WO2022045110A1 - Method of producing monoploid unicellular red alga, and culture medium for monoploid unicellular red alga - Google Patents
Method of producing monoploid unicellular red alga, and culture medium for monoploid unicellular red alga Download PDFInfo
- Publication number
- WO2022045110A1 WO2022045110A1 PCT/JP2021/030937 JP2021030937W WO2022045110A1 WO 2022045110 A1 WO2022045110 A1 WO 2022045110A1 JP 2021030937 W JP2021030937 W JP 2021030937W WO 2022045110 A1 WO2022045110 A1 WO 2022045110A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- medium
- unicellular
- cells
- red algae
- monoploid
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 31
- 239000001963 growth medium Substances 0.000 title abstract description 6
- 230000003204 osmotic effect Effects 0.000 claims abstract description 88
- 238000004519 manufacturing process Methods 0.000 claims abstract description 26
- 238000012258 culturing Methods 0.000 claims abstract description 9
- 210000004027 cell Anatomy 0.000 claims description 82
- 241000206572 Rhodophyta Species 0.000 claims description 81
- 239000003795 chemical substances by application Substances 0.000 claims description 32
- 150000005846 sugar alcohols Chemical class 0.000 claims description 29
- 208000020584 Polyploidy Diseases 0.000 claims description 24
- 210000001840 diploid cell Anatomy 0.000 claims description 14
- 235000000346 sugar Nutrition 0.000 claims description 13
- 150000001413 amino acids Chemical class 0.000 claims description 12
- 210000001850 polyploid cell Anatomy 0.000 claims description 9
- 230000002062 proliferating effect Effects 0.000 claims description 3
- 239000002609 medium Substances 0.000 description 142
- 210000003783 haploid cell Anatomy 0.000 description 47
- 229920001817 Agar Polymers 0.000 description 22
- 239000008272 agar Substances 0.000 description 22
- -1 elittlerose Chemical compound 0.000 description 22
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 21
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 21
- 235000010356 sorbitol Nutrition 0.000 description 21
- 229960002920 sorbitol Drugs 0.000 description 21
- 239000000600 sorbitol Substances 0.000 description 20
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 15
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 13
- 229930006000 Sucrose Natural products 0.000 description 13
- 239000005720 sucrose Substances 0.000 description 13
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 12
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 12
- 229940024606 amino acid Drugs 0.000 description 12
- 239000008103 glucose Substances 0.000 description 11
- 239000007787 solid Substances 0.000 description 11
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 10
- 235000001014 amino acid Nutrition 0.000 description 10
- 239000007788 liquid Substances 0.000 description 8
- 239000004475 Arginine Substances 0.000 description 7
- 241000195493 Cryptophyta Species 0.000 description 7
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 7
- 239000004471 Glycine Substances 0.000 description 7
- 229930195725 Mannitol Natural products 0.000 description 7
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 7
- 210000002421 cell wall Anatomy 0.000 description 7
- 239000000594 mannitol Substances 0.000 description 7
- 235000010355 mannitol Nutrition 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- 150000003839 salts Chemical class 0.000 description 7
- 150000008163 sugars Chemical class 0.000 description 7
- SRBFZHDQGSBBOR-IOVATXLUSA-N D-xylopyranose Chemical compound O[C@@H]1COC(O)[C@H](O)[C@H]1O SRBFZHDQGSBBOR-IOVATXLUSA-N 0.000 description 6
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 6
- 238000007792 addition Methods 0.000 description 6
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 description 6
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 description 6
- RXKJFZQQPQGTFL-UHFFFAOYSA-N dihydroxyacetone Chemical compound OCC(=O)CO RXKJFZQQPQGTFL-UHFFFAOYSA-N 0.000 description 6
- 230000012010 growth Effects 0.000 description 6
- HDTRYLNUVZCQOY-UHFFFAOYSA-N α-D-glucopyranosyl-α-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OC1C(O)C(O)C(O)C(CO)O1 HDTRYLNUVZCQOY-UHFFFAOYSA-N 0.000 description 5
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 5
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 5
- 238000012239 gene modification Methods 0.000 description 5
- 235000011187 glycerol Nutrition 0.000 description 5
- 239000001103 potassium chloride Substances 0.000 description 5
- 235000011164 potassium chloride Nutrition 0.000 description 5
- 239000004094 surface-active agent Substances 0.000 description 5
- QIGJYVCQYDKYDW-UHFFFAOYSA-N 3-O-alpha-D-mannopyranosyl-D-mannopyranose Natural products OC1C(O)C(O)C(CO)OC1OC1C(O)C(CO)OC(O)C1O QIGJYVCQYDKYDW-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- YTBSYETUWUMLBZ-UHFFFAOYSA-N D-Erythrose Natural products OCC(O)C(O)C=O YTBSYETUWUMLBZ-UHFFFAOYSA-N 0.000 description 4
- YTBSYETUWUMLBZ-IUYQGCFVSA-N D-erythrose Chemical compound OC[C@@H](O)[C@@H](O)C=O YTBSYETUWUMLBZ-IUYQGCFVSA-N 0.000 description 4
- 206010056474 Erythrosis Diseases 0.000 description 4
- 229930091371 Fructose Natural products 0.000 description 4
- 239000005715 Fructose Substances 0.000 description 4
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 4
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 4
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 4
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 235000003704 aspartic acid Nutrition 0.000 description 4
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 4
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 4
- 239000008101 lactose Substances 0.000 description 4
- 238000012423 maintenance Methods 0.000 description 4
- HEBKCHPVOIAQTA-UHFFFAOYSA-N meso ribitol Natural products OCC(O)C(O)C(O)CO HEBKCHPVOIAQTA-UHFFFAOYSA-N 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Chemical class 0.000 description 4
- 229920001542 oligosaccharide Polymers 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 230000035755 proliferation Effects 0.000 description 4
- UQDJGEHQDNVPGU-UHFFFAOYSA-N serine phosphoethanolamine Chemical compound [NH3+]CCOP([O-])(=O)OCC([NH3+])C([O-])=O UQDJGEHQDNVPGU-UHFFFAOYSA-N 0.000 description 4
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 4
- ASJSAQIRZKANQN-CRCLSJGQSA-N 2-deoxy-D-ribose Chemical compound OC[C@@H](O)[C@@H](O)CC=O ASJSAQIRZKANQN-CRCLSJGQSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 3
- 241000190108 Cyanidioschyzon Species 0.000 description 3
- GUBGYTABKSRVRQ-CUHNMECISA-N D-Cellobiose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-CUHNMECISA-N 0.000 description 3
- MNQZXJOMYWMBOU-VKHMYHEASA-N D-glyceraldehyde Chemical compound OC[C@@H](O)C=O MNQZXJOMYWMBOU-VKHMYHEASA-N 0.000 description 3
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 description 3
- HMFHBZSHGGEWLO-SOOFDHNKSA-N D-ribofuranose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H]1O HMFHBZSHGGEWLO-SOOFDHNKSA-N 0.000 description 3
- ZAQJHHRNXZUBTE-NQXXGFSBSA-N D-ribulose Chemical compound OC[C@@H](O)[C@@H](O)C(=O)CO ZAQJHHRNXZUBTE-NQXXGFSBSA-N 0.000 description 3
- ZAQJHHRNXZUBTE-UHFFFAOYSA-N D-threo-2-Pentulose Natural products OCC(O)C(O)C(=O)CO ZAQJHHRNXZUBTE-UHFFFAOYSA-N 0.000 description 3
- 241000196324 Embryophyta Species 0.000 description 3
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 3
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 3
- 239000004472 Lysine Substances 0.000 description 3
- PYMYPHUHKUWMLA-LMVFSUKVSA-N Ribose Natural products OC[C@@H](O)[C@@H](O)[C@@H](O)C=O PYMYPHUHKUWMLA-LMVFSUKVSA-N 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 3
- HDTRYLNUVZCQOY-WSWWMNSNSA-N Trehalose Natural products O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-WSWWMNSNSA-N 0.000 description 3
- HDTRYLNUVZCQOY-LIZSDCNHSA-N alpha,alpha-trehalose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-LIZSDCNHSA-N 0.000 description 3
- HMFHBZSHGGEWLO-UHFFFAOYSA-N alpha-D-Furanose-Ribose Natural products OCC1OC(O)C(O)C1O HMFHBZSHGGEWLO-UHFFFAOYSA-N 0.000 description 3
- WQZGKKKJIJFFOK-PHYPRBDBSA-N alpha-D-galactose Chemical compound OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-PHYPRBDBSA-N 0.000 description 3
- PYMYPHUHKUWMLA-WDCZJNDASA-N arabinose Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)C=O PYMYPHUHKUWMLA-WDCZJNDASA-N 0.000 description 3
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 3
- 235000018417 cysteine Nutrition 0.000 description 3
- 229940120503 dihydroxyacetone Drugs 0.000 description 3
- 229930182830 galactose Natural products 0.000 description 3
- 239000000832 lactitol Substances 0.000 description 3
- 235000010448 lactitol Nutrition 0.000 description 3
- VQHSOMBJVWLPSR-JVCRWLNRSA-N lactitol Chemical compound OC[C@H](O)[C@@H](O)[C@@H]([C@H](O)CO)O[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O VQHSOMBJVWLPSR-JVCRWLNRSA-N 0.000 description 3
- 229960003451 lactitol Drugs 0.000 description 3
- 150000002772 monosaccharides Chemical class 0.000 description 3
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 2
- LGQKSQQRKHFMLI-SJYYZXOBSA-N (2s,3r,4s,5r)-2-[(3r,4r,5r,6r)-4,5,6-trihydroxyoxan-3-yl]oxyoxane-3,4,5-triol Chemical compound O[C@@H]1[C@@H](O)[C@H](O)CO[C@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O)OC1 LGQKSQQRKHFMLI-SJYYZXOBSA-N 0.000 description 2
- WNWNYJSOBYTXFA-BZIARYSWSA-N (2s,3s,4s,5r,6r)-6-[(2r,3r,4r,5r)-2-amino-4,5,6-trihydroxy-1-oxohexan-3-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylic acid Chemical compound OC[C@@H](O)[C@@H](O)[C@@H]([C@H](C=O)N)O[C@@H]1O[C@H](C(O)=O)[C@@H](O)[C@H](O)[C@H]1O WNWNYJSOBYTXFA-BZIARYSWSA-N 0.000 description 2
- SERLAGPUMNYUCK-DCUALPFSSA-N 1-O-alpha-D-glucopyranosyl-D-mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO[C@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O SERLAGPUMNYUCK-DCUALPFSSA-N 0.000 description 2
- OGNSCSPNOLGXSM-UHFFFAOYSA-N 2,4-diaminobutyric acid Chemical compound NCCC(N)C(O)=O OGNSCSPNOLGXSM-UHFFFAOYSA-N 0.000 description 2
- OYIFNHCXNCRBQI-UHFFFAOYSA-N 2-aminoadipic acid Chemical compound OC(=O)C(N)CCCC(O)=O OYIFNHCXNCRBQI-UHFFFAOYSA-N 0.000 description 2
- PECYZEOJVXMISF-UHFFFAOYSA-N 3-aminoalanine Chemical compound [NH3+]CC(N)C([O-])=O PECYZEOJVXMISF-UHFFFAOYSA-N 0.000 description 2
- UOQHWNPVNXSDDO-UHFFFAOYSA-N 3-bromoimidazo[1,2-a]pyridine-6-carbonitrile Chemical compound C1=CC(C#N)=CN2C(Br)=CN=C21 UOQHWNPVNXSDDO-UHFFFAOYSA-N 0.000 description 2
- DBTMGCOVALSLOR-UHFFFAOYSA-N 32-alpha-galactosyl-3-alpha-galactosyl-galactose Natural products OC1C(O)C(O)C(CO)OC1OC1C(O)C(OC2C(C(CO)OC(O)C2O)O)OC(CO)C1O DBTMGCOVALSLOR-UHFFFAOYSA-N 0.000 description 2
- LGQKSQQRKHFMLI-UHFFFAOYSA-N 4-O-beta-D-xylopyranosyl-beta-D-xylopyranose Natural products OC1C(O)C(O)COC1OC1C(O)C(O)C(O)OC1 LGQKSQQRKHFMLI-UHFFFAOYSA-N 0.000 description 2
- ODHCTXKNWHHXJC-VKHMYHEASA-N 5-oxo-L-proline Chemical compound OC(=O)[C@@H]1CCC(=O)N1 ODHCTXKNWHHXJC-VKHMYHEASA-N 0.000 description 2
- PVXPPJIGRGXGCY-DJHAAKORSA-N 6-O-alpha-D-glucopyranosyl-alpha-D-fructofuranose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1OC[C@@H]1[C@@H](O)[C@H](O)[C@](O)(CO)O1 PVXPPJIGRGXGCY-DJHAAKORSA-N 0.000 description 2
- 108700028369 Alleles Proteins 0.000 description 2
- WQZGKKKJIJFFOK-IVMDWMLBSA-N D-allopyranose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@H](O)[C@@H]1O WQZGKKKJIJFFOK-IVMDWMLBSA-N 0.000 description 2
- LKDRXBCSQODPBY-JDJSBBGDSA-N D-allulose Chemical compound OCC1(O)OC[C@@H](O)[C@@H](O)[C@H]1O LKDRXBCSQODPBY-JDJSBBGDSA-N 0.000 description 2
- HAIWUXASLYEWLM-UHFFFAOYSA-N D-manno-Heptulose Natural products OCC1OC(O)(CO)C(O)C(O)C1O HAIWUXASLYEWLM-UHFFFAOYSA-N 0.000 description 2
- SHZGCJCMOBCMKK-UHFFFAOYSA-N D-mannomethylose Natural products CC1OC(O)C(O)C(O)C1O SHZGCJCMOBCMKK-UHFFFAOYSA-N 0.000 description 2
- SQNRKWHRVIAKLP-UHFFFAOYSA-N D-xylobiose Natural products O=CC(O)C(O)C(CO)OC1OCC(O)C(O)C1O SQNRKWHRVIAKLP-UHFFFAOYSA-N 0.000 description 2
- 239000004386 Erythritol Substances 0.000 description 2
- UNXHWFMMPAWVPI-UHFFFAOYSA-N Erythritol Natural products OCC(O)C(O)CO UNXHWFMMPAWVPI-UHFFFAOYSA-N 0.000 description 2
- PNNNRSAQSRJVSB-SLPGGIOYSA-N Fucose Natural products C[C@H](O)[C@@H](O)[C@H](O)[C@H](O)C=O PNNNRSAQSRJVSB-SLPGGIOYSA-N 0.000 description 2
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 2
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 2
- SHZGCJCMOBCMKK-DHVFOXMCSA-N L-fucopyranose Chemical compound C[C@@H]1OC(O)[C@@H](O)[C@H](O)[C@@H]1O SHZGCJCMOBCMKK-DHVFOXMCSA-N 0.000 description 2
- HSNZZMHEPUFJNZ-UHFFFAOYSA-N L-galacto-2-Heptulose Natural products OCC(O)C(O)C(O)C(O)C(=O)CO HSNZZMHEPUFJNZ-UHFFFAOYSA-N 0.000 description 2
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 2
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 2
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 2
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 2
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 2
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 2
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 2
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 2
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 2
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 2
- PNIWLNAGKUGXDO-UHFFFAOYSA-N Lactosamine Natural products OC1C(N)C(O)OC(CO)C1OC1C(O)C(O)C(O)C(CO)O1 PNIWLNAGKUGXDO-UHFFFAOYSA-N 0.000 description 2
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- HAIWUXASLYEWLM-AZEWMMITSA-N Sedoheptulose Natural products OC[C@H]1[C@H](O)[C@H](O)[C@H](O)[C@@](O)(CO)O1 HAIWUXASLYEWLM-AZEWMMITSA-N 0.000 description 2
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 2
- HIWPGCMGAMJNRG-ACCAVRKYSA-N Sophorose Natural products O([C@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 HIWPGCMGAMJNRG-ACCAVRKYSA-N 0.000 description 2
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 2
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 2
- TVXBFESIOXBWNM-UHFFFAOYSA-N Xylitol Natural products OCCC(O)C(O)C(O)CCO TVXBFESIOXBWNM-UHFFFAOYSA-N 0.000 description 2
- ODHCTXKNWHHXJC-UHFFFAOYSA-N acide pyroglutamique Natural products OC(=O)C1CCC(=O)N1 ODHCTXKNWHHXJC-UHFFFAOYSA-N 0.000 description 2
- 235000004279 alanine Nutrition 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 150000001340 alkali metals Chemical class 0.000 description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 2
- 150000001342 alkaline earth metals Chemical class 0.000 description 2
- HDTRYLNUVZCQOY-BTLHAWITSA-N alpha,beta-trehalose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-BTLHAWITSA-N 0.000 description 2
- QWCKQJZIFLGMSD-UHFFFAOYSA-N alpha-aminobutyric acid Chemical compound CCC(N)C(O)=O QWCKQJZIFLGMSD-UHFFFAOYSA-N 0.000 description 2
- HDTRYLNUVZCQOY-NCFXGAEVSA-N beta,beta-trehalose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-NCFXGAEVSA-N 0.000 description 2
- UCMIRNVEIXFBKS-UHFFFAOYSA-N beta-alanine Chemical compound NCCC(O)=O UCMIRNVEIXFBKS-UHFFFAOYSA-N 0.000 description 2
- HIWPGCMGAMJNRG-UHFFFAOYSA-N beta-sophorose Natural products OC1C(O)C(CO)OC(O)C1OC1C(O)C(O)C(O)C(CO)O1 HIWPGCMGAMJNRG-UHFFFAOYSA-N 0.000 description 2
- 235000009508 confectionery Nutrition 0.000 description 2
- 150000002016 disaccharides Chemical class 0.000 description 2
- PMMYEEVYMWASQN-UHFFFAOYSA-N dl-hydroxyproline Natural products OC1C[NH2+]C(C([O-])=O)C1 PMMYEEVYMWASQN-UHFFFAOYSA-N 0.000 description 2
- 235000019414 erythritol Nutrition 0.000 description 2
- 229940009714 erythritol Drugs 0.000 description 2
- UNXHWFMMPAWVPI-ZXZARUISSA-N erythritol Chemical compound OC[C@H](O)[C@H](O)CO UNXHWFMMPAWVPI-ZXZARUISSA-N 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 235000013922 glutamic acid Nutrition 0.000 description 2
- 239000004220 glutamic acid Substances 0.000 description 2
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 2
- 235000004554 glutamine Nutrition 0.000 description 2
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 2
- 150000002453 idose derivatives Chemical class 0.000 description 2
- 229910017053 inorganic salt Inorganic materials 0.000 description 2
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 2
- 229960000310 isoleucine Drugs 0.000 description 2
- 239000000905 isomalt Substances 0.000 description 2
- 235000010439 isomalt Nutrition 0.000 description 2
- HPIGCVXMBGOWTF-UHFFFAOYSA-N isomaltol Natural products CC(=O)C=1OC=CC=1O HPIGCVXMBGOWTF-UHFFFAOYSA-N 0.000 description 2
- BJHIKXHVCXFQLS-PQLUHFTBSA-N keto-D-tagatose Chemical compound OC[C@@H](O)[C@H](O)[C@H](O)C(=O)CO BJHIKXHVCXFQLS-PQLUHFTBSA-N 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 229940099563 lactobionic acid Drugs 0.000 description 2
- DOVBXGDYENZJBJ-ONMPCKGSSA-N lactosamine Chemical compound O=C[C@H](N)[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O DOVBXGDYENZJBJ-ONMPCKGSSA-N 0.000 description 2
- VUALREFPJJODHZ-WELRSGGNSA-N lactosediamine Chemical compound O=C[C@H](N)[C@@H](O)[C@@H]([C@H](O)CO)O[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1N VUALREFPJJODHZ-WELRSGGNSA-N 0.000 description 2
- QIGJYVCQYDKYDW-LCOYTZNXSA-N laminarabiose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1O[C@H]1[C@H](O)[C@@H](CO)OC(O)[C@@H]1O QIGJYVCQYDKYDW-LCOYTZNXSA-N 0.000 description 2
- 229960001855 mannitol Drugs 0.000 description 2
- 229930182817 methionine Natural products 0.000 description 2
- 150000007522 mineralic acids Chemical class 0.000 description 2
- QIGJYVCQYDKYDW-NSYYTRPSSA-N nigerose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@H]1[C@H](O)[C@@H](CO)OC(O)[C@@H]1O QIGJYVCQYDKYDW-NSYYTRPSSA-N 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 2
- 235000008729 phenylalanine Nutrition 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- FSYKKLYZXJSNPZ-UHFFFAOYSA-N sarcosine Chemical compound C[NH2+]CC([O-])=O FSYKKLYZXJSNPZ-UHFFFAOYSA-N 0.000 description 2
- HSNZZMHEPUFJNZ-SHUUEZRQSA-N sedoheptulose Chemical compound OC[C@@H](O)[C@@H](O)[C@@H](O)[C@H](O)C(=O)CO HSNZZMHEPUFJNZ-SHUUEZRQSA-N 0.000 description 2
- PZDOWFGHCNHPQD-VNNZMYODSA-N sophorose Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](C=O)O[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O PZDOWFGHCNHPQD-VNNZMYODSA-N 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000011573 trace mineral Substances 0.000 description 2
- 235000013619 trace mineral Nutrition 0.000 description 2
- 239000004474 valine Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 239000000811 xylitol Substances 0.000 description 2
- 235000010447 xylitol Nutrition 0.000 description 2
- 229960002675 xylitol Drugs 0.000 description 2
- HEBKCHPVOIAQTA-SCDXWVJYSA-N xylitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)CO HEBKCHPVOIAQTA-SCDXWVJYSA-N 0.000 description 2
- BJBUEDPLEOHJGE-UHFFFAOYSA-N (2R,3S)-3-Hydroxy-2-pyrolidinecarboxylic acid Natural products OC1CCNC1C(O)=O BJBUEDPLEOHJGE-UHFFFAOYSA-N 0.000 description 1
- FDKWRPBBCBCIGA-REOHCLBHSA-N (2r)-2-azaniumyl-3-$l^{1}-selanylpropanoate Chemical compound [Se]C[C@H](N)C(O)=O FDKWRPBBCBCIGA-REOHCLBHSA-N 0.000 description 1
- FVVCFHXLWDDRHG-UPLOTWCNSA-N (2s,3r,4s,5r,6r)-2-[(2r,3s,4r,5r,6r)-6-[(2s,3s,4s,5r)-3,4-dihydroxy-2,5-bis(hydroxymethyl)oxolan-2-yl]oxy-4,5-dihydroxy-2-(hydroxymethyl)oxan-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O)[C@@H](O)[C@@H](CO)O2)O)[C@@H](CO)O1 FVVCFHXLWDDRHG-UPLOTWCNSA-N 0.000 description 1
- UKAUYVFTDYCKQA-UHFFFAOYSA-N -2-Amino-4-hydroxybutanoic acid Natural products OC(=O)C(N)CCO UKAUYVFTDYCKQA-UHFFFAOYSA-N 0.000 description 1
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 1
- LMSDCGXQALIMLM-UHFFFAOYSA-N 2-[2-[bis(carboxymethyl)amino]ethyl-(carboxymethyl)amino]acetic acid;iron Chemical group [Fe].OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O LMSDCGXQALIMLM-UHFFFAOYSA-N 0.000 description 1
- LRQKBLKVPFOOQJ-UHFFFAOYSA-N 2-aminohexanoic acid Chemical compound CCCCC(N)C(O)=O LRQKBLKVPFOOQJ-UHFFFAOYSA-N 0.000 description 1
- SNDPXSYFESPGGJ-UHFFFAOYSA-N 2-aminopentanoic acid Chemical compound CCCC(N)C(O)=O SNDPXSYFESPGGJ-UHFFFAOYSA-N 0.000 description 1
- XABCFXXGZPWJQP-UHFFFAOYSA-N 3-aminoadipic acid Chemical compound OC(=O)CC(N)CCC(O)=O XABCFXXGZPWJQP-UHFFFAOYSA-N 0.000 description 1
- OLBQXBHLZOAVSV-UHFFFAOYSA-N 4'-O-beta-D-Glucopyranoside-Secoeranthin Natural products OC1C(O)C(O)C(CO)OC1OC1C(O)C(OC2C(C(OC3C(C(CO)OC(O)C3O)O)OC(CO)C2O)O)OC(CO)C1O OLBQXBHLZOAVSV-UHFFFAOYSA-N 0.000 description 1
- 229940117976 5-hydroxylysine Drugs 0.000 description 1
- SLXKOJJOQWFEFD-UHFFFAOYSA-N 6-aminohexanoic acid Chemical compound NCCCCCC(O)=O SLXKOJJOQWFEFD-UHFFFAOYSA-N 0.000 description 1
- ODEHMIGXGLNAKK-OESPXIITSA-N 6-kestotriose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)OC[C@@H]1[C@@H](O)[C@H](O)[C@](CO)(O[C@@H]2[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O2)O)O1 ODEHMIGXGLNAKK-OESPXIITSA-N 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 241000206585 Cyanidium Species 0.000 description 1
- DRDSDQVQSRICML-UHFFFAOYSA-N D-Erythro-D-galacto-octitol Chemical compound OCC(O)C(O)C(O)C(O)C(O)C(O)CO DRDSDQVQSRICML-UHFFFAOYSA-N 0.000 description 1
- FDKWRPBBCBCIGA-UWTATZPHSA-N D-Selenocysteine Natural products [Se]C[C@@H](N)C(O)=O FDKWRPBBCBCIGA-UWTATZPHSA-N 0.000 description 1
- HEBKCHPVOIAQTA-QWWZWVQMSA-N D-arabinitol Chemical compound OC[C@@H](O)C(O)[C@H](O)CO HEBKCHPVOIAQTA-QWWZWVQMSA-N 0.000 description 1
- FBPFZTCFMRRESA-ZXXMMSQZSA-N D-iditol Chemical compound OC[C@@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-ZXXMMSQZSA-N 0.000 description 1
- RXVWSYJTUUKTEA-UHFFFAOYSA-N D-maltotriose Natural products OC1C(O)C(OC(C(O)CO)C(O)C(O)C=O)OC(CO)C1OC1C(O)C(O)C(O)C(CO)O1 RXVWSYJTUUKTEA-UHFFFAOYSA-N 0.000 description 1
- 241001646653 Galdieria Species 0.000 description 1
- 235000010469 Glycine max Nutrition 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- SQUHHTBVTRBESD-UHFFFAOYSA-N Hexa-Ac-myo-Inositol Natural products CC(=O)OC1C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C1OC(C)=O SQUHHTBVTRBESD-UHFFFAOYSA-N 0.000 description 1
- PMMYEEVYMWASQN-DMTCNVIQSA-N Hydroxyproline Chemical compound O[C@H]1CN[C@H](C(O)=O)C1 PMMYEEVYMWASQN-DMTCNVIQSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- AYRXSINWFIIFAE-SCLMCMATSA-N Isomaltose Natural products OC[C@H]1O[C@H](OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C=O)[C@@H](O)[C@@H](O)[C@@H]1O AYRXSINWFIIFAE-SCLMCMATSA-N 0.000 description 1
- 102100037644 Kelch-like protein 41 Human genes 0.000 description 1
- 108050003242 Kelch-like protein 41 Proteins 0.000 description 1
- OKPQBUWBBBNTOV-UHFFFAOYSA-N Kojibiose Natural products COC1OC(O)C(OC2OC(OC)C(O)C(O)C2O)C(O)C1O OKPQBUWBBBNTOV-UHFFFAOYSA-N 0.000 description 1
- LKDRXBCSQODPBY-AMVSKUEXSA-N L-(-)-Sorbose Chemical compound OCC1(O)OC[C@H](O)[C@@H](O)[C@@H]1O LKDRXBCSQODPBY-AMVSKUEXSA-N 0.000 description 1
- AHLPHDHHMVZTML-BYPYZUCNSA-N L-Ornithine Chemical compound NCCC[C@H](N)C(O)=O AHLPHDHHMVZTML-BYPYZUCNSA-N 0.000 description 1
- WQZGKKKJIJFFOK-VSOAQEOCSA-N L-altropyranose Chemical compound OC[C@@H]1OC(O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-VSOAQEOCSA-N 0.000 description 1
- HEBKCHPVOIAQTA-IMJSIDKUSA-N L-arabinitol Chemical compound OC[C@H](O)C(O)[C@@H](O)CO HEBKCHPVOIAQTA-IMJSIDKUSA-N 0.000 description 1
- FFFHZYDWPBMWHY-VKHMYHEASA-N L-homocysteine Chemical compound OC(=O)[C@@H](N)CCS FFFHZYDWPBMWHY-VKHMYHEASA-N 0.000 description 1
- UKAUYVFTDYCKQA-VKHMYHEASA-N L-homoserine Chemical compound OC(=O)[C@@H](N)CCO UKAUYVFTDYCKQA-VKHMYHEASA-N 0.000 description 1
- QJPWUUJVYOJNMH-VKHMYHEASA-N L-homoserine lactone Chemical compound N[C@H]1CCOC1=O QJPWUUJVYOJNMH-VKHMYHEASA-N 0.000 description 1
- LRQKBLKVPFOOQJ-YFKPBYRVSA-N L-norleucine Chemical compound CCCC[C@H]([NH3+])C([O-])=O LRQKBLKVPFOOQJ-YFKPBYRVSA-N 0.000 description 1
- UNXHWFMMPAWVPI-IMJSIDKUSA-N L-threitol Chemical compound OC[C@H](O)[C@@H](O)CO UNXHWFMMPAWVPI-IMJSIDKUSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 1
- YSVQUZOHQULZQP-UHFFFAOYSA-N Mannosylglucosaminide Natural products NC1C(O)C(O)C(CO)OC1OC1C(O)C(O)C(O)C(CO)O1 YSVQUZOHQULZQP-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- LTNUWWZNTOSEML-UHFFFAOYSA-N Nigerotetraose Natural products CC1CCC2(C)C(CCCC2=C)C1(C)CC3=C(O)C(=O)C=C(N)C3=O LTNUWWZNTOSEML-UHFFFAOYSA-N 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- FLDFNEBHEXLZRX-DLQNOBSRSA-N Nystose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)OC[C@]1(OC[C@]2(O[C@@H]3[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O3)O)[C@H]([C@H](O)[C@@H](CO)O2)O)[C@@H](O)[C@H](O)[C@@H](CO)O1 FLDFNEBHEXLZRX-DLQNOBSRSA-N 0.000 description 1
- AYRXSINWFIIFAE-UHFFFAOYSA-N O6-alpha-D-Galactopyranosyl-D-galactose Natural products OCC1OC(OCC(O)C(O)C(O)C(O)C=O)C(O)C(O)C1O AYRXSINWFIIFAE-UHFFFAOYSA-N 0.000 description 1
- AHLPHDHHMVZTML-UHFFFAOYSA-N Orn-delta-NH2 Natural products NCCCC(N)C(O)=O AHLPHDHHMVZTML-UHFFFAOYSA-N 0.000 description 1
- UTJLXEIPEHZYQJ-UHFFFAOYSA-N Ornithine Natural products OC(=O)C(C)CCCN UTJLXEIPEHZYQJ-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- ODHCTXKNWHHXJC-GSVOUGTGSA-N Pyroglutamic acid Natural products OC(=O)[C@H]1CCC(=O)N1 ODHCTXKNWHHXJC-GSVOUGTGSA-N 0.000 description 1
- MUPFEKGTMRGPLJ-RMMQSMQOSA-N Raffinose Natural products O(C[C@H]1[C@@H](O)[C@H](O)[C@@H](O)[C@@H](O[C@@]2(CO)[C@H](O)[C@@H](O)[C@@H](CO)O2)O1)[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 MUPFEKGTMRGPLJ-RMMQSMQOSA-N 0.000 description 1
- 241000541759 Rhodellophyceae Species 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- 241000454576 Stylonematophyceae Species 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-N Sulfurous acid Chemical compound OS(O)=O LSNNMFCWUKXFEE-UHFFFAOYSA-N 0.000 description 1
- DRQXUCVJDCRJDB-UHFFFAOYSA-N Turanose Natural products OC1C(CO)OC(O)(CO)C1OC1C(O)C(O)C(O)C(CO)O1 DRQXUCVJDCRJDB-UHFFFAOYSA-N 0.000 description 1
- MUPFEKGTMRGPLJ-UHFFFAOYSA-N UNPD196149 Natural products OC1C(O)C(CO)OC1(CO)OC1C(O)C(O)C(O)C(COC2C(C(O)C(O)C(CO)O2)O)O1 MUPFEKGTMRGPLJ-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- DBTMGCOVALSLOR-VXXRBQRTSA-N alpha-D-Glcp-(1->3)-alpha-D-Glcp-(1->3)-D-Glcp Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](O)[C@@H](O[C@H]2[C@@H]([C@@H](CO)OC(O)[C@@H]2O)O)O[C@H](CO)[C@H]1O DBTMGCOVALSLOR-VXXRBQRTSA-N 0.000 description 1
- SRBFZHDQGSBBOR-STGXQOJASA-N alpha-D-lyxopyranose Chemical compound O[C@@H]1CO[C@H](O)[C@@H](O)[C@H]1O SRBFZHDQGSBBOR-STGXQOJASA-N 0.000 description 1
- 150000001370 alpha-amino acid derivatives Chemical class 0.000 description 1
- 235000008206 alpha-amino acids Nutrition 0.000 description 1
- 229960002684 aminocaproic acid Drugs 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 125000000637 arginyl group Chemical group N[C@@H](CCCNC(N)=N)C(=O)* 0.000 description 1
- 230000001651 autotrophic effect Effects 0.000 description 1
- 239000007640 basal medium Substances 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 229940000635 beta-alanine Drugs 0.000 description 1
- 150000001576 beta-amino acids Chemical class 0.000 description 1
- GUBGYTABKSRVRQ-QUYVBRFLSA-N beta-maltose Chemical compound OC[C@H]1O[C@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@@H]1O GUBGYTABKSRVRQ-QUYVBRFLSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 235000013877 carbamide Nutrition 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 230000004663 cell proliferation Effects 0.000 description 1
- JYTUSYBCFIZPBE-ZNLUKOTNSA-N cellobionic acid Chemical compound OC(=O)[C@H](O)[C@@H](O)[C@@H]([C@H](O)CO)O[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O JYTUSYBCFIZPBE-ZNLUKOTNSA-N 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- YSMODUONRAFBET-UHFFFAOYSA-N delta-DL-hydroxylysine Natural products NCC(O)CCC(N)C(O)=O YSMODUONRAFBET-UHFFFAOYSA-N 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- YSMODUONRAFBET-UHNVWZDZSA-N erythro-5-hydroxy-L-lysine Chemical compound NC[C@H](O)CC[C@H](N)C(O)=O YSMODUONRAFBET-UHNVWZDZSA-N 0.000 description 1
- 235000013376 functional food Nutrition 0.000 description 1
- FBPFZTCFMRRESA-GUCUJZIJSA-N galactitol Chemical compound OC[C@H](O)[C@@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-GUCUJZIJSA-N 0.000 description 1
- 235000021255 galacto-oligosaccharides Nutrition 0.000 description 1
- 150000003271 galactooligosaccharides Chemical class 0.000 description 1
- UHBYWPGGCSDKFX-VKHMYHEASA-N gamma-carboxy-L-glutamic acid Chemical compound OC(=O)[C@@H](N)CC(C(O)=O)C(O)=O UHBYWPGGCSDKFX-VKHMYHEASA-N 0.000 description 1
- DLRVVLDZNNYCBX-CQUJWQHSSA-N gentiobiose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1OC[C@@H]1[C@@H](O)[C@H](O)[C@@H](O)C(O)O1 DLRVVLDZNNYCBX-CQUJWQHSSA-N 0.000 description 1
- 125000002791 glucosyl group Chemical group C1([C@H](O)[C@@H](O)[C@H](O)[C@H](O1)CO)* 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 229960005150 glycerol Drugs 0.000 description 1
- 125000003630 glycyl group Chemical group [H]N([H])C([H])([H])C(*)=O 0.000 description 1
- 229960002591 hydroxyproline Drugs 0.000 description 1
- CDAISMWEOUEBRE-GPIVLXJGSA-N inositol Chemical compound O[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@H](O)[C@@H]1O CDAISMWEOUEBRE-GPIVLXJGSA-N 0.000 description 1
- 229960000367 inositol Drugs 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- DLRVVLDZNNYCBX-RTPHMHGBSA-N isomaltose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1OC[C@@H]1[C@@H](O)[C@H](O)[C@@H](O)C(O)O1 DLRVVLDZNNYCBX-RTPHMHGBSA-N 0.000 description 1
- PZDOWFGHCNHPQD-OQPGPFOOSA-N kojibiose Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](C=O)O[C@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O PZDOWFGHCNHPQD-OQPGPFOOSA-N 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 238000009630 liquid culture Methods 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 239000000845 maltitol Substances 0.000 description 1
- 235000010449 maltitol Nutrition 0.000 description 1
- VQHSOMBJVWLPSR-WUJBLJFYSA-N maltitol Chemical compound OC[C@H](O)[C@@H](O)[C@@H]([C@H](O)CO)O[C@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O VQHSOMBJVWLPSR-WUJBLJFYSA-N 0.000 description 1
- 229940035436 maltitol Drugs 0.000 description 1
- FGPATWVHNYVVEE-SKPZHCOCSA-N maltotriulose Chemical compound OC[C@H]1OC(O)(CO)[C@@H](O)[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@H](O[C@@H]2[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O2)O)[C@@H](CO)O1 FGPATWVHNYVVEE-SKPZHCOCSA-N 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 150000003272 mannan oligosaccharides Chemical class 0.000 description 1
- FYGDTMLNYKFZSV-UHFFFAOYSA-N mannotriose Natural products OC1C(O)C(O)C(CO)OC1OC1C(CO)OC(OC2C(OC(O)C(O)C2O)CO)C(O)C1O FYGDTMLNYKFZSV-UHFFFAOYSA-N 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000021121 meiosis Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 150000002826 nitrites Chemical class 0.000 description 1
- 150000002482 oligosaccharides Chemical class 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 229960003104 ornithine Drugs 0.000 description 1
- NPKKRSHVJIQBKU-UHFFFAOYSA-N ornogenin Natural products CC(OC(=O)C=Cc1ccccc1)C2(O)CCC3(O)C4(O)CC=C5CC(O)CCC5(C)C4CC(OC(=O)C=Cc6ccccc6)C23C NPKKRSHVJIQBKU-UHFFFAOYSA-N 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 125000001500 prolyl group Chemical group [H]N1C([H])(C(=O)[*])C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 235000018102 proteins Nutrition 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- MUPFEKGTMRGPLJ-ZQSKZDJDSA-N raffinose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO[C@@H]2[C@@H]([C@@H](O)[C@@H](O)[C@@H](CO)O2)O)O1 MUPFEKGTMRGPLJ-ZQSKZDJDSA-N 0.000 description 1
- HEBKCHPVOIAQTA-ZXFHETKHSA-N ribitol Chemical compound OC[C@H](O)[C@H](O)[C@H](O)CO HEBKCHPVOIAQTA-ZXFHETKHSA-N 0.000 description 1
- CDAISMWEOUEBRE-UHFFFAOYSA-N scyllo-inosotol Natural products OC1C(O)C(O)C(O)C(O)C1O CDAISMWEOUEBRE-UHFFFAOYSA-N 0.000 description 1
- ZKZBPNGNEQAJSX-UHFFFAOYSA-N selenocysteine Natural products [SeH]CC(N)C(O)=O ZKZBPNGNEQAJSX-UHFFFAOYSA-N 0.000 description 1
- 235000016491 selenocysteine Nutrition 0.000 description 1
- 229940055619 selenocysteine Drugs 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 235000002639 sodium chloride Nutrition 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 125000000185 sucrose group Chemical group 0.000 description 1
- 150000004044 tetrasaccharides Chemical class 0.000 description 1
- BJBUEDPLEOHJGE-IMJSIDKUSA-N trans-3-hydroxy-L-proline Chemical compound O[C@H]1CC[NH2+][C@@H]1C([O-])=O BJBUEDPLEOHJGE-IMJSIDKUSA-N 0.000 description 1
- YSVQUZOHQULZQP-OCEKCAHXSA-N trehalosamine Chemical compound N[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 YSVQUZOHQULZQP-OCEKCAHXSA-N 0.000 description 1
- 150000004043 trisaccharides Chemical class 0.000 description 1
- RULSWEULPANCDV-PIXUTMIVSA-N turanose Chemical compound OC[C@@H](O)[C@@H](O)[C@@H](C(=O)CO)O[C@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O RULSWEULPANCDV-PIXUTMIVSA-N 0.000 description 1
- 150000003672 ureas Chemical class 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- FYGDTMLNYKFZSV-BYLHFPJWSA-N β-1,4-galactotrioside Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@H](CO)O[C@@H](O[C@@H]2[C@@H](O[C@@H](O)[C@H](O)[C@H]2O)CO)[C@H](O)[C@H]1O FYGDTMLNYKFZSV-BYLHFPJWSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/12—Unicellular algae; Culture media therefor
Definitions
- the present invention relates to a method for producing a monoploid unicellular red alga and a medium for a monoploid unicellular red alga.
- microalgae Since microalgae have a high carbon dioxide fixation capacity compared to land plants, and because their habitat does not compete with agricultural products, some species are mass-cultured to feed, functional foods, and cosmetic materials. It is used industrially as such. When microalgae are used industrially, it is desirable that they are microalgaes that can be mass-cultured outdoors from the viewpoint of cost. However, in order to be a microalgae that can be mass-cultured outdoors, it must be resistant to environmental changes (light, temperature, etc.), can be cultivated under conditions where other organisms cannot survive, and can grow to high densities. Conditions such as that are required.
- unicellular red algae preferentially grow in sulfuric acid acidic hot springs.
- Such unicellular red algae may be characterized in that they can be cultivated in an environment in which other organisms such as high salt concentration, high temperature, and low pH are difficult to grow. Therefore, such unicellular red algae are considered to be suitable for industrial use. Further, if a desired trait can be imparted to unicellular red algae by gene modification technology or the like, it becomes possible to produce a cell line more suitable for industrial use.
- haploid cells are considered to be suitable for gene modification.
- polyploid eg, diploid
- monoploid cells can be produced from polyploid cells, it is considered that gene modification will be facilitated.
- diploid cells could be produced from diploid cells in the algae of Cyanidiophyceae, which are unicellular red algae.
- Patent Document 1 With the method described in Patent Document 1, it is difficult to stably maintain haploid cells produced from diploid cells for a long period of time. Therefore, a technique capable of stably maintaining haploid cells for a long period of time is required.
- the present invention includes the following aspects.
- a method for producing a unicellular single-celled red alga which comprises culturing single-celled red algae in a medium containing an osmotic pressure regulator of 80 mM or more.
- a method for producing unicellular single-celled red algae which comprises culturing single-celled red algae cells in a medium having an osmotic pressure of 150 mOsm / kg or more.
- [4] The method for producing a unicellular single-celled red alga according to any one of [1] to [3], wherein the single-celled red alga is a polyploid cell.
- [5] The method for producing a unicellular unicellular red alga according to [4], wherein the unicellular red alga is a diploid cell.
- [6] The method for producing a unicellular single-celled red alga according to any one of [1] to [3], wherein the single-celled red alga is a monoploid cell.
- the method for producing a unicellular unicellular red alga according to [6] which is a method for maintaining unicellular red algae cells in a haploid state.
- the monoploid single-cell red alga according to any one of [9] to [11], which is used to produce a monoploid single-cell red alga from a polyploid single-cell red alga. Algae medium.
- a method for producing a monoploid unicellular red alga that can stably maintain monoploid cells, and a medium for monoploid unicellular red algae is provided.
- An example of a haploid colony resulting from a diploid unicellular red algae cell is shown.
- a photograph of an agar plate in which monoploid cells of the CCCryo127-00 strain were subcultured and cultured on an 18% sorbitol + Gross 1.5% agar medium is shown.
- the photograph of the plate which cultured the haploid cell of CCCryo127-00 strain for one month in 18% sorbitol + Gross 1.5% agar medium is shown.
- the photograph of the plate which cultured the haploid cell of CCCryo127-00 strain for 2 weeks in 1% sorbitol + Gross 1.5% agar medium is shown. Return to diploid cells was confirmed.
- haploid cells of the CCCryo127-00 strain proliferated in 18% sorbitol + Gross 1.5% agar medium is shown. The photo on the left is the plate at the start of culture, and the photo on the right is the plate after 3 weeks of culture.
- An example in which haploid cells were produced from a diploid CCCryo127-00 strain on 18% sorbitol + Gloss 1.5% agar medium is shown. Ploidy cells were also maintained on the inoculated agar medium.
- haploid cells of CCCryo127-00 strain were grown in 18% sorbitol + Gross liquid medium is shown.
- isolated means a state isolated from the natural state.
- a first aspect of the present invention is a method for producing a monocellular single-celled red alga, which comprises culturing single-celled red algae cells in a medium containing an osmotic pressure regulator of 80 mM or more.
- An object of the present invention is to provide a method for producing a haploid unicellular red alga that can stably maintain haploid cells. In the present invention, when the haploid can be maintained for more than 2 weeks, it can be determined that "the haploid cells can be stably maintained”.
- Unicellular red algae refers to algae belonging to the phylum Red algae (Rhodophyta), which are unicellular.
- Examples of single-celled red algae include Cyanidiophyceae, Stylonematophyceae, Porphyridiophyceae, and Rhodellophyceae.
- Cyanidiophyceae is preferable because it is easy to stably maintain the haploid.
- the genus Cyanidioschyzon, the genus Cyanidio, and the genus Galdieria are known as Cyanidiophyceae.
- the genus Cyanidioschyzon melolae exists as a diploid in nature, whereas the genus Cyanidioschyzon and the genus Garderia exist as diploids in nature. Therefore, among the Cyanidiophyceae, the genus Cyanidium and the genus Garderia are preferable, and the genus Garderia is more preferable.
- the genus Garderia includes, for example, G.I. sulphuraria, G.M. Partita, G.M. daedala, G.M. Examples include, but are not limited to, maxima and the like. As for the genus Garderia, G. Sulfuraria is particularly preferred. Examples of the genus Cianidium include C.I. Caldarium, C.I. sp. Examples include, but are not limited to, Monte Rotaro. Examples of the algae strain of Cyanidiophyceae include those shown in FIG. 10 of International Publication No. 2019/107385.
- the unicellular red algae cells used at the start of culture may be polyploid (for example, diploid) or monoploid.
- polyploid cells When polyploid cells are cultured as monocellular red algae cells by the method of this embodiment, the polyploid cells undergo meiosis during the culture to give rise to monoploid cells.
- the haploid cells By continuing the culture by the method of this embodiment, the haploid cells can be maintained as haploid without returning to the polyploid. Therefore, the method of this embodiment includes a method for producing a unicellular unicellular red alga from a polyploid unicellular red alga.
- the method of this embodiment includes a method of maintaining monoploid unicellular red algae cells.
- monoploid unicellular red algae cells proliferate as haploid during culture. Therefore, the method of this embodiment includes a method of growing a monoploid unicellular red alga.
- the medium used in the method of this embodiment is a medium containing 80 mM or more of an osmotic pressure adjusting agent.
- "Osmotic pressure regulator” refers to a chemical substance that can adjust the osmotic pressure.
- the osmotic pressure adjusting agent is not particularly limited as long as it is a chemical substance whose osmotic pressure can be adjusted by adding it to the medium.
- Examples of the osmotic pressure adjusting agent include sugars, sugar alcohols, amino acids, metal salts, ureas, proteins, betaines, inositol, polysaccharides and the like. Among these, sugars, sugar alcohols, amino acids, and metal salts are preferable.
- sugars include dihydroxyacetone, glyceraldehyde, elittlerose, erythrose, treose, ribulose, xylrose, ribose, arabinose, xylose, liquisource, deoxyribose, psicose, fructose, sucrose, tagatose, allose, slaughterose, glucose and mannose. , Growth, idose, galactose, tarose, fucose, fructose, ramnorse, sedhepturose and other monosaccharides (either D-form or L-form, or a mixture of D-form and L-form); sucrose, lactose.
- Sugars such as nigerotriose, maltotriose, meregitos, maltotriulose, raffinose, kestose; tetrasaccharides such as nistose, nigerotetraose, stakiose; and lactose-fructose oligosaccharides, lactosucrose, maltooligosaccharides, isomaltooligo Examples thereof include, but are not limited to, sugars, genthio-oligosaccharides, nigerooligosaccharides, fructose-oligosaccharides, galactooligosaccharides, mannan oligosaccharides, xylooligosaccharides, soybean oligosaccharides and the like.
- Monosaccharides include dihydroxyacetone, glyceraldehyde, erythrose, erythrose, treose, ribulose, xylrose, ribose, arabinose, xylose, lyxose, deoxyribose, psicose, fructose, sorbose, tagatose, allose, altrose, glucose, mannose, Growth, idose, galactose, tarose, fucose, fuclos, ramnorse, sedoheptulose are preferred, dihydroxyacetone, glyceraldehyde, elittlerose, erythrose, ribulose, ribose, arabinose, xylose, deoxyribose, fructose, glucose, mannose, galactose, or sedoheptulose.
- Disaccharides include sucrose, lacturose, lactose, maltose, trehalose, cellobiose, cozybiose, nigerose, isomaltose, ⁇ , ⁇ -trehalose, ⁇ , ⁇ -trehalose, sophorose, laminaribiose, gentiobiose, turanoth, malturose, palatinose, Genthioviulose, Mannoviose, Meribiose, Meribiulose, Neolactos, Galac sucrose, Syrabios, Neohesperidos, Lucinose, Lucinulose, Visianose, Xylobiose, Primeberose, Trehalosemin, Martinol, Cerobionic acid, Lactosamine, Lactosediamine, Lactobionic acid. , Hyalobiuronic acid, or sucrose is preferred, sucrose, lacturose, lactose, sucrose, trehalose, or cell
- sugar alcohol examples include trivalent sugar alcohols such as glycerol; tetravalent sugar alcohols such as erythritol, D-trateol, and L-treitol; D-arabinitol, L-arabinitol, xylitol, rivitol, adonitol and the like.
- Pentavalent sugar alcohols such as D-iditol, galactitol, darsitol, D-glucitol, sorbitol, mannitol; Examples include, but are not limited to, octavalent sugar alcohols such as octitol; 9-valent sugar alcohols such as isomalt, lactitol, and martitol; and mixtures of sugar alcohols such as HSH and reduced water candy sugar.
- sugar alcohol a trivalent sugar alcohol, a tetravalent sugar alcohol, a pentavalent sugar alcohol, a hexavalent sugar alcohol, a nine-valent sugar alcohol, or a mixture of sugar alcohols is preferable, and a trivalent sugar alcohol or a mixture of sugar alcohols is preferable. Valuable sugar alcohols are more preferred, and hexavalent sugar alcohols are even more preferred.
- sugar alcohol glycerol, erythritol, xylitol, sorbitol, mannitol, isomalt, lactitol, maltitol, HSH, or reduced water candy are preferable, and mannitol or sorbitol is more preferable.
- the amino acid may be either D-form or L-form, or may be a mixture of D-form and L-form.
- the amino acid may be any of ⁇ -amino acid, ⁇ -amino acid, ⁇ -amino acid, and ⁇ -amino acid.
- Amino acids include, for example, alanine, aspartic acid, aspartic acid, cysteine, glutamic acid, glutamine, phenylalanine, glycine, histidine, isoleucine, lysine, leucine, methionine, proline, arginine, serine, treonine, serenocysteine, valine, tryptophan, tyrosine, 2-aminoadipic acid, 3-aminoadipic acid, 2-aminobutanoic acid, 2,4-diaminobutanoic acid, 2-aminohexanoic acid, 6-aminohexanoic acid, ⁇ -alanine, 2-aminopentanoic acid, 2,3 -Diaminopropanoic acid, 2-aminopimeric acid, 2,6-diaminopimeric acid, citrulin, cysteine acid, 4-carboxyglutamic acid, 5-oxoproline, pyroglutamic acid,
- Amino acids are preferably alanine, aspartic acid, aspartic acid, cysteine, glutamic acid, glutamine, phenylalanine, glycine, histidine, isoleucine, lysine, leucine, methionine, proline, arginine, serine, treonine, selenocysteine, valine, tryptophan, or tyrosine.
- Glycine, proline, or arginine are more preferred.
- metal salts examples include alkali metals (sodium, potassium, etc.) or alkaline earth metals (magnesium, calcium, etc.) and inorganic acids (hydrogen, sulfuric acid, carbonic acid, sulfite, nitrate, etc.) or organic acids (lactic acid, succinic acid, etc.). , Acetic acid, etc.) and salts.
- alkali metals sodium, potassium, etc.
- alkaline earth metals magnesium, calcium, etc.
- inorganic acids hydroogen, sulfuric acid, carbonic acid, sulfite, nitrate, etc.
- organic acids lactic acid, succinic acid, etc.
- Acetic acid, etc. a salt of an alkali metal or an alkaline earth metal and an inorganic acid
- potassium chloride, sodium sulfate or the like is more preferable
- potassium chloride is further preferable.
- the osmotic pressure adjusting agent is preferably at least one selected from the group consisting of sugars, sugar alcohols, and amino acids because it is easy to add to the medium to adjust the osmotic pressure.
- Suitable sugars include glucose and sucrose.
- Suitable sugar alcohols include hexavalent sugar alcohols (eg, mannitol, sorbitol).
- Suitable amino acids include glycine, proline and arginine.
- the osmotic pressure adjusting agent may be used alone or in combination of two or more.
- the medium is not particularly limited as long as it contains 80 mM or more of the osmotic pressure adjusting agent.
- the medium can be prepared, for example, by adding an osmotic pressure adjusting agent to a medium known as a medium for unicellular algae so as to be 80 mM or more.
- the medium for single-celled algae is not particularly limited, and examples thereof include an inorganic salt medium containing a nitrogen source, a phosphorus source, and trace elements (zinc, boron, cobalt, copper, manganese, molybdenum, iron, etc.).
- examples of the nitrogen source include ammonium salts, nitrates, nitrites and the like
- examples of the phosphorus source include phosphates and the like.
- Examples of such a medium include Gross medium, 2 ⁇ Allen medium (Allen MB. Arch. Microbiol. 1959 32: 270-277.), M-Alllen medium (Minoda A et al. Plant Cell Physiol. 2004 45: 667-71.), MA2 medium (Ohnuma M et al. Plant Cell Physiol. 2008 Jan; 49 (1): 117-20.), Modified M-Alllen medium, etc., but is not limited thereto.
- the single-celled red algae may be autotrophically cultured under light irradiation, or may be heterotrophically cultured in the dark.
- a carbon source (glucose or the like) may be added to the above-mentioned inorganic salt medium.
- the concentration of the osmotic pressure regulator in the medium is not particularly limited as long as it is 80 mM or more. By setting the concentration of the osmotic pressure adjusting agent to 80 mM or more, haploid cells can be stably maintained regardless of the type of the osmotic pressure adjusting agent.
- the concentration of the osmotic pressure regulator is 100 mM or more, 110 mM or more, 120 mM or more, 130 mM or more, 140 mM or more, 150 mM or more, 160 mM or more, 170 mM or more, 180 mM or more, 190 mM or more, 200 mM or more, 210 mM or more, 220 mM or more, 230 mM or more, It may be 240 mM or more, 250 mM or more, 260 mM or more, 270 mM or more, 280 mM or more, 290 mM or more, 300 mM or more, 350 mM or more, 360 mM or more, 370 mM or more, 380 mM or more, 390 mM or more, or 400 mM or more.
- the upper limit concentration of the osmotic pressure adjusting agent is not particularly limited and may be a limit value that can be dissolved in the medium.
- the upper limit concentration of the osmotic pressure regulator is, for example, 2M or less, 1.5M or less, 1.4M or less, 1.3M or less, 1.2M or less, 1.1M or less, or 1M. It can be as follows. Examples of the concentration range of the osmotic pressure adjusting agent in the medium include 80 mM to 2 M.
- the lower limit value and the upper limit value can be arbitrarily combined.
- the concentration range of the osmotic pressure adjusting agent for example, 100 mM to 1.5 M is preferable, 200 mM to 1.4 M is more preferable, 300 mM to 1.3 M is further preferable, and 400 mM to 1.3 M is particularly preferable.
- the concentration of the osmotic pressure regulator in the medium is the concentration before the start of culture.
- the total content of the two or more kinds of osmotic pressure adjusting agents may be 80 mM or more. The same applies to the range exemplified as the concentration of the osmotic pressure adjusting agent.
- the glucose concentration in the medium includes, for example, 200 mM to 2 M, preferably 250 mM to 1.7 M, and more preferably 270 mM to 1.5 M.
- the glucose concentration in the medium is preferably 4 to 40% by mass, more preferably 5 to 30% by mass, based on the total mass (100% by mass) of the medium.
- the sucrose concentration in the medium includes, for example, 80 mM to 1.1 M, preferably 80 mM to 800 mM, and more preferably 80 mM to 600 M.
- the concentration of sucrose in the medium is preferably 2 to 40% by mass, more preferably 3 to 30% by mass, still more preferably 3 to 20% by mass, based on the total mass (100% by mass) of the medium.
- the osmotic pressure adjusting agent is glycerol
- the glycerol concentration in the medium may be, for example, 200 mM to 800 mM, preferably 300 mM to 600 mM.
- the glycerol concentration in the medium is preferably 3 to 6% by mass with respect to the total mass (100% by mass) of the medium.
- the mannitol concentration in the medium includes, for example, 180 mM to 1.5 M, preferably 200 mM to 1.2 M, and more preferably 250 mM to 1 M.
- the concentration of mannitol in the medium is preferably 4 to 20% by mass, more preferably 5 to 18% by mass, based on the total mass (100% by mass) of the medium.
- the sorbitol concentration in the medium includes, for example, 200 mM to 2 M, preferably 400 mM to 1.5 M, and more preferably 430 mM to 1.5 M.
- the sorbitol concentration in the medium is preferably 5 to 40% by mass, more preferably 8 to 27% by mass, based on the total mass (100% by mass) of the medium.
- the glycine concentration in the medium includes, for example, 100 mM to 2 M, preferably 120 mM to 1.5 M, and more preferably 130 mM to 1 M.
- the glycine concentration in the medium is preferably 0.5 to 10% by mass, more preferably 1 to 8% by mass, based on the total mass (100% by mass) of the medium.
- the proline concentration in the medium includes, for example, 80 mM to 2 M, preferably 500 mM to 1.5 M, and more preferably 600 mM to 1.5 M.
- the propane concentration in the medium is preferably 1 to 20% by mass, more preferably 7 to 10% by mass, based on the total mass (100% by mass) of the medium.
- the osmotic pressure adjusting agent is arginine
- the arginine concentration in the medium includes, for example, 20 mM to 2 M, preferably 30 mM to 1.5 M, and more preferably 50 mM to 1 M.
- the arginine concentration in the medium is preferably 0.5 to 30% by mass, more preferably 1 to 20% by mass, based on the total mass (100% by mass) of the medium.
- the potassium chloride concentration in the medium includes, for example, 50 mM to 1.5 M, preferably 100 mM to 1 M, and more preferably 130 mM to 500 mM.
- the potassium chloride concentration in the medium is preferably 0.5 to 10% by mass, more preferably 1 to 5% by mass, based on the total mass (100% by mass) of the medium.
- the medium preferably has an osmotic pressure of 150 mOsm / kg or more.
- osmotic pressure of the medium By setting the osmotic pressure of the medium to 150 mOsm / kg or more, haploid cells can be stably maintained regardless of the type of osmotic pressure adjusting agent.
- the osmotic pressure is 200 mOsm / kg or more, 210 mOsm / kg or more, 220 mOsm / kg or more, 230 mOsm / kg or more, 240 mOsm / kg or more, 250 mOsm / kg or more, 260 mOsm / kg or more, 270 mOsm / kg or more, 280 mOsm / kg or more, 290 mOsm.
- / Kg or more 300 mOsm / kg or more, 310 mOsm / kg or more, 320 mOsm / kg or more, 330 mOsm / kg or more, 340 mOsm / kg or more, 350 mOsm / kg or more, 360 mOsm / kg or more, 370 mOsm / kg or more, 380 mOsm / kg or more, 390 mOsm It may be / kg or more, or 400 mOsm / kg or more.
- the upper limit of the osmotic pressure is not particularly limited, and may be a limit value at which the osmotic pressure adjusting agent can be dissolved in the medium.
- the upper limit of osmotic pressure can be, for example, 2000 mOsm / kg or less, 1500 mOsm / kg or less, or 1400 mOsm / kg or less.
- the lower limit value and the upper limit value can be arbitrarily combined.
- the range of osmotic pressure of the medium includes, for example, 150 to 2000 mOsm / kg.
- the osmotic pressure range for example, 200 to 1500 mOsm / kg is preferable, 250 to 1400 mOsm / kg is more preferable, 300 to 1400 mOsm / kg is further preferable, and 400 to 1400 mOsm / kg is particularly preferable.
- the osmotic pressure of the medium is a value before the start of culture unless otherwise specified.
- the osmotic pressure of the medium can be measured using an osmometer.
- the medium may be a liquid medium or a solid medium.
- the solid medium for example, an agar medium can be used.
- the concentration and osmotic pressure of the above-mentioned osmotic pressure adjusting agent may be those in the liquid medium before the addition of the solidifying agent (for example, agar).
- the above-exemplified medium can be used for producing haploid cells from polyploid cells, maintaining haploid cells, and proliferating haploid cells.
- the concentration of the osmotic pressure adjusting agent is preferably 50 mM to 2 M, more preferably 100 mM to 1.5 M.
- the osmotic pressure of the medium is preferably 150 to 2610 mOsm / kg, more preferably 300 to 1700 mOsm / kg.
- the medium may be a liquid medium or a solid medium, but it is preferable to use a solid medium because it is easy to determine that haploids have been formed.
- the concentration of the osmotic pressure regulator is preferably 50 mM to 2 M, more preferably 100 mM to 1.5 M.
- the osmotic pressure of the medium is preferably 150 to 2610 mOsm / kg, more preferably 300 to 1700 mOsm / kg.
- the medium may be a liquid medium or a solid medium, but it is preferable to use a solid medium because it is easy to maintain a stable medium for a long period of time.
- the concentration of the osmotic pressure regulator is preferably 50 mM to 2 M, more preferably 100 mM to 1.5 M.
- the osmotic pressure of the medium is preferably 150 to 2610 mOsm / kg, more preferably 300 to 1700 mOsm / kg.
- the medium may be a liquid medium or a solid medium, but it is preferable to use a liquid medium because cells can easily grow.
- the method of this embodiment comprises culturing unicellular red algae cells in a medium containing 80 mM or more of an osmotic pressure regulator.
- the culture conditions in the above culture are not particularly limited, and conditions usually used as culture conditions for unicellular red algae can be used. Examples of the culture conditions include pH 1 to 8, temperature 10 to 50 ° C., CO 2 concentration 0.3 to 3%, and the like.
- Light conditions may be dark when heterotrophic culturing. In the case of autotrophic culture, the light conditions include, for example, 5 to 2000 ⁇ mol / m 2 s.
- the culture conditions are not limited to those exemplified above, and can be appropriately selected depending on the type of unicellular red algae.
- the pH conditions include pH 1.0 to 6.0, preferably pH 1.0 to 5.0, and more preferably pH 1.0 to 3.0.
- the temperature condition include 15 to 50 ° C, preferably 30 to 50 ° C, and more preferably 35 to 50 ° C.
- the light intensity include 5 to 2000 ⁇ mol / m 2 s, and 5 to 1500 ⁇ mol / m 2 s is preferable. It may be cultured with continuous light, or a light-dark cycle (10L: 14D, etc.) may be provided. In addition, in the case of heterotrophic culture, it can also be cultured in a dark place.
- the culture period is not particularly limited.
- the unicellular red algae cells used at the start of culture are polyploid (for example, diploid)
- the cells are cultured until at least monoploid cells are generated.
- haploid cells can be generated in a short period of time by using a medium containing 80 mM or more of an osmotic pressure regulator.
- the culture period is preferably 5 days or longer, more preferably 10 days or longer, still more preferably 14 days or 15 days or longer.
- the haploid cells generated during the culture are stably maintained. Therefore, the upper limit of the culture period is not particularly limited.
- the culture period is not particularly limited.
- the culture since the haploid cells are stably maintained, the culture may be continued for a period in which the haploids need to be maintained.
- unicellular red algae cells may be subcultured as appropriate.
- the haploid can be stably maintained for 2 weeks or more in the same medium. Therefore, the interval between passages can be two weeks or more.
- the passage interval is preferably 1 to 1.5 months.
- passage may be performed at shorter intervals in order to increase the growth efficiency.
- the passage interval for proliferation is preferably 14 to 60 days, more preferably 14 to 42 days.
- haploid cells can be produced from polyploid unicellular red algae cells, and haploid cells can be stably maintained for 2 weeks or more.
- the method for confirming that the unicellular red algae cells are haploid is not particularly limited, and a known method can be used.
- the determination of haploid can be made by confirming the number of copies of the same locus. That is, if the number of copies of the same locus is 1, it is determined to be haploid.
- a next-generation sequencer can also be used to determine that it is haploid. For example, sequence reads of the entire genome are acquired by a next-generation sequencer, the sequence reads are assembled, and then the sequence reads are mapped to the sequence obtained by assembling. In diploid, differences in bases for each allele can be found in various regions on the genome, but in diploid, only one allele exists, so such a region cannot be found. When the cell is homodiploid, it can be determined whether the cell is diploid or diploid by measuring the DNA content of the cell. The DNA content of haploid cells is 1 ⁇ 2 of the DNA content of diploid cells.
- the diploid cell does not have a strong cell wall and the diploid cell is a single-celled red alga cell (for example, Ideyukogome class) having a strong cell wall
- the diploid cell is a single-celled red alga cell (for example, Ideyukogome class) having a strong cell wall
- the cell wall is usually not observed when observed with an optical microscope (for example, at a magnification of 600 times). Therefore, if the cell wall is not observed by an optical microscope, it can be determined that the cell is a haploid cell.
- the haploid cells of the unicellular red algae cells as described above do not have a strong cell wall, they are treated relatively mildly (neutralization treatment, hypotonic treatment, freeze-thaw treatment, surfactant treatment). Etc.) can destroy cells. For example, if cells are suspended in a medium containing 2% by mass of a surfactant and the cells disintegrate immediately to 5 minutes after the addition of the surfactant, it can be determined that the cells are haploid. can.
- the surfactant include sodium dodecyl sulfate.
- sodium dodecyl sulfate is added to the culture medium of algae of unicellular red algae so as to be 2% by mass, and if the cells are disrupted within 5 minutes after the addition, the cells are diploid. It can be determined that there is. Whether or not the cells have collapsed can be confirmed by observing the cells with an optical microscope.
- a ploidy single-celled red alga can be produced from a polyploid single-celled red alga, and a monoploid single-celled red alga can be stably maintained.
- monoploid unicellular red algae can be grown as they are.
- the monoploid monoploid of a single-celled red alga is cultured in a normal medium, cells that return to the polyploid (for example, diploid) appear, and the polyploid cells proliferate. Therefore, it is necessary to select haploid cells at intervals of about 5 days and repeat the passage.
- the appearance of cells regressing to polyploid is suppressed, and monoploid cells are allowed to grow for more than 2 weeks (preferably 1 month or more) without subculture. Can be maintained.
- the method of this embodiment can be suitably used for producing unicellular red algae for gene modification.
- a second aspect of the present invention is a medium for monoploid unicellular red algae containing 80 mM or more of an osmotic pressure regulator.
- the medium of this embodiment is the same as that described in the above " ⁇ Method for producing monoploid unicellular red algae>".
- the medium of this embodiment can be used to produce haploid single-celled red algae cells from polyploid (eg, diploid) single-celled red algae cells. It can also be used to maintain haploid unicellular red algae cells as haploid.
- monoploid unicellular red algae cells can be used for proliferation.
- CCCryo127-00 strain Galdia sulphuraria CCCryo127-00 strain
- ⁇ Medium> Gross medium was used as the basal medium.
- the composition of the Gloss medium is shown in Table 1.
- the compositions of Fe-EDTA Solution and Trace Elements used in the Gross medium are shown in Tables 2 and 3, respectively.
- the haploid cells of unicellular red algae cells do not have a strong cell wall (International Publication No. 2019/107385). Therefore, the cells were suspended in a Gloss medium containing 2% by mass of a surfactant (sodium dodecyl sulfate (SDS)), and the disintegrating cells were judged to be haploid. Cell disintegration was confirmed by observation using an optical microscope. Observation with a light microscope was performed immediately after the addition of SDS. In addition, colonies dominated by diploid cells are flatter and have a shape that spreads on the surface of the agar medium as compared with colonies formed from diploid cells (see FIG. 1: arrow is 1 times larger). Colony of the body, with some diploids remaining in its central part). Therefore, the morphology of the colonies on the agar medium was also used to determine whether the colonies were haploid.
- a surfactant sodium dodecyl sulfate
- FIG. 3 An example in which a haploid colony is maintained is shown in FIG.
- FIG. 4 An example of returning to a diploid colony is shown in FIG.
- FIG. 4 is a plate cultured in 1% sorbitol + Gloss 1.5% agar medium for 2 weeks.
- FIG. 5 An example in which a haploid colony proliferates is shown in FIG.
- FIG. 5 is a plate cultured on 18% sorbitol + Gloss 1.5% agar medium. The photo on the left is the plate at the start of culture, and the photo on the right is the plate after 3 weeks of culture.
- Table 5 shows the results of measuring the osmotic pressure of the medium before the addition of agar for each medium shown in Table 4.
- the osmotic pressure of the medium was measured with an osmotic meter (product name: automatic osmotic pressure analyzer Ozmo Station OM-6060, manufacturer: Arcley Co., Ltd.).
- the values in [] indicate the osmotic pressure (mOsm / kg).
- haploid cells could be maintained in more than 2 weeks in a medium supplemented with an osmotic pressure regulator of about 80 mM or more.
- concentration of the osmotic pressure regulator was high, the growth tended to be slowed down, but even when the osmotic pressure regulator was added up to the upper limit of the solubility, haploid cells could be maintained for generally more than 2 weeks.
- the upper limit of the concentration of the osmotic pressure regulator was about 1.5 M.
- haploid cells can be maintained for more than 2 weeks in a medium having an osmotic pressure of about 150 mOsm / kg or more.
- the osmotic pressure was high, the proliferation tended to be slow, but even when the osmotic pressure was high, haploid cells could be maintained for about one month or more.
- the upper limit of the osmotic pressure of the medium was about 1500 Osm / kg.
- haploid cells can be efficiently produced from diploid cells by using the medium examined in (2).
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Biotechnology (AREA)
- Chemical & Material Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Zoology (AREA)
- Organic Chemistry (AREA)
- Wood Science & Technology (AREA)
- Genetics & Genomics (AREA)
- Botany (AREA)
- Biomedical Technology (AREA)
- Virology (AREA)
- Microbiology (AREA)
- Tropical Medicine & Parasitology (AREA)
- Cell Biology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
A method for producing a monoploid unicellular red alga, said method comprising culturing unicellular red alga cells in a culture medium containing 80 mM or more of an osmotic pressure regulator. A culture medium for a monoploid unicellular red alga, said culture medium containing 80 mM or more of an osmotic pressure regulator.
Description
本発明は、1倍体単細胞性紅藻の製造方法、及び1倍体単細胞性紅藻用培地に関する。
本願は、2020年8月24日に、日本に出願された特願2020-141201号に基づき優先権を主張し、その内容をここに援用する。 The present invention relates to a method for producing a monoploid unicellular red alga and a medium for a monoploid unicellular red alga.
This application claims priority based on Japanese Patent Application No. 2020-141201 filed in Japan on August 24, 2020, the contents of which are incorporated herein by reference.
本願は、2020年8月24日に、日本に出願された特願2020-141201号に基づき優先権を主張し、その内容をここに援用する。 The present invention relates to a method for producing a monoploid unicellular red alga and a medium for a monoploid unicellular red alga.
This application claims priority based on Japanese Patent Application No. 2020-141201 filed in Japan on August 24, 2020, the contents of which are incorporated herein by reference.
微細藻類は、陸上植物と比較して、高い二酸化炭素固定能力を有すること、及び農産物と生育場所が競合しないことから、いくつかの種は、大量培養されて、飼料、機能性食品、化粧品材料等として産業的に利用されている。
微細藻類を産業利用する場合には、コスト面等から、屋外で大量培養可能な微細藻類であることが望ましい。しかしながら、屋外で大量培養可能な微細藻類であるためには、環境変動(光、温度等)に耐性を有すること、他の生物が生存できないような条件で培養できること、高密度まで増殖可能であること、等の条件が求められる。 Since microalgae have a high carbon dioxide fixation capacity compared to land plants, and because their habitat does not compete with agricultural products, some species are mass-cultured to feed, functional foods, and cosmetic materials. It is used industrially as such.
When microalgae are used industrially, it is desirable that they are microalgaes that can be mass-cultured outdoors from the viewpoint of cost. However, in order to be a microalgae that can be mass-cultured outdoors, it must be resistant to environmental changes (light, temperature, etc.), can be cultivated under conditions where other organisms cannot survive, and can grow to high densities. Conditions such as that are required.
微細藻類を産業利用する場合には、コスト面等から、屋外で大量培養可能な微細藻類であることが望ましい。しかしながら、屋外で大量培養可能な微細藻類であるためには、環境変動(光、温度等)に耐性を有すること、他の生物が生存できないような条件で培養できること、高密度まで増殖可能であること、等の条件が求められる。 Since microalgae have a high carbon dioxide fixation capacity compared to land plants, and because their habitat does not compete with agricultural products, some species are mass-cultured to feed, functional foods, and cosmetic materials. It is used industrially as such.
When microalgae are used industrially, it is desirable that they are microalgaes that can be mass-cultured outdoors from the viewpoint of cost. However, in order to be a microalgae that can be mass-cultured outdoors, it must be resistant to environmental changes (light, temperature, etc.), can be cultivated under conditions where other organisms cannot survive, and can grow to high densities. Conditions such as that are required.
単細胞性紅藻の中には、硫酸酸性温泉において優先増殖するものがある。そのような単細胞性紅藻は、高塩濃度、高温、低pH等の他の生物が生育困難な環境で培養可能である点に特徴を有する場合がある。そのため、そのような単細胞性紅藻は、産業利用に適していると考えられる。また、遺伝子改変技術等により、単細胞性紅藻に所望の形質を付与することができれば、より産業利用に適した細胞株の作出が可能となる。
Some unicellular red algae preferentially grow in sulfuric acid acidic hot springs. Such unicellular red algae may be characterized in that they can be cultivated in an environment in which other organisms such as high salt concentration, high temperature, and low pH are difficult to grow. Therefore, such unicellular red algae are considered to be suitable for industrial use. Further, if a desired trait can be imparted to unicellular red algae by gene modification technology or the like, it becomes possible to produce a cell line more suitable for industrial use.
一般的に、遺伝子改変には、1倍体の細胞が適していると考えられる。単細胞性紅藻は、自然界では、その多くが倍数体(例えば2倍体)の細胞として存在している。そのため、倍数体の細胞から1倍体の細胞を作出することができれば、遺伝子改変が容易になると考えられる。例えば、特許文献1には、単細胞性紅藻であるイデユコゴメ綱の藻類において、2倍体の細胞から1倍体の細胞を作出できたことが記載されている。
Generally, haploid cells are considered to be suitable for gene modification. In nature, most unicellular red algae exist as polyploid (eg, diploid) cells. Therefore, if monoploid cells can be produced from polyploid cells, it is considered that gene modification will be facilitated. For example, Patent Document 1 describes that diploid cells could be produced from diploid cells in the algae of Cyanidiophyceae, which are unicellular red algae.
特許文献1に記載の方法では、2倍体の細胞から作出された1倍体の細胞を、長期に安定して維持することが難しい。そのため、1倍体の細胞を長期に安定して維持できる技術が求められる。
With the method described in Patent Document 1, it is difficult to stably maintain haploid cells produced from diploid cells for a long period of time. Therefore, a technique capable of stably maintaining haploid cells for a long period of time is required.
そこで、本発明は、1倍体の細胞を安定して維持可能な、1倍体単細胞性紅藻の製造方法、及び1倍体単細胞性紅藻用培地を提供することを課題とする。
Therefore, it is an object of the present invention to provide a method for producing a single-layered unicellular red algae capable of stably maintaining single-layered cells, and a medium for single-sized single-celled red algae.
本発明は、以下の態様を含む。
[1]単細胞性紅藻細胞を、浸透圧調整剤を80mM以上含有する培地で培養することを含む、1倍体単細胞性紅藻の製造方法。
[2]単細胞性紅藻細胞を、浸透圧が150mOsm/kg以上である培地中で培養することを含む、1倍体単細胞性紅藻の製造方法。
[3]浸透圧調整剤が、糖、糖アルコール、及びアミノ酸からなる群より選択される少なくとも一種である、[1]又は[2]に記載の1倍体単細胞性紅藻の製造方法。
[4]前記単細胞性紅藻細胞が、倍数体の細胞である、[1]~[3]のいずれか1つに記載の1倍体単細胞性紅藻の製造方法。
[5]前記単細胞性紅藻細胞が、2倍体の細胞である、[4]に記載の1倍体単細胞性紅藻の製造方法。
[6]前記単細胞性紅藻細胞が、1倍体の細胞である、[1]~[3]のいずれか1つに記載の1倍体単細胞性紅藻の製造方法。
[7]1倍体の単細胞性紅藻細胞を、1倍体のまま維持する方法である、[6]に記載の1倍体単細胞性紅藻の製造方法。
[8]1倍体の単細胞性紅藻細胞を、増殖させる方法である、[6]に記載の1倍体単細胞性紅藻の製造方法。
[9]浸透圧調整剤を80mM以上含有する、1倍体単細胞性紅藻用培地。
[10]浸透圧が150mOsm/kg以上である、1倍体単細胞性紅藻用培地。
[11]浸透圧調整剤が、糖、糖アルコール、及びアミノ酸からなる群より選択される少なくとも一種である、[9]又は[10]に記載の1倍体単細胞性紅藻用培地。
[12]倍数体の単細胞性紅藻細胞から1倍体の単細胞性紅藻細胞を作出するために用いられる、[9]~[11]のいずれか1つに記載の1倍体単細胞性紅藻用培地。
[13]前記倍数体の単細胞性紅藻細胞が、2倍体の単細胞性紅藻細胞である、[12]に記載の1倍体単細胞性紅藻用培地。
[14]1倍体の単細胞性紅藻細胞を、1倍体のまま維持するために用いられる、[9]~[11]のいずれか1つに記載の1倍体単細胞性紅藻用培地。
[15]1倍体の単細胞性紅藻細胞を、増殖させるために用いられる、[9]~[11]のいずれか1つに記載の1倍体単細胞性紅藻用培地。 The present invention includes the following aspects.
[1] A method for producing a unicellular single-celled red alga, which comprises culturing single-celled red algae in a medium containing an osmotic pressure regulator of 80 mM or more.
[2] A method for producing unicellular single-celled red algae, which comprises culturing single-celled red algae cells in a medium having an osmotic pressure of 150 mOsm / kg or more.
[3] The method for producing a unicellular single-celled red alga according to [1] or [2], wherein the osmotic pressure adjusting agent is at least one selected from the group consisting of sugar, sugar alcohol, and amino acid.
[4] The method for producing a unicellular single-celled red alga according to any one of [1] to [3], wherein the single-celled red alga is a polyploid cell.
[5] The method for producing a unicellular unicellular red alga according to [4], wherein the unicellular red alga is a diploid cell.
[6] The method for producing a unicellular single-celled red alga according to any one of [1] to [3], wherein the single-celled red alga is a monoploid cell.
[7] The method for producing a unicellular unicellular red alga according to [6], which is a method for maintaining unicellular red algae cells in a haploid state.
[8] The method for producing a unicellular unicellular red alga according to [6], which is a method for growing unicellular unicellular red algae cells.
[9] A medium for monoploid unicellular red algae containing 80 mM or more of an osmotic pressure regulator.
[10] Medium for monoploid unicellular red algae having an osmotic pressure of 150 mOsm / kg or more.
[11] The medium for single-cell single-cell red algae according to [9] or [10], wherein the osmotic pressure regulator is at least one selected from the group consisting of sugar, sugar alcohol, and amino acid.
[12] The monoploid single-cell red alga according to any one of [9] to [11], which is used to produce a monoploid single-cell red alga from a polyploid single-cell red alga. Algae medium.
[13] The medium for monoploid single-celled red algae according to [12], wherein the polyploid single-celled red algae cells are diploid single-celled red algae cells.
[14] The medium for haploid unicellular red algae according to any one of [9] to [11], which is used to maintain haploid unicellular red algae cells as haploid. ..
[15] The medium for monoploid unicellular red algae according to any one of [9] to [11], which is used for proliferating monoploid unicellular red algae cells.
[1]単細胞性紅藻細胞を、浸透圧調整剤を80mM以上含有する培地で培養することを含む、1倍体単細胞性紅藻の製造方法。
[2]単細胞性紅藻細胞を、浸透圧が150mOsm/kg以上である培地中で培養することを含む、1倍体単細胞性紅藻の製造方法。
[3]浸透圧調整剤が、糖、糖アルコール、及びアミノ酸からなる群より選択される少なくとも一種である、[1]又は[2]に記載の1倍体単細胞性紅藻の製造方法。
[4]前記単細胞性紅藻細胞が、倍数体の細胞である、[1]~[3]のいずれか1つに記載の1倍体単細胞性紅藻の製造方法。
[5]前記単細胞性紅藻細胞が、2倍体の細胞である、[4]に記載の1倍体単細胞性紅藻の製造方法。
[6]前記単細胞性紅藻細胞が、1倍体の細胞である、[1]~[3]のいずれか1つに記載の1倍体単細胞性紅藻の製造方法。
[7]1倍体の単細胞性紅藻細胞を、1倍体のまま維持する方法である、[6]に記載の1倍体単細胞性紅藻の製造方法。
[8]1倍体の単細胞性紅藻細胞を、増殖させる方法である、[6]に記載の1倍体単細胞性紅藻の製造方法。
[9]浸透圧調整剤を80mM以上含有する、1倍体単細胞性紅藻用培地。
[10]浸透圧が150mOsm/kg以上である、1倍体単細胞性紅藻用培地。
[11]浸透圧調整剤が、糖、糖アルコール、及びアミノ酸からなる群より選択される少なくとも一種である、[9]又は[10]に記載の1倍体単細胞性紅藻用培地。
[12]倍数体の単細胞性紅藻細胞から1倍体の単細胞性紅藻細胞を作出するために用いられる、[9]~[11]のいずれか1つに記載の1倍体単細胞性紅藻用培地。
[13]前記倍数体の単細胞性紅藻細胞が、2倍体の単細胞性紅藻細胞である、[12]に記載の1倍体単細胞性紅藻用培地。
[14]1倍体の単細胞性紅藻細胞を、1倍体のまま維持するために用いられる、[9]~[11]のいずれか1つに記載の1倍体単細胞性紅藻用培地。
[15]1倍体の単細胞性紅藻細胞を、増殖させるために用いられる、[9]~[11]のいずれか1つに記載の1倍体単細胞性紅藻用培地。 The present invention includes the following aspects.
[1] A method for producing a unicellular single-celled red alga, which comprises culturing single-celled red algae in a medium containing an osmotic pressure regulator of 80 mM or more.
[2] A method for producing unicellular single-celled red algae, which comprises culturing single-celled red algae cells in a medium having an osmotic pressure of 150 mOsm / kg or more.
[3] The method for producing a unicellular single-celled red alga according to [1] or [2], wherein the osmotic pressure adjusting agent is at least one selected from the group consisting of sugar, sugar alcohol, and amino acid.
[4] The method for producing a unicellular single-celled red alga according to any one of [1] to [3], wherein the single-celled red alga is a polyploid cell.
[5] The method for producing a unicellular unicellular red alga according to [4], wherein the unicellular red alga is a diploid cell.
[6] The method for producing a unicellular single-celled red alga according to any one of [1] to [3], wherein the single-celled red alga is a monoploid cell.
[7] The method for producing a unicellular unicellular red alga according to [6], which is a method for maintaining unicellular red algae cells in a haploid state.
[8] The method for producing a unicellular unicellular red alga according to [6], which is a method for growing unicellular unicellular red algae cells.
[9] A medium for monoploid unicellular red algae containing 80 mM or more of an osmotic pressure regulator.
[10] Medium for monoploid unicellular red algae having an osmotic pressure of 150 mOsm / kg or more.
[11] The medium for single-cell single-cell red algae according to [9] or [10], wherein the osmotic pressure regulator is at least one selected from the group consisting of sugar, sugar alcohol, and amino acid.
[12] The monoploid single-cell red alga according to any one of [9] to [11], which is used to produce a monoploid single-cell red alga from a polyploid single-cell red alga. Algae medium.
[13] The medium for monoploid single-celled red algae according to [12], wherein the polyploid single-celled red algae cells are diploid single-celled red algae cells.
[14] The medium for haploid unicellular red algae according to any one of [9] to [11], which is used to maintain haploid unicellular red algae cells as haploid. ..
[15] The medium for monoploid unicellular red algae according to any one of [9] to [11], which is used for proliferating monoploid unicellular red algae cells.
本発明によれば、1倍体の細胞を安定して維持可能な、1倍体単細胞性紅藻の製造方法、及び1倍体単細胞性紅藻用培地が提供される。
According to the present invention, there is provided a method for producing a monoploid unicellular red alga that can stably maintain monoploid cells, and a medium for monoploid unicellular red algae.
本明細書に記載される細胞は、単離されたものであり得る。「単離された」とは、天然状態から分離された状態を意味する。
The cells described herein can be isolated. "Isolated" means a state isolated from the natural state.
<1倍体単細胞性紅藻の製造方法>
本発明の第1の態様は、単細胞性紅藻細胞を、浸透圧調整剤を80mM以上含有する培地中で培養することを含む、1倍体単細胞性紅藻の製造方法である。
本発明は、1倍体細胞を安定して維持可能な1倍体単細胞性紅藻の製造方法を提供することを目的とする。本発明では、2週間を超えて1倍体を維持できた場合に「1倍体細胞を安定して維持可能」と判断し得る。 <Manufacturing method of monoploid unicellular red algae>
A first aspect of the present invention is a method for producing a monocellular single-celled red alga, which comprises culturing single-celled red algae cells in a medium containing an osmotic pressure regulator of 80 mM or more.
An object of the present invention is to provide a method for producing a haploid unicellular red alga that can stably maintain haploid cells. In the present invention, when the haploid can be maintained for more than 2 weeks, it can be determined that "the haploid cells can be stably maintained".
本発明の第1の態様は、単細胞性紅藻細胞を、浸透圧調整剤を80mM以上含有する培地中で培養することを含む、1倍体単細胞性紅藻の製造方法である。
本発明は、1倍体細胞を安定して維持可能な1倍体単細胞性紅藻の製造方法を提供することを目的とする。本発明では、2週間を超えて1倍体を維持できた場合に「1倍体細胞を安定して維持可能」と判断し得る。 <Manufacturing method of monoploid unicellular red algae>
A first aspect of the present invention is a method for producing a monocellular single-celled red alga, which comprises culturing single-celled red algae cells in a medium containing an osmotic pressure regulator of 80 mM or more.
An object of the present invention is to provide a method for producing a haploid unicellular red alga that can stably maintain haploid cells. In the present invention, when the haploid can be maintained for more than 2 weeks, it can be determined that "the haploid cells can be stably maintained".
(単細胞性紅藻)
「単細胞性紅藻」とは、紅色植物門(Rhodophyta)に属する藻類であって、単細胞性である藻類を指す。単細胞性紅藻としては、イデユコゴメ綱(Cyanidiophyceae)、ベニミドロ綱(Stylonematophyceae)、チノリモ綱(Porphyridiophyceae)、及びロデラ綱(Rhodellophyceae)が挙げられる。これらの中でも、1倍体を安定に維持しやすいことから、イデユコゴメ綱(Cyanidiophyceae)が好ましい。イデユコゴメ綱には、シアニディオシゾン(Cyanidioschyzon)属、シアニジウム(Cyanidium)属、及びガルデリア(Galdieria)属が知られている。シアニディオシゾン属であるシアニディオシゾン・メロラエ(Cyanidioschyzon merolae)は、自然界で1倍体として存在するが、シアニジウム属、及びガルデリア属は、自然界で2倍体として存在する。そのため、イデユコゴメ綱の中でも、シアニジウム属、及びガルデリア属が好ましく、ガルデリア属がより好ましい。
ガルデリア属としては、例えば、G.sulphuraria、G.partita、G.daedala、G.maxima等が挙げられるが、これらに限定されない。ガルデリア属としては、G.sulphurariaが特に好ましい。
シアニジウム属としては、例えば、C.caldarium、C.sp.Monte Rotaro等が挙げられるが、これらに限定されない。
イデユコゴメ綱の藻類株としては、例えば、国際公開第2019/107385号の図10に記載されるもの等が挙げられる。 (Unicellular red algae)
"Unicellular red algae" refers to algae belonging to the phylum Red algae (Rhodophyta), which are unicellular. Examples of single-celled red algae include Cyanidiophyceae, Stylonematophyceae, Porphyridiophyceae, and Rhodellophyceae. Among these, Cyanidiophyceae is preferable because it is easy to stably maintain the haploid. The genus Cyanidioschyzon, the genus Cyanidio, and the genus Galdieria are known as Cyanidiophyceae. The genus Cyanidioschyzon melolae exists as a diploid in nature, whereas the genus Cyanidioschyzon and the genus Garderia exist as diploids in nature. Therefore, among the Cyanidiophyceae, the genus Cyanidium and the genus Garderia are preferable, and the genus Garderia is more preferable.
The genus Garderia includes, for example, G.I. sulphuraria, G.M. Partita, G.M. daedala, G.M. Examples include, but are not limited to, maxima and the like. As for the genus Garderia, G. Sulfuraria is particularly preferred.
Examples of the genus Cianidium include C.I. Caldarium, C.I. sp. Examples include, but are not limited to, Monte Rotaro.
Examples of the algae strain of Cyanidiophyceae include those shown in FIG. 10 of International Publication No. 2019/107385.
「単細胞性紅藻」とは、紅色植物門(Rhodophyta)に属する藻類であって、単細胞性である藻類を指す。単細胞性紅藻としては、イデユコゴメ綱(Cyanidiophyceae)、ベニミドロ綱(Stylonematophyceae)、チノリモ綱(Porphyridiophyceae)、及びロデラ綱(Rhodellophyceae)が挙げられる。これらの中でも、1倍体を安定に維持しやすいことから、イデユコゴメ綱(Cyanidiophyceae)が好ましい。イデユコゴメ綱には、シアニディオシゾン(Cyanidioschyzon)属、シアニジウム(Cyanidium)属、及びガルデリア(Galdieria)属が知られている。シアニディオシゾン属であるシアニディオシゾン・メロラエ(Cyanidioschyzon merolae)は、自然界で1倍体として存在するが、シアニジウム属、及びガルデリア属は、自然界で2倍体として存在する。そのため、イデユコゴメ綱の中でも、シアニジウム属、及びガルデリア属が好ましく、ガルデリア属がより好ましい。
ガルデリア属としては、例えば、G.sulphuraria、G.partita、G.daedala、G.maxima等が挙げられるが、これらに限定されない。ガルデリア属としては、G.sulphurariaが特に好ましい。
シアニジウム属としては、例えば、C.caldarium、C.sp.Monte Rotaro等が挙げられるが、これらに限定されない。
イデユコゴメ綱の藻類株としては、例えば、国際公開第2019/107385号の図10に記載されるもの等が挙げられる。 (Unicellular red algae)
"Unicellular red algae" refers to algae belonging to the phylum Red algae (Rhodophyta), which are unicellular. Examples of single-celled red algae include Cyanidiophyceae, Stylonematophyceae, Porphyridiophyceae, and Rhodellophyceae. Among these, Cyanidiophyceae is preferable because it is easy to stably maintain the haploid. The genus Cyanidioschyzon, the genus Cyanidio, and the genus Galdieria are known as Cyanidiophyceae. The genus Cyanidioschyzon melolae exists as a diploid in nature, whereas the genus Cyanidioschyzon and the genus Garderia exist as diploids in nature. Therefore, among the Cyanidiophyceae, the genus Cyanidium and the genus Garderia are preferable, and the genus Garderia is more preferable.
The genus Garderia includes, for example, G.I. sulphuraria, G.M. Partita, G.M. daedala, G.M. Examples include, but are not limited to, maxima and the like. As for the genus Garderia, G. Sulfuraria is particularly preferred.
Examples of the genus Cianidium include C.I. Caldarium, C.I. sp. Examples include, but are not limited to, Monte Rotaro.
Examples of the algae strain of Cyanidiophyceae include those shown in FIG. 10 of International Publication No. 2019/107385.
本態様の方法において、培養開始時に用いる単細胞性紅藻細胞は、倍数体(例えば、2倍体)であってもよく、1倍体であってもよい。
本態様の方法により、単細胞性紅藻細胞として倍数体の細胞を培養した場合、培養中に、倍数体の細胞が減数分裂し、1倍体の細胞を生じる。本態様の方法による培養を継続することにより、1倍体の細胞が倍数体に回帰することなく、1倍体のまま維持することができる。したがって、本態様の方法は、倍数体の単細胞性紅藻細胞から、1倍体の単細胞性紅藻を作出する方法を包含する。
本態様の方法により、単細胞性紅藻細胞として1倍体の細胞を培養した場合、培養中に、倍数体の細胞に回帰することなく、1倍体のまま維持される。したがって、本態様の方法は、1倍体の単細胞性紅藻細胞を維持する方法を包含する。
本態様の方法により、1倍体の単細胞性紅藻細胞は、培養中に1倍体のまま増殖する。したがって、本態様の方法は、1倍体の単細胞性紅藻を増殖させる方法を包含する。 In the method of this embodiment, the unicellular red algae cells used at the start of culture may be polyploid (for example, diploid) or monoploid.
When polyploid cells are cultured as monocellular red algae cells by the method of this embodiment, the polyploid cells undergo meiosis during the culture to give rise to monoploid cells. By continuing the culture by the method of this embodiment, the haploid cells can be maintained as haploid without returning to the polyploid. Therefore, the method of this embodiment includes a method for producing a unicellular unicellular red alga from a polyploid unicellular red alga.
When a haploid cell is cultured as a unicellular red alga by the method of this embodiment, the haploid cell is maintained as a haploid without returning to the polyploid cell during the culture. Therefore, the method of this embodiment includes a method of maintaining monoploid unicellular red algae cells.
By the method of this embodiment, monoploid unicellular red algae cells proliferate as haploid during culture. Therefore, the method of this embodiment includes a method of growing a monoploid unicellular red alga.
本態様の方法により、単細胞性紅藻細胞として倍数体の細胞を培養した場合、培養中に、倍数体の細胞が減数分裂し、1倍体の細胞を生じる。本態様の方法による培養を継続することにより、1倍体の細胞が倍数体に回帰することなく、1倍体のまま維持することができる。したがって、本態様の方法は、倍数体の単細胞性紅藻細胞から、1倍体の単細胞性紅藻を作出する方法を包含する。
本態様の方法により、単細胞性紅藻細胞として1倍体の細胞を培養した場合、培養中に、倍数体の細胞に回帰することなく、1倍体のまま維持される。したがって、本態様の方法は、1倍体の単細胞性紅藻細胞を維持する方法を包含する。
本態様の方法により、1倍体の単細胞性紅藻細胞は、培養中に1倍体のまま増殖する。したがって、本態様の方法は、1倍体の単細胞性紅藻を増殖させる方法を包含する。 In the method of this embodiment, the unicellular red algae cells used at the start of culture may be polyploid (for example, diploid) or monoploid.
When polyploid cells are cultured as monocellular red algae cells by the method of this embodiment, the polyploid cells undergo meiosis during the culture to give rise to monoploid cells. By continuing the culture by the method of this embodiment, the haploid cells can be maintained as haploid without returning to the polyploid. Therefore, the method of this embodiment includes a method for producing a unicellular unicellular red alga from a polyploid unicellular red alga.
When a haploid cell is cultured as a unicellular red alga by the method of this embodiment, the haploid cell is maintained as a haploid without returning to the polyploid cell during the culture. Therefore, the method of this embodiment includes a method of maintaining monoploid unicellular red algae cells.
By the method of this embodiment, monoploid unicellular red algae cells proliferate as haploid during culture. Therefore, the method of this embodiment includes a method of growing a monoploid unicellular red alga.
(培地)
本態様の方法で用いる培地は、浸透圧調整剤を80mM以上含有する培地である。
「浸透圧調整剤」とは、浸透圧を調整可能な化学物質を指す。浸透圧調整剤は、培地に添加することにより浸透圧を調整可能な化学物質であれば、特に限定されない。浸透圧調整剤としては、例えば、糖、糖アルコール、アミノ酸、金属塩、尿素、タンパク質、ベタイン、イノシトール、多糖等が挙げられる。これらの中でも、糖、糖アルコール、アミノ酸、及び金属塩が好ましい。 (Culture medium)
The medium used in the method of this embodiment is a medium containing 80 mM or more of an osmotic pressure adjusting agent.
"Osmotic pressure regulator" refers to a chemical substance that can adjust the osmotic pressure. The osmotic pressure adjusting agent is not particularly limited as long as it is a chemical substance whose osmotic pressure can be adjusted by adding it to the medium. Examples of the osmotic pressure adjusting agent include sugars, sugar alcohols, amino acids, metal salts, ureas, proteins, betaines, inositol, polysaccharides and the like. Among these, sugars, sugar alcohols, amino acids, and metal salts are preferable.
本態様の方法で用いる培地は、浸透圧調整剤を80mM以上含有する培地である。
「浸透圧調整剤」とは、浸透圧を調整可能な化学物質を指す。浸透圧調整剤は、培地に添加することにより浸透圧を調整可能な化学物質であれば、特に限定されない。浸透圧調整剤としては、例えば、糖、糖アルコール、アミノ酸、金属塩、尿素、タンパク質、ベタイン、イノシトール、多糖等が挙げられる。これらの中でも、糖、糖アルコール、アミノ酸、及び金属塩が好ましい。 (Culture medium)
The medium used in the method of this embodiment is a medium containing 80 mM or more of an osmotic pressure adjusting agent.
"Osmotic pressure regulator" refers to a chemical substance that can adjust the osmotic pressure. The osmotic pressure adjusting agent is not particularly limited as long as it is a chemical substance whose osmotic pressure can be adjusted by adding it to the medium. Examples of the osmotic pressure adjusting agent include sugars, sugar alcohols, amino acids, metal salts, ureas, proteins, betaines, inositol, polysaccharides and the like. Among these, sugars, sugar alcohols, amino acids, and metal salts are preferable.
糖としては、例えば、ジヒドロキシアセトン、グリセルアルデヒド、エリトルロース、エリトロース、トレオース、リブロース、キシルロース、リボース、アラビノース、キシロース、リキソース、デオキシリボース、プシコース、フルクトース、ソルボース、タガトース、アロース、アルトロース、グルコース、マンノース、グロース、イドース、ガラクトース、タロース、フコース、フクロース、ラムノース、セドヘプツロース等の単糖(D体及びL体のいずれであてもよく、D体及びL体の混合物であってもよい);スクロース、ラクツロース、ラクトース、マルトース、トレハロース、セロビオース、コージビオース、ニゲロース、イソマルトース、β,β―トレハロース、α,β―トレハロース、ソホロース、ラミナリビオース、ゲンチオビオース、ツラノース、マルツロース、パラチノース、ゲンチオビウロース、マンノビオース、メリビオース、メリビウロース、ネオラクトース、ガラクトスクロース、シラビオース、ネオヘスペリドース、ルチノース、ルチヌロース、ビシアノース、キシロビオース、プリメベロース、トレハロサミン、マルチトール、セロビオン酸、ラクトサミン、ラクトースジアミン、ラクトビオン酸、ラクチトール、ヒアロビウロン酸、スクラロース糖の二糖;ニゲロトリオース、マルトトリオース、メレジトース、マルトトリウロース、ラフィノース、ケストース等の三糖;ニストース、ニゲロテトラオース、スタキオース等の四糖;及び乳糖果糖オリゴ糖、ラクトスクロース、マルトオリゴ糖、イソマルトオリゴ糖、ゲンチオオリゴ糖、ニゲロオリゴ糖、フラクトオリゴ糖、ガラクトオリゴ糖、マンナンオリゴ糖、キシロオリゴ糖、大豆オリゴ糖等のオリゴ糖等が挙げられるが、これらに限定されない。糖としては、単糖又は二糖が好ましい。
単糖としては、ジヒドロキシアセトン、グリセルアルデヒド、エリトルロース、エリトロース、トレオース、リブロース、キシルロース、リボース、アラビノース、キシロース、リキソース、デオキシリボース、プシコース、フルクトース、ソルボース、タガトース、アロース、アルトロース、グルコース、マンノース、グロース、イドース、ガラクトース、タロース、フコース、フクロース、ラムノース、セドヘプツロースが好ましく、ジヒドロキシアセトン、グリセルアルデヒド、エリトルロース、エリトロース、リブロース、リボース、アラビノース、キシロース、デオキシリボース、フルクトース、グルコース、マンノース、ガラクトース、又はセドヘプツロースがより好ましく、グルコースがさらに好ましい。
二糖としては、スクロース、ラクツロース、ラクトース、マルトース、トレハロース、セロビオース、コージビオース、ニゲロース、イソマルトース、β,β―トレハロース、α,β―トレハロース、ソホロース、ラミナリビオース、ゲンチオビオース、ツラノース、マルツロース、パラチノース、ゲンチオビウロース、マンノビオース、メリビオース、メリビウロース、ネオラクトース、ガラクトスクロース、シラビオース、ネオヘスペリドース、ルチノース、ルチヌロース、ビシアノース、キシロビオース、プリメベロース、トレハロサミン、マルチトール、セロビオン酸、ラクトサミン、ラクトースジアミン、ラクトビオン酸、ラクチトール、ヒアロビウロン酸、又はスクラロースが好ましく、スクロース、ラクツロース、ラクトース、マルトース、トレハロース、又はセロビオースがより好ましく、スクロースがさらに好ましい。 Examples of sugars include dihydroxyacetone, glyceraldehyde, elittlerose, erythrose, treose, ribulose, xylrose, ribose, arabinose, xylose, liquisource, deoxyribose, psicose, fructose, sucrose, tagatose, allose, altorose, glucose and mannose. , Growth, idose, galactose, tarose, fucose, fructose, ramnorse, sedhepturose and other monosaccharides (either D-form or L-form, or a mixture of D-form and L-form); sucrose, lactose. , Lactose, Martose, Trehalose, Cellobiose, Kojibiose, Nigerose, Isomartose, β, β-trehalose, α, β-trehalose, Sophorose, Laminaribiose, Genthiobiose, Turanose, Marzulose, Palatinose, Genthiobiulose, Mannobious , Meribiulose, neolactos, galactosucrose, silaviose, neohesperidos, lucinose, lucinulose, bicianose, xylobiose, primeberos, trehalosamine, martitol, cellobionic acid, lactosamine, lactosediamine, lactobionic acid, lactitol, hyalobiuronic acid, sucrose. Sugars; trisaccharides such as nigerotriose, maltotriose, meregitos, maltotriulose, raffinose, kestose; tetrasaccharides such as nistose, nigerotetraose, stakiose; and lactose-fructose oligosaccharides, lactosucrose, maltooligosaccharides, isomaltooligo Examples thereof include, but are not limited to, sugars, genthio-oligosaccharides, nigerooligosaccharides, fructose-oligosaccharides, galactooligosaccharides, mannan oligosaccharides, xylooligosaccharides, soybean oligosaccharides and the like. As the sugar, monosaccharides or disaccharides are preferable.
Monosaccharides include dihydroxyacetone, glyceraldehyde, erythrose, erythrose, treose, ribulose, xylrose, ribose, arabinose, xylose, lyxose, deoxyribose, psicose, fructose, sorbose, tagatose, allose, altrose, glucose, mannose, Growth, idose, galactose, tarose, fucose, fuclos, ramnorse, sedoheptulose are preferred, dihydroxyacetone, glyceraldehyde, elittlerose, erythrose, ribulose, ribose, arabinose, xylose, deoxyribose, fructose, glucose, mannose, galactose, or sedoheptulose. Is more preferred, and glucose is even more preferred.
Disaccharides include sucrose, lacturose, lactose, maltose, trehalose, cellobiose, cozybiose, nigerose, isomaltose, β, β-trehalose, α, β-trehalose, sophorose, laminaribiose, gentiobiose, turanoth, malturose, palatinose, Genthioviulose, Mannoviose, Meribiose, Meribiulose, Neolactos, Galac sucrose, Syrabios, Neohesperidos, Lucinose, Lucinulose, Visianose, Xylobiose, Primeberose, Trehalosemin, Martinol, Cerobionic acid, Lactosamine, Lactosediamine, Lactobionic acid. , Hyalobiuronic acid, or sucrose is preferred, sucrose, lacturose, lactose, sucrose, trehalose, or cellobiose is more preferred, and sucrose is even more preferred.
単糖としては、ジヒドロキシアセトン、グリセルアルデヒド、エリトルロース、エリトロース、トレオース、リブロース、キシルロース、リボース、アラビノース、キシロース、リキソース、デオキシリボース、プシコース、フルクトース、ソルボース、タガトース、アロース、アルトロース、グルコース、マンノース、グロース、イドース、ガラクトース、タロース、フコース、フクロース、ラムノース、セドヘプツロースが好ましく、ジヒドロキシアセトン、グリセルアルデヒド、エリトルロース、エリトロース、リブロース、リボース、アラビノース、キシロース、デオキシリボース、フルクトース、グルコース、マンノース、ガラクトース、又はセドヘプツロースがより好ましく、グルコースがさらに好ましい。
二糖としては、スクロース、ラクツロース、ラクトース、マルトース、トレハロース、セロビオース、コージビオース、ニゲロース、イソマルトース、β,β―トレハロース、α,β―トレハロース、ソホロース、ラミナリビオース、ゲンチオビオース、ツラノース、マルツロース、パラチノース、ゲンチオビウロース、マンノビオース、メリビオース、メリビウロース、ネオラクトース、ガラクトスクロース、シラビオース、ネオヘスペリドース、ルチノース、ルチヌロース、ビシアノース、キシロビオース、プリメベロース、トレハロサミン、マルチトール、セロビオン酸、ラクトサミン、ラクトースジアミン、ラクトビオン酸、ラクチトール、ヒアロビウロン酸、又はスクラロースが好ましく、スクロース、ラクツロース、ラクトース、マルトース、トレハロース、又はセロビオースがより好ましく、スクロースがさらに好ましい。 Examples of sugars include dihydroxyacetone, glyceraldehyde, elittlerose, erythrose, treose, ribulose, xylrose, ribose, arabinose, xylose, liquisource, deoxyribose, psicose, fructose, sucrose, tagatose, allose, altorose, glucose and mannose. , Growth, idose, galactose, tarose, fucose, fructose, ramnorse, sedhepturose and other monosaccharides (either D-form or L-form, or a mixture of D-form and L-form); sucrose, lactose. , Lactose, Martose, Trehalose, Cellobiose, Kojibiose, Nigerose, Isomartose, β, β-trehalose, α, β-trehalose, Sophorose, Laminaribiose, Genthiobiose, Turanose, Marzulose, Palatinose, Genthiobiulose, Mannobious , Meribiulose, neolactos, galactosucrose, silaviose, neohesperidos, lucinose, lucinulose, bicianose, xylobiose, primeberos, trehalosamine, martitol, cellobionic acid, lactosamine, lactosediamine, lactobionic acid, lactitol, hyalobiuronic acid, sucrose. Sugars; trisaccharides such as nigerotriose, maltotriose, meregitos, maltotriulose, raffinose, kestose; tetrasaccharides such as nistose, nigerotetraose, stakiose; and lactose-fructose oligosaccharides, lactosucrose, maltooligosaccharides, isomaltooligo Examples thereof include, but are not limited to, sugars, genthio-oligosaccharides, nigerooligosaccharides, fructose-oligosaccharides, galactooligosaccharides, mannan oligosaccharides, xylooligosaccharides, soybean oligosaccharides and the like. As the sugar, monosaccharides or disaccharides are preferable.
Monosaccharides include dihydroxyacetone, glyceraldehyde, erythrose, erythrose, treose, ribulose, xylrose, ribose, arabinose, xylose, lyxose, deoxyribose, psicose, fructose, sorbose, tagatose, allose, altrose, glucose, mannose, Growth, idose, galactose, tarose, fucose, fuclos, ramnorse, sedoheptulose are preferred, dihydroxyacetone, glyceraldehyde, elittlerose, erythrose, ribulose, ribose, arabinose, xylose, deoxyribose, fructose, glucose, mannose, galactose, or sedoheptulose. Is more preferred, and glucose is even more preferred.
Disaccharides include sucrose, lacturose, lactose, maltose, trehalose, cellobiose, cozybiose, nigerose, isomaltose, β, β-trehalose, α, β-trehalose, sophorose, laminaribiose, gentiobiose, turanoth, malturose, palatinose, Genthioviulose, Mannoviose, Meribiose, Meribiulose, Neolactos, Galac sucrose, Syrabios, Neohesperidos, Lucinose, Lucinulose, Visianose, Xylobiose, Primeberose, Trehalosemin, Martinol, Cerobionic acid, Lactosamine, Lactosediamine, Lactobionic acid. , Hyalobiuronic acid, or sucrose is preferred, sucrose, lacturose, lactose, sucrose, trehalose, or cellobiose is more preferred, and sucrose is even more preferred.
糖アルコールとしては、例えば、グリセロール等の3価の糖アルコール;エリトリトール、D-トレイトール、L-トレイトール等の4価の糖アルコール;D-アラビニトール、L-アラビニトール、キシリトール、リビトール、アドニトール等の5価の糖アルコール;D-イジトール、ガラクチトール、ダルシトール、D-グルシトール、ソルビトール、マンニトール等の6価の糖アルコール;、ボレミトール、ペルセイトール等の7価の糖アルコール;D-エリトロ-D-ガラクト-オクチトール等の8価の糖アルコール;イソマルト、ラクチトール、マルチトール等の9価の糖アルコール;及びHSH、還元水飴糖等の糖アルコールの混合物等が挙げられるが、これらに限定されない。糖アルコールとしては、3価の糖アルコール、4価の糖アルコール、5価の糖アルコール、6価の糖アルコール、9価の糖アルコール、又は糖アルコールの混合物が好ましく、3価の糖アルコール又は6価の糖アルコールがより好ましく、6価の糖アルコールがさらに好ましい。
糖アルコールとしては、グリセロール、エリトリトール、キシリトール、ソルビトール、マンニトール、イソマルト、ラクチトール、マルチトール、HSH、又は還元水飴が好ましく、マンニトール、又はソルビトールがより好ましい。 Examples of the sugar alcohol include trivalent sugar alcohols such as glycerol; tetravalent sugar alcohols such as erythritol, D-trateol, and L-treitol; D-arabinitol, L-arabinitol, xylitol, rivitol, adonitol and the like. Pentavalent sugar alcohols; hexavalent sugar alcohols such as D-iditol, galactitol, darsitol, D-glucitol, sorbitol, mannitol; Examples include, but are not limited to, octavalent sugar alcohols such as octitol; 9-valent sugar alcohols such as isomalt, lactitol, and martitol; and mixtures of sugar alcohols such as HSH and reduced water candy sugar. As the sugar alcohol, a trivalent sugar alcohol, a tetravalent sugar alcohol, a pentavalent sugar alcohol, a hexavalent sugar alcohol, a nine-valent sugar alcohol, or a mixture of sugar alcohols is preferable, and a trivalent sugar alcohol or a mixture of sugar alcohols is preferable. Valuable sugar alcohols are more preferred, and hexavalent sugar alcohols are even more preferred.
As the sugar alcohol, glycerol, erythritol, xylitol, sorbitol, mannitol, isomalt, lactitol, maltitol, HSH, or reduced water candy are preferable, and mannitol or sorbitol is more preferable.
糖アルコールとしては、グリセロール、エリトリトール、キシリトール、ソルビトール、マンニトール、イソマルト、ラクチトール、マルチトール、HSH、又は還元水飴が好ましく、マンニトール、又はソルビトールがより好ましい。 Examples of the sugar alcohol include trivalent sugar alcohols such as glycerol; tetravalent sugar alcohols such as erythritol, D-trateol, and L-treitol; D-arabinitol, L-arabinitol, xylitol, rivitol, adonitol and the like. Pentavalent sugar alcohols; hexavalent sugar alcohols such as D-iditol, galactitol, darsitol, D-glucitol, sorbitol, mannitol; Examples include, but are not limited to, octavalent sugar alcohols such as octitol; 9-valent sugar alcohols such as isomalt, lactitol, and martitol; and mixtures of sugar alcohols such as HSH and reduced water candy sugar. As the sugar alcohol, a trivalent sugar alcohol, a tetravalent sugar alcohol, a pentavalent sugar alcohol, a hexavalent sugar alcohol, a nine-valent sugar alcohol, or a mixture of sugar alcohols is preferable, and a trivalent sugar alcohol or a mixture of sugar alcohols is preferable. Valuable sugar alcohols are more preferred, and hexavalent sugar alcohols are even more preferred.
As the sugar alcohol, glycerol, erythritol, xylitol, sorbitol, mannitol, isomalt, lactitol, maltitol, HSH, or reduced water candy are preferable, and mannitol or sorbitol is more preferable.
アミノ酸は、D体及びL体のいずれであってもよく、D体及びL体の混合物であってもよい。アミノ酸は、α-アミノ酸、β-アミノ酸、γ-アミノ酸、及びδ-アミノ酸のいずれであってもよい。アミノ酸としては、例えば、アラニン、アスパラギン酸、アスパラギン、システイン、グルタミン酸、グルタミン、フェニルアラニン、グリシン、ヒスチジン、イソロイシン、リシン、ロイシン、メチオニン、プロリン、アルギニン、セリン、トレオニン、セレノシステイン、バリン、トリプトファン、チロシン、2-アミノアジピン酸、3-アミノアジピン酸、2-アミノブタン酸、2,4-ジアミノブタン酸、2-アミノヘキサン酸、6-アミノヘキサン酸、β-アラニン、2-アミノペンタン酸、2,3-ジアミノプロパン酸、2-アミノピメリン酸、2,6-ジアミノピメリン酸、シトルリン、システイン酸、4-カルボキシグルタミン酸、5-オキソプロリン、ピログルタミン酸、ホモシステイン、ホモセリン、ホモセリンラクトン、5-ヒドロキシリシン、アロヒドロキシリシン、3-ヒドロキシプロリン、4-ヒドロキシプロリン、アロイソロイシン、ノルロイシン、ノルバリン、オルニチン、サルコシン、アロトレオニン、チロキシン等が挙げられる。アミノ酸としては、アラニン、アスパラギン酸、アスパラギン、システイン、グルタミン酸、グルタミン、フェニルアラニン、グリシン、ヒスチジン、イソロイシン、リシン、ロイシン、メチオニン、プロリン、アルギニン、セリン、トレオニン、セレノシステイン、バリン、トリプトファン、又はチロシンが好ましく、グリシン、プロリン、又はアルギニンがより好ましい。
The amino acid may be either D-form or L-form, or may be a mixture of D-form and L-form. The amino acid may be any of α-amino acid, β-amino acid, γ-amino acid, and δ-amino acid. Amino acids include, for example, alanine, aspartic acid, aspartic acid, cysteine, glutamic acid, glutamine, phenylalanine, glycine, histidine, isoleucine, lysine, leucine, methionine, proline, arginine, serine, treonine, serenocysteine, valine, tryptophan, tyrosine, 2-aminoadipic acid, 3-aminoadipic acid, 2-aminobutanoic acid, 2,4-diaminobutanoic acid, 2-aminohexanoic acid, 6-aminohexanoic acid, β-alanine, 2-aminopentanoic acid, 2,3 -Diaminopropanoic acid, 2-aminopimeric acid, 2,6-diaminopimeric acid, citrulin, cysteine acid, 4-carboxyglutamic acid, 5-oxoproline, pyroglutamic acid, homocysteine, homoserine, homoserine lactone, 5-hydroxylysine, allohydroxy Examples thereof include lysine, 3-hydroxyproline, 4-hydroxyproline, alloisolysin, norleucine, nolvalin, ornithine, sarcosin, allotoreonin, tyrosin and the like. Amino acids are preferably alanine, aspartic acid, aspartic acid, cysteine, glutamic acid, glutamine, phenylalanine, glycine, histidine, isoleucine, lysine, leucine, methionine, proline, arginine, serine, treonine, selenocysteine, valine, tryptophan, or tyrosine. , Glycine, proline, or arginine are more preferred.
金属塩としては、例えば、アルカリ金属(ナトリウム、カリウムなど)又はアルカリ土類金属(マグネシウム、カルシウムなど)と、無機酸(塩酸、硫酸、炭酸、亜硫酸、硝酸等)又は有機酸(乳酸、コハク酸、酢酸等)との塩等が挙げられる。金属塩としては、アルカリ金属又はアルカリ土類金属と、無機酸との塩が好ましく、塩化カリウム、又は硫酸ナトリウム等がより好ましく、塩化カリウムがさらに好ましい。
Examples of metal salts include alkali metals (sodium, potassium, etc.) or alkaline earth metals (magnesium, calcium, etc.) and inorganic acids (hydrogen, sulfuric acid, carbonic acid, sulfite, nitrate, etc.) or organic acids (lactic acid, succinic acid, etc.). , Acetic acid, etc.) and salts. As the metal salt, a salt of an alkali metal or an alkaline earth metal and an inorganic acid is preferable, potassium chloride, sodium sulfate or the like is more preferable, and potassium chloride is further preferable.
これらの中でも、培地に添加して浸透圧を調整しやすいことから、浸透圧調整剤は、糖、糖アルコール、及びアミノ酸からなる群より選択される少なくとも1種であることが好ましい。好適な糖としては、グルコース、スクロースが挙げられる。好適な糖アルコールとしては、6価の糖アルコール(例えば、マンニトール、ソルビトール)が挙げられる。好適なアミノ酸としては、グリシン、プロリン、アルギニンが挙げられる。
浸透圧調整剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 Among these, the osmotic pressure adjusting agent is preferably at least one selected from the group consisting of sugars, sugar alcohols, and amino acids because it is easy to add to the medium to adjust the osmotic pressure. Suitable sugars include glucose and sucrose. Suitable sugar alcohols include hexavalent sugar alcohols (eg, mannitol, sorbitol). Suitable amino acids include glycine, proline and arginine.
The osmotic pressure adjusting agent may be used alone or in combination of two or more.
浸透圧調整剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 Among these, the osmotic pressure adjusting agent is preferably at least one selected from the group consisting of sugars, sugar alcohols, and amino acids because it is easy to add to the medium to adjust the osmotic pressure. Suitable sugars include glucose and sucrose. Suitable sugar alcohols include hexavalent sugar alcohols (eg, mannitol, sorbitol). Suitable amino acids include glycine, proline and arginine.
The osmotic pressure adjusting agent may be used alone or in combination of two or more.
培地は、浸透圧調整剤を80mM以上含有する培地であれば、特に限定されない。培地は、例えば、単細胞性藻類用の培地として公知な培地に、浸透圧調整剤を80mM以上となるように添加して調製することができる。単細胞性藻類用の培地としては、特に限定されないが、窒素源、リン源、及び微量元素(亜鉛、ホウ素、コバルト、銅、マンガン、モリブデン、鉄など)等を含む無機塩培地が例示される。例えば、窒素源としては、アンモニウム塩、硝酸塩、亜硝酸塩等が挙げられ、リン源としては、リン酸塩等が挙げられる。そのような培地としては、例えば、Gross培地、2×Allen培地(Allen MB. Arch. Microbiol. 1959 32: 270-277.)、M-Allen培地(Minoda A et al. Plant Cell Physiol. 2004 45: 667-71.)、MA2培地(Ohnuma M et al. Plant Cell Physiol. 2008 Jan;49(1):117-20.)、改変M-Allen培地等が挙げられるが、これらに限定されない。
The medium is not particularly limited as long as it contains 80 mM or more of the osmotic pressure adjusting agent. The medium can be prepared, for example, by adding an osmotic pressure adjusting agent to a medium known as a medium for unicellular algae so as to be 80 mM or more. The medium for single-celled algae is not particularly limited, and examples thereof include an inorganic salt medium containing a nitrogen source, a phosphorus source, and trace elements (zinc, boron, cobalt, copper, manganese, molybdenum, iron, etc.). For example, examples of the nitrogen source include ammonium salts, nitrates, nitrites and the like, and examples of the phosphorus source include phosphates and the like. Examples of such a medium include Gross medium, 2 × Allen medium (Allen MB. Arch. Microbiol. 1959 32: 270-277.), M-Alllen medium (Minoda A et al. Plant Cell Physiol. 2004 45: 667-71.), MA2 medium (Ohnuma M et al. Plant Cell Physiol. 2008 Jan; 49 (1): 117-20.), Modified M-Alllen medium, etc., but is not limited thereto.
単細胞性紅藻は、光照射下で、独立栄養的に培養してもよく、暗所で、従属栄養的に培養してもよい。従属栄養的に培養する場合には、上記のような無機塩培地に、炭素源(グルコース等)を添加してもよい。
The single-celled red algae may be autotrophically cultured under light irradiation, or may be heterotrophically cultured in the dark. In the case of heterotrophic culture, a carbon source (glucose or the like) may be added to the above-mentioned inorganic salt medium.
培地中の浸透圧調整剤の濃度は、80mM以上であれば、特に限定されない。浸透圧調整剤の濃度を80mM以上とすることにより、浸透圧調整剤の種類によらず、1倍体の細胞を安定に維持することができる。浸透圧調整剤の濃度は、100mM以上、110mM以上、120mM以上、130mM以上、140mM以上、150mM以上、160mM以上、170mM以上、180mM以上、190mM以上、200mM以上、210mM以上、220mM以上、230mM以上、240mM以上、250mM以上、260mM以上、270mM以上、280mM以上、290mM以上、300mM以上、350mM以上、360mM以上、370mM以上、380mM以上、390mM以上、又は400mM以上であってもよい。浸透圧調整剤の上限濃度は、特に限定されず、培地中に溶解可能な限界値であってもよい。細胞の増殖速度の観点からは、浸透圧調整剤の上限濃度は、例えば、2M以下、1.5M以下、1.4M以下、1.3M以下、1.2M以下、1.1M以下、又は1M以下とすることができる。培地中の浸透圧調整剤の濃度範囲としては、例えば、80mM~2Mが挙げられる。前記下限値及び上限値は、任意に組合せ可能である。浸透圧調整剤の濃度範囲としては、例えば、100mM~1.5Mが好ましく、200mM~1.4Mがより好ましく、300mM~1.3Mがさらに好ましく、400mM~1.3Mが特に好ましい。
培地中の浸透圧調整剤の濃度は、特記しない限り、培養開始前の濃度である。また、浸透圧調整剤を2種以上組み合わせて用いる場合は、前記2種以上の浸透圧調整剤の合計含有量が80mM以上になればよい。上記浸透圧調整剤の濃度として例示した範囲についても同様である。 The concentration of the osmotic pressure regulator in the medium is not particularly limited as long as it is 80 mM or more. By setting the concentration of the osmotic pressure adjusting agent to 80 mM or more, haploid cells can be stably maintained regardless of the type of the osmotic pressure adjusting agent. The concentration of the osmotic pressure regulator is 100 mM or more, 110 mM or more, 120 mM or more, 130 mM or more, 140 mM or more, 150 mM or more, 160 mM or more, 170 mM or more, 180 mM or more, 190 mM or more, 200 mM or more, 210 mM or more, 220 mM or more, 230 mM or more, It may be 240 mM or more, 250 mM or more, 260 mM or more, 270 mM or more, 280 mM or more, 290 mM or more, 300 mM or more, 350 mM or more, 360 mM or more, 370 mM or more, 380 mM or more, 390 mM or more, or 400 mM or more. The upper limit concentration of the osmotic pressure adjusting agent is not particularly limited and may be a limit value that can be dissolved in the medium. From the viewpoint of cell growth rate, the upper limit concentration of the osmotic pressure regulator is, for example, 2M or less, 1.5M or less, 1.4M or less, 1.3M or less, 1.2M or less, 1.1M or less, or 1M. It can be as follows. Examples of the concentration range of the osmotic pressure adjusting agent in the medium include 80 mM to 2 M. The lower limit value and the upper limit value can be arbitrarily combined. As the concentration range of the osmotic pressure adjusting agent, for example, 100 mM to 1.5 M is preferable, 200 mM to 1.4 M is more preferable, 300 mM to 1.3 M is further preferable, and 400 mM to 1.3 M is particularly preferable.
Unless otherwise specified, the concentration of the osmotic pressure regulator in the medium is the concentration before the start of culture. When two or more kinds of osmotic pressure adjusting agents are used in combination, the total content of the two or more kinds of osmotic pressure adjusting agents may be 80 mM or more. The same applies to the range exemplified as the concentration of the osmotic pressure adjusting agent.
培地中の浸透圧調整剤の濃度は、特記しない限り、培養開始前の濃度である。また、浸透圧調整剤を2種以上組み合わせて用いる場合は、前記2種以上の浸透圧調整剤の合計含有量が80mM以上になればよい。上記浸透圧調整剤の濃度として例示した範囲についても同様である。 The concentration of the osmotic pressure regulator in the medium is not particularly limited as long as it is 80 mM or more. By setting the concentration of the osmotic pressure adjusting agent to 80 mM or more, haploid cells can be stably maintained regardless of the type of the osmotic pressure adjusting agent. The concentration of the osmotic pressure regulator is 100 mM or more, 110 mM or more, 120 mM or more, 130 mM or more, 140 mM or more, 150 mM or more, 160 mM or more, 170 mM or more, 180 mM or more, 190 mM or more, 200 mM or more, 210 mM or more, 220 mM or more, 230 mM or more, It may be 240 mM or more, 250 mM or more, 260 mM or more, 270 mM or more, 280 mM or more, 290 mM or more, 300 mM or more, 350 mM or more, 360 mM or more, 370 mM or more, 380 mM or more, 390 mM or more, or 400 mM or more. The upper limit concentration of the osmotic pressure adjusting agent is not particularly limited and may be a limit value that can be dissolved in the medium. From the viewpoint of cell growth rate, the upper limit concentration of the osmotic pressure regulator is, for example, 2M or less, 1.5M or less, 1.4M or less, 1.3M or less, 1.2M or less, 1.1M or less, or 1M. It can be as follows. Examples of the concentration range of the osmotic pressure adjusting agent in the medium include 80 mM to 2 M. The lower limit value and the upper limit value can be arbitrarily combined. As the concentration range of the osmotic pressure adjusting agent, for example, 100 mM to 1.5 M is preferable, 200 mM to 1.4 M is more preferable, 300 mM to 1.3 M is further preferable, and 400 mM to 1.3 M is particularly preferable.
Unless otherwise specified, the concentration of the osmotic pressure regulator in the medium is the concentration before the start of culture. When two or more kinds of osmotic pressure adjusting agents are used in combination, the total content of the two or more kinds of osmotic pressure adjusting agents may be 80 mM or more. The same applies to the range exemplified as the concentration of the osmotic pressure adjusting agent.
例えば、浸透圧調整剤がグルコースである場合、培地中のグルコース濃度としては、例えば、200mM~2Mが挙げられ、250mM~1.7Mが好ましく、270mM~1.5Mがより好ましい。あるいは、培地中のグルコース濃度は、培地の全質量(100質量%)に対して、4~40質量%が好ましく、5~30質量%がより好ましい。
例えば、浸透圧調整剤がスクロースである場合、培地中のスクロース濃度としては、例えば、80mM~1.1Mが挙げられ、80mM~800mMが好ましく、80mM~600Mがより好ましい。あるいは、培地中のスクロースの濃度は、培地の全質量(100質量%)に対して、2~40質量%が好ましく、3~30質量%がより好ましく、3~20質量%がさらに好ましい。
例えば、浸透圧調整剤がグリセロールである場合、培地中のグリセロール濃度としては、例えば、200mM~800mMが挙げられ、300mM~600mMが好ましい。あるいは、培地中のグリセロール濃度は、培地の全質量(100質量%)に対して、3~6質量%が好ましい。
例えば、浸透圧調整剤がマンニトールである場合、培地中のマンニトール濃度としては、例えば、180mM~1.5Mが挙げられ、200mM~1.2Mが好ましく、250mM~1Mがより好ましい。あるいは、培地中のマンニトール濃度は、培地の全質量(100質量%)に対して、4~20質量%が好ましく、5~18質量%がより好ましい。
例えば、浸透圧調整剤がソルビトールである場合、培地中のソルビトール濃度としては、例えば、200mM~2Mが挙げられ、400mM~1.5Mが好ましく、430mM~1.5Mがより好ましい。あるいは、培地中のソルビトール濃度は、培地の全質量(100質量%)に対して、5~40質量%が好ましく、8~27質量%がより好ましい。
例えば、浸透圧調整剤がグリシンである場合、培地中のグリシン濃度としては、例えば、100mM~2Mが挙げられ、120mM~1.5Mが好ましく、130mM~1Mがより好ましい。あるいは、培地中のグリシン濃度は、培地の全質量(100質量%)に対して、0.5~10質量%が好ましく、1~8質量%がより好ましい。
例えば、浸透圧調整剤がプロリンである場合、培地中のプロリン濃度としては、例えば、80mM~2Mが挙げられ、500mM~1.5Mが好ましく、600mM~1.5Mがより好ましい。あるいは、培地中のプロパン濃度は、培地の全質量(100質量%)に対して、1~20質量%が好ましく、7~10質量%がより好ましい。
例えば、浸透圧調整剤がアルギニンである場合、培地中のアルギニン濃度としては、例えば、20mM~2Mが挙げられ、30mM~1.5Mが好ましく、50mM~1Mがより好ましい。あるいは、培地中のアルギニン濃度は、培地の全質量(100質量%)に対して、0.5~30質量%が好ましく、1~20質量%がより好ましい。
例えば、浸透圧調整剤が塩化カリウムである場合、培地中の塩化カリウム濃度としては、例えば、50mM~1.5Mが挙げられ、100mM~1Mが好ましく、130mM~500mMがより好ましい。あるいは、培地中の塩化カリウム濃度は、培地の全質量(100質量%)に対して、0.5~10質量%が好ましく、1~5質量%がより好ましい。 For example, when the osmotic pressure regulator is glucose, the glucose concentration in the medium includes, for example, 200 mM to 2 M, preferably 250 mM to 1.7 M, and more preferably 270 mM to 1.5 M. Alternatively, the glucose concentration in the medium is preferably 4 to 40% by mass, more preferably 5 to 30% by mass, based on the total mass (100% by mass) of the medium.
For example, when the osmotic pressure adjusting agent is sucrose, the sucrose concentration in the medium includes, for example, 80 mM to 1.1 M, preferably 80 mM to 800 mM, and more preferably 80 mM to 600 M. Alternatively, the concentration of sucrose in the medium is preferably 2 to 40% by mass, more preferably 3 to 30% by mass, still more preferably 3 to 20% by mass, based on the total mass (100% by mass) of the medium.
For example, when the osmotic pressure adjusting agent is glycerol, the glycerol concentration in the medium may be, for example, 200 mM to 800 mM, preferably 300 mM to 600 mM. Alternatively, the glycerol concentration in the medium is preferably 3 to 6% by mass with respect to the total mass (100% by mass) of the medium.
For example, when the osmotic pressure adjusting agent is mannitol, the mannitol concentration in the medium includes, for example, 180 mM to 1.5 M, preferably 200 mM to 1.2 M, and more preferably 250 mM to 1 M. Alternatively, the concentration of mannitol in the medium is preferably 4 to 20% by mass, more preferably 5 to 18% by mass, based on the total mass (100% by mass) of the medium.
For example, when the osmotic pressure adjusting agent is sorbitol, the sorbitol concentration in the medium includes, for example, 200 mM to 2 M, preferably 400 mM to 1.5 M, and more preferably 430 mM to 1.5 M. Alternatively, the sorbitol concentration in the medium is preferably 5 to 40% by mass, more preferably 8 to 27% by mass, based on the total mass (100% by mass) of the medium.
For example, when the osmotic pressure adjusting agent is glycine, the glycine concentration in the medium includes, for example, 100 mM to 2 M, preferably 120 mM to 1.5 M, and more preferably 130 mM to 1 M. Alternatively, the glycine concentration in the medium is preferably 0.5 to 10% by mass, more preferably 1 to 8% by mass, based on the total mass (100% by mass) of the medium.
For example, when the osmotic pressure adjusting agent is proline, the proline concentration in the medium includes, for example, 80 mM to 2 M, preferably 500 mM to 1.5 M, and more preferably 600 mM to 1.5 M. Alternatively, the propane concentration in the medium is preferably 1 to 20% by mass, more preferably 7 to 10% by mass, based on the total mass (100% by mass) of the medium.
For example, when the osmotic pressure adjusting agent is arginine, the arginine concentration in the medium includes, for example, 20 mM to 2 M, preferably 30 mM to 1.5 M, and more preferably 50 mM to 1 M. Alternatively, the arginine concentration in the medium is preferably 0.5 to 30% by mass, more preferably 1 to 20% by mass, based on the total mass (100% by mass) of the medium.
For example, when the osmotic pressure adjusting agent is potassium chloride, the potassium chloride concentration in the medium includes, for example, 50 mM to 1.5 M, preferably 100 mM to 1 M, and more preferably 130 mM to 500 mM. Alternatively, the potassium chloride concentration in the medium is preferably 0.5 to 10% by mass, more preferably 1 to 5% by mass, based on the total mass (100% by mass) of the medium.
例えば、浸透圧調整剤がスクロースである場合、培地中のスクロース濃度としては、例えば、80mM~1.1Mが挙げられ、80mM~800mMが好ましく、80mM~600Mがより好ましい。あるいは、培地中のスクロースの濃度は、培地の全質量(100質量%)に対して、2~40質量%が好ましく、3~30質量%がより好ましく、3~20質量%がさらに好ましい。
例えば、浸透圧調整剤がグリセロールである場合、培地中のグリセロール濃度としては、例えば、200mM~800mMが挙げられ、300mM~600mMが好ましい。あるいは、培地中のグリセロール濃度は、培地の全質量(100質量%)に対して、3~6質量%が好ましい。
例えば、浸透圧調整剤がマンニトールである場合、培地中のマンニトール濃度としては、例えば、180mM~1.5Mが挙げられ、200mM~1.2Mが好ましく、250mM~1Mがより好ましい。あるいは、培地中のマンニトール濃度は、培地の全質量(100質量%)に対して、4~20質量%が好ましく、5~18質量%がより好ましい。
例えば、浸透圧調整剤がソルビトールである場合、培地中のソルビトール濃度としては、例えば、200mM~2Mが挙げられ、400mM~1.5Mが好ましく、430mM~1.5Mがより好ましい。あるいは、培地中のソルビトール濃度は、培地の全質量(100質量%)に対して、5~40質量%が好ましく、8~27質量%がより好ましい。
例えば、浸透圧調整剤がグリシンである場合、培地中のグリシン濃度としては、例えば、100mM~2Mが挙げられ、120mM~1.5Mが好ましく、130mM~1Mがより好ましい。あるいは、培地中のグリシン濃度は、培地の全質量(100質量%)に対して、0.5~10質量%が好ましく、1~8質量%がより好ましい。
例えば、浸透圧調整剤がプロリンである場合、培地中のプロリン濃度としては、例えば、80mM~2Mが挙げられ、500mM~1.5Mが好ましく、600mM~1.5Mがより好ましい。あるいは、培地中のプロパン濃度は、培地の全質量(100質量%)に対して、1~20質量%が好ましく、7~10質量%がより好ましい。
例えば、浸透圧調整剤がアルギニンである場合、培地中のアルギニン濃度としては、例えば、20mM~2Mが挙げられ、30mM~1.5Mが好ましく、50mM~1Mがより好ましい。あるいは、培地中のアルギニン濃度は、培地の全質量(100質量%)に対して、0.5~30質量%が好ましく、1~20質量%がより好ましい。
例えば、浸透圧調整剤が塩化カリウムである場合、培地中の塩化カリウム濃度としては、例えば、50mM~1.5Mが挙げられ、100mM~1Mが好ましく、130mM~500mMがより好ましい。あるいは、培地中の塩化カリウム濃度は、培地の全質量(100質量%)に対して、0.5~10質量%が好ましく、1~5質量%がより好ましい。 For example, when the osmotic pressure regulator is glucose, the glucose concentration in the medium includes, for example, 200 mM to 2 M, preferably 250 mM to 1.7 M, and more preferably 270 mM to 1.5 M. Alternatively, the glucose concentration in the medium is preferably 4 to 40% by mass, more preferably 5 to 30% by mass, based on the total mass (100% by mass) of the medium.
For example, when the osmotic pressure adjusting agent is sucrose, the sucrose concentration in the medium includes, for example, 80 mM to 1.1 M, preferably 80 mM to 800 mM, and more preferably 80 mM to 600 M. Alternatively, the concentration of sucrose in the medium is preferably 2 to 40% by mass, more preferably 3 to 30% by mass, still more preferably 3 to 20% by mass, based on the total mass (100% by mass) of the medium.
For example, when the osmotic pressure adjusting agent is glycerol, the glycerol concentration in the medium may be, for example, 200 mM to 800 mM, preferably 300 mM to 600 mM. Alternatively, the glycerol concentration in the medium is preferably 3 to 6% by mass with respect to the total mass (100% by mass) of the medium.
For example, when the osmotic pressure adjusting agent is mannitol, the mannitol concentration in the medium includes, for example, 180 mM to 1.5 M, preferably 200 mM to 1.2 M, and more preferably 250 mM to 1 M. Alternatively, the concentration of mannitol in the medium is preferably 4 to 20% by mass, more preferably 5 to 18% by mass, based on the total mass (100% by mass) of the medium.
For example, when the osmotic pressure adjusting agent is sorbitol, the sorbitol concentration in the medium includes, for example, 200 mM to 2 M, preferably 400 mM to 1.5 M, and more preferably 430 mM to 1.5 M. Alternatively, the sorbitol concentration in the medium is preferably 5 to 40% by mass, more preferably 8 to 27% by mass, based on the total mass (100% by mass) of the medium.
For example, when the osmotic pressure adjusting agent is glycine, the glycine concentration in the medium includes, for example, 100 mM to 2 M, preferably 120 mM to 1.5 M, and more preferably 130 mM to 1 M. Alternatively, the glycine concentration in the medium is preferably 0.5 to 10% by mass, more preferably 1 to 8% by mass, based on the total mass (100% by mass) of the medium.
For example, when the osmotic pressure adjusting agent is proline, the proline concentration in the medium includes, for example, 80 mM to 2 M, preferably 500 mM to 1.5 M, and more preferably 600 mM to 1.5 M. Alternatively, the propane concentration in the medium is preferably 1 to 20% by mass, more preferably 7 to 10% by mass, based on the total mass (100% by mass) of the medium.
For example, when the osmotic pressure adjusting agent is arginine, the arginine concentration in the medium includes, for example, 20 mM to 2 M, preferably 30 mM to 1.5 M, and more preferably 50 mM to 1 M. Alternatively, the arginine concentration in the medium is preferably 0.5 to 30% by mass, more preferably 1 to 20% by mass, based on the total mass (100% by mass) of the medium.
For example, when the osmotic pressure adjusting agent is potassium chloride, the potassium chloride concentration in the medium includes, for example, 50 mM to 1.5 M, preferably 100 mM to 1 M, and more preferably 130 mM to 500 mM. Alternatively, the potassium chloride concentration in the medium is preferably 0.5 to 10% by mass, more preferably 1 to 5% by mass, based on the total mass (100% by mass) of the medium.
培地は、浸透圧が、150mOsm/kg以上であることが好ましい。培地の浸透圧を150mOsm/kg以上とすることにより、浸透圧調整剤の種類によらず、1倍体の細胞を安定に維持することができる。浸透圧は、200mOsm/kg以上、210mOsm/kg以上、220mOsm/kg以上、230mOsm/kg以上、240mOsm/kg以上、250mOsm/kg以上、260mOsm/kg以上、270mOsm/kg以上、280mOsm/kg以上、290mOsm/kg以上、300mOsm/kg以上、310mOsm/kg以上、320mOsm/kg以上、330mOsm/kg以上、340mOsm/kg以上、350mOsm/kg以上、360mOsm/kg以上、370mOsm/kg以上、380mOsm/kg以上、390mOsm/kg以上、又は400mOsm/kg以上であってもよい。浸透圧の上限値は、特に限定されず、浸透圧調整剤を培地中に溶解可能な限界値であってもよい。細胞の増殖速度の観点からは、浸透圧の上限値は、例えば、2000mOsm/kg以下、1500mOsm/kg以下、又は1400mOsm/kg以下とすることができる。前記下限値及び上限値は、任意に組合せ可能である。培地の浸透圧の範囲としては、例えば、150~2000mOsm/kgが挙げられる。浸透圧の範囲としては、例えば、200~1500mOsm/kgが好ましく、250~1400mOsm/kgがより好ましく、300~1400mOsm/kgがさらに好ましく、400~1400mOsm/kgが特に好ましい。
培地の浸透圧は、特記しない限り、培養開始前の値である。培地の浸透圧は浸透圧計を用いて測定することができる。 The medium preferably has an osmotic pressure of 150 mOsm / kg or more. By setting the osmotic pressure of the medium to 150 mOsm / kg or more, haploid cells can be stably maintained regardless of the type of osmotic pressure adjusting agent. The osmotic pressure is 200 mOsm / kg or more, 210 mOsm / kg or more, 220 mOsm / kg or more, 230 mOsm / kg or more, 240 mOsm / kg or more, 250 mOsm / kg or more, 260 mOsm / kg or more, 270 mOsm / kg or more, 280 mOsm / kg or more, 290 mOsm. / Kg or more, 300 mOsm / kg or more, 310 mOsm / kg or more, 320 mOsm / kg or more, 330 mOsm / kg or more, 340 mOsm / kg or more, 350 mOsm / kg or more, 360 mOsm / kg or more, 370 mOsm / kg or more, 380 mOsm / kg or more, 390 mOsm It may be / kg or more, or 400 mOsm / kg or more. The upper limit of the osmotic pressure is not particularly limited, and may be a limit value at which the osmotic pressure adjusting agent can be dissolved in the medium. From the viewpoint of cell proliferation rate, the upper limit of osmotic pressure can be, for example, 2000 mOsm / kg or less, 1500 mOsm / kg or less, or 1400 mOsm / kg or less. The lower limit value and the upper limit value can be arbitrarily combined. The range of osmotic pressure of the medium includes, for example, 150 to 2000 mOsm / kg. As the osmotic pressure range, for example, 200 to 1500 mOsm / kg is preferable, 250 to 1400 mOsm / kg is more preferable, 300 to 1400 mOsm / kg is further preferable, and 400 to 1400 mOsm / kg is particularly preferable.
The osmotic pressure of the medium is a value before the start of culture unless otherwise specified. The osmotic pressure of the medium can be measured using an osmometer.
培地の浸透圧は、特記しない限り、培養開始前の値である。培地の浸透圧は浸透圧計を用いて測定することができる。 The medium preferably has an osmotic pressure of 150 mOsm / kg or more. By setting the osmotic pressure of the medium to 150 mOsm / kg or more, haploid cells can be stably maintained regardless of the type of osmotic pressure adjusting agent. The osmotic pressure is 200 mOsm / kg or more, 210 mOsm / kg or more, 220 mOsm / kg or more, 230 mOsm / kg or more, 240 mOsm / kg or more, 250 mOsm / kg or more, 260 mOsm / kg or more, 270 mOsm / kg or more, 280 mOsm / kg or more, 290 mOsm. / Kg or more, 300 mOsm / kg or more, 310 mOsm / kg or more, 320 mOsm / kg or more, 330 mOsm / kg or more, 340 mOsm / kg or more, 350 mOsm / kg or more, 360 mOsm / kg or more, 370 mOsm / kg or more, 380 mOsm / kg or more, 390 mOsm It may be / kg or more, or 400 mOsm / kg or more. The upper limit of the osmotic pressure is not particularly limited, and may be a limit value at which the osmotic pressure adjusting agent can be dissolved in the medium. From the viewpoint of cell proliferation rate, the upper limit of osmotic pressure can be, for example, 2000 mOsm / kg or less, 1500 mOsm / kg or less, or 1400 mOsm / kg or less. The lower limit value and the upper limit value can be arbitrarily combined. The range of osmotic pressure of the medium includes, for example, 150 to 2000 mOsm / kg. As the osmotic pressure range, for example, 200 to 1500 mOsm / kg is preferable, 250 to 1400 mOsm / kg is more preferable, 300 to 1400 mOsm / kg is further preferable, and 400 to 1400 mOsm / kg is particularly preferable.
The osmotic pressure of the medium is a value before the start of culture unless otherwise specified. The osmotic pressure of the medium can be measured using an osmometer.
培地は、液体培地であってもよく、固体培地であってもよい。固体培地としては、例えば、寒天培地を用いることができる。固体培地である場合、上記の浸透圧調整剤の濃度及び浸透圧は、固化剤(例えば、寒天)を添加する前の液体培地におけるものであってもよい。
The medium may be a liquid medium or a solid medium. As the solid medium, for example, an agar medium can be used. In the case of a solid medium, the concentration and osmotic pressure of the above-mentioned osmotic pressure adjusting agent may be those in the liquid medium before the addition of the solidifying agent (for example, agar).
倍数体の細胞から1倍体の細胞を作出する場合、1倍体の細胞を維持する場合、及び1倍体の細胞を増殖させる場合のいずれも上記の例示した培地を用いることができる。
倍数体の細胞から1倍体の細胞を作出する場合には、例えば、浸透圧調整剤の濃度を50mM~2Mとすることが好ましく、100mM~1.5Mとすることがより好ましい。また、培地の浸透圧を150~2610mOsm/kgとすることが好ましく、300~1700mOsm/kgとすることがより好ましい。培地は、液体培地であってもよく、固体培地であってもよいが、1倍体が生じたことが判別しやすいことから、固体培地を用いることが好ましい。
1倍体の細胞を維持する場合には、例えば、浸透圧調整剤の濃度を50mM~2Mとすることが好ましく、100mM~1.5Mとすることがより好ましい。また、培地の浸透圧を150~2610mOsm/kgとすることが好ましく、300~1700mOsm/kgとすることがより好ましい。培地は、液体培地であってもよく、固体培地であってもよいが、長期間安定に維持しやすいことから、固体培地を用いることが好ましい。
1倍体の細胞を増殖させる場合には、例えば、浸透圧調整剤の濃度を50mM~2Mとすることが好ましく、100mM~1.5Mとすることがより好ましい。また、培地の浸透圧を150~2610mOsm/kgとすることが好ましく、300~1700mOsm/kgとすることがより好ましい。培地は、液体培地であってもよく、固体培地であってもよいが、細胞が増殖しやすいことから、液体培地を用いることが好ましい。 The above-exemplified medium can be used for producing haploid cells from polyploid cells, maintaining haploid cells, and proliferating haploid cells.
When producing haploid cells from polyploid cells, for example, the concentration of the osmotic pressure adjusting agent is preferably 50 mM to 2 M, more preferably 100 mM to 1.5 M. The osmotic pressure of the medium is preferably 150 to 2610 mOsm / kg, more preferably 300 to 1700 mOsm / kg. The medium may be a liquid medium or a solid medium, but it is preferable to use a solid medium because it is easy to determine that haploids have been formed.
When maintaining haploid cells, for example, the concentration of the osmotic pressure regulator is preferably 50 mM to 2 M, more preferably 100 mM to 1.5 M. The osmotic pressure of the medium is preferably 150 to 2610 mOsm / kg, more preferably 300 to 1700 mOsm / kg. The medium may be a liquid medium or a solid medium, but it is preferable to use a solid medium because it is easy to maintain a stable medium for a long period of time.
When growing haploid cells, for example, the concentration of the osmotic pressure regulator is preferably 50 mM to 2 M, more preferably 100 mM to 1.5 M. The osmotic pressure of the medium is preferably 150 to 2610 mOsm / kg, more preferably 300 to 1700 mOsm / kg. The medium may be a liquid medium or a solid medium, but it is preferable to use a liquid medium because cells can easily grow.
倍数体の細胞から1倍体の細胞を作出する場合には、例えば、浸透圧調整剤の濃度を50mM~2Mとすることが好ましく、100mM~1.5Mとすることがより好ましい。また、培地の浸透圧を150~2610mOsm/kgとすることが好ましく、300~1700mOsm/kgとすることがより好ましい。培地は、液体培地であってもよく、固体培地であってもよいが、1倍体が生じたことが判別しやすいことから、固体培地を用いることが好ましい。
1倍体の細胞を維持する場合には、例えば、浸透圧調整剤の濃度を50mM~2Mとすることが好ましく、100mM~1.5Mとすることがより好ましい。また、培地の浸透圧を150~2610mOsm/kgとすることが好ましく、300~1700mOsm/kgとすることがより好ましい。培地は、液体培地であってもよく、固体培地であってもよいが、長期間安定に維持しやすいことから、固体培地を用いることが好ましい。
1倍体の細胞を増殖させる場合には、例えば、浸透圧調整剤の濃度を50mM~2Mとすることが好ましく、100mM~1.5Mとすることがより好ましい。また、培地の浸透圧を150~2610mOsm/kgとすることが好ましく、300~1700mOsm/kgとすることがより好ましい。培地は、液体培地であってもよく、固体培地であってもよいが、細胞が増殖しやすいことから、液体培地を用いることが好ましい。 The above-exemplified medium can be used for producing haploid cells from polyploid cells, maintaining haploid cells, and proliferating haploid cells.
When producing haploid cells from polyploid cells, for example, the concentration of the osmotic pressure adjusting agent is preferably 50 mM to 2 M, more preferably 100 mM to 1.5 M. The osmotic pressure of the medium is preferably 150 to 2610 mOsm / kg, more preferably 300 to 1700 mOsm / kg. The medium may be a liquid medium or a solid medium, but it is preferable to use a solid medium because it is easy to determine that haploids have been formed.
When maintaining haploid cells, for example, the concentration of the osmotic pressure regulator is preferably 50 mM to 2 M, more preferably 100 mM to 1.5 M. The osmotic pressure of the medium is preferably 150 to 2610 mOsm / kg, more preferably 300 to 1700 mOsm / kg. The medium may be a liquid medium or a solid medium, but it is preferable to use a solid medium because it is easy to maintain a stable medium for a long period of time.
When growing haploid cells, for example, the concentration of the osmotic pressure regulator is preferably 50 mM to 2 M, more preferably 100 mM to 1.5 M. The osmotic pressure of the medium is preferably 150 to 2610 mOsm / kg, more preferably 300 to 1700 mOsm / kg. The medium may be a liquid medium or a solid medium, but it is preferable to use a liquid medium because cells can easily grow.
(培養条件)
本態様の方法は、単細胞性紅藻細胞を、浸透圧調整剤を80mM以上含有する培地で培養する工程を含む。前記培養における培養条件は、特に限定されず、単細胞性紅藻の培養条件として通常用いられる条件を使用することができる。培養条件としては、例えば、pH1~8、温度10~50℃、及びCO2濃度0.3~3%等が挙げられる。光条件は、従属栄養的に培養する場合、暗所であってもよい。独立栄養的に培養する場合、光条件は、例えば、5~2000μmol/m2sが挙げられる。
培養条件は、上記例示したものに限定されず、単細胞性紅藻の種類に応じて適宜選択可能である。例えば、単細胞性紅藻がイデユコゴメ綱である場合、pH条件としては、pH1.0~6.0が挙げられ、pH1.0~5.0が好ましく、pH1.0~3.0がより好ましい。温度条件としては、15~50℃が挙げられ、30~50℃が好ましく、35~50℃がより好ましい。光強度としては、5~2000μmol/m2sが挙げられ、5~1500μmol/m2sが好ましい。連続光で培養してもよく、明暗周期(10L:14Dなど)を設けてもよい。また、従属栄養的に培養する場合には、暗所で培養することもできる。 (Culture conditions)
The method of this embodiment comprises culturing unicellular red algae cells in a medium containing 80 mM or more of an osmotic pressure regulator. The culture conditions in the above culture are not particularly limited, and conditions usually used as culture conditions for unicellular red algae can be used. Examples of the culture conditions include pH 1 to 8, temperature 10 to 50 ° C., CO 2 concentration 0.3 to 3%, and the like. Light conditions may be dark when heterotrophic culturing. In the case of autotrophic culture, the light conditions include, for example, 5 to 2000 μmol / m 2 s.
The culture conditions are not limited to those exemplified above, and can be appropriately selected depending on the type of unicellular red algae. For example, when the unicellular red alga is Cyanidiophyceae, the pH conditions include pH 1.0 to 6.0, preferably pH 1.0 to 5.0, and more preferably pH 1.0 to 3.0. Examples of the temperature condition include 15 to 50 ° C, preferably 30 to 50 ° C, and more preferably 35 to 50 ° C. Examples of the light intensity include 5 to 2000 μmol / m 2 s, and 5 to 1500 μmol / m 2 s is preferable. It may be cultured with continuous light, or a light-dark cycle (10L: 14D, etc.) may be provided. In addition, in the case of heterotrophic culture, it can also be cultured in a dark place.
本態様の方法は、単細胞性紅藻細胞を、浸透圧調整剤を80mM以上含有する培地で培養する工程を含む。前記培養における培養条件は、特に限定されず、単細胞性紅藻の培養条件として通常用いられる条件を使用することができる。培養条件としては、例えば、pH1~8、温度10~50℃、及びCO2濃度0.3~3%等が挙げられる。光条件は、従属栄養的に培養する場合、暗所であってもよい。独立栄養的に培養する場合、光条件は、例えば、5~2000μmol/m2sが挙げられる。
培養条件は、上記例示したものに限定されず、単細胞性紅藻の種類に応じて適宜選択可能である。例えば、単細胞性紅藻がイデユコゴメ綱である場合、pH条件としては、pH1.0~6.0が挙げられ、pH1.0~5.0が好ましく、pH1.0~3.0がより好ましい。温度条件としては、15~50℃が挙げられ、30~50℃が好ましく、35~50℃がより好ましい。光強度としては、5~2000μmol/m2sが挙げられ、5~1500μmol/m2sが好ましい。連続光で培養してもよく、明暗周期(10L:14Dなど)を設けてもよい。また、従属栄養的に培養する場合には、暗所で培養することもできる。 (Culture conditions)
The method of this embodiment comprises culturing unicellular red algae cells in a medium containing 80 mM or more of an osmotic pressure regulator. The culture conditions in the above culture are not particularly limited, and conditions usually used as culture conditions for unicellular red algae can be used. Examples of the culture conditions include pH 1 to 8, temperature 10 to 50 ° C., CO 2 concentration 0.3 to 3%, and the like. Light conditions may be dark when heterotrophic culturing. In the case of autotrophic culture, the light conditions include, for example, 5 to 2000 μmol / m 2 s.
The culture conditions are not limited to those exemplified above, and can be appropriately selected depending on the type of unicellular red algae. For example, when the unicellular red alga is Cyanidiophyceae, the pH conditions include pH 1.0 to 6.0, preferably pH 1.0 to 5.0, and more preferably pH 1.0 to 3.0. Examples of the temperature condition include 15 to 50 ° C, preferably 30 to 50 ° C, and more preferably 35 to 50 ° C. Examples of the light intensity include 5 to 2000 μmol / m 2 s, and 5 to 1500 μmol / m 2 s is preferable. It may be cultured with continuous light, or a light-dark cycle (10L: 14D, etc.) may be provided. In addition, in the case of heterotrophic culture, it can also be cultured in a dark place.
培養期間は、特に限定されない。培養開始時に用いる単細胞性紅藻細胞が倍数体(例えば、2倍体)である場合、少なくとも1倍体の細胞が生じるまで培養する。本態様の方法では、浸透圧調整剤を80mM以上含有する培地を用いることにより、1倍体の細胞を短期間で生じさせることができる。倍数体から1倍体を作出する場合、培養期間としては、例えば、5日以上が好ましく、10日以上がより好ましく、14日又は15日以上がさらに好ましい。本態様の方法では、培養中に生じた1倍体の細胞は、1倍体の細胞が安定して維持される。そのため、培養期間の上限は特に限定されない。
培養開始時に用いる単細胞性紅藻細胞が1倍体である場合、培養期間は特に限定されない。本態様の方法では、1倍体の細胞が安定して維持されるため、1倍体を維持する必要がある期間、培養を継続すればよい。 The culture period is not particularly limited. When the unicellular red algae cells used at the start of culture are polyploid (for example, diploid), the cells are cultured until at least monoploid cells are generated. In the method of this embodiment, haploid cells can be generated in a short period of time by using a medium containing 80 mM or more of an osmotic pressure regulator. When producing a haploid from a polyploid, for example, the culture period is preferably 5 days or longer, more preferably 10 days or longer, still more preferably 14 days or 15 days or longer. In the method of this embodiment, the haploid cells generated during the culture are stably maintained. Therefore, the upper limit of the culture period is not particularly limited.
When the unicellular red algae cells used at the start of culture are haploid, the culture period is not particularly limited. In the method of this embodiment, since the haploid cells are stably maintained, the culture may be continued for a period in which the haploids need to be maintained.
培養開始時に用いる単細胞性紅藻細胞が1倍体である場合、培養期間は特に限定されない。本態様の方法では、1倍体の細胞が安定して維持されるため、1倍体を維持する必要がある期間、培養を継続すればよい。 The culture period is not particularly limited. When the unicellular red algae cells used at the start of culture are polyploid (for example, diploid), the cells are cultured until at least monoploid cells are generated. In the method of this embodiment, haploid cells can be generated in a short period of time by using a medium containing 80 mM or more of an osmotic pressure regulator. When producing a haploid from a polyploid, for example, the culture period is preferably 5 days or longer, more preferably 10 days or longer, still more preferably 14 days or 15 days or longer. In the method of this embodiment, the haploid cells generated during the culture are stably maintained. Therefore, the upper limit of the culture period is not particularly limited.
When the unicellular red algae cells used at the start of culture are haploid, the culture period is not particularly limited. In the method of this embodiment, since the haploid cells are stably maintained, the culture may be continued for a period in which the haploids need to be maintained.
培養期間中、単細胞性紅藻細胞は、適宜継代してもよい。本態様の方法では、同じ培地で2週間以上安定して1倍体を維持できる。そのため、継代の間隔は、2週間以上とすることができる。例えば、1カ月~3カ月に1回の間隔で1倍体の単細胞性紅藻細胞を継代することにより、より安定に1倍体の細胞を維持することができる。継代の間隔は、1カ月~1.5カ月が好ましい。1倍体の細胞を増殖させる場合には、増殖効率を上げるために、より短い間隔で継代を行ってもよい。例えば、増殖のための継代の間隔としては、14日~60日が好ましく、14日~42日がより好ましい。
During the culture period, unicellular red algae cells may be subcultured as appropriate. In the method of this embodiment, the haploid can be stably maintained for 2 weeks or more in the same medium. Therefore, the interval between passages can be two weeks or more. For example, by subculturing haploid unicellular red algae cells at intervals of once every 1 to 3 months, haploid cells can be maintained more stably. The passage interval is preferably 1 to 1.5 months. When growing haploid cells, passage may be performed at shorter intervals in order to increase the growth efficiency. For example, the passage interval for proliferation is preferably 14 to 60 days, more preferably 14 to 42 days.
(1倍体の確認方法)
本態様の方法では、倍数体の単細胞性紅藻細胞から1倍体の細胞を作出することができ、さらに、1倍体の細胞を2週間以上安定に維持することができる。単細胞性紅藻細胞が1倍体であることの確認方法は、特に限定されず、公知の方法を用いることができる。 (How to check haploid)
In the method of this embodiment, haploid cells can be produced from polyploid unicellular red algae cells, and haploid cells can be stably maintained for 2 weeks or more. The method for confirming that the unicellular red algae cells are haploid is not particularly limited, and a known method can be used.
本態様の方法では、倍数体の単細胞性紅藻細胞から1倍体の細胞を作出することができ、さらに、1倍体の細胞を2週間以上安定に維持することができる。単細胞性紅藻細胞が1倍体であることの確認方法は、特に限定されず、公知の方法を用いることができる。 (How to check haploid)
In the method of this embodiment, haploid cells can be produced from polyploid unicellular red algae cells, and haploid cells can be stably maintained for 2 weeks or more. The method for confirming that the unicellular red algae cells are haploid is not particularly limited, and a known method can be used.
例えば、1倍体であることの判定は、同一遺伝子座のコピー数を確認することにより行うことができる。すなわち、同一遺伝子座のコピー数が1であれば、1倍体であると判定される。
また、1倍体であることの判定には、次世代シーケンサーを用いることもできる。例えば、次世代シーケンサーで全ゲノムのシーケンスリードを取得し、それらのシーケンスリードをアセンブルした後、アセンブルして得られた配列に対して、シーケンスリードをマッピングする。2倍体ではアレルごとの塩基の違いがゲノム上の様々な領域で見つかるが、1倍体では1アレルしか存在しないため、その様な領域は見つからない。
また、細胞がホモ2倍体である場合には、細胞のDNA含量を測定することにより、1倍体であるか、2倍体であるかを判定することができる。1倍体の細胞のDNA含有量は、2倍体の細胞のDNA含有量の1/2倍である。 For example, the determination of haploid can be made by confirming the number of copies of the same locus. That is, if the number of copies of the same locus is 1, it is determined to be haploid.
A next-generation sequencer can also be used to determine that it is haploid. For example, sequence reads of the entire genome are acquired by a next-generation sequencer, the sequence reads are assembled, and then the sequence reads are mapped to the sequence obtained by assembling. In diploid, differences in bases for each allele can be found in various regions on the genome, but in diploid, only one allele exists, so such a region cannot be found.
When the cell is homodiploid, it can be determined whether the cell is diploid or diploid by measuring the DNA content of the cell. The DNA content of haploid cells is ½ of the DNA content of diploid cells.
また、1倍体であることの判定には、次世代シーケンサーを用いることもできる。例えば、次世代シーケンサーで全ゲノムのシーケンスリードを取得し、それらのシーケンスリードをアセンブルした後、アセンブルして得られた配列に対して、シーケンスリードをマッピングする。2倍体ではアレルごとの塩基の違いがゲノム上の様々な領域で見つかるが、1倍体では1アレルしか存在しないため、その様な領域は見つからない。
また、細胞がホモ2倍体である場合には、細胞のDNA含量を測定することにより、1倍体であるか、2倍体であるかを判定することができる。1倍体の細胞のDNA含有量は、2倍体の細胞のDNA含有量の1/2倍である。 For example, the determination of haploid can be made by confirming the number of copies of the same locus. That is, if the number of copies of the same locus is 1, it is determined to be haploid.
A next-generation sequencer can also be used to determine that it is haploid. For example, sequence reads of the entire genome are acquired by a next-generation sequencer, the sequence reads are assembled, and then the sequence reads are mapped to the sequence obtained by assembling. In diploid, differences in bases for each allele can be found in various regions on the genome, but in diploid, only one allele exists, so such a region cannot be found.
When the cell is homodiploid, it can be determined whether the cell is diploid or diploid by measuring the DNA content of the cell. The DNA content of haploid cells is ½ of the DNA content of diploid cells.
また、1倍体の細胞が強固な細胞壁を有さず、2倍体の細胞が強固な細胞壁を有する単細胞性紅藻細胞(例えば、イデユコゴメ綱)である場合、細胞の形態を観察することにより、1倍体の細胞を見分けることができる。例えば、1倍体の細胞は、光学顕微鏡による観察(例えば、倍率600倍)において、通常、細胞壁が観察されない。そのため、光学顕微鏡により細胞壁が観察されない場合、1倍体の細胞であると判定することができる。
また、前記のような単細胞性紅藻細胞の1倍体の細胞は、強固な細胞壁を有さないため、比較的温和な処理(中和処理、低張処理、凍結融解処理、界面活性剤処理など)により、細胞を破壊することができる。例えば、2質量%の界面活性剤を含む培地に細胞を懸濁し、界面活性剤の添加後すぐ~5分経過後に細胞が崩壊した場合には、1倍体の細胞であると判定することができる。前記界面活性剤としては、ドデシル硫酸ナトリウムが挙げられる。より具体的には、単細胞性紅藻細胞の藻類の培養培地に、2質量%となるようにドデシル硫酸ナトリウムを添加し、添加後5分以内に細胞が崩壊した場合には、1倍体であると判定することができる。細胞が崩壊したか否かは、光学顕微鏡で細胞を観察することにより確認することができる。
また、固体培地で培養している場合、コロニーの形状により1倍体の細胞であるかを判定することもできる。1倍体の細胞は、強固な細胞壁を有さないため、2倍体の細胞のコロニーと比較して、扁平で、固体培地の表面に広がる形状となる。固体培地上で、このような形状のコロニーが出現した場合には、1倍体のコロニーであると判定することができる。 In addition, when the diploid cell does not have a strong cell wall and the diploid cell is a single-celled red alga cell (for example, Ideyukogome class) having a strong cell wall, by observing the cell morphology. You can distinguish haploid cells. For example, in haploid cells, the cell wall is usually not observed when observed with an optical microscope (for example, at a magnification of 600 times). Therefore, if the cell wall is not observed by an optical microscope, it can be determined that the cell is a haploid cell.
Further, since the haploid cells of the unicellular red algae cells as described above do not have a strong cell wall, they are treated relatively mildly (neutralization treatment, hypotonic treatment, freeze-thaw treatment, surfactant treatment). Etc.) can destroy cells. For example, if cells are suspended in a medium containing 2% by mass of a surfactant and the cells disintegrate immediately to 5 minutes after the addition of the surfactant, it can be determined that the cells are haploid. can. Examples of the surfactant include sodium dodecyl sulfate. More specifically, sodium dodecyl sulfate is added to the culture medium of algae of unicellular red algae so as to be 2% by mass, and if the cells are disrupted within 5 minutes after the addition, the cells are diploid. It can be determined that there is. Whether or not the cells have collapsed can be confirmed by observing the cells with an optical microscope.
In addition, when culturing in a solid medium, it is possible to determine whether the cells are haploid cells based on the shape of the colonies. Since haploid cells do not have a strong cell wall, they are flatter and have a shape that spreads on the surface of a solid medium as compared with a colony of diploid cells. When a colony having such a shape appears on a solid medium, it can be determined to be a haploid colony.
また、前記のような単細胞性紅藻細胞の1倍体の細胞は、強固な細胞壁を有さないため、比較的温和な処理(中和処理、低張処理、凍結融解処理、界面活性剤処理など)により、細胞を破壊することができる。例えば、2質量%の界面活性剤を含む培地に細胞を懸濁し、界面活性剤の添加後すぐ~5分経過後に細胞が崩壊した場合には、1倍体の細胞であると判定することができる。前記界面活性剤としては、ドデシル硫酸ナトリウムが挙げられる。より具体的には、単細胞性紅藻細胞の藻類の培養培地に、2質量%となるようにドデシル硫酸ナトリウムを添加し、添加後5分以内に細胞が崩壊した場合には、1倍体であると判定することができる。細胞が崩壊したか否かは、光学顕微鏡で細胞を観察することにより確認することができる。
また、固体培地で培養している場合、コロニーの形状により1倍体の細胞であるかを判定することもできる。1倍体の細胞は、強固な細胞壁を有さないため、2倍体の細胞のコロニーと比較して、扁平で、固体培地の表面に広がる形状となる。固体培地上で、このような形状のコロニーが出現した場合には、1倍体のコロニーであると判定することができる。 In addition, when the diploid cell does not have a strong cell wall and the diploid cell is a single-celled red alga cell (for example, Ideyukogome class) having a strong cell wall, by observing the cell morphology. You can distinguish haploid cells. For example, in haploid cells, the cell wall is usually not observed when observed with an optical microscope (for example, at a magnification of 600 times). Therefore, if the cell wall is not observed by an optical microscope, it can be determined that the cell is a haploid cell.
Further, since the haploid cells of the unicellular red algae cells as described above do not have a strong cell wall, they are treated relatively mildly (neutralization treatment, hypotonic treatment, freeze-thaw treatment, surfactant treatment). Etc.) can destroy cells. For example, if cells are suspended in a medium containing 2% by mass of a surfactant and the cells disintegrate immediately to 5 minutes after the addition of the surfactant, it can be determined that the cells are haploid. can. Examples of the surfactant include sodium dodecyl sulfate. More specifically, sodium dodecyl sulfate is added to the culture medium of algae of unicellular red algae so as to be 2% by mass, and if the cells are disrupted within 5 minutes after the addition, the cells are diploid. It can be determined that there is. Whether or not the cells have collapsed can be confirmed by observing the cells with an optical microscope.
In addition, when culturing in a solid medium, it is possible to determine whether the cells are haploid cells based on the shape of the colonies. Since haploid cells do not have a strong cell wall, they are flatter and have a shape that spreads on the surface of a solid medium as compared with a colony of diploid cells. When a colony having such a shape appears on a solid medium, it can be determined to be a haploid colony.
本態様の方法によれば、倍数体の単細胞性紅藻から1倍体単細胞性紅藻を作出できるとともに、1倍体単細胞性紅藻を安定して維持することができる。また、1倍体のまま、1倍体単細胞性紅藻を増殖させることができる。
単細胞性紅藻の1倍体を通常の培地で培養した場合、倍数体(例えば2倍体)に回帰する細胞が出現し、倍数体の細胞が増殖してくる。そのため、5日程度の間隔で1倍体の細胞を選択して継代を繰り返す必要がある。一方、本態様の方法によれば、倍数体に回帰する細胞の出現を抑制して、継代を行わなくても、1倍体の細胞を、2週間を超えて(好ましくは1カ月以上)維持することができる。 According to the method of this embodiment, a ploidy single-celled red alga can be produced from a polyploid single-celled red alga, and a monoploid single-celled red alga can be stably maintained. In addition, monoploid unicellular red algae can be grown as they are.
When the monoploid monoploid of a single-celled red alga is cultured in a normal medium, cells that return to the polyploid (for example, diploid) appear, and the polyploid cells proliferate. Therefore, it is necessary to select haploid cells at intervals of about 5 days and repeat the passage. On the other hand, according to the method of this embodiment, the appearance of cells regressing to polyploid is suppressed, and monoploid cells are allowed to grow for more than 2 weeks (preferably 1 month or more) without subculture. Can be maintained.
単細胞性紅藻の1倍体を通常の培地で培養した場合、倍数体(例えば2倍体)に回帰する細胞が出現し、倍数体の細胞が増殖してくる。そのため、5日程度の間隔で1倍体の細胞を選択して継代を繰り返す必要がある。一方、本態様の方法によれば、倍数体に回帰する細胞の出現を抑制して、継代を行わなくても、1倍体の細胞を、2週間を超えて(好ましくは1カ月以上)維持することができる。 According to the method of this embodiment, a ploidy single-celled red alga can be produced from a polyploid single-celled red alga, and a monoploid single-celled red alga can be stably maintained. In addition, monoploid unicellular red algae can be grown as they are.
When the monoploid monoploid of a single-celled red alga is cultured in a normal medium, cells that return to the polyploid (for example, diploid) appear, and the polyploid cells proliferate. Therefore, it is necessary to select haploid cells at intervals of about 5 days and repeat the passage. On the other hand, according to the method of this embodiment, the appearance of cells regressing to polyploid is suppressed, and monoploid cells are allowed to grow for more than 2 weeks (preferably 1 month or more) without subculture. Can be maintained.
本態様の方法で作出、維持又は増殖された1倍体単細胞性紅藻は、ゲノムを1セットしか有しないため、遺伝子改変を容易に行うことができる。したがって、本態様の方法は、遺伝子改変用の単細胞性紅藻を製造するために好適に用いることができる。
Since the haploid unicellular red alga produced, maintained or propagated by the method of this embodiment has only one set of genomes, gene modification can be easily performed. Therefore, the method of this embodiment can be suitably used for producing unicellular red algae for gene modification.
<1倍体単細胞性紅藻用培地>
本発明の第2の態様は、浸透圧調整剤を80mM以上含有する、1倍体単細胞性紅藻用培地である。 <Medium for monoploid unicellular red algae>
A second aspect of the present invention is a medium for monoploid unicellular red algae containing 80 mM or more of an osmotic pressure regulator.
本発明の第2の態様は、浸透圧調整剤を80mM以上含有する、1倍体単細胞性紅藻用培地である。 <Medium for monoploid unicellular red algae>
A second aspect of the present invention is a medium for monoploid unicellular red algae containing 80 mM or more of an osmotic pressure regulator.
本態様の培地は、上記「<1倍体単細胞性紅藻の製造方法>」で説明したものと同様である。本態様の培地は、倍数体(例えば、2倍体)の単細胞性紅藻細胞から1倍体の単細胞性紅藻細胞を作出するために用いることができる。また、1倍体の単細胞性紅藻細胞を、1倍体のまま維持するために用いることができる。また、1倍体の単細胞性紅藻細胞を、増殖させるために用いることができる。
The medium of this embodiment is the same as that described in the above "<Method for producing monoploid unicellular red algae>". The medium of this embodiment can be used to produce haploid single-celled red algae cells from polyploid (eg, diploid) single-celled red algae cells. It can also be used to maintain haploid unicellular red algae cells as haploid. In addition, monoploid unicellular red algae cells can be used for proliferation.
以下、実施例により本発明を説明するが、本発明は以下の実施例に限定されるものではない。
Hereinafter, the present invention will be described with reference to Examples, but the present invention is not limited to the following Examples.
<単細胞性紅藻>
単細胞性紅藻として、Galdieria sulphuraria CCCryo127-00株(以下、「CCCryo127-00株」ともいう)を用いた。 <Unicellular red algae>
As the unicellular red alga, Galdia sulphuraria CCCryo127-00 strain (hereinafter, also referred to as "CCCryo127-00 strain") was used.
単細胞性紅藻として、Galdieria sulphuraria CCCryo127-00株(以下、「CCCryo127-00株」ともいう)を用いた。 <Unicellular red algae>
As the unicellular red alga, Galdia sulphuraria CCCryo127-00 strain (hereinafter, also referred to as "CCCryo127-00 strain") was used.
<培地>
基礎培地として、Gross培地を用いた。Gross培地の組成を表1に示す。また、Gross培地に用いるFe-EDTA Solution及びTrace Elementsの組成を、表2及び表3にそれぞれ示す。 <Medium>
Gross medium was used as the basal medium. The composition of the Gloss medium is shown in Table 1. The compositions of Fe-EDTA Solution and Trace Elements used in the Gross medium are shown in Tables 2 and 3, respectively.
基礎培地として、Gross培地を用いた。Gross培地の組成を表1に示す。また、Gross培地に用いるFe-EDTA Solution及びTrace Elementsの組成を、表2及び表3にそれぞれ示す。 <Medium>
Gross medium was used as the basal medium. The composition of the Gloss medium is shown in Table 1. The compositions of Fe-EDTA Solution and Trace Elements used in the Gross medium are shown in Tables 2 and 3, respectively.
<1倍体の確認方法>
単細胞性紅藻細胞の1倍体の細胞は、強固な細胞壁を有さない(国際公開第2019/107385号)。そのため、2質量%の界面活性剤(ドデシル硫酸ナトリウム(SDS))を含むGross培地に細胞を懸濁し、崩壊する細胞を1倍体と判断した。細胞の崩壊は、光学顕微鏡を用いた観察により確認した。光学顕微鏡による観察は、SDSの添加後すぐに行った。また、1倍体の細胞が多数を占めるコロニーは、2倍体の細胞から形成されるコロニーと比較して、扁平で、寒天培地の表面に広がる形状となる(図1参照:矢印が1倍体のコロニー。その中心部分には2倍体が一部残っている)。そこで、寒天培地上のコロニーの形態も、1倍体であるかの判断に用いた。 <How to check haploid>
The haploid cells of unicellular red algae cells do not have a strong cell wall (International Publication No. 2019/107385). Therefore, the cells were suspended in a Gloss medium containing 2% by mass of a surfactant (sodium dodecyl sulfate (SDS)), and the disintegrating cells were judged to be haploid. Cell disintegration was confirmed by observation using an optical microscope. Observation with a light microscope was performed immediately after the addition of SDS. In addition, colonies dominated by diploid cells are flatter and have a shape that spreads on the surface of the agar medium as compared with colonies formed from diploid cells (see FIG. 1: arrow is 1 times larger). Colony of the body, with some diploids remaining in its central part). Therefore, the morphology of the colonies on the agar medium was also used to determine whether the colonies were haploid.
単細胞性紅藻細胞の1倍体の細胞は、強固な細胞壁を有さない(国際公開第2019/107385号)。そのため、2質量%の界面活性剤(ドデシル硫酸ナトリウム(SDS))を含むGross培地に細胞を懸濁し、崩壊する細胞を1倍体と判断した。細胞の崩壊は、光学顕微鏡を用いた観察により確認した。光学顕微鏡による観察は、SDSの添加後すぐに行った。また、1倍体の細胞が多数を占めるコロニーは、2倍体の細胞から形成されるコロニーと比較して、扁平で、寒天培地の表面に広がる形状となる(図1参照:矢印が1倍体のコロニー。その中心部分には2倍体が一部残っている)。そこで、寒天培地上のコロニーの形態も、1倍体であるかの判断に用いた。 <How to check haploid>
The haploid cells of unicellular red algae cells do not have a strong cell wall (International Publication No. 2019/107385). Therefore, the cells were suspended in a Gloss medium containing 2% by mass of a surfactant (sodium dodecyl sulfate (SDS)), and the disintegrating cells were judged to be haploid. Cell disintegration was confirmed by observation using an optical microscope. Observation with a light microscope was performed immediately after the addition of SDS. In addition, colonies dominated by diploid cells are flatter and have a shape that spreads on the surface of the agar medium as compared with colonies formed from diploid cells (see FIG. 1: arrow is 1 times larger). Colony of the body, with some diploids remaining in its central part). Therefore, the morphology of the colonies on the agar medium was also used to determine whether the colonies were haploid.
(1)1倍体単細胞性紅藻細胞の培養
1倍体細胞の安定的な維持に、浸透圧が影響する可能性を検討するために、浸透圧調整剤としてソルビトールを用いて、培地の浸透圧を調整した。CCCryo127-00株の1倍体のコロニーから1倍体の細胞を採取し、18%ソルビトール+Gross 1.5%寒天培地に植え継いだ。その後、40℃、暗所、大気雰囲気下で1~2カ月培養した。培養期間中、1倍体のコロニーは維持されていた(図2)。この結果から、培地中の浸透圧を高くすることにより、1倍体細胞を2週間超安定して維持できることが確認された。 (1) Cultivation of primal monocellular red algae cells Permeation of medium using osmotic pressure as an osmotic pressure regulator to examine the possibility that osmotic pressure may affect the stable maintenance of primal cells. The pressure was adjusted. Ploid cells were harvested from haploid colonies of the CCCryo127-00 strain and subcultured on 18% sorbitol + Gloss 1.5% agar medium. Then, the cells were cultured at 40 ° C. in a dark place and in an atmospheric atmosphere for 1 to 2 months. During the culture period, haploid colonies were maintained (Fig. 2). From this result, it was confirmed that the haploid cells could be maintained stably for more than 2 weeks by increasing the osmotic pressure in the medium.
1倍体細胞の安定的な維持に、浸透圧が影響する可能性を検討するために、浸透圧調整剤としてソルビトールを用いて、培地の浸透圧を調整した。CCCryo127-00株の1倍体のコロニーから1倍体の細胞を採取し、18%ソルビトール+Gross 1.5%寒天培地に植え継いだ。その後、40℃、暗所、大気雰囲気下で1~2カ月培養した。培養期間中、1倍体のコロニーは維持されていた(図2)。この結果から、培地中の浸透圧を高くすることにより、1倍体細胞を2週間超安定して維持できることが確認された。 (1) Cultivation of primal monocellular red algae cells Permeation of medium using osmotic pressure as an osmotic pressure regulator to examine the possibility that osmotic pressure may affect the stable maintenance of primal cells. The pressure was adjusted. Ploid cells were harvested from haploid colonies of the CCCryo127-00 strain and subcultured on 18% sorbitol + Gloss 1.5% agar medium. Then, the cells were cultured at 40 ° C. in a dark place and in an atmospheric atmosphere for 1 to 2 months. During the culture period, haploid colonies were maintained (Fig. 2). From this result, it was confirmed that the haploid cells could be maintained stably for more than 2 weeks by increasing the osmotic pressure in the medium.
(2)1倍体の細胞を維持できる培地の検討
表4に示す浸透圧調整剤を1~50質量%となるようにGross培地又は1%グルコース+Gross培地に添加した。さらに、前記各培地に1.5質量%の寒天を添加して、1.5%寒天培地をそれぞれ作製した。これらの寒天培地に、CCCryo127-00株の1倍体を播種し、40℃、暗所、大気雰囲気下で1カ月間以上培養した。培養期間中、寒天培地上のコロニーの形態を観察し、1倍体のコロニーが維持されているかを確認した。また、コロニーの大きさに基づいて、1倍体細胞の増殖を評価した。その結果を、以下の評価基準に基づいて、表4に示した。 (2) Examination of medium capable of maintaining haploid cells The osmotic pressure adjusting agent shown in Table 4 was added to Gross medium or 1% glucose + Gross medium so as to be 1 to 50% by mass. Further, 1.5% by mass of agar was added to each of the above-mentioned media to prepare 1.5% agar media. The monopoly of CCCryo127-00 strain was inoculated on these agar media and cultured at 40 ° C. in a dark place and in an atmospheric atmosphere for 1 month or more. During the culture period, the morphology of the colonies on the agar medium was observed to confirm whether the monoploid colonies were maintained. Also, the proliferation of haploid cells was evaluated based on the size of the colonies. The results are shown in Table 4 based on the following evaluation criteria.
表4に示す浸透圧調整剤を1~50質量%となるようにGross培地又は1%グルコース+Gross培地に添加した。さらに、前記各培地に1.5質量%の寒天を添加して、1.5%寒天培地をそれぞれ作製した。これらの寒天培地に、CCCryo127-00株の1倍体を播種し、40℃、暗所、大気雰囲気下で1カ月間以上培養した。培養期間中、寒天培地上のコロニーの形態を観察し、1倍体のコロニーが維持されているかを確認した。また、コロニーの大きさに基づいて、1倍体細胞の増殖を評価した。その結果を、以下の評価基準に基づいて、表4に示した。 (2) Examination of medium capable of maintaining haploid cells The osmotic pressure adjusting agent shown in Table 4 was added to Gross medium or 1% glucose + Gross medium so as to be 1 to 50% by mass. Further, 1.5% by mass of agar was added to each of the above-mentioned media to prepare 1.5% agar media. The monopoly of CCCryo127-00 strain was inoculated on these agar media and cultured at 40 ° C. in a dark place and in an atmospheric atmosphere for 1 month or more. During the culture period, the morphology of the colonies on the agar medium was observed to confirm whether the monoploid colonies were maintained. Also, the proliferation of haploid cells was evaluated based on the size of the colonies. The results are shown in Table 4 based on the following evaluation criteria.
<評価基準>
A:1倍体の維持期間が1カ月以上
B:1倍体の維持期間が2週間超1カ月未満
C:1倍体の維持期間が2週間以内
N:増殖しない
D:培養できない(死滅)
-:未実施 <Evaluation criteria>
A: The maintenance period of 1-ploid is 1 month or more B: The maintenance period of 1-ploid is more than 2 weeks and less than 1 month C: The maintenance period of 1-ploid is within 2 weeks N: Does not grow D: Cannot be cultured (dead)
-: Not implemented
A:1倍体の維持期間が1カ月以上
B:1倍体の維持期間が2週間超1カ月未満
C:1倍体の維持期間が2週間以内
N:増殖しない
D:培養できない(死滅)
-:未実施 <Evaluation criteria>
A: The maintenance period of 1-ploid is 1 month or more B: The maintenance period of 1-ploid is more than 2 weeks and less than 1 month C: The maintenance period of 1-ploid is within 2 weeks N: Does not grow D: Cannot be cultured (dead)
-: Not implemented
1倍体のコロニーが維持されている例を図3に示す。図3は、18%ソルビトール+Gross 1.5%寒天培地で、1カ月間培養したプレートである。
2倍体のコロニーに回帰した例を図4に示す。図4は、1%ソルビトール+Gross 1.5%寒天培地で、2週間培養したプレートである。
1倍体のコロニーが増殖した例を図5に示す。図5は、18%ソルビトール+Gross 1.5%寒天培地で培養したプレートである。左の写真は培養開始時のプレートであり、右の写真は培養3週間後のプレートである。 An example in which a haploid colony is maintained is shown in FIG. FIG. 3 is a plate cultured for 1 month in 18% sorbitol + Gloss 1.5% agar medium.
An example of returning to a diploid colony is shown in FIG. FIG. 4 is a plate cultured in 1% sorbitol + Gloss 1.5% agar medium for 2 weeks.
An example in which a haploid colony proliferates is shown in FIG. FIG. 5 is a plate cultured on 18% sorbitol + Gloss 1.5% agar medium. The photo on the left is the plate at the start of culture, and the photo on the right is the plate after 3 weeks of culture.
2倍体のコロニーに回帰した例を図4に示す。図4は、1%ソルビトール+Gross 1.5%寒天培地で、2週間培養したプレートである。
1倍体のコロニーが増殖した例を図5に示す。図5は、18%ソルビトール+Gross 1.5%寒天培地で培養したプレートである。左の写真は培養開始時のプレートであり、右の写真は培養3週間後のプレートである。 An example in which a haploid colony is maintained is shown in FIG. FIG. 3 is a plate cultured for 1 month in 18% sorbitol + Gloss 1.5% agar medium.
An example of returning to a diploid colony is shown in FIG. FIG. 4 is a plate cultured in 1% sorbitol + Gloss 1.5% agar medium for 2 weeks.
An example in which a haploid colony proliferates is shown in FIG. FIG. 5 is a plate cultured on 18% sorbitol + Gloss 1.5% agar medium. The photo on the left is the plate at the start of culture, and the photo on the right is the plate after 3 weeks of culture.
表4中、「Gross」はGross培地を示し、「1%Glc+Gross」は1%グルコースGross培地を示す。()内の数値は浸透圧調整剤のモル濃度を表す。
In Table 4, "Gross" indicates a Gloss medium, and "1% Glc + Gloss" indicates a 1% glucose Gloss medium. The values in parentheses indicate the molar concentration of the osmotic pressure regulator.
表4に示す各培地について、寒天添加前の培地の浸透圧を測定した結果を表5に示す。培地の浸透圧は、浸透圧計(製品名:自動浸透圧分析装置オズモステーションOM-6060、メーカー:アークレイ株式会社)で測定した。表5中、[]内の数値は浸透圧(mOsm/kg)を示す。
Table 5 shows the results of measuring the osmotic pressure of the medium before the addition of agar for each medium shown in Table 4. The osmotic pressure of the medium was measured with an osmotic meter (product name: automatic osmotic pressure analyzer Ozmo Station OM-6060, manufacturer: Arcley Co., Ltd.). In Table 5, the values in [] indicate the osmotic pressure (mOsm / kg).
表4の結果より、浸透圧調整剤を約80mM以上添加した培地では、2週間超で1倍体の細胞を維持できることが確認された。浸透圧調整剤の濃度が高くなると、増殖が遅くなる傾向があるが、浸透圧調整剤を溶解度の上限まで添加した場合でも、概ね、2週間を超えて1倍体の細胞を維持できた。増殖速度を考慮すると、浸透圧調整剤の濃度の上限値は、1.5M程度が適切であると考えられた。
From the results in Table 4, it was confirmed that haploid cells could be maintained in more than 2 weeks in a medium supplemented with an osmotic pressure regulator of about 80 mM or more. When the concentration of the osmotic pressure regulator was high, the growth tended to be slowed down, but even when the osmotic pressure regulator was added up to the upper limit of the solubility, haploid cells could be maintained for generally more than 2 weeks. Considering the growth rate, it was considered appropriate that the upper limit of the concentration of the osmotic pressure regulator was about 1.5 M.
表5の結果より、浸透圧が約150mOsm/kg以上である培地では、2週間を超えて1倍体の細胞を維持できることが確認された。浸透圧が高くなると、増殖が遅くなる傾向があったが、浸透圧が高い場合でも、概ね、1カ月以上1倍体の細胞を維持できた。増殖速度を考慮すると、培地の浸透圧の上限値は、1500Osm/kg程度が適切であると考えられた。
From the results in Table 5, it was confirmed that haploid cells can be maintained for more than 2 weeks in a medium having an osmotic pressure of about 150 mOsm / kg or more. When the osmotic pressure was high, the proliferation tended to be slow, but even when the osmotic pressure was high, haploid cells could be maintained for about one month or more. Considering the growth rate, it was considered appropriate that the upper limit of the osmotic pressure of the medium was about 1500 Osm / kg.
(3)(2)で検討した培地による1倍体単細胞性紅藻細胞の作出
CCCryo127-00株の2倍体細胞を、18%ソルビトール+Gross 1.5%寒天培地に播種した。その後、40℃、暗所、大気雰囲気下で培養した。培養期間中、1倍体のコロニーが出現するかを確認した。
その結果、2週間程度で、1倍体のコロニーが出現した(図6、矢印が1倍体のコロニー)。1倍体のコロニーから細胞を採取し、18%ソルビトール+Gross 1.5%寒天培地に植え継いだ。植え継いだ培地でも、1カ月以上1倍体のコロニーが維持できることが確認された(図6)。 (3) Production of monoploid single-celled red algae cells by the medium examined in (2) The diploid cells of the CCCryo127-00 strain were seeded on 18% sorbitol + Gross 1.5% agar medium. Then, the cells were cultured at 40 ° C. in a dark place and in an atmospheric atmosphere. It was confirmed whether monoploid colonies appeared during the culture period.
As a result, haploid colonies appeared in about 2 weeks (Fig. 6, arrows are haploid colonies). Cells were harvested from haploid colonies and subcultured on 18% sorbitol + Gross 1.5% agar medium. It was confirmed that haploid colonies could be maintained for more than 1 month even in the subcultured medium (Fig. 6).
CCCryo127-00株の2倍体細胞を、18%ソルビトール+Gross 1.5%寒天培地に播種した。その後、40℃、暗所、大気雰囲気下で培養した。培養期間中、1倍体のコロニーが出現するかを確認した。
その結果、2週間程度で、1倍体のコロニーが出現した(図6、矢印が1倍体のコロニー)。1倍体のコロニーから細胞を採取し、18%ソルビトール+Gross 1.5%寒天培地に植え継いだ。植え継いだ培地でも、1カ月以上1倍体のコロニーが維持できることが確認された(図6)。 (3) Production of monoploid single-celled red algae cells by the medium examined in (2) The diploid cells of the CCCryo127-00 strain were seeded on 18% sorbitol + Gross 1.5% agar medium. Then, the cells were cultured at 40 ° C. in a dark place and in an atmospheric atmosphere. It was confirmed whether monoploid colonies appeared during the culture period.
As a result, haploid colonies appeared in about 2 weeks (Fig. 6, arrows are haploid colonies). Cells were harvested from haploid colonies and subcultured on 18% sorbitol + Gross 1.5% agar medium. It was confirmed that haploid colonies could be maintained for more than 1 month even in the subcultured medium (Fig. 6).
この結果から、(2)で検討した培地を用いることにより、2倍体の細胞から1倍体の細胞を効率よく作出できることが示された。
From this result, it was shown that haploid cells can be efficiently produced from diploid cells by using the medium examined in (2).
(4)(2)で検討した培地による液体培養
CCCryo127-00株の1倍体細胞を、18%ソルビトール+Gross液体培地に播種した。その後、40℃、暗所、大気雰囲気下で培養した。その結果、1倍体の細胞を維持したまま良好に増殖することが確認された(図7)。 (4) Liquid culture with the medium examined in (2) The haploid cells of the CCCryo127-00 strain were seeded in 18% sorbitol + Gross liquid medium. Then, the cells were cultured at 40 ° C. in a dark place and in an atmospheric atmosphere. As a result, it was confirmed that the cells proliferate well while maintaining the haploid cells (Fig. 7).
CCCryo127-00株の1倍体細胞を、18%ソルビトール+Gross液体培地に播種した。その後、40℃、暗所、大気雰囲気下で培養した。その結果、1倍体の細胞を維持したまま良好に増殖することが確認された(図7)。 (4) Liquid culture with the medium examined in (2) The haploid cells of the CCCryo127-00 strain were seeded in 18% sorbitol + Gross liquid medium. Then, the cells were cultured at 40 ° C. in a dark place and in an atmospheric atmosphere. As a result, it was confirmed that the cells proliferate well while maintaining the haploid cells (Fig. 7).
以上、本発明の好ましい実施形態を説明および図示してきたが、これらは本発明を例示するものであり、限定的なものとみなされるべきではないことを理解すべきである。本発明の精神または範囲から逸脱することなく、追加、省略、置換、およびその他の変更を行うことができる。したがって、本発明は、前述の説明によって限定されるものとはみなされず、添付の請求項の範囲によってのみ限定される。
Although the preferred embodiments of the present invention have been described and illustrated above, it should be understood that these are illustrative of the present invention and should not be regarded as limiting. Additions, omissions, replacements, and other modifications may be made without departing from the spirit or scope of the invention. Therefore, the present invention is not considered to be limited by the above description, but only by the scope of the appended claims.
Claims (15)
- 単細胞性紅藻細胞を、浸透圧調整剤を80mM以上含有する培地中で培養することを含む、1倍体単細胞性紅藻の製造方法。 A method for producing unicellular single-celled red algae, which comprises culturing single-celled red algae cells in a medium containing an osmotic pressure regulator of 80 mM or more.
- 単細胞性紅藻細胞を、浸透圧が150mOsm/kg以上である培地中で培養することを含む、1倍体単細胞性紅藻の製造方法。 A method for producing unicellular single-celled red algae, which comprises culturing single-celled red algae cells in a medium having an osmotic pressure of 150 mOsm / kg or more.
- 浸透圧調整剤が、糖、糖アルコール、及びアミノ酸からなる群より選択される少なくとも一種である、請求項1又は2に記載の1倍体単細胞性紅藻の製造方法。 The method for producing a monoploid single-celled red alga according to claim 1 or 2, wherein the osmotic pressure adjusting agent is at least one selected from the group consisting of sugar, sugar alcohol, and amino acid.
- 前記単細胞性紅藻細胞が、倍数体の細胞である、請求項1~3のいずれか一項に記載の1倍体単細胞性紅藻の製造方法。 The method for producing a unicellular single-celled red alga according to any one of claims 1 to 3, wherein the single-celled red alga is a polyploid cell.
- 前記単細胞性紅藻細胞が、2倍体の細胞である、請求項4に記載の1倍体単細胞性紅藻の製造方法。 The method for producing a unicellular single-celled red alga according to claim 4, wherein the unicellular red alga is a diploid cell.
- 前記単細胞性紅藻細胞が、1倍体の細胞である、請求項1~3のいずれか一項に記載の1倍体単細胞性紅藻の製造方法。 The method for producing a unicellular single-celled red alga according to any one of claims 1 to 3, wherein the single-celled red alga is a monoploid cell.
- 1倍体の単細胞性紅藻細胞を、1倍体のまま維持する方法である、請求項6に記載の1倍体単細胞性紅藻の製造方法。 The method for producing unicellular unicellular red algae according to claim 6, which is a method for maintaining unicellular red algae cells as haploid.
- 1倍体の単細胞性紅藻細胞を、増殖させる方法である、請求項6に記載の1倍体単細胞性紅藻の製造方法。 The method for producing a unicellular unicellular red alga according to claim 6, which is a method for growing unicellular unicellular red algae cells.
- 浸透圧調整剤を80mM以上含有する、1倍体単細胞性紅藻用培地。 Medium for monoploid unicellular red algae containing 80 mM or more of an osmotic pressure regulator.
- 浸透圧が150mOsm/kg以上である、1倍体単細胞性紅藻用培地。 Medium for monoploid unicellular red algae having an osmotic pressure of 150 mOsm / kg or more.
- 浸透圧調整剤が、糖、糖アルコール、及びアミノ酸からなる群より選択される少なくとも一種である、請求項9又は10に記載の1倍体単細胞性紅藻用培地。 The medium for single-cell single-celled red algae according to claim 9 or 10, wherein the osmotic pressure adjusting agent is at least one selected from the group consisting of sugar, sugar alcohol, and amino acid.
- 倍数体の単細胞性紅藻細胞から1倍体の単細胞性紅藻細胞を作出するために用いられる、請求項9~11のいずれか一項に記載の1倍体単細胞性紅藻用培地。 The medium for monoploid single-celled red algae according to any one of claims 9 to 11, which is used for producing monoploid single-celled red algae cells from polyploid single-celled red algae cells.
- 前記倍数体の単細胞性紅藻細胞が、2倍体の単細胞性紅藻細胞である、請求項12に記載の1倍体単細胞性紅藻用培地。 The medium for monoploid single-celled red algae according to claim 12, wherein the polyploid single-celled red algae cell is a diploid single-celled red algae cell.
- 1倍体の単細胞性紅藻細胞を、1倍体のまま維持するために用いられる、請求項9~11のいずれか一項に記載の1倍体単細胞性紅藻用培地。 The medium for haploid unicellular red algae according to any one of claims 9 to 11, which is used to maintain haploid unicellular red algae cells as haploid.
- 1倍体の単細胞性紅藻細胞を、増殖させるために用いられる、請求項9~11のいずれか一項に記載の1倍体単細胞性紅藻用培地。 The medium for monoploid unicellular red algae according to any one of claims 9 to 11, which is used for proliferating monoploid unicellular red algae cells.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022527680A JPWO2022045110A1 (en) | 2020-08-24 | 2021-08-24 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020141201 | 2020-08-24 | ||
JP2020-141201 | 2020-08-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022045110A1 true WO2022045110A1 (en) | 2022-03-03 |
Family
ID=80353320
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/030937 WO2022045110A1 (en) | 2020-08-24 | 2021-08-24 | Method of producing monoploid unicellular red alga, and culture medium for monoploid unicellular red alga |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2022045110A1 (en) |
WO (1) | WO2022045110A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018529343A (en) * | 2015-09-25 | 2018-10-11 | フェルメンタル | A novel method for culturing unicellular red algae |
WO2019107385A1 (en) * | 2017-11-28 | 2019-06-06 | 国立研究開発法人科学技術振興機構 | Novel microalgae and use for same |
WO2020071444A1 (en) * | 2018-10-02 | 2020-04-09 | 国立研究開発法人科学技術振興機構 | Method for culturing fresh water microalga |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA3140257C (en) * | 2019-06-12 | 2023-11-28 | Magdalena Izabela ZAWADZKA | Next-generation modulators of stimulator of interferon genes (sting) |
-
2021
- 2021-08-24 WO PCT/JP2021/030937 patent/WO2022045110A1/en active Application Filing
- 2021-08-24 JP JP2022527680A patent/JPWO2022045110A1/ja not_active Withdrawn
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018529343A (en) * | 2015-09-25 | 2018-10-11 | フェルメンタル | A novel method for culturing unicellular red algae |
WO2019107385A1 (en) * | 2017-11-28 | 2019-06-06 | 国立研究開発法人科学技術振興機構 | Novel microalgae and use for same |
WO2020071444A1 (en) * | 2018-10-02 | 2020-04-09 | 国立研究開発法人科学技術振興機構 | Method for culturing fresh water microalga |
Also Published As
Publication number | Publication date |
---|---|
JPWO2022045110A1 (en) | 2022-03-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109355223A (en) | A strain of Bacillus subtilis N2 with ammonia nitrogen degradation function and its application | |
ES2681993T3 (en) | Method for producing Haemophilus influenzae type b antigens | |
EP2176396A2 (en) | Golden yellow algae and method of producing the same | |
JP7455386B2 (en) | Cultivation method for freshwater microalgae | |
WO2022045110A1 (en) | Method of producing monoploid unicellular red alga, and culture medium for monoploid unicellular red alga | |
US6933137B2 (en) | Animal component free meningococcal polysaccharide fermentation and seedbank development | |
WO2022045109A1 (en) | Method of producing decaying unicellular red alga, and culture medium for decaying unicellular red alga | |
ES2685645T3 (en) | New variant of Streptomyces filamentosus and method to produce daptomycin using said variant | |
Tomaselli et al. | Recent research on Spirulina in Italy | |
ES2316804T3 (en) | PRODUCTION PROCEDURE FOR ITURINA A AND ITS HOMOLOGOS. | |
RU2300562C2 (en) | Bhk-21/13-02 - transplantable monolayer-suspension subline of newborn syrian hamster kidney cells designated for reproduction of foot-and-mouth virus and rabies virus | |
BR112014025306B1 (en) | PROCESS FOR PRODUCTION OF A RECOMBINANT PROTEIN IN PLANT CELLS WITH A CELL WALL, SUITABLE CULTURE MEDIUM TO PROMOTE SECRETION AND DRY MIXING OF THE SAME | |
CN105409780B (en) | A kind of plant tissue culture culture medium and preparation method thereof without sterilizing | |
KR101715783B1 (en) | Callus induction medium, shoot induction regeneration medium for Chrysanthemum anther culture, and preparing method of Chrysanthemum haploid plantlet by anther culture using the same | |
KR101106198B1 (en) | A method of culturing chlorella seed having a high C content and chlorella seed obtained by the method | |
ES2269004B2 (en) | USE OF ARTHROBACTER OXIDANS BB1 AS A PROTECTOR AGAINST SALINE STRESS. | |
CN109832273A (en) | The pesticide control of application and rice disease of the branched-chain amino acid in the pesticide control of preparation rice disease | |
ES2321791B2 (en) | PROCEDURE FOR OBTAINING ANTI-PSEUDOMONAS ANGUILLISEPTICA VACCINE (PA-VAC) FOR THE PREVENTION OF PSEUDOMONIASIS DISEASE IN CULTIVATED FISH. | |
WO2022117901A1 (en) | Use of microalgae resistance forms in agriculture | |
JP2006230266A (en) | Medium for culturing Cyanidium spp. | |
RU2233875C2 (en) | Stimulating agent for growth of escherichia coli bacterial cells | |
JPH01153087A (en) | Method for tissue culture of marigold | |
KR20010057525A (en) | Tissue Culture Method of Wild Ginseng Using Liquid Culture System | |
KR101160485B1 (en) | Methylobacterium extorquens cme strain and microbial agent for improving water quality comprising the same | |
KR101795174B1 (en) | culturing method for aquatic plant using δ-aminolevulinic acid |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21861535 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022527680 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21861535 Country of ref document: EP Kind code of ref document: A1 |