WO2022050006A1 - Image processing device - Google Patents
Image processing device Download PDFInfo
- Publication number
- WO2022050006A1 WO2022050006A1 PCT/JP2021/029533 JP2021029533W WO2022050006A1 WO 2022050006 A1 WO2022050006 A1 WO 2022050006A1 JP 2021029533 W JP2021029533 W JP 2021029533W WO 2022050006 A1 WO2022050006 A1 WO 2022050006A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- roadside
- vehicle
- road
- type
- image processing
- Prior art date
Links
- 238000012545 processing Methods 0.000 title claims abstract description 36
- 230000006399 behavior Effects 0.000 description 36
- 238000000034 method Methods 0.000 description 28
- 238000000605 extraction Methods 0.000 description 22
- 238000010586 diagram Methods 0.000 description 19
- 230000001186 cumulative effect Effects 0.000 description 16
- 239000000284 extract Substances 0.000 description 8
- 230000006870 function Effects 0.000 description 7
- 240000004050 Pentaglottis sempervirens Species 0.000 description 6
- 235000004522 Pentaglottis sempervirens Nutrition 0.000 description 6
- 238000004364 calculation method Methods 0.000 description 6
- 238000009825 accumulation Methods 0.000 description 5
- 238000001514 detection method Methods 0.000 description 5
- 230000003449 preventive effect Effects 0.000 description 5
- 244000025254 Cannabis sativa Species 0.000 description 4
- 241000209094 Oryza Species 0.000 description 4
- 235000007164 Oryza sativa Nutrition 0.000 description 4
- 238000010276 construction Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 235000009566 rice Nutrition 0.000 description 4
- 230000035945 sensitivity Effects 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 239000002689 soil Substances 0.000 description 4
- 230000004927 fusion Effects 0.000 description 3
- 238000012937 correction Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 239000010426 asphalt Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/16—Anti-collision systems
- G08G1/165—Anti-collision systems for passive traffic, e.g. including static obstacles, trees
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/50—Context or environment of the image
- G06V20/56—Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
- G06V20/588—Recognition of the road, e.g. of lane markings; Recognition of the vehicle driving pattern in relation to the road
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/16—Anti-collision systems
- G08G1/167—Driving aids for lane monitoring, lane changing, e.g. blind spot detection
Definitions
- the present invention relates to an image processing device that recognizes the surrounding environment of a vehicle by utilizing a sensor mounted on the vehicle.
- Patent Document 1 describes a technique for detecting a road shoulder using a sensor and using it for preventive safety and automatic driving.
- the roadside does not necessarily have artificial walls or sidewalk steps.
- the roadsides are provided with artificially maintained walls, and the curves are often continuous and clean, if not as much as lanes. Recognition is relatively easy.
- obstacles such as utility poles, rocks, and grass may have jumped out onto the road, making it difficult to model in advance a curvature shape that makes it easy for vehicles to travel. The difficulty of sensing to detect the roadside is high.
- the shape of the roadside but also the break of the roadside and the type of the roadside are often mixed, and there are many scenes in which it is difficult to recognize the roadside.
- the present invention has been made in view of the above problems, and an object of the present invention is to sense the surrounding environment of the own vehicle by using a sensor in order to control the vehicle more safely and comfortably, and to control the own vehicle.
- An object of the present invention is to provide an image processing device that outputs information necessary for an alarm.
- the image processing device of the present invention is an image processing device that detects the roadside of a traveling road based on an image captured by an in-vehicle camera, recognizes the type of an object constituting the roadside from the captured image, and recognizes the object. It is characterized in that the parameter for detecting the roadside is changed according to the type of the roadside.
- the characteristics of the same type of roadsides can be appropriately connected and recognized appropriately. It is possible to detect the roadside stably and accurately, and to improve the accuracy of the road deviation prevention function.
- the figure explaining the internal structure of the roadside feature amount extraction part. The figure which shows the specific example of a roadside type schematically.
- the figure explaining the internal structure of the roadside feature map generation part The figure which shows an example of the roadside characteristic map.
- the figure which shows the map which applied the inner feature priority processing to the roadside feature map of FIG. The figure explaining the internal structure of the traveling path determination part according to the type.
- the figure which shows the connection roadside candidate generation condition The figure which shows the map which generated the connection roadside candidate from the map which performed the inner feature priority processing shown in FIG.
- the figure which shows the connection example (1) of a plurality of kinds of roadsides The figure which shows the connection example (2) of the roadside including a vehicle.
- the figure explaining the internal structure of an alarm control part The figure which shows the information of the warning and the control margin for the roadside type.
- FIG. 1 is a diagram showing an overall configuration of an image processing apparatus according to the present embodiment.
- the image processing device 1 includes a sensor unit 100, a roadside type characteristic unit 200, a travel path determination unit 300, and an alarm control unit 400.
- the sensor unit 100 has a sensor that detects the environment around the vehicle such as obstacles and the shape around the traveling path.
- the sensor unit 100 has an in-vehicle front sensor.
- the left and right camera units (stereo cameras) 110 are described as an example of the in-vehicle front sensor, but the sensor itself is as shown in the middle part (2) of FIG.
- the camera unit 150 may be a single unit, or may be a fusion sensor of the camera unit 170 and the lidar unit 180 as shown in the lower part (3) of FIG. Further, the sensor unit 100 does not necessarily have to have a sensor, and may be configured to acquire detection signals from various sensors provided in the vehicle.
- the roadside type feature unit 200 extracts the feature amount (roadside feature amount) according to the roadside type.
- the roadside is formed between the road and the object, and the type of the roadside differs depending on the object.
- the roadside type feature unit 200 extracts a roadside feature amount for each type of object, and determines the roadside type using the extracted roadside feature amount. Since there are various types of boundaries that divide the travelable area that indicates whether or not the vehicle can travel, that is, the roadside of the road, it is necessary to extract the features of different types of roadside by the same search method. It was difficult in itself.
- a tall obstacle compared to the road surface of the road, a region lower than the road surface of the road, or a road surface having different properties from the road surface of the road for example, the road surface has no difference in height in three dimensions.
- the road surface has no difference in height in three dimensions.
- the roadside type feature unit 200 employs a method in which a plurality of types of extraction means are used in combination and a plurality of roadside feature amount extraction algorithms are used in combination as shown in FIG.
- the roadside type feature unit 200 performs a process of integrating each feature amount of the extracted plurality of types of roadsides in the same space (on the map), and also performs noise reduction.
- the roadside type feature unit 200 creates a roadside feature map based on the extracted roadside feature amount.
- the travel road determination unit 300 uses the roadside characteristic map created by the roadside type characteristic unit 200 to perform travel road determination according to the roadside type. Since the roadside feature unit 300 extracts the roadside feature amount for each roadside type in the roadside type feature unit 200, the roadside feature map is created using the roadside feature amount. Then, the roadside candidates are extracted from the roadside feature map, the roadside candidates are connected for each type, and the connected roadside candidates are used to further select roadside candidates having different types. Determine whether to concatenate.
- the alarm control unit 400 gives an alarm to the driver under a predetermined situation, and controls the vehicle when the situation is not improved.
- the warning control unit 400 first emits an alarm sound or displays an alarm when the vehicle approaches the roadside, which is the boundary of the travel path, and is likely to deviate from the travel path, according to the determination result of the travel path determination unit 300. It was determined that the driver would be alerted, and if the situation that was likely to deviate continued, or if the distance to the road boundary was extremely short, or if the vehicle was not steered as it was, the vehicle would deviate from the road after a certain period of time. In that case, vehicle control of steering and braking is performed to prevent the vehicle from deviating from the driving path.
- FIG. 2 is a diagram illustrating the configuration of the sensor unit.
- the sensor unit 100 may be a monocular camera having a camera unit 150, and the camera may be a camera. It may be a Fusion sensor in which the unit 170 and the Lidar unit 180 are combined, or it may be another TOF sensor, a Fusion sensor of a millimeter wave and a camera, or the like.
- the left and right camera units 110 acquire images captured by the left and right cameras, correct the geometry and sensitivity, and then perform left and right.
- Parallelization which is a geometric correction necessary for stereo-matching the captured image of the camera unit 110, is performed, and sensitivity calibration is performed so that the hue, brightness, and the like of the left and right cameras are the same.
- the stereo matching unit 120 After calibrating the sensitivity and geometry, the stereo matching unit 120 performs stereo matching of the left and right captured images to generate a parallax image.
- the 3D point cloud generation unit 130 generates a three-dimensional point cloud from this parallax image by using the internal parameters of the camera.
- FIG. 3 is a diagram illustrating the configuration of a roadside type feature section.
- the roadside type feature unit 200 includes a roadside feature amount extraction unit 210, a vehicle behavior estimation unit 220, a roadside feature map generation unit 230, an inner feature priority unit 240, and an inner feature type determination unit 250. is doing.
- the roadside type feature unit 200 acquires the feature amount of the roadside to be used for determining the area in which the own vehicle can travel.
- the roadside feature amount extraction unit 210 three-dimensional information of the stereo camera and an image captured by the camera are obtained from the position where objects such as obstacles, gutters, and road shoulder blocks that are boundaries with the road, which is a travelable area, exist.
- the roadside features are extracted using the information in.
- the extracted roadside features include roadside type information and location information.
- these roadside feature amounts are extracted for each result of a single frame imaged by the sensor unit 100, that is, for each frame.
- the own vehicle behavior estimation unit 220 estimates the behavior of the own vehicle, and the roadside feature map generation unit 230.
- the roadside features obtained for each frame are arranged on the map and voted.
- the roadside features obtained in each frame are arranged on the bird's-eye view seen from above the own vehicle, and the roadside features are arranged as if they were a map showing the boundary with the traveling road.
- vote on the map including information on the types of features That is, a process is performed in which information on the type of the roadside feature amount is also associated and stored at the point where the roadside is located on the map.
- the roadside features obtained as noise are also arranged on the map.
- the inner feature priority unit 240 performs a process of reducing the feature amount of other objects overlapping (outside in the road width direction) from the map. This is an object composed of taller walls, trees, buildings, etc. existing outside the road width direction than objects such as road shoulder blocks or gutters, walls existing inside the road width direction in the roadside region. By eliminating the roadside features, the roadside composed of the innermost object in the road width direction, that is, the object closest to the vehicle, can be determined more accurately and without being affected by noise. ..
- the right roadside and the left roadside of the own vehicle are processed separately, and the type of the roadside feature amount arranged on the left and right of the own vehicle is processed separately.
- the main feature types are specified, or multiple feature types to be mixed are specified, and the types with extremely small features are regarded as noise.
- FIG. 4 is a diagram illustrating the configuration of the roadside feature amount extraction unit.
- the roadside feature amount extraction unit 210 includes a three-dimensional object accumulating portion 211, a moving body portion 212, a low step portion 213, a minus step portion 214, a stepless roadside portion 215, and a travel path division three-dimensional object portion 216.
- FIG. 5 is a diagram schematically showing an example of a roadside type in a cross section.
- FIG. 5 (1) shows a three-dimensional object in which a gutter 502 exists on the right side of the roadway (carriageway) 501 in the road width direction, and a tall fence is provided at the roadside on the left side in the road width direction from the center of the roadway 501.
- An example is shown in which the cumulative area 503 and the sidewalk 504 are further on the left side in the road width direction of the three-dimensional object cumulative area 503.
- the boundary between the traveling path 501 and the gutter 502 and the boundary between the traveling path 501 and the three-dimensional object cumulative region 503 are the roadsides, respectively.
- a sidewalk 514 is provided on the left side of the travel path 511 in the road width direction via a relatively low step, and a convex road shoulder block 512 is arranged on the right side of the travel path 511 in the road width direction.
- the sidewalk 513 is arranged on the right side thereof.
- the boundary between the runway 511 and the sidewalk 514 and the boundary between the runway 511 and the road shoulder block 512 are the roadsides, respectively.
- a stepless region 522 in which grass, gravel, soil, etc. are continuous at the same height as the road surface of the road 521 is arranged on the left side of the road 521 in the road width direction, and the road 521 has a stepless region 522.
- a minus step region 523 such as a rice field, a field, or a lowland, is present between the road and the road 521 via a step that is lower than the road surface of the road 521.
- the boundary between the traveling path 521 and the stepless area 522 and the boundary between the traveling path 521 and the minus stepped area 523 are the roadsides, respectively.
- the three-dimensional object accumulating portion 211 extracts a feature amount for a three-dimensional object that is taller than the road surface of the traveling path 501.
- the three-dimensional object accumulating portion 211 can extract a stable feature amount by accumulating more features as the height of the three-dimensional object is higher, that is, the higher the road surface height is.
- FIG. 6 (1) is an original image captured by a stereo camera
- FIG. 6 (2) is a cumulative feature extraction image created by using a parallax image.
- the three-dimensional object accumulation unit 211 generates a parallax image using a pair of left and right original images, and performs a cumulative roadside feature amount extraction process for the parallax image of the traveling road.
- the preceding vehicle 602 is imaged, and the road shoulder blocks 604 and 605 and the walls 606 and 607 are arranged on the left and right sides of the traveling path 603.
- the parallax value indicates the image horizontal coordinates in the horizontal direction and the depth in the vertical direction. Generates an image with a small parallax value at a long distance. Then, the voting process is performed for each row of abscissa of the parallax image. For example, considering the center of the image in which the own vehicle exists, the lower side of the parallax image is the parallax value on the road surface, so if one parallax value is read from the lower side of the parallax image, it gradually becomes a long-distance parallax value and the voting place. Is the result of extracting the cumulative roadside feature amount that gradually moves upward.
- parallax values are accumulated at the positions of the left and right walls 616 and 617, and are clearly shown in white.
- the parallax values are also accumulated and shown in white at the positions of the road shoulder blocks 614 and 615 and the foot positions of the preceding vehicle.
- the moving body unit 212 identifies that it is a feature amount for a moving body, and as a feature amount of a type different from that of the three-dimensional object accumulating part 211. deal. That is, the moving body unit 212 performs a process of extracting the feature amount of the moving body such as the preceding vehicle and the oncoming vehicle.
- the low step sidewalk 514 has a small difference in height as compared with the road surface of the traveling path 511, so that the feature amount extracted by the three-dimensional object accumulating portion 211 is cumulative. The amount is small. Therefore, the low step portion 213 exclusively performs a process of extracting the feature amount of the low step.
- FIG. 7 is a diagram illustrating a method for extracting features of a low step road edge and a minus road edge.
- the parallax image 701 is searched to the left from the center position 702 of the traveling path 703.
- the three-dimensional position is calculated from the parallax value and the image position, and it is compared whether a high step is generated compared with the height of the road surface of the traveling road 703.
- the extracted portion is extracted as a roadside feature amount between the traveling road 703 and the traveling road 703.
- the stereo camera of the sensor unit 100 can detect a step lower than the road surface of the traveling road 703 such as a gutter 705.
- the minus step portion 214 extracts the feature amount of the minus step region 523 lower than the traveling path, for example, the gutter 502 shown on the right side of FIG. 5 (1) and the rice field or the field shown on the right side of FIG. 5 (3). ..
- the parallax image is searched to the right from the center position 702 of the traveling path 703.
- the three-dimensional position is calculated from the disparity value and the image position, compared with the height of the road surface to determine whether a step lower than the road surface is generated, and the feature amount lower than the road surface of the traveling road 703 is continuously lower than the threshold value.
- the extracted portion is extracted as a roadside feature amount between the traveling road 703 and the traveling road 703.
- the feature amount of the sidewalk 704 that is higher than the road surface but lower than the road surface can be extracted by the low step portion 213, and the feature amount of the gutter 705 lower than the road surface can be extracted by the minus step portion 214. can.
- FIG. 8 is an image diagram illustrating a method for extracting features of a roadside without steps and a roadside with a section of a traveling road.
- substances different from the roadway 803, such as grass, gravel, and soil although the height is the same as the roadway 803A on the left side of the paved road.
- the boundary with the stepless region 805, which is not suitable for traveling, is extracted as the roadside feature amount of the stepless roadside.
- machine learning such as Deep Learning is used to extract a travelable road surface region (travel road 803A) and a non-travelable stepless region 805, and the region is extracted.
- the boundary is extracted at the roadside portion 215 without a step as a roadside feature amount.
- the triangular poles lined up on the track 803B can be extracted as a three-dimensional object. For this reason, if the size is within the range of a general triangular pole after being detected as a three-dimensional object, this is a triangular pole that is used by the identifyr to limit the movement of the vehicle. Perform identification. When it is identified as a traveling road division three-dimensional object for controlling the movement of the vehicle, it is extracted by the traveling road division three-dimensional object unit 216 as a roadside feature amount.
- the roadside feature amount extraction unit 210 adds type information to each of the various feature amounts extracted by the extraction units 211 to 216 for each extracted process. This is used to determine which type of feature quantity is lined up.
- FIG. 9 is a diagram illustrating the configuration of the own vehicle behavior estimation unit.
- the own vehicle behavior estimation unit 220 utilizes the result of the vehicle speed sensor which is CAN information and the vehicle information such as the yaw rate or the steering angle, and the own vehicle by the four-wheel model as shown in FIG. 10 (1).
- the behavior estimation calculation unit 221 is used to predict the behavior of the above.
- FIG. 10 (2) shows that the images captured by the right camera of the own vehicle at the timings T [frame] and T + 1 [frame] correspond to each other in the images.
- FIG. 11 (1) shows a state in which the vehicle V 0 passes through the corner of the road 1101 surrounded by the walls 1102 and 1103, and the previous sensing result (T [frm) embedded when the vehicle V 0 passes through the corner. ]) And the present sensing result (T + 1 [frm]).
- T [frm) embedded when the vehicle V 0 passes through the corner.
- T + 1 [frm] present sensing result
- FIG. 11 (1) when the corresponding point information is embedded in the map generated by oneself and the same route is taken again, the corresponding point information saved in the self-generated map and the current state.
- a method may be used in which the self-position and posture on the map are estimated by matching the corresponding points extracted from the frame, and the amount of movement in time series is also obtained.
- FIG. 11 (2) is an image diagram of a high-precision map.
- the high-precision map 1110 is, for example, a traveling lane 1111, a branch lane 1112 branching from the traveling lane 1111, a roadside 1113 of the branch lane 1112, a branch 1114, a central separation zone 1115, an opposite lane 1116, and an opposite lane. It contains information about the merging lane 1117 merging into 1116 and the roadside 1118 of the merging lane 1117.
- a method of estimating the position and posture of the own vehicle with this high-precision map may be used.
- it may be a method of grasping the position on such a high-precision map by utilizing high-precision GNSS.
- the own vehicle behavior estimation unit 220 estimates the own vehicle behavior in parallel by these plurality of methods, and adopts the one with high accuracy from among them.
- FIG. 12 is a diagram illustrating the configuration of the roadside feature map generation unit.
- the roadside feature map generation unit 230 the roadside feature amount obtained by the roadside feature amount extraction unit 210 extracted every frame is obtained by the own vehicle behavior estimation unit 220, and the result obtained in FIG. 13 is used. As described in, arrange them in chronological order on the roadside feature map, which is a bird's-eye view of the vehicle from directly above.
- the self-position estimation map generation unit 232 not only the roadside map but also the position of the corresponding point used for extracting the movement amount between frames, the feature amount of the corresponding point at that time, and the like are obtained. Save it in a three-dimensional position on the map. Once the map for self-position estimation is completed, the next time you drive on the same road, the position of the corresponding point saved in the map and the current frame will be detected in order to restore the accurate position. By extracting the correspondence relationship with the corresponding points, it is possible to specify the position on the map by obtaining the correspondence points not only between the frames but also on the map.
- FIG. 13 is a diagram showing an example of a roadside feature map.
- the vehicle V0 travels on the travel path 1311A on the median strip side, and the detection range 1320 is detected by the stereo camera.
- the roadside feature amount on the left side in the traveling direction of the vehicle V0 is extracted by the roadside feature amount extraction unit 210, and based on the estimation information of the own vehicle behavior estimation unit 220, the roadside feature map generation unit 230 detects the time series. The results are shown on a bird's-eye view map.
- the gutter 1313 is on the outside (side) in the road width direction from the white line of the traveling path 1311B, and a plurality of buildings 1315 are arranged side by side on the outside.
- both the feature amount of the gutter 1313 and the three-dimensional object accumulation (roadside feature amount) 1331 for the building 1315 behind it can be extracted.
- the gutters 1313 are continuously provided along the traveling path 1311B, there is a portion where the lid 1314 is partially covered and the side groove 1313 is partially interrupted, which is a gap of the feature amount in the traveling direction.
- the vehicle V1 travels on the travel path 1312B on the shoulder block side , the roadside feature amount on the left side in the traveling direction of the vehicle V1 is extracted, and the time series thereof.
- the result of is shown on the map of the bird's-eye view.
- a short road shoulder block 1316 having a height of about 15 cm and a wall 1318 via a sidewalk 1317 are arranged outside the white line of the road 1312B in the road width direction. It is possible to extract the feature amount of.
- the road shoulder block 1316 is continuously provided along the traveling path 1312B, there is a partially interrupted portion, which is a gap of the feature amount in the traveling direction.
- the high-precision map information addition update unit 233 saves the corresponding points for saving the relationship between the high-precision map and the self-position for the high-precision map as shown in FIG. 11 (2), and updates the corresponding points as appropriate. I do.
- FIG. 14 is a diagram showing an example of a roadside feature map after executing the inner feature priority process by the inner feature priority section.
- the inner feature priority unit 240 of the roadside type feature unit 200 performs a process of erasing the overlapping outer feature amounts.
- the feature amount close to the inside of the traveling region that is, the roadside feature amount closer to the own vehicle in the road width direction
- the feature amount inside when viewed from the own vehicle traveling direction is prioritized as a roadside feature amount, and a process of erasing the feature amount existing outside the roadside feature amount is implemented. As shown in FIG.
- the inner feature type determination unit 250 first determines what kind of roadside type feature amount currently exists, and further determines the mode of the lateral position of the feature amount for each of these types. calculate. For example, in the case of the example shown on the upper side in FIG. 14, the feature amount of the minus step (feature amount of the gutter 1313) exists at the position (horizontal position) 5 m outside in the road width direction when viewed from the vehicle V0. Although it is about half of this feature amount (length along the traveling direction), it is a cumulative three-dimensional object (roadside feature) extracted from the building 1315 at a position (horizontal position) of 8 m outside the road width direction. Amount) 1331 is present.
- the remaining features in FIG. 14 are accumulated so as to be projected in the traveling direction of the vehicle. That is, it is investigated what kind of features are arranged in the traveling direction according to the horizontal position. By accumulating the cumulative results of a certain type, the type of inner roadside candidate is specified. By extracting the type and the rough horizontal position in this way, the information will be used as the judgment material for appropriately connecting the roadside candidates after this.
- FIG. 15 is a diagram for explaining the configuration of the travel path determination unit
- FIG. 16 is a diagram showing conditions for generating connected roadside candidates.
- the travel path determination unit 300 determines the travel path according to the type of the roadside feature amount. In the travel road determination unit 300 according to this type, a plurality of types of roadside feature quantities extracted by the roadside type feature unit 200 are voted on the map, and the roadside feature amount on the map is noise-reduced with priority given to the inside. The final travel route judgment is carried out by utilizing the type information.
- the travel path determination unit 300 has a connection roadside candidate generation unit 310, a roadside candidate connection unit 320, and a travel path classification determination unit 330.
- the connected roadside candidate generation unit 310 uses the roadside feature amount on the map to select and connect roadsides of the same feature amount type as roadside candidates. Judgment processing is performed. However, as shown in FIG. 16 (2), the threshold value that is the condition for generating the connected roadside candidate, which should be connected or should be the roadside candidate, is changed according to the type of the roadside. This is done by the travel path classification determination unit 330 by considering the reliability of the feature amount and the condition of whether or not the object is likely to exist continuously in the road structure according to the type of the roadside composed of the objects. It is possible to determine the travel path classification more appropriately.
- the roadside candidate connecting unit 320 preferentially connects roadside candidates having the same type of features in consideration of the type of roadside, so that the roadside candidate connecting portion 320 is an accurate road existing inside the road width direction with respect to the own vehicle. Allows you to trace the edges correctly. For example, if the feature amount existing inside in the road width direction is simply prioritized and connected without judging the type, the roadside boundary line is drawn on the outer wall in the different road width direction for each interruption of the feature amount. Therefore, it is difficult to draw a stable roadside boundary line. By preferentially connecting roadside features of the same type and drawing a roadside boundary line, it is possible to more stably connect roadside candidates inside in the road width direction.
- the road surface height means the voting amount of the feature amount at one point on the map, and the taller the object, the greater the depth on the parallax image of the stereo camera. Since information can be obtained, the amount of votes is large and the reliability is high.
- the road surface height is the amount of votes on the map, and if there is a vote amount above this threshold, it will be connected as a roadside candidate.
- the three-dimensional object accumulation unit 211 of the roadside type feature unit 200 extracts the roadside feature amount of the object 1316 existing on the outer side 1612 in the road width direction of the travel path, and the travel path determination unit 300.
- the minimum traveling direction length L0 is described as the minimum length in the table of FIG. 16 (2). If it is less than the threshold value, it is too short as a roadside candidate and is not recognized as a roadside candidate. Further, even when there is a gap in the traveling direction in this feature amount, if the maximum interval L1 is less than the threshold value shown in the table of FIG. Treat candidates in a concatenated manner.
- the voting amount is high, and although the continuity of the wall is high when considering the continuity, for example, obstacles such as trees and utility poles are also considered. Then, there is a good possibility that the length in the traveling direction is short. Therefore, if the voting amount in the height direction is large, it is considered that the candidate is recognized as a roadside candidate even in the depth direction of 50 cm or more, which is a little short.
- the maximum spacing is the threshold value of the maximum depth width that is judged to be the same in consideration of the case where there is a gap in the travel path, and the maximum is 500 cm in consideration of the fact that there are often gaps in walls and obstacles. It is treated as a connection condition of the same roadside candidate and connected.
- the height is 100 cm or more because it is specified that the vehicle height is to some extent, and the length is 50 cm or more, and two wheels etc. are also targeted.
- the maximum distance between the gaps is up to 100 cm in consideration of the fact that there is a region where stereo parallax is difficult to appear because there are few image features in the middle of the car body. Is allowed, and the same features of the moving body are concatenated. That is, if the maximum distance is less than 100 cm, the roadside candidates are connected as if they are the same moving body.
- the height of the block that separates the sidewalk and the roadway is 10 cm or more. Since the height of the sidewalk is lower than that of a wall or a moving body, the amount of votes for each point, which is a characteristic of a roadside, is small. Therefore, in order to be recognized as a candidate for the road shoulder block 1316 only when there is a certain length along the traveling direction, the minimum length is set to 100 cm or more. In the case of the road shoulder block 1316, it is often interrupted, including the place where cars enter and exit, and the case where trees are planted. Therefore, roadside candidates are connected up to a maximum distance of 500 cm.
- the road shoulder block 1316 there may be a gap further than that, but if it is extended further, the road shoulder block 1316 that was interrupted at an intersection etc. will also be connected, and it is judged that it is not possible to turn left or right to an orthogonal intersection. I'm in trouble when it comes to. Therefore, basically, the road shoulder blocks 1316 having a maximum distance of up to 500 cm are connected. If the gap of the road shoulder block 1316 is wider than this, it is treated as another road shoulder block.
- the feature amount is extracted for the step that is lower than the traveling road surface in the minus step portion 214.
- Features are extracted at the boundaries of fields, rice fields, gutters, etc. that are lower than the road surface.
- the feature amount in a place lower than the traveling road surface is often difficult to obtain the feature amount due to the influence of shadows and the like, and the reliability is low.
- the reliability is low because the features of the same depth are not accumulated in the height direction. Therefore, if the condition of a certain length of 200 cm or more is not satisfied, the reliability is low, and the roadside candidate connecting portion 320 does not use such a negative step as a roadside candidate.
- the minus step is interrupted, but if you connect too long a distance, the effect of false detection is also a concern, so here, gaps up to 300 cm are connected as the same roadside candidate.
- the texture information on the road surface of the captured image is used in the roadside portion 215 without steps of the roadside feature amount extraction unit 210 to distinguish between the traveling road and the lateral region.
- the feature amount is voted on the boundary region where it is determined that the texture is different between the traveling path and the lateral region. Using the votes on this map, roadside candidates as roadsides without steps are connected. Since there are cases where the texture is unstable, the roadside candidate is selected only when the texture is continuously 200 cm or more, and the gap is limited to 300 cm.
- the height should be 30 cm or more, and the minimum width in the running direction should be 10 cm or more.
- an acceptor is used for this feature quantity in order to recognize it as a roadside by connecting a considerably short object or connecting a considerably large gap. Therefore, not only is it specified as a roadside candidate with a width of 10 cm or more, but also a traveling road division three-dimensional object having a width of up to 800 cm is connected to be a roadside candidate.
- the travel road classification determination unit 330 performs a process of determining the travel road classification of the own vehicle using the information of the roadside candidates connected by the roadside candidate connection unit 320.
- FIG. 17 shows an example in which roadside candidates of the same feature amount type are connected by the connecting roadside candidate generation unit 310 based on the conditions of FIG.
- the connection will be described for the left side roadside of the vehicle V0 traveling on the traveling road 1311A shown on the upper side of FIG.
- the feature amount of the three-dimensional object cumulative 1331 those having a road surface height and a minimum length of 50 cm or more are selected as roadside candidates. Therefore, in the example shown in FIG. 17, two roadside candidates 1702 and 1703 are generated for the building 1315. Since the maximum distance between the two roadside candidates 1702 and 1703 is 500 cm or more, they are not connected to each other and are generated as separate roadside candidates. In FIG. 17, it is expressed that the black circles indicating the feature quantities of the three-dimensional object cumulative 1331 are connected by connecting them with a straight line.
- a plurality of negative step feature amounts 1334 adjacent to each other are connected.
- the minus step of the gutter 1313 is partially interrupted by the lid 1314 that closes the gutter 1313.
- the minimum length of the minus step is 200 cm or more as a roadside candidate in the connected state and the maximum interval of the minus step is less than 300 cm
- the connection of the minus step feature amount 1334 is continued and the maximum interval of the minus step is 300 cm or more. If it is far from the roadside candidate, it is treated as another roadside candidate. Therefore, as the roadside on the left side of the vehicle V0 shown on the upper side of FIG. 17, two roadside candidates 1701 and 1704 having a minus step are formed inside in the road width direction.
- the minus step is divided into two, one becomes a roadside candidate 1701 with a minus step, and the other is interrupted by the lid 1314. Since the length of the interrupted portion is less than 300 cm, one connected roadside candidate 1704 is used.
- the wall 1318 on the outer side in the road width direction is noise-reduced by the inner priority processing. Therefore, two relatively short roadside candidates 1712 and 1713 can be created. Further, a road shoulder block 1316 having a low step is connected to the inside as a roadside candidate, but there are two interrupted portions of the road shoulder block 1316. Since one interrupted portion has a length of less than 500 cm of the threshold value and the other interrupted portion has a length of 500 cm or more of the threshold value, the roadside candidate 1714 in which one low step 1333 is connected to each other and the other are low. The roadside candidate 1711 in which the step 1333 is divided is generated.
- connection is carried out for a plurality of types of roadside candidates, but the conditions are different when a moving body is included in the plurality of types and when a traveling road division three-dimensional object is included.
- connection is performed even if the deviation of the roadside lateral position is large.
- the lateral position is expected to change significantly as compared with the road shoulder block or the wall, and in the present embodiment, the lateral position (distance in the road width direction from other roadside candidates). ) Is ⁇ 600 cm away, but it is accepted as a connection destination of roadside candidates.
- the lateral position does not change so much, so up to about ⁇ 200 cm is accepted as the connection destination of the roadside candidates.
- a running road that spreads smoothly, connect as it is.
- Example of roadside candidate connection (1)-(3)> 19 to 21 show an example of connecting roadside candidates in the roadside candidate connecting portion 320 that further connects the above-mentioned connecting roadside candidates.
- the travel road classification determination unit 330 determines the final roadside position and type.
- the final result after the roadside candidates are connected is shown by the thick black dashed line.
- FIG. 19 is a diagram illustrating a plurality of types of roadside connection example (1).
- this roadside is at a place where the roadside of the gutter 1313 is interrupted, such as between the roadside candidates 1701 and 1704.
- the gutter 1313 appears again at a position away from the traveling direction by 500 cm or more, and the lid 1314 that closes the gutter 1313 continues for 500 cm or more. Therefore, it is examined whether it is possible to connect in different directions in the horizontal position, but the roadside candidate 1702 of the building 1315 is located at the position shown on the upper side in the figure in which the horizontal position with respect to the traveling direction is more than 200 cm.
- the wall 1318 exists at first , and the road shoulder block 1316 exists ahead of the wall 1318.
- the roadside of the three-dimensional object cumulative 1331 on the wall side is used, but beyond that, there is a low step 1333 which is a road shoulder block. Since the distance between the wall 1318 and the road shoulder block 1316 is less than 200 cm, the wall and the road shoulder block are connected here. Therefore, the connection result of the roadside candidates is one black dashed line 1903.
- FIG. 20 is a diagram illustrating an example of roadside connection including a vehicle.
- FIG. 20 shows the connection result of roadside candidates including a vehicle that is a moving body. Since the roadside of the traveling path 1311 shown on the upper side of FIG. 20 is the same as that of FIG. 19, only the roadside of the traveling path 1312 shown on the lower side of FIG. 20 will be described. The roadside connection result for the rear vehicle traveling on the travel path 1312A shown on the lower side of FIG. 20 is shown.
- most of the low steps (roadside feature amount) 1333 of the road shoulder block 1316 are lined up on the outer side of the traveling road 1312 in the road width direction, and the vehicle is on the traveling road 1312A which is the inner lane.
- Vehicle V 2 which is a preceding moving body exists in the traveling path 1312B in which V 1 exists and is in the outer adjacent lane.
- the feature amount is a moving body because of the speed and the shape of the moving body V2 .
- there are two types of feature quantities the feature quantity 1333 of the road shoulder block 1316 and the feature quantity 1332 of the moving body V 2 , and the connection candidate lines 1714 and 2001 for each feature quantity type. Is pulling.
- Whether or not the mobile body V 2 and the road shoulder block 1316 are to be further connected to each other, respectively, is determined by comparing with the connection conditions shown in FIG. In the case of the example shown in FIG. 20, since the lateral position (separation distance in the road width direction) between the connection candidate line 1714 and 2001 is less than 600 cm, the connection candidate line 1714 of the moving body V2 and the road shoulder block 1316 are connected. The black dashed line connecting the candidate line 2001 is detected as the final result roadside 2002.
- FIG. 21 is a diagram illustrating an example of roadside connection including a travel road division.
- An example of roadside connection for connecting the left side roadside of the vehicle V0 shown on the upper side of FIG. 21 will be described.
- a plurality of triangular poles 2101 are arranged on the travel path 1311B so that general vehicles do not enter the construction site. Therefore, since two of the roadside candidate 1701 which is a part of the gutter 1313 and the roadside candidate 2102 which connects the triangular pole 2101 which is a traveling road division exist inside in the road width direction, the two roadside candidates 1701 and the roadside candidate 1701 It is connected to 2102 and detected as the final result roadside 2111. Roadside candidates created inside the connected component of the travel road division are not treated as connected targets in the first place.
- connection candidates 1711 and 1712 on the road shoulder block 1316 and the wall 1318.
- the lateral positions (separation distance in the road width direction) from the two connection candidates 1711 and 1712 are separated by 200 cm or more, they are not separated in the depth direction (vehicle traveling direction), but are not subject to connection. It is assumed that two different roadsides are detected as they are.
- the traveling road determination unit 300 preferentially adopts the inner roadside and determines the type of the roadside according to the depth. By performing this on the left and right, the horizontal position for each depth is determined. Further, using this result, curve fitting is performed so as to have a spatially smooth running path division. By curve fitting using time-series information, the position of the roadside that is spatially smooth and stable in time is calculated.
- FIG. 22 is a diagram for explaining the configuration of the alarm control unit
- FIG. 23 is a diagram showing information on the alarm and the control margin for the roadside type.
- the alarm control unit 400 uses the result of the travel path determination according to the type to determine whether or not to execute the alarm control, and implements the final warning to the driver and the vehicle control.
- the warning control unit 400 includes a vehicle behavior prediction unit 410, a roadside type contact deviation determination unit 420, an alarm unit 430, and a control unit 440.
- the own vehicle behavior prediction unit 410 predicts the direction and position in which the own vehicle travels according to the steering angle and vehicle speed of the vehicle.
- the roadside type contact deviation determination unit 420 determines whether or not there is a possibility of contact with the roadside on the vehicle behavior predicted by the own vehicle behavior prediction unit 410.
- the alarm unit 430 and the control unit 440 perform more appropriate control by changing the handling method of the alarm and the control according to the roadside type. For example, if the roadside type is a wall or an obstacle, contact or collision will have a large effect on vehicles and occupants. Therefore, early warning and control will be implemented for roadside types that are likely to have such a large impact.
- the travel path determination unit 300 When the position between the roadside and the vehicle recognized in is less than 100 cm, an alarm is given to the driver. Then, when the vehicle is further approached to the target, vehicle control is performed so that the vehicle does not come into contact with the roadside or deviate from the traveling road when the separation distance is less than 50 cm.
- an alarm is issued to the driver when the distance is less than 150 cm, and vehicle control is performed when the distance is less than 75 cm.
- these variables can be a dynamic method such as reducing the width according to the vehicle speed, and may be adjusted so as to allow driving intentionally approaching at low speed, for example.
- the numerical distance is gradually reduced, and in the case of approximately 0 km, control is performed so that the value is about half of the value shown in the table of FIG. 23. It may be set to give priority to the intention.
- the warning is set to less than 80 cm and the vehicle control is set to less than 40 cm.
- the warning is set to less than 50 cm and the vehicle control is set to less than 20 cm.
- the damage caused by contact with the triangular pole, which is a three-dimensional object, is relatively small. Therefore, the warning is set to less than 80 cm, and the vehicle control is set to less than 20 cm.
- Warnings and controls are implemented according to the lateral position distance set for each of these roadside types.
- safer warnings and vehicle control can be achieved by performing warnings and controls using values of the type with a larger margin. Realize.
- FIG. 24 is a flowchart illustrating the content of the recognition process executed by the image processing device.
- a stereo camera is used to detect the roadside, and further, alarm control is performed.
- a stereo camera captures the left and right images with a stereo camera (S01). Then, after performing parallelization of the left and right images and correction of sensitivity, stereo matching is performed to generate a parallax image (S02). Using the result of stereo matching and the camera geometry and baseline length, a 3D point cloud, which is a collection of points on the 3D coordinates of the structure around the vehicle, is acquired. Then, a plurality of types of roadside features are acquired while using the parallax image and the 3D point cloud together (S03). With the steering angle, yaw rate, and vehicle speed as inputs, the vehicle behavior is estimated using the four-wheel model, and the vehicle behavior is estimated (S04).
- the behavior of the own vehicle may be estimated with higher accuracy by acquiring the relative position of the camera using the feature points obtained from the camera. Using this estimated own vehicle behavior and the acquired roadside feature amount, a map of the roadside feature amount is generated (S05).
- a map of the roadside feature amount is created from the roadside feature amount and the vehicle behavior, the connection condition is changed for each roadside type, the roadside candidate is generated, and the roadside candidate is generated.
- the end candidates are connected based on the connection condition and detected as the road end of the travel path.
- the conventional recognition logic that analyzes the running road basically recognizes the shape of the running road without specifying the type of the roadside. For this reason, it is difficult to properly detect the roadside shape in an environment where multiple types of roadsides coexist, and it is appropriate to determine whether or not to connect when the roadsides are scattered. There is a problem that it cannot be detected and it is not detected.
- the same type of roadside features are preferentially connected and connected according to the type.
- the present invention is not limited to the above-described embodiments, and various designs are designed without departing from the spirit of the present invention described in the claims. You can make changes.
- the above-described embodiment has been described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to the one including all the described configurations.
- it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment and it is also possible to add the configuration of another embodiment to the configuration of one embodiment.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Theoretical Computer Science (AREA)
- Traffic Control Systems (AREA)
- Image Analysis (AREA)
- Image Processing (AREA)
Abstract
The present invention addresses the problem of obtaining an image processing device that, to control a vehicle more safely and comfortably, uses a sensor to sense the surrounding environment of a host vehicle and outputs information required for the control of the host vehicle and for warning. An image processing device according to the present invention detects a road edge of a travel path on the basis of a captured image from an on-vehicle camera, and is characterized by recognizing, from the captured image, the type of an object which constitutes the road edge and changing, in accordance with the type of the object, a parameter for detecting the road edge.
Description
本発明は、車両に搭載されたセンサを活用して車両周囲環境を認識する画像処理装置に関する。
The present invention relates to an image processing device that recognizes the surrounding environment of a vehicle by utilizing a sensor mounted on the vehicle.
特許文献1には、センサを利用して路肩を検知し、予防安全や自動運転に利用する技術が記載されている。
Patent Document 1 describes a technique for detecting a road shoulder using a sensor and using it for preventive safety and automatic driving.
近年、予防安全に関する警報、制御機能が普及期を迎えている。この予防安全の実現のために未然に事故を予測するためのセンシング機能の開発も加速している。現在、普及している機能は、高速道路における予防安全機能、もしくは運転支援、もしくは一般道においては、衝突を未然に防ぐ緊急ブレーキに関するものが多い。その中で、予防安全機能の一つである、路端検知による走行路逸脱防止機能については、路端のセンシングの難易度が高いことからもまだ普及期を迎えていない。
In recent years, warnings and control functions related to preventive safety have reached a period of widespread use. In order to realize this preventive safety, the development of sensing functions for predicting accidents is accelerating. Currently, many of the functions that are widely used are preventive safety functions on expressways, driving assistance, and emergency braking to prevent collisions on general roads. Among them, the roadside deviation prevention function by roadside detection, which is one of the preventive safety functions, has not yet reached the popularization period due to the high difficulty of roadside sensing.
走行路の区画を示すために人工的にペイントされた車線と異なり、路端には、必ずしも人工物の壁や歩道の段差があるわけではない。例えば高速道路の場合、路端には、人工的に整備された壁が設けられている場合が大半であり、車線ほどではないにしても連続的できれいな曲線であることが多く、路端の認識は比較的容易である。一方、一般道の場合は、電柱や岩、草、などの障害物が走行路に飛び出している場合もあり、車両が走行しやすいような曲率形状を事前にモデル化することが困難であり、路端を検知するセンシングの難易度が高い。また、一般道では、路端の形状だけでなく、路端の途切れ、また、路端の種別も混在するような環境であることも多く、路端の認識が難しいシーンが多数存在する。
Unlike lanes that were artificially painted to indicate the section of the road, the roadside does not necessarily have artificial walls or sidewalk steps. For example, in the case of a highway, most of the roadsides are provided with artificially maintained walls, and the curves are often continuous and clean, if not as much as lanes. Recognition is relatively easy. On the other hand, in the case of general roads, obstacles such as utility poles, rocks, and grass may have jumped out onto the road, making it difficult to model in advance a curvature shape that makes it easy for vehicles to travel. The difficulty of sensing to detect the roadside is high. Further, on a general road, not only the shape of the roadside but also the break of the roadside and the type of the roadside are often mixed, and there are many scenes in which it is difficult to recognize the roadside.
一般道においては、塀やガードレール、歩道などの構造物(オブジェクト)は、基本的に走行路に沿った方向の形状が多少なめらかな曲線でなかったとしても、連続につながっている場合が多い。ただし、これらの構造物であっても、店舗や自宅への入り口などでは、途切れが発生したり、他の障害物が遮っていたりするなど、不連続性があり、その路端の種別がすぐに変更されることもある。
On general roads, structures (objects) such as fences, guardrails, and sidewalks are often connected continuously even if the shape in the direction along the road is not a slightly smooth curve. However, even with these structures, there is a discontinuity at the entrance to the store or home, such as interruptions or obstruction by other obstacles, and the type of roadside is immediate. May be changed to.
また、走行路の側方には、非常に背が低く路面と高さの差がないような芝生や砂利、舗装のない土の領域や、または側溝、田んぼ、畑、などのように路面より高さの低い領域も存在し、これらの領域と走行路との間の境界も路端となる。そして、このように領域の種別がさまざまであるだけでなく、走行路の路端には、電柱や障害物、草や側溝の蓋、樹木などさまざまなものが不連続に存在し、これをより適切に認知することが重要な課題となる。
Also, on the side of the road, there are lawns and gravel that are very short and there is no difference in height from the road surface, areas of unpaved soil, or from the road surface such as gutters, rice fields, fields, etc. There are also low-height areas, and the boundary between these areas and the road is also the roadside. Not only are there various types of areas in this way, but there are also various things such as utility poles, obstacles, grass and gutter lids, and trees on the roadside of the road, which are more discontinuous. Proper recognition is an important issue.
本発明は、上記課題に鑑みてなされたものであり、その目的は、より安全かつ快適に車両を制御するために、センサを利用して自車両の周囲環境をセンシングし、自車両の制御や警報に必要な情報を出力する画像処理装置を提供することにある。
The present invention has been made in view of the above problems, and an object of the present invention is to sense the surrounding environment of the own vehicle by using a sensor in order to control the vehicle more safely and comfortably, and to control the own vehicle. An object of the present invention is to provide an image processing device that outputs information necessary for an alarm.
本発明の画像処理装置は、車載カメラの撮像画像に基づいて走行路の路端を検知する画像処理装置であって、前記撮像画像から前記路端を構成するオブジェクトの種別を認識し、該オブジェクトの種別に応じて、前記路端を検知するためのパラメータを変更することを特徴とする。
The image processing device of the present invention is an image processing device that detects the roadside of a traveling road based on an image captured by an in-vehicle camera, recognizes the type of an object constituting the roadside from the captured image, and recognizes the object. It is characterized in that the parameter for detecting the roadside is changed according to the type of the roadside.
本発明によれば、一般道などにおいて複数種類の路端が不連続に存在するような環境であっても、適切に同一種類の路端の特徴を優先的に連結して認識することで、安定的かつ正確に、路端の検知を可能とし、走行路逸脱防止機能の精度向上を図ることができる。
According to the present invention, even in an environment where a plurality of types of roadsides exist discontinuously on a general road or the like, the characteristics of the same type of roadsides can be appropriately connected and recognized appropriately. It is possible to detect the roadside stably and accurately, and to improve the accuracy of the road deviation prevention function.
本発明に関連する更なる特徴は、本明細書の記述、添付図面から明らかになるものである。また、上記した以外の、課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
Further features related to the present invention will be clarified from the description of the present specification and the accompanying drawings. In addition, problems, configurations, and effects other than those described above will be clarified by the following description of the embodiments.
以下、本発明の実施例について図面を用いて説明する。
Hereinafter, examples of the present invention will be described with reference to the drawings.
<画像処理装置>
図1は、本実施形態における画像処理装置の全体構成を示す図である。
画像処理装置1は、センサ部100と、路端種別特徴部200と、走行路判定部300と、警報制御部400を有している。 <Image processing device>
FIG. 1 is a diagram showing an overall configuration of an image processing apparatus according to the present embodiment.
Theimage processing device 1 includes a sensor unit 100, a roadside type characteristic unit 200, a travel path determination unit 300, and an alarm control unit 400.
図1は、本実施形態における画像処理装置の全体構成を示す図である。
画像処理装置1は、センサ部100と、路端種別特徴部200と、走行路判定部300と、警報制御部400を有している。 <Image processing device>
FIG. 1 is a diagram showing an overall configuration of an image processing apparatus according to the present embodiment.
The
センサ部100は、障害物や走行路周辺の形状など車両周囲の環境を検出するセンサを有している。センサ部100は、車載フロントセンサを有する。本実施例では、図2上段(1)に示すように、左右カメラ部(ステレオカメラ)110を、車載フロントセンサの例として記載するが、センサ自体は、図2中段(2)に示すように、カメラ部150単体であっても、図2下段(3)に示すようにカメラ部170とLidar部180のFusionセンサであってもよい。また、センサ部100は、必ずしもセンサを有している必要はなく、車両に設けられた各種センサからの検出信号を取得する構成であってもよい。
The sensor unit 100 has a sensor that detects the environment around the vehicle such as obstacles and the shape around the traveling path. The sensor unit 100 has an in-vehicle front sensor. In this embodiment, as shown in the upper part (1) of FIG. 2, the left and right camera units (stereo cameras) 110 are described as an example of the in-vehicle front sensor, but the sensor itself is as shown in the middle part (2) of FIG. The camera unit 150 may be a single unit, or may be a fusion sensor of the camera unit 170 and the lidar unit 180 as shown in the lower part (3) of FIG. Further, the sensor unit 100 does not necessarily have to have a sensor, and may be configured to acquire detection signals from various sensors provided in the vehicle.
路端種別特徴部200は、路端の種別に応じた特徴量(路端特徴量)の抽出を実施する。路端は、走行路とオブジェクトとの間に形成され、路端の種別は、オブジェクトによって異なる。路端種別特徴部200は、オブジェクトの種別ごとに路端特徴量を抽出し、その抽出した路端特徴量を用いて路端の種別を判定する。自車両の走行可否を示す走行可能領域を区分する境界、つまり、走行路の路端には、さまざまな種別が存在するため、同一の探索方法で異なる種別の路端の特徴量を抽出すること自体が難しかった。例えば、走行路の路面と比較して背の高い障害物、あるいは走行路の路面より低い領域、あるいは3次元の高さの差分はないものの走行路の路面と異なる性質の路面(例えば走行路面がアスファルトに対して、芝や砂利、土など)などのオブジェクトと走行路との境界を、路端として同一の画像処理アルゴリズムで抽出することは困難であった。
The roadside type feature unit 200 extracts the feature amount (roadside feature amount) according to the roadside type. The roadside is formed between the road and the object, and the type of the roadside differs depending on the object. The roadside type feature unit 200 extracts a roadside feature amount for each type of object, and determines the roadside type using the extracted roadside feature amount. Since there are various types of boundaries that divide the travelable area that indicates whether or not the vehicle can travel, that is, the roadside of the road, it is necessary to extract the features of different types of roadside by the same search method. It was difficult in itself. For example, a tall obstacle compared to the road surface of the road, a region lower than the road surface of the road, or a road surface having different properties from the road surface of the road (for example, the road surface has no difference in height in three dimensions). For asphalt, it was difficult to extract the boundary between an object such as turf, gravel, soil, etc. and the roadway using the same image processing algorithm as the roadside.
これに対し、本実施形態では、路端種別特徴部200は、図4に示すように複数種類の抽出手段を組み合わせて利用し、複数の路端特徴量抽出アルゴリズムを併用する方式を採用する。路端種別特徴部200は、抽出した複数種別の路端の各特徴量を同一の空間(地図上)で統合する処理を実施し、ノイズ除去も併せて実施する。路端種別特徴部200は、抽出した路端特徴量をベースにして路端特徴地図を作成する。
On the other hand, in the present embodiment, the roadside type feature unit 200 employs a method in which a plurality of types of extraction means are used in combination and a plurality of roadside feature amount extraction algorithms are used in combination as shown in FIG. The roadside type feature unit 200 performs a process of integrating each feature amount of the extracted plurality of types of roadsides in the same space (on the map), and also performs noise reduction. The roadside type feature unit 200 creates a roadside feature map based on the extracted roadside feature amount.
走行路判定部300は、路端種別特徴部200によって作成された路端特徴地図を利用して、路端の種別に応じた走行路判定を実施する。走行路判定部300では、路端種別特徴部200において路端の種別ごとに路端特徴量が抽出されるため、その路端特徴量を用いて路端特徴地図を作成する。そして、その路端特徴地図から路端候補を抽出し、それぞれの種別ごとに、路端候補の連結を実施し、連結された路端候補を利用して、互いに種別が異なる路端候補をさらに連結するかどうかを判定する。
The travel road determination unit 300 uses the roadside characteristic map created by the roadside type characteristic unit 200 to perform travel road determination according to the roadside type. Since the roadside feature unit 300 extracts the roadside feature amount for each roadside type in the roadside type feature unit 200, the roadside feature map is created using the roadside feature amount. Then, the roadside candidates are extracted from the roadside feature map, the roadside candidates are connected for each type, and the connected roadside candidates are used to further select roadside candidates having different types. Determine whether to concatenate.
基本的に同一種別の路端特徴量は並んでいる可能性が高いが、路端特徴量の種別に応じてもその連続性の発生頻度に違いが生じる。例えば、路端を示す道路脇のポールや、走行路を示す三角ポールなどの場合、互いに連結はされておらず、そもそもが連続して並ぶわけでもない。このため、走行路区分を示すマーカー自体が連続して並べることがほぼない上に、これらの場合には、互いに大きな間隔を有して走行路に並べられているため、これらの種別の特徴は、かなりの長い距離まで連結させて走行路区分を判断する必要がある。
Basically, there is a high possibility that roadside features of the same type are lined up, but there is a difference in the frequency of occurrence of the continuity depending on the type of roadside features. For example, in the case of a roadside pole indicating a roadside or a triangular pole indicating a traveling road, they are not connected to each other and are not lined up continuously in the first place. For this reason, the markers themselves indicating the track divisions are rarely arranged continuously, and in these cases, they are arranged on the track with a large distance from each other, so that the characteristics of these types are characteristic. , It is necessary to judge the track division by connecting up to a considerably long distance.
警報制御部400は、所定の状況下でドライバに警報を行い、状況が改善されない場合には、車両制御を行う。警報制御部400は、走行路判定部300の判定結果に応じて、車両が走行路の境界である路端に接近し、走行路から逸脱しそうな場合に、まず警報音の吹鳴や警報表示によりドライバに警報を行い、さらにそれでも、逸脱しそうな状況が継続される、もしくは、走行路境界との距離が著しく近い、もしくはこのまま操舵しなければ、ある一定時間後には走行路を逸脱すると判定された場合には、操舵とブレーキの車両制御を実施し、車両が走行路を逸脱するのを抑制する。
The alarm control unit 400 gives an alarm to the driver under a predetermined situation, and controls the vehicle when the situation is not improved. The warning control unit 400 first emits an alarm sound or displays an alarm when the vehicle approaches the roadside, which is the boundary of the travel path, and is likely to deviate from the travel path, according to the determination result of the travel path determination unit 300. It was determined that the driver would be alerted, and if the situation that was likely to deviate continued, or if the distance to the road boundary was extremely short, or if the vehicle was not steered as it was, the vehicle would deviate from the road after a certain period of time. In that case, vehicle control of steering and braking is performed to prevent the vehicle from deviating from the driving path.
<センサ部100>
図2は、センサ部の構成を説明する図である。
本実施例においては、先に示したように基本的には、ステレオカメラを前提とした実施例を記載する。ただし、先にも示したように、図2中段(2)、図2下段(3)にも示すように、センサ部100は、カメラ部150を有する単眼カメラであってもよく、また、カメラ部170とLidar部180を組み合わせたFusionセンサであってもよいし、このほかのTOFセンサや、ミリ波とカメラなどとのFusionセンサなどであってもよい。 <Sensor unit 100>
FIG. 2 is a diagram illustrating the configuration of the sensor unit.
In this embodiment, as shown above, an embodiment assuming a stereo camera is basically described. However, as shown above, as shown in the middle row (2) of FIG. 2 and the lower row (3) of FIG. 2, thesensor unit 100 may be a monocular camera having a camera unit 150, and the camera may be a camera. It may be a Fusion sensor in which the unit 170 and the Lidar unit 180 are combined, or it may be another TOF sensor, a Fusion sensor of a millimeter wave and a camera, or the like.
図2は、センサ部の構成を説明する図である。
本実施例においては、先に示したように基本的には、ステレオカメラを前提とした実施例を記載する。ただし、先にも示したように、図2中段(2)、図2下段(3)にも示すように、センサ部100は、カメラ部150を有する単眼カメラであってもよく、また、カメラ部170とLidar部180を組み合わせたFusionセンサであってもよいし、このほかのTOFセンサや、ミリ波とカメラなどとのFusionセンサなどであってもよい。 <
FIG. 2 is a diagram illustrating the configuration of the sensor unit.
In this embodiment, as shown above, an embodiment assuming a stereo camera is basically described. However, as shown above, as shown in the middle row (2) of FIG. 2 and the lower row (3) of FIG. 2, the
図2上段(1)のセンサ部100がステレオカメラであると想定した本実施例においては、左右カメラ部110において左右カメラの撮像画像を取得し、これを幾何、感度の補正をして、左右カメラ部110の撮像画像がステレオマッチングするために必要な幾何的な補正である平行化を実施、左右カメラの色合い、輝度などが同じになるように設定する感度キャリブレーションを実施する。この感度と幾何のキャリブレーションを実施したのち、ステレオマッチング部120において左右の撮像画像のステレオマッチングを実施することで、視差画像を生成する。3D点群生成部130では、この視差画像からカメラ内部パラメータを利用して3次元点群を生成する。
In this embodiment assuming that the sensor unit 100 in the upper part (1) of FIG. 2 is a stereo camera, the left and right camera units 110 acquire images captured by the left and right cameras, correct the geometry and sensitivity, and then perform left and right. Parallelization, which is a geometric correction necessary for stereo-matching the captured image of the camera unit 110, is performed, and sensitivity calibration is performed so that the hue, brightness, and the like of the left and right cameras are the same. After calibrating the sensitivity and geometry, the stereo matching unit 120 performs stereo matching of the left and right captured images to generate a parallax image. The 3D point cloud generation unit 130 generates a three-dimensional point cloud from this parallax image by using the internal parameters of the camera.
<路端種別特徴部200>
図3は、路端種別特徴部の構成を説明する図である。
路端種別特徴部200は、路端特徴量抽出部210と、自車挙動推定部220と、路端特徴地図生成部230と、内側特徴優先部240と、内側特徴種別判定部250とを有している。 <Roadsidetype feature unit 200>
FIG. 3 is a diagram illustrating the configuration of a roadside type feature section.
The roadsidetype feature unit 200 includes a roadside feature amount extraction unit 210, a vehicle behavior estimation unit 220, a roadside feature map generation unit 230, an inner feature priority unit 240, and an inner feature type determination unit 250. is doing.
図3は、路端種別特徴部の構成を説明する図である。
路端種別特徴部200は、路端特徴量抽出部210と、自車挙動推定部220と、路端特徴地図生成部230と、内側特徴優先部240と、内側特徴種別判定部250とを有している。 <Roadside
FIG. 3 is a diagram illustrating the configuration of a roadside type feature section.
The roadside
路端種別特徴部200では、自車両が走行可能な領域を判定するために利用するための路端の特徴量を取得する。特に、路端特徴量抽出部210においては、走行可能な領域である道路と境界となる障害物や側溝、路肩ブロックなどのオブジェクトが存在する位置からステレオカメラの3次元情報、カメラからの撮像画像の情報を利用して路端特徴量を抽出する。抽出した路端特徴量には、路端の種別情報と位置情報が含まれている。
The roadside type feature unit 200 acquires the feature amount of the roadside to be used for determining the area in which the own vehicle can travel. In particular, in the roadside feature amount extraction unit 210, three-dimensional information of the stereo camera and an image captured by the camera are obtained from the position where objects such as obstacles, gutters, and road shoulder blocks that are boundaries with the road, which is a travelable area, exist. The roadside features are extracted using the information in. The extracted roadside features include roadside type information and location information.
路端特徴量抽出部210では、これらの路端特徴量は、センサ部100で撮像される単フレームの結果ごとに、つまり、毎フレームにおいてそれぞれ抽出される。しかしながら、走行路の区分線は、単フレームのみで判定するよりも、過去に抽出した路端特徴量も合わせて判定した方が、安定的かつなめらかな境界を抽出可能である。つまり、前進する車両からすれば、自車の後方の路端を含めて走行路区分の境界を判定したほうがよい。
In the roadside feature amount extraction unit 210, these roadside feature amounts are extracted for each result of a single frame imaged by the sensor unit 100, that is, for each frame. However, it is possible to extract a stable and smooth boundary by determining the dividing line of the traveling road together with the roadside feature amount extracted in the past, rather than determining by only a single frame. That is, from the viewpoint of a vehicle moving forward, it is better to determine the boundary of the travel path division including the road edge behind the own vehicle.
このため、抽出した路端特徴量を時系列に並べて地図上の路端特徴量とするために、自車挙動推定部220では、自車両の挙動を推定し、路端特徴地図生成部230では、推定した結果に基づいて、毎フレーム得られた路端特徴量を地図上に並べて投票する処理を行う。これにより、毎フレームにおいてそれぞれ得られた路端特徴量が自車両の上から見る俯瞰図上で並べられ、あたかも走行路との境界を示す地図のように路端特徴量が並べられる。この際に、特徴量の種別に関する情報も含めて地図上に投票する。つまり、地図上で路端が位置する点に、路端特徴量の種別に関する情報も紐付けて記憶させる処理が行われる。
Therefore, in order to arrange the extracted roadside features in chronological order to obtain the roadside features on the map, the own vehicle behavior estimation unit 220 estimates the behavior of the own vehicle, and the roadside feature map generation unit 230. , Based on the estimated result, the roadside features obtained for each frame are arranged on the map and voted. As a result, the roadside features obtained in each frame are arranged on the bird's-eye view seen from above the own vehicle, and the roadside features are arranged as if they were a map showing the boundary with the traveling road. At this time, vote on the map including information on the types of features. That is, a process is performed in which information on the type of the roadside feature amount is also associated and stored at the point where the roadside is located on the map.
しかしながら、この時点では、ノイズとして得られた路端特徴量も含めて地図上に並べられる。このため、地図上において、まずは、自車が走行する位置から横方向(走行路の路幅方向)に最も近い、つまり最も内側となるオブジェクトの特徴量を優先的に保持し、それよりも外側(路幅方向外側)に重複して存在する他のオブジェクトの特徴量を、地図上から削減する処理を、内側特徴優先部240にて実施する。これは、路端領域において、路幅方向内側に存在する路肩ブロックもしくは側溝、壁などのオブジェクトよりも、路幅方向外側に存在するより背の高い壁や樹木、ビルなどから構成されたオブジェクトの路端特徴量を排除することで、路幅方向で最も内側にあるオブジェクト、つまり、車両に最も近いオブジェクトによって構成される路端を、より正しく、ノイズに影響をうけることなく判定できるようにする。
However, at this point, the roadside features obtained as noise are also arranged on the map. For this reason, on the map, first, the feature amount of the object closest to the lateral direction (road width direction of the travel path) from the position where the own vehicle travels, that is, the innermost object is preferentially held, and the feature amount is held outside it. The inner feature priority unit 240 performs a process of reducing the feature amount of other objects overlapping (outside in the road width direction) from the map. This is an object composed of taller walls, trees, buildings, etc. existing outside the road width direction than objects such as road shoulder blocks or gutters, walls existing inside the road width direction in the roadside region. By eliminating the roadside features, the roadside composed of the innermost object in the road width direction, that is, the object closest to the vehicle, can be determined more accurately and without being affected by noise. ..
次に、地図上にある閾値以上に投票された路端特徴量の種別情報について、自車両の右路端と左路端を別々に処理し、自車両の左右に並ぶ路端特徴量の種別を、内側特徴種別判定部250にて特定する。この際に、奥行き別に複数種類の特徴が混ざるような場合もありうる。基本は主となる特徴種別を特定、もしくは混合する特徴種別を複数個特定し、極端に特徴量の少ない種別に関してはノイズとする。
Next, regarding the type information of the roadside feature amount voted above the threshold value on the map, the right roadside and the left roadside of the own vehicle are processed separately, and the type of the roadside feature amount arranged on the left and right of the own vehicle is processed separately. Is specified by the inner feature type determination unit 250. At this time, there may be a case where a plurality of types of features are mixed according to the depth. Basically, the main feature types are specified, or multiple feature types to be mixed are specified, and the types with extremely small features are regarded as noise.
<路端特徴量抽出部210>
図4は、路端特徴量抽出部の構成を説明する図である。路端特徴量抽出部210は、立体物累積部211、移動体部212、低段差部213、マイナス段差部214、段差なし路端部215、及び走行路区分立体物部216を備えている。 <Roadside featureamount extraction unit 210>
FIG. 4 is a diagram illustrating the configuration of the roadside feature amount extraction unit. The roadside featureamount extraction unit 210 includes a three-dimensional object accumulating portion 211, a moving body portion 212, a low step portion 213, a minus step portion 214, a stepless roadside portion 215, and a travel path division three-dimensional object portion 216.
図4は、路端特徴量抽出部の構成を説明する図である。路端特徴量抽出部210は、立体物累積部211、移動体部212、低段差部213、マイナス段差部214、段差なし路端部215、及び走行路区分立体物部216を備えている。 <Roadside feature
FIG. 4 is a diagram illustrating the configuration of the roadside feature amount extraction unit. The roadside feature
路端特徴量抽出部210では、オブジェクトの種類に応じて路端を検知するためのパラメータを変更する。ここでは、オブジェクトの種別に応じてさまざまな種類の路端特徴量を抽出する。図5は、路端の種類の例を断面で模式的に示す図である。図5(1)は、走行路(車道)501の路幅方向右側に側溝502が存在し、走行路501の中心よりも路幅方向左側の路端に背の高いフェンスが設けられた立体物累積領域503と、さらにその立体物累積領域503の路幅方向左側に歩道504がある例を示している。
The roadside feature amount extraction unit 210 changes the parameters for detecting the roadside according to the type of the object. Here, various types of roadside features are extracted according to the type of object. FIG. 5 is a diagram schematically showing an example of a roadside type in a cross section. FIG. 5 (1) shows a three-dimensional object in which a gutter 502 exists on the right side of the roadway (carriageway) 501 in the road width direction, and a tall fence is provided at the roadside on the left side in the road width direction from the center of the roadway 501. An example is shown in which the cumulative area 503 and the sidewalk 504 are further on the left side in the road width direction of the three-dimensional object cumulative area 503.
図5(1)に示す例では、走行路501と側溝502との間の境界、及び、走行路501と立体物累積領域503との間の境界が、それぞれ路端となる。そして、図5(2)は、走行路511の路幅方向左側に比較的低い段差を介して歩道514が設けられ、走行路511の路幅方向右側に凸条の路肩ブロック512が配置され、さらにその右側に歩道513が配置されている例を示している。図5(2)に示す例では、走行路511と歩道514との間の境界、及び、走行路511と路肩ブロック512との間の境界が、それぞれ路端となる。
In the example shown in FIG. 5 (1), the boundary between the traveling path 501 and the gutter 502 and the boundary between the traveling path 501 and the three-dimensional object cumulative region 503 are the roadsides, respectively. Further, in FIG. 5 (2), a sidewalk 514 is provided on the left side of the travel path 511 in the road width direction via a relatively low step, and a convex road shoulder block 512 is arranged on the right side of the travel path 511 in the road width direction. Further, an example is shown in which the sidewalk 513 is arranged on the right side thereof. In the example shown in FIG. 5 (2), the boundary between the runway 511 and the sidewalk 514 and the boundary between the runway 511 and the road shoulder block 512 are the roadsides, respectively.
そして、図5(3)は、走行路521の路幅方向左側に芝、砂利、あるいは土などが走行路521の路面と同じ高さで連続する段差なし領域522が配置され、走行路521の路幅方向右側には、例えば田んぼ、畑、低地など、走行路521との間に段差を介して走行路521の路面よりも低いマイナス段差領域523が存在している例が示されている。図5(3)に示す例では、走行路521と段差なし領域522との間の境界、及び、走行路521とマイナス段差領域523との間の境界が、それぞれ路端となる。
Then, in FIG. 5 (3), a stepless region 522 in which grass, gravel, soil, etc. are continuous at the same height as the road surface of the road 521 is arranged on the left side of the road 521 in the road width direction, and the road 521 has a stepless region 522. On the right side in the road width direction, an example is shown in which a minus step region 523, such as a rice field, a field, or a lowland, is present between the road and the road 521 via a step that is lower than the road surface of the road 521. In the example shown in FIG. 5 (3), the boundary between the traveling path 521 and the stepless area 522 and the boundary between the traveling path 521 and the minus stepped area 523 are the roadsides, respectively.
例えば、図5(1)に示すように、立体物累積部211では、走行路501の路面と比較して背の高い立体物に対して特徴量を抽出する。立体物累積部211は、立体物の背が高いほど、つまり、路面高さが高いほど、より特徴量が累積して、安定した特徴量を抽出できる。図6(1)は、ステレオカメラで撮像した原画であり、図6(2)は、視差画像を利用して作成した累積特徴量抽出画像である。立体物累積部211では、左右一対の原画を用いて視差画像を生成し、走行路の視差画像に対する累積路端特徴量抽出処理を実施する。図6(1)に示す原画601には、先行車602が撮像されており、走行路603の左右には路肩ブロック604、605と壁606、607が配置されている。
For example, as shown in FIG. 5 (1), the three-dimensional object accumulating portion 211 extracts a feature amount for a three-dimensional object that is taller than the road surface of the traveling path 501. The three-dimensional object accumulating portion 211 can extract a stable feature amount by accumulating more features as the height of the three-dimensional object is higher, that is, the higher the road surface height is. FIG. 6 (1) is an original image captured by a stereo camera, and FIG. 6 (2) is a cumulative feature extraction image created by using a parallax image. The three-dimensional object accumulation unit 211 generates a parallax image using a pair of left and right original images, and performs a cumulative roadside feature amount extraction process for the parallax image of the traveling road. In the original image 601 shown in FIG. 6 (1), the preceding vehicle 602 is imaged, and the road shoulder blocks 604 and 605 and the walls 606 and 607 are arranged on the left and right sides of the traveling path 603.
路端特徴量抽出部210では、図6(2)に示すように、横方向に画像横座標、縦方向は奥行きを示す視差値とし、下側にあるほど視差値が大きな近距離、上側であるほど視差値が小さな遠距離とする画像を生成する。そして、視差画像のそれぞれ横座標1列ずつ、投票処理を実施する。例えば、自車両の存在する画像中心で考えると、視差画像の下側は路面上の視差値であるため、視差画像の下側から1視差値ずつ読み込めば少しずつ遠距離の視差値となり投票場所が少しずつ上側に移動する累積路端特徴量抽出結果となる。
In the roadside feature amount extraction unit 210, as shown in FIG. 6 (2), the parallax value indicates the image horizontal coordinates in the horizontal direction and the depth in the vertical direction. Generates an image with a small parallax value at a long distance. Then, the voting process is performed for each row of abscissa of the parallax image. For example, considering the center of the image in which the own vehicle exists, the lower side of the parallax image is the parallax value on the road surface, so if one parallax value is read from the lower side of the parallax image, it gradually becomes a long-distance parallax value and the voting place. Is the result of extracting the cumulative roadside feature amount that gradually moves upward.
しかしながら、視差画像が先行車の足元位置にたどりついたところで、先行車の足元位置から屋根位置までの視差値は奥行き距離が一定となる。したがって、累積路端特徴量抽出画像では、同じ視差値、同じ画像横座標に累積路端特徴量の投票が集まることになり、投票値が高い結果となる。これは同様に、路肩ブロックや壁も同じような結果となる。
However, when the parallax image reaches the foot position of the preceding vehicle, the parallax value from the foot position of the preceding vehicle to the roof position has a constant depth distance. Therefore, in the cumulative roadside feature amount extraction image, votes for the cumulative roadside feature amount are gathered at the same parallax value and the same image abscissa, resulting in a high voting value. This also has similar results for shoulder blocks and walls.
視差画像上での路面は、視差画像の上側に行くほど、奥行きが遠くなるため、特徴量が累積されることなく分散した場所へ投票される。しかしながら、路肩ブロックや壁のように、高さのある物体の位置にさしかかると、視差画像上では上方向に連続して同じ視差値となるため、視差値と画像横座標とからなる投票空間上においては、視差値が累積される結果となる。このため、本実施例においては、この投票空間上において視差値が累積されるほど、壁や路肩ブロックなど路面よりも高い障害物が存在することを想定する。図6(2)に示す例では、左右の壁616、617の位置に、より多くの視差値が累積されており、明確に白く示されている。そして、路肩ブロック614、615の位置および先行車の足元位置にも、視差値が累積されて白く示されている。
The depth of the road surface on the parallax image becomes farther toward the upper side of the parallax image, so votes are cast for dispersed places without accumulating features. However, when approaching the position of a tall object such as a road shoulder block or a wall, the same parallax value is continuously obtained in the upward direction on the parallax image, so that the parallax value and the image horizontal coordinates are on the voting space. As a result, the parallax values are accumulated. Therefore, in this embodiment, it is assumed that the more the parallax values are accumulated in this voting space, the more obstacles such as walls and shoulder blocks are higher than the road surface. In the example shown in FIG. 6 (2), more parallax values are accumulated at the positions of the left and right walls 616 and 617, and are clearly shown in white. The parallax values are also accumulated and shown in white at the positions of the road shoulder blocks 614 and 615 and the foot positions of the preceding vehicle.
上記、立体物累積部211において得られた特徴量の中には、移動体の側面に関するような特徴量も存在する。例えば、移動体として隣接車線を走行する車両が存在する場合、単フレームの処理で考えれば、壁と同様に特徴量が累積されるため、この移動体に対しても特徴量の抽出が可能である。この抽出された特徴量と、車両検知の結果を合わせて利用することで、移動体に対する特徴量であることを移動体部212で特定し、立体物累積部211とは異なる種別の特徴量として扱う。つまり、移動体部212では、先行車や対向車等の移動体の特徴量を抽出する処理を行う。
Among the feature quantities obtained in the three-dimensional object accumulating portion 211, there are also feature quantities related to the side surface of the moving body. For example, when there is a vehicle traveling in an adjacent lane as a moving body, the feature amount is accumulated like a wall when considering the processing of a single frame, so that the feature amount can be extracted for this moving body as well. be. By using this extracted feature amount together with the result of vehicle detection, the moving body unit 212 identifies that it is a feature amount for a moving body, and as a feature amount of a type different from that of the three-dimensional object accumulating part 211. deal. That is, the moving body unit 212 performs a process of extracting the feature amount of the moving body such as the preceding vehicle and the oncoming vehicle.
低段差部213では、立体物累積部211においては特徴量を抽出しづらい5cm程度の低段差の特徴量を主に抽出する処理を行う。図5(2)の左側に示すように、低段差の歩道514は、走行路511の路面と比較して高さの差が小さいことから、立体物累積部211において抽出される特徴量では累積量が少ない。したがって、低段差部213にて、専用に低段差の特徴量を抽出する処理を行う。
In the low step portion 213, the feature amount of a low step of about 5 cm, which is difficult to extract in the three-dimensional object accumulation portion 211, is mainly extracted. As shown on the left side of FIG. 5 (2), the low step sidewalk 514 has a small difference in height as compared with the road surface of the traveling path 511, so that the feature amount extracted by the three-dimensional object accumulating portion 211 is cumulative. The amount is small. Therefore, the low step portion 213 exclusively performs a process of extracting the feature amount of the low step.
図7は、低段差路端とマイナス路端の特徴量抽出方法を説明する図である。例えば図7の左側に矢印711で示すように、視差画像701上を走行路703の中心位置702から左方向に探索する。視差値と画像位置から3次元位置を計算し、走行路703の路面の高さと比較して高い段差が生じるかを比較し、走行路703との間に閾値以上の高い特徴量が連続して抽出された箇所を、走行路703との間の路端特徴量として抽出する。
FIG. 7 is a diagram illustrating a method for extracting features of a low step road edge and a minus road edge. For example, as shown by the arrow 711 on the left side of FIG. 7, the parallax image 701 is searched to the left from the center position 702 of the traveling path 703. The three-dimensional position is calculated from the parallax value and the image position, and it is compared whether a high step is generated compared with the height of the road surface of the traveling road 703. The extracted portion is extracted as a roadside feature amount between the traveling road 703 and the traveling road 703.
同様に、マイナス段差部214では、これまでの手法では特徴量を抽出することができなかった走行路703の路面より低い段差を抽出する。センサ部100のステレオカメラでは、例えば側溝705などの走行路703の路面よりも低い段差を検出することができる。マイナス段差部214は、例えば図5(1)右に示す側溝502や、また、図5(3)右に示す田んぼや畑などの、走行路よりも低いマイナス段差領域523の特徴量を抽出する。例えば図7の右側に矢印712で示すように、視差画像上を走行路703の中心位置702から右方向に探索する。視差値と画像位置から3次元位置を計算し、路面の高さと比較して、路面よりも低い段差が生じるかを判断し、走行路703の路面よりも閾値以上に低い特徴量が連続して抽出された箇所を、走行路703との間の路端特徴量として抽出する。図7に示す例では、低段差部213によって路面よりは高いがその高さが低い歩道704の特徴量を抽出し、マイナス段差部214によって路面よりも低い側溝705の特徴量を抽出することができる。
Similarly, in the minus step portion 214, a step lower than the road surface of the traveling road 703, for which the feature amount could not be extracted by the conventional method, is extracted. The stereo camera of the sensor unit 100 can detect a step lower than the road surface of the traveling road 703 such as a gutter 705. The minus step portion 214 extracts the feature amount of the minus step region 523 lower than the traveling path, for example, the gutter 502 shown on the right side of FIG. 5 (1) and the rice field or the field shown on the right side of FIG. 5 (3). .. For example, as shown by the arrow 712 on the right side of FIG. 7, the parallax image is searched to the right from the center position 702 of the traveling path 703. The three-dimensional position is calculated from the disparity value and the image position, compared with the height of the road surface to determine whether a step lower than the road surface is generated, and the feature amount lower than the road surface of the traveling road 703 is continuously lower than the threshold value. The extracted portion is extracted as a roadside feature amount between the traveling road 703 and the traveling road 703. In the example shown in FIG. 7, the feature amount of the sidewalk 704 that is higher than the road surface but lower than the road surface can be extracted by the low step portion 213, and the feature amount of the gutter 705 lower than the road surface can be extracted by the minus step portion 214. can.
図8は、段差なし路端と走行路区分路端の特徴量抽出方法を説明するイメージ図である。段差なし路端に関しては、図8の左側に示すように、舗装された道路の左側に走行路803Aと同じ高さであるにもかかわらず、芝や砂利、土など、走行路803と異なる物質で構成され、走行に適さない段差なし領域805との境界を、段差なし路端の路端特徴量として抽出する。この段差なし領域805の識別のためには、基本的にDeepLearningのような機械学習を利用して、走行可能な路面領域(走行路803A)と走行不可な段差なし領域805とを抽出し、この境界を、路端特徴量として段差なし路端部215にて抽出する。
FIG. 8 is an image diagram illustrating a method for extracting features of a roadside without steps and a roadside with a section of a traveling road. As for the roadside without steps, as shown on the left side of FIG. 8, substances different from the roadway 803, such as grass, gravel, and soil, although the height is the same as the roadway 803A on the left side of the paved road. The boundary with the stepless region 805, which is not suitable for traveling, is extracted as the roadside feature amount of the stepless roadside. In order to identify the stepless region 805, basically, machine learning such as Deep Learning is used to extract a travelable road surface region (travel road 803A) and a non-travelable stepless region 805, and the region is extracted. The boundary is extracted at the roadside portion 215 without a step as a roadside feature amount.
最後に、走行路区分立体物に関しては、図8の右側に示すように、工事中などの理由によって車両の走行を制限する目的で、三角ポールを臨時的な並べるような場合が存在する。また、車両移動方向を制限する目的などで駐車場や店舗に入る前の交差点など、ポールが常設されているような場合もある。特に工事の三角ポールなどは暫定できない目的であるため、三角ポール同士の距離が離れている、そもそも設置個数が少ないなど、走行可能領域と工事のため走行不可にしたい領域との分割が難しい。
Finally, as shown on the right side of FIG. 8, there is a case where triangular poles are temporarily arranged for the purpose of restricting the running of the vehicle due to reasons such as during construction. In addition, there are cases where poles are permanently installed, such as in parking lots and intersections before entering stores, for the purpose of restricting the direction of vehicle movement. In particular, since the triangular poles for construction work cannot be provisionally implemented, it is difficult to divide the area where the triangular poles can be traveled and the area where the construction is to be disabled due to the fact that the triangular poles are far apart from each other and the number of installations is small.
ただし、ステレオカメラでは、走行路803Bに並べられている三角ポールを立体物として抽出可能である。このため、立体物として検知された後に、その大きさが一般的な三角ポールの範囲内であるとすると、識別機にてこれが車両の移動を制限するために利用されるような三角ポールであるかどうかの識別を実施する。車両の移動を制御する目的の走行路区分立体物であると識別された場合には、路端特徴量として走行路区分立体物部216にて抽出する。
However, with a stereo camera, the triangular poles lined up on the track 803B can be extracted as a three-dimensional object. For this reason, if the size is within the range of a general triangular pole after being detected as a three-dimensional object, this is a triangular pole that is used by the identifyr to limit the movement of the vehicle. Perform identification. When it is identified as a traveling road division three-dimensional object for controlling the movement of the vehicle, it is extracted by the traveling road division three-dimensional object unit 216 as a roadside feature amount.
路端特徴量抽出部210は、各抽出部211~216において抽出された種々の特徴量に対して、抽出された処理ごとに、種別情報を付加する。これにより、どの種別の特徴量が並んでいるかなどの判定に利用する。
The roadside feature amount extraction unit 210 adds type information to each of the various feature amounts extracted by the extraction units 211 to 216 for each extracted process. This is used to determine which type of feature quantity is lined up.
<自車挙動推定部220>
図9は、自車挙動推定部の構成を説明する図である。
自車挙動推定部220では、自車の挙動をCAN情報である車速センサの結果や、ヨーレートもしくは操舵角度などの車両情報を活用し、図10(1)に示すような4輪モデルによる自車両の挙動予測を挙動推定演算部221にて実施する。 <Vehiclebehavior estimation unit 220>
FIG. 9 is a diagram illustrating the configuration of the own vehicle behavior estimation unit.
The own vehiclebehavior estimation unit 220 utilizes the result of the vehicle speed sensor which is CAN information and the vehicle information such as the yaw rate or the steering angle, and the own vehicle by the four-wheel model as shown in FIG. 10 (1). The behavior estimation calculation unit 221 is used to predict the behavior of the above.
図9は、自車挙動推定部の構成を説明する図である。
自車挙動推定部220では、自車の挙動をCAN情報である車速センサの結果や、ヨーレートもしくは操舵角度などの車両情報を活用し、図10(1)に示すような4輪モデルによる自車両の挙動予測を挙動推定演算部221にて実施する。 <Vehicle
FIG. 9 is a diagram illustrating the configuration of the own vehicle behavior estimation unit.
The own vehicle
この自車挙動推定結果に基づいて、図13及び図14に示すように、路端特徴量を自車両を上から俯瞰したような2次元の座標系において並べることで、自車両が走行したエリアにおける短期間の自車相対の地図を生成する。しかしながら、図10(1)に示すようなCAN情報から自車挙動を推定する手法では、タイヤの空気圧や滑りなど、誤差が多い。このため、CAN情報からの予測だけでなく、もっと高精度の予測を行うために、図10(2)に示すように、時系列の対応点を活用して、自車の2フレーム間の挙動推定を相対位置姿勢推定部222にて実施する。つまり、本実施形態では、自車の車両情報とステレオカメラの撮像画像を用いて自車の挙動を認識する。図10(2)には、タイミングT[frame]とT+1[frame]において自車の右カメラで撮像された画像と、互いの画像において対応する点が示されている。
Based on this vehicle behavior estimation result, as shown in FIGS. 13 and 14, by arranging the roadside features in a two-dimensional coordinate system that looks like a bird's-eye view of the vehicle from above, the area in which the vehicle traveled. Generate a short-term relative map of the vehicle in. However, in the method of estimating the own vehicle behavior from the CAN information as shown in FIG. 10 (1), there are many errors such as tire pressure and slippage. Therefore, in order to make predictions with higher accuracy as well as predictions from CAN information, as shown in FIG. 10 (2), the behavior between two frames of the own vehicle is utilized by utilizing the corresponding points in the time series. The estimation is performed by the relative position / orientation estimation unit 222. That is, in the present embodiment, the behavior of the own vehicle is recognized by using the vehicle information of the own vehicle and the captured image of the stereo camera. FIG. 10 (2) shows that the images captured by the right camera of the own vehicle at the timings T [frame] and T + 1 [frame] correspond to each other in the images.
この手法の場合には、車のタイヤの滑りやタイヤの空気圧、サイズなどに影響されることなく、自車の挙動推定を実施することができる。より精度の高い自車挙動を利用したい場合には、挙動推定演算部221の結果を利用する。ただし、この相対位置姿勢推定部222は、撮影された画像によっては、対応点を必ずしも安定的に抽出できるかわからない。このため、実際には、基本的にはフレーム間の対応点が得られ相対位置を推定できた場合には相対位置姿勢推定部222の結果を利用し、反対に対応点が得られなかった、もしくは得られたとしても移動体などが多く安定した車両挙動が得られなかった場合には、挙動推定演算部221の結果を利用する併用方式を採用する。
In the case of this method, it is possible to estimate the behavior of the own vehicle without being affected by the slippage of the tires of the car, the air pressure of the tires, the size, etc. When it is desired to use the own vehicle behavior with higher accuracy, the result of the behavior estimation calculation unit 221 is used. However, it is not clear that the relative position / orientation estimation unit 222 can always stably extract the corresponding points depending on the captured image. Therefore, in reality, basically, when the corresponding points between the frames can be obtained and the relative position can be estimated, the result of the relative position / attitude estimation unit 222 is used, and on the contrary, the corresponding points cannot be obtained. Alternatively, if stable vehicle behavior cannot be obtained due to a large number of moving objects even if it is obtained, a combined method using the result of the behavior estimation calculation unit 221 is adopted.
さらに、計算負荷が高くなるもののSLAMを利用したような自己地図位置推定部223の結果を活用してもよい。このSLAMの結果が利用できなかった場合にのみ挙動推定演算部221の結果を利用してもよい。図11(1)は、壁1102および1103で囲まれた道路1101の曲がり角を、車両V0が通過する状態と、車両V0が曲がり角を通過する際に埋め込んだ前回のセンシング結果(T[frm])及び今回のセンシング結果(T+1[frm])を示す図である。図11(1)に示すように自分で生成した地図の中に対応点の情報を埋め込んでおいて再度同じルートを通る際に、自己生成した地図内に保存された対応点の情報と、現フレームから抽出された対応点をマッチングさせることで、地図上での自己位置姿勢を推定し、時系列の移動量も求めるような方式でもよい。
Further, although the calculation load is high, the result of the self-map position estimation unit 223 such as using SLAM may be utilized. The result of the behavior estimation calculation unit 221 may be used only when the result of this SLAM cannot be used. FIG. 11 (1) shows a state in which the vehicle V 0 passes through the corner of the road 1101 surrounded by the walls 1102 and 1103, and the previous sensing result (T [frm) embedded when the vehicle V 0 passes through the corner. ]) And the present sensing result (T + 1 [frm]). As shown in FIG. 11 (1), when the corresponding point information is embedded in the map generated by oneself and the same route is taken again, the corresponding point information saved in the self-generated map and the current state. A method may be used in which the self-position and posture on the map are estimated by matching the corresponding points extracted from the frame, and the amount of movement in time series is also obtained.
図11(2)は、高精度地図のイメージ図である。
本実施形態では、高精度地図位置推定部224の結果を活用しても良い。高精度地図1110は、例えば、走行車線1111と、走行車線1111から分岐する分岐車線1112と、分岐車線1112の路端1113と、分岐1114と、中央分離帯1115と、反対車線1116と、反対車線1116に合流する合流車線1117と、合流車線1117の路端1118の情報を含んでいる。図11(2)に示すような自動運転のために高精度地図がもともと準備されているような場合には、この高精度地図と自車位置姿勢の推定を実施する手法であってもよい。もしくは高精度GNSSを活用して、このような高精度地図上の位置を把握する手法であってもよい。これら自車挙動推定部220では、これら複数の手法で並列して自車挙動を推定し、その中から精度の高いものを採用する。 FIG. 11 (2) is an image diagram of a high-precision map.
In this embodiment, the result of the high-precision mapposition estimation unit 224 may be utilized. The high-precision map 1110 is, for example, a traveling lane 1111, a branch lane 1112 branching from the traveling lane 1111, a roadside 1113 of the branch lane 1112, a branch 1114, a central separation zone 1115, an opposite lane 1116, and an opposite lane. It contains information about the merging lane 1117 merging into 1116 and the roadside 1118 of the merging lane 1117. When a high-precision map is originally prepared for automatic driving as shown in FIG. 11 (2), a method of estimating the position and posture of the own vehicle with this high-precision map may be used. Alternatively, it may be a method of grasping the position on such a high-precision map by utilizing high-precision GNSS. The own vehicle behavior estimation unit 220 estimates the own vehicle behavior in parallel by these plurality of methods, and adopts the one with high accuracy from among them.
本実施形態では、高精度地図位置推定部224の結果を活用しても良い。高精度地図1110は、例えば、走行車線1111と、走行車線1111から分岐する分岐車線1112と、分岐車線1112の路端1113と、分岐1114と、中央分離帯1115と、反対車線1116と、反対車線1116に合流する合流車線1117と、合流車線1117の路端1118の情報を含んでいる。図11(2)に示すような自動運転のために高精度地図がもともと準備されているような場合には、この高精度地図と自車位置姿勢の推定を実施する手法であってもよい。もしくは高精度GNSSを活用して、このような高精度地図上の位置を把握する手法であってもよい。これら自車挙動推定部220では、これら複数の手法で並列して自車挙動を推定し、その中から精度の高いものを採用する。 FIG. 11 (2) is an image diagram of a high-precision map.
In this embodiment, the result of the high-precision map
<路端特徴地図生成部>
図12は、路端特徴地図生成部の構成を説明する図である。
路端特徴地図生成部230では、毎フレーム抽出された路端特徴量抽出部210で得られた路端の特徴量を、自車挙動推定部220で得られた結果を利用して、図13に記載するように、自車両真上から見た俯瞰図である路端特徴地図において時系列に並べる。 <Roadside feature map generator>
FIG. 12 is a diagram illustrating the configuration of the roadside feature map generation unit.
In the roadside featuremap generation unit 230, the roadside feature amount obtained by the roadside feature amount extraction unit 210 extracted every frame is obtained by the own vehicle behavior estimation unit 220, and the result obtained in FIG. 13 is used. As described in, arrange them in chronological order on the roadside feature map, which is a bird's-eye view of the vehicle from directly above.
図12は、路端特徴地図生成部の構成を説明する図である。
路端特徴地図生成部230では、毎フレーム抽出された路端特徴量抽出部210で得られた路端の特徴量を、自車挙動推定部220で得られた結果を利用して、図13に記載するように、自車両真上から見た俯瞰図である路端特徴地図において時系列に並べる。 <Roadside feature map generator>
FIG. 12 is a diagram illustrating the configuration of the roadside feature map generation unit.
In the roadside feature
更に、自己位置推定用地図生成部232においては、路端の地図だけでなく、フレーム間の移動量を抽出するために利用された対応点の位置、およびその際の対応点の特徴量などを地図上に3次元位置で保存する。一旦、自己位置推定用地図が完成してしまえば、次回、同じ道路を走行する際には、その正確な位置を復元するために、地図に保存された対応点の位置と、現フレームで検出された対応点とで対応関係を抽出することで、フレーム間だけでなく、地図上との対応点も得ることにより、地図上における位置を特定することが可能となる。
Further, in the self-position estimation map generation unit 232, not only the roadside map but also the position of the corresponding point used for extracting the movement amount between frames, the feature amount of the corresponding point at that time, and the like are obtained. Save it in a three-dimensional position on the map. Once the map for self-position estimation is completed, the next time you drive on the same road, the position of the corresponding point saved in the map and the current frame will be detected in order to restore the accurate position. By extracting the correspondence relationship with the corresponding points, it is possible to specify the position on the map by obtaining the correspondence points not only between the frames but also on the map.
<路端特徴地図>
図13は、路端特徴地図の一例を示す図である。
図13に示すようなシーンにおいては、図13の上側に示される走行路1311では、車両V0が中央分離帯側の走行路1311Aを走行し、ステレオカメラで検知範囲1320の検知を行う。そして、路端特徴量抽出部210によって車両V0の進行方向左側の路端特徴量が抽出され、自車挙動推定部220の推定情報に基づき、路端特徴地図生成部230によって、その時系列の結果が俯瞰の地図上に示される。このシーンにおいては、側溝1313が走行路1311Bの白線よりも路幅方向外側(側方)にあり、さらにその外側に複数の建築物1315が並んで配置されている。このような場合には、側溝1313の特徴量と、その奥の建築物1315に対する立体物累積(路端特徴量)1331とが、それぞれ2種類とも抽出できる。なお、側溝1313は、走行路1311Bに沿って連続して設けられているが、一部に蓋1314が被せられて部分的に途切れた箇所があり、走行方向における特徴量の隙間となる。 <Roadside feature map>
FIG. 13 is a diagram showing an example of a roadside feature map.
In the scene shown in FIG. 13, in thetravel path 1311 shown on the upper side of FIG. 13, the vehicle V0 travels on the travel path 1311A on the median strip side, and the detection range 1320 is detected by the stereo camera. Then, the roadside feature amount on the left side in the traveling direction of the vehicle V0 is extracted by the roadside feature amount extraction unit 210, and based on the estimation information of the own vehicle behavior estimation unit 220, the roadside feature map generation unit 230 detects the time series. The results are shown on a bird's-eye view map. In this scene, the gutter 1313 is on the outside (side) in the road width direction from the white line of the traveling path 1311B, and a plurality of buildings 1315 are arranged side by side on the outside. In such a case, both the feature amount of the gutter 1313 and the three-dimensional object accumulation (roadside feature amount) 1331 for the building 1315 behind it can be extracted. Although the gutters 1313 are continuously provided along the traveling path 1311B, there is a portion where the lid 1314 is partially covered and the side groove 1313 is partially interrupted, which is a gap of the feature amount in the traveling direction.
図13は、路端特徴地図の一例を示す図である。
図13に示すようなシーンにおいては、図13の上側に示される走行路1311では、車両V0が中央分離帯側の走行路1311Aを走行し、ステレオカメラで検知範囲1320の検知を行う。そして、路端特徴量抽出部210によって車両V0の進行方向左側の路端特徴量が抽出され、自車挙動推定部220の推定情報に基づき、路端特徴地図生成部230によって、その時系列の結果が俯瞰の地図上に示される。このシーンにおいては、側溝1313が走行路1311Bの白線よりも路幅方向外側(側方)にあり、さらにその外側に複数の建築物1315が並んで配置されている。このような場合には、側溝1313の特徴量と、その奥の建築物1315に対する立体物累積(路端特徴量)1331とが、それぞれ2種類とも抽出できる。なお、側溝1313は、走行路1311Bに沿って連続して設けられているが、一部に蓋1314が被せられて部分的に途切れた箇所があり、走行方向における特徴量の隙間となる。 <Roadside feature map>
FIG. 13 is a diagram showing an example of a roadside feature map.
In the scene shown in FIG. 13, in the
図13の下側に示される走行路1312に関しても同じように、車両V1が路肩ブロック側の走行路1312Bを走行し、車両V1の進行方向左側の路端特徴量を抽出し、その時系列の結果が俯瞰の地図上に示されている。走行路1312Bの白線よりも路幅方向外側には、背の低い15cm程度の路肩ブロック1316と、さらにその外側に歩道1317を介して壁1318が配置されており、これらに関しても同様に立体物累積の特徴量抽出が可能となる。なお、路肩ブロック1316は、走行路1312Bに沿って連続して設けられているが、部分的に途切れた箇所があり、走行方向における特徴量の隙間となる。
Similarly, for the travel path 1312 shown on the lower side of FIG. 13, the vehicle V1 travels on the travel path 1312B on the shoulder block side , the roadside feature amount on the left side in the traveling direction of the vehicle V1 is extracted, and the time series thereof. The result of is shown on the map of the bird's-eye view. A short road shoulder block 1316 having a height of about 15 cm and a wall 1318 via a sidewalk 1317 are arranged outside the white line of the road 1312B in the road width direction. It is possible to extract the feature amount of. Although the road shoulder block 1316 is continuously provided along the traveling path 1312B, there is a partially interrupted portion, which is a gap of the feature amount in the traveling direction.
このように走行路の路幅方向一方側と他方側にはそれぞれ複数の特徴量が2重に存在し、かつ走行方向に特徴量の隙間が存在するような場合には、その隙間が長くなるほど、どのように特徴量を連結して路端と判断すべきかが難しくなる。
In this way, when a plurality of feature amounts are doubled on one side and the other side in the road width direction of the traveling path and there is a gap between the feature amounts in the traveling direction, the longer the gap is, the longer the gap is. , It becomes difficult how to connect the features and judge it as a roadside.
高精度地図情報付加更新部233は、図11(2)に示すような高精度地図に対して高精度地図と自己位置の関係を保存する対応点の保存を実施し、これを適宜更新する処理を行う。
The high-precision map information addition update unit 233 saves the corresponding points for saving the relationship between the high-precision map and the self-position for the high-precision map as shown in FIG. 11 (2), and updates the corresponding points as appropriate. I do.
<内側特徴優先部>
図14は、内側特徴優先部による内側特徴優先処理を実行した後の路端特徴地図の一例を示す図である。
路端種別特徴部200の内側特徴優先部240は、走行路の側方に複数の特徴量が重複して存在する場合に、重複する外側の特徴量を消去する処理を行う。本実施例においては、走行領域の内側に近い特徴量、つまり、路幅方向において自車両に近い方の路端特徴量を優先させるための処理として、自車両走行方向から見て内側の特徴量を路端特徴量として優先し、その外側に存在する特徴量を消去する処理を実装する。図14に示すように、自車両から見て最も内側にある路端特徴量1331、1333、1334のみを残し、その外側にある重複した特徴量1401~1406を俯瞰の地図上から削除する。これによりまず内側に存在する路端の特徴量を優先して選定することが可能となる。 <Inner feature priority part>
FIG. 14 is a diagram showing an example of a roadside feature map after executing the inner feature priority process by the inner feature priority section.
When a plurality of feature amounts are duplicated on the side of the traveling road, the innerfeature priority unit 240 of the roadside type feature unit 200 performs a process of erasing the overlapping outer feature amounts. In this embodiment, as a process for giving priority to the feature amount close to the inside of the traveling region, that is, the roadside feature amount closer to the own vehicle in the road width direction, the feature amount inside when viewed from the own vehicle traveling direction. Is prioritized as a roadside feature amount, and a process of erasing the feature amount existing outside the roadside feature amount is implemented. As shown in FIG. 14, only the roadside feature amounts 1331, 1333, and 1334 which are the innermost roadside features when viewed from the own vehicle are left, and the overlapping feature amounts 1401 to 1406 outside the roadside feature amounts 1401 to 1406 are deleted from the bird's-eye view map. This makes it possible to prioritize and select the features of the roadside existing inside.
図14は、内側特徴優先部による内側特徴優先処理を実行した後の路端特徴地図の一例を示す図である。
路端種別特徴部200の内側特徴優先部240は、走行路の側方に複数の特徴量が重複して存在する場合に、重複する外側の特徴量を消去する処理を行う。本実施例においては、走行領域の内側に近い特徴量、つまり、路幅方向において自車両に近い方の路端特徴量を優先させるための処理として、自車両走行方向から見て内側の特徴量を路端特徴量として優先し、その外側に存在する特徴量を消去する処理を実装する。図14に示すように、自車両から見て最も内側にある路端特徴量1331、1333、1334のみを残し、その外側にある重複した特徴量1401~1406を俯瞰の地図上から削除する。これによりまず内側に存在する路端の特徴量を優先して選定することが可能となる。 <Inner feature priority part>
FIG. 14 is a diagram showing an example of a roadside feature map after executing the inner feature priority process by the inner feature priority section.
When a plurality of feature amounts are duplicated on the side of the traveling road, the inner
しかしながら、内側にある路端特徴量が、ほぼ連続して存在するような場合には、あまり問題にはならないが、実際の走行シーンにおいては、内側に存在する路端に関しても、歩道1317に車の出入りを考慮して途切れている区間や交差点の近くでは路端がなくなる区間も存在する。側溝1313に関しても車や歩行者が通行できるように舗装されている区間や蓋1314によって閉塞されている区間など、特徴量が途切れることはよくあるため、単純に路端特徴量を走行方向に沿って連結すると問題が生じるシーンは多々存在する。このために種別に応じて適切に路端候補を連結することを考慮する必要がある。
However, when the roadside features on the inside exist almost continuously, it does not matter so much, but in the actual driving scene, even on the roadside on the inside, the car is on the sidewalk 1317. There are sections that are interrupted in consideration of the entrance and exit of the road and sections where the roadside disappears near the intersection. As for the gutter 1313, the feature amount is often interrupted, such as a section paved so that cars and pedestrians can pass, or a section blocked by the lid 1314, so the roadside feature amount is simply set along the traveling direction. There are many scenes where problems occur when they are connected together. Therefore, it is necessary to consider connecting roadside candidates appropriately according to the type.
<内側特徴種別判定部>
本実施形態では、内側特徴種別判定部250により、まず、どのような路端種別の特徴量が現状存在するかを判定し、さらに、これらの種別ごとの特徴量の横位置の最頻値を算出する。例えば、図14において上側に示される例の場合には、車両V0から見て、路幅方向外側5mの位置(横位置)にマイナス段差の特徴量(側溝1313の特徴量)が存在し、この特徴量の半分くらいの量(走行方向に沿った長さ)ではあるものの、さらに路幅方向外側である8mの位置(横位置)に、建築物1315を抽出した立体物累積(路端特徴量)1331が存在する。このように図14において残っている特徴量を車両の進行方向に対して投影するように累計する。つまり、横位置別にどのような種別の特徴量が、どの程度進行方向に並んでいるかを調査する。ある種別の累積結果が蓄積されることにより、内側路端候補の種別を特定する。このように種別と大まかな横位置を抽出することで、この後に適切に路端候補を連結するための判断材料に利用する情報とする。 <Inner feature type determination unit>
In the present embodiment, the inner featuretype determination unit 250 first determines what kind of roadside type feature amount currently exists, and further determines the mode of the lateral position of the feature amount for each of these types. calculate. For example, in the case of the example shown on the upper side in FIG. 14, the feature amount of the minus step (feature amount of the gutter 1313) exists at the position (horizontal position) 5 m outside in the road width direction when viewed from the vehicle V0. Although it is about half of this feature amount (length along the traveling direction), it is a cumulative three-dimensional object (roadside feature) extracted from the building 1315 at a position (horizontal position) of 8 m outside the road width direction. Amount) 1331 is present. In this way, the remaining features in FIG. 14 are accumulated so as to be projected in the traveling direction of the vehicle. That is, it is investigated what kind of features are arranged in the traveling direction according to the horizontal position. By accumulating the cumulative results of a certain type, the type of inner roadside candidate is specified. By extracting the type and the rough horizontal position in this way, the information will be used as the judgment material for appropriately connecting the roadside candidates after this.
本実施形態では、内側特徴種別判定部250により、まず、どのような路端種別の特徴量が現状存在するかを判定し、さらに、これらの種別ごとの特徴量の横位置の最頻値を算出する。例えば、図14において上側に示される例の場合には、車両V0から見て、路幅方向外側5mの位置(横位置)にマイナス段差の特徴量(側溝1313の特徴量)が存在し、この特徴量の半分くらいの量(走行方向に沿った長さ)ではあるものの、さらに路幅方向外側である8mの位置(横位置)に、建築物1315を抽出した立体物累積(路端特徴量)1331が存在する。このように図14において残っている特徴量を車両の進行方向に対して投影するように累計する。つまり、横位置別にどのような種別の特徴量が、どの程度進行方向に並んでいるかを調査する。ある種別の累積結果が蓄積されることにより、内側路端候補の種別を特定する。このように種別と大まかな横位置を抽出することで、この後に適切に路端候補を連結するための判断材料に利用する情報とする。 <Inner feature type determination unit>
In the present embodiment, the inner feature
<走行路判定部>
図15は、走行路判定部の構成を説明する図、図16は、連結路端候補生成条件を示す図である。
走行路判定部300は、路端特徴量の種別に応じた走行路の判定を行う。この種別に応じた走行路判定部300では、路端種別特徴部200で抽出された複数種類の路端特徴量を地図上に投票し、内側優先でノイズ除去した地図上の路端特徴量とその種別情報を活用して、最終的な走行路判定を実施する。走行路判定部300は、連結路端候補生成部310と、路端候補連結部320と、走行路区分判定部330を有している。 <Runway judgment unit>
FIG. 15 is a diagram for explaining the configuration of the travel path determination unit, and FIG. 16 is a diagram showing conditions for generating connected roadside candidates.
The travelpath determination unit 300 determines the travel path according to the type of the roadside feature amount. In the travel road determination unit 300 according to this type, a plurality of types of roadside feature quantities extracted by the roadside type feature unit 200 are voted on the map, and the roadside feature amount on the map is noise-reduced with priority given to the inside. The final travel route judgment is carried out by utilizing the type information. The travel path determination unit 300 has a connection roadside candidate generation unit 310, a roadside candidate connection unit 320, and a travel path classification determination unit 330.
図15は、走行路判定部の構成を説明する図、図16は、連結路端候補生成条件を示す図である。
走行路判定部300は、路端特徴量の種別に応じた走行路の判定を行う。この種別に応じた走行路判定部300では、路端種別特徴部200で抽出された複数種類の路端特徴量を地図上に投票し、内側優先でノイズ除去した地図上の路端特徴量とその種別情報を活用して、最終的な走行路判定を実施する。走行路判定部300は、連結路端候補生成部310と、路端候補連結部320と、走行路区分判定部330を有している。 <Runway judgment unit>
FIG. 15 is a diagram for explaining the configuration of the travel path determination unit, and FIG. 16 is a diagram showing conditions for generating connected roadside candidates.
The travel
連結路端候補生成部310では、図16(1)に示すように、地図上の路端特徴量を利用して、同一の特徴量種別の路端を路端候補として選別して連結するか否かの判断処理を行う。ただし、連結すべきか、また路端候補とすべきかの連結路端候補生成条件となる閾値を、図16(2)に示すように、路端の種別に応じて変更する。これは、オブジェクトによって構成される路端の種別に応じて、特徴量の信頼度や、道路構造上連続して存在しやすい物体かどうかの条件を考慮することで、走行路区分判定部330においてより適切に走行路区分を判定することができる。
As shown in FIG. 16 (1), the connected roadside candidate generation unit 310 uses the roadside feature amount on the map to select and connect roadsides of the same feature amount type as roadside candidates. Judgment processing is performed. However, as shown in FIG. 16 (2), the threshold value that is the condition for generating the connected roadside candidate, which should be connected or should be the roadside candidate, is changed according to the type of the roadside. This is done by the travel path classification determination unit 330 by considering the reliability of the feature amount and the condition of whether or not the object is likely to exist continuously in the road structure according to the type of the roadside composed of the objects. It is possible to determine the travel path classification more appropriately.
路端候補連結部320は、路端の種別を考慮して、同一種別の特徴量の路端候補を優先的に連結することにより、自車に対して路幅方向内側に存在する正確な路端を正しくトレースすることを可能とする。例えば種別を判断せず、単に路幅方向内側に存在する特徴量を優先して接続すると、特徴量の途切れごとに、異なる路幅方向外側の壁などにも、路端境界線が引かれてしまい、安定した路端境界線を引くことが難しい。同一種別の路端特徴量を優先して連結して路端境界線を引くことによって、より安定的に路幅方向内側の路端候補を連結することが可能となる。
The roadside candidate connecting unit 320 preferentially connects roadside candidates having the same type of features in consideration of the type of roadside, so that the roadside candidate connecting portion 320 is an accurate road existing inside the road width direction with respect to the own vehicle. Allows you to trace the edges correctly. For example, if the feature amount existing inside in the road width direction is simply prioritized and connected without judging the type, the roadside boundary line is drawn on the outer wall in the different road width direction for each interruption of the feature amount. Therefore, it is difficult to draw a stable roadside boundary line. By preferentially connecting roadside features of the same type and drawing a roadside boundary line, it is possible to more stably connect roadside candidates inside in the road width direction.
<連結路端候補生成>
図16(2)に示す表の見方としては、路面高は、地図1点における特徴量の投票量を意味しており、背の高い物体であるほど、ステレオカメラの視差画像上で多くの奥行き情報を得ることができるため投票量が多く、信頼度が高くなる。路面高は地図上の投票量の多さでこの閾値以上の投票量があれば路端候補として連結する。 <Generation of connected roadside candidates>
From the perspective of the table shown in FIG. 16 (2), the road surface height means the voting amount of the feature amount at one point on the map, and the taller the object, the greater the depth on the parallax image of the stereo camera. Since information can be obtained, the amount of votes is large and the reliability is high. The road surface height is the amount of votes on the map, and if there is a vote amount above this threshold, it will be connected as a roadside candidate.
図16(2)に示す表の見方としては、路面高は、地図1点における特徴量の投票量を意味しており、背の高い物体であるほど、ステレオカメラの視差画像上で多くの奥行き情報を得ることができるため投票量が多く、信頼度が高くなる。路面高は地図上の投票量の多さでこの閾値以上の投票量があれば路端候補として連結する。 <Generation of connected roadside candidates>
From the perspective of the table shown in FIG. 16 (2), the road surface height means the voting amount of the feature amount at one point on the map, and the taller the object, the greater the depth on the parallax image of the stereo camera. Since information can be obtained, the amount of votes is large and the reliability is high. The road surface height is the amount of votes on the map, and if there is a vote amount above this threshold, it will be connected as a roadside candidate.
図16(3)に示すように、路端種別特徴部200の立体物累積部211が走行路の路幅方向外側1612に存在する物体1316の路端特徴量を抽出し、走行路判定部300の連結路端候補生成部310が、路端特徴量として連続する立体物累積1333を接続しつづけた結果、最小の走行方向長さL0が、図16(2)の表において最小長と記された閾値未満であれば、路端候補としては短すぎるため、路端候補として認めないこととする。さらにこの特徴量に走行方向に隙間が空いた場合にも、この最大間隔L1が、図16(2)の表に示される閾値未満であれば、同一の路端候補であるとし、この路端候補を連結して扱う。
As shown in FIG. 16 (3), the three-dimensional object accumulation unit 211 of the roadside type feature unit 200 extracts the roadside feature amount of the object 1316 existing on the outer side 1612 in the road width direction of the travel path, and the travel path determination unit 300. As a result of the connection roadside candidate generation unit 310 of the above connecting the continuous three-dimensional object cumulative 1333 as the roadside feature amount, the minimum traveling direction length L0 is described as the minimum length in the table of FIG. 16 (2). If it is less than the threshold value, it is too short as a roadside candidate and is not recognized as a roadside candidate. Further, even when there is a gap in the traveling direction in this feature amount, if the maximum interval L1 is less than the threshold value shown in the table of FIG. Treat candidates in a concatenated manner.
例えば、壁や障害物であれば、基本的に背の高い立体物であるため、投票量が高く、また連続を考慮すると壁の連続性は高いものの、たとえば樹木や電柱などの障害物も考慮すると、走行方向への長さは短い可能性も十分にある。このため、高さ方向の投票量が多ければ、多少短い50cm以上の奥行き方向でも路端候補として認めると考量する。さらに、最大間隔とは、走行路において隙間が空く場合を考慮して同一と扱うと判断する最大の奥行き幅の閾値とし、壁や障害物はよく隙間が空くことを考慮して最大500cmまでは同一路端候補の接続条件とし、連結して扱う。
For example, if it is a wall or an obstacle, since it is basically a tall three-dimensional object, the voting amount is high, and although the continuity of the wall is high when considering the continuity, for example, obstacles such as trees and utility poles are also considered. Then, there is a good possibility that the length in the traveling direction is short. Therefore, if the voting amount in the height direction is large, it is considered that the candidate is recognized as a roadside candidate even in the depth direction of 50 cm or more, which is a little short. Furthermore, the maximum spacing is the threshold value of the maximum depth width that is judged to be the same in consideration of the case where there is a gap in the travel path, and the maximum is 500 cm in consideration of the fact that there are often gaps in walls and obstacles. It is treated as a connection condition of the same roadside candidate and connected.
次に、移動体(車)の場合には、ある程度の車高であることが特定されていることから高さは100cm以上とし、また長さは50cm以上で2輪なども対象とする。2輪車や4輪車においても途中で途切れることはないが、車体の途中で画像的な特徴が少ないためにステレオの視差が出にくい領域があることも考慮して隙間の最大間隔は100cmまでは認めるものとし、移動体の同一特徴量を連結する。つまり、最大間隔が100cm未満のものについては、同一の移動体であるとして、路端候補を連結する。
Next, in the case of a moving body (car), the height is 100 cm or more because it is specified that the vehicle height is to some extent, and the length is 50 cm or more, and two wheels etc. are also targeted. Even in a two-wheeled vehicle or a four-wheeled vehicle, there is no interruption in the middle, but the maximum distance between the gaps is up to 100 cm in consideration of the fact that there is a region where stereo parallax is difficult to appear because there are few image features in the middle of the car body. Is allowed, and the same features of the moving body are concatenated. That is, if the maximum distance is less than 100 cm, the roadside candidates are connected as if they are the same moving body.
次に、路肩ブロック1316の特徴量においては、歩道と車道を分離するブロックの高さが10cm以上のものを対象とする。歩道は、壁や移動体と比較して高さが低いため、路端としての特徴の1点1点の投票量が少ない。したがって、走行方向に沿ってある程度の長さがあって初めて路肩ブロック1316の候補として認めるようにするために、最小長を100cm以上とする。路肩ブロック1316の場合には、車の出入りする場所や、樹木が植えてあるような場合など含めてしばしば途切れる場合が多い。このため、最大間隔が500cmまでは路端候補を連結することとする。
Next, in the feature amount of the road shoulder block 1316, the height of the block that separates the sidewalk and the roadway is 10 cm or more. Since the height of the sidewalk is lower than that of a wall or a moving body, the amount of votes for each point, which is a characteristic of a roadside, is small. Therefore, in order to be recognized as a candidate for the road shoulder block 1316 only when there is a certain length along the traveling direction, the minimum length is set to 100 cm or more. In the case of the road shoulder block 1316, it is often interrupted, including the place where cars enter and exit, and the case where trees are planted. Therefore, roadside candidates are connected up to a maximum distance of 500 cm.
路肩ブロック1316に関しては、それ以上に隙間が空くような場合もあるが、これ以上に伸ばしていくと交差点などで途切れた路肩ブロック1316も連結されてしまい、直交する交差点へ右左折できないような判定になると困る。したがって、基本的には最大間隔が500cmまでの路肩ブロック1316を連結する。これ以上に路肩ブロック1316の隙間が広い場合には、別の路肩ブロックとして扱うこととする。
Regarding the road shoulder block 1316, there may be a gap further than that, but if it is extended further, the road shoulder block 1316 that was interrupted at an intersection etc. will also be connected, and it is judged that it is not possible to turn left or right to an orthogonal intersection. I'm in trouble when it comes to. Therefore, basically, the road shoulder blocks 1316 having a maximum distance of up to 500 cm are connected. If the gap of the road shoulder block 1316 is wider than this, it is treated as another road shoulder block.
マイナス路端に関しては、マイナス段差部214において、走行路面と比較して低くなる段差に対して特徴量を抽出している。走行路面より低い場所にある畑や田、側溝など、の境界に特徴量を抽出している。しかしながら、走行路面より低い場所の特徴量は、影の影響などを受けて特徴量が出にくい場合も多く、信頼度が低い。また、高さ方向に同じ奥行きの特徴量が累積されるなどのこともないために、信頼度が低い。このため、200cm以上とある程度の長さの条件が整わない場合には、信頼度が低いため、路端候補連結部320では、そのようなマイナス段差を路端候補としては利用しない。マイナス段差も途切れる場合が多々あるが、あまりに長い距離を結ぶと誤検知の影響も気になるため、ここでは300cmまでの隙間は、同一の路端候補として連結するものとする。
Regarding the minus road edge, the feature amount is extracted for the step that is lower than the traveling road surface in the minus step portion 214. Features are extracted at the boundaries of fields, rice fields, gutters, etc. that are lower than the road surface. However, the feature amount in a place lower than the traveling road surface is often difficult to obtain the feature amount due to the influence of shadows and the like, and the reliability is low. In addition, the reliability is low because the features of the same depth are not accumulated in the height direction. Therefore, if the condition of a certain length of 200 cm or more is not satisfied, the reliability is low, and the roadside candidate connecting portion 320 does not use such a negative step as a roadside candidate. There are many cases where the minus step is interrupted, but if you connect too long a distance, the effect of false detection is also a concern, so here, gaps up to 300 cm are connected as the same roadside candidate.
段差なし路端に関しても同様に、路端特徴量抽出部210の段差なし路端部215において、撮像画像が有する路面上のテクスチャ情報を使用して、走行路と側方領域との区別を実施し、走行路と側方領域との間でテクスチャが異なると判定された境界領域に特徴量が投票されている。この地図上の得票を利用して、段差なし路端としての路端候補を接続する。テクスチャの判定にも不安定な場合が存在するため、200cm以上連続した場合にのみ、路端候補とし、また隙間については300cmまでとする。
Similarly, for the roadside without steps, the texture information on the road surface of the captured image is used in the roadside portion 215 without steps of the roadside feature amount extraction unit 210 to distinguish between the traveling road and the lateral region. However, the feature amount is voted on the boundary region where it is determined that the texture is different between the traveling path and the lateral region. Using the votes on this map, roadside candidates as roadsides without steps are connected. Since there are cases where the texture is unstable, the roadside candidate is selected only when the texture is continuously 200 cm or more, and the gap is limited to 300 cm.
最後に、三角ポールなどの走行路区分立体物に関しては、高さ30cm以上を対象とし、最小の走行方向の幅は10cm以上とする。走行路区分立体物に関しては、かなりの大きな隙間が空いている場合やかなり短い物体を接続して路端として認識するために、この特徴量に関しては、識別機を利用している。このため10cm以上の幅で路端候補として特定するだけでなく、800cmまでは離れた走行路区分立体物も接続して、路端候補とする。
Finally, for three-dimensional objects that are divided into running paths such as triangular poles, the height should be 30 cm or more, and the minimum width in the running direction should be 10 cm or more. With respect to the travel path division three-dimensional object, an acceptor is used for this feature quantity in order to recognize it as a roadside by connecting a considerably short object or connecting a considerably large gap. Therefore, not only is it specified as a roadside candidate with a width of 10 cm or more, but also a traveling road division three-dimensional object having a width of up to 800 cm is connected to be a roadside candidate.
走行路区分判定部330は、路端候補連結部320によって連結された路端候補の情報を用いて自車の走行路区分を判定する処理を行う。
The travel road classification determination unit 330 performs a process of determining the travel road classification of the own vehicle using the information of the roadside candidates connected by the roadside candidate connection unit 320.
<連結路端候補の生成>
図17は、図16の条件に基づいて、連結路端候補生成部310によって同一の特徴量種別の路端候補を連結した例を示す。
内側優先により外側の路端特徴量が削除されている状況において、図17の上側に示される走行路1311Aを走行する車両V0の左側の路端について連結を説明する。 <Generation of connected roadside candidates>
FIG. 17 shows an example in which roadside candidates of the same feature amount type are connected by the connecting roadsidecandidate generation unit 310 based on the conditions of FIG.
In a situation where the outer roadside feature amount is deleted due to the inner priority, the connection will be described for the left side roadside of the vehicle V0 traveling on the traveling road 1311A shown on the upper side of FIG.
図17は、図16の条件に基づいて、連結路端候補生成部310によって同一の特徴量種別の路端候補を連結した例を示す。
内側優先により外側の路端特徴量が削除されている状況において、図17の上側に示される走行路1311Aを走行する車両V0の左側の路端について連結を説明する。 <Generation of connected roadside candidates>
FIG. 17 shows an example in which roadside candidates of the same feature amount type are connected by the connecting roadside
In a situation where the outer roadside feature amount is deleted due to the inner priority, the connection will be described for the left side roadside of the vehicle V0 traveling on the traveling road 1311A shown on the upper side of FIG.
まず、立体物累積1331の特徴量については、路面高さ及び最小長が50cm以上のものを路端候補とする。したがって、図17に示す例では、建築物1315については、2つの路端候補1702、1703が発生する。これら2つの路端候補1702、1703は、最大間隔が500cm以上離れているため、互いに連結されずに、別々の路端候補として生成される。図17では、立体物累積1331の特徴量を示す黒丸を直線でつなぐことによって、連結したことを表現している。
First, regarding the feature amount of the three-dimensional object cumulative 1331, those having a road surface height and a minimum length of 50 cm or more are selected as roadside candidates. Therefore, in the example shown in FIG. 17, two roadside candidates 1702 and 1703 are generated for the building 1315. Since the maximum distance between the two roadside candidates 1702 and 1703 is 500 cm or more, they are not connected to each other and are generated as separate roadside candidates. In FIG. 17, it is expressed that the black circles indicating the feature quantities of the three-dimensional object cumulative 1331 are connected by connecting them with a straight line.
次に、複数の互いに隣接するマイナス段差特徴量1334を連結する。図17に示す例では、側溝1313のマイナス段差は、側溝1313を閉塞する蓋1314によって一部が途切れている。しかし、連結状態でマイナス段差の最小長が200cm以上を路端候補として、マイナス段差の最大間隔が300cm未満であればそのマイナス段差特徴量1334の連結を継続し、マイナス段差の最大間隔が300cm以上に離れている場合には、別の路端候補として扱う。このため、図17の上側に示される車両V0の左側の路端としては、路幅方向内側にマイナス段差の2つの路端候補1701、1704ができることとなる。
Next, a plurality of negative step feature amounts 1334 adjacent to each other are connected. In the example shown in FIG. 17, the minus step of the gutter 1313 is partially interrupted by the lid 1314 that closes the gutter 1313. However, if the minimum length of the minus step is 200 cm or more as a roadside candidate in the connected state and the maximum interval of the minus step is less than 300 cm, the connection of the minus step feature amount 1334 is continued and the maximum interval of the minus step is 300 cm or more. If it is far from the roadside candidate, it is treated as another roadside candidate. Therefore, as the roadside on the left side of the vehicle V0 shown on the upper side of FIG. 17, two roadside candidates 1701 and 1704 having a minus step are formed inside in the road width direction.
マイナス段差は、蓋1314によって途切れている1つの部分の長さが300cm以上途切れていることから、2つに分割されて一方がマイナス段差の路端候補1701となり、蓋1314で途切れている他方は、途切れた部分の長さが300cm未満のため、連結された1つの路端候補1704とする。
Since the length of one part interrupted by the lid 1314 is interrupted by 300 cm or more, the minus step is divided into two, one becomes a roadside candidate 1701 with a minus step, and the other is interrupted by the lid 1314. Since the length of the interrupted portion is less than 300 cm, one connected roadside candidate 1704 is used.
次に、図17の下側に示される走行路1312Bを走行する車両V1にとっての進行方向左側の路端候補について考慮すると、路幅方向外側の壁1318は、内側優先の処理でノイズ除去されているため、比較的短い2つの路端候補1712、1713ができる。さらに、その内側に低段差の路肩ブロック1316が路端候補として連結されるが、路肩ブロック1316の途切れ部分が2つある。一方の途切れ部分が閾値の500cm未満の長さであり、もう一方の途切れ部分が閾値の500cm以上の長さであるため、一方の低段差1333どうしを連結した路端候補1714と、他方に低段差1333が分割された路端候補1711を生成する。
Next, considering the roadside candidate on the left side in the traveling direction for the vehicle V1 traveling on the traveling road 1312B shown on the lower side of FIG. 17, the wall 1318 on the outer side in the road width direction is noise-reduced by the inner priority processing. Therefore, two relatively short roadside candidates 1712 and 1713 can be created. Further, a road shoulder block 1316 having a low step is connected to the inside as a roadside candidate, but there are two interrupted portions of the road shoulder block 1316. Since one interrupted portion has a length of less than 500 cm of the threshold value and the other interrupted portion has a length of 500 cm or more of the threshold value, the roadside candidate 1714 in which one low step 1333 is connected to each other and the other are low. The roadside candidate 1711 in which the step 1333 is divided is generated.
<路端候補連結条件>
次に、生成された路端候補を連結する条件を図18に示す。特に複数種の路端候補に対する連結を実施するが、複数種の中に移動体を含むような場合と、走行路区分立体物が含まれる場合には条件が異なる。 <Condition conditions for roadside candidate connection>
Next, the conditions for connecting the generated roadside candidates are shown in FIG. In particular, connection is carried out for a plurality of types of roadside candidates, but the conditions are different when a moving body is included in the plurality of types and when a traveling road division three-dimensional object is included.
次に、生成された路端候補を連結する条件を図18に示す。特に複数種の路端候補に対する連結を実施するが、複数種の中に移動体を含むような場合と、走行路区分立体物が含まれる場合には条件が異なる。 <Condition conditions for roadside candidate connection>
Next, the conditions for connecting the generated roadside candidates are shown in FIG. In particular, connection is carried out for a plurality of types of roadside candidates, but the conditions are different when a moving body is included in the plurality of types and when a traveling road division three-dimensional object is included.
特に、複数種の路端候補の中に移動体を含む場合には、路端横位置のずれが大きい場合であっても連結を実施する。これは、移動体の場合、路肩ブロックや壁と比較すると横位置が大きく変化することが予想されるためであり、本実施形態では、横位置(他の路端候補との路幅方向の距離)が±600cm離れていても路端候補の連結先として認めることとする。反対に他の路端候補においては、それほど大きく横位置が変化することは少ないことから、±200cm程度までを路端候補の連結先として認める。もちろん滑らかに広がっていく走行路のような場合には、そのまま接続する。また、走行路区分立体物の場合には、そもそも路肩ブロックや壁、側溝などから横位置を離して並べることで車両が入れないような区分線として利用することが多いため、横位置の分布を±300cmまでは路端候補の連結先として認めるものとする。
In particular, when a moving body is included in multiple types of roadside candidates, connection is performed even if the deviation of the roadside lateral position is large. This is because in the case of a moving body, the lateral position is expected to change significantly as compared with the road shoulder block or the wall, and in the present embodiment, the lateral position (distance in the road width direction from other roadside candidates). ) Is ± 600 cm away, but it is accepted as a connection destination of roadside candidates. On the other hand, in other roadside candidates, the lateral position does not change so much, so up to about ± 200 cm is accepted as the connection destination of the roadside candidates. Of course, in the case of a running road that spreads smoothly, connect as it is. In addition, in the case of a three-dimensional object that divides the driving road, it is often used as a dividing line so that vehicles cannot enter by arranging it at a horizontal position away from the road shoulder block, wall, gutter, etc., so the distribution of the horizontal position is used. Up to ± 300 cm shall be accepted as a connection destination of roadside candidates.
<路端候補連結例(1)-(3)>
図19から図21までに、上記の連結路端候補同士をさらに連結する路端候補連結部320において路端候補の連結例を示す。この路端連結結果を利用して、走行路区分判定部330において、最終路端位置と種別を確定する。図19から図21では、太い黒破線によって、路端候補の連結後の最終結果を示すこととする。 <Example of roadside candidate connection (1)-(3)>
19 to 21 show an example of connecting roadside candidates in the roadsidecandidate connecting portion 320 that further connects the above-mentioned connecting roadside candidates. Using this roadside connection result, the travel road classification determination unit 330 determines the final roadside position and type. In FIGS. 19 to 21, the final result after the roadside candidates are connected is shown by the thick black dashed line.
図19から図21までに、上記の連結路端候補同士をさらに連結する路端候補連結部320において路端候補の連結例を示す。この路端連結結果を利用して、走行路区分判定部330において、最終路端位置と種別を確定する。図19から図21では、太い黒破線によって、路端候補の連結後の最終結果を示すこととする。 <Example of roadside candidate connection (1)-(3)>
19 to 21 show an example of connecting roadside candidates in the roadside
図19は、複数種路端連結例(1)を説明する図である。
図19の上側に示されている車両V0にとっての左側路端を考慮すると、こちらの路端は、路端候補1701と1704との間のように側溝1313の路端が途切れている個所において、500cm以上進行方向から離れた位置に再度側溝1313がでてきて、側溝1313を塞ぐ蓋1314が、500cm以上続いている。このため、横位置の異なる方向に接続可能かを検討するが、進行方向に対する横位置を200cmよりも離れた図で上側に示された位置に建築物1315の路端候補1702がある。 FIG. 19 is a diagram illustrating a plurality of types of roadside connection example (1).
Considering the left side roadside for the vehicle V0 shown on the upper side of FIG. 19, this roadside is at a place where the roadside of thegutter 1313 is interrupted, such as between the roadside candidates 1701 and 1704. The gutter 1313 appears again at a position away from the traveling direction by 500 cm or more, and the lid 1314 that closes the gutter 1313 continues for 500 cm or more. Therefore, it is examined whether it is possible to connect in different directions in the horizontal position, but the roadside candidate 1702 of the building 1315 is located at the position shown on the upper side in the figure in which the horizontal position with respect to the traveling direction is more than 200 cm.
図19の上側に示されている車両V0にとっての左側路端を考慮すると、こちらの路端は、路端候補1701と1704との間のように側溝1313の路端が途切れている個所において、500cm以上進行方向から離れた位置に再度側溝1313がでてきて、側溝1313を塞ぐ蓋1314が、500cm以上続いている。このため、横位置の異なる方向に接続可能かを検討するが、進行方向に対する横位置を200cmよりも離れた図で上側に示された位置に建築物1315の路端候補1702がある。 FIG. 19 is a diagram illustrating a plurality of types of roadside connection example (1).
Considering the left side roadside for the vehicle V0 shown on the upper side of FIG. 19, this roadside is at a place where the roadside of the
しかし、連結条件より離れているため、今回の連結対象にならず、ここは単体の側溝1313の路端が2つ存在する最終結果となる。したがって、路端候補の連結結果は、黒破線1901と1902の2つになる。
However, because it is far from the connection conditions, it is not the target of this connection, and this is the final result of the existence of two roadsides of the single gutter 1313. Therefore, there are two connected results of the roadside candidates, the black broken line 1901 and 1902.
反対に、図19の下側に示される車両V1にとっての左側路端は、最初は壁1318が存在し、その先に路肩ブロック1316が存在する。最初は壁側の立体物累積1331の路端を利用するが、その先には、路肩ブロックである低段差1333が存在する。壁1318と路肩ブロック1316との間の離間距離は200cm未満であるため、ここでは壁と路肩ブロックを連結することとする。したがって、路端候補の連結結果は、1本の黒破線1903となる。
On the contrary, on the left side roadside for the vehicle V1 shown on the lower side of FIG. 19, the wall 1318 exists at first , and the road shoulder block 1316 exists ahead of the wall 1318. Initially, the roadside of the three-dimensional object cumulative 1331 on the wall side is used, but beyond that, there is a low step 1333 which is a road shoulder block. Since the distance between the wall 1318 and the road shoulder block 1316 is less than 200 cm, the wall and the road shoulder block are connected here. Therefore, the connection result of the roadside candidates is one black dashed line 1903.
<車両含む路端連結例>
図20は、車両含む路端連結例を説明する図である。
図20では、移動体である車両を含む路端候補の連結結果を示す。図20の上側に示される走行路1311の路端は、図19と同様であるため、図20の下側に示される走行路1312の路端についてのみ説明する。図20の下側に示される走行路1312Aを走行している後方車両にとっての路端連結結果を示す。 <Example of roadside connection including vehicles>
FIG. 20 is a diagram illustrating an example of roadside connection including a vehicle.
FIG. 20 shows the connection result of roadside candidates including a vehicle that is a moving body. Since the roadside of the travelingpath 1311 shown on the upper side of FIG. 20 is the same as that of FIG. 19, only the roadside of the traveling path 1312 shown on the lower side of FIG. 20 will be described. The roadside connection result for the rear vehicle traveling on the travel path 1312A shown on the lower side of FIG. 20 is shown.
図20は、車両含む路端連結例を説明する図である。
図20では、移動体である車両を含む路端候補の連結結果を示す。図20の上側に示される走行路1311の路端は、図19と同様であるため、図20の下側に示される走行路1312の路端についてのみ説明する。図20の下側に示される走行路1312Aを走行している後方車両にとっての路端連結結果を示す。 <Example of roadside connection including vehicles>
FIG. 20 is a diagram illustrating an example of roadside connection including a vehicle.
FIG. 20 shows the connection result of roadside candidates including a vehicle that is a moving body. Since the roadside of the traveling
図20に示される例の場合、走行路1312の路幅方向外側には、路肩ブロック1316の低段差(路端特徴量)1333が大半並んでおり、内側車線となる走行路1312Aには、車両V1が存在し、外側隣り車線となる走行路1312Bには、先行する移動体である車両V2が存在する。移動体V2の速度や車形状であることから特徴量が移動体であることが既知である。この状態では、車両V1においては、路肩ブロック1316の特徴量1333と、移動体V2の特徴量1332との2種類の特徴量が存在し、それぞれの特徴量種別で連結候補線1714と2001を引いている。
In the case of the example shown in FIG. 20, most of the low steps (roadside feature amount) 1333 of the road shoulder block 1316 are lined up on the outer side of the traveling road 1312 in the road width direction, and the vehicle is on the traveling road 1312A which is the inner lane. Vehicle V 2 which is a preceding moving body exists in the traveling path 1312B in which V 1 exists and is in the outer adjacent lane. It is known that the feature amount is a moving body because of the speed and the shape of the moving body V2 . In this state, in the vehicle V 1 , there are two types of feature quantities, the feature quantity 1333 of the road shoulder block 1316 and the feature quantity 1332 of the moving body V 2 , and the connection candidate lines 1714 and 2001 for each feature quantity type. Is pulling.
この移動体V2と路肩ブロック1316のそれぞれの連結候補線1714、2001をさらに互いに連結するかを、図18に示す連結条件と比較して判断する。図20に示される例の場合、連結候補線1714と2001との横位置(路幅方向の離間距離)が600cm未満であるため、移動体V2の連結候補線1714と、路肩ブロック1316の連結候補線2001とを接続した黒破線を、最終結果の路端2002として検知する。
Whether or not the mobile body V 2 and the road shoulder block 1316 are to be further connected to each other, respectively, is determined by comparing with the connection conditions shown in FIG. In the case of the example shown in FIG. 20, since the lateral position (separation distance in the road width direction) between the connection candidate line 1714 and 2001 is less than 600 cm, the connection candidate line 1714 of the moving body V2 and the road shoulder block 1316 are connected. The black dashed line connecting the candidate line 2001 is detected as the final result roadside 2002.
<走行路区分を含む路端連結例>
図21は、走行路区分を含む路端連結例を説明する図である。
図21の上側に示される車両V0の左側路端を連結する路端連結例について説明する。これまでと異なり、工事中の現場に一般車両が入らないように複数の三角ポール2101が走行路1311Bに並べられている。したがって、側溝1313の一部の路端候補1701と、走行路区分である三角ポール2101を連結した路端候補2102の2つが、路幅方向内側に存在するので、この2つの路端候補1701と2102とを接続し、最終結果の路端2111として検知する。走行路区分の連結成分より内側にできた路端候補についてはそもそも連結対象として取り扱わない。 <Example of roadside connection including travel road classification>
FIG. 21 is a diagram illustrating an example of roadside connection including a travel road division.
An example of roadside connection for connecting the left side roadside of the vehicle V0 shown on the upper side of FIG. 21 will be described. Unlike in the past, a plurality oftriangular poles 2101 are arranged on the travel path 1311B so that general vehicles do not enter the construction site. Therefore, since two of the roadside candidate 1701 which is a part of the gutter 1313 and the roadside candidate 2102 which connects the triangular pole 2101 which is a traveling road division exist inside in the road width direction, the two roadside candidates 1701 and the roadside candidate 1701 It is connected to 2102 and detected as the final result roadside 2111. Roadside candidates created inside the connected component of the travel road division are not treated as connected targets in the first place.
図21は、走行路区分を含む路端連結例を説明する図である。
図21の上側に示される車両V0の左側路端を連結する路端連結例について説明する。これまでと異なり、工事中の現場に一般車両が入らないように複数の三角ポール2101が走行路1311Bに並べられている。したがって、側溝1313の一部の路端候補1701と、走行路区分である三角ポール2101を連結した路端候補2102の2つが、路幅方向内側に存在するので、この2つの路端候補1701と2102とを接続し、最終結果の路端2111として検知する。走行路区分の連結成分より内側にできた路端候補についてはそもそも連結対象として取り扱わない。 <Example of roadside connection including travel road classification>
FIG. 21 is a diagram illustrating an example of roadside connection including a travel road division.
An example of roadside connection for connecting the left side roadside of the vehicle V0 shown on the upper side of FIG. 21 will be described. Unlike in the past, a plurality of
次に、図21の下側に示される走行路1312を走行する車両V1に関しては、路肩ブロック1316と壁1318に2つの連結候補1711、1712とが存在する。この場合には、2つの連結候補1711、1712との横位置(路幅方向の離間距離)が200cm以上離れているので、奥行き方向(車両進行方向)には、ほぼ離れていないものの連結対象外として2つの異なる路端のまま検知するものとする。
Next, with respect to the vehicle V1 traveling on the travel path 1312 shown on the lower side of FIG. 21, there are two connection candidates 1711 and 1712 on the road shoulder block 1316 and the wall 1318. In this case, since the lateral positions (separation distance in the road width direction) from the two connection candidates 1711 and 1712 are separated by 200 cm or more, they are not separated in the depth direction (vehicle traveling direction), but are not subject to connection. It is assumed that two different roadsides are detected as they are.
<走行路区分判定>
走行路判定部300では、上記の路端連結結果が片側に複数存在するような場合において、より内側の路端を優先して採用するとともに、奥行き別に路端の種別を決定する。これを左右について実施することで、奥行き別の横位置を決定する。さらに、この結果を利用しながら、空間的に滑らかな走行路区分となるように、曲線フィッティングを実施する。時系列の情報も活用したうえで曲線フィッティングすることで、空間的に滑らかで、時間的に安定的な路端の位置を算出する。 <Driving road classification judgment>
In the case where a plurality of the above-mentioned roadside connection results exist on one side, the travelingroad determination unit 300 preferentially adopts the inner roadside and determines the type of the roadside according to the depth. By performing this on the left and right, the horizontal position for each depth is determined. Further, using this result, curve fitting is performed so as to have a spatially smooth running path division. By curve fitting using time-series information, the position of the roadside that is spatially smooth and stable in time is calculated.
走行路判定部300では、上記の路端連結結果が片側に複数存在するような場合において、より内側の路端を優先して採用するとともに、奥行き別に路端の種別を決定する。これを左右について実施することで、奥行き別の横位置を決定する。さらに、この結果を利用しながら、空間的に滑らかな走行路区分となるように、曲線フィッティングを実施する。時系列の情報も活用したうえで曲線フィッティングすることで、空間的に滑らかで、時間的に安定的な路端の位置を算出する。 <Driving road classification judgment>
In the case where a plurality of the above-mentioned roadside connection results exist on one side, the traveling
<警報制御部>
図22は、警報制御部の構成を説明する図、図23は、路端種別に対する警報と制御マージンの情報を示す図である。
警報制御部400は、種別に応じた走行路判定の結果を利用して、警報制御を実施するかどうかを判定し、最終的なドライバに対する警報や車両制御を実施する。警報制御部400は、自車挙動予測部410と、路端種別接触逸脱判定部420と、警報部430と、制御部440とを有する。 <Alarm control unit>
FIG. 22 is a diagram for explaining the configuration of the alarm control unit, and FIG. 23 is a diagram showing information on the alarm and the control margin for the roadside type.
Thealarm control unit 400 uses the result of the travel path determination according to the type to determine whether or not to execute the alarm control, and implements the final warning to the driver and the vehicle control. The warning control unit 400 includes a vehicle behavior prediction unit 410, a roadside type contact deviation determination unit 420, an alarm unit 430, and a control unit 440.
図22は、警報制御部の構成を説明する図、図23は、路端種別に対する警報と制御マージンの情報を示す図である。
警報制御部400は、種別に応じた走行路判定の結果を利用して、警報制御を実施するかどうかを判定し、最終的なドライバに対する警報や車両制御を実施する。警報制御部400は、自車挙動予測部410と、路端種別接触逸脱判定部420と、警報部430と、制御部440とを有する。 <Alarm control unit>
FIG. 22 is a diagram for explaining the configuration of the alarm control unit, and FIG. 23 is a diagram showing information on the alarm and the control margin for the roadside type.
The
自車挙動予測部410では、車両の操舵角や車速に応じて、自車が進行する方向や位置を予測する。路端種別接触逸脱判定部420は、自車挙動予測部410により予測した車両挙動上で路端と接触可能性があるかどうかを判定する。警報部430と制御部440は、路端種別に応じて、警報や制御の扱い方を変更することで、より適切な制御を実施する。例えば路端種別が壁や障害物の場合には接触、もしくは衝突すると、車両や乗員に対する影響が大きい。したがって、このような大きな影響を及ぼしそうな路端種別に対しては、早めの警報と制御を実施する。
The own vehicle behavior prediction unit 410 predicts the direction and position in which the own vehicle travels according to the steering angle and vehicle speed of the vehicle. The roadside type contact deviation determination unit 420 determines whether or not there is a possibility of contact with the roadside on the vehicle behavior predicted by the own vehicle behavior prediction unit 410. The alarm unit 430 and the control unit 440 perform more appropriate control by changing the handling method of the alarm and the control according to the roadside type. For example, if the roadside type is a wall or an obstacle, contact or collision will have a large effect on vehicles and occupants. Therefore, early warning and control will be implemented for roadside types that are likely to have such a large impact.
例えば、図23に示すように、路端種別が、壁、障害物、あるいはマイナス段差(側溝)など、車両が接触、逸脱すると大きな影響を与えそうな対象に対しては、走行路判定部300にて認識した路端と車両との位置が100cm未満の状態で、ドライバに警報を行う。そして、車両がさらに対象に接近した場合には、その離間距離が50cm未満のときに、車両が路端に接触、または、走行路から逸脱しないように車両制御を実施する。
For example, as shown in FIG. 23, for an object whose roadside type is likely to have a large effect when a vehicle comes into contact with or deviates, such as a wall, an obstacle, or a minus step (side groove), the travel path determination unit 300 When the position between the roadside and the vehicle recognized in is less than 100 cm, an alarm is given to the driver. Then, when the vehicle is further approached to the target, vehicle control is performed so that the vehicle does not come into contact with the roadside or deviate from the traveling road when the separation distance is less than 50 cm.
更に、障害物よりも接触時の影響が大きくなる移動体(車など)に関しては、150cm未満の距離となるとドライバへの警報を実施し、更に、75cm未満で車両制御を実施する。ただし、これらの変数は車速に応じて、幅を削減するような動的な方法とすることができ、例えば低速時に意図的に接近するような運転を認めるような調整をしてもよい。特に、20km/h未満の低速時において徐々に数値の距離を小さくし、ほぼ0kmの場合には、図23の表に示す値の半分程度になるような制御を実施することで、よりドライバの意図を優先する設定としてもよい。
Furthermore, for moving objects (cars, etc.) that are more affected by contact than obstacles, an alarm is issued to the driver when the distance is less than 150 cm, and vehicle control is performed when the distance is less than 75 cm. However, these variables can be a dynamic method such as reducing the width according to the vehicle speed, and may be adjusted so as to allow driving intentionally approaching at low speed, for example. In particular, at low speeds of less than 20 km / h, the numerical distance is gradually reduced, and in the case of approximately 0 km, control is performed so that the value is about half of the value shown in the table of FIG. 23. It may be set to give priority to the intention.
障害物が路肩ブロック1316の場合には、軽い接触であればタイヤだけの接触となるなど、壁やマイナス段差、移動体との接触と比較すれば、車両や乗員に対する影響は比較的少なくなる場合が多い。また、車体から延びるミラーなどは接触対象外の高さであることも考慮し、警報は80cm未満、車両制御は40cm未満とする。
When the obstacle is the road shoulder block 1316, if the contact is light, only the tires will be in contact. There are many. In addition, considering that the mirror extending from the vehicle body is at a height outside the contact target, the warning is set to less than 80 cm and the vehicle control is set to less than 40 cm.
段差なし路端に関しては、路面の材質が異なることから高速状態で逸脱すると、車両の制御を失うような場合も発生する可能性があるが、低速であれば大きな問題とならない可能性が高い。このため、警報を50cm未満、車両制御は20cm未満とする。走行路区分立体物である三角ポールなども接触による被害などは比較的小さい。このため、警報は80cm未満、車両制御は20cm未満とする。
Regarding the roadside without steps, if the road surface is made of different materials, it may lose control of the vehicle if it deviates at high speed, but it is unlikely that it will be a big problem at low speed. Therefore, the warning is set to less than 50 cm and the vehicle control is set to less than 20 cm. The damage caused by contact with the triangular pole, which is a three-dimensional object, is relatively small. Therefore, the warning is set to less than 80 cm, and the vehicle control is set to less than 20 cm.
このように、路端種別に応じて警報や車両制御のマージン量を変更することで、ドライバにとってより自然で、ドライバの運転意図を妨げずに安全となるような警報、及び車両制御を実施する。これらの路端種別ごとに設定された横位置の距離に応じて、警報や制御を実施する。また、片側の路端が、複数種類の路端で構成される場合には、よりマージンの大きい種別の値を利用して、警報や制御を実施することで、より安全な警報と車両制御を実現する。
In this way, by changing the amount of warning and vehicle control margin according to the roadside type, warning and vehicle control that are more natural for the driver and safe without disturbing the driver's driving intention are implemented. .. Warnings and controls are implemented according to the lateral position distance set for each of these roadside types. In addition, when one side of the road is composed of multiple types of roadsides, safer warnings and vehicle control can be achieved by performing warnings and controls using values of the type with a larger margin. Realize.
<処理フローチャート>
図24は、画像処理装置により実行される認識処理の内容を説明するフローチャートである。本フローでは、ステレオカメラを利用して路端を検知し、さらに、警報制御を実施する処理を行う。 <Process flow chart>
FIG. 24 is a flowchart illustrating the content of the recognition process executed by the image processing device. In this flow, a stereo camera is used to detect the roadside, and further, alarm control is performed.
図24は、画像処理装置により実行される認識処理の内容を説明するフローチャートである。本フローでは、ステレオカメラを利用して路端を検知し、さらに、警報制御を実施する処理を行う。 <Process flow chart>
FIG. 24 is a flowchart illustrating the content of the recognition process executed by the image processing device. In this flow, a stereo camera is used to detect the roadside, and further, alarm control is performed.
まず、ステレオカメラで左右画像を撮像する(S01)。そして、左右画像の平行化、及び感度補正を実施した後に、ステレオマッチングを実施し、視差画像を生成する(S02)。ステレオマッチングの結果と、カメラ幾何や基線長を利用して車両周辺の構造物の3次元座標上の点の集合体である3D点群を取得する。そして、視差画像と3D点群を併用しながら複数種の路端特徴量を取得する(S03)。舵角、ヨーレート、車速を入力として、4輪モデルを利用した自車挙動推定を実施し、自車挙動を推定する(S04)。その際、カメラから得られた特徴点を利用したカメラの相対位置を取得することで、自車挙動をさらに高精度に推定してもよい。この推定された自車挙動と、取得した路端特徴量を利用して、路端特徴量の地図を生成する(S05)。
First, capture the left and right images with a stereo camera (S01). Then, after performing parallelization of the left and right images and correction of sensitivity, stereo matching is performed to generate a parallax image (S02). Using the result of stereo matching and the camera geometry and baseline length, a 3D point cloud, which is a collection of points on the 3D coordinates of the structure around the vehicle, is acquired. Then, a plurality of types of roadside features are acquired while using the parallax image and the 3D point cloud together (S03). With the steering angle, yaw rate, and vehicle speed as inputs, the vehicle behavior is estimated using the four-wheel model, and the vehicle behavior is estimated (S04). At that time, the behavior of the own vehicle may be estimated with higher accuracy by acquiring the relative position of the camera using the feature points obtained from the camera. Using this estimated own vehicle behavior and the acquired roadside feature amount, a map of the roadside feature amount is generated (S05).
次に、上記の路端特徴地図上で、特徴量を連結する。特徴量の連結は、自車両の走行方向に対して行われる。そして、路端の種別ごとに連結条件を変更して、路端候補の生成を実施する(S06)。次に、連結されて線状になった路端候補を、更に連結するかどうかを判定し、最終的な走行路となる路端を認知する(S07)。上記の路端の認知結果をベースに、走行路を自車両が逸脱しそうな状況かどうかを判定する(S08)。上記の判定結果をもとに、警報や制御を実施する(S09)。
Next, connect the features on the above roadside feature map. The feature quantities are connected to the traveling direction of the own vehicle. Then, the connection conditions are changed for each type of roadside, and roadside candidates are generated (S06). Next, it is determined whether or not the connected and linear roadside candidates are further connected, and the roadside that will be the final travel path is recognized (S07). Based on the above-mentioned recognition result of the roadside, it is determined whether or not the own vehicle is likely to deviate from the traveling road (S08). An alarm or control is performed based on the above determination result (S09).
本実施形態の画像処理装置によれば、路端特徴量と自車挙動から路端特徴量の地図を作成し、路端の種別ごとに連結条件を変更して路端候補を生成し、路端候補同士を連結条件に基づいて連結し、走行路の路端として検知する。
According to the image processing device of the present embodiment, a map of the roadside feature amount is created from the roadside feature amount and the vehicle behavior, the connection condition is changed for each roadside type, the roadside candidate is generated, and the roadside candidate is generated. The end candidates are connected based on the connection condition and detected as the road end of the travel path.
従来の走行路を解析するような認識ロジックは、基本的に路端の種別を特定することなく走行路の形状を認知している。このため、複数種の路端が混在するような環境において適切に路端形状を検知することが困難であり、路端が点在して存在するような場合に接続すべきかどうかの判定が適切にできず不検知となるような課題がある。
The conventional recognition logic that analyzes the running road basically recognizes the shape of the running road without specifying the type of the roadside. For this reason, it is difficult to properly detect the roadside shape in an environment where multiple types of roadsides coexist, and it is appropriate to determine whether or not to connect when the roadsides are scattered. There is a problem that it cannot be detected and it is not detected.
本発明によれば、従来難しかった路肩ブロックや壁、側溝などの複数種類のオブジェクトが混在する複雑な路端環境において、同一種の路端特徴量を優先的に接続し、種別に応じて接続すべき路端かどうかを適切に判断することで、より適切な路端を安定的に検知することを可能とする。
According to the present invention, in a complicated roadside environment in which a plurality of types of objects such as road shoulder blocks, walls, and gutters, which have been difficult in the past, are mixed, the same type of roadside features are preferentially connected and connected according to the type. By appropriately determining whether or not the roadside should be, it is possible to stably detect a more appropriate roadside.
以上、本発明の実施形態について詳述したが、本発明は、前記の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の精神を逸脱しない範囲で、種々の設計変更を行うことができるものである。例えば、前記した実施の形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。さらに、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the above-described embodiments, and various designs are designed without departing from the spirit of the present invention described in the claims. You can make changes. For example, the above-described embodiment has been described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to the one including all the described configurations. Further, it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. Further, it is possible to add / delete / replace a part of the configuration of each embodiment with another configuration.
100 センサ部
110 左右カメラ部
120 ステレオマッチング部
130 3D点群生成部
150 カメラ部
170 カメラ部
180 Lidar部
200 路端種別特徴部
210 路端特徴量抽出部
211 立体物累積部(壁、障害物)
212 移動体部(車など)
213 低段差部(路肩ブロック)
214 マイナス段差部
215 段差なし路端部
216 走行路区分立体物部
220 自車挙動推定部
221 挙動推定演算部
222 相対位置姿勢推定部
223 自己地図位置推定部
224 高精度地図位置推定部
230 路端特徴地図生成部
231 路端認識用時系列地図生成部
232 自己位置推定用地図生成部
233 高精度地図情報付加更新部
240 内側特徴優先部
250 内側特徴種別判定部
300 走行路判定部
310 連結路端候補生成部
320 路端候補連結部
330 走行路区分判定部
400 警報制御部
410 自車挙動予測部
420 路端種別接触逸脱判定部
430 警報部
440 制御部 100Sensor unit 110 Left and right camera unit 120 Stereo matching unit 130 3D point cloud generation unit 150 Camera unit 170 Camera unit 180 Lidar unit 200 Roadside type feature unit 210 Roadside feature amount extraction unit 211 Three-dimensional object accumulation unit (wall, obstacle)
212 Mobile parts (cars, etc.)
213 Low step (road shoulder block)
214 Minus steppedpart 215 Stepless roadside part 216 Driveway division three-dimensional object part 220 Own vehicle behavior estimation part 221 Behavior estimation calculation part 222 Relative position attitude estimation part 223 Self-map position estimation part 224 High-precision map position estimation part 230 Roadside Feature map generation unit 231 Time-series map generation unit for roadside recognition 232 Map generation unit for self-position estimation 233 High-precision map information addition update unit 240 Inner feature priority unit 250 Inner feature type determination unit 300 Travel road determination unit 310 Connected roadside Candidate generation unit 320 Roadside candidate connection unit 330 Roadway classification determination unit 400 Alarm control unit 410 Own vehicle behavior prediction unit 420 Roadside type contact deviation determination unit 430 Alarm unit 440 Control unit
110 左右カメラ部
120 ステレオマッチング部
130 3D点群生成部
150 カメラ部
170 カメラ部
180 Lidar部
200 路端種別特徴部
210 路端特徴量抽出部
211 立体物累積部(壁、障害物)
212 移動体部(車など)
213 低段差部(路肩ブロック)
214 マイナス段差部
215 段差なし路端部
216 走行路区分立体物部
220 自車挙動推定部
221 挙動推定演算部
222 相対位置姿勢推定部
223 自己地図位置推定部
224 高精度地図位置推定部
230 路端特徴地図生成部
231 路端認識用時系列地図生成部
232 自己位置推定用地図生成部
233 高精度地図情報付加更新部
240 内側特徴優先部
250 内側特徴種別判定部
300 走行路判定部
310 連結路端候補生成部
320 路端候補連結部
330 走行路区分判定部
400 警報制御部
410 自車挙動予測部
420 路端種別接触逸脱判定部
430 警報部
440 制御部 100
212 Mobile parts (cars, etc.)
213 Low step (road shoulder block)
214 Minus stepped
Claims (14)
- 車載カメラの撮像画像に基づいて走行路の路端を検知する画像処理装置であって、
前記撮像画像から前記路端を構成するオブジェクトの種別を認識し、
該オブジェクトの種別に応じて、前記路端を検知するためのパラメータを変更することを特徴とする画像処理装置。 An image processing device that detects the roadside of a road based on an image captured by an in-vehicle camera.
Recognizing the types of objects that make up the roadside from the captured image,
An image processing device characterized in that parameters for detecting the roadside are changed according to the type of the object. - 前記車載カメラは、ステレオカメラであり、
該ステレオカメラから得られる前記オブジェクトの特徴量を自車の挙動に応じて地図上に投票し、
該地図上の投票結果を用いて前記路端の検知を行うことを特徴とする請求項1に記載の画像処理装置。 The in-vehicle camera is a stereo camera.
The feature amount of the object obtained from the stereo camera is voted on the map according to the behavior of the own vehicle, and the feature amount is voted on the map.
The image processing apparatus according to claim 1, wherein the roadside is detected using the voting result on the map. - 前記オブジェクトの複数の種別を認識し、
同時に複数の種別の前記オブジェクトを利用して前記路端の検知を行うことを特徴とする請求項1に記載の画像処理装置。 Recognize multiple types of the object and
The image processing apparatus according to claim 1, wherein the roadside is detected by using a plurality of types of the objects at the same time. - 前記撮像画像から認識した複数の前記オブジェクトの中から同一種別の前記オブジェクトを抽出し、
該同一種別の前記オブジェクトの特徴量を連結して前記路端の検知を行うことを特徴とする請求項3に記載の画像処理装置。 The object of the same type is extracted from the plurality of objects recognized from the captured image, and the object is extracted.
The image processing apparatus according to claim 3, wherein the feature amounts of the objects of the same type are connected to detect the roadside. - 前記撮像画像から前記走行路の路面よりも低い位置にある領域と前記走行路との間の段差を、前記オブジェクトの1つの種別として認識することを特徴とする請求項1に記載の画像処理装置。 The image processing apparatus according to claim 1, wherein a step between a region lower than the road surface of the traveling path and the traveling path is recognized as one type of the object from the captured image. ..
- 前記撮像画像が有するテクスチャ情報を利用して前記走行路の路面と同じ高さ位置にある領域と前記走行路との間の境界を、前記オブジェクトの1つの種別として認識することを特徴とする請求項1に記載の画像処理装置。 A claim characterized in that the boundary between a region at the same height as the road surface of the travel path and the travel path is recognized as one type of the object by using the texture information of the captured image. Item 1. The image processing apparatus according to item 1.
- 前記撮像画像から走行路区分を示す立体物を前記オブジェクトの1つの種別として認識し、
前記オブジェクトの特徴量を連結可能な走行方向の間隔が、他の種別のオブジェクトと比較して長いことを特徴とする請求項4に記載の画像処理装置。 A three-dimensional object indicating a travel path classification is recognized as one type of the object from the captured image, and the object is recognized.
The image processing apparatus according to claim 4, wherein the distance between the features of the objects in the traveling direction to which the features can be connected is longer than that of other types of objects. - 前記撮像画像から移動体である立体物を前記オブジェクトの1つの種別として認識し、 前記オブジェクトの特徴量を連結可能な路幅方向の間隔が、他の種別のオブジェクトと比較して大きいことを特徴とする請求項4に記載の画像処理装置。 A feature is that a three-dimensional object that is a moving object is recognized as one type of the object from the captured image, and the distance in the road width direction to which the feature amount of the object can be connected is larger than that of other types of objects. The image processing apparatus according to claim 4.
- 前記自車の挙動は、該自車の車両情報と前記ステレオカメラの撮像画像を用いて認識されることを特徴とする請求項2に記載の画像処理装置。 The image processing device according to claim 2, wherein the behavior of the own vehicle is recognized by using the vehicle information of the own vehicle and the image captured by the stereo camera.
- 前記オブジェクトの種別に応じて、前記オブジェクトの特徴量の連結性を判断する際の路面高さの閾値を変更することを特徴とする請求項1に記載の画像処理装置。 The image processing apparatus according to claim 1, wherein the threshold value of the road surface height at the time of determining the connectivity of the feature amount of the object is changed according to the type of the object.
- 前記オブジェクトの種別に応じて、前記オブジェクトの特徴量を路端候補として選別するための最小長の閾値を変更することを特徴とする請求項1に記載の画像処理装置。 The image processing apparatus according to claim 1, wherein the threshold value of the minimum length for selecting the feature amount of the object as a roadside candidate is changed according to the type of the object.
- 前記オブジェクトの種別に応じて、前記オブジェクトの特徴量の連結性を判断する際のオブジェクト間の最大間隔の閾値を変更することを特徴とする請求項1に記載の画像処理装置。 The image processing apparatus according to claim 1, wherein the threshold value of the maximum interval between objects when determining the connectivity of the feature amounts of the objects is changed according to the type of the objects.
- 前記オブジェクトの種別に応じて、警報と車両制御の制御マージンを変更することを特徴とする請求項1に記載の画像処理装置。 The image processing device according to claim 1, wherein the control margin of the alarm and the vehicle control is changed according to the type of the object.
- 前記路端を構成するオブジェクトの種別が複数あると認識された場合に、前記警報及び車両制御の制御マージンには、前記複数のオブジェクトの種別の中で最も大きな制御マージンを使用することを特徴とする請求項13に記載の画像処理装置。 When it is recognized that there are a plurality of types of objects constituting the roadside, the control margin for the warning and the vehicle control is characterized in that the largest control margin among the types of the plurality of objects is used. 13. The image processing apparatus according to claim 13.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202180040948.8A CN115769286A (en) | 2020-09-01 | 2021-08-10 | Image processing apparatus |
DE112021003141.4T DE112021003141T5 (en) | 2020-09-01 | 2021-08-10 | IMAGE PROCESSING DEVICE |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-146631 | 2020-09-01 | ||
JP2020146631A JP7458940B2 (en) | 2020-09-01 | 2020-09-01 | Image processing device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022050006A1 true WO2022050006A1 (en) | 2022-03-10 |
Family
ID=80492015
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/029533 WO2022050006A1 (en) | 2020-09-01 | 2021-08-10 | Image processing device |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP7458940B2 (en) |
CN (1) | CN115769286A (en) |
DE (1) | DE112021003141T5 (en) |
WO (1) | WO2022050006A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2023143308A (en) * | 2022-03-25 | 2023-10-06 | 本田技研工業株式会社 | Control device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012081096A1 (en) * | 2010-12-15 | 2012-06-21 | トヨタ自動車株式会社 | Travel assistance device, travel assistance method, and vehicle |
JP2015148887A (en) * | 2014-02-05 | 2015-08-20 | 株式会社リコー | Image processing device, object recognition device, moving body instrument control system and object recognition program |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009053818A (en) | 2007-08-24 | 2009-03-12 | Toshiba Corp | Image processor and method thereof |
JP5746996B2 (en) * | 2012-03-21 | 2015-07-08 | 日立オートモティブシステムズ株式会社 | Road environment recognition device |
US8750567B2 (en) * | 2012-04-09 | 2014-06-10 | GM Global Technology Operations LLC | Road structure detection and tracking |
JP6060612B2 (en) * | 2012-10-17 | 2017-01-18 | 株式会社リコー | Moving surface situation recognition device, moving object, and program |
JP6467798B2 (en) * | 2013-07-25 | 2019-02-13 | 株式会社リコー | Image processing apparatus, three-dimensional object detection method, three-dimensional object detection program, and moving object control system |
JP5989701B2 (en) * | 2014-03-24 | 2016-09-07 | トヨタ自動車株式会社 | Boundary detection device and boundary detection method |
JP6837262B2 (en) * | 2016-12-27 | 2021-03-03 | 日立Astemo株式会社 | Travelable area detection device and travel support system |
JP2019146012A (en) * | 2018-02-20 | 2019-08-29 | 日立オートモティブシステムズ株式会社 | Imaging apparatus |
-
2020
- 2020-09-01 JP JP2020146631A patent/JP7458940B2/en active Active
-
2021
- 2021-08-10 WO PCT/JP2021/029533 patent/WO2022050006A1/en active Application Filing
- 2021-08-10 DE DE112021003141.4T patent/DE112021003141T5/en active Pending
- 2021-08-10 CN CN202180040948.8A patent/CN115769286A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012081096A1 (en) * | 2010-12-15 | 2012-06-21 | トヨタ自動車株式会社 | Travel assistance device, travel assistance method, and vehicle |
JP2015148887A (en) * | 2014-02-05 | 2015-08-20 | 株式会社リコー | Image processing device, object recognition device, moving body instrument control system and object recognition program |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2023143308A (en) * | 2022-03-25 | 2023-10-06 | 本田技研工業株式会社 | Control device |
JP7441258B2 (en) | 2022-03-25 | 2024-02-29 | 本田技研工業株式会社 | Control device |
Also Published As
Publication number | Publication date |
---|---|
DE112021003141T5 (en) | 2023-04-20 |
CN115769286A (en) | 2023-03-07 |
JP2022041437A (en) | 2022-03-11 |
JP7458940B2 (en) | 2024-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11685360B2 (en) | Planning for unknown objects by an autonomous vehicle | |
US11400925B2 (en) | Planning for unknown objects by an autonomous vehicle | |
CN107918758B (en) | Vehicle capable of environmental scenario analysis | |
JP6913063B2 (en) | Lane maintenance control device | |
US10234864B2 (en) | Planning for unknown objects by an autonomous vehicle | |
JP7003423B2 (en) | Vehicle driving control device | |
US10239539B2 (en) | Vehicle travel control method and vehicle travel control device | |
JP2023106536A (en) | System for vehicle navigation based on image analysis | |
CN107305129B (en) | Method for generating navigation data and navigation device for performing the method | |
CN108974007B (en) | Determining an object of interest for active cruise control | |
JP7222799B2 (en) | ROAD TYPE DETERMINATION DEVICE AND DRIVING ASSIST DEVICE | |
KR20190008324A (en) | Object tracking method and object tracking device | |
JP2015069289A (en) | Lane recognition device | |
CN114655194A (en) | Driving support system, driving support method, and computer-readable recording medium | |
US11403951B2 (en) | Driving assistance for a motor vehicle when approaching a tollgate | |
WO2022050006A1 (en) | Image processing device | |
Janda et al. | A road edge detection approach for marked and unmarked lanes based on video and radar | |
KR102355426B1 (en) | Method and apparatus for detecting and avoiding obstacles on driving path | |
Hernández et al. | Laser based collision warning system for high conflict vehicle-pedestrian zones | |
CN114830202A (en) | Planning for unknown objects by autonomous vehicles | |
JP7486556B2 (en) | Lane marking recognition device | |
JP7556922B2 (en) | External Recognition Device | |
Wu et al. | A DSP-based lane departure warning system | |
KR20230071925A (en) | Vehicle control system and navigating method using vehicle control system | |
KR20230071923A (en) | Vehicle control system and navigating method using vehicle control system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21864064 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202317005536 Country of ref document: IN |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21864064 Country of ref document: EP Kind code of ref document: A1 |