電荷を減少又は反転させるものである〔3〕記載のエリスロポエチン変異体。
〔7〕配列番号1のアミノ酸配列における、110番目のアルギニンがアスパラギン酸又はグルタミン酸に置換されている〔6〕記載のエリスロポエチン変異体。
〔8〕以下のいずれかのエリスロポエチン変異体。
(1)配列番号1のアミノ酸配列における、103番目のアルギニンがアスパラギン酸に置換されているアミノ酸配列からなるエリスロポエチン変異体
(2)配列番号1のアミノ酸配列における、103番目のアルギニンがグルタミン酸に置換されているアミノ酸配列からなるエリスロポエチン変異体
(3) 配列番号1のアミノ酸配列における、103番目のアルギニンがアスパラギン酸又はグルタミン酸に置換され、107番目のトレオニンがアスパラギン酸又はグルタミン酸に置換されているアミノ酸配列からなるエリスロポエチン変異体
(4) 配列番号1のアミノ酸配列における、103番目のアルギニンがアスパラギン酸又はグルタミン酸に置換され、107番目のトレオニンがアスパラギン酸又はグルタミン酸に置換され、110番目のアルギニンがアスパラギン酸又はグルタミン酸に置換されているアミノ酸配列からなるエリスロポエチン変異体
(5)配列番号1のアミノ酸配列における、103番目のアルギニンがアスパラギン酸又はグルタミン酸に置換され、110番目のアルギニンがアスパラギン酸又はグルタミン酸に置換されているアミノ酸配列からなるエリスロポエチン変異体
〔9〕〔1〕~〔8〕のいずれかに記載のエリスロポエチン変異体をコードするヌクレオチド配列又はそれに相補的な配列を含むポリヌクレオチド。
〔10〕〔9〕記載のポリヌクレオチドを含むベクター。
〔11〕〔10〕記載のベクターを含む細胞。
〔12〕〔11〕記載の細胞を培養することを含む、以下の(a)又は(b)のエリスロポエチン変異体を作製する方法。
(a)配列番号1のアミノ酸配列からなるヒトエリスロポエチンに変異が導入されたエリスロポエチン変異体であって、配列番号1のアミノ酸配列における、103番目のアルギニンが別のアミノ酸に置換されているアミノ酸配列からなり、103番目のアルギニンと置換した別のアミノ酸は、アルギニンの正電荷を減少又は反転させるものである前記変異体
(b)(a)の変異体のアミノ酸配列において、103番目のアミノ酸以外の1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、エリスロポエチンシグナル伝達を阻害するエリスロポエチン変異体
〔13〕〔1〕~〔8〕のいずれかに記載のエリスロポエチン変異体、〔9〕記載のポリヌクレオチド、〔10〕記載のベクター及び〔11〕記載の細胞からなる群より選択される少なくとも一つを含む、エリスロポエチンシグナル伝達を阻害するための組成物。
〔14〕〔1〕~〔8〕のいずれかに記載のエリスロポエチン変異体、〔9〕記載のポリヌクレオチド、〔10〕記載のベクター及び〔11〕記載の細胞からなる群より選択される少なくとも一つを含む、JAK2活性を阻害するための組成物。
〔15〕〔1〕~〔8〕のいずれかに記載のエリスロポエチン変異体、〔9〕記載のポリヌクレオチド、〔10〕記載のベクター及び〔11〕記載の細胞からなる群より選択される少なくとも一つを含む、JAK2による細胞増殖を阻害するための組成物。
〔16〕〔1〕~〔8〕のいずれかに記載のエリスロポエチン変異体、〔9〕記載のポリヌクレオチド、〔10〕記載のベクター及び〔11〕記載の細胞からなる群より選択される少なくとも一つを含む、JAK2変異が関与する疾患を予防及び/又は治療するための組成物。
〔17〕JAK2変異が関与する疾患が、腫瘍である〔16〕記載の組成物。
〔18〕腫瘍が骨髄増殖性腫瘍又は固型癌である〔17〕記載の組成物。
〔19〕骨髄増殖性腫瘍が、真性赤血球増加症、本態性血小板症又は原発性骨髄線維症である〔18〕記載の組成物。
〔20〕〔1〕~〔8〕のいずれかに記載のエリスロポエチン変異体、〔9〕記載のポリヌクレオチド、〔10〕記載のベクター及び〔11〕記載の細胞からなる群より選択される少なくとも一つを含む、医薬。 The gist of the present invention is as follows.
[1] The following erythropoietin mutant of (a) or (b).
(a) From the amino acid sequence in which the 103rd arginine in the amino acid sequence of SEQ ID NO: 1 is replaced with another amino acid, which is an erythropoetin variant in which a mutation is introduced into human erythropoetin consisting of the amino acid sequence of SEQ ID NO: 1. And another amino acid substituted with arginine at position 103 is the variant that reduces or reverses the positive charge of arginine.
(b) In the amino acid sequence of the variant of (a), the erythropoetin variant consisting of an amino acid sequence in which one or several amino acids other than the 103rd amino acid is deleted, substituted or added, and inhibits erythropoetin signaling [ 2] The erythropoetin variant according to [1], wherein the 103rd arginine in the amino acid sequence of SEQ ID NO: 1 is replaced with aspartic acid or glutamic acid.
[3] Further, in the amino acid sequence of SEQ ID NO: 1, a mutation that enhances the vicinity of the 103rd arginine to a negative electrostatic potential and / or a positively charged amino acid on the
[4] The mutation that enhances the area around the 103rd arginine in the amino acid sequence of SEQ ID NO: 1 to a negative electrostatic potential is selected from the group consisting of the 107th threonine and the 110th arginine in the amino acid sequence of SEQ ID NO: 1. The erythropoetin variant according to [3], wherein the substitution of at least one amino acid is carried out, and another amino acid substituted with the amino acid of the site concerned reduces or reverses the positive charge of the amino acid of the site concerned.
[5] The erythropoietin variant according to [4], wherein at least one amino acid selected from the group consisting of threonine at position 107 and arginine at
[6] The mutation that makes a positively charged amino acid residue on the
[7] The erythropoietin variant according to [6], wherein the 110th arginine in the amino acid sequence of SEQ ID NO: 1 is replaced with aspartic acid or glutamic acid.
[8] Any of the following erythropoietin mutants.
(1) An erythropoietin variant consisting of an amino acid sequence in which the 103rd arginine in the amino acid sequence of SEQ ID NO: 1 is replaced with aspartic acid.
(2) An erythropoietin variant consisting of an amino acid sequence in which the 103rd arginine in the amino acid sequence of SEQ ID NO: 1 is replaced with glutamic acid.
(3) An erythropoetin variant consisting of an amino acid sequence in which the 103rd arginine in the amino acid sequence of SEQ ID NO: 1 is replaced with aspartic acid or glutamic acid and the 107th threonine is replaced with aspartic acid or glutamic acid.
(4) In the amino acid sequence of SEQ ID NO: 1, the 103rd arginine is replaced with aspartic acid or glutamic acid, the 107th threonine is replaced with aspartic acid or glutamic acid, and the 110th arginine is replaced with aspartic acid or glutamic acid. Erythropoetin variant consisting of the amino acid sequence
(5) An erythropoetin variant consisting of an amino acid sequence in which the 103rd arginine in the amino acid sequence of SEQ ID NO: 1 is replaced with aspartic acid or glutamic acid and the 110th arginine is replaced with aspartic acid or glutamic acid [9] [1]. ]-[8] A polynucleotide comprising a nucleotide sequence encoding the erythropoetin variant according to any one of [8] or a sequence complementary thereto.
[10] A vector containing the polynucleotide according to [9].
[11] A cell containing the vector according to [10].
[12] A method for producing the following erythropoietin variant (a) or (b), which comprises culturing the cells according to [11].
(a) From the amino acid sequence in which the 103rd arginine in the amino acid sequence of SEQ ID NO: 1 is replaced with another amino acid, which is an erythropoetin variant in which a mutation is introduced into human erythropoetin consisting of the amino acid sequence of SEQ ID NO: 1. And another amino acid substituted with arginine at position 103 is the variant that reduces or reverses the positive charge of arginine.
(b) In the amino acid sequence of the variant of (a), the erythropoetin variant consisting of an amino acid sequence in which one or several amino acids other than the 103rd amino acid is deleted, substituted or added, and inhibits erythropoetin signaling [ 13] At least one selected from the group consisting of the erythropoetin mutant according to any one of [1] to [8], the polynucleotide according to [9], the vector according to [10], and the cell according to [11]. A composition for inhibiting erythropoetin signaling, including.
[14] At least one selected from the group consisting of the erythropoietin mutant according to any one of [1] to [8], the polynucleotide according to [9], the vector according to [10], and the cell according to [11]. A composition for inhibiting JAK2 activity, including one.
[15] At least one selected from the group consisting of the erythropoietin mutant according to any one of [1] to [8], the polynucleotide according to [9], the vector according to [10], and the cell according to [11]. A composition for inhibiting cell proliferation by JAK2, which comprises one.
[16] At least one selected from the group consisting of the erythropoietin mutant according to any one of [1] to [8], the polynucleotide according to [9], the vector according to [10], and the cell according to [11]. A composition for preventing and / or treating a disease associated with a JAK2 mutation, which comprises one.
[17] The composition according to [16], wherein the disease associated with the JAK2 mutation is a tumor.
[18] The composition according to [17], wherein the tumor is a myeloproliferative neoplasm or solid tumor.
[19] The composition according to [18], wherein the myeloproliferative neoplasm is polycythemia vera, essential platelet disease or primary myelofibrosis.
[20] At least one selected from the group consisting of the erythropoietin mutant according to any one of [1] to [8], the polynucleotide according to [9], the vector according to [10], and the cell according to [11]. Pharmaceuticals, including one.
本発明のエリスロポエチン変異体は、JAK2活性を阻害し、JAK2による細胞増殖を阻害できる。
本明細書は、本願の優先権の基礎である日本国特許出願、特願2020‐152102の明細書および/または図面に記載される内容を包含する。 The erythropoietin mutant of the present invention can inhibit JAK2 activity and inhibit cell proliferation by JAK2.
This specification includes the contents described in the Japanese patent application, Japanese Patent Application No. 2020-152102, and / or the drawings which are the basis of the priority of the present application.
本明細書は、本願の優先権の基礎である日本国特許出願、特願2020‐152102の明細書および/または図面に記載される内容を包含する。 The erythropoietin mutant of the present invention can inhibit JAK2 activity and inhibit cell proliferation by JAK2.
This specification includes the contents described in the Japanese patent application, Japanese Patent Application No. 2020-152102, and / or the drawings which are the basis of the priority of the present application.
以下、本発明の実施の形態についてより詳細に説明する。
Hereinafter, embodiments of the present invention will be described in more detail.
本発明は、以下の(a)又は(b)のエリスロポエチン変異体を提供する。
(a)配列番号1のアミノ酸配列からなるヒトエリスロポエチンに変異が導入されたエリスロポエチン変異体であって、配列番号1のアミノ酸配列における、103番目のアルギニンが別のアミノ酸に置換されているアミノ酸配列からなり、103番目のアルギニンと置換した別のアミノ酸は、アルギニンの正電荷を減少又は反転させるものである前記変異体
(b)(a)の変異体のアミノ酸配列において、103番目のアミノ酸以外の1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、エリスロポエチンシグナル伝達を阻害するエリスロポエチン変異体 The present invention provides the following erythropoietin mutants (a) or (b).
(a) From the amino acid sequence in which the 103rd arginine in the amino acid sequence of SEQ ID NO: 1 is replaced with another amino acid, which is an erythropoetin variant in which a mutation is introduced into human erythropoetin consisting of the amino acid sequence of SEQ ID NO: 1. And another amino acid substituted with arginine at position 103 is the variant that reduces or reverses the positive charge of arginine.
(b) In the amino acid sequence of the variant of (a), the erythropoetin variant consists of an amino acid sequence in which one or several amino acids other than the 103rd amino acid are deleted, substituted or added, and inhibits erythropoetin signaling.
(a)配列番号1のアミノ酸配列からなるヒトエリスロポエチンに変異が導入されたエリスロポエチン変異体であって、配列番号1のアミノ酸配列における、103番目のアルギニンが別のアミノ酸に置換されているアミノ酸配列からなり、103番目のアルギニンと置換した別のアミノ酸は、アルギニンの正電荷を減少又は反転させるものである前記変異体
(b)(a)の変異体のアミノ酸配列において、103番目のアミノ酸以外の1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、エリスロポエチンシグナル伝達を阻害するエリスロポエチン変異体 The present invention provides the following erythropoietin mutants (a) or (b).
(a) From the amino acid sequence in which the 103rd arginine in the amino acid sequence of SEQ ID NO: 1 is replaced with another amino acid, which is an erythropoetin variant in which a mutation is introduced into human erythropoetin consisting of the amino acid sequence of SEQ ID NO: 1. And another amino acid substituted with arginine at position 103 is the variant that reduces or reverses the positive charge of arginine.
(b) In the amino acid sequence of the variant of (a), the erythropoetin variant consists of an amino acid sequence in which one or several amino acids other than the 103rd amino acid are deleted, substituted or added, and inhibits erythropoetin signaling.
本発明のエリスロポエチン変異体において、配列番号1のアミノ酸配列における、103番目のアルギニンは、アルギニンの正電荷を減少又は反転させる別のアミノ酸に置換されている。103番目のアルギニンと置換した別のアミノ酸の一例は、アスパラギン酸、グルタミン酸である。
In the erythropoietin variant of the present invention, the 103rd arginine in the amino acid sequence of SEQ ID NO: 1 is replaced with another amino acid that reduces or reverses the positive charge of arginine. An example of another amino acid substituted with arginine at position 103 is aspartic acid, glutamic acid.
(b)のエリスロポエチン変異体は、(a)の変異体のアミノ酸配列において、103番目のアミノ酸以外の1若しくは数個(例えば、2個、3個)のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、エリスロポエチンシグナル伝達を阻害することができる。EPO変異体によるエリスロポエチンシグナル伝達の阻害は、EPO依存的に増殖する細胞にEPO変異体を添加することにより、EPO受容体を介したEPO依存的な増殖が抑制され、EPO添加によるJAK2リン酸化の後に起こるSTAT5及びERK1/2のリン酸化が抑制されることを調べることにより、確認することができる。STAT5及びERK1/2のリン酸化は、リン酸化特異的抗体を用いた免疫検出法(ウェスタンブロッティング、免疫沈降、免疫組織化学、ELISA、フローサイトメトリーなど)により測定することができる。
In the erythropoetin variant of (b), one or several (for example, two or three) amino acids other than the 103rd amino acid were deleted, substituted or added in the amino acid sequence of the variant of (a). It consists of an amino acid sequence and can inhibit erythropoetin signaling. Inhibition of erythropoietin signaling by EPO mutants is that by adding EPO mutants to cells that proliferate in an EPO-dependent manner, EPO-dependent proliferation mediated by EPO receptors is suppressed, and JAK2 phosphorylation by EPO addition is suppressed. It can be confirmed by investigating that the subsequent phosphorylation of STAT5 and ERK1 / 2 is suppressed. Phosphorylation of STAT5 and ERK1 / 2 can be measured by immunodetection methods using phosphorylation-specific antibodies (Western blotting, immunoprecipitation, immunohistochemistry, ELISA, flow cytometry, etc.).
(b)のエリスロポエチン変異体は、配列番号1のアミノ酸配列と少なくとも80%以上の配列同一性を有するものであるとよく、好ましくは96%以上の配列同一性、より好ましくは98%以上の配列同一性を有する。
The erythropoetin variant of (b) is preferably one having at least 80% or more sequence identity with the amino acid sequence of SEQ ID NO: 1, preferably 96% or more sequence identity, and more preferably 98% or more sequence. Have identity.
(a)又は(b)のエリスロポエチン変異体は、変異を導入したEPOをコードする遺伝子を適当なベクターに組み込み、適当な宿主細胞に導入して、組換えタンパク質として生産させることにより、製造することができる。
The erythropoietin mutant of (a) or (b) shall be produced by incorporating the gene encoding the EPO into which the mutation has been introduced into an appropriate vector, introducing it into an appropriate host cell, and producing it as a recombinant protein. Can be done.
本発明のエリスロポエチン変異体においては、さらに、配列番号1のアミノ酸配列における、103番目のアルギニン周辺を負の静電ポテンシャルに強化する変異及び/又は配列番号1のアミノ酸配列からなるヒトエリスロポエチンのsite 2表面の正電荷のアミノ酸残基を負電荷にする変異が導入されてもよい。
In the erythropoetin variant of the present invention, a human erythropoetin site 2 consisting of a mutation in the amino acid sequence of SEQ ID NO: 1 that enhances the vicinity of the 103rd arginine to a negative electrostatic potential and / or the amino acid sequence of SEQ ID NO: 1 Mutations may be introduced that make the surface positively charged amino acid residues negatively charged.
配列番号1のアミノ酸配列における、103番目のアルギニン周辺を負の静電ポテンシャルに強化する変異の一例は、配列番号1のアミノ酸配列における、107番目のトレオニン及び110番目のアルギニンからなる群より選択される少なくとも1個のアミノ酸の置換であり、当該部位のアミノ酸と置換した別のアミノ酸は、当該部位のアミノ酸の正電荷を減少又は反転させるものである。
An example of a mutation in the amino acid sequence of SEQ ID NO: 1 that enhances the area around arginine at position 103 to a negative electrostatic potential is selected from the group consisting of threonine at position 107 and arginine at position 110 in the amino acid sequence of SEQ ID NO: 1. It is a substitution of at least one amino acid, and another amino acid substituted with the amino acid at the site reduces or reverses the positive charge of the amino acid at the site.
具体的には、配列番号1のアミノ酸配列における、107番目のトレオニン及び110番目のアルギニンからなる群より選択される少なくとも1個のアミノ酸がアスパラギン酸又はグルタミン酸に置換されているエリスロポエチン変異体を例示することができる。
Specifically, an erythropoetin variant in which at least one amino acid selected from the group consisting of threonine at position 107 and arginine at position 110 in the amino acid sequence of SEQ ID NO: 1 is replaced with aspartic acid or glutamic acid is exemplified. be able to.
配列番号1のアミノ酸配列からなるヒトエリスロポエチンのsite 2表面の正電荷のアミノ酸残基を負電荷にする変異の一例は、配列番号1のアミノ酸配列における、110番目のアルギニンの置換であり、110番目のアルギニンと置換したアミノ酸が、110番目のアルギニンの正電荷を減少又は反転させるものである。
An example of a mutation that makes a positively charged amino acid residue on the surface of human erythropoetin site 2 consisting of the amino acid sequence of SEQ ID NO: 1 negatively charged is the 110th arginine substitution in the amino acid sequence of SEQ ID NO: 1. The amino acid substituted with arginine in No. 110 reduces or reverses the positive charge of arginine at position 110.
ヒトエリスロポエチンのsite 2とは、ヒトエリスロポエチンに存在するエリスロポエチン受容体との結合表面のことで、エリスロポエチンには受容体と高親和性のsite1と低親和性のsite2の2カ所が存在する。このsite1とsite2それぞれがエリスロポエチン受容体1つずつと相互作用することにより受容体を2量体化する。2量体化した受容体の細胞質側ドメインに位置している2つのJAK2が接近し互いをリン酸化することで活性化し下流のシグナル伝達を活性化する。(Syed RS, Reid SW, et al.: Efficiency of signalling through cytokine receptors depends critically on receptor orientation. Nature. 1998;395(6701):511-516.)
具体的には、配列番号1のアミノ酸配列における、110番目のアルギニンがアスパラギン酸又はグルタミン酸に置換されているエリスロポエチン変異体を例示することができる。 Thesite 2 of human erythropoietin is the surface of binding to the erythropoietin receptor present in human erythropoietin, and erythropoietin has two sites, site 1 having high affinity with the receptor and site 2 having low affinity with the receptor. Each of site1 and site2 interacts with one erythropoietin receptor to dimerize the receptor. Two JAK2s located in the cytoplasmic domain of the dimerized receptor approach and phosphorylate each other to activate and activate downstream signal transduction. (Syed RS, Reid SW, et al .: Efficiency of signaling through cytokine receptors depends critically on receptor orientation. Nature. 1998; 395 (6701): 511-516.)
Specifically, an erythropoietin variant in which the 110th arginine in the amino acid sequence of SEQ ID NO: 1 is replaced with aspartic acid or glutamic acid can be exemplified.
具体的には、配列番号1のアミノ酸配列における、110番目のアルギニンがアスパラギン酸又はグルタミン酸に置換されているエリスロポエチン変異体を例示することができる。 The
Specifically, an erythropoietin variant in which the 110th arginine in the amino acid sequence of SEQ ID NO: 1 is replaced with aspartic acid or glutamic acid can be exemplified.
本発明のエリスロポエチン変異体の好ましい具体例を以下に列挙する。
(1)配列番号1のアミノ酸配列における、103番目のアルギニンがアスパラギン酸に置換されているアミノ酸配列からなるエリスロポエチン変異体(mEPO3: R103D)
(2)配列番号1のアミノ酸配列における、103番目のアルギニンがグルタミン酸に置換されているアミノ酸配列からなるエリスロポエチン変異体(mEPO4:R103E)
(3) 配列番号1のアミノ酸配列における、103番目のアルギニンがアスパラギン酸又はグルタミン酸に置換され、107番目のトレオニンがアスパラギン酸又はグルタミン酸に置換されているアミノ酸配列からなるエリスロポエチン変異体(mEPO4.4: R103E/T107E、R103D/T107D、R103D/T107E、mEPO4.3: R103E/T107D)
(4) 配列番号1のアミノ酸配列における、103番目のアルギニンがアスパラギン酸又はグルタミン酸に置換され、107番目のトレオニンがアスパラギン酸又はグルタミン酸に置換され、110番目のアルギニンがアスパラギン酸又はグルタミン酸に置換されているアミノ酸配列からなるエリスロポエチン変異体(mEPO4.4.10: R103E/T107E/R110E、R103D/T107E/R110E、R103D/T107E/R110D、R103D/T107D/R110E、R103D/T107D/R110D、R103E/T107E/R110D、R103E/T107D/R110E、R103E/T107D/R110D)
(5)配列番号1のアミノ酸配列における、103番目のアルギニンがアスパラギン酸又はグルタミン酸に置換され、110番目のアルギニンがアスパラギン酸又はグルタミン酸に置換されているアミノ酸配列からなるエリスロポエチン変異体(mEPO4.10: R103E/R110E、R103D/T110D、R103D/T110E、mEPO4.9: R103E/T110D) Preferred specific examples of the erythropoietin mutant of the present invention are listed below.
(1) An erythropoietin variant (mEPO3: R103D) consisting of an amino acid sequence in which the 103rd arginine in the amino acid sequence of SEQ ID NO: 1 is replaced with aspartic acid.
(2) An erythropoietin variant (mEPO4: R103E) consisting of an amino acid sequence in which the 103rd arginine in the amino acid sequence of SEQ ID NO: 1 is replaced with glutamic acid.
(3) An erythropoetin variant (mEPO 4.4:) consisting of an amino acid sequence in which the 103rd arginine in the amino acid sequence of SEQ ID NO: 1 is replaced with aspartic acid or glutamic acid and the 107th threonine is replaced with aspartic acid or glutamic acid. R103E / T107E, R103D / T107D, R103D / T107E, mEPO4.3: R103E / T107D)
(4) In the amino acid sequence of SEQ ID NO: 1, the 103rd arginine is replaced with aspartic acid or glutamic acid, the 107th threonine is replaced with aspartic acid or glutamic acid, and the 110th arginine is replaced with aspartic acid or glutamic acid. Erythropoetin variants consisting of amino acid sequences (mEPO4.4.10: R103E / T107E / R110E, R103D / T107E / R110E, R103D / T107E / R110D, R103D / T107D / R110E, R103D / T107D / R110D, R103E / T107E / R110D, R103E / T107D / R110E, R103E / T107D / R110D)
(5) An erythropoetin variant (mEPO 4.10:) consisting of an amino acid sequence in which the 103rd arginine in the amino acid sequence of SEQ ID NO: 1 is replaced with aspartic acid or glutamic acid and the 110th arginine is replaced with aspartic acid or glutamic acid. R103E / R110E, R103D / T110D, R103D / T110E, mEPO4.9: R103E / T110D)
(1)配列番号1のアミノ酸配列における、103番目のアルギニンがアスパラギン酸に置換されているアミノ酸配列からなるエリスロポエチン変異体(mEPO3: R103D)
(2)配列番号1のアミノ酸配列における、103番目のアルギニンがグルタミン酸に置換されているアミノ酸配列からなるエリスロポエチン変異体(mEPO4:R103E)
(3) 配列番号1のアミノ酸配列における、103番目のアルギニンがアスパラギン酸又はグルタミン酸に置換され、107番目のトレオニンがアスパラギン酸又はグルタミン酸に置換されているアミノ酸配列からなるエリスロポエチン変異体(mEPO4.4: R103E/T107E、R103D/T107D、R103D/T107E、mEPO4.3: R103E/T107D)
(4) 配列番号1のアミノ酸配列における、103番目のアルギニンがアスパラギン酸又はグルタミン酸に置換され、107番目のトレオニンがアスパラギン酸又はグルタミン酸に置換され、110番目のアルギニンがアスパラギン酸又はグルタミン酸に置換されているアミノ酸配列からなるエリスロポエチン変異体(mEPO4.4.10: R103E/T107E/R110E、R103D/T107E/R110E、R103D/T107E/R110D、R103D/T107D/R110E、R103D/T107D/R110D、R103E/T107E/R110D、R103E/T107D/R110E、R103E/T107D/R110D)
(5)配列番号1のアミノ酸配列における、103番目のアルギニンがアスパラギン酸又はグルタミン酸に置換され、110番目のアルギニンがアスパラギン酸又はグルタミン酸に置換されているアミノ酸配列からなるエリスロポエチン変異体(mEPO4.10: R103E/R110E、R103D/T110D、R103D/T110E、mEPO4.9: R103E/T110D) Preferred specific examples of the erythropoietin mutant of the present invention are listed below.
(1) An erythropoietin variant (mEPO3: R103D) consisting of an amino acid sequence in which the 103rd arginine in the amino acid sequence of SEQ ID NO: 1 is replaced with aspartic acid.
(2) An erythropoietin variant (mEPO4: R103E) consisting of an amino acid sequence in which the 103rd arginine in the amino acid sequence of SEQ ID NO: 1 is replaced with glutamic acid.
(3) An erythropoetin variant (mEPO 4.4:) consisting of an amino acid sequence in which the 103rd arginine in the amino acid sequence of SEQ ID NO: 1 is replaced with aspartic acid or glutamic acid and the 107th threonine is replaced with aspartic acid or glutamic acid. R103E / T107E, R103D / T107D, R103D / T107E, mEPO4.3: R103E / T107D)
(4) In the amino acid sequence of SEQ ID NO: 1, the 103rd arginine is replaced with aspartic acid or glutamic acid, the 107th threonine is replaced with aspartic acid or glutamic acid, and the 110th arginine is replaced with aspartic acid or glutamic acid. Erythropoetin variants consisting of amino acid sequences (mEPO4.4.10: R103E / T107E / R110E, R103D / T107E / R110E, R103D / T107E / R110D, R103D / T107D / R110E, R103D / T107D / R110D, R103E / T107E / R110D, R103E / T107D / R110E, R103E / T107D / R110D)
(5) An erythropoetin variant (mEPO 4.10:) consisting of an amino acid sequence in which the 103rd arginine in the amino acid sequence of SEQ ID NO: 1 is replaced with aspartic acid or glutamic acid and the 110th arginine is replaced with aspartic acid or glutamic acid. R103E / R110E, R103D / T110D, R103D / T110E, mEPO4.9: R103E / T110D)
本発明は、上記のエリスロポエチン変異体をコードするヌクレオチド配列又はそれに相補的な配列を含むポリヌクレオチドを提供する。
The present invention provides a polynucleotide containing a nucleotide sequence encoding the above-mentioned erythropoietin variant or a sequence complementary thereto.
本発明のポリヌクレオチドは1本鎖でも2本鎖でもよい。2本鎖の場合は、上記のエリスロポエチン変異体をコードするヌクレオチド配列を含むポリヌクレオチドとその相補鎖からなる。
The polynucleotide of the present invention may be single-stranded or double-stranded. In the case of a double strand, it consists of a polynucleotide containing a nucleotide sequence encoding the above-mentioned erythropoietin variant and a complementary strand thereof.
ポリヌクレオチドは、DNA、RNA、DNAとRNAのキメラのいずれであってもよく、ポリヌクレオチドを構成するヌクレオチドは修飾されていてもよい。
The polynucleotide may be any of DNA, RNA, and a chimera of DNA and RNA, and the nucleotides constituting the polynucleotide may be modified.
本発明のポリヌクレオチドは、人工遺伝子合成もしくは部位特異的変異導入法により、製造することができる。
The polynucleotide of the present invention can be produced by artificial gene synthesis or a site-specific mutagenesis method.
本発明のエリスロポエチン変異体をコードするヌクレオチド配列を含むポリヌクレオチドをベクターに組み込んで組換えベクターを作製し、これを宿主細胞に導入して形質転換させ、この形質転換細胞を培養して、本発明のエリスロポエチン変異体を生産させることができる。よって、本発明は、(a)又は(b)のエリスロポエチン変異体をコードするヌクレオチド配列を含むポリヌクレオチドを含むベクターを含む細胞を培養することを含む、(a)又は(b)のエリスロポエチン変異体を作製する方法を提供する。本発明は、a)又は(b)のエリスロポエチン変異体をコードするヌクレオチド配列を含むポリヌクレオチドを含むベクター(組換えベクター)も提供する。また、本発明は、(a)又は(b)のエリスロポエチン変異体をコードするヌクレオチド配列を含むポリヌクレオチドを含むベクターを含む細胞を提供する。
A recombinant vector is prepared by incorporating a polynucleotide containing a nucleotide sequence encoding the erythropoetin mutant of the present invention into a vector, and this is introduced into a host cell for transformation, and the transformed cell is cultured to obtain the present invention. Erythropoetin mutants can be produced. Accordingly, the present invention comprises culturing cells comprising a vector containing a polynucleotide comprising a nucleotide sequence encoding the erythropoietin variant of (a) or (b), the erythropoietin variant of (a) or (b). Provide a method for producing. The present invention also provides a vector (recombinant vector) containing a polynucleotide containing a nucleotide sequence encoding the erythropoietin variant of a) or (b). The present invention also provides cells comprising a vector containing a polynucleotide comprising a nucleotide sequence encoding the erythropoietin variant of (a) or (b).
本発明の組換えベクターは、(a)又は(b)のエリスロポエチン変異体をコードするヌクレオチド配列及びそれに相補的な配列を含むポリヌクレオチドを適当なベクターに挿入することにより調製することができる。
The recombinant vector of the present invention can be prepared by inserting a polynucleotide containing a nucleotide sequence encoding the erythropoietin variant of (a) or (b) and a sequence complementary thereto into an appropriate vector.
ベクターとしては、pcDNA3.1、pcDNA3.3、pcDNA.3.4などを用いることができる。
As the vector, pcDNA3.1, pcDNA3.3, pcDNA.3.4, etc. can be used.
発現ベクターには、プロモーター、エンハンサー、スプライシングシグナル、ポリA付加シグナル、選択マーカー、SV40複製オリジンなどを付加してもよい。
A promoter, enhancer, splicing signal, poly A addition signal, selectable marker, SV40 replication origin, or the like may be added to the expression vector.
また、発現ベクターは、融合タンパク質発現ベクターであってもよい。種々の融合タンパク質発現ベクターが市販されており、pcDNA3.1+C-6His、pcDNA3.1+C-HA、pcDNA3.1+C-DYK、pcDNA3.1+C-Myc、pcDNA3.1+N-6His、pcDNA3.1+N-HA、pcDNA3.1+N-DYK、pcDNA3.1+N-Mycなどを例示することができる。
Further, the expression vector may be a fusion protein expression vector. Various fusion protein expression vectors are commercially available, pcDNA3.1 + C-6His, pcDNA3.1 + C-HA, pcDNA3.1 + C-DYK, pcDNA3.1 + C-Myc, pcDNA3.1 + N- 6His, pcDNA3.1 + N-HA, pcDNA3.1 + N-DYK, pcDNA3.1 + N-Myc and the like can be exemplified.
本発明の組換えベクターを宿主細胞に導入することにより、形質転換細胞を得ることができる。
Transformed cells can be obtained by introducing the recombinant vector of the present invention into a host cell.
宿主としては、CHO細胞、BHK細胞、HT-1080細胞、NS0細胞、SP2/0細胞、HEK293細胞などを例示することができる。
Examples of the host include CHO cells, BHK cells, HT-1080 cells, NS0 cells, SP2 / 0 cells, HEK293 cells, and the like.
組換えベクターを宿主に導入するには、Molecular Cloning2nd Edition, J. Sambrook et al., Cold Spring Harbor Lab. Press, 1989に記載の方法(例えば、リン酸カルシウム法、DEAE-デキストラン法、トランスフェクション法、マイクロインジェクション法、リポフェクション法、エレクロトポレーション法、形質導入法、スクレープローディング法、ショットガン法など)または感染により行うことができる。
To introduce the recombinant vector into the host, Molecular Cloning 2nd Edition, J. Mol. Sambrook et al. , Cold Spring Harbor Lab. The method described in Press, 1989 (eg, calcium phosphate method, DEAE-dextran method, transfection method, microinjection method, lipofection method, electroporation method, transduction method, scrape loading method, shotgun method, etc.) or infection. Can be done by.
形質転換細胞を培地で培養し、培養物から(a)又は(b)のエリスロポエチン変異体を採取することができる。(a)又は(b)のエリスロポエチン変異体が培地に分泌される場合には、培地を回収し、その培地から(a)又は(b)のエリスロポエチン変異体を分離し、精製すればよい。(a)又は(b)のエリスロポエチン変異体が形質転換された細胞内に産生される場合には、その細胞を溶解し、その溶解物から(a)又は(b)のエリスロポエチン変異体を分離し、精製すればよい。
Transformed cells can be cultured in a medium, and the erythropoietin mutant of (a) or (b) can be collected from the culture. When the erythropoietin variant of (a) or (b) is secreted into the medium, the medium may be recovered, and the erythropoietin variant of (a) or (b) may be separated and purified from the medium. If the erythropoietin variant of (a) or (b) is produced in the transformed cell, the cell is lysed and the erythropoietin variant of (a) or (b) is isolated from the lysate. , Purify.
(a)又は(b)のエリスロポエチン変異体が別のタンパク質(タグとして機能する)との融合エリスロポエチン変異体の形態で発現される場合には、融合エリスロポエチン変異体を分離及び精製した後に、因子Xaや酵素(エンテロキナーゼ)処理をすることにより、別のタンパク質を切断し、目的とする(a)又は(b)のエリスロポエチン変異体を得ることができる。
If the erythropoietin variant of (a) or (b) is expressed in the form of a fused erythropoietin variant with another protein (which functions as a tag), the factor Xa is after isolation and purification of the fused erythropoietin variant. Or enzyme (enterokinase) treatment can cleave another protein to obtain the desired erythropoietin mutant of (a) or (b).
(a)又は(b)のエリスロポエチン変異体の分離及び精製は、公知の方法により行うことができる。公知の分離、精製法としては、塩析や溶媒沈澱法などの溶解度を利用する方法、透析法、限外ろ過法、ゲルろ過法、およびSDS-ポリアクリルアミドゲル電気泳動法などの分子量の差を利用する方法、イオン交換クロマトグラフィーなどの荷電の差を利用する方法、アフィニティークロマトグラフィーなどの特異的親和性を利用する方法、逆相高速液体クロマトグラフィーなどの疎水性の差を利用する方法、等電点電気泳動法などの等電点の差を利用する方法などが用いられる。
Separation and purification of the erythropoietin mutant of (a) or (b) can be performed by a known method. As known separation and purification methods, differences in molecular weight such as methods using solubility such as salting out and solvent precipitation, dialysis method, ultrafiltration method, gel filtration method, and SDS-polyacrylamide gel electrophoresis can be used. A method of utilizing, a method of utilizing a charge difference such as ion exchange chromatography, a method of utilizing a specific affinity such as affinity chromatography, a method of utilizing a hydrophobic difference such as reverse-phase high-speed liquid chromatography, etc. A method that utilizes the difference in isoelectric points, such as electrophoretography, is used.
本発明のエリスロポエチン変異体、本発明のポリヌクレオチド、本発明のベクター及び本発明の細胞を用いて、エリスロポエチンシグナル伝達を阻害することができる。エリスロポエチンシグナル伝達としては、JAK2の活性化(すなわち、エリスロポエチンが細胞外に発現しているエリスロポエチン受容体に結合し、受容体の細胞内ドメインに結合しているJAK2のリン酸化を促進することで細胞増殖シグナルを下流に伝達する。)を例示することができる。よって、本発明は、(a)及び/又は(b)のエリスロポエチン変異体、該エリスロポエチン変異体をコードするヌクレオチド配列又はそれに相補的な配列を含むポリヌクレオチド、該ポリヌクレオチドを含むベクター及び該ベクターを含む細胞からなる群より選択される少なくとも一つを含む、エリスロポエチンシグナル伝達を阻害するための組成物を提供する。また、本発明は、(a)及び/又は(b)のエリスロポエチン変異体、該エリスロポエチン変異体をコードするヌクレオチド配列又はそれに相補的な配列を含むポリヌクレオチド、該ポリヌクレオチドを含むベクター及び該ベクターを含む細胞からなる群より選択される少なくとも一つを含む、JAK2活性を阻害するための組成物を提供する。さらに、本発明は、(a)及び/又は(b)のエリスロポエチン変異体、該エリスロポエチン変異体をコードするヌクレオチド配列又はそれに相補的な配列を含むポリヌクレオチド、該ポリヌクレオチドを含むベクター及び該ベクターを含む細胞からなる群より選択される少なくとも一つを含む、JAK2による細胞増殖を阻害するための組成物を提供する。 (a)及び/又は(b)のエリスロポエチン変異体をコードするヌクレオチド配列を含むポリヌクレオチドがベクターに含まれる場合、ベクターは、(a)及び/又は(b)のエリスロポエチン変異体をコードするヌクレオチド配列を含むポリヌクレオチドを細胞に導入できるものであるとよく、例えば、アデノウィルス、レトロウイルス、レンチウイルス、アデノ随伴ウイルス、センダイウイルス、リポソーム、プラスミドなどの遺伝子治療用ベクターを挙げることができる。また、本発明のポリヌクレオチド又はベクターを細胞(自己、同種)に導入したものを細胞治療に用いることもできる。目的の遺伝子をベクターに導入する方法、組換えベクターを細胞に導入する方法、組換えベクターや遺伝子導入細胞をヒトに投与する方法や投与部位は、公知であり、本発明にも、そのまま、あるいは改変して、適用することができる。遺伝子治療や細胞治療においては、ゲノム編集の技術を利用してもよい。ゲノム編集において、ZFN(zinc-finger nuclease)、TALEN(transcription activator-like effector nuclease)、CRISPR/Cas9(clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9)などの人工ヌクレアーゼを用いることができる。
The erythropoetin variant of the present invention, the polynucleotide of the present invention, the vector of the present invention and the cell of the present invention can be used to inhibit erythropoetin signaling. Erythropoietin signaling involves activation of JAK2 (ie, erythropoietin binds to the extracellularly expressed erythropoietin receptor and promotes the phosphorylation of JAK2 bound to the intracellular domain of the receptor. The proliferation signal is transmitted downstream.) Can be exemplified. Therefore, the present invention comprises a polynucleotide containing the erythropoietin variant of (a) and / or (b), a nucleotide sequence encoding the erythropoietin variant or a sequence complementary thereto, a vector containing the polynucleotide, and the vector. Provided are a composition for inhibiting erythropoietin signaling, comprising at least one selected from the group consisting of containing cells. The present invention also comprises a polynucleotide containing the erythropoetin variant of (a) and / or (b), a nucleotide sequence encoding the erythropoetin variant or a sequence complementary thereto, a vector containing the polynucleotide, and the vector. Provided are a composition for inhibiting JAK2 activity, comprising at least one selected from the group consisting of containing cells. Further, the present invention comprises a polynucleotide containing the erythropoetin variant of (a) and / or (b), a nucleotide sequence encoding the erythropoetin variant or a sequence complementary thereto, a vector containing the polynucleotide and the vector. Provided is a composition for inhibiting cell proliferation by JAK2, which comprises at least one selected from the group consisting of containing cells. If the vector contains a polynucleotide comprising a nucleotide sequence encoding the erythropoetin variant of (a) and / or (b), the vector is a nucleotide sequence encoding the erythropoetin variant of (a) and / or (b). It is preferable that the polynucleotide containing the above can be introduced into cells, and examples thereof include gene therapy vectors such as adenovirus, retrovirus, lentivirus, adeno-associated virus, Sendai virus, liposome, and plasmid. Further, the polynucleotide or vector of the present invention introduced into cells (self, allogeneic) can also be used for cell therapy. A method for introducing a gene of interest into a vector, a method for introducing a recombinant vector into a cell, a method for administering a recombinant vector or a gene-introduced cell to a human, and an administration site are known, and can be used in the present invention as it is or as it is. It can be modified and applied. In gene therapy and cell therapy, genome editing technology may be used. In genome editing, artificial nucleases such as ZFN (zinc-finger nuclease), TALEN (transcription activator-like effector nuclease), and CRISPR / Cas9 (clustered regularly interspaced short palindromic repeats / CRISPR-associated protein 9) can be used.
本発明の組成物は、医薬、実験用試薬などに使用することができる。
The composition of the present invention can be used for pharmaceuticals, experimental reagents, and the like.
医薬としては、JAK2変異が関与する疾患、具体的には、腫瘍(例えば、真性赤血球増加症、本態性血小板症、原発性骨髄線維症などの骨髄増殖性腫瘍や固型癌など)の予防及び/又は治療に用いることができる。EPO及びEPORが、頭頚部腫瘍、乳癌、大腸癌、前立腺癌、卵巣癌、子宮癌及び子宮頸癌の細胞、神経芽細胞腫、星状細胞腫及び他の固型神経系腫瘍、並びに多数の悪性細胞株に発現していることが知られており(Henke, M. et al. (2003) Lancet 362:1255; Arcasoy, M.O. et al. (2003) Biochem; Biophys. Res. Commun. 307:999; Yasuda, Y. et al. (2002) Carcinogenesis 23:1797; Acs, G. et al. (2003) Am J. Physiol. 162:1789; Batra, S. et al. (2003) Lab. Invest. 83:1477; Yasuda, Y. et al. (2003) Carcinogenesis 24:1021)、さらに、これらの細胞や組織で機能していることも報告されている(Biophys. Res. Commun. 307:999; Acs, G. et al. (2003) Am J. Physiol. 162:1789; Batra, S. et al. (2003) Lab. Invest. 83:1477; Yasuda, Y. et al. (2003) Carcinogenesis 24:1021)ので、本発明のEPO変異体は、これらの癌の予防及び/又は治療に有効でありうる。
Pharmaceuticals include prevention and prevention of diseases associated with JAK2 mutations, specifically tumors (eg, myeloproliferative neoplasms such as polycythemia vera, essential platelet disease, and primary myelofibrosis, and solid tumors). / Or can be used for treatment. EPO and EPOR are head and neck tumors, breast cancers, colon cancers, prostate cancers, ovarian cancers, uterine cancers and cervical cancer cells, neuroblastomas, stellate cell tumors and other solid nervous system tumors, as well as numerous. It is known to be expressed in malignant cell lines (Henke, M. et al. (2003) Lancet 362: 1255; Arcasoy, MO et al. (2003) Biochem; Biophys. Res. Communi. 307: 999. Yasuda, Y. et al. (2002) Cancerogenesis 23: 1797; Acs, G. et al. (2003) Am J. Physiol. 162: 1789; Batra, S. et al. (2003) Lab. Invest. 83 1477; Yasuda, Y. et al. (2003) Cancerogenesis 24: 1021), and it has also been reported that they function in these cells and tissues (Biophys. Res. Communi. 307: 999; Acs, G. et al. (2003) Am J. Physiol. 162: 1789; Batra, S. et al. (2003) Lab. Invest. 83: 1477; Yasuda, Y. et al. (2003) Carcinogenesis 24: 1021) Therefore, the EPO variants of the present invention may be effective in the prevention and / or treatment of these cancers.
(a)及び/又は(b)のエリスロポエチン変異体、該変異体をコードするヌクレオチド配列又はそれに相補的な配列を含むポリヌクレオチド、該ポリヌクレオチドを含むベクター並びに該ベクターを含む細胞からなる群より選択される少なくとも一つ(以下、「有効成分」と記す。)は単独で、あるいは、医薬的に許容され得る担体、希釈剤もしくは賦形剤とともに、適当な剤型の医薬組成物として、哺乳動物(例えば、ヒト、マウス、ラット、ウサギ、モルモット、イヌ、ネコ、サル、チンパンジー、ヒツジ、ヤギ、ブタ、ウシ)に対して経口的または非経口的に投与することができる。投与量は投与対象、対象疾患、症状、投与ルートなどによっても異なるが、例えば、骨髄増殖性腫瘍(例えば、真性赤血球増加症、本態性血小板症又は原発性骨髄線維症)の予防・治療のために使用する場合には、有効成分の1回量として、有効成分がタンパク質の場合、通常10μg~200mg/kg体重程度、好ましくは0.1mg~100mg/kg体重程度を、有効成分がポリヌクレオチドの場合、通常10ng~100mg/kg体重程度、好ましくは0.1mg~20mg/kg体重程度を、有効成分がポリヌクレオチドを含むベクターの場合、通常1x1010~1x1014ゲノムコピー/kg体重程度、好ましくは1x1011~1x1013ゲノムコピー/kg体重程度を、毎日~10年に1回の頻度で、好ましくは週2回~5年に1回程度の頻度で、経口・筋肉内注射・皮下注射・静脈注射により投与するとよい。有効成分がベクターを含む細胞の場合、有効成分の1回量として、通常1x104~1x1012細胞程度、好ましくは1x107~1x108細胞を、毎日~10年に1回程度の頻度で、好ましくは週2回~5年に1回程度の頻度で、筋肉内注射・皮下注射・静脈注射、好ましくは静脈注射により投与するとよい。他の非経口投与および経口投与の場合もこれに準ずる量を投与することができる。症状が特に重い場合にはその症状に応じて増量してもよい。固型癌の予防・治療のために使用する場合も同様である。
Select from the group consisting of the erythropoetin variant of (a) and / or (b), a polynucleotide containing a nucleotide sequence encoding the variant or a sequence complementary thereto, a vector containing the polynucleotide, and a cell containing the vector. At least one (hereinafter referred to as "active ingredient") is used alone or in combination with a pharmaceutically acceptable carrier, diluent or excipient as a pharmaceutical composition of a suitable dosage form for mammals. It can be administered orally or parenterally to (eg, humans, mice, rats, rabbits, guinea pigs, dogs, cats, monkeys, chimpanzees, sheep, goats, pigs, cows). The dose varies depending on the subject, target disease, symptoms, administration route, etc., but for example, for the prevention and treatment of myeloproliferative neoplasms (for example, true erythrocytosis, essential thrombosis or primary myelofibrosis). When the active ingredient is a protein, the dose is usually about 10 μg to 200 mg / kg body weight, preferably about 0.1 mg to 100 mg / kg body weight, and when the active ingredient is a polynucleotide. , Usually about 10 ng to 100 mg / kg body weight, preferably about 0.1 mg to 20 mg / kg body weight, and when the active ingredient is a vector containing a polynucleotide, usually about 1x10 10 to 1x10 14 genome copy / kg body weight, preferably about 1x10 11 ~ 1x10 13 Genome copy / kg body weight, daily ~ once every 10 years, preferably twice a week ~ once every 5 years, by oral, intramuscular injection, subcutaneous injection, intravenous injection It should be administered. When the active ingredient is a cell containing a vector, the dose of the active ingredient is usually about 1x10 4 to 1x10 12 cells, preferably 1x10 7 to 1x10 8 cells, preferably about once every day to 10 years. It is recommended to administer by intramuscular injection, subcutaneous injection, intravenous injection, preferably intravenous injection, at a frequency of about twice a week to once every five years. In the case of other parenteral administration and oral administration, an equivalent amount can be administered. If the symptoms are particularly severe, the dose may be increased according to the symptoms. The same applies when used for the prevention / treatment of solid tumors.
経口投与のための組成物としては、固体または液体の剤形、具体的には錠剤、丸剤、顆粒剤、散剤、カプセル剤、シロップ剤、乳剤、懸濁剤などがあげられる。かかる組成物は常法により製造することができ、製剤分野において通常用いられる担体、希釈剤もしくは賦形剤を含有してもよい。例えば、錠剤用の担体、賦形剤としては、乳糖、でんぷん、庶糖、ステアリン酸マグネシウムなどがあげられる。
Examples of the composition for oral administration include solid or liquid dosage forms, specifically tablets, pills, granules, powders, capsules, syrups, emulsions, suspensions and the like. Such a composition can be produced by a conventional method, and may contain a carrier, a diluent or an excipient usually used in the pharmaceutical field. For example, examples of carriers and excipients for tablets include lactose, starch, sucrose, magnesium stearate and the like.
非経口投与のための組成物としては、例えば、注射剤、坐剤などがあげられ、注射剤は静脈注射剤(液剤又は凍結乾燥製剤)、皮下注射剤、皮内注射剤、筋肉注射剤、点滴注射剤などの剤型であるとよい。かかる注射剤は常法、すなわち有効成分を通常注射剤に用いられる無菌の水性もしくは油性液に溶解、懸濁または乳化することによって調製される。注射用の水性液としては生理食塩水、ブドウ糖やその他の補助薬を含む等張液などがあげられ、適当な溶解補助剤、例えば、アルコール(例えば、エタノール)、ポリアルコール(例えば、プロピレングリコール、ポリエチレングリコール)、非イオン界面活性剤(例えば、ポリソルベート80、HCO-50(polyoxyethylene(50mol)adduct of hydrogenated castor oil))などと併用してもよい。油性液としてはゴマ油、大豆油などがあげられ、溶解補助剤として安息香酸ベンジル、ベンジルアルコールなどを併用してもよい。調製された注射液は通常適当なアンプルに充填される。直腸投与に用いられる坐剤は、有効成分を通常の坐薬用基剤に混合することによって調製することができる。
Examples of the composition for parenteral administration include injections, suppositories, etc., and the injections include intravenous injections (liquid or lyophilized preparations), subcutaneous injections, intradermal injections, intramuscular injections, etc. It is preferable to use a dosage form such as a drip injection. Such injections are prepared by conventional methods, that is, by dissolving, suspending or emulsifying the active ingredient in a sterile aqueous or oily solution normally used for injections. Aqueous solutions for injection include physiological saline, isotonic solutions containing glucose and other adjuvants, and suitable solubilizing agents such as alcohols (eg, ethanol), polyalcohols (eg, propylene glycol, etc.). It may be used in combination with polyethylene glycol), a nonionic surfactant (for example, polysorbate 80, HCO-50 (polyoxythetylene (50 mol) added-of-hydrogenated castor oil)) and the like. Examples of the oily liquid include sesame oil and soybean oil, and benzyl benzoate, benzyl alcohol and the like may be used in combination as a solubilizing agent. The prepared injection solution is usually filled in a suitable ampoule. Suppositories used for rectal administration can be prepared by mixing the active ingredient with a conventional suppository base.
上記の経口用または非経口用医薬組成物は、有効成分の投与量に適合するような投薬単位の剤形に調製されるとよい。かかる投薬単位の剤形としては、錠剤、丸剤、カプセル剤、注射剤(アンプル)、坐剤などが挙げられ、それぞれの投薬単位剤形当りの有効成分の含有量は、有効成分がタンパク質の場合、通常5μg~100mg程度、有効成分がポリヌクレオチドの場合、通常0.1mg~1000 mg程度、有効成分がポリヌクレオチドを含むベクターの場合、通常1x1010~1x1015ゲノムコピー程度、有効成分がベクターを含む細胞の場合、通常2x105~3x108細胞程度であるとよい。これらの含有量は適宜変更しうる。
The oral or parenteral pharmaceutical compositions described above may be prepared in dosage form in dosage form that is compatible with the dosage of the active ingredient. Examples of the dosage form of such a dosage unit include tablets, pills, capsules, injections (ampols), suppositories, etc., and the content of the active ingredient in each dosage unit dosage form is such that the active ingredient is a protein. In the case, usually about 5 μg to 100 mg, when the active ingredient is a polynucleotide, usually about 0.1 mg to 1000 mg, when the active ingredient is a vector containing a polynucleotide, usually about 1x10 10 to 1x10 15 genome copy, the active ingredient is a vector. In the case of cells containing, it is usually good to have about 2x10 5 to 3x10 8 cells. These contents can be changed as appropriate.
以下、実施例に基づいて本発明を詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
〔実施例1〕
方法
1.UT-7/EPO/JAK2V617F細胞の作製
1)ゲノム編集-sgRNA、ssODNの設計
single guide RNA(sgRNA)の設計にはgRNAデザインソフトのCRISPR directを使用した。まずJAK2遺伝子(図1)の変異導入部位である1849番目グアニン(G1849)周辺に存在するPAM 配列(NGG)の上流20塩基に対してオフターゲット予測を実行し、4通りのsgRNAを設計した(表1)。これらのうち、3塩基ミスマッチの確立が高い#2のsgRNAを除く3通りのsgRNA(#1、#3、#4)を受託合成した。変異導入部位の近傍でCas9による切断(PAM配列の3塩基上流)が起こるとゲノム編集効率が高くなることから、#3のsgRNAをゲノム編集実験に使用した。 Hereinafter, the present invention will be described in detail based on examples, but the present invention is not limited to these examples.
[Example 1]
Method
1. 1. Preparation of UT-7 / EPO / JAK2V617F cells
1) Genome editing-Design of sgRNA and ssODN CRISPR direct, a gRNA design software, was used to design single guide RNA (sgRNA). First, off-target prediction was performed on the upstream 20 bases of the PAM sequence (NGG) existing around the 1849th guanine (G1849), which is the mutation introduction site of the JAK2 gene (Fig. 1), and four sgRNAs were designed (4 types of sgRNAs). table 1). Of these, three types of sgRNAs (# 1, # 3, # 4) were commissioned and synthesized, excluding # 2 sgRNA, which has a high probability of 3-base mismatch. Since the efficiency of genome editing increases when cleavage by Cas9 (3 bases upstream of the PAM sequence) occurs near the mutation introduction site, # 3 sgRNA was used for the genome editing experiment.
〔実施例1〕
方法
1.UT-7/EPO/JAK2V617F細胞の作製
1)ゲノム編集-sgRNA、ssODNの設計
single guide RNA(sgRNA)の設計にはgRNAデザインソフトのCRISPR directを使用した。まずJAK2遺伝子(図1)の変異導入部位である1849番目グアニン(G1849)周辺に存在するPAM 配列(NGG)の上流20塩基に対してオフターゲット予測を実行し、4通りのsgRNAを設計した(表1)。これらのうち、3塩基ミスマッチの確立が高い#2のsgRNAを除く3通りのsgRNA(#1、#3、#4)を受託合成した。変異導入部位の近傍でCas9による切断(PAM配列の3塩基上流)が起こるとゲノム編集効率が高くなることから、#3のsgRNAをゲノム編集実験に使用した。 Hereinafter, the present invention will be described in detail based on examples, but the present invention is not limited to these examples.
[Example 1]
Method
1. 1. Preparation of UT-7 / EPO / JAK2V617F cells
1) Genome editing-Design of sgRNA and ssODN CRISPR direct, a gRNA design software, was used to design single guide RNA (sgRNA). First, off-target prediction was performed on the upstream 20 bases of the PAM sequence (NGG) existing around the 1849th guanine (G1849), which is the mutation introduction site of the JAK2 gene (Fig. 1), and four sgRNAs were designed (4 types of sgRNAs). table 1). Of these, three types of sgRNAs (# 1, # 3, # 4) were commissioned and synthesized, excluding # 2 sgRNA, which has a high probability of 3-base mismatch. Since the efficiency of genome editing increases when cleavage by Cas9 (3 bases upstream of the PAM sequence) occurs near the mutation introduction site, # 3 sgRNA was used for the genome editing experiment.
ノックインドナーとして一本鎖オリゴ核酸(ssODN)を用いた。JAK2のV617F変異導入に相当するG1849T、及び、Cas9による再切断防止のためにT1848Cの同義置換を含む93塩基長のssODN(図2)を受託合成した。
#1:配列番号4
#2:配列番号5
#3:配列番号6
#4:配列番号7 Single-stranded oligonucleic acid (ssODN) was used as the knock-in donor. G1849T, which corresponds to the introduction of the V617F mutation in JAK2, and 93-base-long ssODN (Fig. 2) containing synonymous substitutions of T1848C to prevent re-cleavage by Cas9 were synthesized by contract.
# 1: SEQ ID NO: 4
# 2: SEQ ID NO: 5
# 3: SEQ ID NO: 6
# 4: SEQ ID NO: 7
#2:配列番号5
#3:配列番号6
#4:配列番号7 Single-stranded oligonucleic acid (ssODN) was used as the knock-in donor. G1849T, which corresponds to the introduction of the V617F mutation in JAK2, and 93-base-long ssODN (Fig. 2) containing synonymous substitutions of T1848C to prevent re-cleavage by Cas9 were synthesized by contract.
# 2: SEQ ID NO: 5
# 3: SEQ ID NO: 6
# 4: SEQ ID NO: 7
2)ゲノム編集によるUT-7/EPO/JAK2V617F細胞のホモ変異体の作製
2)-1 UT-7/EPO細胞の培養
1 unit/mLのEPOを含むIMDM/10 % FCSでUT-7/EPO細胞を37℃、5 % CO2条件下で培養し、3~4日毎に1x105 cells/mLの密度で継代培養した。 2) Preparation of homozygous mutants of UT-7 / EPO / JAK2V617F cells by genome editing
2) -1 Culture of UT-7 / EPO cells Culture UT-7 / EPO cells in IMDM / 10% FCS containing 1 unit / mL EPO under 37 ° C, 5% CO 2 conditions, every 3-4 days. Was subcultured at a density of 1x10 5 cells / mL.
2)-1 UT-7/EPO細胞の培養
1 unit/mLのEPOを含むIMDM/10 % FCSでUT-7/EPO細胞を37℃、5 % CO2条件下で培養し、3~4日毎に1x105 cells/mLの密度で継代培養した。 2) Preparation of homozygous mutants of UT-7 / EPO / JAK2V617F cells by genome editing
2) -1 Culture of UT-7 / EPO cells Culture UT-7 / EPO cells in IMDM / 10% FCS containing 1 unit / mL EPO under 37 ° C, 5% CO 2 conditions, every 3-4 days. Was subcultured at a density of 1x10 5 cells / mL.
2)-2 ゲノム編集によるJAK2遺伝子への変異導入
2x105 cellsのUT-7/EPO細胞に1.5 μg 、Cas9タンパク質、0.3 μg sgRNA、0.5 μg ドナーオリゴ核酸から成る複合体をエレクトロポレーション法により導入した。エレクトロポレーションはNeon Transfection System(サーモフィッシャー)を用い、1115 V、30 ms、1 pulseの条件で実施した。 EPO含有IMDM/10 % FCS、24ウェルプレート、37℃、5 % CO2条件下で24時間、さらに、EPO不含IMDM/10 % FCSで20日間培養した。 2) -2 Introducing mutations into the JAK2 gene by genome editing A complex consisting of 1.5 μg, Cas9 protein, 0.3 μg sgRNA, and 0.5 μg donor oligonucleic acid was introduced into UT-7 / EPO cells of 2x10 5 cells by electroporation. did. Electroporation was performed using the Neon Transfection System (Thermo Fisher) under the conditions of 1115 V, 30 ms, and 1 pulse. The cells were cultured in EPO-containing IMDM / 10% FCS, 24-well plate, 37 ° C., 5% CO 2 conditions for 24 hours, and in EPO-free IMDM / 10% FCS for 20 days.
2x105 cellsのUT-7/EPO細胞に1.5 μg 、Cas9タンパク質、0.3 μg sgRNA、0.5 μg ドナーオリゴ核酸から成る複合体をエレクトロポレーション法により導入した。エレクトロポレーションはNeon Transfection System(サーモフィッシャー)を用い、1115 V、30 ms、1 pulseの条件で実施した。 EPO含有IMDM/10 % FCS、24ウェルプレート、37℃、5 % CO2条件下で24時間、さらに、EPO不含IMDM/10 % FCSで20日間培養した。 2) -2 Introducing mutations into the JAK2 gene by genome editing A complex consisting of 1.5 μg, Cas9 protein, 0.3 μg sgRNA, and 0.5 μg donor oligonucleic acid was introduced into UT-7 / EPO cells of 2x10 5 cells by electroporation. did. Electroporation was performed using the Neon Transfection System (Thermo Fisher) under the conditions of 1115 V, 30 ms, and 1 pulse. The cells were cultured in EPO-containing IMDM / 10% FCS, 24-well plate, 37 ° C., 5% CO 2 conditions for 24 hours, and in EPO-free IMDM / 10% FCS for 20 days.
細胞生存率が90 %以上に達した細胞集団を限界希釈法で単一細胞になるように96ウェルプレート10枚に播種し、クローニングを行った。EPO不含IMDM/10 % FCS で増殖したクローンを6ウェルプレートに移し、拡大培養を行った。
A cell population having a cell viability of 90% or more was seeded on 10 96-well plates so as to become a single cell by the limiting dilution method, and cloning was performed. Clone grown in EPO-free IMDM / 10% FCS was transferred to a 6-well plate and expanded-cultured.
2x105 cellsの細胞ペレットからゲノムDNAを抽出し、変異導入部位を含む領域をPCR増幅した。598 bpのPCR産物を精製し、ダイレクトシークエンスを行ない、目的部位に変異が導入されているクローンに対し、ABC-PCR法により変異の導入効率を定量した。
Genomic DNA was extracted from cell pellet of 2x10 5 cells, and the region containing the mutation introduction site was PCR-amplified. A 598 bp PCR product was purified and directly sequenced, and the mutation transfer efficiency was quantified by the ABC-PCR method for clones in which the mutation was introduced at the target site.
2)-3 ABC-PCR(Alternately Binding Probe Competitive PCR)による変異導入効率の定量
蛍光プローブを用いて、JAK2V617F突然変異のアレルバーデンについての標準曲線を作成し、上記で得られたクローンのゲノムDNAのアレルバーデンを定量した。 2) -3 Quantification of mutation introduction efficiency by ABC-PCR (Alternately Binding Probe Competitive PCR) Using a fluorescent probe, a standard curve for allelic Baden of JAK2V617F mutation was created, and the genomic DNA of the clone obtained above was obtained. Allele Baden was quantified.
蛍光プローブを用いて、JAK2V617F突然変異のアレルバーデンについての標準曲線を作成し、上記で得られたクローンのゲノムDNAのアレルバーデンを定量した。 2) -3 Quantification of mutation introduction efficiency by ABC-PCR (Alternately Binding Probe Competitive PCR) Using a fluorescent probe, a standard curve for allelic Baden of JAK2V617F mutation was created, and the genomic DNA of the clone obtained above was obtained. Allele Baden was quantified.
蛍光プローブの配列、PCRプライマー配列を、以下に示す。
The fluorescent probe sequence and PCR primer sequence are shown below.
蛍光プローブ(ABQP-JAKd-1):
TAMRA-cctgtagttttacttactctcgtctccacaga-BODYPY-FL(配列番号8)
PCRプライマー:
フォワードプライマー(F-JAKd-1): 5’-atctatagtcatgctgaaagtaggagaaag-3’(配列番号9)
リバースプライマー(R-JAKd-1): 5’-ctgaatagtcctacagtgttttcagtttca-3’(配列番号10)
(参考文献)Baxter E.J.ら, Lancet, 2005, 365:1054-1061 Fluorescent probe (ABQP-JAKd-1):
TAMRA-cctgtagttttacttactctcgtctccacaga-BODYPY-FL (SEQ ID NO: 8)
PCR primer:
Forward primer (F-JAKd-1): 5'-atctatagtcatgctgaaagtaggagaaag-3'(SEQ ID NO: 9)
Reverse primer (R-JAKd-1): 5'-ctgaatagtcctacagtgttttcagtttca-3'(SEQ ID NO: 10)
(Reference) Baxter EJ et al., Lancet, 2005, 365, 1054-1061
TAMRA-cctgtagttttacttactctcgtctccacaga-BODYPY-FL(配列番号8)
PCRプライマー:
フォワードプライマー(F-JAKd-1): 5’-atctatagtcatgctgaaagtaggagaaag-3’(配列番号9)
リバースプライマー(R-JAKd-1): 5’-ctgaatagtcctacagtgttttcagtttca-3’(配列番号10)
(参考文献)Baxter E.J.ら, Lancet, 2005, 365:1054-1061 Fluorescent probe (ABQP-JAKd-1):
TAMRA-cctgtagttttacttactctcgtctccacaga-BODYPY-FL (SEQ ID NO: 8)
PCR primer:
Forward primer (F-JAKd-1): 5'-atctatagtcatgctgaaagtaggagaaag-3'(SEQ ID NO: 9)
Reverse primer (R-JAKd-1): 5'-ctgaatagtcctacagtgttttcagtttca-3'(SEQ ID NO: 10)
(Reference) Baxter EJ et al., Lancet, 2005, 365, 1054-1061
方法は以下の通りである。野生型JAK2遺伝子及び変異型JAK2遺伝子に由来する、濃度既知のゲノム配列PCR産物を、アレルバーデン(変異型の割合)が1%、10%、30%、50%、70%、90%又は99%となるように混合し、検量線用の鋳型として用いた。鋳型量は、105コピーとした。クローンの鋳型としてゲノムDNA100ngを用いた。
The method is as follows. Genome sequence PCR products with known concentrations derived from wild-type JAK2 gene and mutant JAK2 gene with allervarden (mutant ratio) of 1%, 10%, 30%, 50%, 70%, 90% or 99 It was mixed so as to be%, and used as a template for a calibration curve. The amount of the mold was 105 copies. Genomic DNA 100 ng was used as a clone template.
反応液の組成は以下の通りである:鋳型DNA105コピー/反応もしくはクローン由来ゲノムDNA100ng/反応、100nM プローブ(ABQP-JAKd-1)、500nM フォワードプライマー(F-JAKd-1)、150nM リバースプライマー(R-JAKd-1)、0.2mM dNTPミックス、1 X TITANIUM Taq PCRバッファー(タカラバイオ株式会社)、1 X TITANIUM Taq DNAポリメラーゼ(タカラバイオ株式会社)。反応温度条件は、94℃、3分(解離反応)の後、94℃、30秒→62℃、30秒→72℃、30秒を50サイクル、72℃、2分(伸長反応)とした。PCR反応後、95℃、2分、及び55℃、1分の2点においてBODYPY-FL及びTAMRAからの蛍光強度を11秒ごとに5回測定し、それぞれの温度における蛍光強度から以下の式により表される相対蛍光強度を算出した。蛍光強度の測定は、Thermal Cycler Dice Real Time System III(タカラバイオ社)を用いて行なった。相対蛍光強度は、各サンプルのBODYPY-FLの蛍光強度をBs、TAMRAの蛍光強度をTs、陰性対照(鋳型なし)のBODYPY-FLの蛍光強度をBp、TAMRAの蛍光強度をTpとしたとき、(Bs-Bp)/(Tp-Ts)から算出される。
The composition of the reaction solution is as follows: template DNA 10 5 copies / reaction or clone-derived genomic DNA 100 ng / reaction, 100 nM probe (ABQP-JAKd-1), 500 nM forward primer (F-JAKd-1), 150 nM reverse primer ( R-JAKd-1), 0.2mM dNTP mix, 1 X TITANIUM Taq PCR buffer (Takara Bio Inc.), 1 X TITANIUM Taq DNA polymerase (Takara Bio Inc.). The reaction temperature conditions were 94 ° C., 3 minutes (dissociation reaction), then 94 ° C., 30 seconds → 62 ° C., 30 seconds → 72 ° C., 30 seconds for 50 cycles, 72 ° C., 2 minutes (extension reaction). After the PCR reaction, the fluorescence intensities from BODYPY-FL and TAMRA were measured 5 times every 11 seconds at 95 ° C, 2 minutes, and 55 ° C, 2 minutes, and the fluorescence intensities at each temperature were calculated by the following formula. The expressed relative fluorescence intensity was calculated. The fluorescence intensity was measured using Thermal Cycler Dice Real Time System III (Takara Bio Inc.). The relative fluorescence intensity is when the fluorescence intensity of BODYPY-FL of each sample is Bs, the fluorescence intensity of TAMRA is Ts, the fluorescence intensity of BODYPY-FL of the negative control (without template) is Bp, and the fluorescence intensity of TAMRA is Tp. Calculated from (Bs-Bp) / (Tp-Ts).
濃度既知のPCR産物から得られた相対蛍光強度からアレルバーデンの検量線を作製し、クローンゲノムDNAの相対蛍光強度からアレルバーデン値を測定した。
A calibration curve of allerbaden was prepared from the relative fluorescence intensity obtained from the PCR product having a known concentration, and the allerbaden value was measured from the relative fluorescence intensity of the cloned genomic DNA.
A calibration curve of allerbaden was prepared from the relative fluorescence intensity obtained from the PCR product having a known concentration, and the allerbaden value was measured from the relative fluorescence intensity of the cloned genomic DNA.
2)-4 シングルアレルシークエンス
ABC-PCRによりJAK2遺伝子への高い変異導入が見られたクローンに対し、シングルアレルシークエンスを実施した。変異導入領域を含むPCR産物をpMD20-TベクターにTAクローニングし、1クローンあたり24個の大腸菌コロニーからプラスミドを単離した。シークエンス解析を行い、UT-7/EPO細胞のJAK2遺伝子の全アレルにG1849T変異が導入されているクローンをUT-7/EPO/JAK2V617F細胞とした。 2) -4 Single allele sequence A single allele sequence was performed on clones in which high mutagenesis into the JAK2 gene was observed by ABC-PCR. The PCR product containing the mutagenesis region was TA cloned into the pMD20-T vector, and plasmids were isolated from 24 E. coli colonies per clone. Sequence analysis was performed, and clones in which the G1849T mutation was introduced into all alleles of the JAK2 gene in UT-7 / EPO cells were designated as UT-7 / EPO / JAK2V617F cells.
ABC-PCRによりJAK2遺伝子への高い変異導入が見られたクローンに対し、シングルアレルシークエンスを実施した。変異導入領域を含むPCR産物をpMD20-TベクターにTAクローニングし、1クローンあたり24個の大腸菌コロニーからプラスミドを単離した。シークエンス解析を行い、UT-7/EPO細胞のJAK2遺伝子の全アレルにG1849T変異が導入されているクローンをUT-7/EPO/JAK2V617F細胞とした。 2) -4 Single allele sequence A single allele sequence was performed on clones in which high mutagenesis into the JAK2 gene was observed by ABC-PCR. The PCR product containing the mutagenesis region was TA cloned into the pMD20-T vector, and plasmids were isolated from 24 E. coli colonies per clone. Sequence analysis was performed, and clones in which the G1849T mutation was introduced into all alleles of the JAK2 gene in UT-7 / EPO cells were designated as UT-7 / EPO / JAK2V617F cells.
2)-5 UT-7/EPO/JAK2V617F細胞のSTAT5リン酸化シグナル伝達解析
UT-7/EPO細胞、及び、UT-7/EPO/JAK2V617F細胞を4x105 cells/mLで播種し、2 unit/mL EPO含有、またはEPO不含IMDM/10% FCSで3日間培養した。4x106 cellsの細胞ペレットにRIPAバッファー200 μLを添加し、4℃、20分インキュベートした。14000 rpm、4℃、15分遠心後の上清をライセート溶液とした。 2) -5 STAT5 phosphorylation signaling analysis of UT-7 / EPO / JAK2V617F cells UT-7 / EPO cells and UT-7 / EPO / JAK2V617F cells were seeded at 4x10 5 cells / mL and 2 unit / mL. The cells were cultured in EPO-containing or EPO-free IMDM / 10% FCS for 3 days. To the cell pellet of 4x10 6 cells, 200 μL of RIPA buffer was added and incubated at 4 ° C. for 20 minutes. The supernatant after centrifugation at 14000 rpm, 4 ° C. and 15 minutes was used as a lysate solution.
UT-7/EPO細胞、及び、UT-7/EPO/JAK2V617F細胞を4x105 cells/mLで播種し、2 unit/mL EPO含有、またはEPO不含IMDM/10% FCSで3日間培養した。4x106 cellsの細胞ペレットにRIPAバッファー200 μLを添加し、4℃、20分インキュベートした。14000 rpm、4℃、15分遠心後の上清をライセート溶液とした。 2) -5 STAT5 phosphorylation signaling analysis of UT-7 / EPO / JAK2V617F cells UT-7 / EPO cells and UT-7 / EPO / JAK2V617F cells were seeded at 4x10 5 cells / mL and 2 unit / mL. The cells were cultured in EPO-containing or EPO-free IMDM / 10% FCS for 3 days. To the cell pellet of 4x10 6 cells, 200 μL of RIPA buffer was added and incubated at 4 ° C. for 20 minutes. The supernatant after centrifugation at 14000 rpm, 4 ° C. and 15 minutes was used as a lysate solution.
加熱還元処理したライセート30 μgを40mA、40分の条件でSDS-PAGEを行った。75mA、90分の条件でポリアクリルアミドゲルをPVDF膜に転写した。PVDF膜をTBST/5% BSA溶液に浸漬し、室温で3時間ブロッキングした。4℃、18時間、一次抗体(表2)反応を行い、TBSTで10分間、3回洗浄した。室温、1時間、二次抗体反応を行い、TBSTで10分間、3回洗浄した。
30 μg of heat-reduced lysate was subjected to SDS-PAGE under the conditions of 40 mA and 40 minutes. The polyacrylamide gel was transferred to the PVDF membrane under the conditions of 75 mA and 90 minutes. The PVDF membrane was immersed in TBST / 5% BSA solution and blocked at room temperature for 3 hours. The primary antibody (Table 2) reaction was carried out at 4 ° C. for 18 hours, and the cells were washed 3 times with TBST for 10 minutes. The secondary antibody reaction was carried out at room temperature for 1 hour, and the cells were washed 3 times with TBST for 10 minutes.
化学発光試薬をPVDF膜に添加し、10分反応させた後、LAS-3000(富士フィルム(株))で撮影した。
A chemiluminescent reagent was added to the PVDF film, reacted for 10 minutes, and then photographed with LAS-3000 (Fujifilm Co., Ltd.).
2.変異EPO構造シミュレーション
EPOとEPOR細胞外ドメイン複合体の立体構造の座標データ(PDB ID: 1EER)(Syed et al. 1998) は、Protein Data Bank(http://www.rcsb.org/pdb/)より取得した。1EERは、EPO(chain A)、EPOR細胞外ドメインの二量体(chain B, C)より構成され、X線結晶構造解析により決定されている。EPOR変異体の立体構造モデルは1EERのchain Aを使用し、ソフトウェアSwiss-Pdbviewer(Guex et al. 2009)で作製した。アミノ酸残基の置換は、EPO(chain A)の立体構造単体の状態で行い、理論的に最もとりやすい側鎖の向き(ロータマー)を選定した。作製したEPO変異体モデルを1EERの立体構造に重ね合わせることにより、EPO変異体とEPORの複合体モデルを作製した。複合体モデルの作製、近傍残基の検出、原子間距離の測定、立体構造の表示はソフトウェアWaals(Altif Labs. Inc.)を使用して行った。水素結合の判定は、一般的なパラメータである原子間の最小距離2.195[Å]、最大距離3.300[Å]、最小角度90.0℃により行った。疎水性相互作用としては、原子間距離が3.500[Å]未満で接触している炭素のペアを検出した。表面形状への静電ポテンシャルはPDBjのeF-site(http://service.pdbj.org/eF-site/)より取得し、Waals、CueMol 2.0で表示した。変異体モデルの静電ポテンシャルはSwiss-Pdb viewerで表示した。 2. 2. Mutant EPO structure simulation Coordinate data (PDB ID: 1EER) (Syed et al. 1998) of the three-dimensional structure of the EPO and EPOR extracellular domain complex is available at Protein Data Bank (http://www.rcsb.org/pdb/). Obtained from. 1EER is composed of EPO (chain A) and EPOR extracellular domain dimer (chain B, C), and is determined by X-ray crystallography. The three-dimensional structure model of the EPOR mutant was created by the software Swiss-Pdbviewer (Guex et al. 2009) using 1EER chain A. Substitution of amino acid residues was performed in the state of the simple substance of the three-dimensional structure of EPO (chain A), and the direction of the side chain (rotorer) that was theoretically the easiest to take was selected. By superimposing the prepared EPO mutant model on the three-dimensional structure of 1EER, a complex model of the EPO mutant and EPOR was prepared. The software Waals (Altif Labs. Inc.) was used to create the complex model, detect neighboring residues, measure the interatomic distance, and display the three-dimensional structure. Hydrogen bonds were determined based on the general parameters of a minimum distance of 2.195 [Å] between atoms, a maximum distance of 3.300 [Å], and a minimum angle of 90.0 ° C. As a hydrophobic interaction, a pair of carbons in contact with each other with an interatomic distance of less than 3.500 [Å] was detected. The electrostatic potential to the surface shape was obtained from PDBj's eF-site (http://service.pdbj.org/eF-site/) and displayed in Waals and CueMol 2.0. The electrostatic potential of the mutant model was displayed on the Swiss-Pdb viewer.
EPOとEPOR細胞外ドメイン複合体の立体構造の座標データ(PDB ID: 1EER)(Syed et al. 1998) は、Protein Data Bank(http://www.rcsb.org/pdb/)より取得した。1EERは、EPO(chain A)、EPOR細胞外ドメインの二量体(chain B, C)より構成され、X線結晶構造解析により決定されている。EPOR変異体の立体構造モデルは1EERのchain Aを使用し、ソフトウェアSwiss-Pdbviewer(Guex et al. 2009)で作製した。アミノ酸残基の置換は、EPO(chain A)の立体構造単体の状態で行い、理論的に最もとりやすい側鎖の向き(ロータマー)を選定した。作製したEPO変異体モデルを1EERの立体構造に重ね合わせることにより、EPO変異体とEPORの複合体モデルを作製した。複合体モデルの作製、近傍残基の検出、原子間距離の測定、立体構造の表示はソフトウェアWaals(Altif Labs. Inc.)を使用して行った。水素結合の判定は、一般的なパラメータである原子間の最小距離2.195[Å]、最大距離3.300[Å]、最小角度90.0℃により行った。疎水性相互作用としては、原子間距離が3.500[Å]未満で接触している炭素のペアを検出した。表面形状への静電ポテンシャルはPDBjのeF-site(http://service.pdbj.org/eF-site/)より取得し、Waals、CueMol 2.0で表示した。変異体モデルの静電ポテンシャルはSwiss-Pdb viewerで表示した。 2. 2. Mutant EPO structure simulation Coordinate data (PDB ID: 1EER) (Syed et al. 1998) of the three-dimensional structure of the EPO and EPOR extracellular domain complex is available at Protein Data Bank (http://www.rcsb.org/pdb/). Obtained from. 1EER is composed of EPO (chain A) and EPOR extracellular domain dimer (chain B, C), and is determined by X-ray crystallography. The three-dimensional structure model of the EPOR mutant was created by the software Swiss-Pdbviewer (Guex et al. 2009) using 1EER chain A. Substitution of amino acid residues was performed in the state of the simple substance of the three-dimensional structure of EPO (chain A), and the direction of the side chain (rotorer) that was theoretically the easiest to take was selected. By superimposing the prepared EPO mutant model on the three-dimensional structure of 1EER, a complex model of the EPO mutant and EPOR was prepared. The software Waals (Altif Labs. Inc.) was used to create the complex model, detect neighboring residues, measure the interatomic distance, and display the three-dimensional structure. Hydrogen bonds were determined based on the general parameters of a minimum distance of 2.195 [Å] between atoms, a maximum distance of 3.300 [Å], and a minimum angle of 90.0 ° C. As a hydrophobic interaction, a pair of carbons in contact with each other with an interatomic distance of less than 3.500 [Å] was detected. The electrostatic potential to the surface shape was obtained from PDBj's eF-site (http://service.pdbj.org/eF-site/) and displayed in Waals and CueMol 2.0. The electrostatic potential of the mutant model was displayed on the Swiss-Pdb viewer.
3.変異EPOの発現(mEPO1~mEPO10)
1) 変異EPOの発現
プラスミドpcDNA3.4-TOPOに人工遺伝子合成した変異EPOを導入したプラスミドpcDNA3.4-(各変異EPO)を購入した。変異EPOはExpiCHO Expression System(サーモフィッシャーサイエンティフィックス)を用いて発現させた。ExpiCHO-S細胞1バイヤル(1 x 107細胞)を湯浴で融かし、あらかじめ37℃に温めたExpiCHO Expression Medium 25mLに移した。37℃、8%CO2のインキュベーターで125 ±5 rpmで振とう培養を行った。4~6 x 106 cells / mLとなるまで培養し、トランスフェクションまでに2-3回以上継代を繰り返した。トランスフェクション1日前に細胞数を3~4 x 106 cells / mLに調整した後、一晩振とう培養した。細胞をカウントし、ExpiCHO Expression Medium 25mLに6 x 106 cells / mLとなるように125mLの培養フラスコに調整した。pcDNA3.4-(mEPO) 40ugをOptiPRO medium 1mLで希釈し、OptiPRO medium 0.92mLとExpiFectamine CHO Reagent 80uLの混合物に加えた。これを室温で5分インキュベーションした後、細胞が入ったフラスコに加え、振とう培養を開始した。さらに翌日、ExpiCHOTM Enhancer 150uLとExpiCHOTM Feed 7.5mLを加えて12日間培養した。培養後、3000rpm、10分間遠心分離し、培養上清を得た。この培養上清を0.45umのフィルターでろ過し、さらに0.22umのフィルターでろ過した上清を活性測定に使用した。 3. 3. Expression of mutant EPO (mEPO1 ~ mEPO10)
1) Expression of mutant EPO A plasmid pcDNA3.4- (each mutant EPO) in which an artificially synthesized mutant EPO was introduced into the plasmid pcDNA3.4-TOPO was purchased. Mutant EPO was expressed using the ExpiCHO Expression System (Thermo Fisher Scientific Fix). ExpiCHO-S cells 1 vial (1 x 10 7 cells) were melted in a water bath and transferred to ExpiCHO Expression Medium 25 mL, which had been preheated to 37 ° C. Shake culture was performed at 125 ± 5 rpm in an incubator at 37 ° C and 8% CO 2 . The cells were cultured to 4 to 6 x 10 6 cells / mL, and passage was repeated 2-3 times or more before transfection. The cell number was adjusted to 3-4 x 10 6 cells / mL 1 day before transfection, and then shaken and cultured overnight. Cells were counted and adjusted to 125 mL culture flasks to 6 x 10 6 cells / mL in 25 mL of ExpiCHO Expression Medium. 40 ug of pcDNA3.4- (mEPO) was diluted with 1 mL of OptiPRO medium and added to a mixture of 0.92 mL of OptiPRO medium and 80uL of ExpiFectamine CHO Reagent. After incubating this at room temperature for 5 minutes, it was added to a flask containing cells, and shaking culture was started. The next day, ExpiCHO TM Enhancer 150uL and ExpiCHO TM Feed 7.5 mL were added and cultured for 12 days. After culturing, centrifugation was performed at 3000 rpm for 10 minutes to obtain a culture supernatant. This culture supernatant was filtered through a 0.45 um filter, and the supernatant further filtered through a 0.22 um filter was used for activity measurement.
1) 変異EPOの発現
プラスミドpcDNA3.4-TOPOに人工遺伝子合成した変異EPOを導入したプラスミドpcDNA3.4-(各変異EPO)を購入した。変異EPOはExpiCHO Expression System(サーモフィッシャーサイエンティフィックス)を用いて発現させた。ExpiCHO-S細胞1バイヤル(1 x 107細胞)を湯浴で融かし、あらかじめ37℃に温めたExpiCHO Expression Medium 25mLに移した。37℃、8%CO2のインキュベーターで125 ±5 rpmで振とう培養を行った。4~6 x 106 cells / mLとなるまで培養し、トランスフェクションまでに2-3回以上継代を繰り返した。トランスフェクション1日前に細胞数を3~4 x 106 cells / mLに調整した後、一晩振とう培養した。細胞をカウントし、ExpiCHO Expression Medium 25mLに6 x 106 cells / mLとなるように125mLの培養フラスコに調整した。pcDNA3.4-(mEPO) 40ugをOptiPRO medium 1mLで希釈し、OptiPRO medium 0.92mLとExpiFectamine CHO Reagent 80uLの混合物に加えた。これを室温で5分インキュベーションした後、細胞が入ったフラスコに加え、振とう培養を開始した。さらに翌日、ExpiCHOTM Enhancer 150uLとExpiCHOTM Feed 7.5mLを加えて12日間培養した。培養後、3000rpm、10分間遠心分離し、培養上清を得た。この培養上清を0.45umのフィルターでろ過し、さらに0.22umのフィルターでろ過した上清を活性測定に使用した。 3. 3. Expression of mutant EPO (mEPO1 ~ mEPO10)
1) Expression of mutant EPO A plasmid pcDNA3.4- (each mutant EPO) in which an artificially synthesized mutant EPO was introduced into the plasmid pcDNA3.4-TOPO was purchased. Mutant EPO was expressed using the ExpiCHO Expression System (Thermo Fisher Scientific Fix). ExpiCHO-
2) 変異EPOの発現確認
CHO細胞培養上清中のmEPOの発現をwestern blotで確認した。加熱還元処理したCHO細胞培養上清500 ngを40 mA、40分の条件でSDS-PAGEを行い、75mA、90分の条件でゲルをPVDF膜に転写した。PVDF膜をPBST/5% BSA溶液に浸漬し、室温で2時間ブロッキングした。Rabbit anti-EPO抗体一次抗体をPBST/5% BSAで1,000倍希釈し、4℃、18時間静置した。PVDF膜をPBSTで10分間、3回洗浄した。HRP標識二次抗体をPBST/5% BSAで10,000倍希釈し、室温、1時間浸とうした。PVDF膜をPBSTで10分間、3回洗浄した。化学発光試薬をPVDF膜に添加し、10分反応させた。LAS-3000(富士フィルム(株))で撮影した。 2) Confirmation of mutant EPO expression The expression of mEPO in the CHO cell culture supernatant was confirmed by Western blot. SDS-PAGE was performed on 500 ng of the heat-reduced CHO cell culture supernatant under the conditions of 40 mA and 40 minutes, and the gel was transferred to the PVDF membrane under the conditions of 75 mA and 90 minutes. The PVDF membrane was immersed in PBST / 5% BSA solution and blocked at room temperature for 2 hours. Rabbit anti-EPO antibody The primary antibody was diluted 1,000-fold with PBST / 5% BSA and allowed to stand at 4 ° C for 18 hours. The PVDF membrane was washed 3 times with PBST for 10 minutes. The HRP-labeled secondary antibody was diluted 10,000-fold with PBST / 5% BSA and soaked at room temperature for 1 hour. The PVDF membrane was washed 3 times with PBST for 10 minutes. The chemiluminescent reagent was added to the PVDF membrane and reacted for 10 minutes. Taken with LAS-3000 (Fuji Film Co., Ltd.).
CHO細胞培養上清中のmEPOの発現をwestern blotで確認した。加熱還元処理したCHO細胞培養上清500 ngを40 mA、40分の条件でSDS-PAGEを行い、75mA、90分の条件でゲルをPVDF膜に転写した。PVDF膜をPBST/5% BSA溶液に浸漬し、室温で2時間ブロッキングした。Rabbit anti-EPO抗体一次抗体をPBST/5% BSAで1,000倍希釈し、4℃、18時間静置した。PVDF膜をPBSTで10分間、3回洗浄した。HRP標識二次抗体をPBST/5% BSAで10,000倍希釈し、室温、1時間浸とうした。PVDF膜をPBSTで10分間、3回洗浄した。化学発光試薬をPVDF膜に添加し、10分反応させた。LAS-3000(富士フィルム(株))で撮影した。 2) Confirmation of mutant EPO expression The expression of mEPO in the CHO cell culture supernatant was confirmed by Western blot. SDS-PAGE was performed on 500 ng of the heat-reduced CHO cell culture supernatant under the conditions of 40 mA and 40 minutes, and the gel was transferred to the PVDF membrane under the conditions of 75 mA and 90 minutes. The PVDF membrane was immersed in PBST / 5% BSA solution and blocked at room temperature for 2 hours. Rabbit anti-EPO antibody The primary antibody was diluted 1,000-fold with PBST / 5% BSA and allowed to stand at 4 ° C for 18 hours. The PVDF membrane was washed 3 times with PBST for 10 minutes. The HRP-labeled secondary antibody was diluted 10,000-fold with PBST / 5% BSA and soaked at room temperature for 1 hour. The PVDF membrane was washed 3 times with PBST for 10 minutes. The chemiluminescent reagent was added to the PVDF membrane and reacted for 10 minutes. Taken with LAS-3000 (Fuji Film Co., Ltd.).
また、培養上清を糖鎖切断酵素のglycosidase Fで37℃、20時間処理し、上記の方法でwestern blotを行った。
In addition, the culture supernatant was treated with glycosidase F, a sugar chain-cleaving enzyme, at 37 ° C. for 20 hours, and western blot was performed by the above method.
4.変異EPO(mEPO1~mEPO10)の活性測定
1) UT-7/EPO細胞を用いた変異EPOのEPO活性
UT-7/EPO細胞をEPO不含IMDM / 10% FCSで4.0x105 cells / mLに調整し、96ウェルプレートに50 μLずつ播種した。そこにEPO不含IMDM / 10% FCSで5倍希釈した変異EPO培養上清を各ウェルに50 μLずつ添加し、37℃、5 % CO2条件下で48時間培養した。最終的に変異EPOの希釈倍率は10倍になる。 4. Measurement of activity of mutant EPO (mEPO1 ~ mEPO10)
1) EPO activity of mutant EPO using UT-7 / EPO cells Adjust UT-7 / EPO cells to 4.0x10 5 cells / mL with EPO-free IMDM / 10% FCS, and inoculate 50 μL each on a 96-well plate. did. 50 μL of the mutant EPO culture supernatant diluted 5-fold with EPO-free IMDM / 10% FCS was added to each well, and the cells were cultured for 48 hours under 37 ° C. and 5% CO 2 conditions. Eventually, the dilution ratio of the mutant EPO will be 10 times.
1) UT-7/EPO細胞を用いた変異EPOのEPO活性
UT-7/EPO細胞をEPO不含IMDM / 10% FCSで4.0x105 cells / mLに調整し、96ウェルプレートに50 μLずつ播種した。そこにEPO不含IMDM / 10% FCSで5倍希釈した変異EPO培養上清を各ウェルに50 μLずつ添加し、37℃、5 % CO2条件下で48時間培養した。最終的に変異EPOの希釈倍率は10倍になる。 4. Measurement of activity of mutant EPO (mEPO1 ~ mEPO10)
1) EPO activity of mutant EPO using UT-7 / EPO cells Adjust UT-7 / EPO cells to 4.0x10 5 cells / mL with EPO-free IMDM / 10% FCS, and inoculate 50 μL each on a 96-well plate. did. 50 μL of the mutant EPO culture supernatant diluted 5-fold with EPO-free IMDM / 10% FCS was added to each well, and the cells were cultured for 48 hours under 37 ° C. and 5% CO 2 conditions. Eventually, the dilution ratio of the mutant EPO will be 10 times.
各ウェルにMTT試薬を10 μL添加し、37℃で3時間インキュベートした。マイクロプレートリーダーで波長450 nmにおける吸光度を測定し、変異EPOによるEPO依存的な細胞増殖活性を測定した。
10 μL of MTT reagent was added to each well and incubated at 37 ° C for 3 hours. Absorbance at a wavelength of 450 nm was measured with a microplate reader, and EPO-dependent cell proliferation activity due to mutant EPO was measured.
2) UT-7/EPO細胞を用いた変異EPOによる野生型EPOとの競合活性
UT-7/EPO細胞をEPO不含IMDM / 10% FCSで4.0x105 cells / mLに調整し、96ウェルプレートに50 μLずつ播種した。EC50の2倍濃度のEPO(0.06 unit/mL)を含むIMDM/10 % FCSで5倍希釈した変異EPO培養上清を各ウェルに50 μLずつ添加し、37℃、5 % CO2条件下で48時間培養した。最終的に変異EPOの希釈倍率は10倍、EPO濃度はEC50=0.03 unit/mLとなる。 2) Competitive activity with wild-type EPO by mutant EPO using UT-7 / EPO cells Prepare UT-7 / EPO cells to 4.0x10 5 cells / mL with EPO-free IMDM / 10% FCS and 96-well plate. Was sown in 50 μL increments. Add 50 μL of mutant EPO culture supernatant diluted 5-fold with IMDM / 10% FCS containing 2 times the concentration of EPO (0.06 unit / mL) to each well under 37 ° C. and 5% CO 2 conditions. Was cultured for 48 hours. Finally, the dilution ratio of the mutant EPO is 10 times, and the EPO concentration is EC 50 = 0.03 unit / mL.
UT-7/EPO細胞をEPO不含IMDM / 10% FCSで4.0x105 cells / mLに調整し、96ウェルプレートに50 μLずつ播種した。EC50の2倍濃度のEPO(0.06 unit/mL)を含むIMDM/10 % FCSで5倍希釈した変異EPO培養上清を各ウェルに50 μLずつ添加し、37℃、5 % CO2条件下で48時間培養した。最終的に変異EPOの希釈倍率は10倍、EPO濃度はEC50=0.03 unit/mLとなる。 2) Competitive activity with wild-type EPO by mutant EPO using UT-7 / EPO cells Prepare UT-7 / EPO cells to 4.0x10 5 cells / mL with EPO-free IMDM / 10% FCS and 96-well plate. Was sown in 50 μL increments. Add 50 μL of mutant EPO culture supernatant diluted 5-fold with IMDM / 10% FCS containing 2 times the concentration of EPO (0.06 unit / mL) to each well under 37 ° C. and 5% CO 2 conditions. Was cultured for 48 hours. Finally, the dilution ratio of the mutant EPO is 10 times, and the EPO concentration is EC 50 = 0.03 unit / mL.
各ウェルにMTT試薬を10 μL添加し、37℃で3時間インキュベートした。マイクロプレートリーダーで波長450 nmにおける吸光度を測定し、変異EPOによるEPO依存的な細胞増殖活性を測定した。
3) PV疾患モデル細胞UT-7/EPO/JAK2V617Fを用いた変異EPOによる増殖阻害活性
UT-7/EPO/JAK2V617F細胞を4-1)と同様の方法で培養した。 10 μL of MTT reagent was added to each well and incubated at 37 ° C. for 3 hours. Absorbance at a wavelength of 450 nm was measured with a microplate reader, and EPO-dependent cell proliferation activity due to mutant EPO was measured.
3) Growth inhibitory activity by mutant EPO using PV disease model cells UT-7 / EPO / JAK2V617F UT-7 / EPO / JAK2V617F cells were cultured by the same method as in 4-1).
3) PV疾患モデル細胞UT-7/EPO/JAK2V617Fを用いた変異EPOによる増殖阻害活性
UT-7/EPO/JAK2V617F細胞を4-1)と同様の方法で培養した。 10 μL of MTT reagent was added to each well and incubated at 37 ° C. for 3 hours. Absorbance at a wavelength of 450 nm was measured with a microplate reader, and EPO-dependent cell proliferation activity due to mutant EPO was measured.
3) Growth inhibitory activity by mutant EPO using PV disease model cells UT-7 / EPO / JAK2V617F UT-7 / EPO / JAK2V617F cells were cultured by the same method as in 4-1).
各ウェルにMTT試薬を10 μL添加し、37℃で3時間インキュベートした。マイクロプレートリーダーで波長450 nmにおける吸光度を測定し、変異EPOによるEPO依存的な細胞増殖阻害活性を測定した。
10 μL of MTT reagent was added to each well and incubated at 37 ° C for 3 hours. The absorbance at a wavelength of 450 nm was measured with a microplate reader, and the EPO-dependent cell proliferation inhibitory activity by the mutant EPO was measured.
5.改良型変異EPO構造シミュレーション
2. と同様の方法でより細胞増殖阻害活性の高い改良型変異EPOの構造シミュレーション解析を行った。 5. Improved mutant EPO structure simulation
Structural simulation analysis of the improved mutant EPO with higher cell proliferation inhibitory activity was performed by the same method as in 2.
2. と同様の方法でより細胞増殖阻害活性の高い改良型変異EPOの構造シミュレーション解析を行った。 5. Improved mutant EPO structure simulation
Structural simulation analysis of the improved mutant EPO with higher cell proliferation inhibitory activity was performed by the same method as in 2.
6.改良型変異EPOの発現(mEPO4.1~mEPO4.11、mEPO4.4.10)、精製
1) 改良型変異EPOの発現
プラスミドpcDNA3.4-TOPOに人工遺伝子合成した変異EPOを導入したプラスミドpcDNA3.4-(各変異EPO)を購入した。変異EPOはExpiCHO Expression System(サーモフィッシャーサイエンティフィックス)を用いて発現させた。ExpiCHO-S細胞1バイヤル(1 x 107細胞)を湯浴で融かし、あらかじめ37℃に温めたExpiCHO Expression Medium 30mLに移した。37℃、8%CO2のインキュベーターで125 ±5 rpmで振とう培養を行った。4~6 x 106 cells / mLとなるまで培養し、トランスフェクションまでに2-3回以上継代を繰り返した。トランスフェクション1日前に細胞数を3~4 x 106 cells / mLに調整した後、一晩振とう培養した。細胞をカウントし、ExpiCHO Expression Medium 50mLに6 x 106 cells / mLとなるように250mLの培養フラスコに調整した。pcDNA3.4-(mEPO) 40ugをOptiPRO medium 2mLで希釈し、OptiPRO medium 1.84mLとExpiFectamine CHO Reagent 160uLの混合物に加えた。これを室温で5分インキュベーションした後、細胞が入ったフラスコに加え、振とう培養を開始した。さらに翌日、ExpiCHOTM Enhancer 300uLとExpiCHOTM Feed 12mLを加えて、培養条件を32℃、5%CO2に変更して8日間培養した。培養後、3000rpm、10分間遠心分離し、培養上清を得た。この培養上清を0.45umのフィルターでろ過し、さらに0.22umのフィルターでろ過した。 6. Expression of improved mutant EPO (mEPO4.1 ~ mEPO4.11, mEPO4.4.10), purification
1) We purchased the plasmid pcDNA3.4- (each mutant EPO) in which the mutant EPO synthesized by artificial gene was introduced into the expression plasmid pcDNA3.4-TOPO of the improved mutant EPO. Mutant EPO was expressed using the ExpiCHO Expression System (Thermo Fisher Scientific Fix). ExpiCHO-S cells 1 vial (1 x 10 7 cells) were melted in a water bath and transferred to 30 mL of ExpiCHO Expression Medium preheated to 37 ° C. Shake culture was performed at 125 ± 5 rpm in an incubator at 37 ° C and 8% CO 2 . The cells were cultured to 4 to 6 x 10 6 cells / mL, and passage was repeated 2-3 times or more before transfection. The cell number was adjusted to 3-4 x 10 6 cells / mL 1 day before transfection, and then shaken and cultured overnight. The cells were counted and adjusted to a 250 mL culture flask to 6 x 10 6 cells / mL in 50 mL of ExpiCHO Expression Medium. 40 ug of pcDNA3.4- (mEPO) was diluted with 2 mL of OptiPRO medium and added to a mixture of 1.84 mL of OptiPRO medium and 160uL of ExpiFectamine CHO Reagent. After incubating this at room temperature for 5 minutes, it was added to a flask containing cells, and shaking culture was started. The next day, 300uL of ExpiCHO TM Enhancer and 12 mL of ExpiCHO TM Feed were added, and the culture conditions were changed to 32 ° C. and 5% CO2, and the cells were cultured for 8 days. After culturing, centrifugation was performed at 3000 rpm for 10 minutes to obtain a culture supernatant. The culture supernatant was filtered through a 0.45 um filter and further filtered through a 0.22 um filter.
1) 改良型変異EPOの発現
プラスミドpcDNA3.4-TOPOに人工遺伝子合成した変異EPOを導入したプラスミドpcDNA3.4-(各変異EPO)を購入した。変異EPOはExpiCHO Expression System(サーモフィッシャーサイエンティフィックス)を用いて発現させた。ExpiCHO-S細胞1バイヤル(1 x 107細胞)を湯浴で融かし、あらかじめ37℃に温めたExpiCHO Expression Medium 30mLに移した。37℃、8%CO2のインキュベーターで125 ±5 rpmで振とう培養を行った。4~6 x 106 cells / mLとなるまで培養し、トランスフェクションまでに2-3回以上継代を繰り返した。トランスフェクション1日前に細胞数を3~4 x 106 cells / mLに調整した後、一晩振とう培養した。細胞をカウントし、ExpiCHO Expression Medium 50mLに6 x 106 cells / mLとなるように250mLの培養フラスコに調整した。pcDNA3.4-(mEPO) 40ugをOptiPRO medium 2mLで希釈し、OptiPRO medium 1.84mLとExpiFectamine CHO Reagent 160uLの混合物に加えた。これを室温で5分インキュベーションした後、細胞が入ったフラスコに加え、振とう培養を開始した。さらに翌日、ExpiCHOTM Enhancer 300uLとExpiCHOTM Feed 12mLを加えて、培養条件を32℃、5%CO2に変更して8日間培養した。培養後、3000rpm、10分間遠心分離し、培養上清を得た。この培養上清を0.45umのフィルターでろ過し、さらに0.22umのフィルターでろ過した。 6. Expression of improved mutant EPO (mEPO4.1 ~ mEPO4.11, mEPO4.4.10), purification
1) We purchased the plasmid pcDNA3.4- (each mutant EPO) in which the mutant EPO synthesized by artificial gene was introduced into the expression plasmid pcDNA3.4-TOPO of the improved mutant EPO. Mutant EPO was expressed using the ExpiCHO Expression System (Thermo Fisher Scientific Fix). ExpiCHO-
2) 改良型変異EPOの発現確認
3-2)と同様の方法でCHO細胞培養上清中のmEPOの発現を確認した。 2) Confirmation of expression of improved mutant EPO The expression of mEPO in the CHO cell culture supernatant was confirmed by the same method as in 3-2).
3-2)と同様の方法でCHO細胞培養上清中のmEPOの発現を確認した。 2) Confirmation of expression of improved mutant EPO The expression of mEPO in the CHO cell culture supernatant was confirmed by the same method as in 3-2).
3) 改良型変異EPOの精製
ろ過した培養上清35mLをアミコンウルトラ-15 30kDa(メルクミリポア)の分子量で3回、15mLのバッファー(20mMトリス塩酸、0M塩化ナトリウム)で限外ろ過を行なった。その上層をアミコンウルトラ-15 100kDa(メルクミリポア)で上記のバッファーで7回限外ろ過を行い、下層を回収した。この下層をアミコンウルトラ-15 10kDa(メルクミリポア)で限外ろ過し、2mLまで濃縮した上層を回収した。 3) 35 mL of the purified and filtered culture supernatant of the improved mutant EPO was ultrafiltered three times with a molecular weight ofAmicon Ultra-15 30 kDa (Merck Millipore) with 15 mL of buffer (20 mM Tris-hydrochloric acid, 0 M sodium chloride). The upper layer was subjected to ultrafiltration 7 times with the above buffer with Amicon Ultra-15 100 kDa (Merck Millipore), and the lower layer was recovered. This lower layer was ultrafiltered with Amicon Ultra-15 10 kDa (Merck Millipore), and the upper layer concentrated to 2 mL was recovered.
ろ過した培養上清35mLをアミコンウルトラ-15 30kDa(メルクミリポア)の分子量で3回、15mLのバッファー(20mMトリス塩酸、0M塩化ナトリウム)で限外ろ過を行なった。その上層をアミコンウルトラ-15 100kDa(メルクミリポア)で上記のバッファーで7回限外ろ過を行い、下層を回収した。この下層をアミコンウルトラ-15 10kDa(メルクミリポア)で限外ろ過し、2mLまで濃縮した上層を回収した。 3) 35 mL of the purified and filtered culture supernatant of the improved mutant EPO was ultrafiltered three times with a molecular weight of
7.改良型変異EPO(mEPO4.1~mEPO4.11、mEPO4.4.10)の活性測定-2
4.と同様の方法で改良型変異EPOのEPO活性、EPO競合活性、増殖阻害活性を測定した。 7. Activity measurement of improved mutant EPO (mEPO4.1 ~ mEPO4.11, mEPO4.4.10)-2
The EPO activity, EPO competitive activity, and growth inhibitory activity of the improved mutant EPO were measured by the same method as in 4.
4.と同様の方法で改良型変異EPOのEPO活性、EPO競合活性、増殖阻害活性を測定した。 7. Activity measurement of improved mutant EPO (mEPO4.1 ~ mEPO4.11, mEPO4.4.10)-2
The EPO activity, EPO competitive activity, and growth inhibitory activity of the improved mutant EPO were measured by the same method as in 4.
8.変異EPOおよび改良型変異EPOのアミノ酸配列
>野生型EPO
APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGLRSLTTLLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR(配列番号1)
※1残基変異EPO
>mEPO1(R103A)
APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGLASLTTLLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR(配列番号11)
>mEPO2(R103F)
APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGLFSLTTLLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR(配列番号12)
>mEPO3(R103D)
APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGLDSLTTLLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR(配列番号13)
>mEPO4(R103E)
APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGLESLTTLLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR(配列番号14)
>mEPO5(L108A)
APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGLRSLTTALRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR(配列番号15)
>mEPO6(V11Y)
APPRLICDSRYLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGLRSLTTLLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR(配列番号16)
>mEPO7(L108Y)
APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGLRSLTTYLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR(配列番号17)
>mEPO8(L5N)
APPRNICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGLRSLTTLLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR(配列番号18)
>mEPO9(L108S)
APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGLRSLTTSLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR(配列番号19)
>mEPO10(L108N)
APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGLRSLTTNLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR(配列番号20)
※2残基変異EPO
>mEPO4.1(S100D/R103E)
APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVDGLESLTTLLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR(配列番号21)
>mEPO4.2(S100E/R103E)
APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVEGLESLTTLLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR(配列番号22)
>mEPO4.3(R103E/T107D)
APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGLESLTDLLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR(配列番号23)
>mEPO4.4(R103E/T107E)
APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGLESLTELLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR(配列番号24)
>mEPO4.5(R14D/R103E)
APPRLICDSRVLEDYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGLESLTTLLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR(配列番号25)
>mEPO4.6(R14E/R103E)
APPRLICDSRVLEEYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGLESLTTLLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR(配列番号26)
>mEPO4.7(K97D/R103E)
APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDDAVSGLESLTTLLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR(配列番号27)
>mEPO4.8(K97E/R103E)
APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDEAVSGLESLTTLLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR(配列番号28)
>mEPO4.9(R103E/R110D)
APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGLESLTTLLDALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR(配列番号29)
>mEPO4.10(R103E/R110E)
APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGLESLTTLLEALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR(配列番号30)
>mEPO4.11(R4E/R103E)
APPELICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGLESLTTLLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR(配列番号31)
※3残基変異EPO
>mEPO4.4.10(R103E/T107E/R110E)
APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGLESLTELLEALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR(配列番号32) 8. Amino acid sequences of mutant EPO and improved mutant EPO
> Wild-type EPO
APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGLRSLTTLLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR
* 1 Residual mutation EPO
> mEPO1 (R103A)
APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGL A SLTTLLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR
> mEPO2 (R103F)
APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGL F SLTTLLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR
> mEPO3 (R103D)
APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGL D SLTTLLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR
> mEPO4 (R103E)
APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGL E SLTTLLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR
> mEPO5 (L108A)
APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGLRSLTT A LRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR
> mEPO6 (V11Y)
APPRLICDSR Y LERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGLRSLTTLLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR
> mEPO7 (L108Y)
APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGLRSLTT Y LRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR
> mEPO8 (L5N)
APPR N ICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGLRSLTTLLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR
> mEPO9 (L108S)
APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGLRSLTT S LRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR
> mEPO10 (L108N)
APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGLRSLTT N LRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR
* 2 Residual mutation EPO
> mEPO4.1 (S100D / R103E)
APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAV D GL E SLTTLLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR
> mEPO4.2 (S100E / R103E)
APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAV E GL E SLTTLLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR
> mEPO4.3 (R103E / T107D)
APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGL E SLT D LLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR
> mEPO4.4 (R103E / T107E)
APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGL E SLT E LLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR
> mEPO4.5 (R14D / R103E)
APPRLICDSRVLE D YLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGL E SLTTLLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR
> mEPO4.6 (R14E / R103E)
APPRLICDSRVLE E YLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGL E SLTTLLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR
> mEPO4.7 (K97D / R103E)
APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVD D AVSGL E SLTTLLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR
> mEPO4.8 (K97E / R103E)
APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVD E AVSGL E SLTTLLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR
> mEPO4.9 (R103E / R110D)
APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGL E SLTTLL D ALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR
> mEPO4.10 (R103E / R110E)
APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGL E SLTTLL E ALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR
> mEPO4.11 (R4E / R103E)
APP E LICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGL E SLTTLLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR
* 3 Residue mutation EPO
> mEPO4.4.10 (R103E / T107E / R110E)
APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGL E SLT E LL E ALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR
>野生型EPO
APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGLRSLTTLLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR(配列番号1)
※1残基変異EPO
>mEPO1(R103A)
APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGLASLTTLLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR(配列番号11)
>mEPO2(R103F)
APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGLFSLTTLLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR(配列番号12)
>mEPO3(R103D)
APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGLDSLTTLLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR(配列番号13)
>mEPO4(R103E)
APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGLESLTTLLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR(配列番号14)
>mEPO5(L108A)
APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGLRSLTTALRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR(配列番号15)
>mEPO6(V11Y)
APPRLICDSRYLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGLRSLTTLLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR(配列番号16)
>mEPO7(L108Y)
APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGLRSLTTYLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR(配列番号17)
>mEPO8(L5N)
APPRNICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGLRSLTTLLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR(配列番号18)
>mEPO9(L108S)
APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGLRSLTTSLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR(配列番号19)
>mEPO10(L108N)
APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGLRSLTTNLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR(配列番号20)
※2残基変異EPO
>mEPO4.1(S100D/R103E)
APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVDGLESLTTLLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR(配列番号21)
>mEPO4.2(S100E/R103E)
APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVEGLESLTTLLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR(配列番号22)
>mEPO4.3(R103E/T107D)
APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGLESLTDLLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR(配列番号23)
>mEPO4.4(R103E/T107E)
APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGLESLTELLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR(配列番号24)
>mEPO4.5(R14D/R103E)
APPRLICDSRVLEDYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGLESLTTLLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR(配列番号25)
>mEPO4.6(R14E/R103E)
APPRLICDSRVLEEYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGLESLTTLLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR(配列番号26)
>mEPO4.7(K97D/R103E)
APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDDAVSGLESLTTLLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR(配列番号27)
>mEPO4.8(K97E/R103E)
APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDEAVSGLESLTTLLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR(配列番号28)
>mEPO4.9(R103E/R110D)
APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGLESLTTLLDALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR(配列番号29)
>mEPO4.10(R103E/R110E)
APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGLESLTTLLEALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR(配列番号30)
>mEPO4.11(R4E/R103E)
APPELICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGLESLTTLLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR(配列番号31)
※3残基変異EPO
>mEPO4.4.10(R103E/T107E/R110E)
APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGLESLTELLEALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR(配列番号32) 8. Amino acid sequences of mutant EPO and improved mutant EPO
> Wild-type EPO
APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGLRSLTTLLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR
* 1 Residual mutation EPO
> mEPO1 (R103A)
APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGL A SLTTLLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR
> mEPO2 (R103F)
APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGL F SLTTLLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR
> mEPO3 (R103D)
APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGL D SLTTLLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR
> mEPO4 (R103E)
APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGL E SLTTLLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR
> mEPO5 (L108A)
APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGLRSLTT A LRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR
> mEPO6 (V11Y)
APPRLICDSR Y LERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGLRSLTTLLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR
> mEPO7 (L108Y)
APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGLRSLTT Y LRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR
> mEPO8 (L5N)
APPR N ICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGLRSLTTLLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR
> mEPO9 (L108S)
APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGLRSLTT S LRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR
> mEPO10 (L108N)
APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGLRSLTT N LRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR
* 2 Residual mutation EPO
> mEPO4.1 (S100D / R103E)
APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAV D GL E SLTTLLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR
> mEPO4.2 (S100E / R103E)
APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAV E GL E SLTTLLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR
> mEPO4.3 (R103E / T107D)
APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGL E SLT D LLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR
> mEPO4.4 (R103E / T107E)
APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGL E SLT E LLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR
> mEPO4.5 (R14D / R103E)
APPRLICDSRVLE D YLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGL E SLTTLLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR
> mEPO4.6 (R14E / R103E)
APPRLICDSRVLE E YLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGL E SLTTLLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR
> mEPO4.7 (K97D / R103E)
APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVD D AVSGL E SLTTLLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR
> mEPO4.8 (K97E / R103E)
APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVD E AVSGL E SLTTLLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR
> mEPO4.9 (R103E / R110D)
APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGL E SLTTLL D ALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR
> mEPO4.10 (R103E / R110E)
APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGL E SLTTLL E ALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR
> mEPO4.11 (R4E / R103E)
APP E LICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGL E SLTTLLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR
* 3 Residue mutation EPO
> mEPO4.4.10 (R103E / T107E / R110E)
APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGL E SLT E LL E ALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR
9.変異EPO(mEPO4)および改良型変異EPO(mEPO4.4、mEPO4.10、mEPO4.4.10)によるJAK2-STAT5シグナル伝達阻害の測定
9. Measurement of JAK2-STAT5 signaling inhibition by mutant EPO (mEPO4) and improved mutant EPO (mEPO4.4, mEPO4.10, mEPO4.4.10)
1)pGL4.52[luc2P/STAT5 RE/Hygro]ベクターを安定発現するUT-7/EPO/JAK2V617F/pSTAT5-luc細胞の取得
プロモーター領域に5つのSTAT5応答配列(STAT5 RE)を持つルシフェラーゼ遺伝子とハイグロマイシン耐性遺伝子を組み込んだpGL4.52[luc2P/STAT5 RE/Hygro]ベクター(Promega)600ngをUT-7/EPO/JAK2V617F細胞6x105 cellsにエレクトロポレーション法にて遺伝子導入した。エレクトロポレーションはNeon Transfection System(サーモフィッシャー)を用い、1115 V、30 ms、2 pulseの条件で実施した。ハイグロマイシン200μg/mLを含むEPO不含IMDM/10 % FCSにて約1ヵ月培養することでpGL4.52[luc2P/STAT5 RE/Hygro]ベクターを安定発現するUT-7/EPO/JAK2V617F/pSTAT5-luc細胞を得た。 1) Acquisition of UT-7 / EPO / JAK2V617F / pSTAT5-luc cells that stably express the pGL4.52 [luc2P / STAT5 RE / Hygro] vector Luciferase gene and hygro having five STAT5 response sequences (STAT5 RE) in the promoter region 600 ng of the pGL4.52 [luc2P / STAT5 RE / Hygro] vector (Promega) incorporating the mycin resistance gene was introduced into UT-7 / EPO / JAK2V617F cells 6x10 5 cells by the electroporation method. Electroporation was performed using the Neon Transfection System (Thermo Fisher) under the conditions of 1115 V, 30 ms, and 2 pulse. UT-7 / EPO / JAK2V617F / pSTAT5-that stably expresses the pGL4.52 [luc2P / STAT5 RE / Hygro] vector by culturing in EPO-free IMDM / 10% FCS containing 200 μg / mL of hygromycin for about 1 month. Obtained luc cells.
プロモーター領域に5つのSTAT5応答配列(STAT5 RE)を持つルシフェラーゼ遺伝子とハイグロマイシン耐性遺伝子を組み込んだpGL4.52[luc2P/STAT5 RE/Hygro]ベクター(Promega)600ngをUT-7/EPO/JAK2V617F細胞6x105 cellsにエレクトロポレーション法にて遺伝子導入した。エレクトロポレーションはNeon Transfection System(サーモフィッシャー)を用い、1115 V、30 ms、2 pulseの条件で実施した。ハイグロマイシン200μg/mLを含むEPO不含IMDM/10 % FCSにて約1ヵ月培養することでpGL4.52[luc2P/STAT5 RE/Hygro]ベクターを安定発現するUT-7/EPO/JAK2V617F/pSTAT5-luc細胞を得た。 1) Acquisition of UT-7 / EPO / JAK2V617F / pSTAT5-luc cells that stably express the pGL4.52 [luc2P / STAT5 RE / Hygro] vector Luciferase gene and hygro having five STAT5 response sequences (STAT5 RE) in the promoter region 600 ng of the pGL4.52 [luc2P / STAT5 RE / Hygro] vector (Promega) incorporating the mycin resistance gene was introduced into UT-7 / EPO / JAK2V617F cells 6x10 5 cells by the electroporation method. Electroporation was performed using the Neon Transfection System (Thermo Fisher) under the conditions of 1115 V, 30 ms, and 2 pulse. UT-7 / EPO / JAK2V617F / pSTAT5-that stably expresses the pGL4.52 [luc2P / STAT5 RE / Hygro] vector by culturing in EPO-free IMDM / 10% FCS containing 200 μg / mL of hygromycin for about 1 month. Obtained luc cells.
2)変異EPO(mEPO4)および改良型変異EPO(mEPO4.4、mEPO4.10、mEPO4.4.10)の精製
変異EPO(mEPO4)および改良型変異EPO(mEPO4.4、mEPO4.10、mEPO4.4.10)を発現させたCHO細胞の培養上清30mLをろ過し、アミコン30kDaに15mLずつ2本に入れ、3000rpm、30分間遠心し5mLとなるまで濃縮し限外ろ過を行った。濃縮液に20mMリン酸緩衝液/50mM 塩化ナトリウム(pH7.4)(バッファーA)10mLを加えて遠心し5mLとなるまで濃縮した。これをさらに2回繰り返した。
次にバッファーAで平衡化したBlue Sepharose 6 Fast Flow (Cytiva)10mLに上記の濃縮液を添加し4℃で4時間ローテーションした。3000rpm、5分間、4℃で遠心し、Blue Sepharoseと上清を分離し上清を廃棄した。20mLのバッファーAで3回洗浄した。Blue Sepharoseに15mLの20mMリン酸緩衝液/2M NaCl(pH7.4)(バッファーB)を加えて4℃で30分間ローテーションし変異EPO及び改良型変異EPOを溶出させた。3000rpm、5分間、4℃で遠心し、変異EPO及び改良型変異EPOを含む上清を回収した。これを1回繰り返し、溶出画分とした。
溶出画分30mLをアミコン10kDaに15mLずつ2本に入れ、3000rpm、30分間遠心し3mLとなるまで濃縮した。濃縮液にPBS12mLを加えて遠心し3mLとなるまで濃縮した。これをさらに2回繰り返した。最終的に3mLとなるまで遠心濃縮した。 2) Purification of mutant EPO (mEPO4) and improved mutant EPO (mEPO4.4, mEPO4.10, mEPO4.4.10) Mutant EPO (mEPO4) and improved mutant EPO (mEPO4.4, mEPO4.10, mEPO4.4.10) 30 mL of the culture supernatant of the CHO cells expressing the above was filtered, placed in 2 bottles of 15 mL each inAmicon 30 kDa, centrifuged at 3000 rpm for 30 minutes, concentrated to 5 mL, and subjected to ultrafiltration. 10 mL of 20 mM phosphate buffer / 50 mM sodium chloride (pH 7.4) (buffer A) was added to the concentrate, and the mixture was centrifuged and concentrated to 5 mL. This was repeated two more times.
Next, the above concentrate was added to 10 mL of Blue Sepharose 6 Fast Flow (Cytiva) equilibrated with Buffer A, and the mixture was rotated at 4 ° C. for 4 hours. Centrifuge at 3000 rpm for 5 minutes at 4 ° C. to separate the supernatant from Blue Sepharose and discard the supernatant. Washed 3 times with 20 mL buffer A. 15 mL of 20 mM phosphate buffer / 2M NaCl (pH 7.4) (buffer B) was added to Blue Sepharose and rotated at 4 ° C. for 30 minutes to elute the mutant EPO and the improved mutant EPO. Centrifugation was performed at 3000 rpm for 5 minutes at 4 ° C., and the supernatant containing the mutant EPO and the improved mutant EPO was collected. This was repeated once to obtain an elution fraction.
30 mL of the eluted fraction was placed in 2 bottles of 15 mL each inAmicon 10 kDa, centrifuged at 3000 rpm for 30 minutes, and concentrated to 3 mL. 12 mL of PBS was added to the concentrate, and the mixture was centrifuged and concentrated to 3 mL. This was repeated two more times. Centrifugal concentration was performed until the final volume was 3 mL.
変異EPO(mEPO4)および改良型変異EPO(mEPO4.4、mEPO4.10、mEPO4.4.10)を発現させたCHO細胞の培養上清30mLをろ過し、アミコン30kDaに15mLずつ2本に入れ、3000rpm、30分間遠心し5mLとなるまで濃縮し限外ろ過を行った。濃縮液に20mMリン酸緩衝液/50mM 塩化ナトリウム(pH7.4)(バッファーA)10mLを加えて遠心し5mLとなるまで濃縮した。これをさらに2回繰り返した。
次にバッファーAで平衡化したBlue Sepharose 6 Fast Flow (Cytiva)10mLに上記の濃縮液を添加し4℃で4時間ローテーションした。3000rpm、5分間、4℃で遠心し、Blue Sepharoseと上清を分離し上清を廃棄した。20mLのバッファーAで3回洗浄した。Blue Sepharoseに15mLの20mMリン酸緩衝液/2M NaCl(pH7.4)(バッファーB)を加えて4℃で30分間ローテーションし変異EPO及び改良型変異EPOを溶出させた。3000rpm、5分間、4℃で遠心し、変異EPO及び改良型変異EPOを含む上清を回収した。これを1回繰り返し、溶出画分とした。
溶出画分30mLをアミコン10kDaに15mLずつ2本に入れ、3000rpm、30分間遠心し3mLとなるまで濃縮した。濃縮液にPBS12mLを加えて遠心し3mLとなるまで濃縮した。これをさらに2回繰り返した。最終的に3mLとなるまで遠心濃縮した。 2) Purification of mutant EPO (mEPO4) and improved mutant EPO (mEPO4.4, mEPO4.10, mEPO4.4.10) Mutant EPO (mEPO4) and improved mutant EPO (mEPO4.4, mEPO4.10, mEPO4.4.10) 30 mL of the culture supernatant of the CHO cells expressing the above was filtered, placed in 2 bottles of 15 mL each in
Next, the above concentrate was added to 10 mL of Blue Sepharose 6 Fast Flow (Cytiva) equilibrated with Buffer A, and the mixture was rotated at 4 ° C. for 4 hours. Centrifuge at 3000 rpm for 5 minutes at 4 ° C. to separate the supernatant from Blue Sepharose and discard the supernatant. Washed 3 times with 20 mL buffer A. 15 mL of 20 mM phosphate buffer / 2M NaCl (pH 7.4) (buffer B) was added to Blue Sepharose and rotated at 4 ° C. for 30 minutes to elute the mutant EPO and the improved mutant EPO. Centrifugation was performed at 3000 rpm for 5 minutes at 4 ° C., and the supernatant containing the mutant EPO and the improved mutant EPO was collected. This was repeated once to obtain an elution fraction.
30 mL of the eluted fraction was placed in 2 bottles of 15 mL each in
3)UT-7/EPO/JAK2V617F/pSTAT5-luc細胞を用いた変異EPOおよび改良型変異EPOによるJAK2-STAT5シグナル伝達阻害の測定
UT-7/EPO/JAK2V617F/pSTAT5-luc細胞をEPO不含IMDM / 10% FCSで2.2x105 cells / mLに調整し、96ウェルプレートに90 μLずつ播種した。そこに精製した変異EPOおよび改良型変異EPOをPBSで20倍に希釈したサンプルを各ウェルに10 μLずつ添加し、37℃、5 % CO2条件下で6時間培養した。最終的に変異EPOの希釈倍率は200倍になる。
各ウェルにONE-GloTM Reagent(Promega)を100 μL添加し、3分間インキュベートし細胞を溶解させた。このプレートのルシフェラーゼによる化学発光をルミノメーターにより測定し、変異EPO(mEPO4)および改良型変異EPO(mEPO4.4、mEPO4.10、mEPO4.4.10)添加によるEPORを介したJAK2V617Fの2量体化によるリン酸化の阻害とそれに続くSTAT5リン酸化阻害を評価した。 3) Measurement of JAK2-STAT5 signaling inhibition by mutant EPO and improved mutant EPO using UT-7 / EPO / JAK2V617F / pSTAT5-luc cells
UT-7 / EPO / JAK2V617F / pSTAT5-luc cells were adjusted to 2.2x10 5 cells / mL with EPO-free IMDM / 10% FCS and seeded in 90 μL increments on 96-well plates. A sample obtained by diluting the purified mutant EPO and the improved mutant EPO 20-fold with PBS was added to each well in an amount of 10 μL, and the cells were cultured under 37 ° C. and 5% CO2 conditions for 6 hours. Eventually, the dilution ratio of the mutant EPO will be 200 times.
100 μL of ONE-Glo TM Reagent (Promega) was added to each well and incubated for 3 minutes to lyse the cells. Chemiluminescence of this plate by luciferase was measured with a luminometer and by dimerization of JAK2V617F via EPOR with the addition of mutant EPO (mEPO4) and improved mutant EPO (mEPO4.4, mEPO4.10, mEPO4.4.10). Inhibition of phosphorylation followed by STAT5 phosphorylation inhibition was evaluated.
UT-7/EPO/JAK2V617F/pSTAT5-luc細胞をEPO不含IMDM / 10% FCSで2.2x105 cells / mLに調整し、96ウェルプレートに90 μLずつ播種した。そこに精製した変異EPOおよび改良型変異EPOをPBSで20倍に希釈したサンプルを各ウェルに10 μLずつ添加し、37℃、5 % CO2条件下で6時間培養した。最終的に変異EPOの希釈倍率は200倍になる。
各ウェルにONE-GloTM Reagent(Promega)を100 μL添加し、3分間インキュベートし細胞を溶解させた。このプレートのルシフェラーゼによる化学発光をルミノメーターにより測定し、変異EPO(mEPO4)および改良型変異EPO(mEPO4.4、mEPO4.10、mEPO4.4.10)添加によるEPORを介したJAK2V617Fの2量体化によるリン酸化の阻害とそれに続くSTAT5リン酸化阻害を評価した。 3) Measurement of JAK2-STAT5 signaling inhibition by mutant EPO and improved mutant EPO using UT-7 / EPO / JAK2V617F / pSTAT5-luc cells
UT-7 / EPO / JAK2V617F / pSTAT5-luc cells were adjusted to 2.2x10 5 cells / mL with EPO-free IMDM / 10% FCS and seeded in 90 μL increments on 96-well plates. A sample obtained by diluting the purified mutant EPO and the improved mutant EPO 20-fold with PBS was added to each well in an amount of 10 μL, and the cells were cultured under 37 ° C. and 5% CO2 conditions for 6 hours. Eventually, the dilution ratio of the mutant EPO will be 200 times.
100 μL of ONE-Glo TM Reagent (Promega) was added to each well and incubated for 3 minutes to lyse the cells. Chemiluminescence of this plate by luciferase was measured with a luminometer and by dimerization of JAK2V617F via EPOR with the addition of mutant EPO (mEPO4) and improved mutant EPO (mEPO4.4, mEPO4.10, mEPO4.4.10). Inhibition of phosphorylation followed by STAT5 phosphorylation inhibition was evaluated.
結果
1.UT-7/EPO/JAK2V617F細胞の作製
UT-7/EPO細胞にCas9タンパク質、sgRNA、ssODNから成る複合体をエレクトロポレーション法により導入し、JAK2遺伝子にゲノム編集によりV617F変異を導入した。これを合計3回繰り返すことで、EPO非存在下で増殖可能な細胞株を得た。Result 1. Preparation of UT-7 / EPO / JAK2V617F cells
A complex consisting of Cas9 protein, sgRNA, and ssODN was introduced into UT-7 / EPO cells by electroporation, and a V617F mutation was introduced into the JAK2 gene by genome editing. By repeating this three times in total, a cell line capable of growing in the absence of EPO was obtained.
1.UT-7/EPO/JAK2V617F細胞の作製
UT-7/EPO細胞にCas9タンパク質、sgRNA、ssODNから成る複合体をエレクトロポレーション法により導入し、JAK2遺伝子にゲノム編集によりV617F変異を導入した。これを合計3回繰り返すことで、EPO非存在下で増殖可能な細胞株を得た。
A complex consisting of Cas9 protein, sgRNA, and ssODN was introduced into UT-7 / EPO cells by electroporation, and a V617F mutation was introduced into the JAK2 gene by genome editing. By repeating this three times in total, a cell line capable of growing in the absence of EPO was obtained.
1回目のゲノム編集後のクローニングでは、2週間の培養で65クローンが増殖した。JAK2遺伝子変異導入周辺領域のシークエンス解析の結果、全てのクローンはヘテロ変異であった。波形データをもとに、変異導入部位(G1849T)のチミジンの蛍光シグナルが強いクローン(No.11, 16, 25, 35, 54, 55, 58)を選び、ABC-PCR法にてアレルバーデン値を定量した結果、No.11, 54はそれぞれ56.70 %、56.41 %と他のクローンより高いアレルバーデン値を示した。
In the cloning after the first genome editing, 65 clones proliferated in the culture for 2 weeks. As a result of sequence analysis of the region around the introduction of the JAK2 gene mutation, all clones were heterozygous mutations. Based on the waveform data, select clones (No.11, 16, 25, 35, 54, 55, 58) with strong thymidine fluorescence signal at the mutation introduction site (G1849T), and use the ABC-PCR method to select allelic Baden values. As a result of quantifying, No. 11 and 54 showed 56.70% and 56.41%, respectively, which are higher allele-baden values than other clones.
PV患者では、JAK2遺伝子の変異がホモであることが知られている。このためPV疾患モデル細胞の構築には、JAK2遺伝子の変異がホモである必要がある。よりアレルバーデン値の高いクローンを取得するため、アレルバーデン値の高いNo.11、No.54に対して2度目のゲノム編集を実施した。クローニングにより、299クローンが得られた。シークエンス解析から、高効率な変異導入が推測された11クローン(No.11B-78, 11R-11, 11R-22, 11R-59, 11R-61, 54-8, 54-15, 54-29, 54-36, 54-39, 54-75)のアレルバーデン値を定量した。
It is known that mutations in the JAK2 gene are homozygous in PV patients. Therefore, mutations in the JAK2 gene need to be homozygous for the construction of PV disease model cells. In order to obtain clones with higher allele-baden values, genome editing was performed for No. 11 and No. 54 with high allele-badden values for the second time. Cloning yielded 299 clones. 11 clones (No. 11B-78, 11R-11, 11R-22, 11R-59, 11R-61, 54-8, 54-15, 54-29, The allelic Baden values of 54-36, 54-39, 54-75) were quantified.
No.54-15のアレルバーデン値が88 %で最も高かったが、100 %とならなかったため、アレルバーデン値が高く、細胞増殖の良いNo.11R-61、No.54-15の2クローンに対してさらに3度目のゲノム編集を行った。クローニングにより、88クローンが得られた。シークエンス解析から、高効率な変異導入が推測された6クローン(No.11R-61-21, 11R-61-44, 11R-61-52, 54-15-17, 54-15-21, 54-15-29)のアレルバーデン値を定量した結果、6クローンとも90 %程度あり、ホモ変異体であることが示唆された。
The allele-baden value of No.54-15 was the highest at 88%, but since it did not reach 100%, the allele-baden value was high and cell proliferation was good. On the other hand, the genome was edited for the third time. Cloning yielded 88 clones. 6 clones (No.11R-61-21, 11R-61-44, 11R-61-52, 54-15-17, 54-15-21, 54- As a result of quantifying the allele-baden value of 15-29), it was about 90% in all 6 clones, suggesting that it is a homozygous mutant.
アレルバーデン値が高いNo.54-15-17はシングルアレルシークエンス解析によりホモ変異体であることがわかり、PV疾患を模倣するUT-7/EPO/JAK2V617F細胞と名付けた。
No. 54-15-17, which has a high allele Baden value, was found to be a homozygous mutant by single allele sequence analysis, and was named UT-7 / EPO / JAK2V617F cells that mimic PV disease.
UT-7/EPO/JAK2V617F細胞のシグナル伝達解析では、EPO非存在下において、UT-7/EPO細胞はSTAT5、ERK1/2のリン酸化が消失したのに対し、UT-7/EPO/JAK2V617F細胞は恒常的にリン酸化されていた。
In the signal transduction analysis of UT-7 / EPO / JAK2V617F cells, in the absence of EPO, phosphorylation of STAT5 and ERK1 / 2 disappeared in UT-7 / EPO cells, whereas phosphorylation of UT-7 / EPO / JAK2V617F cells disappeared. Was constantly phosphorylated.
2.変異EPO構造シミュレーション
変異導入の検討に先立ち、野生型EPOとEPORの結合の要因を明らかにするため、EPOとEPOR二量体との複合体の立体構造データを使用し、EPO(chain A)とEPOR(chain C)の相互作用について調べた。EPOの低親和性の結合面(site2)とEPORについて相互作用に関するアミノ酸残基を検出し、EPOとEPOR の結合に関与するアミノ酸残基を推察した。 2. 2. Mutant EPO structure simulation Prior to the study of mutation introduction, in order to clarify the factors of binding between wild-type EPO and EPOR, we used the three-dimensional structure data of the complex of EPO and EPOR dimer, and used EPO (chain A). We investigated the interaction of EPOR (chain C). Amino acid residues related to the interaction between the low affinity binding surface of EPO (site2) and EPOR were detected, and the amino acid residues involved in the binding between EPO and EPOR were inferred.
変異導入の検討に先立ち、野生型EPOとEPORの結合の要因を明らかにするため、EPOとEPOR二量体との複合体の立体構造データを使用し、EPO(chain A)とEPOR(chain C)の相互作用について調べた。EPOの低親和性の結合面(site2)とEPORについて相互作用に関するアミノ酸残基を検出し、EPOとEPOR の結合に関与するアミノ酸残基を推察した。 2. 2. Mutant EPO structure simulation Prior to the study of mutation introduction, in order to clarify the factors of binding between wild-type EPO and EPOR, we used the three-dimensional structure data of the complex of EPO and EPOR dimer, and used EPO (chain A). We investigated the interaction of EPOR (chain C). Amino acid residues related to the interaction between the low affinity binding surface of EPO (site2) and EPOR were detected, and the amino acid residues involved in the binding between EPO and EPOR were inferred.
まず、EPOとEPOR複合体において、EPO(chain A)とEPOR(chain C)の全ての原子間距離を測定し、2つの鎖間で原子間の距離が4.5Å以内に存在するアミノ酸残基を検出した。原子間距離に応じてアミノ酸残基を色分け表示した結果を、立体構造とアミノ酸配列上に示した(図3)。
First, in the EPO and EPOR complex, all the interatomic distances of EPO (chain A) and EPOR (chain C) are measured, and the amino acid residues in which the interatomic distance between the two chains is within 4.5 Å are determined. Detected. The results of color-coding the amino acid residues according to the interatomic distance are shown on the three-dimensional structure and amino acid sequence (Fig. 3).
EPOとEPORの間で検出されたアミノ酸残基から、相互作用に直接関与する残基を推察した。水素結合を形成するアミノ酸残基としては、EPOのAsp8, Arg14, Lys97, Arg103, Ser104が推察された(図4)。に推察された水素結合を示した。中でもArg103の側鎖は、EPORのGlu62, Asp89, Ser91の側鎖、Ala88の主鎖と合計4つの水素結合を形成することが推察された。
From the amino acid residues detected between EPO and EPOR, the residues directly involved in the interaction were inferred. As amino acid residues forming hydrogen bonds, EPO Asp8, Arg14, Lys97, Arg103, and Ser104 were inferred (Fig. 4). The inferred hydrogen bond was shown in. Among them, it was speculated that the side chain of Arg103 forms a total of four hydrogen bonds with the side chain of Glu62, Asp89, Ser91 and the main chain of Ala88 of EPOR.
疎水性相互作用としては、EPOのArg103とEPOR間およびEPORのPhe93とEPO間の二箇所が推察された。図5に疎水性相互作用が推察されたアミノ酸残基を示した。Arg103の側鎖は、EPORと水素結合と疎水性相互作用の両方に寄与しており、EPORとの結合に重要な役割を果たしていると考えられた。
Two hydrophobic interactions were speculated: between Arg103 and EPOR of EPO and between Phe93 and EPO of EPOR. Figure 5 shows the amino acid residues inferred to have hydrophobic interactions. The side chain of Arg103 contributes to both EPOR and hydrogen bonds and hydrophobic interactions, and is thought to play an important role in binding to EPOR.
EPORのPhe93は、EPOのLeu5, Val11, Tyr15, Leu108により形成される疎水性ポケットに入り込むように結合し、Phe93の芳香環の炭素全てがEPOの4残基の炭素と疎水性相互作用を形成していた。
EPOR's Phe93 binds into the hydrophobic pocket formed by EPO's Leu5, Val11, Tyr15, and Leu108, and all carbons in the aromatic ring of Phe93 form a hydrophobic interaction with the carbon of the four residues of EPO. Was.
次にEPOとEPORとの静電相互作用を確認するため、表面形状を作成し静電ポテンシャルをマップし、相互作用に関与する領域を丸で囲って示した(図6)。site2の結合面において、EPOの表面はpositiveな静電ポテンシャル(blue)を、反対にEPORの表面はnegativeな静電ポテンシャル(red)を持つ事が確認された。各々のpositiveあるいはnegativeな静電ポテンシャルを示す領域は、先に検出された相互作用が推察された領域を含んでいる(図6中に丸で囲って示した)。このことから、EPOとEPORの結合には、EPO(positive)とEPOR(negative)の静電ポテンシャルによる相互作用も寄与していると推測された。水素結合が推察されたEPOの正電荷の側鎖を持つArg103は positiveな領域に、EPORの負電荷の側鎖を持つGlu62およびAsp89はnegativeな領域に存在した。EPOのArg103とEPORのGlu62およびAsp89は、水素結合を形成するだけでなく、それぞれの表面にpositiveあるいはnegativeな静電ポテンシャルを引き起こし、静電相互作用に寄与していると推測された。
Next, in order to confirm the electrostatic interaction between EPO and EPOR, the surface shape was created, the electrostatic potential was mapped, and the areas involved in the interaction were circled (Fig. 6). It was confirmed that the surface of EPO has a positive electrostatic potential (blue) and the surface of EPOR has a negative electrostatic potential (red) on the bonding surface of site2. The region showing each positive or negative electrostatic potential includes the region where the previously detected interaction was inferred (circled in FIG. 6). From this, it was speculated that the interaction between EPO (positive) and EPOR (negative) due to the electrostatic potential also contributed to the binding between EPO and EPOR. Arg103, which has a positively charged side chain of EPO inferred to have hydrogen bonds, was present in the positive region, and Glu62 and Asp89, which had negatively charged side chains of EPOR, were present in the negative region. It is speculated that Arg103 of EPO and Glu62 and Asp89 of EPOR not only form hydrogen bonds but also cause positive or negative electrostatic potentials on their respective surfaces and contribute to electrostatic interaction.
以上より、EPOのsite2は水素結合、疎水性相互作用、EPO(positive)とEPOR(negative)の静電ポテンシャルによる相互作用の3つの要因によりEPORと結合していることが推察された。水素結合及び疎水性相互作用に関しては、特にEPOのArg103とEPORとの水素結合、EPORのPhe93とEPOとの疎水性相互作用が重要な相互作用と考えられた。
From the above, it was inferred that site 2 of EPO is bound to EPOR by three factors: hydrogen bond, hydrophobic interaction, and interaction between EPO (positive) and EPOR (negative) due to electrostatic potential. Regarding hydrogen bonds and hydrophobic interactions, the hydrogen bonds between Arg103 of EPO and EPOR and the hydrophobic interaction between Phe93 of EPOR and EPO were considered to be particularly important interactions.
2-1. EPORの二量体形成を阻害するためのEPOへの変異導入の検討
EPOとEPOR間の相互作用の解析結果から、水素結合、疎水性相互作用、EPO(positive)とEPOR(negative)の静電ポテンシャルによる相互作用の3つの要因が推察された。EPO のsite2とEPORとの結合を阻害するには、これらの相互作用を消失させるのが有効と考えられた。 2-1. Examination of introduction of mutation into EPO to inhibit dimer formation of EPOR
From the analysis results of the interaction between EPO and EPOR, three factors were inferred: hydrogen bonding, hydrophobic interaction, and interaction between EPO (positive) and EPOR (negative) due to electrostatic potential. Eliminating these interactions was considered effective in inhibiting the binding ofEPO site 2 to EPOR.
EPOとEPOR間の相互作用の解析結果から、水素結合、疎水性相互作用、EPO(positive)とEPOR(negative)の静電ポテンシャルによる相互作用の3つの要因が推察された。EPO のsite2とEPORとの結合を阻害するには、これらの相互作用を消失させるのが有効と考えられた。 2-1. Examination of introduction of mutation into EPO to inhibit dimer formation of EPOR
From the analysis results of the interaction between EPO and EPOR, three factors were inferred: hydrogen bonding, hydrophobic interaction, and interaction between EPO (positive) and EPOR (negative) due to electrostatic potential. Eliminating these interactions was considered effective in inhibiting the binding of
変異を導入する位置として、最も重要と思われる2つの位置に着目した。1つはEPOの Arg103であり、ここではsite2-Aと呼ぶ。site2-Aでは、EPOのArg103がEPORのGlu62, Ala88, Asp89, Ser91で囲まれたくぼみに入り込むように結合し、Argの側鎖がEPORのGlu62, Ala88,Asp89, Ser91と水素結合を形成していた(図7)。このEPORのくぼみの表面一帯はnegativeな静電ポテンシャルを持ち、positiveなArg103が結合するのに適していた。
We focused on the two most important positions for introducing mutations. One is EPO's Arg103, which is called site2-A here. At site2-A, the EPO Arg103 binds to the EPOR Glu62, Ala88, Asp89, Ser91 so as to enter the recess, and the Arg side chain forms a hydrogen bond with the EPOR Glu62, Ala88, Asp89, Ser91. It was (Fig. 7). The surface area of this EPOR depression had a negative electrostatic potential and was suitable for the binding of positive Arg103.
EPOのArg103の側鎖の正電荷を持つグアニジル基の窒素は、EPORのGlu62およびAsp89の側鎖のカルボニル基の酸素と静電的結合の可能性も考えられた。site2-Aへの変異導入では、 Arg103が担っているこれらの相互作用を消失するため、水素結合を消失する変異、positive な静電ポテンシャルを減少、反転する変異、EPORとの立体障害を引き起こす変異について検討した(図8、左)。
It was also considered that the nitrogen of the guanidyl group having a positive charge on the side chain of Arg103 of EPO may be electrostatically bonded to the oxygen of the carbonyl group of the side chains of EPOR Glu62 and Asp89. Introducing a mutation into site2-A eliminates these interactions of Arg103, resulting in a mutation that eliminates hydrogen bonds, a mutation that reduces or reverses positive electrostatic potential, and a mutation that causes steric hindrance with EPOR. (Fig. 8, left).
もう1つの変異を導入する位置は、EPORのPhe93との疎水性相互作用が推察されたLeu5, Val11, Tyr15, Leu108であり、これらをsite2-Bと呼ぶ。site2-Bでは、これらの残基がEPOのsite2の表面に疎水性のくぼみである疎水性ポケットを形成していた(図7)。EPORのPhe93は、この疎水性ポケットに収まるように結合し、EPOのLeu5, Val11, Tyr15, Leu108と疎水性相互作用を形成していた。そのため、EPORのPhe93との疎水性相互作用を消失させる変異および疎水性ポケットでの立体障害や疎水性環境を壊す事によりPhe93が疎水性ポケットに結合するのを阻害する変異を検討した(図8、右)。
site2においてEPOとEPORが本来の複合体を形成するために必要な相互作用をなくすことにより、EPORは変異型EPOのsite2と結合できず、本来の二量体構造を形成することができなくなると考えられる。さらに、静電ポテンシャルの反発や、EPORとの立体障害を引き起こす変異により、EPORがEPOに対して本来の位置まで近づくのを阻害する効果が期待された。 The position where the other mutation is introduced is Leu5, Val11, Tyr15, Leu108, which are inferred to have a hydrophobic interaction with Phe93 of EPOR, and these are called site2-B. At site2-B, these residues formed hydrophobic pockets, which are hydrophobic depressions, on the surface ofsite 2 of the EPO (Fig. 7). EPOR's Phe93 bound to fit in this hydrophobic pocket and formed a hydrophobic interaction with EPO's Leu5, Val11, Tyr15, Leu108. Therefore, we investigated mutations that eliminate the hydrophobic interaction of EPOR with Phe93 and mutations that prevent Phe93 from binding to the hydrophobic pocket by disrupting steric hindrance and hydrophobic environment in the hydrophobic pocket (Fig. 8). ,right).
By eliminating the interaction required for EPO and EPOR to form the original complex at site2, EPOR cannot bind to site2 of the mutant EPO and form the original dimer structure. Conceivable. Furthermore, it was expected to have the effect of inhibiting EPOR from approaching its original position with respect to EPO due to the repulsion of electrostatic potential and mutation that causes steric hindrance with EPOR.
site2においてEPOとEPORが本来の複合体を形成するために必要な相互作用をなくすことにより、EPORは変異型EPOのsite2と結合できず、本来の二量体構造を形成することができなくなると考えられる。さらに、静電ポテンシャルの反発や、EPORとの立体障害を引き起こす変異により、EPORがEPOに対して本来の位置まで近づくのを阻害する効果が期待された。 The position where the other mutation is introduced is Leu5, Val11, Tyr15, Leu108, which are inferred to have a hydrophobic interaction with Phe93 of EPOR, and these are called site2-B. At site2-B, these residues formed hydrophobic pockets, which are hydrophobic depressions, on the surface of
By eliminating the interaction required for EPO and EPOR to form the original complex at site2, EPOR cannot bind to site2 of the mutant EPO and form the original dimer structure. Conceivable. Furthermore, it was expected to have the effect of inhibiting EPOR from approaching its original position with respect to EPO due to the repulsion of electrostatic potential and mutation that causes steric hindrance with EPOR.
2-2. 変異型EPOの立体構造モデルの作製と評価、及び変異候補の選定
site2-A(Arg103)およびsite2-B(Leu5, Val11, Tyr15, Leu108)の各残基に対し、アミノ酸残基を置換した変異体モデルを作製し、野生型EPOと比較することにより変異の効果を調べた。また、変異がEPO自身の立体構造に影響を及ぼさないかを確認した。 2-2. Preparation and evaluation of a three-dimensional structural model of mutant EPO and selection of mutation candidates Amino acid residues for each residue of site2-A (Arg103) and site2-B (Leu5, Val11, Tyr15, Leu108) A mutant model was prepared in which the above was replaced, and the effect of the mutation was investigated by comparing it with the wild-type EPO. We also confirmed that the mutation does not affect the three-dimensional structure of the EPO itself.
site2-A(Arg103)およびsite2-B(Leu5, Val11, Tyr15, Leu108)の各残基に対し、アミノ酸残基を置換した変異体モデルを作製し、野生型EPOと比較することにより変異の効果を調べた。また、変異がEPO自身の立体構造に影響を及ぼさないかを確認した。 2-2. Preparation and evaluation of a three-dimensional structural model of mutant EPO and selection of mutation candidates Amino acid residues for each residue of site2-A (Arg103) and site2-B (Leu5, Val11, Tyr15, Leu108) A mutant model was prepared in which the above was replaced, and the effect of the mutation was investigated by comparing it with the wild-type EPO. We also confirmed that the mutation does not affect the three-dimensional structure of the EPO itself.
2-2-1. site2-Aへの変異導入
site2-Aでは、EPOのR103に変異を導入した変異体モデルを検討した。EPOのArg103は、EPORのGlu62, Ala88, Asp89, Ser91と水素結合を形成していた。さらに、Argの正電荷を持つ側鎖は、EPO表面の静電ポテンシャルをpositiveにする要因となり、その結果、negativeなEPOR 表面との結合に寄与していると考えられた。 2-2-1. Mutation introduction into site2-A In site2-A, we examined a mutant model in which a mutation was introduced into R103 of EPO. Arg103 of EPO formed a hydrogen bond with Glu62, Ala88, Asp89, Ser91 of EPOR. Furthermore, the side chain with a positive charge of Arg is considered to be a factor that makes the electrostatic potential of the EPO surface positive, and as a result, contributes to the binding to the negative EPOR surface.
site2-Aでは、EPOのR103に変異を導入した変異体モデルを検討した。EPOのArg103は、EPORのGlu62, Ala88, Asp89, Ser91と水素結合を形成していた。さらに、Argの正電荷を持つ側鎖は、EPO表面の静電ポテンシャルをpositiveにする要因となり、その結果、negativeなEPOR 表面との結合に寄与していると考えられた。 2-2-1. Mutation introduction into site2-A In site2-A, we examined a mutant model in which a mutation was introduced into R103 of EPO. Arg103 of EPO formed a hydrogen bond with Glu62, Ala88, Asp89, Ser91 of EPOR. Furthermore, the side chain with a positive charge of Arg is considered to be a factor that makes the electrostatic potential of the EPO surface positive, and as a result, contributes to the binding to the negative EPOR surface.
これらの相互作用をなくすため、Arg103に対して以下の3つの方針で変異を検討した(図8左)。
(1) EPORとの水素結合を消失させる。
(2) EPORとの立体障害を引き起こす。
(3) EPOのpositiveな静電ポテンシャルを減少、反転させる。 In order to eliminate these interactions, mutations were examined for Arg103 according to the following three policies (Fig. 8, left).
(1) Eliminate the hydrogen bond with EPOR.
(2) Causes steric hindrance with EPOR.
(3) Decrease and invert the positive electrostatic potential of the EPO.
(1) EPORとの水素結合を消失させる。
(2) EPORとの立体障害を引き起こす。
(3) EPOのpositiveな静電ポテンシャルを減少、反転させる。 In order to eliminate these interactions, mutations were examined for Arg103 according to the following three policies (Fig. 8, left).
(1) Eliminate the hydrogen bond with EPOR.
(2) Causes steric hindrance with EPOR.
(3) Decrease and invert the positive electrostatic potential of the EPO.
これらの方針に基づきArg103を置換した変異体モデルを作製した。
(1) EPORとの水素結合を消失させる
Argから疎水性の残基Ala, Val, Ile, Leuへの置換および側鎖が小さいSer, Thr, Asnへの置換では、いずれもArgの側鎖によるEPORとの水素結合が消失すると推察された。ただし、極性残基(Ser, Thr, Asn)へ置換した複合体モデルでは、EPORとの間に水分子が水和できる空間が確認され、水分子を介した水素結合を形成する恐れが考えられた。EPORとの水素結合をなくすという方向においては、側鎖がメチル基であるAlaへの置換が最も直接的で、効果的と考えられた。ArgからAlaへの置換では、正電荷を持つArg側鎖のグアニジル基がなくなるため、EPO表面のpositiveな静電ポテンシャルを減少させる効果もある。また、Arg103とEPOR間でみられたLeu59, Ser91, Val94との疎水性相互作用(図5右)も消失すると考えられた。 Based on these policies, a mutant model in which Arg103 was replaced was prepared.
(1) Eliminate hydrogen bonds with EPOR
It was speculated that the substitution of Arg with hydrophobic residues Ala, Val, Ile, Leu and the substitution with Ser, Thr, Asn with small side chains all eliminated the hydrogen bond with EPOR by the side chain of Arg. .. However, in the complex model substituted with polar residues (Ser, Thr, Asn), a space where water molecules can hydrate was confirmed with EPOR, and it is possible that hydrogen bonds may be formed via water molecules. rice field. Substitution with Ala, whose side chain is a methyl group, was considered to be the most direct and effective in the direction of eliminating hydrogen bonds with EPOR. Substitution from Arg to Ala also has the effect of reducing the positive electrostatic potential of the EPO surface because it eliminates the guanidyl group in the positively charged Arg side chain. In addition, the hydrophobic interaction between Arg103 and EPOR with Leu59, Ser91, and Val94 (Fig. 5, right) was also considered to disappear.
(1) EPORとの水素結合を消失させる
Argから疎水性の残基Ala, Val, Ile, Leuへの置換および側鎖が小さいSer, Thr, Asnへの置換では、いずれもArgの側鎖によるEPORとの水素結合が消失すると推察された。ただし、極性残基(Ser, Thr, Asn)へ置換した複合体モデルでは、EPORとの間に水分子が水和できる空間が確認され、水分子を介した水素結合を形成する恐れが考えられた。EPORとの水素結合をなくすという方向においては、側鎖がメチル基であるAlaへの置換が最も直接的で、効果的と考えられた。ArgからAlaへの置換では、正電荷を持つArg側鎖のグアニジル基がなくなるため、EPO表面のpositiveな静電ポテンシャルを減少させる効果もある。また、Arg103とEPOR間でみられたLeu59, Ser91, Val94との疎水性相互作用(図5右)も消失すると考えられた。 Based on these policies, a mutant model in which Arg103 was replaced was prepared.
(1) Eliminate hydrogen bonds with EPOR
It was speculated that the substitution of Arg with hydrophobic residues Ala, Val, Ile, Leu and the substitution with Ser, Thr, Asn with small side chains all eliminated the hydrogen bond with EPOR by the side chain of Arg. .. However, in the complex model substituted with polar residues (Ser, Thr, Asn), a space where water molecules can hydrate was confirmed with EPOR, and it is possible that hydrogen bonds may be formed via water molecules. rice field. Substitution with Ala, whose side chain is a methyl group, was considered to be the most direct and effective in the direction of eliminating hydrogen bonds with EPOR. Substitution from Arg to Ala also has the effect of reducing the positive electrostatic potential of the EPO surface because it eliminates the guanidyl group in the positively charged Arg side chain. In addition, the hydrophobic interaction between Arg103 and EPOR with Leu59, Ser91, and Val94 (Fig. 5, right) was also considered to disappear.
(2) EPORとの立体障害を引き起こす
立体障害を引き起こす方向としては、Arg残基よりもかさ高い側鎖をもつ、Phe, Tyr, Trpへした変異体モデルを作製した。Phe, Tyr, Trpでは、EPORのVal94の側鎖とsteric clashを引き起こす可能性が推察された。ただし、EPORのこの領域がループ構造であること、steric clash が側鎖の原子同士であることを考慮すると、Phe, Tyr, Trpの側鎖の向き(ロータマー)によっては、EPORとの立体障害を回避できる可能性も考えられ、実際にEPORとの結合を阻害するのに十分な効果が得られない可能性がある。また、TyrおよびTrpへの変異では、側鎖がEPORの側鎖と水素結合を形成し、本来とは別のコンフォメーションで結合する恐れも考えられる。 (2) Causes steric hindrance with EPOR As the direction of causing steric hindrance, we created a mutant model for Phe, Tyr, and Trp, which has a side chain that is bulkier than the Arg residue. It was speculated that Phe, Tyr, and Trp may cause the side chain of Val94 of EPOR and steric clash. However, considering that this region of EPOR has a loop structure and that tyrosine clashes are side chain atoms, steric hindrance with EPOR may occur depending on the side chain orientation (rotorer) of Phe, Tyr, and Trp. It may be possible to avoid it, and it may not be effective enough to actually inhibit the binding with EPOR. In addition, in the mutation to Tyr and Trp, it is possible that the side chain forms a hydrogen bond with the side chain of EPOR and binds in a different conformation from the original.
立体障害を引き起こす方向としては、Arg残基よりもかさ高い側鎖をもつ、Phe, Tyr, Trpへした変異体モデルを作製した。Phe, Tyr, Trpでは、EPORのVal94の側鎖とsteric clashを引き起こす可能性が推察された。ただし、EPORのこの領域がループ構造であること、steric clash が側鎖の原子同士であることを考慮すると、Phe, Tyr, Trpの側鎖の向き(ロータマー)によっては、EPORとの立体障害を回避できる可能性も考えられ、実際にEPORとの結合を阻害するのに十分な効果が得られない可能性がある。また、TyrおよびTrpへの変異では、側鎖がEPORの側鎖と水素結合を形成し、本来とは別のコンフォメーションで結合する恐れも考えられる。 (2) Causes steric hindrance with EPOR As the direction of causing steric hindrance, we created a mutant model for Phe, Tyr, and Trp, which has a side chain that is bulkier than the Arg residue. It was speculated that Phe, Tyr, and Trp may cause the side chain of Val94 of EPOR and steric clash. However, considering that this region of EPOR has a loop structure and that tyrosine clashes are side chain atoms, steric hindrance with EPOR may occur depending on the side chain orientation (rotorer) of Phe, Tyr, and Trp. It may be possible to avoid it, and it may not be effective enough to actually inhibit the binding with EPOR. In addition, in the mutation to Tyr and Trp, it is possible that the side chain forms a hydrogen bond with the side chain of EPOR and binds in a different conformation from the original.
EPORとの立体障害の影響を直接確認するという点では、これら3つの中ではPheへの変異が好ましいと考えられた。
Of these three, mutation to Phe was considered preferable in terms of directly confirming the effect of steric hindrance with EPOR. The
(3) EPOのpositiveな静電ポテンシャルを減少、反転させる
EPOのpositiveな静電ポテンシャルを減少、反転させるため、正電荷を持つArg残基の側鎖を、負電荷のチャージを持つアミノ酸残基Gluへの置換を行った。EPOの表面の静電ポテンシャルをnegativeにする効果を持つことが確認された(図9右)。これは同じく負電荷のAspに置換した場合も同様であった。側鎖がAspよりも長いGluの方が負電荷を持つカルボニル基が、より表面に突出するため、EPOR との反発を招くためにはより効果的であると考えられた。ArgからAlaへの置換によっても、正電荷を持つArg側鎖のグアニジル基がなくなるため、EPO表面のpositiveな静電ポテンシャルを減少させることができる(図9中央)が、ArgからAsp, Gluへの置換では、EPOの表面の静電ポテンシャルをnegativeに反転させることができるため、EPORとの反発を招き、EPORを引き離す効果が期待できた。 (3) Decrease and invert the positive electrostatic potential of EPO In order to reduce and invert the positive electrostatic potential of EPO, the side chain of Arg residues with positive charge is replaced with amino acid residues with negative charge. Substitution with Glu was performed. It was confirmed that it has the effect of making the electrostatic potential on the surface of the EPO negative (Fig. 9, right). This was also the case when replaced with Asp, which is also negatively charged. Glu, which has a longer side chain than Asp, is considered to be more effective in inducing repulsion with EPOR because the negatively charged carbonyl group protrudes more to the surface. Substitution from Arg to Ala also eliminates the guanidyl group in the positively charged Arg side chain, thus reducing the positive electrostatic potential on the EPO surface (center of Figure 9), but from Arg to Asp, Glu. Since the electrostatic potential on the surface of EPO can be reversed to negative by the substitution of, the effect of causing repulsion with EPOR and separating EPOR can be expected.
EPOのpositiveな静電ポテンシャルを減少、反転させるため、正電荷を持つArg残基の側鎖を、負電荷のチャージを持つアミノ酸残基Gluへの置換を行った。EPOの表面の静電ポテンシャルをnegativeにする効果を持つことが確認された(図9右)。これは同じく負電荷のAspに置換した場合も同様であった。側鎖がAspよりも長いGluの方が負電荷を持つカルボニル基が、より表面に突出するため、EPOR との反発を招くためにはより効果的であると考えられた。ArgからAlaへの置換によっても、正電荷を持つArg側鎖のグアニジル基がなくなるため、EPO表面のpositiveな静電ポテンシャルを減少させることができる(図9中央)が、ArgからAsp, Gluへの置換では、EPOの表面の静電ポテンシャルをnegativeに反転させることができるため、EPORとの反発を招き、EPORを引き離す効果が期待できた。 (3) Decrease and invert the positive electrostatic potential of EPO In order to reduce and invert the positive electrostatic potential of EPO, the side chain of Arg residues with positive charge is replaced with amino acid residues with negative charge. Substitution with Glu was performed. It was confirmed that it has the effect of making the electrostatic potential on the surface of the EPO negative (Fig. 9, right). This was also the case when replaced with Asp, which is also negatively charged. Glu, which has a longer side chain than Asp, is considered to be more effective in inducing repulsion with EPOR because the negatively charged carbonyl group protrudes more to the surface. Substitution from Arg to Ala also eliminates the guanidyl group in the positively charged Arg side chain, thus reducing the positive electrostatic potential on the EPO surface (center of Figure 9), but from Arg to Asp, Glu. Since the electrostatic potential on the surface of EPO can be reversed to negative by the substitution of, the effect of causing repulsion with EPOR and separating EPOR can be expected.
以上より、site2-Aへの変異導入については、EPORとの水素結合を消失する変異としてArg からAlaへの変異(R103A)、EPOのpositiveな静電ポテンシャルを反転させる変異としてArg からAsp, Gluの変異(R103D, R103E)が候補として考えられた(図10)。R103D及びR103Eは、EPOのsite2からEPORの結合能をなくすだけでなく、EPOとEPORの間に電荷の反発を招くため、EPORの結合面を引き離す上で、効果的な変異と思われた。立体障害を引き起こす変異としてはArgからPheへの変異(R103F)があげられるが、変異体モデルからはその効果は限定的と思われた。いずれの変異もEPOの立体構造には影響を及ぼさないことが推察された。
Based on the above, regarding the introduction of the mutation into site2-A, the mutation from Arg to Ala (R103A) as a mutation that eliminates the hydrogen bond with EPOR, and the mutation from Arg to Asp, Glu as a mutation that reverses the positive electrostatic potential of EPO. Mutations (R103D, R103E) were considered as candidates (Fig. 10). R103D and R103E not only eliminate the binding ability of EPOR from site 2 of EPO, but also cause charge repulsion between EPO and EPOR, so they seemed to be effective mutations in separating the binding surface of EPOR. The mutation that causes steric hindrance includes the mutation from Arg to Phe (R103F), but the effect seems to be limited from the mutant model. It was speculated that neither mutation affected the three-dimensional structure of EPO.
2-2-2. site2-Bへの変異導入
site2-Bへの変異導入として、EPOのLeu5, Val11, Tyr15, Leu108に関して、アミノ酸残基を置換した変異体モデルを作製した。EPOのsite2-Bのアミノ酸残基は、site2の表面に疎水性のくぼみである疎水性ポケットを形成している。EPORのPhe93は、この疎水性ポケットに収まるように結合し、疎水性相互作用を形成している。 2-2-2. Introduction of mutation to site2-B
As a mutation introduction to site2-B, a mutant model in which amino acid residues were substituted was prepared for Leu5, Val11, Tyr15, and Leu108 of EPO. The amino acid residues of site2-B of EPO form a hydrophobic pocket, which is a hydrophobic depression, on the surface of site2. EPOR's Phe93 binds to fit in this hydrophobic pocket, forming a hydrophobic interaction.
site2-Bへの変異導入として、EPOのLeu5, Val11, Tyr15, Leu108に関して、アミノ酸残基を置換した変異体モデルを作製した。EPOのsite2-Bのアミノ酸残基は、site2の表面に疎水性のくぼみである疎水性ポケットを形成している。EPORのPhe93は、この疎水性ポケットに収まるように結合し、疎水性相互作用を形成している。 2-2-2. Introduction of mutation to site2-B
As a mutation introduction to site2-B, a mutant model in which amino acid residues were substituted was prepared for Leu5, Val11, Tyr15, and Leu108 of EPO. The amino acid residues of site2-B of EPO form a hydrophobic pocket, which is a hydrophobic depression, on the surface of site2. EPOR's Phe93 binds to fit in this hydrophobic pocket, forming a hydrophobic interaction.
これらの疎水性相互作用をなくすため、site2-Bに対して以下の3つの方針で変異を検討した(図8右)。
(1) EPOの疎水性ポケットを広げてすき間を作る。
(2) EPORとの立体障害を引き起こし、Phe93の結合を阻害する。
(3) EPOのPhe93が結合するポケットの疎水性環境を壊す。 In order to eliminate these hydrophobic interactions, we investigated mutations in site2-B using the following three policies (Fig. 8, right).
(1) Expand the hydrophobic pocket of the EPO to create a gap.
(2) Causes steric hindrance with EPOR and inhibits Phe93 binding.
(3) Break the hydrophobic environment of the pocket to which the EPO Phe93 binds.
(1) EPOの疎水性ポケットを広げてすき間を作る。
(2) EPORとの立体障害を引き起こし、Phe93の結合を阻害する。
(3) EPOのPhe93が結合するポケットの疎水性環境を壊す。 In order to eliminate these hydrophobic interactions, we investigated mutations in site2-B using the following three policies (Fig. 8, right).
(1) Expand the hydrophobic pocket of the EPO to create a gap.
(2) Causes steric hindrance with EPOR and inhibits Phe93 binding.
(3) Break the hydrophobic environment of the pocket to which the EPO Phe93 binds.
これらの方針に基づきsite2-Bの各アミノ酸残基を置換した変異体モデルを作製した。
Based on these policies, we created a mutant model in which each amino acid residue of site2-B was replaced. The
(1) EPOの疎水性ポケットを広げてすき間を作る
EPORのPhe93が結合するEPOの疎水性ポケットを広げ、Phe93との間に余分なすき間を生じさせることにより、Phe93との直接の疎水性相互作用を消失させる。この変異の方向としては、より小さいアミノ酸残基への変異が考えられた。 (1) Expand the hydrophobic pocket of EPO to create a gap
It eliminates the direct hydrophobic interaction with Phe93 by widening the hydrophobic pocket of the EPO to which Phe93 of EPOR binds and creating an extra gap with Phe93. As the direction of this mutation, it was considered that the mutation was made to a smaller amino acid residue.
EPORのPhe93が結合するEPOの疎水性ポケットを広げ、Phe93との間に余分なすき間を生じさせることにより、Phe93との直接の疎水性相互作用を消失させる。この変異の方向としては、より小さいアミノ酸残基への変異が考えられた。 (1) Expand the hydrophobic pocket of EPO to create a gap
It eliminates the direct hydrophobic interaction with Phe93 by widening the hydrophobic pocket of the EPO to which Phe93 of EPOR binds and creating an extra gap with Phe93. As the direction of this mutation, it was considered that the mutation was made to a smaller amino acid residue.
作製した変異体モデルにおいて、Leu5からAla, Valへの置換、Val11からAlaへの置換、Tyr15からAla, Val, Ile, Leuへの置換、Leu108からAla, Valへの置換では、いずれもEPOR Phe93との疎水性相互作用の消失が推察された。これらの変異はPhe93との直接の疎水性相互作用を消失させるだけなく、疎水性ポケットとPhe93の間のぴったりとした結合にすき間をあけることにより、Phe93の結合を不安定化する効果もあると考えた。Phe93との間にできるだけすき間を空けるには、置換するアミノ酸残基は小さい方が好ましく、アミノ酸残基の種類としては、Alaが最も適していると考えられた。
In the prepared mutant model, EPOR Phe93 was used for the substitution of Leu5 to Ala, Val, the substitution of Val11 to Ala, the substitution of Tyr15 to Ala, Val, Ile, Leu, and the substitution of Leu108 to Ala, Val. The disappearance of the hydrophobic interaction with was inferred. These mutations not only eliminate the direct hydrophobic interaction with Phe93, but also have the effect of destabilizing the binding of Phe93 by opening a gap in the tight binding between the hydrophobic pocket and Phe93. Thought. In order to leave as much space as possible between Phe93 and Phe93, it is preferable that the amino acid residue to be substituted is small, and Ala is considered to be the most suitable type of amino acid residue. The
以上より、疎水性ポケットを広げてすき間を作る方針としては、Leu5をAlaへの変異(L5A)、Val11からAlaへの変異(V11A)、TyrからAlaへの変異(Y15A)、Leu108からAlaへの変異(L108A)が候補として考えられた(図11)。一残基置換では、各アミノ酸残基とPhe93との疎水性相互作用の数が多いほど効果が大きくなる。各残基による疎水性相互作用の数を考慮すると、一残基で効果的に疎水性相互作用をなくすという点では、L108A(疎水性相互作用の数5箇所), L5A(4箇所), V11A(2箇所), Y15A(1箇所)の順が考えられる。また、Phe93は4つのアミノ酸残基と相互作用しているため、一残基置換による効果が見られる場合は、複数の変異を導入することも効果的と考えられる。いずれの変異もEPOの立体構造には影響を及ぼさないことが推察された。
Based on the above, the policy of widening the hydrophobic pocket to create a gap is to mutate Leu5 to Ala (L5A), mutation from Val11 to Ala (V11A), mutation from Tyr to Ala (Y15A), and mutation from Leu108 to Ala. Mutation (L108A) was considered as a candidate (Fig. 11). In single-residue substitution, the greater the number of hydrophobic interactions between each amino acid residue and Phe93, the greater the effect. Considering the number of hydrophobic interactions by each residue, L108A (5 hydrophobic interactions), L5A (4), V11A in terms of effectively eliminating hydrophobic interactions with one residue. (2 locations), Y15A (1 location) can be considered in that order. In addition, since Phe93 interacts with four amino acid residues, it is considered effective to introduce multiple mutations when the effect of one-residue substitution is observed. It was speculated that neither mutation affected the three-dimensional structure of EPO.
(2) EPORとの立体障害を引き起こす
EPOの疎水性ポケットに立体障害を引き起こし、EPORのPhe93の結合を阻害する方向としては、よりかさ高い側鎖を持つアミノ酸残基Phe, Tyr, Trp等への変異が考えられた。かさ高い側鎖により、疎水性ポケットの空間を埋め、Phe93との立体障害を引き起こすことにより、EPORのPhe93が結合できなくなることが期待される。 (2) Causes steric hindrance with EPOR
As a direction that causes steric hindrance to the hydrophobic pocket of EPO and inhibits the binding of Phe93 of EPOR, it is considered that the amino acid residues Phe, Tyr, Trp, etc., which have a bulkier side chain, are mutated. It is expected that EPOR's Phe93 will not be able to bind by filling the space of the hydrophobic pocket with the bulky side chain and causing steric hindrance with Phe93.
EPOの疎水性ポケットに立体障害を引き起こし、EPORのPhe93の結合を阻害する方向としては、よりかさ高い側鎖を持つアミノ酸残基Phe, Tyr, Trp等への変異が考えられた。かさ高い側鎖により、疎水性ポケットの空間を埋め、Phe93との立体障害を引き起こすことにより、EPORのPhe93が結合できなくなることが期待される。 (2) Causes steric hindrance with EPOR
As a direction that causes steric hindrance to the hydrophobic pocket of EPO and inhibits the binding of Phe93 of EPOR, it is considered that the amino acid residues Phe, Tyr, Trp, etc., which have a bulkier side chain, are mutated. It is expected that EPOR's Phe93 will not be able to bind by filling the space of the hydrophobic pocket with the bulky side chain and causing steric hindrance with Phe93.
Leu5ではMet, Trpへの置換、Val11ではPhe, Tyr, Trpへの置換、Leu108ではPhe, Tyr, Lys, Trpへの置換で、EPORのPhe93とのsteric clashが生じ、EPORとの立体障害を引き起こす可能性が推察された。一方、Leu5からIle, Phe, Lysへの置換、Val11からIle, Leu, Metへの置換、Leu108からIle, Metへの置換では、Phe93と本来とは異なる形での疎水性相互作用が見られたため、適切ではないと考えられた。Tyr15は側鎖がかさ高いTrpへの置換のみsteric clashを生じたが、Trpへの置換はEPO自身の構造内での立体障害が見られるため、候補から除いた。これらの変異体モデルのうち、特にVal11からPhe, Tyrへの変異(V11F, V11Y)、Leu108からPhe, Tyrへの変異(L108F, L108Y)は、導入されたEPOのPhe残基が疎水性ポケットを塞ぎ、かつ、EPORのPhe93の側鎖の複数の炭素原子とのsteric clashが推察されたため、Phe93 がポケットに結合するのを阻害する効果があると推測された。
Replacement with Met, Trp in Leu5, replacement with Phe, Tyr, Trp in Val11, replacement with Phe, Tyr, Lys, Trp in Leu108 causes steric hlash with Phe93 of EPOR, causing steric hindrance with EPOR. It was speculated that it could cause it. On the other hand, in the substitution from Leu5 to Ile, Phe, Lys, the substitution from Val11 to Ile, Leu, Met, and the substitution from Leu108 to Ile, Met, a hydrophobic interaction with Phe93 in a different form was observed. Therefore, it was considered inappropriate. Tyr15 produced steric clash only by substitution with Trp, which has a bulky side chain, but substitution with Trp was excluded from the candidates because of steric hindrance within the structure of EPO itself. Among these mutant models, the Phe residue of the introduced EPO is a hydrophobic pocket, especially in the Val11 to Phe, Tyr mutation (V11F, V11Y) and the Leu108 to Phe, Tyr mutation (L108F, L108Y). And because tyrosine clash with multiple carbon atoms in the side chain of Phe93 of EPOR was inferred, it was speculated that it has the effect of inhibiting the binding of Phe93 to the pocket. The
以上より、Val11からPhe, Tyrへの変異(V11F, V11Y)、Leu108からPhe, Tyrへの変異(L108F, L108Y)がEPORとの立体障害を引き起こす変異の候補と考えられた(図12)。Tyrへの変異は、立体障害を引き起こすだけなく、EPORのPhe93との接触面に親水性のOH基をもたらすため、疎水性環境を壊す効果も期待できる。いずれの変異もEPO の立体構造には影響を及ぼさないことが推察された。
From the above, the mutation from Val11 to Phe, Tyr (V11F, V11Y) and the mutation from Leu108 to Phe, Tyr (L108F, L108Y) were considered to be candidates for mutations that cause steric hindrance with EPOR (Fig. 12). Mutation to Tyr not only causes steric hindrance, but also brings hydrophilic OH groups to the contact surface of EPOR with Phe93, so it can be expected to have the effect of destroying the hydrophobic environment. It was speculated that none of the mutations affected the three-dimensional structure of EPO.
(3) EPOの疎水性ポケットの疎水性環境を壊す
EPOの疎水性ポケットは、疎水性のアミノ酸残基がクラスターを形成する事で大きな結合力を発揮している。そのため、疎水性ポケット内に親水性のアミノ酸残基を導入することにより、 Phe93との疎水性相互作用をなくす効果、また、ポケット内に水分子を呼び込む効果が期待された。 (3) Break the hydrophobic environment of the hydrophobic pocket of the EPO
The hydrophobic pocket of EPO exerts a great binding force by forming clusters of hydrophobic amino acid residues. Therefore, by introducing a hydrophilic amino acid residue into the hydrophobic pocket, the effect of eliminating the hydrophobic interaction with Phe93 and the effect of attracting water molecules into the pocket were expected.
EPOの疎水性ポケットは、疎水性のアミノ酸残基がクラスターを形成する事で大きな結合力を発揮している。そのため、疎水性ポケット内に親水性のアミノ酸残基を導入することにより、 Phe93との疎水性相互作用をなくす効果、また、ポケット内に水分子を呼び込む効果が期待された。 (3) Break the hydrophobic environment of the hydrophobic pocket of the EPO
The hydrophobic pocket of EPO exerts a great binding force by forming clusters of hydrophobic amino acid residues. Therefore, by introducing a hydrophilic amino acid residue into the hydrophobic pocket, the effect of eliminating the hydrophobic interaction with Phe93 and the effect of attracting water molecules into the pocket were expected.
Leu5からSer, Thrへ置換した変異体モデルでは、親水性のOH基が配置されるものの、側鎖のOH基が疎水性ポケットからずれているため、疎水性環境を壊す効果は限定的であると思われた。Asnへの置換では、親水性の側鎖が疎水性ポケットに入り込み、疎水性環境を壊す可能性が推察された。Val11からSer, Thrへ置換した変異体モデルでは、側鎖のOH基はEPO自身のLeu5, Asp8の主鎖と水素結合を形成し、疎水性ポケットの表面に露出していない。そのため、疎水性環境を壊す効果は低いと考えられた。また、Asn, Lysへの置換ではEPORと水素結合を形成するため、好ましくないと思われる。Tyr15から親水性残基への置換では、いずれのアミノ酸残基も側鎖が疎水性クラスターに届かず、疎水性環境を壊すほどの効果を得るのは難しいと思われた。Leu108からSer, Thrへ置換では、疎水性ポケットの内側にSer, Thrの側鎖のOH基が導入され、疎水性環境を壊すのに効果的であると推測された。また、Leu108からAsnへの置換では、 Asnの親水性の側鎖が疎水性ポケットを埋めるように配置されるため、効果があると考えられる。
In the mutant model in which Leu5 is replaced with Ser, Thr, hydrophilic OH groups are arranged, but the effect of disrupting the hydrophobic environment is limited because the OH groups in the side chains are displaced from the hydrophobic pocket. So I thought. It was speculated that the substitution with Asn could cause hydrophilic side chains to enter the hydrophobic pocket and disrupt the hydrophobic environment. In the variant model in which Val11 was replaced with Ser and Thr, the OH group in the side chain formed a hydrogen bond with the main chain of Leu5 and Asp8 of EPO itself and was not exposed on the surface of the hydrophobic pocket. Therefore, it was considered that the effect of destroying the hydrophobic environment was low. In addition, substitution with Asn and Lys is not preferable because it forms a hydrogen bond with EPOR. Substitution of Tyr15 to hydrophilic residues did not reach the hydrophobic clusters of any of the amino acid residues, and it seemed difficult to obtain an effect enough to destroy the hydrophobic environment. In the substitution from Leu108 to Ser, Thr, the OH group of the side chain of Ser, Thr was introduced inside the hydrophobic pocket, and it was speculated that it was effective in destroying the hydrophobic environment. In addition, the replacement of Leu108 with Asn is considered to be effective because the hydrophilic side chains of Asn are arranged so as to fill the hydrophobic pocket.
以上より、疎水性ポケットの疎水性環境を壊す変異では、Leu5からSer, Asnへの変異(L5S, L5N)、Leu108からSer, Asnへの変異(L108S, L108N)が候補として考えられた(図13)。いずれの変異もEPOの立体構造には影響を及ぼさないことが推察された。一般に、タンパク質間の疎水性相互作用では、表面に露出している疎水性残基に変異が起こっても、変異した残基が疎水性残基ならば本来と別のコンフォメーションをとって疎水性相互作用を保持する場合が多い。親水性のアミノ酸残基の導入は、EPORのPhe93の疎水性相互作用をなくす上で有効と考えた。
Based on the above, mutations from Leu5 to Ser, Asn (L5S, L5N) and mutations from Leu108 to Ser, Asn (L108S, L108N) were considered as candidates for mutations that disrupt the hydrophobic environment of the hydrophobic pocket (Fig.). 13). It was speculated that neither mutation affected the three-dimensional structure of EPO. In general, in a hydrophobic interaction between proteins, even if a mutation occurs in a hydrophobic residue exposed on the surface, if the mutated residue is a hydrophobic residue, it takes a different conformation from the original and is hydrophobic. Often retains the interaction. The introduction of hydrophilic amino acid residues was considered to be effective in eliminating the hydrophobic interaction of Phe93 of EPOR. The
2-2-3. 変異候補の選定
変異体モデルを作成しin silicoでシミュレーションした結果、site2-A及びsite2-Bあわせて10個のEPOの変異導入箇所を選定した(表3)。 2-2-3. Selection of mutation candidates As a result of creating a mutant model and simulating in silico, a total of 10 EPO mutation introduction sites were selected for site2-A and site2-B (Table 3).
変異体モデルを作成しin silicoでシミュレーションした結果、site2-A及びsite2-Bあわせて10個のEPOの変異導入箇所を選定した(表3)。 2-2-3. Selection of mutation candidates As a result of creating a mutant model and simulating in silico, a total of 10 EPO mutation introduction sites were selected for site2-A and site2-B (Table 3).
これまでに、立体構造が決定する以前にEPOとEPORの相互作用を同定するために、EPOに変異を入れた報告が複数されている(Syed RS et al. (1998) Nature 395:511; Lorenzini T et al. (1997) Blood 89:473; Matthews DJ et al. (1996) Proc Natl Acad Sci 93:9471)。中でもR103Aは、野生型JAK2の活性を抑えることが明らかになっている。今回の解析により、Arg103がEPORとの結合に極めて重要であることが確認された。R103Aの変異は、Arg103が欠失することにより、site2の結合能がなくなり、EPORが本来の活性型二量体を形成するのを阻害していると推測された。変異型JAK2に対する EPO R103Aの効果は不明であるが、site2-AのArg103への変異導入は変異体モデルにおいても大きな効果が推察されるため、Arg103への変異導入は検討すべき候補と考えられた。
So far, there have been multiple reports of mutations in the EPO to identify the interaction between the EPO and EPOR before the conformation was determined (Syed RS et al. (1998) Nature 395: 511; Lorenzini. T et al. (1997) Blood 89: 473; Matthews DJ et al. (1996) Proc Natl Acad Sci 93: 9471). Among them, R103A has been shown to suppress the activity of wild-type JAK2. This analysis confirms that Arg103 is extremely important for binding to EPOR. It was speculated that the mutation in R103A caused the deletion of Arg103 to eliminate the binding ability of site2 and inhibit EPOR from forming the original active dimer. The effect of EPO R103A on mutant JAK2 is unknown, but the introduction of site2-A into Arg103 is presumed to have a large effect in the mutant model, so the introduction of mutation into Arg103 is considered to be a candidate for consideration. rice field.
Site2-Aでは、(1) EPORとの水素結合を消失させ、疎水性ポケットを拡大させる、R103A、(2) EPORとの立体障害を起こす、R103F、(3) EPOのpositiveな静電ポテンシャルを減少、反転させて反発を引き起こす、R103D、R103Eを候補に選定した。
At Site2-A, (1) the hydrogen bond with EPOR is eliminated and the hydrophobic pocket is expanded, R103A, (2) steric hindrance with EPOR is caused, and the positive electrostatic potential of R103F and (3) EPO is exhibited. R103D and R103E, which decrease and reverse and cause repulsion, were selected as candidates.
At Site2-A, (1) the hydrogen bond with EPOR is eliminated and the hydrophobic pocket is expanded, R103A, (2) steric hindrance with EPOR is caused, and the positive electrostatic potential of R103F and (3) EPO is exhibited. R103D and R103E, which decrease and reverse and cause repulsion, were selected as candidates.
また、site2-Bのアミノ酸残基の中では、特にLeu108がPhe93との疎水性相互作用も最も多く、3つの方向性の全てで効果が見られる変異が推察されたため、site2-Bの中での優先度は高いと考えた。
In addition, among the amino acid residues of site2-B, Leu108 has the largest hydrophobic interaction with Phe93, and it was inferred that mutations are effective in all three directions. I thought that the priority was high. The
細胞表面でEPORは、EPO非存在下でも二量体を形成していると考えられている。また、EPOがEPORに結合する際には、まずsite1で結合し、次にsite2で結合するという順次的な結合であることが報告されている(Matthews DJ et al. (1996) Proc Natl Acad Sci 93:9471)。EPOのsite1と結合したEPORの二量体構造を引き離し、それぞれのEPORに高親和性のsite1で結合させるには、site2の結合能をなくすだけでなく、EPORの結合面をより引き離す変異が必要であると考えた。
EPOR is thought to form a dimer on the cell surface even in the absence of EPO. It has also been reported that when EPO binds to EPOR, it first binds at site1 and then at site2 (Matthews DJ et al. (1996) Proc Natl Acad Sci. 93: 9471). In order to separate the EPOR dimer structure bound to site 1 of the EPO and bind to each EPOR at the site 1 with high affinity, it is necessary to have a mutation that not only eliminates the binding ability of site 2 but also further separates the binding surface of EPOR. I thought it was.
site2-Bでは、(1) 疎水性ポケットを拡大させる、L108A、(2) EPORとの立体障害を引き起こす、V11Y、L108Y、(3) EPOの疎水性環境を壊す、L5N、L108S、L108Nを候補に選定した。
At site2-B, candidates for (1) expand the hydrophobic pocket, (2) cause steric hindrance with EPOR, V11Y, L108Y, (3) destroy the hydrophobic environment of EPO, L5N, L108S, L108N. Was selected for.
図14にはsite2-A、site2-BにおけるEPOの変異導入の方向性、変異アミノ酸の候補を示した。表3には変異EPOの候補をまとめて示した。
Figure 14 shows the direction of EPO mutation introduction at site2-A and site2-B, and candidates for mutant amino acids. Table 3 summarizes the candidates for mutant EPO.
3.変異EPOの発現(mEPO1~mEPO10)
CHO細胞の培養上清をWestern blotを行った結果、mEPO1-10は27 kDaのタンパク質として発現した。このうちmEPO2と標準品EPO(Std)、野生型EPO(hEPO)を糖鎖切断酵素であるGlycosidase Fで処理すると20 kDaにバンドがシフトしたことから、mEPO2および同様の方法で発現させたmEPO1-10は全長発現していることがわかった。
3. 3. Expression of mutant EPO (mEPO1 ~ mEPO10)
As a result of Western blotting of the culture supernatant of CHO cells, mEPO1-10 was expressed as a 27 kDa protein. Of these, when mEPO2, standard EPO (Std), and wild-type EPO (hEPO) were treated with Glycosidase F, which is a sugar chain-cleaving enzyme, the band shifted to 20 kDa. It was found that 10 was expressed in full length.
CHO細胞の培養上清をWestern blotを行った結果、mEPO1-10は27 kDaのタンパク質として発現した。このうちmEPO2と標準品EPO(Std)、野生型EPO(hEPO)を糖鎖切断酵素であるGlycosidase Fで処理すると20 kDaにバンドがシフトしたことから、mEPO2および同様の方法で発現させたmEPO1-10は全長発現していることがわかった。
3. 3. Expression of mutant EPO (mEPO1 ~ mEPO10)
As a result of Western blotting of the culture supernatant of CHO cells, mEPO1-10 was expressed as a 27 kDa protein. Of these, when mEPO2, standard EPO (Std), and wild-type EPO (hEPO) were treated with Glycosidase F, which is a sugar chain-cleaving enzyme, the band shifted to 20 kDa. It was found that 10 was expressed in full length.
4.変異EPOの活性評価(mEPO1~mEPO10)
MTTアッセイで変異EPO(mEPO1-10)のEPO活性を測定した結果、mEPO1, 3, 4, 7添加群ではUT-7/EPO細胞は増殖できず、これら以外の変異EPOではEPOと同等の増殖能であった(図15a)。 4. Evaluation of mutant EPO activity (mEPO1 ~ mEPO10)
As a result of measuring the EPO activity of the mutant EPO (mEPO1-10) by the MTT assay, UT-7 / EPO cells could not proliferate in themEPO 1, 3, 4, 7 addition group, and the other mutant EPOs proliferated equivalent to EPO. It was possible (Fig. 15a).
MTTアッセイで変異EPO(mEPO1-10)のEPO活性を測定した結果、mEPO1, 3, 4, 7添加群ではUT-7/EPO細胞は増殖できず、これら以外の変異EPOではEPOと同等の増殖能であった(図15a)。 4. Evaluation of mutant EPO activity (mEPO1 ~ mEPO10)
As a result of measuring the EPO activity of the mutant EPO (mEPO1-10) by the MTT assay, UT-7 / EPO cells could not proliferate in the
EC50=0.03 U/mLのEPOを添加し、EPOと変異EPOの競合活性を測定した結果、mEPO1, 3, 4, 7添加群においてUT-7/EPO細胞の増殖は競合的に阻害された(図15b)。
As a result of adding EPO of EC50 = 0.03 U / mL and measuring the competitive activity of EPO and mutant EPO, the proliferation of UT-7 / EPO cells was competitively inhibited in the mEPO1, 3, 4, 7 added group ( Figure 15b).
UT-7/EPO/JAK2V617F細胞に対する変異EPOの増殖阻害活性を測定した結果、mEPO3, 4添加群でmedium添加群に比べ増殖が阻害された(図15c)。
As a result of measuring the growth inhibitory activity of mutant EPO on UT-7 / EPO / JAK2V617F cells, the growth was inhibited in the mEPO3,4 addition group compared to the medium addition group (Fig. 15c).
5.改良型変異EPO構造シミュレーション
UT-7/EPO/JAK2V617F細胞の細胞増殖阻害活性は、mEPO3(R103D)及びmEPO4(R103E)のみで見られた。阻害活性の要因は、site2への負電荷の導入であることが考えられる。野生型EPOとの競合活性評価から、mEPO1, 3, 4, 7(R103A, R103D, R103E, L108Y)は、EPOの2つの結合面(site1, site2) のうち、高親和性のsite1を保持したまま、低親和性のsite2の結合能を失わせる。これにより、野生型EPOと競合可能な高い親和性を持ち、かつEPORの活性型二量体の形成を阻害できることが確認できた。 5. Improved mutant EPO structure simulation The cell proliferation inhibitory activity of UT-7 / EPO / JAK2V617F cells was observed only in mEPO3 (R103D) and mEPO4 (R103E). The factor of the inhibitory activity is considered to be the introduction of a negative charge to site2. From the evaluation of competitive activity with wild-type EPO, mEPO1, 3, 4, 7 (R103A, R103D, R103E, L108Y) retained site1 with high affinity among the two binding surfaces (site1, site2) of EPO. As it is, it loses the binding ability of site2, which has a low affinity. From this, it was confirmed that it has a high affinity that can compete with wild-type EPO and can inhibit the formation of the active dimer of EPOR.
UT-7/EPO/JAK2V617F細胞の細胞増殖阻害活性は、mEPO3(R103D)及びmEPO4(R103E)のみで見られた。阻害活性の要因は、site2への負電荷の導入であることが考えられる。野生型EPOとの競合活性評価から、mEPO1, 3, 4, 7(R103A, R103D, R103E, L108Y)は、EPOの2つの結合面(site1, site2) のうち、高親和性のsite1を保持したまま、低親和性のsite2の結合能を失わせる。これにより、野生型EPOと競合可能な高い親和性を持ち、かつEPORの活性型二量体の形成を阻害できることが確認できた。 5. Improved mutant EPO structure simulation The cell proliferation inhibitory activity of UT-7 / EPO / JAK2V617F cells was observed only in mEPO3 (R103D) and mEPO4 (R103E). The factor of the inhibitory activity is considered to be the introduction of a negative charge to site2. From the evaluation of competitive activity with wild-type EPO, mEPO1, 3, 4, 7 (R103A, R103D, R103E, L108Y) retained site1 with high affinity among the two binding surfaces (site1, site2) of EPO. As it is, it loses the binding ability of site2, which has a low affinity. From this, it was confirmed that it has a high affinity that can compete with wild-type EPO and can inhibit the formation of the active dimer of EPOR.
また、mEPO1(R103A)の結果から、変異型JAK2の活性による細胞増殖を阻害するには、単にEPORが本来の活性型二量体を形成するのを阻害するだけでは十分でなく、さらなる要因が必要なことが推察された。site2の結合面において、野生型EPOの表面はpositiveな領域を示すが、mEPO3 (R103D)及びmEPO4(R103E)では負電荷を持つ側鎖の導入により、部分的にnegativeに変わっている(図16) 。R103D及びR103Eでは側鎖の負電荷がEPORのnegativeな領域と反発することにより、EPOのsite2からEPORの結合能をなくすだけでなく、EPOとEPORの間に電荷の反発を招くため、R103AよりもEPORの結合面を引き離す効果があると予測された。
In addition, from the results of mEPO1 (R103A), in order to inhibit cell proliferation due to the activity of mutant JAK2, it is not enough to simply inhibit EPOR from forming the original active dimer, and there are additional factors. It was inferred that it was necessary. On the bonding surface of site2, the surface of the wild-type EPO shows a positive region, but in mEPO3 (R103D) and mEPO4 (R103E), it is partially changed to negative due to the introduction of side chains with negative charges (Fig. 16). ). In R103D and R103E, the negative charge of the side chain repels the negative region of EPOR, which not only eliminates the binding ability of EPOR from site 2 of EPO, but also causes charge repulsion between EPO and EPOR. Was also predicted to have the effect of pulling away the bonding surface of the EPOR.
細胞増殖阻害効果の高い改良型EPOとして、電荷的反発に着目して新たな変異を導入することで、より効果的にEPORの二量体形成を阻害し、増殖阻害効果の高い改良型EPOの検討を行った。
As an improved EPO with a high cell proliferation inhibitory effect, by introducing a new mutation focusing on charge repulsion, the EPOR dimer formation is more effectively inhibited, and the improved EPO with a high proliferation inhibitory effect Study was carried out.
5-1. 改良型変異EPOの検討 -negativeな静電ポテンシャルを強化した変異EPOの設計-
細胞増殖阻害活性の要因は、site2-Aに導入された負電荷であることが推察された。EPOに対するEPORとの電荷の反発を高め、EPORの配置により大きな影響を与えるには、EPOのsite2の表面の電荷のnegativeな領域をより大きくすることが効果的と考えられる。そのため、細胞増殖阻害効果が認められたR103D及びR103Eに対し、site2-A近傍にさらにnegativeな静電ポテンシャルを導入する変異を検討した(図17)。 5-1. Examination of improved mutant EPO-Design of mutant EPO with enhanced negative electrostatic potential-
It was speculated that the factor of cell proliferation inhibitory activity was the negative charge introduced into site2-A. In order to increase the charge repulsion with the EPOR to the EPO and to have a greater effect on the arrangement of the EPOR, it is considered effective to make the negative region of the charge on the surface of thesite 2 of the EPO larger. Therefore, for R103D and R103E, which had the effect of inhibiting cell proliferation, we investigated mutations that introduce a more negative electrostatic potential near site2-A (Fig. 17).
細胞増殖阻害活性の要因は、site2-Aに導入された負電荷であることが推察された。EPOに対するEPORとの電荷の反発を高め、EPORの配置により大きな影響を与えるには、EPOのsite2の表面の電荷のnegativeな領域をより大きくすることが効果的と考えられる。そのため、細胞増殖阻害効果が認められたR103D及びR103Eに対し、site2-A近傍にさらにnegativeな静電ポテンシャルを導入する変異を検討した(図17)。 5-1. Examination of improved mutant EPO-Design of mutant EPO with enhanced negative electrostatic potential-
It was speculated that the factor of cell proliferation inhibitory activity was the negative charge introduced into site2-A. In order to increase the charge repulsion with the EPOR to the EPO and to have a greater effect on the arrangement of the EPOR, it is considered effective to make the negative region of the charge on the surface of the
変異を導入する領域は、(1) Arg103周辺をnegativeな静電ポテンシャルに増強させる変異導入、(2) site2 全体の静電ポテンシャルをpositiveからnegativeに変える変異導入を検討した。導入するアミノ酸残基の種類としてはAspとGluの両方が考えられた。
As for the region to introduce the mutation, (1) the introduction of the mutation that enhances the area around Arg103 to the negative electrostatic potential, and (2) the introduction of the mutation that changes the electrostatic potential of the entire site2 from positive to negative were examined. Both Asp and Glu were considered as the types of amino acid residues to be introduced. The
5-1-1. EPO Arg103周辺をnegativeな静電ポテンシャルに増強させる変異導入
EPORとの電荷の反発に有効と思われるEPOのArg103周辺をnegativeな静電ポテンシャルに強化する変異を検討した。候補として、Arg103と同じヘリックス上にあるSer100とThr107、Arg110が考えられた。R103Eに加え、これらのアミノ酸残基をGluに置換した二残基置換の変異EPO S100E/R103E 及びR103E/T107E、また、三残基置換のR103E/T107E/R110Eの表面形状の静電ポテンシャルマップを示す(図18)。変異EPO S100E/R103E, R103E/T107E, R103E/T107E/R110Eでは、R103Eと比較してR103近傍がより赤く示されており、変異によりArg103周辺をnegativeな静電ポテンシャルに強化できると推察される。 5-1-1. Mutation introduction that enhances the area around EPO Arg103 to a negative electrostatic potential We investigated a mutation that enhances the area around EPO Arg103 to a negative electrostatic potential, which seems to be effective for charge repulsion with EPOR. As candidates, Ser100, Thr107, and Arg110, which are on the same helix as Arg103, were considered. In addition to R103E, the electrostatic potential map of the surface shape of the two-residue substitution EPO S100E / R103E and R103E / T107E in which these amino acid residues are replaced with Glu, and the three-residue substitution R103E / T107E / R110E. Shown (Fig. 18). In the mutant EPO S100E / R103E, R103E / T107E, R103E / T107E / R110E, the vicinity of R103 is shown in red compared to R103E, and it is inferred that the mutation can enhance the area around Arg103 to a negative electrostatic potential.
EPORとの電荷の反発に有効と思われるEPOのArg103周辺をnegativeな静電ポテンシャルに強化する変異を検討した。候補として、Arg103と同じヘリックス上にあるSer100とThr107、Arg110が考えられた。R103Eに加え、これらのアミノ酸残基をGluに置換した二残基置換の変異EPO S100E/R103E 及びR103E/T107E、また、三残基置換のR103E/T107E/R110Eの表面形状の静電ポテンシャルマップを示す(図18)。変異EPO S100E/R103E, R103E/T107E, R103E/T107E/R110Eでは、R103Eと比較してR103近傍がより赤く示されており、変異によりArg103周辺をnegativeな静電ポテンシャルに強化できると推察される。 5-1-1. Mutation introduction that enhances the area around EPO Arg103 to a negative electrostatic potential We investigated a mutation that enhances the area around EPO Arg103 to a negative electrostatic potential, which seems to be effective for charge repulsion with EPOR. As candidates, Ser100, Thr107, and Arg110, which are on the same helix as Arg103, were considered. In addition to R103E, the electrostatic potential map of the surface shape of the two-residue substitution EPO S100E / R103E and R103E / T107E in which these amino acid residues are replaced with Glu, and the three-residue substitution R103E / T107E / R110E. Shown (Fig. 18). In the mutant EPO S100E / R103E, R103E / T107E, R103E / T107E / R110E, the vicinity of R103 is shown in red compared to R103E, and it is inferred that the mutation can enhance the area around Arg103 to a negative electrostatic potential.
図19に変異導入部位の周辺構造を示す。EPOとEPORの複合体では、Arg103の近傍にEPORの負電荷を持つアミノ酸残基Glu60-Asp61-Glu62で構成されるループが存在する。そのため、Arg103周辺への負電荷の導入は、EPORの本ループとの電荷の反発を招くことによって、EPORを遠ざける効果があると考えられる。特に、Thr107は本ループの近傍に位置するため、負電荷を持つアミノ酸残基の導入が効果的と考えられた。
Figure 19 shows the peripheral structure of the mutation introduction site. In the complex of EPO and EPOR, there is a loop consisting of amino acid residues Glu60-Asp61-Glu62 having a negative charge of EPOR in the vicinity of Arg103. Therefore, the introduction of a negative charge around Arg103 is considered to have the effect of keeping EPOR away by inducing charge repulsion with this loop of EPOR. In particular, since Thr107 is located near this loop, the introduction of negatively charged amino acid residues was considered to be effective.
また、EPO三残基置換のThr107、Arg110については、EPORとの結合面を広くnegativeな静電ポテンシャルへと反転させるため、効果的と考えられた。
In addition, Thr107 and Arg110 with EPO triad substitution were considered to be effective because they invert the binding surface with EPOR to a wide negative electrostatic potential.
5-1-2. EPO site2全体の静電ポテンシャルをpositiveからnegativeに変える変異導入
EPOのsite2には、Arg103の他にも正電荷をもつアミノ酸残基が複数あり、それらがsite2全体の表面の静電ポテンシャルをpositiveにしている。site2表面のEPORとの結合面の静電ポテンシャルをpositiveからnegativeに反転させるため、これらのアミノ酸残基を負電荷の側鎖を持つAsp, Gluに置換することを検討した。 5-1-2. Mutation introduction that changes the electrostatic potential of the entire EPO site2 from positive to negative There are multiple amino acid residues with positive charges in addition to Arg103 in site2 of the EPO, and these are the surface of the entire site2. The electrostatic potential is set to positive. In order to reverse the electrostatic potential of the bonding surface with EPOR on the site2 surface from positive to negative, it was examined to replace these amino acid residues with Asp and Glu having negatively charged side chains.
EPOのsite2には、Arg103の他にも正電荷をもつアミノ酸残基が複数あり、それらがsite2全体の表面の静電ポテンシャルをpositiveにしている。site2表面のEPORとの結合面の静電ポテンシャルをpositiveからnegativeに反転させるため、これらのアミノ酸残基を負電荷の側鎖を持つAsp, Gluに置換することを検討した。 5-1-2. Mutation introduction that changes the electrostatic potential of the entire EPO site2 from positive to negative There are multiple amino acid residues with positive charges in addition to Arg103 in site2 of the EPO, and these are the surface of the entire site2. The electrostatic potential is set to positive. In order to reverse the electrostatic potential of the bonding surface with EPOR on the site2 surface from positive to negative, it was examined to replace these amino acid residues with Asp and Glu having negatively charged side chains.
候補として、Arg4, Arg14, Lys97, Arg110が考えられた。図20にこれらのアミノ酸残基をGluに置換したR4E/R103E, R14E/R103E, K97E/R103E, R103E/R110Eの静電ポテンシャルマップを、図21にR14E/R103E, K97E/R103E, R103E/R110Eの周辺構造を示す。いずれもR103Eと比較して、表面の静電ポテンシャルをnegativeにしていることが確認された。
Arg4, Arg14, Lys97, Arg110 were considered as candidates. Fig. 20 shows the electrostatic potential map of R4E / R103E, R14E / R103E, K97E / R103E, R103E / R110E in which these amino acid residues are replaced with Glu, and Fig. 21 shows the electrostatic potential maps of R14E / R103E, K97E / R103E, R103E / R110E. The peripheral structure is shown. It was confirmed that the electrostatic potential on the surface was negative compared to R103E. The
Arg110の近傍には、上述のEPORの負電荷を持つGlu60-Asp61-Glu62のループが存在する(図21c)。野生型EPOとEPORとの複合体では、Glu62はArg103と水素結合を形成している。Arg110 自体は本ループと結合していないが、Arg110の正電荷がsite2表面のpositiveな静電ポテンシャルに寄与しており、EPORの負電荷の本ループの構造を引きつける役割を担っていると思われる。R103E/R110Eの変異により、本ループが接近するEPO側の表面の静電ポテンシャルをnegativeに反転させるため(図20b)、5-1-1. で述べたR103E/T107Eと同様に、電荷の反発によりEPORのループを遠ざけることが期待される。
In the vicinity of Arg110, there is a loop of Glu60-Asp61-Glu62 with the above-mentioned negative charge of EPOR (Fig. 21c). In the wild-type EPO-EPOR complex, Glu62 forms hydrogen bonds with Arg103. Although Arg110 itself is not coupled to this loop, the positive charge of Arg110 contributes to the positive electrostatic potential on the surface of site2, and it seems that it plays a role in attracting the structure of this loop with negative charge of EPOR. .. Due to the mutation of R103E / R110E, the electrostatic potential on the surface on the EPO side to which this loop approaches is reversed negatively (Fig. 20b), so charge repulsion is similar to R103E / T107E described in 5-1-1. Is expected to keep the EPOR loop away.
またR4は、R103の下のヘリックスに位置し、その側鎖はさほどEPORには近づいていない(図22a)。しかしこのアミノ酸をGluに置換することで側鎖がEPORに近くなり(図22b)、さらにEPO site2の負電荷も広く強化されることで電荷の反発が期待される。
R4 is located in the helix below R103, and its side chain is not very close to EPOR (Fig. 22a). However, by substituting this amino acid with Glu, the side chain becomes closer to EPOR (Fig. 22b), and the negative charge of EPO site2 is also widely strengthened, so charge repulsion is expected.
5-1-3. 二残基置換、三残基置換による改良型変異EPOの候補
EPOのsite2表面の静電ポテンシャルをnegativeにする変異として、(1) Arg103周辺をnegativeな静電ポテンシャルに強化する変異(S100E, T107E, R110E)、(2) site2表面の正電荷のアミノ酸を負電荷にする変異(R14E, K97E, R110E, R4E)を検討した。R4についてはGlu変異を検討した。R103Eに加え、(1)、(2)に示す位置にAspやGlu変異を導入した二残基置換変異、即ち、S100D/R104E、S100E/R104E、R103E/T107D、R103E/T107E、R103E/T107E/R110E 、R14D/R103E、R14E/R103E、K97D/R103E、K97E/R103E、R103E/R110D、R103E/R110E、R4E/R103Eの11種類が候補として考えられた。 5-1-3. Candidates for improved mutation EPO by two-residue substitution and three-residue substitution As mutations that make the electrostatic potential of the site2 surface of EPO negative, (1) Strengthen the periphery of Arg103 to negative electrostatic potential. Mutations (S100E, T107E, R110E) and (2) mutations (R14E, K97E, R110E, R4E) that make positively charged amino acids on the surface of site2 negatively charged were investigated. Glu mutations were investigated for R4. Two-residue substitution mutations in which Asp or Glu mutations are introduced at the positions shown in (1) and (2) in addition to R103E, that is, S100D / R104E, S100E / R104E, R103E / T107D, R103E / T107E, R103E / T107E / Eleven types of R110E, R14D / R103E, R14E / R103E, K97D / R103E, K97E / R103E, R103E / R110D, R103E / R110E, and R4E / R103E were considered as candidates.
EPOのsite2表面の静電ポテンシャルをnegativeにする変異として、(1) Arg103周辺をnegativeな静電ポテンシャルに強化する変異(S100E, T107E, R110E)、(2) site2表面の正電荷のアミノ酸を負電荷にする変異(R14E, K97E, R110E, R4E)を検討した。R4についてはGlu変異を検討した。R103Eに加え、(1)、(2)に示す位置にAspやGlu変異を導入した二残基置換変異、即ち、S100D/R104E、S100E/R104E、R103E/T107D、R103E/T107E、R103E/T107E/R110E 、R14D/R103E、R14E/R103E、K97D/R103E、K97E/R103E、R103E/R110D、R103E/R110E、R4E/R103Eの11種類が候補として考えられた。 5-1-3. Candidates for improved mutation EPO by two-residue substitution and three-residue substitution As mutations that make the electrostatic potential of the site2 surface of EPO negative, (1) Strengthen the periphery of Arg103 to negative electrostatic potential. Mutations (S100E, T107E, R110E) and (2) mutations (R14E, K97E, R110E, R4E) that make positively charged amino acids on the surface of site2 negatively charged were investigated. Glu mutations were investigated for R4. Two-residue substitution mutations in which Asp or Glu mutations are introduced at the positions shown in (1) and (2) in addition to R103E, that is, S100D / R104E, S100E / R104E, R103E / T107D, R103E / T107E, R103E / T107E / Eleven types of R110E, R14D / R103E, R14E / R103E, K97D / R103E, K97E / R103E, R103E / R110D, R103E / R110E, and R4E / R103E were considered as candidates.
図23にはEPOの立体構造上およびアミノ酸配列上における変異導入候補の位置を示す。
表4に改良型変異EPOの候補を示す。
FIG. 23 shows the positions of mutation introduction candidates on the three-dimensional structure of EPO and on the amino acid sequence.
Table 4 shows the candidates for the improved mutant EPO.
表4に改良型変異EPOの候補を示す。
Table 4 shows the candidates for the improved mutant EPO.
6.改良型変異EPOの発現(mEPO4.1~mEPO4.11、mEPO4.4.10)
CHO細胞の培養上清をWestern blotを行った結果、mEPO4.1-4.11、mEPO4.4.10は27 kDaのタンパク質として発現した。
6. Expression of improved mutant EPO (mEPO4.1 ~ mEPO4.11, mEPO4.4.10)
As a result of Western blotting of the culture supernatant of CHO cells, mEPO4.1-4.11 and mEPO4.4.10 were expressed as 27 kDa proteins.
CHO細胞の培養上清をWestern blotを行った結果、mEPO4.1-4.11、mEPO4.4.10は27 kDaのタンパク質として発現した。
6. Expression of improved mutant EPO (mEPO4.1 ~ mEPO4.11, mEPO4.4.10)
As a result of Western blotting of the culture supernatant of CHO cells, mEPO4.1-4.11 and mEPO4.4.10 were expressed as 27 kDa proteins.
7.改良型変異EPOの活性評価(mEPO4.1~mEPO4.11、mEPO4.4.10)
mEPO4をベースにさらに変異を導入した改良型変異EPO(mEPO4.1~4.11)の活性をMTTアッセイで評価した。全ての改良型変異EPO添加群でUT-7/EPO細胞は増殖できなかった(図24a)。 7. Evaluation of the activity of improved mutant EPO (mEPO4.1 ~ mEPO4.11, mEPO4.4.10)
The activity of the improved mutant EPO (mEPO4.1 ~ 4.11), which was further mutated based on mEPO4, was evaluated by the MTT assay. UT-7 / EPO cells were unable to proliferate in all improved mutant EPO-added groups (Fig. 24a).
mEPO4をベースにさらに変異を導入した改良型変異EPO(mEPO4.1~4.11)の活性をMTTアッセイで評価した。全ての改良型変異EPO添加群でUT-7/EPO細胞は増殖できなかった(図24a)。 7. Evaluation of the activity of improved mutant EPO (mEPO4.1 ~ mEPO4.11, mEPO4.4.10)
The activity of the improved mutant EPO (mEPO4.1 ~ 4.11), which was further mutated based on mEPO4, was evaluated by the MTT assay. UT-7 / EPO cells were unable to proliferate in all improved mutant EPO-added groups (Fig. 24a).
EC50=0.03 U/mLのEPOを添加し、EPOと改良型変異EPOの競合活性を測定した結果、mEPO4.1, 4.2, 4.3, 4.4, 4.9, 4.10添加群においてUT-7/EPO細胞の増殖は競合的に阻害された(図24b)。
As a result of adding EPO of EC50 = 0.03 U / mL and measuring the competitive activity of EPO and improved mutant EPO, proliferation of UT-7 / EPO cells in the group to which mEPO4.1, 4.2, 4.3, 4.4, 4.9, 4.10 was added. Was competitively inhibited (Fig. 24b).
UT-7/EPO/JAK2V617F細胞に対する改良型変異EPOの増殖阻害活性を測定した結果、mEPO4.3, 4.4, 4.9, 4.10添加群で増殖が阻害された。これらのうち、mEPO4.4, 4.10はベースとなったmEPO4よりも阻害活性が高かった(図24c)。
As a result of measuring the growth inhibitory activity of the improved mutant EPO on UT-7 / EPO / JAK2V617F cells, the growth was inhibited in the mEPO4.3, 4.4, 4.9, 4.10 addition group. Of these, mEPO 4.4 and 4.10 had higher inhibitory activity than the base mEPO 4 (Fig. 24c).
mEPO4.4, 4.10の変異箇所をすべて導入したmEPO4.4.10ではEPO活性の消失、EPO競合活性が見られ、増殖阻害活性はmEPO4、mEPO4.4、mEPO4.10よりも高かった(図25a-c)。
EPO activity disappeared and EPO competitive activity was observed in mEPO 4.4.10 into which all the mutation sites of mEPO 4.4, 4.10 were introduced, and the growth inhibitory activity was higher than that of mEPO4, mEPO4.4, and mEPO4.10 (Fig. 25a-c). ).
8.変異EPOおよび改良型変異EPOによるJAK2-STAT5シグナル伝達阻害
変異EPOおよび改良型変異EPOによるJAK2-STAT5シグナル伝達阻害を測定するために、pGL4.52[luc2P/STAT5 RE/Hygro]ベクターを安定発現したUT-7/EPO/JAK2V617F/pSTAT5-luc細胞を作製した。pGL4.52[luc2P/STAT5-RE/Hygro]ベクターは、プロモーター配列としてSTAT5応答配列(STAT5 RE)をルシフェラーゼ遺伝子(luc2P)に結合させたベクターで、JAK2によりリン酸化されたSTAT5が核に移行しSTAT5-REに結合することでluc2Pが発現するため、ルシフェラーゼ活性を測定することでSTAT5シグナル伝達を測定することが可能となる。STAT5はEPORの下流に位置し、EPOが2つのEPORと結合することによりEPORの細胞内ドメインと結合しているJAK2の2量体化とリン酸化が起こる。そして、リン酸化JAK2によりSTAT5がリン酸化され、核移行がおこりEPOに関連する遺伝子発現がおこる。一方、真性赤血球増加症の疾患モデル細胞から作製されたレポーター細胞株UT-7/EPO/JAK2V617F/pSTAT5-lucは、JAK2V617F変異によりEPO非依存的かつ恒常的にJAK2が2量体化しリン酸化している。このためSTAT5のリン酸化と核移行が起こり、STAT5応答配列をプロモーターに持つluc2Pが発現している。この細胞株に変異EPOおよび改良型変異EPOを加えることで2つのEPORの位置関係の変化によるJAK2の2量体化とリン酸化の阻害とそれに続くSTAT5のリン酸化と核移行の阻害をluc2Pのルシフェラーゼ活性の減少により測定することができる。 8. Stable expression of the pGL4.52 [luc2P / STAT5 RE / Hygro] vector to measure JAK2-STAT5 signaling inhibition by mutant EPOs and improved mutant EPOs. UT-7 / EPO / JAK2V617F / pSTAT5-luc cells were generated. The pGL4.52 [luc2P / STAT5-RE / Hygro] vector is a vector in which a STAT5 response sequence (STAT5 RE) is bound to a luciferase gene (luc2P) as a promoter sequence, and STAT5 phosphorylated by JAK2 translocates to the nucleus. Since luc2P is expressed by binding to STAT5-RE, it is possible to measure STAT5 signaling by measuring luciferase activity. STAT5 is located downstream of EPOR, where EPO binds to two EPORs, resulting in dimerization and phosphorylation of JAK2, which binds to the intracellular domain of EPOR. Then, STAT5 is phosphorylated by phosphorylated JAK2, nuclear translocation occurs, and EPO-related gene expression occurs. On the other hand, the reporter cell line UT-7 / EPO / JAK2V617F / pSTAT5-luc prepared from disease model cells of polycythemia vera is EPO-independent and constitutively dimerized and phosphorylated by JAK2V617F mutation. ing. As a result, STAT5 phosphorylation and nuclear translocation occur, and luc2P having a STAT5 response sequence as a promoter is expressed. By adding mutant EPO and improved mutant EPO to this cell line, luc2P can inhibit JAK2 dimerization and phosphorylation by changing the positional relationship between the two EPORs, and subsequently inhibit STAT5 phosphorylation and nuclear translocation. It can be measured by a decrease in luciferase activity.
変異EPOおよび改良型変異EPOによるJAK2-STAT5シグナル伝達阻害を測定するために、pGL4.52[luc2P/STAT5 RE/Hygro]ベクターを安定発現したUT-7/EPO/JAK2V617F/pSTAT5-luc細胞を作製した。pGL4.52[luc2P/STAT5-RE/Hygro]ベクターは、プロモーター配列としてSTAT5応答配列(STAT5 RE)をルシフェラーゼ遺伝子(luc2P)に結合させたベクターで、JAK2によりリン酸化されたSTAT5が核に移行しSTAT5-REに結合することでluc2Pが発現するため、ルシフェラーゼ活性を測定することでSTAT5シグナル伝達を測定することが可能となる。STAT5はEPORの下流に位置し、EPOが2つのEPORと結合することによりEPORの細胞内ドメインと結合しているJAK2の2量体化とリン酸化が起こる。そして、リン酸化JAK2によりSTAT5がリン酸化され、核移行がおこりEPOに関連する遺伝子発現がおこる。一方、真性赤血球増加症の疾患モデル細胞から作製されたレポーター細胞株UT-7/EPO/JAK2V617F/pSTAT5-lucは、JAK2V617F変異によりEPO非依存的かつ恒常的にJAK2が2量体化しリン酸化している。このためSTAT5のリン酸化と核移行が起こり、STAT5応答配列をプロモーターに持つluc2Pが発現している。この細胞株に変異EPOおよび改良型変異EPOを加えることで2つのEPORの位置関係の変化によるJAK2の2量体化とリン酸化の阻害とそれに続くSTAT5のリン酸化と核移行の阻害をluc2Pのルシフェラーゼ活性の減少により測定することができる。 8. Stable expression of the pGL4.52 [luc2P / STAT5 RE / Hygro] vector to measure JAK2-STAT5 signaling inhibition by mutant EPOs and improved mutant EPOs. UT-7 / EPO / JAK2V617F / pSTAT5-luc cells were generated. The pGL4.52 [luc2P / STAT5-RE / Hygro] vector is a vector in which a STAT5 response sequence (STAT5 RE) is bound to a luciferase gene (luc2P) as a promoter sequence, and STAT5 phosphorylated by JAK2 translocates to the nucleus. Since luc2P is expressed by binding to STAT5-RE, it is possible to measure STAT5 signaling by measuring luciferase activity. STAT5 is located downstream of EPOR, where EPO binds to two EPORs, resulting in dimerization and phosphorylation of JAK2, which binds to the intracellular domain of EPOR. Then, STAT5 is phosphorylated by phosphorylated JAK2, nuclear translocation occurs, and EPO-related gene expression occurs. On the other hand, the reporter cell line UT-7 / EPO / JAK2V617F / pSTAT5-luc prepared from disease model cells of polycythemia vera is EPO-independent and constitutively dimerized and phosphorylated by JAK2V617F mutation. ing. As a result, STAT5 phosphorylation and nuclear translocation occur, and luc2P having a STAT5 response sequence as a promoter is expressed. By adding mutant EPO and improved mutant EPO to this cell line, luc2P can inhibit JAK2 dimerization and phosphorylation by changing the positional relationship between the two EPORs, and subsequently inhibit STAT5 phosphorylation and nuclear translocation. It can be measured by a decrease in luciferase activity.
medium添加群のルシフェラーゼ活性を100%とした場合、mEPO4で84%、mEPO4.4で78%、mEPO4.10で87%、mEPO4.4.10で84%であり、変異EPO(mEPO4)および改良型変異EPO(mEPO4.4、mEPO4.10、mEPO4.4.10)を加えた群ではいずれもSTAT5のリン酸化が阻害されていることが明らかになった(図26)。すなわちEPOの103番目のアルギニンをグルタミン酸に変えた変異EPO(mEPO4)、103番目のアルギニンと107番目のトレオニンをグルタミン酸に変えた改良型変異EPO(mEPO4.4)、103番目と110番目のアルギニンをグルタミン酸に変えた改良型変異EPO(mEPO4.10)、103番目と110番目のアルギニンおよび107番目のトレオニンをグルタミン酸に変えた改良型変異EPO(mEPO4.4.10)を添加することにより2つのEPORの位置関係に変化が起こり、恒常的にリン酸化し活性化状態にあるJAK2V617Fのリン酸化阻害と不活化によるSTAT5のリン酸化を阻害することで真性赤血球増加症での赤芽球前駆細胞の異常な増殖を抑えられることが示された。
When the luciferase activity of the medium-added group is 100%, mEPO4 is 84%, mEPO4.4 is 78%, mEPO4.10 is 87%, mEPO4.4.10 is 84%, and mutant EPO (mEPO4) and improved mutants. It was revealed that the phosphorylation of STAT5 was inhibited in all the groups to which EPO (mEPO4.4, mEPO4.10, mEPO4.4.10) was added (Fig. 26). That is, the mutant EPO (mEPO4) in which the 103rd arginine of the EPO was converted to glutamic acid, the improved mutant EPO (mEPO4.4) in which the 103rd arginine and the 107th threonine were converted to glutamic acid, and the 103rd and 110th arginines were used. Positions of two EPORs by adding improved mutant EPO (mEPO4.10) converted to glutamic acid, improved mutant EPO (mEPO4.4.10) converted to arginine 103 and 110 and threonine 107 Abnormal proliferation of erythropoiec precursors in true erythropoiegia by inhibiting the phosphorylation of JAK2V617F, which is constantly phosphorylated and activated, and the phosphorylation of STAT5 by inactivation due to changes in the relationship. Was shown to be suppressed.
本明細書で引用した全ての刊行物、特許および特許出願をそのまま参考として本明細書にとり入れるものとする。
All publications, patents and patent applications cited in this specification shall be incorporated herein by reference as is.
本発明は、腫瘍細胞の増殖を抑制する医薬品として利用できる。
INDUSTRIAL APPLICABILITY The present invention can be used as a drug that suppresses the growth of tumor cells.
INDUSTRIAL APPLICABILITY The present invention can be used as a drug that suppresses the growth of tumor cells.
<配列番号1>野生型EPOのアミノ酸配列を示す。
<配列番号2>変異導入部位周辺のJAK2遺伝子配列を示す。
<配列番号3>ssODN配列を示す。
<配列番号4>sgRNA(#1)配列を示す。
<配列番号5>sgRNA(#2)配列を示す。
<配列番号6>sgRNA(#3)配列を示す。
<配列番号7>sgRNA(#4)配列を示す。
<配列番号8>蛍光プローブ(ABQP-JAKd-1)の配列を示す。
<配列番号9>フォワードプライマー(F-JAKd-1)の配列を示す。
<配列番号10>リバースプライマー(R-JAKd-1)の配列を示す。
<配列番号11>mEPO1(R103A)のアミノ酸配列を示す。
<配列番号12>mEPO2(R103F)のアミノ酸配列を示す。
<配列番号13>mEPO3(R103D)のアミノ酸配列を示す。
<配列番号14>mEPO4(R103E)のアミノ酸配列を示す。
<配列番号15>mEPO5(L108A)のアミノ酸配列を示す。
<配列番号16>mEPO6(V11Y)のアミノ酸配列を示す。
<配列番号17>mEPO7(L108Y)のアミノ酸配列を示す。
<配列番号18>mEPO8(L5N)のアミノ酸配列を示す。
<配列番号19>mEPO9(L108S)のアミノ酸配列を示す。
<配列番号20>mEPO10(L108N)のアミノ酸配列を示す。
<配列番号21>mEPO4.1(S100D/R103E)のアミノ酸配列を示す。
<配列番号22>mEPO4.2(S100E/R103E)のアミノ酸配列を示す。
<配列番号23>mEPO4.3(R103E/T107D)のアミノ酸配列を示す。
<配列番号24>mEPO4.4(R103E/T107E)のアミノ酸配列を示す。
<配列番号25>mEPO4.5(R14D/R103E)のアミノ酸配列を示す。
<配列番号26>mEPO4.6(R14E/R103E)のアミノ酸配列を示す。
<配列番号27>mEPO4.7(K97D/R103E)のアミノ酸配列を示す。
<配列番号28>mEPO4.8(K97E/R103E)のアミノ酸配列を示す。
<配列番号29>mEPO4.9(R103E/R110D)のアミノ酸配列を示す。
<配列番号30>mEPO4.10(R103E/R110E)のアミノ酸配列を示す。
<配列番号31>mEPO4.11(R4E/R103E)のアミノ酸配列を示す。
<配列番号32>mEPO4.4.10(R103E/T107E/R110E)のアミノ酸配列を示す。 <SEQ ID NO: 1> The amino acid sequence of wild-type EPO is shown.
<SEQ ID NO: 2> The JAK2 gene sequence around the mutation introduction site is shown.
<SEQ ID NO: 3> The ssODN sequence is shown.
<SEQ ID NO: 4> The sgRNA (# 1) sequence is shown.
<SEQ ID NO: 5> The sgRNA (# 2) sequence is shown.
<SEQ ID NO: 6> The sgRNA (# 3) sequence is shown.
<SEQ ID NO: 7> The sgRNA (# 4) sequence is shown.
<SEQ ID NO: 8> The sequence of the fluorescent probe (ABQP-JAKd-1) is shown.
<SEQ ID NO: 9> The sequence of the forward primer (F-JAKd-1) is shown.
<SEQ ID NO: 10> The sequence of the reverse primer (R-JAKd-1) is shown.
<SEQ ID NO: 11> The amino acid sequence of mEPO1 (R103A) is shown.
<SEQ ID NO: 12> The amino acid sequence of mEPO2 (R103F) is shown.
<SEQ ID NO: 13> The amino acid sequence of mEPO3 (R103D) is shown.
<SEQ ID NO: 14> The amino acid sequence of mEPO4 (R103E) is shown.
<SEQ ID NO: 15> The amino acid sequence of mEPO5 (L108A) is shown.
<SEQ ID NO: 16> The amino acid sequence of mEPO6 (V11Y) is shown.
<SEQ ID NO: 17> The amino acid sequence of mEPO7 (L108Y) is shown.
<SEQ ID NO: 18> The amino acid sequence of mEPO8 (L5N) is shown.
<SEQ ID NO: 19> The amino acid sequence of mEPO9 (L108S) is shown.
<SEQ ID NO: 20> The amino acid sequence of mEPO10 (L108N) is shown.
<SEQ ID NO: 21> The amino acid sequence of mEPO4.1 (S100D / R103E) is shown.
<SEQ ID NO: 22> The amino acid sequence of mEPO4.2 (S100E / R103E) is shown.
<SEQ ID NO: 23> The amino acid sequence of mEPO4.3 (R103E / T107D) is shown.
<SEQ ID NO: 24> The amino acid sequence of mEPO4.4 (R103E / T107E) is shown.
<SEQ ID NO: 25> The amino acid sequence of mEPO4.5 (R14D / R103E) is shown.
<SEQ ID NO: 26> The amino acid sequence of mEPO4.6 (R14E / R103E) is shown.
<SEQ ID NO: 27> The amino acid sequence of mEPO 4.7 (K97D / R103E) is shown.
<SEQ ID NO: 28> The amino acid sequence of mEPO4.8 (K97E / R103E) is shown.
<SEQ ID NO: 29> The amino acid sequence of mEPO4.9 (R103E / R110D) is shown.
<SEQ ID NO: 30> The amino acid sequence of mEPO4.10 (R103E / R110E) is shown.
<SEQ ID NO: 31> The amino acid sequence of mEPO4.11 (R4E / R103E) is shown.
<SEQ ID NO: 32> The amino acid sequence of mEPO 4.4.10 (R103E / T107E / R110E) is shown.
<配列番号2>変異導入部位周辺のJAK2遺伝子配列を示す。
<配列番号3>ssODN配列を示す。
<配列番号4>sgRNA(#1)配列を示す。
<配列番号5>sgRNA(#2)配列を示す。
<配列番号6>sgRNA(#3)配列を示す。
<配列番号7>sgRNA(#4)配列を示す。
<配列番号8>蛍光プローブ(ABQP-JAKd-1)の配列を示す。
<配列番号9>フォワードプライマー(F-JAKd-1)の配列を示す。
<配列番号10>リバースプライマー(R-JAKd-1)の配列を示す。
<配列番号11>mEPO1(R103A)のアミノ酸配列を示す。
<配列番号12>mEPO2(R103F)のアミノ酸配列を示す。
<配列番号13>mEPO3(R103D)のアミノ酸配列を示す。
<配列番号14>mEPO4(R103E)のアミノ酸配列を示す。
<配列番号15>mEPO5(L108A)のアミノ酸配列を示す。
<配列番号16>mEPO6(V11Y)のアミノ酸配列を示す。
<配列番号17>mEPO7(L108Y)のアミノ酸配列を示す。
<配列番号18>mEPO8(L5N)のアミノ酸配列を示す。
<配列番号19>mEPO9(L108S)のアミノ酸配列を示す。
<配列番号20>mEPO10(L108N)のアミノ酸配列を示す。
<配列番号21>mEPO4.1(S100D/R103E)のアミノ酸配列を示す。
<配列番号22>mEPO4.2(S100E/R103E)のアミノ酸配列を示す。
<配列番号23>mEPO4.3(R103E/T107D)のアミノ酸配列を示す。
<配列番号24>mEPO4.4(R103E/T107E)のアミノ酸配列を示す。
<配列番号25>mEPO4.5(R14D/R103E)のアミノ酸配列を示す。
<配列番号26>mEPO4.6(R14E/R103E)のアミノ酸配列を示す。
<配列番号27>mEPO4.7(K97D/R103E)のアミノ酸配列を示す。
<配列番号28>mEPO4.8(K97E/R103E)のアミノ酸配列を示す。
<配列番号29>mEPO4.9(R103E/R110D)のアミノ酸配列を示す。
<配列番号30>mEPO4.10(R103E/R110E)のアミノ酸配列を示す。
<配列番号31>mEPO4.11(R4E/R103E)のアミノ酸配列を示す。
<配列番号32>mEPO4.4.10(R103E/T107E/R110E)のアミノ酸配列を示す。 <SEQ ID NO: 1> The amino acid sequence of wild-type EPO is shown.
<SEQ ID NO: 2> The JAK2 gene sequence around the mutation introduction site is shown.
<SEQ ID NO: 3> The ssODN sequence is shown.
<SEQ ID NO: 4> The sgRNA (# 1) sequence is shown.
<SEQ ID NO: 5> The sgRNA (# 2) sequence is shown.
<SEQ ID NO: 6> The sgRNA (# 3) sequence is shown.
<SEQ ID NO: 7> The sgRNA (# 4) sequence is shown.
<SEQ ID NO: 8> The sequence of the fluorescent probe (ABQP-JAKd-1) is shown.
<SEQ ID NO: 9> The sequence of the forward primer (F-JAKd-1) is shown.
<SEQ ID NO: 10> The sequence of the reverse primer (R-JAKd-1) is shown.
<SEQ ID NO: 11> The amino acid sequence of mEPO1 (R103A) is shown.
<SEQ ID NO: 12> The amino acid sequence of mEPO2 (R103F) is shown.
<SEQ ID NO: 13> The amino acid sequence of mEPO3 (R103D) is shown.
<SEQ ID NO: 14> The amino acid sequence of mEPO4 (R103E) is shown.
<SEQ ID NO: 15> The amino acid sequence of mEPO5 (L108A) is shown.
<SEQ ID NO: 16> The amino acid sequence of mEPO6 (V11Y) is shown.
<SEQ ID NO: 17> The amino acid sequence of mEPO7 (L108Y) is shown.
<SEQ ID NO: 18> The amino acid sequence of mEPO8 (L5N) is shown.
<SEQ ID NO: 19> The amino acid sequence of mEPO9 (L108S) is shown.
<SEQ ID NO: 20> The amino acid sequence of mEPO10 (L108N) is shown.
<SEQ ID NO: 21> The amino acid sequence of mEPO4.1 (S100D / R103E) is shown.
<SEQ ID NO: 22> The amino acid sequence of mEPO4.2 (S100E / R103E) is shown.
<SEQ ID NO: 23> The amino acid sequence of mEPO4.3 (R103E / T107D) is shown.
<SEQ ID NO: 24> The amino acid sequence of mEPO4.4 (R103E / T107E) is shown.
<SEQ ID NO: 25> The amino acid sequence of mEPO4.5 (R14D / R103E) is shown.
<SEQ ID NO: 26> The amino acid sequence of mEPO4.6 (R14E / R103E) is shown.
<SEQ ID NO: 27> The amino acid sequence of mEPO 4.7 (K97D / R103E) is shown.
<SEQ ID NO: 28> The amino acid sequence of mEPO4.8 (K97E / R103E) is shown.
<SEQ ID NO: 29> The amino acid sequence of mEPO4.9 (R103E / R110D) is shown.
<SEQ ID NO: 30> The amino acid sequence of mEPO4.10 (R103E / R110E) is shown.
<SEQ ID NO: 31> The amino acid sequence of mEPO4.11 (R4E / R103E) is shown.
<SEQ ID NO: 32> The amino acid sequence of mEPO 4.4.10 (R103E / T107E / R110E) is shown.
Claims (20)
- 以下の(a)又は(b)のエリスロポエチン変異体。
(a)配列番号1のアミノ酸配列からなるヒトエリスロポエチンに変異が導入されたエリスロポエチン変異体であって、配列番号1のアミノ酸配列における、103番目のアルギニンが別のアミノ酸に置換されているアミノ酸配列からなり、103番目のアルギニンと置換した別のアミノ酸は、アルギニンの正電荷を減少又は反転させるものである前記変異体
(b)(a)の変異体のアミノ酸配列において、103番目のアミノ酸以外の1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、エリスロポエチンシグナル伝達を阻害するエリスロポエチン変異体 The following erythropoietin variant of (a) or (b).
(a) From the amino acid sequence in which the 103rd arginine in the amino acid sequence of SEQ ID NO: 1 is replaced with another amino acid, which is an erythropoetin variant in which a mutation is introduced into human erythropoetin consisting of the amino acid sequence of SEQ ID NO: 1. And another amino acid substituted with arginine at position 103 is the variant that reduces or reverses the positive charge of arginine.
(b) In the amino acid sequence of the variant of (a), the erythropoetin variant consists of an amino acid sequence in which one or several amino acids other than the 103rd amino acid are deleted, substituted or added, and inhibits erythropoetin signaling. - 配列番号1のアミノ酸配列における、103番目のアルギニンが、アスパラギン酸又はグルタミン酸に置換されている請求項1記載のエリスロポエチン変異体。 The erythropoietin variant according to claim 1, wherein the 103rd arginine in the amino acid sequence of SEQ ID NO: 1 is replaced with aspartic acid or glutamic acid.
- さらに、配列番号1のアミノ酸配列における、103番目のアルギニン周辺を負の静電ポテンシャルに強化する変異及び/又は配列番号1のアミノ酸配列からなるヒトエリスロポエチンのsite 2表面の正電荷のアミノ酸残基を負電荷にする変異が導入された請求項1又は2に記載のエリスロポエチン変異体。 Furthermore, in the amino acid sequence of SEQ ID NO: 1, a mutation that enhances the vicinity of the 103rd arginine to a negative electrostatic potential and / or a positively charged amino acid residue on the site 2 surface of human erythropoetin consisting of the amino acid sequence of SEQ ID NO: 1 The erythropoetin variant according to claim 1 or 2, wherein a negatively charged mutation has been introduced.
- 配列番号1のアミノ酸配列における、103番目のアルギニン周辺を負の静電ポテンシャルに強化する変異が、配列番号1のアミノ酸配列における、107番目のトレオニン及び110番目のアルギニンからなる群より選択される少なくとも1個のアミノ酸の置換であり、当該部位のアミノ酸と置換した別のアミノ酸は、当該部位のアミノ酸の正電荷を減少又は反転させるものである請求項3記載のエリスロポエチン変異体。 The mutation that enhances the negative electrostatic potential around the 103rd arginine in the amino acid sequence of SEQ ID NO: 1 is selected from at least the group consisting of the 107th threonine and the 110th arginine in the amino acid sequence of SEQ ID NO: 1. The erythropoetin variant according to claim 3, wherein it is a substitution of one amino acid, and another amino acid substituted with the amino acid at the site reduces or reverses the positive charge of the amino acid at the site.
- 配列番号1のアミノ酸配列における、107番目のトレオニン及び110番目のアルギニンからなる群より選択される少なくとも1個のアミノ酸がアスパラギン酸又はグルタミン酸に置換されている請求項4記載のエリスロポエチン変異体。 The erythropoietin variant according to claim 4, wherein at least one amino acid selected from the group consisting of threonine at position 107 and arginine at position 110 in the amino acid sequence of SEQ ID NO: 1 is replaced with aspartic acid or glutamic acid.
- 配列番号1のアミノ酸配列からなるヒトエリスロポエチンのsite 2表面の正電荷のアミノ酸残基を負電荷にする変異が、配列番号1のアミノ酸配列における、110番目のアルギニンの置換であり、110番目のアルギニンと置換した別のアミノ酸は、110番目のアルギニンの正電荷を減少又は反転させるものである請求項3記載のエリスロポエチン変異体。 The mutation that makes the positively charged amino acid residue on the surface of the site 2 surface of human erythropoetin consisting of the amino acid sequence of SEQ ID NO: 1 negatively charged is the substitution of the 110th arginine in the amino acid sequence of SEQ ID NO: 1, and the 110th arginine. The erythropoetin variant according to claim 3, wherein another amino acid substituted with is one that reduces or reverses the positive charge of arginine at position 110.
- 配列番号1のアミノ酸配列における、110番目のアルギニンがアスパラギン酸又はグルタミン酸に置換されている請求項6記載のエリスロポエチン変異体。 The erythropoietin variant according to claim 6, wherein the 110th arginine in the amino acid sequence of SEQ ID NO: 1 is replaced with aspartic acid or glutamic acid.
- 以下のいずれかのエリスロポエチン変異体。
(1)配列番号1のアミノ酸配列における、103番目のアルギニンがアスパラギン酸に置換されているアミノ酸配列からなるエリスロポエチン変異体(mEPO3: R103D)
(2)配列番号1のアミノ酸配列における、103番目のアルギニンがグルタミン酸に置換されているアミノ酸配列からなるエリスロポエチン変異体(mEPO4:R103E)
(3) 配列番号1のアミノ酸配列における、103番目のアルギニンがアスパラギン酸又はグルタミン酸に置換され、107番目のトレオニンがアスパラギン酸又はグルタミン酸に置換されているアミノ酸配列からなるエリスロポエチン変異体(mEPO4.4: R103E/T107E)
(4) 配列番号1のアミノ酸配列における、103番目のアルギニンがアスパラギン酸又はグルタミン酸に置換され、107番目のトレオニンがアスパラギン酸又はグルタミン酸に置換され、110番目のアルギニンがアスパラギン酸又はグルタミン酸に置換されているアミノ酸配列からなるエリスロポエチン変異体(mEPO4.4.10: R103E/T107E/R110E)
(5)配列番号1のアミノ酸配列における、103番目のアルギニンがアスパラギン酸又はグルタミン酸に置換され、110番目のアルギニンがアスパラギン酸又はグルタミン酸に置換されているアミノ酸配列からなるエリスロポエチン変異体(mEPO4.10: R103E/R110E) One of the following erythropoietin variants.
(1) An erythropoietin variant (mEPO3: R103D) consisting of an amino acid sequence in which the 103rd arginine in the amino acid sequence of SEQ ID NO: 1 is replaced with aspartic acid.
(2) An erythropoietin variant (mEPO4: R103E) consisting of an amino acid sequence in which the 103rd arginine in the amino acid sequence of SEQ ID NO: 1 is replaced with glutamic acid.
(3) An erythropoetin variant (mEPO 4.4:) consisting of an amino acid sequence in which the 103rd arginine in the amino acid sequence of SEQ ID NO: 1 is replaced with aspartic acid or glutamic acid and the 107th threonine is replaced with aspartic acid or glutamic acid. R103E / T107E)
(4) In the amino acid sequence of SEQ ID NO: 1, the 103rd arginine is replaced with aspartic acid or glutamic acid, the 107th threonine is replaced with aspartic acid or glutamic acid, and the 110th arginine is replaced with aspartic acid or glutamic acid. Erythropoetin variant consisting of the amino acid sequence (mEPO4.4.10: R103E / T107E / R110E)
(5) An erythropoetin variant (mEPO 4.10:) consisting of an amino acid sequence in which the 103rd arginine in the amino acid sequence of SEQ ID NO: 1 is replaced with aspartic acid or glutamic acid and the 110th arginine is replaced with aspartic acid or glutamic acid. R103E / R110E) - 請求項1~8のいずれかに記載のエリスロポエチン変異体をコードするヌクレオチド配列又はそれに相補的な配列を含むポリヌクレオチド。 A polynucleotide comprising a nucleotide sequence encoding the erythropoietin variant according to any one of claims 1 to 8 or a sequence complementary thereto.
- 請求項9記載のポリヌクレオチドを含むベクター。 A vector containing the polynucleotide according to claim 9.
- 請求項10記載のベクターを含む細胞。 A cell comprising the vector according to claim 10.
- 請求項11記載の細胞を培養することを含む、以下の(a)又は(b)のエリスロポエチン変異体を作製する方法。
(a)配列番号1のアミノ酸配列からなるヒトエリスロポエチンに変異が導入されたエリスロポエチン変異体であって、配列番号1のアミノ酸配列における、103番目のアルギニンが別のアミノ酸に置換されているアミノ酸配列からなり、103番目のアルギニンと置換した別のアミノ酸は、アルギニンの正電荷を減少又は反転させるものである前記変異体
(b)(a)の変異体のアミノ酸配列において、103番目のアミノ酸以外の1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、エリスロポエチンシグナル伝達を阻害するエリスロポエチン変異体 The method for producing the erythropoietin mutant according to (a) or (b) below, which comprises culturing the cells according to claim 11.
(a) From the amino acid sequence in which the 103rd arginine in the amino acid sequence of SEQ ID NO: 1 is replaced with another amino acid, which is an erythropoetin variant in which a mutation is introduced into human erythropoetin consisting of the amino acid sequence of SEQ ID NO: 1. And another amino acid substituted with arginine at position 103 is the variant that reduces or reverses the positive charge of arginine.
(b) In the amino acid sequence of the variant of (a), the erythropoetin variant consists of an amino acid sequence in which one or several amino acids other than the 103rd amino acid are deleted, substituted or added, and inhibits erythropoetin signaling. - 請求項1~8のいずれかに記載のエリスロポエチン変異体、請求項9記載のポリヌクレオチド、請求項10記載のベクター及び請求項11記載の細胞からなる群より選択される少なくとも一つを含む、エリスロポエチンシグナル伝達を阻害するための組成物。 Erythropoietin comprising at least one selected from the group consisting of the erythropoietin variant according to any one of claims 1 to 8, the polynucleotide according to claim 9, the vector according to claim 10, and the cell according to claim 11. A composition for inhibiting signal transduction.
- 請求項1~8のいずれかに記載のエリスロポエチン変異体、請求項9記載のポリヌクレオチド、請求項10記載のベクター及び請求項11記載の細胞からなる群より選択される少なくとも一つを含む、JAK2活性を阻害するための組成物。 JAK2 comprising at least one selected from the group consisting of the erythropoietin variant according to any one of claims 1 to 8, the polynucleotide according to claim 9, the vector according to claim 10, and the cell according to claim 11. A composition for inhibiting activity.
- 請求項1~8のいずれかに記載のエリスロポエチン変異体、請求項9記載のポリヌクレオチド、請求項10記載のベクター及び請求項11記載の細胞からなる群より選択される少なくとも一つを含む、JAK2による細胞増殖を阻害するための組成物。 JAK2 comprising at least one selected from the group consisting of the erythropoietin variant according to any one of claims 1 to 8, the polynucleotide according to claim 9, the vector according to claim 10 and the cell according to claim 11. Composition for inhibiting cell proliferation by.
- 請求項1~8のいずれかに記載のエリスロポエチン変異体、請求項9記載のポリヌクレオチド、請求項10記載のベクター及び請求項11記載の細胞からなる群より選択される少なくとも一つを含む、JAK2変異が関与する疾患を予防及び/又は治療するための組成物。 JAK2 comprising at least one selected from the group consisting of the erythropoietin mutant according to any one of claims 1 to 8, the polynucleotide according to claim 9, the vector according to claim 10, and the cell according to claim 11. A composition for preventing and / or treating a disease involving a mutation.
- JAK2変異が関与する疾患が、腫瘍である請求項16記載の組成物。 The composition according to claim 16, wherein the disease in which the JAK2 mutation is involved is a tumor.
- 腫瘍が骨髄増殖性腫瘍又は固型癌である請求項17記載の組成物。 17. The composition of claim 17, wherein the tumor is a myeloproliferative neoplasm or solid tumor.
- 骨髄増殖性腫瘍が、真性赤血球増加症、本態性血小板症又は原発性骨髄線維症である請求項18記載の組成物。 The composition according to claim 18, wherein the myeloproliferative neoplasm is polycythemia vera, essential platelet disease, or primary myelofibrosis.
- 請求項1~8のいずれかに記載のエリスロポエチン変異体、請求項9記載のポリヌクレオチド、請求項10記載のベクター及び請求項11記載の細胞からなる群より選択される少なくとも一つを含む、医薬。 A pharmaceutical agent comprising at least one selected from the group consisting of the erythropoietin mutant according to any one of claims 1 to 8, the polynucleotide according to claim 9, the vector according to claim 10, and the cell according to claim 11. ..
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-152102 | 2020-09-10 | ||
JP2020152102 | 2020-09-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022054748A1 true WO2022054748A1 (en) | 2022-03-17 |
Family
ID=80631774
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/032604 WO2022054748A1 (en) | 2020-09-10 | 2021-09-06 | Erythropoietin signaling inhibitor protein |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2022054748A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1994002611A2 (en) * | 1992-07-28 | 1994-02-03 | New England Deaconess Hospital | Recombinant human erythropoietin with altered biological activity |
WO2009068677A1 (en) * | 2007-11-29 | 2009-06-04 | Alepor Gmbh & Co. Kg | Novel tissue protective erythropoietin receptor (nepor) and methods of use |
WO2012097256A1 (en) * | 2011-01-14 | 2012-07-19 | University Of Tennessee Research Foundation | Therapeutic compositions and methods for disorders associated with neuronal degeneration |
JP2020522263A (en) * | 2017-06-06 | 2020-07-30 | キンドレッド バイオサイエンシズ インコーポレイテッド | Erythropoietin and analogs for veterinary use |
-
2021
- 2021-09-06 WO PCT/JP2021/032604 patent/WO2022054748A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1994002611A2 (en) * | 1992-07-28 | 1994-02-03 | New England Deaconess Hospital | Recombinant human erythropoietin with altered biological activity |
WO2009068677A1 (en) * | 2007-11-29 | 2009-06-04 | Alepor Gmbh & Co. Kg | Novel tissue protective erythropoietin receptor (nepor) and methods of use |
WO2012097256A1 (en) * | 2011-01-14 | 2012-07-19 | University Of Tennessee Research Foundation | Therapeutic compositions and methods for disorders associated with neuronal degeneration |
JP2020522263A (en) * | 2017-06-06 | 2020-07-30 | キンドレッド バイオサイエンシズ インコーポレイテッド | Erythropoietin and analogs for veterinary use |
Non-Patent Citations (4)
Title |
---|
BAXTER E JOANNA, LINDA M SCOTT, PETER J CAMPBELL, CLARE EAST, NASIOS FOUROUCLAS, SOHEILA SWANTON, GEORGE S VASSILIOU, ANTHONY J BE: "Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders.", THE LANCET, ELSEVIER, AMSTERDAM, NL, vol. 365, no. 9464, 19 March 2005 (2005-03-19), AMSTERDAM, NL , pages 1054 - 1061, XP002445195, ISSN: 0140-6736, DOI: 10.1016/S0140-6736(05)71142-9 * |
ELLIOTT S; LORENZINI T; CHANG D; BARZILAY J; DELORME E: "Mapping of the active site of recombinant human erythropoietin.", BLOOD, AMERICAN SOCIETY OF HEMATOLOGY, US, vol. 89, no. 2, 15 January 1997 (1997-01-15), US , pages 493 - 502, XP002354909, ISSN: 0006-4971, DOI: 10.1182/blood.V89.2.493 * |
MATTHEWS D. J. ET AL.: "A sequential dimerization mechanism for erythropoietin receptor activation", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES, NATIONAL ACADEMY OF SCIENCES, vol. 93, no. 18, 1 September 1996 (1996-09-01), pages 9471 - 9476, XP002494075, ISSN: 0027-8424, DOI: 10.1073/pnas.93.18.9471 * |
SYED R S ET AL: "Efficiency of signalling through cytokine receptors depends critically on receptor orientation", NATURE, NATURE PUBLISHING GROUP UK, LONDON, vol. 395, no. 6701, 1 October 1998 (1998-10-01), London, pages 511 - 516, XP002369458, ISSN: 0028-0836, DOI: 10.1038/26773 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20220378833A1 (en) | Dimerization switches and uses thereof | |
US11584927B2 (en) | Conditionally active chimeric antigen receptors for modified T-cells | |
US20200332255A1 (en) | Immortalized car-t cells genetically modified to eliminate t-cell receptor and beta 2-microglobulin expression | |
ES2734889T3 (en) | Anti-SSX-2 T-cell receptors and related materials and methods of use | |
TW201945402A (en) | Inducible chimeric cytokine receptors | |
CN107922498A (en) | With the Chimeric antigen receptor for integrating controllable function | |
US20190010220A1 (en) | Conditionally active chimeric antigen receptors for modified t-cells | |
CN113454115B (en) | Chimeric antigen receptor targeting sialyl Lewis A and use thereof | |
EP3478301A1 (en) | Engineered parasites for delivering protein to the central nervous system (cns) | |
US20230192794A1 (en) | Engineered interleukin-22 polypeptides and uses thereof | |
JP2022512701A (en) | New control switch | |
CA3211272A1 (en) | Chimeric proteins in autoimmunity | |
JP2021536256A (en) | Conditional active chimeric antigen receptor for modified T cells | |
JP7642857B2 (en) | Bispecific multifunctional fusion polypeptides | |
WO2022054748A1 (en) | Erythropoietin signaling inhibitor protein | |
EP4301771A2 (en) | Mutant pd-1 extracellular domains | |
TWI868739B (en) | T cell receptor targeting KRAS G12V mutant polypeptide and its use | |
JPWO2017195749A1 (en) | Chimeric antigen receptor and use thereof | |
US8349318B2 (en) | Use of specifically engineered enzymes to enhance the efficacy of prodrugs | |
Lee | Structural and functional characterisation of the thrombopoietin receptor and its negative regulator, LNK in myeloid malignancies | |
CN111315880A (en) | Mutant AIM | |
US20250032622A1 (en) | Compositions and methods of using pln-targeting antibody-oligonucleotide conjugates | |
JP2024505248A (en) | Cell signaling expression systems regulated by small molecules | |
WO2025140504A1 (en) | T cell receptor targeting polypeptide with kras g12v mutation and use of t cell receptor | |
Heim | Keeping it Simple: Understanding and Engineering Biology with Simple Transmembrane Proteins |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21866707 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21866707 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |