WO2022044413A1 - Touch operation device - Google Patents
Touch operation device Download PDFInfo
- Publication number
- WO2022044413A1 WO2022044413A1 PCT/JP2021/014355 JP2021014355W WO2022044413A1 WO 2022044413 A1 WO2022044413 A1 WO 2022044413A1 JP 2021014355 W JP2021014355 W JP 2021014355W WO 2022044413 A1 WO2022044413 A1 WO 2022044413A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- finger
- protrusion
- control unit
- scroll
- touch
- Prior art date
Links
- 238000001514 detection method Methods 0.000 claims abstract description 189
- 239000000758 substrate Substances 0.000 claims abstract description 14
- 239000011810 insulating material Substances 0.000 claims abstract description 4
- 230000002093 peripheral effect Effects 0.000 claims description 12
- 230000005484 gravity Effects 0.000 claims description 3
- 239000007787 solid Substances 0.000 claims description 3
- 210000003811 finger Anatomy 0.000 description 87
- 230000004048 modification Effects 0.000 description 29
- 238000012986 modification Methods 0.000 description 29
- 238000000034 method Methods 0.000 description 18
- 238000010586 diagram Methods 0.000 description 14
- 230000007704 transition Effects 0.000 description 14
- 230000008569 process Effects 0.000 description 6
- 210000003813 thumb Anatomy 0.000 description 6
- 230000008859 change Effects 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 3
- 230000015541 sensory perception of touch Effects 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 239000003550 marker Substances 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 229920003002 synthetic resin Polymers 0.000 description 2
- 239000000057 synthetic resin Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 125000002066 L-histidyl group Chemical group [H]N1C([H])=NC(C([H])([H])[C@](C(=O)[*])([H])N([H])[H])=C1[H] 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005057 finger movement Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/033—Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
- G06F3/0354—Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of 2D relative movements between the device, or an operating part thereof, and a plane or surface, e.g. 2D mice, trackballs, pens or pucks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
Definitions
- the present invention relates to a touch-type operating device.
- Patent Document 1 discloses a console system provided with a touch pad having a three-dimensional three-dimensional shape in which a hemispherical portion and a flat portion are combined. Since there is a clear difference in shape between the hemisphere and the flat surface of this touchpad, the operator who operates this touchpad can tactilely determine whether he is touching the hemisphere or the flat surface. It can be determined.
- the touch pad of Patent Document 1 does not have an element that makes it possible to tactilely discriminate between the reference position and the direction of operation within the range in which the hemisphere portion is provided. Therefore, the operator who operates the touch pad of Patent Document 1 may operate a portion of the hemisphere that should not be operated. Further, the operator who operates the touch pad of Patent Document 1 may perform an operation in a direction in which the touch pad should not be operated. Further, when the touch pad is used, there is a possibility that the scroll operation cannot be detected with high accuracy.
- the touch-type operating device includes a flat substrate having a plurality of detection electrodes arranged side by side in the first direction, and a three-dimensional cover made of an insulating material covering a part of the flat substrate, and the plurality of detection electrodes.
- the detection electrode at the end in the first direction is not covered with the solid cover, and the detection electrode at the center in the first direction excluding the detection electrode at the end is covered with a solid cover.
- the width of the detection electrode at the end in the first direction is smaller than the width of the detection electrode at the center in the first direction.
- the scroll operation can be intuitively performed, and the scroll operation can be detected with high accuracy.
- Plan view of the steering wheel according to the embodiment Top view of the operation position detection device according to one embodiment Partially enlarged cross-sectional view showing the shape of the first protrusion of the operation position detection device according to the embodiment in an enlarged manner.
- the display position of the fourth selection element to the seventh selection element is changed when an input operation is performed on the second operation area.
- Schematic diagram to explain how it is done A schematic diagram for explaining a state in which a fifth selection element is selected in a display content performed by an external device controlled by a control unit according to an embodiment.
- FIG. 1 is a plan view of the steering wheel 10 according to the embodiment.
- the steering wheel 10 shown in FIG. 1 is a steering device mounted in front of the driver's seat in a vehicle such as an automobile and operated by the driver of the vehicle.
- the steering wheel 10 includes an annular wheel portion 12, a hub portion 14 provided at the center of the wheel portion 12 and connected to a column (not shown) extending from the vehicle, and a wheel. It has a pair of left and right spoke portions 16 that connect the portions 12 and the hub portion 14.
- An operation position detection device 100 is provided on each of the pair of left and right spoke portions 16.
- the operation position detection device 100 is an input device provided on the spoke portion 16 so that the driver can perform an input operation using the thumb while holding the steering wheel 10.
- FIG. 8 is an exploded perspective view of the operation position detection device according to the embodiment.
- the operation position detection device 100 includes an operation panel 110 provided on the driver side and an electrostatic detection board (FPC120) provided on the back surface side of the operation panel 110 when viewed from the driver. ), And a circuit board 130 having an integrated circuit (control unit 132) for processing the detection signal.
- the operation position detection device 100 has a case 102 that supports the operation panel 110 and the circuit board 130.
- the operation position detection device 100 has an electrostatic detection mechanism, and when the driver touches the surface 110A of the operation panel 110 or makes a gesture, the content of the input operation is electrostatically charged. It has a function to detect and generate a detection signal.
- the operation position detection device 100 is a device that can generate an operation signal according to the content of the input operation and output it to an operation target device (for example, an audio device or the like).
- the operation panel 110 has a shape that is a combination of a planar shape and a protruding shape.
- the gesture refers to an operation in which the operator moves a hand or a finger close to the operation panel 110 along the surface shape formed by the operation panel 110, and during the operation. , At least once, refers to the action of the hand touching the operation panel 110.
- Gesture is an example of input operation.
- the direction corresponding to the height direction of the vehicle is set to the vertical direction (Z-axis direction) with the traveling direction of the vehicle on which the steering wheel 10 is mounted as a reference, and the traveling direction of the vehicle is set to the front-rear direction.
- the vertical direction and the direction orthogonal to the front-back direction are defined as the left-right direction (X-axis direction).
- FIG. 2 is a plan view of the operation position detection device 100 according to the embodiment.
- FIG. 3 is a partially enlarged cross-sectional view showing an enlarged shape of the first protrusion 112 of the operation position detection device 100 according to the embodiment.
- FIG. 4 is a plan view of the operation position detection device 100 in a state where the operation panel 110 according to the embodiment is removed.
- the pair of left and right operation position detection devices 100 included in the steering wheel 10 have the same configuration except that they are symmetrical.
- the configuration of the operation position detection device 100 will be described using the operation position detection device 100 on the left side as a representative.
- the vertical operation direction an example of the "first operation direction” and the left-right operation direction of the operation panel 110 included in the operation position detection device 100.
- the vertical operation direction of the operation panel 110 is the Z'axis direction
- the upper operation direction is the Z'(+) direction
- the lower operation direction is the Z'( ⁇ ) direction.
- the left-right operation direction of the operation panel 110 is the X'axis direction
- the right operation direction is the X'(+) direction
- the left operation direction is the X'( ⁇ ) direction.
- the vertical operation direction is parallel to the tangential direction of the arc drawn by the fingertip of the thumb when the driver touches the operation panel 110 with the thumb while holding the steering wheel 10 and rotates the thumb around the thumb ball. It is provided in.
- the operation position detection device 100 includes a case 102, an operation panel 110, an FPC 120, a circuit board 130, and a light guide sheet 140.
- the case 102 is a member that functions as a base of the operation position detection device 100.
- the case 102 is a member that houses the FPC 120, the circuit board 130, and the light guide sheet 140.
- the case 102 supports the operation panel 110, the FPC 120, the circuit board 130, and the light guide sheet 140.
- the case 102 is formed as a molded body obtained by molding a synthetic resin material by using a mold technique.
- the operation panel 110 is a flat plate-shaped member that covers the front surface of the case 102.
- the surface 110A of the operation panel 110 formed as a molded body made of a synthetic resin material is an operation surface on which an input operation is performed by an operator.
- the surface 110A is provided with a first operation region 111.
- the first protrusion 112 is provided so as to project in the first operation region 111.
- the first protrusion 112 has a substantially semi-elliptical sphere shape obtained by cutting out a part of an ellipsoidal sphere. That is, the surface 112A of the first protrusion 112 has a quadric surface shape.
- the first operation region 111 and the first protrusion 112 have an elliptical shape in which the vertical operation direction (Z'axis direction, an example of the "first direction") is the longitudinal direction in a plan view. .. That is, the vertical operation direction is a direction that overlaps with the long axis of the elliptical shape formed by the first operation region 111 and the first protrusion 112 in a plan view.
- the second protrusion 113 is provided on the surface 112A of the first protrusion 112 so as to project.
- the second protrusion 113 is provided in a linear shape overlapping the elliptical minor axis formed by the surface 112A in a plan view.
- the second protrusion 113 has an elongated rib shape that passes through the center of the elliptical shape and extends along the surface 112A in the left-right operation direction (X'axis direction, an example of the “second direction”). It is provided with a height dimension that allows the operator to recognize that it has a rib shape when touched. Further, the second protrusion 113 is provided with a height dimension that does not interfere with the input operation by the operator. As shown in FIG.
- the corner portion of the rib shape is chamfered, and the cross-sectional shape of the second protrusion 113 has a hemispherical shape. That is, the surface 113A of the second protrusion 113 has a curved surface.
- the operation panel 110 has second operation areas 114A and 114B provided on the surface 110A outside the first operation area 111 in the left-right operation direction (X'axis direction). .. Further, the operation panel 110 has third protrusions 115A and 115B provided so as to project from the surface 110A in the second operation areas 114A and 114B.
- the third protrusions 115A and 115B are provided with a height dimension that allows the operator to recognize that they are protrusions when touched. Further, the third protrusions 115A and 115B are provided with a height dimension that does not interfere with the input operation by the operator.
- the operation panel 110 has a second operation area 114A in each of the left operation direction side (X'( ⁇ ) side) and the right operation direction side (X'(+) side) of the first operation area 111. , 114B and third protrusions 115A, 115B.
- the second operation areas 114A and 114B and the third protrusions 115A and 115B are provided on the extension line of the second protrusion 113 in a plan view.
- the third protrusions 115A and 115B project from the surface 110A toward the rear (Y-axis negative direction).
- the third protrusion 115A has an isosceles triangle shape in a plan view from the rear (Y-axis negative direction), and the apex shared by the two isosceles triangles is on the left operation direction side (X'(X'( -) Is provided on the side). Further, the third protrusion 115B has an isosceles triangle shape in a plan view from the rear, and the apex shared by the two isosceles triangles is the right operation direction side (X'(+) side). It is provided in.
- the operation panel 110 has third operation areas 116A and 116B provided on the surface 110A outside the first operation area 111 in the vertical operation direction (Z'axis direction). Further, the operation panel 110 has fourth protrusions 117A and 117B provided so as to project from the surface 110A in the third operation areas 116A and 116B.
- the fourth protrusions 117A and 117B are provided with a height dimension that allows the operator to recognize that they are protruding portions when touched. Further, the fourth protrusions 117A and 117B are provided with a height dimension that does not interfere with the gesture by the operator.
- the operation panel 110 has a third operation area 116A in each of the upper operation direction side (Z'(+) side) and the lower operation direction side (Z'( ⁇ ) side) of the first operation area 111. , 116B and fourth protrusions 117A, 117B.
- the third operation areas 116A and 116B and the fourth protrusions 117A and 117B are provided on an extension of the elliptical long axis formed by the surface 112A in a plan view.
- the fourth protrusions 117A and 117B have a monolithic shape and project from the surface 110A toward the rear (Y-axis negative direction).
- the fourth protrusion 117A has an isosceles triangle shape in a plan view from the rear (Y-axis negative direction), and the apex shared by the two isosceles triangles is the upper operation direction side (Z'(Z'(Z'( It is provided on the +) side). Further, the fourth protrusion 117B has an isosceles triangle shape in a plan view from the rear, and the apex shared by the two isosceles triangles is the lower operation direction side (Z'(-) side). It is provided in.
- the FPC 120 is a film-like substrate arranged on the back side (Y-axis positive side) of the operation panel 110.
- a plurality of detection electrodes are arranged on the surface 120A of the FPC 120.
- each of the plurality of detection electrodes is formed by using a thin film material having conductivity (for example, copper foil).
- the capacitance of each of the plurality of detection electrodes is changed by capacitively coupling with a finger in the vicinity of the detection electrode.
- the control unit 132 of the circuit board 130 electrically connected to each of the plurality of detection electrodes can detect the input operation to the operation panel 110.
- the circuit board 130 has a flat plate shape and has an electronic circuit formed on its surface.
- the circuit board 130 is arranged in the Y-axis positive direction of the FPC 120.
- As the circuit board 130 for example, a PWB (Printed Wiring Board) or the like is used.
- the circuit board 130 includes a control unit 132.
- the control unit 132 is connected to each of the plurality of detection electrodes via the FPC 120.
- the control unit 132 can detect an input operation to the operation panel 110 based on the detection signal (that is, the capacitance value) of each of the plurality of detection electrodes.
- an IC a microcomputer, or the like is used.
- the light guide sheet 140 is a sheet-like member having light guide properties provided between the operation panel 110 and the circuit board 130.
- the operation panel 110 has a light-transmitting marker unit (not shown), and the light guide sheet 140 receives light emitted from an LED (Light Emitting Diode) 134 provided on the circuit board 130. Leads to the illuminated marker section.
- LED Light Emitting Diode
- the first detection electrodes 122A to 122G, the second detection electrodes 124A and 124B, and the third detection electrodes 126A and 126B are arranged on the surface 120A of the FPC 120.
- the first detection electrodes 122A to 122G are arranged side by side in the vertical operation direction (Z'axis direction) at the center of the left-right operation direction (X'axis direction, an example of the "second direction") along the surface 120A. ..
- Each of the first detection electrodes 122A to 122G has a rectangular shape whose long side is parallel to the left-right operation direction.
- the second detection electrode 124A is arranged on the left operation direction side (X'( ⁇ ) side) with respect to the first detection electrodes 122A to 122G.
- the second detection electrode 124A is arranged at a position overlapping the third protrusion 115A.
- the second detection electrode 124A detects an input operation with respect to the third protrusion 115A.
- the second detection electrode 124A has a triangular shape indicating the left operation direction according to the shape of the third protrusion 115A.
- the second detection electrode 124B is arranged on the right operation direction side (X'(+) side) of the first detection electrodes 122A to 122G.
- the second detection electrode 124B is arranged at a position overlapping the third protrusion 115B.
- the second detection electrode 124B detects an input operation with respect to the third protrusion 115B.
- the second detection electrode 124B has a triangular shape indicating the right operation direction according to the shape of the third protrusion 115B.
- the third detection electrode 126A is arranged on the upper operation direction side (Z'(+) side) with respect to the first detection electrodes 122A to 122G.
- the third detection electrode 126A is arranged at a position overlapping the fourth protrusion 117A.
- the third detection electrode 126A detects an input operation with respect to the fourth protrusion 117A.
- the third detection electrode 126A has a triangular shape indicating the upper operation direction according to the shape of the fourth protrusion 117A.
- the third detection electrode 126B is arranged on the lower operation direction side (Z'( ⁇ ) side) with respect to the first detection electrodes 122A to 122G.
- the third detection electrode 126B is arranged at a position overlapping the fourth protrusion 117B.
- the third detection electrode 126B detects an input operation with respect to the fourth protrusion 117B.
- the third detection electrode 126B has a triangular shape indicating a downward operation direction according to the shape of the fourth protrusion 117B.
- peripheral electrodes 128A to 128D are further arranged on the outside of both the left and right sides of the first detection electrodes 122A to 122G.
- the peripheral electrodes 128A and 128B are arranged side by side in the vertical operation direction (Z'axis direction) on the left operation direction side (X'( ⁇ ) side) of the first detection electrodes 122A to 122G.
- the peripheral electrodes 128C and 128D are arranged side by side in the vertical operation direction (Z'axis direction) on the right operation direction side (X'(+) side) of the first detection electrodes 122A to 122G.
- the peripheral electrodes 128A to 128D are used for correcting the detection of the scroll operation.
- FIG. 5 is a plan view showing the positional relationship between each protrusion and each detection electrode in the operation position detection device 100 according to the embodiment.
- the first protrusion 112, the second protrusion 113, the third protrusions 115A and 115B, and the fourth protrusions 117A and 117B are superimposed on the surface 120A of the FPC 120.
- the first detection electrodes 122B to 122F are arranged at positions overlapping with the first protrusion 112. As a result, the capacitance of the first detection electrodes 122B to 122F changes according to the input operation with respect to the first protrusion 112, and the input operation can be detected.
- the second detection electrode 124A is arranged at a position overlapping with the third protrusion 115A.
- the capacitance of the second detection electrode 124A of the second detection electrode 124A changes according to the input operation with respect to the third protrusion 115A, and the input operation can be detected.
- the second detection electrode 124B is arranged at a position overlapping with the third protrusion 115B.
- the capacitance of the second detection electrode 124B changes according to the input operation with respect to the third protrusion 115B, and the input operation can be detected.
- the third detection electrode 126A is arranged at a position overlapping with the fourth protrusion 117A.
- the capacitance of the third detection electrode 126A changes according to the input operation with respect to the fourth protrusion 117A, and the input operation can be detected.
- the third detection electrode 126B is arranged at a position overlapping with the fourth protrusion 117B.
- the capacitance of the third detection electrode 126B changes according to the input operation with respect to the fourth protrusion 117B, and the input operation can be detected.
- FIG. 6 the first protrusion 112, the second protrusion 113, the third protrusions 115A and 115B, and the fourth protrusions 117A and 117B are overlapped with respect to the surface 120A of the FPC 120.
- the second protrusion 113 has a jetty shape that protrudes rearward (Y-axis negative direction) from the surface 112A and is provided in the left-right operation direction. Further, the second protrusion 113 is arranged at the center position in the front-rear direction of the surface 112A of the first protrusion 112.
- the surface 113A of the second protrusion 113 has a curved surface shape having a larger curvature than the surface 112A.
- the first protrusion 112 has an elliptical shape, and is arranged at a position where the driver can perform an input operation using his / her thumb while holding the steering wheel 10.
- the operator touches the first protrusion 112 and recognizes the shape, the operator slides the finger 20 in the vertical operation direction (Z'axis direction) even if there is no other suggestive information. It is possible to perform an input operation (that is, a scroll operation) to move.
- the operator touches the first protrusion 112 and the second protrusion 113 at the same time with the finger 20 when performing the scroll operation. At that time, the operator can clearly recognize the common features and the highly related features of the first protrusion 112 and the second protrusion 113. Specifically, since the elliptical short axis direction formed by the first protrusion 112 and the direction provided with the second protrusion 113 are common, the operator can easily recognize the left and right operation directions. I can. Further, since the elliptical long axis direction formed by the first protrusion 112 and the direction provided with the second protrusion 113 are orthogonal to each other, the operator can easily recognize the vertical operation direction.
- the operator can set the center position of the elliptical shape formed by the first protrusion 112 in the long axis direction. Easy to recognize. As a result, the operator can easily determine the reference position when the scroll operation is performed on the surface 112A and the direction in which the scroll operation should be performed based on the information obtained from the tactile sense.
- the upper operation direction side (Z'(+) side) of the second protrusion 113 is defined as a point on the intersection line between the second protrusion 113 and the first protrusion 112.
- a contact point P1 is defined in which the cross-sectional shape is obtuse or right-angled when the peripheral portion is cut in the ZY plane.
- a contact point P2 formed as a point on a ridgeline connecting the vertices of the second protrusion 113 is defined.
- a contact point P3 whose cross-sectional shape is obtuse or right-angled is defined.
- the operator slides the finger 20 in the downward operation direction (Z'( ⁇ ) direction) from the contact point P1 to the contact point P3 via the contact point P2. Therefore, it is possible to perform a scroll operation in the downward operation direction for the application to be operated.
- the operator can tactilely determine the vertical operation direction (Z'axis direction) in which the finger 20 should be slid.
- the operator slides the finger 20 in a direction orthogonal to the extending direction of the second protrusion 113. It can be tactilely determined as the vertical operation direction (Z'axis direction).
- the operation position detection device 100 by making it easy to recognize the position to be operated on the operation panel, it is possible to suppress the input operation from being performed at the position where the operation panel should not be operated. Further, according to the operation position detection device 100 according to the embodiment, by making it easy to recognize the direction to be operated, it is possible to suppress the operation in the direction in which the operation should not be performed.
- the operator slides the finger 20 along the surface 112A and the surface 113A in the vertical operation direction (Z'axis direction)
- the operator makes a predetermined distance (that is, the contact point P1) based on the information obtained from the tactile sense.
- the slide operation (distance from to the contact point P3) can be performed. That is, a certain amount of slide operation can be easily performed without looking at the operation panel 110.
- the operator can perform a vertical scroll operation on the application to be operated.
- the control unit 132 is connected to electrodes (122A to 122G, 124A, 124B, 126A, 126B, 128A to 128D) provided on the FPC 120. Further, the control unit 132 is connected to an external device (not shown) such as a display of the operation position detection device 100. The control unit 132 receives the detection signal (that is, the capacitance value) detected from each of the electrodes (122A to 122G, 124A, 124B, 126A, 126B, 128A to 128D), and indicates based on the detection signal. 20 position information is determined. Further, the control unit 132 transmits the position signal of the detection position to the external device.
- the detection signal that is, the capacitance value
- FIG. 9 is a schematic diagram for explaining the display content performed by the external device controlled by the control unit 132 when the input operation is performed on the first protrusion according to the embodiment.
- the control unit 132 transmits the position signal related to the input content to an external device, and for example, distances the display position of the selection element M2 shown in FIG. The L transition is made to the selected position S1.
- the control unit 132 selects, for example, by shifting the display position of the selection element M3 shown in FIG. 9 by twice the distance L. Set to position S1.
- the control unit 132 by adjusting the control unit 132 in advance and associating the amount of the input operation with the transition distance of the selection element, it becomes easy to accurately operate the external device. Specifically, for example, by associating the distance L with the amount of change in the position signal (that is, the amount of input operation) when the finger 20 moves from the contact point P1 to the contact point P3, the external device can be used. It becomes easy to operate accurately.
- the operator can quantitatively perform the slide operation from the contact point P1 to the contact point P3 based on the information obtained from the tactile sense.
- the control unit 132 generates a position signal based on the input operation, and the position signal changes by a predetermined amount.
- the external device moves the display position of the selection element M2 by the distance L to the selection position S1 based on the position signal.
- the operator refers to the first protrusion 112 and the second protrusion 113 in the upper operation direction (Z'(+) direction) which is the long axis direction from the first protrusion 112 to the first protrusion 112.
- the finger 20 can be moved.
- the position of the fourth protrusion 117A protruding from the moving destination is grasped tactilely, and an input operation (upper shortcut operation) for the third operation area 116A provided corresponding to the fourth protrusion 117A is performed.
- an input operation upper shortcut operation
- the control unit 132 detects that the input operation to the fourth protrusion 117A has been performed based on the capacitance value of the third detection electrode 126A provided on the back side of the fourth protrusion 117A. Can be done.
- the operator refers to the first protrusion 112 and the second protrusion 113 in the downward operation direction (Z'( ⁇ ) direction) which is the long axis direction from the first protrusion 112 to the first protrusion 112.
- the finger 20 can be moved.
- the position of the fourth protrusion 117B protruding from the moving destination is grasped tactilely, and an input operation (lower shortcut operation) for the third operation area 116B provided corresponding to the fourth protrusion 117B is performed. )It can be performed.
- the control unit 132 detects that the input operation to the fourth protrusion 117B has been performed based on the capacitance value of the third detection electrode 126B provided on the back side of the fourth protrusion 117B. Can be done.
- the input operation can be shortened by adjusting the control unit 132 in advance and associating the transition distance of the selection element with the input operation for the third operation area. Specifically, for example, by associating a distance that is an integral multiple of the distance L with the upper shortcut operation, a slide operation from the contact point P1 to the contact point P3 can be performed quickly and accurately simply by performing the upper shortcut operation. It is possible to perform the same input operation as repeating the above several times. Since the operator can tactilely grasp the position of the fourth protrusion (117A, 117B), the operator can easily perform a shortcut operation by touch typing.
- the operator uses the first protrusion 112 and the second protrusion 113 as a reference, and the finger 20 is in the right operation direction (X'(+) direction) on the extension line from the first protrusion 112 to the second protrusion 113. Can be moved. Then, the position of the third protrusion 115B protruding from the moving destination is grasped tactilely, and the input operation (right input mode) for the second operation area 114B provided corresponding to the third protrusion 115B is performed. Switching operation) can be performed. At this time, the control unit 132 detects that the input operation to the third protrusion 115B has been performed based on the capacitance value of the second detection electrode 124B provided on the back side of the third protrusion 115B. Can be done.
- FIG. 10 is a schematic diagram for explaining a state in which the fourth selection element M4 is selected in the display content performed by the external device controlled by the control unit 132 according to the embodiment.
- FIG. 11 shows from the fourth selection element M4 when an input operation is performed on the second operation area (114A, 114B) in the display content performed by the external device controlled by the control unit 132 according to the embodiment. It is a schematic diagram for demonstrating how the display position of the 7th selection element M7 is changed.
- FIG. 12 is a schematic diagram for explaining a state in which the fifth selection element M5 is selected in the display content performed by the external device controlled by the control unit 132 according to the embodiment.
- the operation position detection device 100 is often set as an input device for operating a plurality of operation targets, and is set so that an input mode for operating each operation target can be switched.
- the external device controlled by the control unit 132 may be provided with a display function for indicating the state of the input mode to the operator.
- the display function there is a drum rotation selection type interface configured to include selection elements (M4 to M7) associated with each operation target as shown in FIGS. 10 to 12. In such a drum rotation selection type interface, the current input mode state is indicated by the type of selection element displayed at the selection position S2.
- the control unit 132 is adjusted so that the display position of the selection element (M4 to M7) moves and the drum rotation selection type interface rotates each time the input mode switching operation is performed. Specifically, for example, as shown in FIG. 10, when the left input mode switching operation is performed while the selection element M4 is displayed at the selection position S2, the drum rotation selection type interface rotates counterclockwise. After passing through the state of FIG. 11, the drum is rotated by 90 ° to reach the state shown in FIG. At this time, the input mode is switched from the input mode corresponding to the selection element M4 to the input mode corresponding to the selection element M5. Since the operator can tactilely grasp the position of the third protrusion (115A, 115B), the operator can easily switch the input mode by touch typing.
- the second protrusion 113 is not limited to the shape described in the embodiment.
- the second protrusion 113 may have a rib shape extending in the vertical operation direction (Z'axis direction) along the surface 112A of the first protrusion 112.
- the second protrusion 113 extends along the surface 112A of the first protrusion 112 in each of the left-right operation direction (X'axis direction) and the up-down operation direction (Z'axis direction). It may have a cross-shaped rib shape in a plan view.
- the second protrusion 113 may have a dot shape provided at the center of the surface 112A of the first protrusion 112.
- the second protrusions 113 are continuously arranged side by side in the left-right operation direction (X'axis direction) or the up-down operation direction (Z'axis direction) along the surface 112A of the first protrusion 112. It may have a plurality of dots. Further, for example, the second protrusion 113 has a shape in which a concave shape and a convex shape are combined (for example, a shape in which a plurality of grooves are intermittently formed in a direction in which the rib shape extends with respect to the rib shape. ) May be present. In other words, for example, the second protrusion 113 may be an aggregate of a plurality of rib pieces arranged continuously in one direction with a gap between them.
- the touch-type operating device 200 which is a modification of the operating position detecting device 100 according to the embodiment, will be described.
- the changes from the operation position detection device 100 will be described with respect to the touch type operation device 200.
- FIG. 13 is a plan view showing the positional relationship between each protrusion and each detection electrode in the touch-type operating device 200 according to the modified example.
- the touch-type operation device 200 according to one modification is provided with a flat substrate 201 instead of the FPC 120, and each detection electrode similar to the operation position detection device 100 is provided on the upper surface 201A of the flat substrate 201. It is different from the operation position detection device 100.
- the flat substrate 201 for example, PWB or the like is used.
- the first protrusion 112, the second protrusion 113, the third protrusions 115A and 115B, and the fourth protrusions 117A and 117B are shown overlapping with respect to the upper surface 201A of the flat substrate 201.
- the extending direction of the second protrusion 113 and the longitudinal direction of the first detection electrodes 122A to 122G are parallel to each other and are parallel to each other. Both are parallel to the X-axis direction.
- the first detection electrodes 122A to 122G have the same length in the X-axis direction and have a rectangular shape as a whole. In this rectangular shape, the Z-axis direction is the longitudinal direction, and the X-axis direction is the lateral direction.
- the longitudinal direction of this rectangular shape coincides with the longitudinal direction of the first protrusion 112 (three-dimensional cover).
- the first detection electrodes 122A and 122G at the ends in the Z-axis direction (first direction) are It is not covered by the first protrusion 112 (three-dimensional cover made of an insulating material) and can be directly touched by the finger 20.
- the first detection electrodes 122B to the central portion in the Z-axis direction (first direction) excluding the first detection electrodes 122A and 122G at the ends. Since the 122F is covered with the first protrusion 112 (three-dimensional cover), it cannot be directly touched by the finger 20.
- the width of the first detection electrodes 122A and 122G at the ends in the Z-axis direction (first direction) is the Z-axis direction (first direction) of the first detection electrodes 122B to 122F at the center. ) Is smaller than the width.
- the touch-type operating device 200 sets the detection sensitivity of the first detection electrodes 122A and 122G, which are not covered by the first protrusion 112 (three-dimensional cover), to the first protrusion 112 (three-dimensional cover). It is possible to approach the detection sensitivity of the first detection electrodes 122B to 122F covered by the above.
- the touch-type operating device 200 since the touch-type operating device 200 according to one modification is provided with each detection electrode on the flat substrate 201, it can be manufactured at low cost as compared with the case where each detection electrode is provided on a three-dimensional substrate.
- the first detection electrodes 122A and 122G provided near the end of the first protrusion 112 (three-dimensional cover) have the first protrusion 112 (three-dimensional cover). ), Therefore, it is possible to improve the detection accuracy of the finger 20 when the finger 20 starts the scroll operation from the end of the first protrusion 112 (three-dimensional cover).
- the touch-type operating device 200 is the first detection electrode 122B, which is the second from the end in the Z-axis direction (first direction) among the first detection electrodes 122A to 122G. , 122F overlap with the end of the first protrusion 112 (three-dimensional cover) in the Z-axis direction (first direction).
- the end portion of the first protrusion 112 (three-dimensional cover) in the Z-axis direction (first direction) is difficult for the operator's finger 20 to come into contact with, and is directly below the end. Since it is difficult to detect the operator's finger 20 with the first detection electrodes 122B and 122F in the above, the first detection electrodes 122A and 122G are provided on the outside in the Z-axis direction (first direction). The electrodes 122A and 122G can facilitate the detection of the operator's finger 20 at the end of the first protrusion 112 (three-dimensional cover) in the Z-axis direction (first direction).
- the widths of the first detection electrodes 122B to 122F in the central portion in the Z-axis direction (first direction) are equal to each other.
- the control unit 132 included in the touch-type operating device 200 specifies the position of the center of gravity of the plurality of capacitance values detected by the first detection electrodes 122B to 122F in the central portion as the center position of the finger 20.
- the widths of the first detection electrodes 122B to 122F in the central portion in the Z-axis direction (first direction) are equal to each other, and therefore the fingers based on these capacitance values.
- the center position of 20 can be specified relatively easily.
- the control unit 132 can detect an inertial scroll operation.
- the inertial scrolling operation is an operation in which the operator releases the finger 20 from the first protrusion 112 (three-dimensional cover) while scrolling while bringing the finger 20 into contact with the first protrusion 112 (three-dimensional cover). ..
- the control unit 132 continues to signal the scroll operation based on the scroll speed before the finger 20 is released and the elapsed time after the finger 20 is released. By outputting, the scrolling operation of the operation target screen can be continued.
- the touch-type operation device 200 continues to scroll the operation target screen even after the operator releases the finger 20 from the first protrusion 112 (three-dimensional cover) during the scroll operation. Therefore, it is possible to reduce the operation load when the operator selects a desired item from a large number of items.
- the finger 20 can easily be separated from the first protrusion 112 (three-dimensional cover) during the scroll operation. Therefore, it is more useful to output the scroll operation signal even after the finger 20 is released in this way.
- the first protrusion 112 (three-dimensional cover) is physically movable slightly in the pressing operation direction (Y-axis negative direction). Further, the control unit 132 can detect a pressing operation on the first protrusion 112 (three-dimensional cover) based on the capacitance value of each of the plurality of detection electrodes. Further, the control unit 132 does not detect the scroll operation when the pressing operation on the first protrusion 112 (three-dimensional cover) is detected.
- the touch-type operation device 200 is contrary to the intention of the operator even if the position of the finger is displaced in the scroll operation direction when the operator performs the pressing operation. It is possible to prevent the scroll operation signal from being erroneously output.
- the control unit 132 performs a pressing operation on the first protrusion 112 (three-dimensional cover) when a scroll operation signal is output following the operation of releasing the finger 20. If detected, the selection of the item selected by the scroll operation on the operation target screen is confirmed at that time.
- the touch-type operation device 200 according to the modification can more reliably select the item desired by the operator from the plurality of items when the scroll operation is performed on the operation target screen. can.
- control unit 132 detects the contact of the finger 20 with any of the peripheral electrodes 128A to 128D while outputting the scroll operation signal, the control unit 132 stops the output of the scroll operation signal.
- the touch-type operating device 200 can prevent the scroll operation signal from being erroneously output against the intention of the operator.
- FIG. 14 is a flowchart showing an example of a processing procedure by the control unit 132 included in the touch-type operating device 200 according to the modified example.
- control unit 132 acquires the capacitance value of each of the plurality of detection electrodes (step S301).
- control unit 132 calculates a reference value of the capacitance value based on the plurality of capacitance values acquired in step S301 (step S302).
- control unit 132 of each of the plurality of capacitance values acquired in step S301 based on the plurality of capacitance values acquired in step S301 and the reference value calculated in step S302.
- the amount of change is calculated (step S303).
- control unit 132 determines whether or not the finger 20 is in contact with the operation panel 110 based on the amount of change of each of the plurality of capacitance values calculated in step S303 (step S304).
- control unit 132 calculates the coordinates of the center of gravity of the plurality of capacitance values calculated in step S303 as the coordinates of the contact position of the finger 20 (step S305). ).
- control unit 132 calculates the moving speed of the finger 20 based on the plurality of coordinates obtained by repeating steps S301 to S305 (step S306).
- control unit 132 determines the presence / absence of contact of the finger 20 determined in step S304, the coordinates of the contact position of the finger 20 determined in step S304, and the movement speed of the finger 20 calculated in step S306. Based on this, the scroll operation detection process shown in FIG. 15 is executed (step S306). After that, the control unit 132 ends a series of processes shown in FIG.
- FIG. 15 is a state transition diagram of the scroll operation detection process by the control unit 132 included in the touch-type operation device 200 according to the modified example. As shown in FIG. 15, the control unit 132 has a “non-contact state”, a “contact state”, and a “free scroll state” in the scroll operation detection process.
- the control unit 132 has a "standby state”, a “gesture detection state (low speed)", a “gesture detection state (high speed)", and a “non-gesture state” in the "contact state”.
- the control unit 132 maintains a "contact state” while the finger 20 is in contact.
- the control unit 132 is in the "standby state” when the gesture operation is not detected in the "contact state”. Then, in the "standby state", when the movement distance of the finger 20 in the Z-axis direction is larger than the predetermined distance D1 ([
- control unit 132 detects the contact of the finger 20 with any of the peripheral electrodes 128A to 128D in the “standby state” ([
- the control unit 132 is in the “non-gesture state”. State transition to. In this "non-gesture state", the control unit 132 does not detect the gesture operation.
- the control unit 132 outputs a scroll operation signal in a predetermined processing cycle in the “gesture detection state (low speed)”. At this time, the control unit 132 outputs a scroll operation signal according to the moving direction of the finger 20. That is, when the movement direction of the finger 20 is the positive direction of the Z axis, the control unit 132 outputs a scroll operation signal for scrolling the selected item on the operation target screen upward. On the contrary, when the movement direction of the finger 20 is the negative direction of the Z axis, the control unit 132 outputs a scroll operation signal for scrolling the selection item on the operation target screen downward.
- the control unit 132 increases the variable Delay in a predetermined processing cycle in the “gesture detection state (slow speed)”.
- the control unit 132 "gesture detection” when the movement distance of the finger 20 in the Z-axis direction is a predetermined distance D2 or more ([
- the control unit 132 transitions to the “standby state”.
- the control unit 132 outputs a scroll operation signal in a predetermined processing cycle in the “gesture detection state (high speed)”. At this time, the control unit 132 outputs a scroll operation signal according to the moving direction of the finger 20. That is, when the movement direction of the finger 20 is the positive direction of the Z axis, the control unit 132 outputs a scroll operation signal for scrolling the selected item on the operation target screen upward. On the contrary, when the movement direction of the finger 20 is the negative direction of the Z axis, the control unit 132 outputs a scroll operation signal for scrolling the selection item on the operation target screen downward.
- control unit 132 increases the variable Delay in a predetermined processing cycle in the “gesture detection state (high speed)”. Further, the control unit 132 maintains the "gesture detection state (high speed)" when the movement speed of the finger 20 is higher than the predetermined speed V2 ([PosVelocity> V2]) in the “gesture detection state (high speed)”. Further, the control unit 132 is in the "gesture detection state (high speed)" when the finger movement speed becomes a predetermined speed V2 or less, or when the variable Delay reaches a predetermined timeout time T1 ([PosVelocity ⁇ V2).
- control unit 132 assumes that the finger 20 moves on a virtual plane at the movement speed of the finger 20 at the software at that time after the operator releases the finger 20, and the virtual control unit 132 is assumed to move the finger 20 on a virtual plane.
- a scroll operation signal is output based on a change in the coordinates of the finger 20 on a flat surface (that is, the amount of movement of the finger 20).
- control unit 132 moves the finger 20 in the positive direction of the Z axis (Z-axis coordinates of the current finger 20-the previous finger 20) at predetermined processing cycles on a virtual plane.
- predetermined distance Z-axis coordinates
- a scroll operation signal for scrolling the selection item on the operation target screen upward is output.
- control unit 132 moves the finger 20 in the negative Z-axis direction (Z-axis coordinate of the current finger 20-Z-axis coordinate of the previous finger 20) at predetermined processing cycles. ) Is a predetermined distance D1 or more, a scroll operation signal for scrolling the selected item on the operation target screen downward is output.
- control unit 132 gradually attenuates the moving speed of the finger 20 on the virtual plane, and ends the output of the scroll operation signal when the moving distance of the finger 20 becomes 0.
- control unit 132 can continue to output the scroll operation signal even after the operator releases the finger 20, and the operation target screen is as if the scroll operation of the operation target screen is due to inertia.
- the scroll operation speed can be gradually slowed down, and finally the scroll operation can be stopped.
- the control unit 132 performs the scroll operation signal output processing based on the movement of the finger 20 on the virtual plane, so that the finger 20 is used.
- the same processing logic can be used for the output processing of the scroll operation signal when the fingers 20 are in contact with each other and the output processing of the scroll operation signal after the finger 20 is released.
- FIG. 16 is a diagram showing an output example of a scroll operation signal by the control unit 132 included in the touch-type operation device 200 according to the modification.
- the period S1 shown in FIG. 16 is a period during which the operator performs a high-speed scrolling operation while the finger 20 is in contact with the operator (that is, a period in the “gesture detection state (high speed)” shown in FIG. 15).
- the control unit 132 outputs a scroll operation signal at a predetermined processing cycle.
- the scroll operation signal is output three times in the period S1.
- the period S2 shown in FIG. 16 is the period after the operator releases the finger 20 (that is, the period in the “free scroll state” shown in FIG. 15). Even in this period S2, the control unit 132 outputs the scroll operation signal at a predetermined processing cycle. In the example shown in FIG. 16, the scroll operation signal is output five times in the period S2. As a result, the control unit 132 can continue the scrolling operation of the operation target screen even after the operator releases the finger 20. In particular, as shown in FIG. 16, the control unit 132 gradually increases the output interval of the scroll operation signal in the period S2, and finally ends the output of the scroll operation signal. As a result, the control unit 132 can gradually slow down the scroll operation speed of the operation target screen and finally stop the scroll operation as if the scroll operation of the operation target screen is due to inertia.
- FIG. 17 is a diagram showing an example of a scroll operation by the touch-type operation device 200 according to a modification.
- the operator slides the finger 20 upward from the lower end portion of the first protrusion 112 (three-dimensional cover) while bringing the finger 20 into contact with the first protrusion 112 (three-dimensional cover).
- the scroll operation is performed upward.
- the control unit 132 outputs a scroll operation signal for scrolling the operation target screen upward in a predetermined processing cycle.
- the control unit 132 is for scrolling the operation target screen upward even after the operator releases the finger 20 from the first protrusion 112 (three-dimensional cover) when the upward scroll operation is high speed. Outputs the scroll operation signal.
- the operator moves the finger 20 downward from the upper end portion of the first protrusion 112 (three-dimensional cover) while bringing the finger 20 into contact with the first protrusion 112 (three-dimensional cover).
- the scroll operation is performed downward.
- the control unit 132 outputs a scroll operation signal for scrolling the operation target screen downward at a predetermined processing cycle.
- the control unit 132 is for scrolling the operation target screen downward even after the operator releases the finger 20 from the first protrusion 112 (three-dimensional cover) when the downward scroll operation is high speed. Output the scroll operation signal.
- FIG. 18 is a diagram showing an example of scrolling operation of the operation target screen under the control of the touch-type operation device 200 according to the modification.
- the screen 210 shown in FIG. 18 is an example of an operation target screen displayed on the display of an external device connected to the touch operation device 200.
- the screen 210 scrolls upward or downward by a scroll operation signal supplied from the touch operation device 200 by the drum rotation selection type interface, and a desired selection item can be selected from a plurality of selection items. be.
- the screen 210 is provided with a cursor 211 at the center in the vertical direction. On the screen 210, the selection items selected by the cursor 211 are sequentially changed by the scrolling operation in the vertical direction.
- the screen 210 can confirm the selection of the selection item selected by the cursor 211 at that time when the pressing operation is performed on the touch operation device 200.
- each process of the control unit 132 described above is stored in a memory (ROM, RAM, etc.) in, for example, an IC, a microcomputer, or the like included in the touch-type operating device 200. It is realized by executing a program by a processor (CPU or the like).
- Operation panel 110A Surface 111 1st operation area 112 1st protrusion 112A Surface 113 2nd protrusion 113A Surface 114A, 114B 2nd operation area 115A, 115B 3rd protrusion 116A, 116B 3rd operation area 117A, 117B 4th protrusion 120 FPC 120A Surface 122A-122G 1st detection electrode 124A, 124B 2nd detection electrode 126A, 126B 3rd detection electrode 128A-128D Peripheral electrode 130 Circuit board 132 Control unit 134 LED 140 Light guide sheet 200 Touch-type operation device 210 Screen 211 Cursor
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Human Computer Interaction (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Position Input By Displaying (AREA)
Abstract
This touch operation device comprises a planar substrate having a plurality of detection electrodes arranged side by side in a first direction, and a three-dimensional cover that covers a portion of the planar substrate and is formed from an insulating material. Among the plurality of detection electrodes, a detection electrode at a first-direction end is not covered with the three-dimensional cover, and a detection electrode at the first-direction center, excluding the detection electrode at the end, is covered with the three-dimensional cover, the first-direction width of the detection electrode at the end being less than the first-direction width of the detection electrode at the center.
Description
本発明は、タッチ式操作装置に関する。
The present invention relates to a touch-type operating device.
例えば、下記特許文献1には、半球部と平面部とを組み合わせた三次元の立体形状を有するタッチパッドを備えたコンソールシステムが開示されている。このタッチパッドの半球部と平面部とは形状に明確な差異が有るため、このタッチパッドを操作する操作者は、半球部を触っているのか、平面部を触っているのかを、触覚的に判別することができる。
For example, Patent Document 1 below discloses a console system provided with a touch pad having a three-dimensional three-dimensional shape in which a hemispherical portion and a flat portion are combined. Since there is a clear difference in shape between the hemisphere and the flat surface of this touchpad, the operator who operates this touchpad can tactilely determine whether he is touching the hemisphere or the flat surface. It can be determined.
しかしながら、上記特許文献1のタッチパッドは、半球部が設けられている範囲内における操作の基準位置と方向とを、触覚的に判別可能にする要素を有していない。このため、上記特許文献1のタッチパッドを操作する操作者は、半球部の操作すべきでない部位を操作してしまう虞がある。また、上記特許文献1のタッチパッドを操作する操作者は、操作すべきでない方向への操作を行ってしまう虞がある。さらに、タッチパッドを用いた場合には、スクロール操作を高精度に検出することができなくなる虞がある。
However, the touch pad of Patent Document 1 does not have an element that makes it possible to tactilely discriminate between the reference position and the direction of operation within the range in which the hemisphere portion is provided. Therefore, the operator who operates the touch pad of Patent Document 1 may operate a portion of the hemisphere that should not be operated. Further, the operator who operates the touch pad of Patent Document 1 may perform an operation in a direction in which the touch pad should not be operated. Further, when the touch pad is used, there is a possibility that the scroll operation cannot be detected with high accuracy.
一実施形態に係るタッチ式操作装置は、第1方向に並べて配置された複数の検出電極を有する平面基板と、平面基板の一部を覆う絶縁素材からなる立体カバーとを備え、複数の検出電極のうち、第1方向における端部の検出電極は、立体カバーに覆われてなく、複数の検出電極のうち、端部の検出電極を除く、第1方向における中央部の検出電極は、立体カバーに覆われており、端部の検出電極の第1方向の幅は、中央部の検出電極の第1方向の幅よりも小さい。
The touch-type operating device according to the embodiment includes a flat substrate having a plurality of detection electrodes arranged side by side in the first direction, and a three-dimensional cover made of an insulating material covering a part of the flat substrate, and the plurality of detection electrodes. Of the plurality of detection electrodes, the detection electrode at the end in the first direction is not covered with the solid cover, and the detection electrode at the center in the first direction excluding the detection electrode at the end is covered with a solid cover. The width of the detection electrode at the end in the first direction is smaller than the width of the detection electrode at the center in the first direction.
一実施形態によれば、操作パネルの操作すべき位置を認識し易くすることにより、操作すべきでない位置で入力操作を行ってしまうことを抑制できる。また、一実施形態によれば、操作すべき方向を認識し易くすることにより、操作すべきでない方向への操作を抑制することができる。また、一実施形態によれば、スクロール操作を直感的に行うことができ、スクロール操作を高精度に検出することができる。
According to one embodiment, by making it easy to recognize the position where the operation panel should be operated, it is possible to suppress the input operation from being performed at the position where the operation panel should not be operated. Further, according to one embodiment, by making it easy to recognize the direction to be operated, it is possible to suppress the operation in the direction in which the operation should not be performed. Further, according to one embodiment, the scroll operation can be intuitively performed, and the scroll operation can be detected with high accuracy.
以下、図面を参照して、一実施形態について説明する。
Hereinafter, one embodiment will be described with reference to the drawings.
図1は、一実施形態に係るステアリングホイール10の平面図である。図1に示すステアリングホイール10は、自動車等の車両における運転席の前方に搭載され、車両の運転者によって操作される操舵装置である。図1に示すように、ステアリングホイール10は、円環状のホイール部12と、ホイール部12の中心に設けられ、車両から延設されるコラム(不図示)と接続されるハブ部14と、ホイール部12とハブ部14とを接続する左右一対のスポーク部16とを有する。左右一対のスポーク部16の各々には、操作位置検出装置100が設けられている。操作位置検出装置100は、運転者がステアリングホイール10を把持したまま親指を用いて入力操作を行うことが出来るようにスポーク部16上に設けられた入力装置である。
FIG. 1 is a plan view of the steering wheel 10 according to the embodiment. The steering wheel 10 shown in FIG. 1 is a steering device mounted in front of the driver's seat in a vehicle such as an automobile and operated by the driver of the vehicle. As shown in FIG. 1, the steering wheel 10 includes an annular wheel portion 12, a hub portion 14 provided at the center of the wheel portion 12 and connected to a column (not shown) extending from the vehicle, and a wheel. It has a pair of left and right spoke portions 16 that connect the portions 12 and the hub portion 14. An operation position detection device 100 is provided on each of the pair of left and right spoke portions 16. The operation position detection device 100 is an input device provided on the spoke portion 16 so that the driver can perform an input operation using the thumb while holding the steering wheel 10.
図8は、一実施形態に係る操作位置検出装置の分解斜視図である。図1及び図8に示すように、操作位置検出装置100は、運転者側に設けられた操作パネル110と、運転者から見て操作パネル110の裏面側に設けられた静電検出基板(FPC120)と、検出信号を処理する集積回路(制御部132)を有する回路基板130とを有している。また、操作位置検出装置100は、操作パネル110と回路基板130とを支持するケース102を有している。操作位置検出装置100は、静電式の検出機構を有し、運転者が操作パネル110の表面110Aに、手を触れた時、または、ジェスチャを行った時、その入力操作の内容を静電検出して検出信号を生成する機能を有している。また、操作位置検出装置100は、当該入力操作の内容に応じた操作信号を生成し、操作対象機器(例えば、オーディオ機器等)に出力できる装置である。なお、操作パネル110は、平面形状と突出形状とを組み合わせた形状を有している。なお、本願において、ジェスチャとは、操作者が手、または、指を、操作パネル110に近接させて、操作パネル110のなす表面形状に沿って動かす動作を指し、且つ、その動作の最中に、少なくとも一度は、手が操作パネル110に接触する動作を指す。なお、ジェスチャは入力操作の一例である。
FIG. 8 is an exploded perspective view of the operation position detection device according to the embodiment. As shown in FIGS. 1 and 8, the operation position detection device 100 includes an operation panel 110 provided on the driver side and an electrostatic detection board (FPC120) provided on the back surface side of the operation panel 110 when viewed from the driver. ), And a circuit board 130 having an integrated circuit (control unit 132) for processing the detection signal. Further, the operation position detection device 100 has a case 102 that supports the operation panel 110 and the circuit board 130. The operation position detection device 100 has an electrostatic detection mechanism, and when the driver touches the surface 110A of the operation panel 110 or makes a gesture, the content of the input operation is electrostatically charged. It has a function to detect and generate a detection signal. Further, the operation position detection device 100 is a device that can generate an operation signal according to the content of the input operation and output it to an operation target device (for example, an audio device or the like). The operation panel 110 has a shape that is a combination of a planar shape and a protruding shape. In the present application, the gesture refers to an operation in which the operator moves a hand or a finger close to the operation panel 110 along the surface shape formed by the operation panel 110, and during the operation. , At least once, refers to the action of the hand touching the operation panel 110. Gesture is an example of input operation.
なお、本実施形態では、便宜上、ステアリングホイール10が搭載される車両の進行方向を基準として、車両の高さ方向に対応する方向を上下方向(Z軸方向)とし、車両の進行方向を、前後方向(Y軸方向)とする。また、上下方向、及び、前後方向と直交する方向を、左右方向(X軸方向)とする。
In the present embodiment, for convenience, the direction corresponding to the height direction of the vehicle is set to the vertical direction (Z-axis direction) with the traveling direction of the vehicle on which the steering wheel 10 is mounted as a reference, and the traveling direction of the vehicle is set to the front-rear direction. The direction (Y-axis direction). Further, the vertical direction and the direction orthogonal to the front-back direction are defined as the left-right direction (X-axis direction).
図2は、一実施形態に係る操作位置検出装置100の平面図である。図3は、一実施形態に係る操作位置検出装置100の第1突部112の形状を拡大して示す一部拡大断面図である。図4は、一実施形態に係る操作パネル110を取り外した状態の操作位置検出装置100の平面図である。なお、ステアリングホイール10が備える左右一対の操作位置検出装置100は、左右対称である点を除き、同様の構成を有する。以下では、左側の操作位置検出装置100を代表的に用いて、操作位置検出装置100の構成を説明する。
FIG. 2 is a plan view of the operation position detection device 100 according to the embodiment. FIG. 3 is a partially enlarged cross-sectional view showing an enlarged shape of the first protrusion 112 of the operation position detection device 100 according to the embodiment. FIG. 4 is a plan view of the operation position detection device 100 in a state where the operation panel 110 according to the embodiment is removed. The pair of left and right operation position detection devices 100 included in the steering wheel 10 have the same configuration except that they are symmetrical. Hereinafter, the configuration of the operation position detection device 100 will be described using the operation position detection device 100 on the left side as a representative.
なお、図2に示すように、後方(Y軸負方向)からの平面視において、操作位置検出装置100が備える操作パネル110の上下操作方向(「第1操作方向」の一例)および左右操作方向(「第2操作方向」の一例)は、ステアリングホイール10の上下方向(Z軸方向)および左右方向(X軸方向)に対して、反時計回りに所定角度傾いている。以降の説明では、操作パネル110の上下操作方向を、Z'軸方向とし、上操作方向を、Z'(+)方向とし、下操作方向を、Z'(-)方向とする。また、操作パネル110の左右操作方向を、X'軸方向とし、右操作方向を、X'(+)方向とし、左操作方向を、X'(-)方向とする。なお、上下操作方向は、運転者がステアリングホイール10を把持したまま親指で操作パネル110に触り、母指球を中心として親指を回転動作させたときに親指の指先が描く円弧の接線方向と平行に設けられる。
As shown in FIG. 2, in a plan view from the rear (Y-axis negative direction), the vertical operation direction (an example of the "first operation direction") and the left-right operation direction of the operation panel 110 included in the operation position detection device 100. (An example of the "second operation direction") is tilted counterclockwise by a predetermined angle with respect to the vertical direction (Z-axis direction) and the left-right direction (X-axis direction) of the steering wheel 10. In the following description, the vertical operation direction of the operation panel 110 is the Z'axis direction, the upper operation direction is the Z'(+) direction, and the lower operation direction is the Z'(−) direction. Further, the left-right operation direction of the operation panel 110 is the X'axis direction, the right operation direction is the X'(+) direction, and the left operation direction is the X'(−) direction. The vertical operation direction is parallel to the tangential direction of the arc drawn by the fingertip of the thumb when the driver touches the operation panel 110 with the thumb while holding the steering wheel 10 and rotates the thumb around the thumb ball. It is provided in.
図2~図4に示すように、操作位置検出装置100は、ケース102、操作パネル110、FPC120、回路基板130、および導光シート140を備える。
As shown in FIGS. 2 to 4, the operation position detection device 100 includes a case 102, an operation panel 110, an FPC 120, a circuit board 130, and a light guide sheet 140.
ケース102は、操作位置検出装置100の基部として機能する部材である。ケース102は、FPC120、回路基板130、および導光シート140を収容する部材である。ケース102は、操作パネル110、FPC120、回路基板130、および導光シート140を支持している。例えば、ケース102は、金型技術を用いて、合成樹脂素材を成形した成形体として形成される。
The case 102 is a member that functions as a base of the operation position detection device 100. The case 102 is a member that houses the FPC 120, the circuit board 130, and the light guide sheet 140. The case 102 supports the operation panel 110, the FPC 120, the circuit board 130, and the light guide sheet 140. For example, the case 102 is formed as a molded body obtained by molding a synthetic resin material by using a mold technique.
操作パネル110は、ケース102の前面を覆う平板状の部材である。例えば、操作パネル110は、合成樹脂素材からなる成形体として形成される表面110Aは、操作者による入力操作がなされる操作面である。表面110Aには、第1操作領域111が設けられている。第1操作領域111には、第1突部112が突出して設けられている。
The operation panel 110 is a flat plate-shaped member that covers the front surface of the case 102. For example, the surface 110A of the operation panel 110 formed as a molded body made of a synthetic resin material is an operation surface on which an input operation is performed by an operator. The surface 110A is provided with a first operation region 111. The first protrusion 112 is provided so as to project in the first operation region 111.
本実施形態では、第1突部112は、概ね楕円球の一部を切出した略半楕円球形状を有している。すなわち、第1突部112の表面112Aは、二次曲面形状を有している。また、本実施形態では、第1操作領域111および第1突部112は、平面視において、上下操作方向(Z'軸方向、「第1方向」の一例)を長手方向とする楕円形状を有する。即ち、上下操作方向とは、平面視において、第1操作領域111および第1突部112のなす楕円形状の長軸と重なる方向である。
In the present embodiment, the first protrusion 112 has a substantially semi-elliptical sphere shape obtained by cutting out a part of an ellipsoidal sphere. That is, the surface 112A of the first protrusion 112 has a quadric surface shape. Further, in the present embodiment, the first operation region 111 and the first protrusion 112 have an elliptical shape in which the vertical operation direction (Z'axis direction, an example of the "first direction") is the longitudinal direction in a plan view. .. That is, the vertical operation direction is a direction that overlaps with the long axis of the elliptical shape formed by the first operation region 111 and the first protrusion 112 in a plan view.
第1突部112の表面112Aには、第2突部113が突出して設けられている。本実施形態では、第2突部113は、平面視において、表面112Aのなす楕円形状の短軸と重なった直線状に設けられている。第2突部113は、当該楕円形状の中心を通り、且つ、表面112Aに沿って左右操作方向(X'軸方向、「第2方向」の一例)に延在する、細長いリブ形状であり、操作者が触れたとき、リブ形状であることを認識できる程度の高さ寸法を有して設けられている。また、第2突部113は、操作者による入力操作を妨げない程度の高さ寸法を有して設けられている。図3に示すように、当該リブ形状の角部は面取りされており、第2突部113は、その断面形状が半球形状を有している。すなわち、第2突部113は、その表面113Aが曲面状を有している。
The second protrusion 113 is provided on the surface 112A of the first protrusion 112 so as to project. In the present embodiment, the second protrusion 113 is provided in a linear shape overlapping the elliptical minor axis formed by the surface 112A in a plan view. The second protrusion 113 has an elongated rib shape that passes through the center of the elliptical shape and extends along the surface 112A in the left-right operation direction (X'axis direction, an example of the “second direction”). It is provided with a height dimension that allows the operator to recognize that it has a rib shape when touched. Further, the second protrusion 113 is provided with a height dimension that does not interfere with the input operation by the operator. As shown in FIG. 3, the corner portion of the rib shape is chamfered, and the cross-sectional shape of the second protrusion 113 has a hemispherical shape. That is, the surface 113A of the second protrusion 113 has a curved surface.
また、図2に示すように、操作パネル110は、表面110Aにおいて、第1操作領域111よりも左右操作方向(X'軸方向)における外側に設けられた、第2操作領域114A,114Bを有する。また、操作パネル110は、第2操作領域114A,114Bにおいて表面110Aから突出して設けられた第3突部115A,115Bを有する。第3突部115A,115Bは、操作者が触れたとき、突出部であることを認識できる程度の高さ寸法を有して設けられている。また、第3突部115A,115Bは、操作者による入力操作を妨げない程度の高さ寸法を有して設けられている。本実施形態では、操作パネル110は、第1操作領域111の左操作方向側(X'(-)側)および右操作方向側(X'(+)側)の各々に、第2操作領域114A,114Bおよび第3突部115A,115Bを有する。第2操作領域114A,114Bおよび第3突部115A,115Bは、平面視において、第2突部113の延長線上に設けられている。第3突部115A,115Bは、表面110Aから後方(Y軸負方向)へ向けて突設されている。第3突部115Aは、後方(Y軸負方向)からの平面視において、二等辺三角形状を有し、その二等辺三角形の二本の等辺が共有する頂点は左操作方向側(X'(-)側)に設けられている。また、第3突部115Bは、後方からの平面視において、二等辺三角形状を有し、その二等辺三角形の二本の等辺が共有する頂点は右操作方向側(X'(+)側)に設けられている。
Further, as shown in FIG. 2, the operation panel 110 has second operation areas 114A and 114B provided on the surface 110A outside the first operation area 111 in the left-right operation direction (X'axis direction). .. Further, the operation panel 110 has third protrusions 115A and 115B provided so as to project from the surface 110A in the second operation areas 114A and 114B. The third protrusions 115A and 115B are provided with a height dimension that allows the operator to recognize that they are protrusions when touched. Further, the third protrusions 115A and 115B are provided with a height dimension that does not interfere with the input operation by the operator. In the present embodiment, the operation panel 110 has a second operation area 114A in each of the left operation direction side (X'(−) side) and the right operation direction side (X'(+) side) of the first operation area 111. , 114B and third protrusions 115A, 115B. The second operation areas 114A and 114B and the third protrusions 115A and 115B are provided on the extension line of the second protrusion 113 in a plan view. The third protrusions 115A and 115B project from the surface 110A toward the rear (Y-axis negative direction). The third protrusion 115A has an isosceles triangle shape in a plan view from the rear (Y-axis negative direction), and the apex shared by the two isosceles triangles is on the left operation direction side (X'(X'( -) Is provided on the side). Further, the third protrusion 115B has an isosceles triangle shape in a plan view from the rear, and the apex shared by the two isosceles triangles is the right operation direction side (X'(+) side). It is provided in.
また、図2に示すように、操作パネル110は、表面110Aにおいて、第1操作領域111よりも上下操作方向(Z'軸方向)における外側に設けられた第3操作領域116A,116Bを有する。また、操作パネル110は、第3操作領域116A,116Bにおいて表面110Aから突出して設けられた第4突部117A,117Bを有する。第4突部117A,117Bは、操作者が触れたとき、突出部であることを認識できる程度の高さ寸法を有して設けられている。また、第4突部117A,117Bは、操作者によるジェスチャを妨げない程度の高さ寸法を有して設けられている。本実施形態では、操作パネル110は、第1操作領域111の上操作方向側(Z'(+)側)および下操作方向側(Z'(-)側)の各々に、第3操作領域116A,116Bおよび第4突部117A,117Bを有する。第3操作領域116A,116Bおよび第4突部117A,117Bは、平面視において、表面112Aのなす楕円形状の長軸の延長線上に設けられている。第4突部117A,117Bは、一枚岩形状を有し、表面110Aから後方(Y軸負方向)へ向けて突設されている。第4突部117Aは、後方(Y軸負方向)からの平面視において、二等辺三角形状を有し、その二等辺三角形の二本の等辺が共有する頂点は上操作方向側(Z'(+)側)に設けられている。また、第4突部117Bは、後方からの平面視において、二等辺三角形状を有し、その二等辺三角形の二本の等辺が共有する頂点は下操作方向側(Z'(-)側)に設けられている。
Further, as shown in FIG. 2, the operation panel 110 has third operation areas 116A and 116B provided on the surface 110A outside the first operation area 111 in the vertical operation direction (Z'axis direction). Further, the operation panel 110 has fourth protrusions 117A and 117B provided so as to project from the surface 110A in the third operation areas 116A and 116B. The fourth protrusions 117A and 117B are provided with a height dimension that allows the operator to recognize that they are protruding portions when touched. Further, the fourth protrusions 117A and 117B are provided with a height dimension that does not interfere with the gesture by the operator. In the present embodiment, the operation panel 110 has a third operation area 116A in each of the upper operation direction side (Z'(+) side) and the lower operation direction side (Z'(−) side) of the first operation area 111. , 116B and fourth protrusions 117A, 117B. The third operation areas 116A and 116B and the fourth protrusions 117A and 117B are provided on an extension of the elliptical long axis formed by the surface 112A in a plan view. The fourth protrusions 117A and 117B have a monolithic shape and project from the surface 110A toward the rear (Y-axis negative direction). The fourth protrusion 117A has an isosceles triangle shape in a plan view from the rear (Y-axis negative direction), and the apex shared by the two isosceles triangles is the upper operation direction side (Z'(Z'(Z'( It is provided on the +) side). Further, the fourth protrusion 117B has an isosceles triangle shape in a plan view from the rear, and the apex shared by the two isosceles triangles is the lower operation direction side (Z'(-) side). It is provided in.
FPC120は、操作パネル110の裏側(Y軸正側)に配置される、フィルム状の基板である。図4を参照して後述するように、FPC120の表面120Aには、複数の検出電極が配置されている。例えば、複数の検出電極の各々は、導電性を有する薄膜状の素材(例えば、銅箔)が用いられて形成される。複数の検出電極の各々は、当該検出電極に近接した指と容量結合することによって、静電容量が変化する。これにより、複数の検出電極の各々と電気的に接続された回路基板130の制御部132は、操作パネル110に対する入力操作が検出可能である。
The FPC 120 is a film-like substrate arranged on the back side (Y-axis positive side) of the operation panel 110. As will be described later with reference to FIG. 4, a plurality of detection electrodes are arranged on the surface 120A of the FPC 120. For example, each of the plurality of detection electrodes is formed by using a thin film material having conductivity (for example, copper foil). The capacitance of each of the plurality of detection electrodes is changed by capacitively coupling with a finger in the vicinity of the detection electrode. As a result, the control unit 132 of the circuit board 130 electrically connected to each of the plurality of detection electrodes can detect the input operation to the operation panel 110.
回路基板130は、平板形状を有し、表面に電子回路が形成された基板である。回路基板130は、FPC120のY軸正方向に配置される。回路基板130としては、例えば、PWB(Printed Wiring Board)等が用いられる。回路基板130は、制御部132を備える。制御部132は、FPC120を介して、複数の検出電極の各々と接続されている。制御部132は、複数の検出電極の各々の検出信号(すなわち、静電容量値)に基づいて、操作パネル110に対する入力操作を検出することができる。制御部132としては、例えば、IC、マイコン等が用いられる。
The circuit board 130 has a flat plate shape and has an electronic circuit formed on its surface. The circuit board 130 is arranged in the Y-axis positive direction of the FPC 120. As the circuit board 130, for example, a PWB (Printed Wiring Board) or the like is used. The circuit board 130 includes a control unit 132. The control unit 132 is connected to each of the plurality of detection electrodes via the FPC 120. The control unit 132 can detect an input operation to the operation panel 110 based on the detection signal (that is, the capacitance value) of each of the plurality of detection electrodes. As the control unit 132, for example, an IC, a microcomputer, or the like is used.
導光シート140は、操作パネル110と回路基板130との間に設けられる導光性を有するシート状の部材である。操作パネル110は透光性を有する照光マーカ部(不図示)を有しており、導光シート140は、回路基板130に設けられたLED(Light Emitting Diode)134から出射された光を、当該照光マーカ部へと導く。
The light guide sheet 140 is a sheet-like member having light guide properties provided between the operation panel 110 and the circuit board 130. The operation panel 110 has a light-transmitting marker unit (not shown), and the light guide sheet 140 receives light emitted from an LED (Light Emitting Diode) 134 provided on the circuit board 130. Leads to the illuminated marker section.
(FPC120の構成)
図4に示すように、FPC120の表面120Aには、第1検出電極122A~122G、第2検出電極124A,124B、第3検出電極126A,126Bが配置されている。 (Configuration of FPC120)
As shown in FIG. 4, thefirst detection electrodes 122A to 122G, the second detection electrodes 124A and 124B, and the third detection electrodes 126A and 126B are arranged on the surface 120A of the FPC 120.
図4に示すように、FPC120の表面120Aには、第1検出電極122A~122G、第2検出電極124A,124B、第3検出電極126A,126Bが配置されている。 (Configuration of FPC120)
As shown in FIG. 4, the
第1検出電極122A~122Gは、表面120Aに沿って左右操作方向(X'軸方向、「第2方向」の一例)の中央において、上下操作方向(Z'軸方向)に並べて配置されている。第1検出電極122A~122Gの各々は、長辺が左右操作方向と平行な長方形状を有する。
The first detection electrodes 122A to 122G are arranged side by side in the vertical operation direction (Z'axis direction) at the center of the left-right operation direction (X'axis direction, an example of the "second direction") along the surface 120A. .. Each of the first detection electrodes 122A to 122G has a rectangular shape whose long side is parallel to the left-right operation direction.
第2検出電極124Aは、第1検出電極122A~122Gよりも、左操作方向側(X'(-)側)に配置されている。第2検出電極124Aは、第3突部115Aと重なる位置に配置されている。第2検出電極124Aは、第3突部115Aに対する入力操作を検出する。第2検出電極124Aは、第3突部115Aの形状に応じて、左操作方向を示す三角形状を有する。
The second detection electrode 124A is arranged on the left operation direction side (X'(−) side) with respect to the first detection electrodes 122A to 122G. The second detection electrode 124A is arranged at a position overlapping the third protrusion 115A. The second detection electrode 124A detects an input operation with respect to the third protrusion 115A. The second detection electrode 124A has a triangular shape indicating the left operation direction according to the shape of the third protrusion 115A.
第2検出電極124Bは、第1検出電極122A~122Gよりも、右操作方向側(X'(+)側)に配置されている。第2検出電極124Bは、第3突部115Bと重なる位置に配置されている。第2検出電極124Bは、第3突部115Bに対する入力操作を検出する。第2検出電極124Bは、第3突部115Bの形状に応じて、右操作方向を示す三角形状を有する。
The second detection electrode 124B is arranged on the right operation direction side (X'(+) side) of the first detection electrodes 122A to 122G. The second detection electrode 124B is arranged at a position overlapping the third protrusion 115B. The second detection electrode 124B detects an input operation with respect to the third protrusion 115B. The second detection electrode 124B has a triangular shape indicating the right operation direction according to the shape of the third protrusion 115B.
第3検出電極126Aは、第1検出電極122A~122Gよりも、上操作方向側(Z'(+)側)に配置されている。第3検出電極126Aは、第4突部117Aと重なる位置に配置されている。第3検出電極126Aは、第4突部117Aに対する入力操作を検出する。第3検出電極126Aは、第4突部117Aの形状に応じて、上操作方向を示す三角形状を有する。
The third detection electrode 126A is arranged on the upper operation direction side (Z'(+) side) with respect to the first detection electrodes 122A to 122G. The third detection electrode 126A is arranged at a position overlapping the fourth protrusion 117A. The third detection electrode 126A detects an input operation with respect to the fourth protrusion 117A. The third detection electrode 126A has a triangular shape indicating the upper operation direction according to the shape of the fourth protrusion 117A.
第3検出電極126Bは、第1検出電極122A~122Gよりも、下操作方向側(Z'(-)側)に配置されている。第3検出電極126Bは、第4突部117Bと重なる位置に配置されている。第3検出電極126Bは、第4突部117Bに対する入力操作を検出する。第3検出電極126Bは、第4突部117Bの形状に応じて、下操作方向を示す三角形状を有する。
The third detection electrode 126B is arranged on the lower operation direction side (Z'(−) side) with respect to the first detection electrodes 122A to 122G. The third detection electrode 126B is arranged at a position overlapping the fourth protrusion 117B. The third detection electrode 126B detects an input operation with respect to the fourth protrusion 117B. The third detection electrode 126B has a triangular shape indicating a downward operation direction according to the shape of the fourth protrusion 117B.
また、FPC120の表面120Aには、第1検出電極122A~122Gの左右両方の外側に、周辺電極128A~128Dがさらに配置されている。周辺電極128A,128Bは、第1検出電極122A~122Gの左操作方向側(X'(-)側)に、上下操作方向(Z'軸方向)に並べて配置されている。周辺電極128C,128Dは、第1検出電極122A~122Gの右操作方向側(X'(+)側)に、上下操作方向(Z'軸方向)に並べて配置されている。周辺電極128A~128Dは、スクロール操作の検出の補正用に用いられる。
Further, on the surface 120A of the FPC 120, peripheral electrodes 128A to 128D are further arranged on the outside of both the left and right sides of the first detection electrodes 122A to 122G. The peripheral electrodes 128A and 128B are arranged side by side in the vertical operation direction (Z'axis direction) on the left operation direction side (X'(−) side) of the first detection electrodes 122A to 122G. The peripheral electrodes 128C and 128D are arranged side by side in the vertical operation direction (Z'axis direction) on the right operation direction side (X'(+) side) of the first detection electrodes 122A to 122G. The peripheral electrodes 128A to 128D are used for correcting the detection of the scroll operation.
(各突部と各検出電極との位置関係)
図5は、一実施形態に係る操作位置検出装置100における各突部と各検出電極との位置関係を示す平面図である。図5では、FPC120の表面120Aに対し、第1突部112、第2突部113、第3突部115A,115B、および第4突部117A,117Bが、重ねて示されている。 (Positional relationship between each protrusion and each detection electrode)
FIG. 5 is a plan view showing the positional relationship between each protrusion and each detection electrode in the operationposition detection device 100 according to the embodiment. In FIG. 5, the first protrusion 112, the second protrusion 113, the third protrusions 115A and 115B, and the fourth protrusions 117A and 117B are superimposed on the surface 120A of the FPC 120.
図5は、一実施形態に係る操作位置検出装置100における各突部と各検出電極との位置関係を示す平面図である。図5では、FPC120の表面120Aに対し、第1突部112、第2突部113、第3突部115A,115B、および第4突部117A,117Bが、重ねて示されている。 (Positional relationship between each protrusion and each detection electrode)
FIG. 5 is a plan view showing the positional relationship between each protrusion and each detection electrode in the operation
図5に示すように、第1検出電極122A~122Gのうち、第1検出電極122B~122Fは、第1突部112と重なる位置に配置されている。これにより、第1検出電極122B~122Fは、第1突部112に対する入力操作に応じて静電容量が変化し、当該入力操作を検出することができる。
As shown in FIG. 5, of the first detection electrodes 122A to 122G, the first detection electrodes 122B to 122F are arranged at positions overlapping with the first protrusion 112. As a result, the capacitance of the first detection electrodes 122B to 122F changes according to the input operation with respect to the first protrusion 112, and the input operation can be detected.
また、図5に示すように、第2検出電極124Aは、第3突部115Aと重なる位置に配置されている。これにより、第2検出電極124Aは、第2検出電極124Aは、第3突部115Aに対する入力操作に応じて静電容量が変化し、当該入力操作を検出することができる。
Further, as shown in FIG. 5, the second detection electrode 124A is arranged at a position overlapping with the third protrusion 115A. As a result, the capacitance of the second detection electrode 124A of the second detection electrode 124A changes according to the input operation with respect to the third protrusion 115A, and the input operation can be detected.
また、図5に示すように、第2検出電極124Bは、第3突部115Bと重なる位置に配置されている。これにより、第2検出電極124Bは、第3突部115Bに対する入力操作に応じて静電容量が変化し、当該入力操作を検出することができる。
Further, as shown in FIG. 5, the second detection electrode 124B is arranged at a position overlapping with the third protrusion 115B. As a result, the capacitance of the second detection electrode 124B changes according to the input operation with respect to the third protrusion 115B, and the input operation can be detected.
また、図5に示すように、第3検出電極126Aは、第4突部117Aと重なる位置に配置されている。これにより、第3検出電極126Aは、第4突部117Aに対する入力操作に応じて静電容量が変化し、当該入力操作を検出することができる。
Further, as shown in FIG. 5, the third detection electrode 126A is arranged at a position overlapping with the fourth protrusion 117A. As a result, the capacitance of the third detection electrode 126A changes according to the input operation with respect to the fourth protrusion 117A, and the input operation can be detected.
また、図5に示すように、第3検出電極126Bは、第4突部117Bと重なる位置に配置されている。これにより、第3検出電極126Bは、第4突部117Bに対する入力操作に応じて静電容量が変化し、当該入力操作を検出することができる。
Further, as shown in FIG. 5, the third detection electrode 126B is arranged at a position overlapping with the fourth protrusion 117B. As a result, the capacitance of the third detection electrode 126B changes according to the input operation with respect to the fourth protrusion 117B, and the input operation can be detected.
(操作位置検出装置100のスクロール操作方法)
図6および図7は、一実施形態に係る操作位置検出装置100のスクロール操作方法を説明するための平面図および一部拡大断面図である。図6では、FPC120の表面120Aに対し、第1突部112、第2突部113、第3突部115A,115B、および第4突部117A,117Bが、重ねて示されている。 (Scroll operation method of operation position detection device 100)
6 and 7 are a plan view and a partially enlarged cross-sectional view for explaining a scroll operation method of the operationposition detection device 100 according to the embodiment. In FIG. 6, the first protrusion 112, the second protrusion 113, the third protrusions 115A and 115B, and the fourth protrusions 117A and 117B are overlapped with respect to the surface 120A of the FPC 120.
図6および図7は、一実施形態に係る操作位置検出装置100のスクロール操作方法を説明するための平面図および一部拡大断面図である。図6では、FPC120の表面120Aに対し、第1突部112、第2突部113、第3突部115A,115B、および第4突部117A,117Bが、重ねて示されている。 (Scroll operation method of operation position detection device 100)
6 and 7 are a plan view and a partially enlarged cross-sectional view for explaining a scroll operation method of the operation
第2突部113は、表面112Aから後方(Y軸負方向)へ向けて突設され、左右操作方向に向けて設けられた突堤形状を有している。また、第2突部113は、第1突部112の表面112Aの前後方向の中心位置に配置されている。第2突部113の表面113Aは、表面112Aよりも曲率の大きい曲面形状を有している。また、第1突部112は、楕円形状を有しており、運転者がステアリングホイール10を把持したまま親指を用いて入力操作を行うことが出来る位置に配置されている。そのため、操作者は、操作者は、第1突部112に触れてその形状を認識した時、その他に示唆となる情報が無くても、指20を上下操作方向(Z'軸方向)へスライド移動させる入力操作(すなわちスクロール操作)を行うことができる。
The second protrusion 113 has a jetty shape that protrudes rearward (Y-axis negative direction) from the surface 112A and is provided in the left-right operation direction. Further, the second protrusion 113 is arranged at the center position in the front-rear direction of the surface 112A of the first protrusion 112. The surface 113A of the second protrusion 113 has a curved surface shape having a larger curvature than the surface 112A. Further, the first protrusion 112 has an elliptical shape, and is arranged at a position where the driver can perform an input operation using his / her thumb while holding the steering wheel 10. Therefore, when the operator touches the first protrusion 112 and recognizes the shape, the operator slides the finger 20 in the vertical operation direction (Z'axis direction) even if there is no other suggestive information. It is possible to perform an input operation (that is, a scroll operation) to move.
また、操作者は、スクロール操作を行う際、第1突部112と第2突部113とを指20で同時に触る。その際、操作者は、第1突部112と第2突部113とが備えている共通性の有る特徴、及び、関連性の高い特徴を明確に認識できる。具体的には、第1突部112のなす楕円形状の短軸方向と第2突部113の設けられた方向とは共通しているため、操作者は左右操作方向を容易に認識することが出来る。また、第1突部112のなす楕円形状の長軸方向と第2突部113の設けられた方向とは直交しているため、操作者は上下操作方向を容易に認識することが出来る。また、第2突部113は、第1突部112の表面112Aの前後方向の中心位置に配置されているため、操作者は第1突部112のなす楕円形状の長軸方向の中心位置を容易に認識できる。このことによって、操作者は、表面112Aに対してスクロール操作をする時の基準位置、及び、スクロール操作をすべき方向を、触覚から得た情報を元にして容易に判断することができる。
Further, the operator touches the first protrusion 112 and the second protrusion 113 at the same time with the finger 20 when performing the scroll operation. At that time, the operator can clearly recognize the common features and the highly related features of the first protrusion 112 and the second protrusion 113. Specifically, since the elliptical short axis direction formed by the first protrusion 112 and the direction provided with the second protrusion 113 are common, the operator can easily recognize the left and right operation directions. I can. Further, since the elliptical long axis direction formed by the first protrusion 112 and the direction provided with the second protrusion 113 are orthogonal to each other, the operator can easily recognize the vertical operation direction. Further, since the second protrusion 113 is arranged at the center position in the front-rear direction of the surface 112A of the first protrusion 112, the operator can set the center position of the elliptical shape formed by the first protrusion 112 in the long axis direction. Easy to recognize. As a result, the operator can easily determine the reference position when the scroll operation is performed on the surface 112A and the direction in which the scroll operation should be performed based on the information obtained from the tactile sense.
ここで、図6および図7に示す例では、第2突部113と第1突部112との交線上の点として、第2突部113の上操作方向側(Z'(+)側)に形成され、周辺部をZY平面で切断した断面形状が鈍角、または、直角となる接触点P1が規定される。また、第2突部113の頂点を繋いだ稜線上の点として形成される接触点P2が規定される。また、第2突部113と第1突部112との交線上の点として、第2突部113の下操作方向側(Z'(-)側)に形成され、周辺部をZY平面で切断した断面形状が鈍角、または、直角となる接触点P3が規定される。
Here, in the example shown in FIGS. 6 and 7, the upper operation direction side (Z'(+) side) of the second protrusion 113 is defined as a point on the intersection line between the second protrusion 113 and the first protrusion 112. A contact point P1 is defined in which the cross-sectional shape is obtuse or right-angled when the peripheral portion is cut in the ZY plane. Further, a contact point P2 formed as a point on a ridgeline connecting the vertices of the second protrusion 113 is defined. Further, it is formed on the lower operation direction side (Z'(-) side) of the second protrusion 113 as a point on the intersection line between the second protrusion 113 and the first protrusion 112, and the peripheral portion is cut by the ZY plane. A contact point P3 whose cross-sectional shape is obtuse or right-angled is defined.
操作者は、図6および図7に示すように、接触点P1から、接触点P2を経由して、接触点P3まで、下操作方向(Z'(-)方向)に指20をスライドさせることにより、操作対象のアプリケーションに対し、下操作方向へのスクロール操作を行うことが出来る。
As shown in FIGS. 6 and 7, the operator slides the finger 20 in the downward operation direction (Z'(−) direction) from the contact point P1 to the contact point P3 via the contact point P2. Therefore, it is possible to perform a scroll operation in the downward operation direction for the application to be operated.
反対に、操作者は、接触点P3から、接触点P2を経由して、接触点P1まで、上操作方向(Z'(+)方向)に指20をスライドさせることにより、操作対象のアプリケーションに対し、上操作方向へのスクロール操作を行うことが出来る。
On the contrary, the operator slides the finger 20 from the contact point P3 to the contact point P1 via the contact point P2 in the upward operation direction (Z'(+) direction) to move the operation target application. On the other hand, it is possible to perform a scroll operation in the upward operation direction.
この際、第1突部112が楕円形状を有しているため、操作者は、指20をスライドさせるべき上下操作方向(Z'軸方向)を、触覚的に判断することができる。
At this time, since the first protrusion 112 has an elliptical shape, the operator can tactilely determine the vertical operation direction (Z'axis direction) in which the finger 20 should be slid.
また、第2突部113が左右操作方向(X'軸方向)に延在しているため、操作者は、第2突部113の延在する方向と直交する方向を、指20をスライドさせるべき上下操作方向(Z'軸方向)として、触覚的に判断することができる。
Further, since the second protrusion 113 extends in the left-right operation direction (X'axis direction), the operator slides the finger 20 in a direction orthogonal to the extending direction of the second protrusion 113. It can be tactilely determined as the vertical operation direction (Z'axis direction).
したがって、一実施形態に係る操作位置検出装置100によれば、操作パネルの操作すべき位置を認識し易くすることにより、操作すべきでない位置で入力操作を行ってしまうことを抑制できる。また、一実施形態に係る操作位置検出装置100によれば、操作すべき方向を認識し易くすることにより、操作すべきでない方向への操作を行ってしまうことを抑制することができる。
Therefore, according to the operation position detection device 100 according to the embodiment, by making it easy to recognize the position to be operated on the operation panel, it is possible to suppress the input operation from being performed at the position where the operation panel should not be operated. Further, according to the operation position detection device 100 according to the embodiment, by making it easy to recognize the direction to be operated, it is possible to suppress the operation in the direction in which the operation should not be performed.
また、操作者は、指20を表面112Aおよび表面113Aに沿って上下操作方向(Z'軸方向)にスライド移動させる時、触覚から得られる情報を元にして所定の距離(すなわち、接触点P1から接触点P3までの距離)のスライド操作を行うことができる。即ち、操作パネル110を見ることなしに、容易に一定量のスライド操作を行うことができる。
Further, when the operator slides the finger 20 along the surface 112A and the surface 113A in the vertical operation direction (Z'axis direction), the operator makes a predetermined distance (that is, the contact point P1) based on the information obtained from the tactile sense. The slide operation (distance from to the contact point P3) can be performed. That is, a certain amount of slide operation can be easily performed without looking at the operation panel 110.
操作者は、このようなスライド操作を行うことにより、操作対象のアプリケーションに対し、上下方向へのスクロール操作を行うことができる。
By performing such a slide operation, the operator can perform a vertical scroll operation on the application to be operated.
制御部132は、FPC120上に設けられた電極(122A~122G、124A、124B、126A、126B、128A~128D)に接続されている。また、制御部132は、操作位置検出装置100のディスプレイ等の外部機器(不図示)と接続されている。制御部132は、電極(122A~122G、124A、124B、126A、126B、128A~128D)の各々から検出された検出信号(すなわち、静電容量値)を受信し、当該検出信号を元に指20の位置情報を決定する。また、制御部132は、当該検出位置の位置信号を外部機器へ送信する。
The control unit 132 is connected to electrodes (122A to 122G, 124A, 124B, 126A, 126B, 128A to 128D) provided on the FPC 120. Further, the control unit 132 is connected to an external device (not shown) such as a display of the operation position detection device 100. The control unit 132 receives the detection signal (that is, the capacitance value) detected from each of the electrodes (122A to 122G, 124A, 124B, 126A, 126B, 128A to 128D), and indicates based on the detection signal. 20 position information is determined. Further, the control unit 132 transmits the position signal of the detection position to the external device.
図9は、一実施形態に係る第1突部に対して入力操作が行われたときに制御部132によって制御された外部機器が行う表示内容を説明するための模式図である。制御部132は、所定量の上下方向へのスクロール操作が行われた時、入力内容に関わる当該位置信号を外部機器へと送信して、例えば、図9に示す選択要素M2の表示位置を距離L遷移させて選択位置S1にする。また、上記の所定量のスクロール操作の二倍量のスクロール操作が行われた時、制御部132は、例えば、図9に示す選択要素M3の表示位置を距離Lの二倍量遷移させて選択位置S1にする。
FIG. 9 is a schematic diagram for explaining the display content performed by the external device controlled by the control unit 132 when the input operation is performed on the first protrusion according to the embodiment. When a predetermined amount of vertical scrolling operation is performed, the control unit 132 transmits the position signal related to the input content to an external device, and for example, distances the display position of the selection element M2 shown in FIG. The L transition is made to the selected position S1. Further, when the scroll operation is performed twice as much as the above-mentioned predetermined amount of scroll operation, the control unit 132 selects, for example, by shifting the display position of the selection element M3 shown in FIG. 9 by twice the distance L. Set to position S1.
また、制御部132を予め調整して、入力操作の量と当該選択要素の遷移する距離との関連付けを行うことにより、外部機器を的確に操作することが容易になる。具体的には、例えば、距離Lと、指20が接触点P1から接触点P3まで移動したときの当該位置信号の変化量(即ち、入力操作の量)と、を関連付けることによって、外部機器を的確に操作することが容易になる。
Further, by adjusting the control unit 132 in advance and associating the amount of the input operation with the transition distance of the selection element, it becomes easy to accurately operate the external device. Specifically, for example, by associating the distance L with the amount of change in the position signal (that is, the amount of input operation) when the finger 20 moves from the contact point P1 to the contact point P3, the external device can be used. It becomes easy to operate accurately.
制御部132を予め調整した場合の作用効果の一例を以下に説明する。操作者は、触覚から得られる情報を元にして接触点P1から接触点P3までのスライド操作を定量的に行うことが出来る。制御部132は、その入力操作に基づいて位置信号を生成すると共に、当該位置信号は所定の量だけ変化する。外部機器は、当該位置信号に基づいて、選択要素M2の表示位置を距離Lだけ移動させて選択位置S1にする。この一連の動作が行われる時、操作者は、操作パネル110を見る必要が無い。即ち、操作者はブラインドタッチで容易に的確な量の入力操作を行うことが出来るので、操作者は外部機器を正確に、且つ、過不足無く操作することが出来る。
An example of the action and effect when the control unit 132 is adjusted in advance will be described below. The operator can quantitatively perform the slide operation from the contact point P1 to the contact point P3 based on the information obtained from the tactile sense. The control unit 132 generates a position signal based on the input operation, and the position signal changes by a predetermined amount. The external device moves the display position of the selection element M2 by the distance L to the selection position S1 based on the position signal. When this series of operations is performed, the operator does not need to look at the operation panel 110. That is, since the operator can easily perform an accurate amount of input operation by touch typing, the operator can operate the external device accurately and without excess or deficiency.
(操作位置検出装置100のショートカット操作方法)
なお、操作者は、第1突部112および第2突部113を基準として、第1突部112から第1突部112の長軸方向である上操作方向(Z'(+)方向)に指20を移動させることができる。そして、その移動先において突出して設けられた第4突部117Aの位置を触覚的に把握し、当該第4突部117Aに対応して設けられた第3操作領域116Aに対する入力操作(上ショートカット操作)を行うことができる。この際、制御部132は、第4突部117Aの裏側に設けられている第3検出電極126Aの静電容量値に基づいて、第4突部117Aに対する入力操作がなされたことを検出することができる。 (Shortcut operation method of operation position detection device 100)
In addition, the operator refers to thefirst protrusion 112 and the second protrusion 113 in the upper operation direction (Z'(+) direction) which is the long axis direction from the first protrusion 112 to the first protrusion 112. The finger 20 can be moved. Then, the position of the fourth protrusion 117A protruding from the moving destination is grasped tactilely, and an input operation (upper shortcut operation) for the third operation area 116A provided corresponding to the fourth protrusion 117A is performed. )It can be performed. At this time, the control unit 132 detects that the input operation to the fourth protrusion 117A has been performed based on the capacitance value of the third detection electrode 126A provided on the back side of the fourth protrusion 117A. Can be done.
なお、操作者は、第1突部112および第2突部113を基準として、第1突部112から第1突部112の長軸方向である上操作方向(Z'(+)方向)に指20を移動させることができる。そして、その移動先において突出して設けられた第4突部117Aの位置を触覚的に把握し、当該第4突部117Aに対応して設けられた第3操作領域116Aに対する入力操作(上ショートカット操作)を行うことができる。この際、制御部132は、第4突部117Aの裏側に設けられている第3検出電極126Aの静電容量値に基づいて、第4突部117Aに対する入力操作がなされたことを検出することができる。 (Shortcut operation method of operation position detection device 100)
In addition, the operator refers to the
また、操作者は、第1突部112および第2突部113を基準として、第1突部112から第1突部112の長軸方向である下操作方向(Z'(-)方向)に指20を移動させることができる。そして、その移動先において突出して設けられた第4突部117Bの位置を触覚的に把握し、当該第4突部117Bに対応して設けられた第3操作領域116Bに対する入力操作(下ショートカット操作)を行うことができる。この際、制御部132は、第4突部117Bの裏側に設けられている第3検出電極126Bの静電容量値に基づいて、第4突部117Bに対する入力操作がなされたことを検出することができる。
Further, the operator refers to the first protrusion 112 and the second protrusion 113 in the downward operation direction (Z'(−) direction) which is the long axis direction from the first protrusion 112 to the first protrusion 112. The finger 20 can be moved. Then, the position of the fourth protrusion 117B protruding from the moving destination is grasped tactilely, and an input operation (lower shortcut operation) for the third operation area 116B provided corresponding to the fourth protrusion 117B is performed. )It can be performed. At this time, the control unit 132 detects that the input operation to the fourth protrusion 117B has been performed based on the capacitance value of the third detection electrode 126B provided on the back side of the fourth protrusion 117B. Can be done.
制御部132を予め調整して、選択要素の遷移する距離と、第3操作領域に対する入力操作と、を関連付けることにより、入力操作を短縮することができる。具体的には、例えば、距離Lの整数倍量の距離と、上ショートカット操作と、を関連付けることによって、上ショートカット操作を行うだけで、素早く正確に、接触点P1から接触点P3までのスライド操作を数回繰り返したのと同等の入力操作を行うことが出来る。操作者は、第4突部(117A、117B)の位置を触覚的に把握することが出来るため、操作者はブラインドタッチで容易にショートカット操作を行うことが出来る。
The input operation can be shortened by adjusting the control unit 132 in advance and associating the transition distance of the selection element with the input operation for the third operation area. Specifically, for example, by associating a distance that is an integral multiple of the distance L with the upper shortcut operation, a slide operation from the contact point P1 to the contact point P3 can be performed quickly and accurately simply by performing the upper shortcut operation. It is possible to perform the same input operation as repeating the above several times. Since the operator can tactilely grasp the position of the fourth protrusion (117A, 117B), the operator can easily perform a shortcut operation by touch typing.
(操作位置検出装置100の入力モード切替操作方法)
また、操作者は、第1突部112および第2突部113を基準として、第1突部112から第2突部113の延長線上の左操作方向(X'(-)方向)に指20を移動させることができる。そして、その移動先において突出して設けられた第3突部115Aの位置を触覚的に把握し、当該第3突部115Aに対応して設けられた第2操作領域114Aに対する入力操作(左入力モード切替え操作)を行うことができる。この際、制御部132は、第3突部115Aの裏側に設けられている第2検出電極124Aの静電容量値に基づいて、第3突部115Aに対する入力操作がなされたことを検出することができる。 (Input mode switching operation method of operation position detection device 100)
Further, the operator uses thefirst protrusion 112 and the second protrusion 113 as a reference, and the finger 20 is in the left operation direction (X'(−) direction) on the extension line from the first protrusion 112 to the second protrusion 113. Can be moved. Then, the position of the third protrusion 115A protruding from the moving destination is grasped tactilely, and an input operation (left input mode) for the second operation area 114A provided corresponding to the third protrusion 115A is performed. Switching operation) can be performed. At this time, the control unit 132 detects that the input operation to the third protrusion 115A has been performed based on the capacitance value of the second detection electrode 124A provided on the back side of the third protrusion 115A. Can be done.
また、操作者は、第1突部112および第2突部113を基準として、第1突部112から第2突部113の延長線上の左操作方向(X'(-)方向)に指20を移動させることができる。そして、その移動先において突出して設けられた第3突部115Aの位置を触覚的に把握し、当該第3突部115Aに対応して設けられた第2操作領域114Aに対する入力操作(左入力モード切替え操作)を行うことができる。この際、制御部132は、第3突部115Aの裏側に設けられている第2検出電極124Aの静電容量値に基づいて、第3突部115Aに対する入力操作がなされたことを検出することができる。 (Input mode switching operation method of operation position detection device 100)
Further, the operator uses the
また、操作者は、第1突部112および第2突部113を基準として、第1突部112から第2突部113の延長線上の右操作方向(X'(+)方向)に指20を移動させることができる。そして、その移動先において突出して設けられた第3突部115Bの位置を触覚的に把握し、当該第3突部115Bに対応して設けられた第2操作領域114Bに対する入力操作(右入力モード切替え操作)を行うことができる。この際、制御部132は、第3突部115Bの裏側に設けられている第2検出電極124Bの静電容量値に基づいて、第3突部115Bに対する入力操作がなされたことを検出することができる。
Further, the operator uses the first protrusion 112 and the second protrusion 113 as a reference, and the finger 20 is in the right operation direction (X'(+) direction) on the extension line from the first protrusion 112 to the second protrusion 113. Can be moved. Then, the position of the third protrusion 115B protruding from the moving destination is grasped tactilely, and the input operation (right input mode) for the second operation area 114B provided corresponding to the third protrusion 115B is performed. Switching operation) can be performed. At this time, the control unit 132 detects that the input operation to the third protrusion 115B has been performed based on the capacitance value of the second detection electrode 124B provided on the back side of the third protrusion 115B. Can be done.
図10は、一実施形態に係る制御部132によって制御された外部機器が行う表示内容において、第4の選択要素M4が選択された状態を説明するための模式図である。図11は、一実施形態に係る制御部132によって制御された外部機器が行う表示内容において第2操作領域(114A、114B)に対して入力操作が行われたときに第4の選択要素M4から第7の選択要素M7の表示位置が変更される様子を説明するための模式図である。図12は、一実施形態に係る制御部132によって制御された外部機器が行う表示内容において、第5の選択要素M5が選択された状態を説明するための模式図である。
FIG. 10 is a schematic diagram for explaining a state in which the fourth selection element M4 is selected in the display content performed by the external device controlled by the control unit 132 according to the embodiment. FIG. 11 shows from the fourth selection element M4 when an input operation is performed on the second operation area (114A, 114B) in the display content performed by the external device controlled by the control unit 132 according to the embodiment. It is a schematic diagram for demonstrating how the display position of the 7th selection element M7 is changed. FIG. 12 is a schematic diagram for explaining a state in which the fifth selection element M5 is selected in the display content performed by the external device controlled by the control unit 132 according to the embodiment.
操作位置検出装置100は、しばしば、複数の操作対象を操作するための入力装置として設定され、各々の操作対象を操作するための入力モードを切替えることが出来るように設定される。そのような場合、制御部132によって制御される外部機器は、当該入力モードの状態を操作者に示す表示機能を付与されることが有る。当該表示機能の一例として、図10から図12に示すような、各々の操作対象に関連付けられた選択要素(M4~M7)を含んで構成されるドラム回転選択式のインターフェースがある。このようなドラム回転選択式のインターフェースにおいて、現在の入力モードの状態は、選択位置S2に表示される選択要素の種類によって示される。一実施形態に係る制御部132は、入力モード切替え操作を行う度に、選択要素(M4~M7)の表示位置が移動して、ドラム回転選択式のインターフェースが回転するように調整される。具体的には、例えば、図10に示す様に、選択位置S2に選択要素M4が表示されている状態において、左入力モード切替え操作を行った時、ドラム回転選択式のインターフェースが左回転して、図11の状態を経て、90°回転して図12に示す状態になる。このとき、入力モードは、選択要素M4に対応した入力モードから、選択要素M5に対応した入力モードへと切り替わる。操作者は、第3突部(115A、115B)の位置を触覚的に把握することが出来るため、操作者はブラインドタッチで容易に入力モードを切り替えることが出来る。
The operation position detection device 100 is often set as an input device for operating a plurality of operation targets, and is set so that an input mode for operating each operation target can be switched. In such a case, the external device controlled by the control unit 132 may be provided with a display function for indicating the state of the input mode to the operator. As an example of the display function, there is a drum rotation selection type interface configured to include selection elements (M4 to M7) associated with each operation target as shown in FIGS. 10 to 12. In such a drum rotation selection type interface, the current input mode state is indicated by the type of selection element displayed at the selection position S2. The control unit 132 according to one embodiment is adjusted so that the display position of the selection element (M4 to M7) moves and the drum rotation selection type interface rotates each time the input mode switching operation is performed. Specifically, for example, as shown in FIG. 10, when the left input mode switching operation is performed while the selection element M4 is displayed at the selection position S2, the drum rotation selection type interface rotates counterclockwise. After passing through the state of FIG. 11, the drum is rotated by 90 ° to reach the state shown in FIG. At this time, the input mode is switched from the input mode corresponding to the selection element M4 to the input mode corresponding to the selection element M5. Since the operator can tactilely grasp the position of the third protrusion (115A, 115B), the operator can easily switch the input mode by touch typing.
以上、本発明の一実施形態について詳述したが、本発明はこれらの実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形または変更が可能である。
Although one embodiment of the present invention has been described in detail above, the present invention is not limited to these embodiments, and various modifications or modifications are made within the scope of the gist of the present invention described in the claims. It can be changed.
第2突部113は、実施形態で説明した形状に限らない。例えば、第2突部113は、第1突部112の表面112Aに沿って、上下操作方向(Z'軸方向)に延在するリブ形状を有するものであってもよい。また、例えば、第2突部113は、第1突部112の表面112Aに沿って、左右操作方向(X'軸方向)と上下操作方向(Z'軸方向)との各々に延在する、平面視において十字状のリブ形状を有するものであってもよい。また、例えば、第2突部113は、第1突部112の表面112Aの中心に設けられた点状を有するものであってもよい。また、例えば、第2突部113は、第1突部112の表面112Aに沿って、左右操作方向(X'軸方向)または上下操作方向(Z'軸方向)に連続的に並べて設けられた複数の点状を有するものであってもよい。また、例えば、第2突部113は、凹形状と凸形状とが組み合わされた形状(例えば、リブ形状に対して、複数の溝がリブ形状の延在する方向に断続的に形成された形状)を有するものであってもよい。言い換えると、例えば、第2突部113は、各々の間に隙間を空けて一方向に連続的に配置された、複数のリブ片の集合体であってもよい。
The second protrusion 113 is not limited to the shape described in the embodiment. For example, the second protrusion 113 may have a rib shape extending in the vertical operation direction (Z'axis direction) along the surface 112A of the first protrusion 112. Further, for example, the second protrusion 113 extends along the surface 112A of the first protrusion 112 in each of the left-right operation direction (X'axis direction) and the up-down operation direction (Z'axis direction). It may have a cross-shaped rib shape in a plan view. Further, for example, the second protrusion 113 may have a dot shape provided at the center of the surface 112A of the first protrusion 112. Further, for example, the second protrusions 113 are continuously arranged side by side in the left-right operation direction (X'axis direction) or the up-down operation direction (Z'axis direction) along the surface 112A of the first protrusion 112. It may have a plurality of dots. Further, for example, the second protrusion 113 has a shape in which a concave shape and a convex shape are combined (for example, a shape in which a plurality of grooves are intermittently formed in a direction in which the rib shape extends with respect to the rib shape. ) May be present. In other words, for example, the second protrusion 113 may be an aggregate of a plurality of rib pieces arranged continuously in one direction with a gap between them.
〔変形例〕
以下、一実施形態に係る操作位置検出装置100の変形例である、タッチ式操作装置200について説明する。なお、以下では、タッチ式操作装置200に関し、操作位置検出装置100からの変更点について説明する。 [Modification example]
Hereinafter, the touch-type operating device 200, which is a modification of the operating position detecting device 100 according to the embodiment, will be described. In the following, the changes from the operation position detection device 100 will be described with respect to the touch type operation device 200.
以下、一実施形態に係る操作位置検出装置100の変形例である、タッチ式操作装置200について説明する。なお、以下では、タッチ式操作装置200に関し、操作位置検出装置100からの変更点について説明する。 [Modification example]
Hereinafter, the touch-
(各突部と各検出電極との位置関係)
図13は、一変形例に係るタッチ式操作装置200における各突部と各検出電極との位置関係を示す平面図である。一変形例に係るタッチ式操作装置200は、FPC120の代わりに、平面基板201を備え、平面基板201の上面201Aに、操作位置検出装置100と同様の各検出電極が設けられている点で、操作位置検出装置100と異なる。平面基板201としては、例えば、PWB等が用いられる。 (Positional relationship between each protrusion and each detection electrode)
FIG. 13 is a plan view showing the positional relationship between each protrusion and each detection electrode in the touch-type operating device 200 according to the modified example. The touch-type operation device 200 according to one modification is provided with a flat substrate 201 instead of the FPC 120, and each detection electrode similar to the operation position detection device 100 is provided on the upper surface 201A of the flat substrate 201. It is different from the operation position detection device 100. As the flat substrate 201, for example, PWB or the like is used.
図13は、一変形例に係るタッチ式操作装置200における各突部と各検出電極との位置関係を示す平面図である。一変形例に係るタッチ式操作装置200は、FPC120の代わりに、平面基板201を備え、平面基板201の上面201Aに、操作位置検出装置100と同様の各検出電極が設けられている点で、操作位置検出装置100と異なる。平面基板201としては、例えば、PWB等が用いられる。 (Positional relationship between each protrusion and each detection electrode)
FIG. 13 is a plan view showing the positional relationship between each protrusion and each detection electrode in the touch-
図13では、平面基板201の上面201Aに対し、第1突部112、第2突部113、第3突部115A,115B、および第4突部117A,117Bが、重ねて示されている。図13に示すように、一変形例に係るタッチ式操作装置200では、第2突部113との延びる方向と、第1検出電極122A~122Gの長手方向とが、互いに並行であり、且つ、いずれもX軸方向と並行である。なお、第1検出電極122A~122Gは、X軸方向の長さが互いに等しく、全体として長方形状をなす。この長方形状は、Z軸方向が長手方向であり、X軸方向が短手方向である。この長方形状は、長手方向が、第1突部112(立体カバー)の長手方向と一致する。
In FIG. 13, the first protrusion 112, the second protrusion 113, the third protrusions 115A and 115B, and the fourth protrusions 117A and 117B are shown overlapping with respect to the upper surface 201A of the flat substrate 201. As shown in FIG. 13, in the touch-type operating device 200 according to the modified example, the extending direction of the second protrusion 113 and the longitudinal direction of the first detection electrodes 122A to 122G are parallel to each other and are parallel to each other. Both are parallel to the X-axis direction. The first detection electrodes 122A to 122G have the same length in the X-axis direction and have a rectangular shape as a whole. In this rectangular shape, the Z-axis direction is the longitudinal direction, and the X-axis direction is the lateral direction. The longitudinal direction of this rectangular shape coincides with the longitudinal direction of the first protrusion 112 (three-dimensional cover).
図13に示すように、一変形例に係るタッチ式操作装置200は、第1検出電極122A~122Gのうち、Z軸方向(第1方向)における端部の第1検出電極122A,122Gが、第1突部112(絶縁素材からなる立体カバー)に覆われてなく、指20によって直接的に触れることができるようになっている。
As shown in FIG. 13, in the touch-type operating device 200 according to the modified example, among the first detection electrodes 122A to 122G, the first detection electrodes 122A and 122G at the ends in the Z-axis direction (first direction) are It is not covered by the first protrusion 112 (three-dimensional cover made of an insulating material) and can be directly touched by the finger 20.
また、図13に示すように、第1検出電極122A~122Gのうち、端部の第1検出電極122A,122Gを除く、Z軸方向(第1方向)における中央部の第1検出電極122B~122Fが、第1突部112(立体カバー)に覆われているため、指20によって直接的に触れることができないようになっている。
Further, as shown in FIG. 13, among the first detection electrodes 122A to 122G, the first detection electrodes 122B to the central portion in the Z-axis direction (first direction) excluding the first detection electrodes 122A and 122G at the ends. Since the 122F is covered with the first protrusion 112 (three-dimensional cover), it cannot be directly touched by the finger 20.
そして、図13に示すように、端部の第1検出電極122A,122GのZ軸方向(第1方向)の幅が、中央部の第1検出電極122B~122FのZ軸方向(第1方向)の幅よりも小さい。
Then, as shown in FIG. 13, the width of the first detection electrodes 122A and 122G at the ends in the Z-axis direction (first direction) is the Z-axis direction (first direction) of the first detection electrodes 122B to 122F at the center. ) Is smaller than the width.
これにより、一変形例に係るタッチ式操作装置200は、第1突部112(立体カバー)によって覆われていない第1検出電極122A,122Gの検出感度を、第1突部112(立体カバー)によって覆われている第1検出電極122B~122Fの検出感度に近づけることができる。
As a result, the touch-type operating device 200 according to the modified example sets the detection sensitivity of the first detection electrodes 122A and 122G, which are not covered by the first protrusion 112 (three-dimensional cover), to the first protrusion 112 (three-dimensional cover). It is possible to approach the detection sensitivity of the first detection electrodes 122B to 122F covered by the above.
特に、一変形例に係るタッチ式操作装置200は、各検出電極を平面基板201に設けたため、立体的な基板に各検出電極を設ける場合に比較して、安価に製造できる。
In particular, since the touch-type operating device 200 according to one modification is provided with each detection electrode on the flat substrate 201, it can be manufactured at low cost as compared with the case where each detection electrode is provided on a three-dimensional substrate.
また、一変形例に係るタッチ式操作装置200は、第1突部112(立体カバー)の端部の近傍に設けられている第1検出電極122A,122Gが、第1突部112(立体カバー)によって覆われていないため、指20が第1突部112(立体カバー)の端部からスクロール操作を開始する際の、指20の検出精度を高めることができる。
Further, in the touch-type operating device 200 according to one modification, the first detection electrodes 122A and 122G provided near the end of the first protrusion 112 (three-dimensional cover) have the first protrusion 112 (three-dimensional cover). ), Therefore, it is possible to improve the detection accuracy of the finger 20 when the finger 20 starts the scroll operation from the end of the first protrusion 112 (three-dimensional cover).
また、一変形例に係るタッチ式操作装置200は、図13に示すように、第1検出電極122A~122Gのうち、Z軸方向(第1方向)における端から2番目の第1検出電極122B,122Fが、第1突部112(立体カバー)のZ軸方向(第1方向)の端部と重なる。
Further, as shown in FIG. 13, the touch-type operating device 200 according to one modification is the first detection electrode 122B, which is the second from the end in the Z-axis direction (first direction) among the first detection electrodes 122A to 122G. , 122F overlap with the end of the first protrusion 112 (three-dimensional cover) in the Z-axis direction (first direction).
これにより、一変形例に係るタッチ式操作装置200は、第1突部112(立体カバー)のZ軸方向(第1方向)の端部は、操作者の指20が接触し難く、その直下にある第1検出電極122B,122Fでは、操作者の指20を検出し難いため、さらにZ軸方向(第1方向)おける外側に第1検出電極122A,122Gを設けたことで、第1検出電極122A,122Gによって、第1突部112(立体カバー)のZ軸方向(第1方向)の端部にある操作者の指20を検出し易くすることができる。
As a result, in the touch-type operating device 200 according to one modification, the end portion of the first protrusion 112 (three-dimensional cover) in the Z-axis direction (first direction) is difficult for the operator's finger 20 to come into contact with, and is directly below the end. Since it is difficult to detect the operator's finger 20 with the first detection electrodes 122B and 122F in the above, the first detection electrodes 122A and 122G are provided on the outside in the Z-axis direction (first direction). The electrodes 122A and 122G can facilitate the detection of the operator's finger 20 at the end of the first protrusion 112 (three-dimensional cover) in the Z-axis direction (first direction).
また、一変形例に係るタッチ式操作装置200は、中央部の第1検出電極122B~122FのZ軸方向(第1方向)の幅が互いに等しい。また、タッチ式操作装置200が備える制御部132は、中央部の第1検出電極122B~122Fによって検出された複数の静電容量値の重心位置を、指20の中心位置として特定する。
Further, in the touch-type operating device 200 according to one modification, the widths of the first detection electrodes 122B to 122F in the central portion in the Z-axis direction (first direction) are equal to each other. Further, the control unit 132 included in the touch-type operating device 200 specifies the position of the center of gravity of the plurality of capacitance values detected by the first detection electrodes 122B to 122F in the central portion as the center position of the finger 20.
これにより、一変形例に係るタッチ式操作装置200は、中央部の第1検出電極122B~122FのZ軸方向(第1方向)の幅が互いに等しいため、これらの静電容量値に基づく指20の中心位置の特定を、比較的容易に行うことができる。
As a result, in the touch-type operating device 200 according to one modification, the widths of the first detection electrodes 122B to 122F in the central portion in the Z-axis direction (first direction) are equal to each other, and therefore the fingers based on these capacitance values. The center position of 20 can be specified relatively easily.
(制御部132によるスクロール操作の検出方法)
以下、一変形例に係るタッチ式操作装置200が備える制御部132によるスクロール操作の検出方法について説明する。 (Method of detecting scroll operation by control unit 132)
Hereinafter, a method of detecting a scroll operation by thecontrol unit 132 included in the touch-type operation device 200 according to a modification will be described.
以下、一変形例に係るタッチ式操作装置200が備える制御部132によるスクロール操作の検出方法について説明する。 (Method of detecting scroll operation by control unit 132)
Hereinafter, a method of detecting a scroll operation by the
一変形例に係るタッチ式操作装置200において、制御部132は、慣性スクロール操作を検出することができる。慣性スクロール操作とは、操作者が、第1突部112(立体カバー)に対して指20を接触させつつスクロール操作しながら、第1突部112(立体カバー)から指20を離す操作である。この場合、制御部132は、操作者が指20を離した後も、指20を離す前のスクロール速度と、指20を離してからの経過時間とに基づいて、スクロール操作の信号を続けて出力することで、操作対象画面のスクロール動作を継続させることができる。
In the touch-type operation device 200 according to one modification, the control unit 132 can detect an inertial scroll operation. The inertial scrolling operation is an operation in which the operator releases the finger 20 from the first protrusion 112 (three-dimensional cover) while scrolling while bringing the finger 20 into contact with the first protrusion 112 (three-dimensional cover). .. In this case, even after the operator releases the finger 20, the control unit 132 continues to signal the scroll operation based on the scroll speed before the finger 20 is released and the elapsed time after the finger 20 is released. By outputting, the scrolling operation of the operation target screen can be continued.
これにより、一変形例に係るタッチ式操作装置200は、操作者がスクロール操作中に第1突部112(立体カバー)から指20を離した後も、操作対象画面をスクロール動作をさせ続けることができるため、操作者が多数の項目から所望する項目を選択する際の操作負荷を軽減することができる。
As a result, the touch-type operation device 200 according to the modified example continues to scroll the operation target screen even after the operator releases the finger 20 from the first protrusion 112 (three-dimensional cover) during the scroll operation. Therefore, it is possible to reduce the operation load when the operator selects a desired item from a large number of items.
特に、一変形例に係るタッチ式操作装置200は、第1突部112(立体カバー)が凸状を有することから、スクロール操作中に第1突部112(立体カバー)から指20が離れ易いため、このように指20が離れた後もスクロール操作信号の出力することは、より有用である。
In particular, in the touch-type operating device 200 according to one modification, since the first protrusion 112 (three-dimensional cover) has a convex shape, the finger 20 can easily be separated from the first protrusion 112 (three-dimensional cover) during the scroll operation. Therefore, it is more useful to output the scroll operation signal even after the finger 20 is released in this way.
一変形例に係るタッチ式操作装置200において、第1突部112(立体カバー)は、物理的に押下操作方向(Y軸負方向)に僅かに移動可能となっている。また、制御部132は、複数の検出電極の各々の静電容量値に基づいて、第1突部112(立体カバー)に対する押下操作を検出可能である。また、制御部132は、第1突部112(立体カバー)に対する押下操作を検出しているとき、スクロール操作の検出を行わない。
In the touch-type operating device 200 according to one modification, the first protrusion 112 (three-dimensional cover) is physically movable slightly in the pressing operation direction (Y-axis negative direction). Further, the control unit 132 can detect a pressing operation on the first protrusion 112 (three-dimensional cover) based on the capacitance value of each of the plurality of detection electrodes. Further, the control unit 132 does not detect the scroll operation when the pressing operation on the first protrusion 112 (three-dimensional cover) is detected.
これにより、一変形例に係るタッチ式操作装置200は、操作者が押下操作をおこなったとき、スクロール操作方向に指の位置がずれてしまった場合であっても、操作者の意図に反してスクロール操作の信号が誤出力されてしまうことを抑制することができる。
As a result, the touch-type operation device 200 according to one modification is contrary to the intention of the operator even if the position of the finger is displaced in the scroll operation direction when the operator performs the pressing operation. It is possible to prevent the scroll operation signal from being erroneously output.
一変形例に係るタッチ式操作装置200において、制御部132は、指20を離す動作に続けてスクロール操作の信号が出力されているときに、第1突部112(立体カバー)に対する押下操作を検出した場合、その時点で、操作対象画面においてスクロール操作によって選択されている項目の選択を確定する。
In the touch-type operation device 200 according to one modification, the control unit 132 performs a pressing operation on the first protrusion 112 (three-dimensional cover) when a scroll operation signal is output following the operation of releasing the finger 20. If detected, the selection of the item selected by the scroll operation on the operation target screen is confirmed at that time.
これにより、一変形例に係るタッチ式操作装置200は、操作対象画面においてスクロール動作が行われているとき、複数の項目のうちの操作者が所望する項目の選択を、より確実に行うことができる。
As a result, the touch-type operation device 200 according to the modification can more reliably select the item desired by the operator from the plurality of items when the scroll operation is performed on the operation target screen. can.
また、制御部132は、スクロール操作の信号を出力しているときに、周辺電極128A~128Dのいずれかに対する指20の接触を検知した場合、スクロール操作の信号の出力を停止する。
Further, when the control unit 132 detects the contact of the finger 20 with any of the peripheral electrodes 128A to 128D while outputting the scroll operation signal, the control unit 132 stops the output of the scroll operation signal.
これにより、一変形例に係るタッチ式操作装置200は、操作者の意図に反してスクロール操作の信号が誤出力されてしまうことを抑制することができる。
As a result, the touch-type operating device 200 according to the modified example can prevent the scroll operation signal from being erroneously output against the intention of the operator.
(制御部132による処理の手順の一例)
図14は、一変形例に係るタッチ式操作装置200が備える制御部132による処理の手順の一例を示すフローチャートである。 (Example of processing procedure by control unit 132)
FIG. 14 is a flowchart showing an example of a processing procedure by thecontrol unit 132 included in the touch-type operating device 200 according to the modified example.
図14は、一変形例に係るタッチ式操作装置200が備える制御部132による処理の手順の一例を示すフローチャートである。 (Example of processing procedure by control unit 132)
FIG. 14 is a flowchart showing an example of a processing procedure by the
まず、制御部132は、複数の検出電極の各々の静電容量値を取得する(ステップS301)。
First, the control unit 132 acquires the capacitance value of each of the plurality of detection electrodes (step S301).
次に、制御部132は、ステップS301で取得された複数の静電容量値に基づいて、静電容量値の基準値を算出する(ステップS302)。
Next, the control unit 132 calculates a reference value of the capacitance value based on the plurality of capacitance values acquired in step S301 (step S302).
次に、制御部132は、ステップS301で取得された複数の静電容量値と、ステップS302で算出された基準値とに基づいて、ステップS301で取得された複数の静電容量値の各々の変化量を算出する(ステップS303)。
Next, the control unit 132 of each of the plurality of capacitance values acquired in step S301 based on the plurality of capacitance values acquired in step S301 and the reference value calculated in step S302. The amount of change is calculated (step S303).
次に、制御部132は、ステップS303で算出された複数の静電容量値の各々の変化量に基づいて、操作パネル110に対する指20の接触の有無を判断する(ステップS304)。
Next, the control unit 132 determines whether or not the finger 20 is in contact with the operation panel 110 based on the amount of change of each of the plurality of capacitance values calculated in step S303 (step S304).
次に、制御部132は、ステップS303で算出された複数の静電容量値の各々の変化量に基づいて、それらの重心位置の座標を、指20の接触位置の座標として算出する(ステップS305)。
Next, the control unit 132 calculates the coordinates of the center of gravity of the plurality of capacitance values calculated in step S303 as the coordinates of the contact position of the finger 20 (step S305). ).
次に、制御部132は、ステップS301~S305が繰り返し行われることによって得られた複数の座標に基づいて、指20の移動速度を算出する(ステップS306)。
Next, the control unit 132 calculates the moving speed of the finger 20 based on the plurality of coordinates obtained by repeating steps S301 to S305 (step S306).
次に、制御部132は、ステップS304で判断された指20の接触の有無と、ステップS304で判断された指20の接触位置の座標と、ステップS306で算出された指20の移動速度とに基づいて、図15に示すスクロール操作検出処理を実行する(ステップS306)。その後、制御部132は、図14に示す一連の処理を終了する。
Next, the control unit 132 determines the presence / absence of contact of the finger 20 determined in step S304, the coordinates of the contact position of the finger 20 determined in step S304, and the movement speed of the finger 20 calculated in step S306. Based on this, the scroll operation detection process shown in FIG. 15 is executed (step S306). After that, the control unit 132 ends a series of processes shown in FIG.
(スクロール操作検出処理)
図15は、一変形例に係るタッチ式操作装置200が備える制御部132によるスクロール操作検出処理の状態遷移図である。図15に示すように、制御部132は、スクロール操作検出処理において、「非接触状態」、「接触状態」、および「フリースクロール状態」を有する。 (Scroll operation detection process)
FIG. 15 is a state transition diagram of the scroll operation detection process by thecontrol unit 132 included in the touch-type operation device 200 according to the modified example. As shown in FIG. 15, the control unit 132 has a “non-contact state”, a “contact state”, and a “free scroll state” in the scroll operation detection process.
図15は、一変形例に係るタッチ式操作装置200が備える制御部132によるスクロール操作検出処理の状態遷移図である。図15に示すように、制御部132は、スクロール操作検出処理において、「非接触状態」、「接触状態」、および「フリースクロール状態」を有する。 (Scroll operation detection process)
FIG. 15 is a state transition diagram of the scroll operation detection process by the
<非接触状態>
制御部132は、指20が接触していることが検出されていない初期状態において、「非接触状態」にある。そして、制御部132は、指20が接触していることが検出された場合([Touch == TRUE])、「非接触状態」から「接触状態」に状態遷移する。 <Non-contact state>
Thecontrol unit 132 is in the "non-contact state" in the initial state in which it is not detected that the finger 20 is in contact. Then, when it is detected that the finger 20 is in contact with the control unit 132 ([Touch == TRUE]), the control unit 132 makes a state transition from the “non-contact state” to the “contact state”.
制御部132は、指20が接触していることが検出されていない初期状態において、「非接触状態」にある。そして、制御部132は、指20が接触していることが検出された場合([Touch == TRUE])、「非接触状態」から「接触状態」に状態遷移する。 <Non-contact state>
The
<接触状態>
制御部132は、「接触状態」において、「待機状態」、「ジェスチャ検出状態(低速)」、「ジェスチャ検出状態(高速)」、および「非ジェスチャ状態」を有する。 <Contact state>
Thecontrol unit 132 has a "standby state", a "gesture detection state (low speed)", a "gesture detection state (high speed)", and a "non-gesture state" in the "contact state".
制御部132は、「接触状態」において、「待機状態」、「ジェスチャ検出状態(低速)」、「ジェスチャ検出状態(高速)」、および「非ジェスチャ状態」を有する。 <Contact state>
The
<待機状態>
制御部132は、指20が接触している間、「接触状態」を維持する。制御部132は、「接触状態」において、ジェスチャ操作が検出されていないとき、「待機状態」にある。そして、制御部132は、「待機状態」において、指20のZ軸方向の移動距離が所定距離D1よりも大きい場合([|CurPos.Z - StartPos.Z| ≧ D1])、「ジェスチャ検出状態(低速)」に状態遷移する。また、制御部132は、「待機状態」において、指20が接触していないことが検出された場合([Touch == FALSE])、「非接触状態」に状態遷移する。また、制御部132は、「待機状態」において、周辺電極128A~128Dのいずれかに対する指20の接触を検知した場合([|CurPos.X - StartPos.X| ≧ D3])、「非ジェスチャ状態」に状態遷移する。この「非ジェスチャ状態」では、制御部132は、ジェスチャ操作の検出を行わない。 <Standby state>
Thecontrol unit 132 maintains a "contact state" while the finger 20 is in contact. The control unit 132 is in the "standby state" when the gesture operation is not detected in the "contact state". Then, in the "standby state", when the movement distance of the finger 20 in the Z-axis direction is larger than the predetermined distance D1 ([| CurPos.Z --StartPos.Z | ≧ D1]), the control unit 132 is in the “gesture detection state”. (Slow speed) ”. Further, when it is detected that the finger 20 is not in contact ([Touch == FALSE]) in the "standby state", the control unit 132 transitions to the "non-contact state". Further, when the control unit 132 detects the contact of the finger 20 with any of the peripheral electrodes 128A to 128D in the “standby state” ([| CurPos.X --StartPos.X | ≧ D3]), the control unit 132 is in the “non-gesture state”. State transition to. In this "non-gesture state", the control unit 132 does not detect the gesture operation.
制御部132は、指20が接触している間、「接触状態」を維持する。制御部132は、「接触状態」において、ジェスチャ操作が検出されていないとき、「待機状態」にある。そして、制御部132は、「待機状態」において、指20のZ軸方向の移動距離が所定距離D1よりも大きい場合([|CurPos.Z - StartPos.Z| ≧ D1])、「ジェスチャ検出状態(低速)」に状態遷移する。また、制御部132は、「待機状態」において、指20が接触していないことが検出された場合([Touch == FALSE])、「非接触状態」に状態遷移する。また、制御部132は、「待機状態」において、周辺電極128A~128Dのいずれかに対する指20の接触を検知した場合([|CurPos.X - StartPos.X| ≧ D3])、「非ジェスチャ状態」に状態遷移する。この「非ジェスチャ状態」では、制御部132は、ジェスチャ操作の検出を行わない。 <Standby state>
The
<ジェスチャ検出状態(低速)>
制御部132は、「ジェスチャ検出状態(低速)」において、所定の処理周期で、スクロール操作信号を出力する。この際、制御部132は、指20の移動方向に応じたスクロール操作信号を出力する。すなわち、制御部132は、指20の移動方向が、Z軸正方向である場合、操作対象画面の選択項目を上方にスクロールさせるスクロール操作信号を出力する。反対に、制御部132は、指20の移動方向が、Z軸負方向である場合、操作対象画面の選択項目を下方にスクロールさせるスクロール操作信号を出力する。 <Gesture detection state (low speed)>
Thecontrol unit 132 outputs a scroll operation signal in a predetermined processing cycle in the “gesture detection state (low speed)”. At this time, the control unit 132 outputs a scroll operation signal according to the moving direction of the finger 20. That is, when the movement direction of the finger 20 is the positive direction of the Z axis, the control unit 132 outputs a scroll operation signal for scrolling the selected item on the operation target screen upward. On the contrary, when the movement direction of the finger 20 is the negative direction of the Z axis, the control unit 132 outputs a scroll operation signal for scrolling the selection item on the operation target screen downward.
制御部132は、「ジェスチャ検出状態(低速)」において、所定の処理周期で、スクロール操作信号を出力する。この際、制御部132は、指20の移動方向に応じたスクロール操作信号を出力する。すなわち、制御部132は、指20の移動方向が、Z軸正方向である場合、操作対象画面の選択項目を上方にスクロールさせるスクロール操作信号を出力する。反対に、制御部132は、指20の移動方向が、Z軸負方向である場合、操作対象画面の選択項目を下方にスクロールさせるスクロール操作信号を出力する。 <Gesture detection state (low speed)>
The
また、制御部132は、「ジェスチャ検出状態(低速)」において、所定の処理周期で、変数Delayを増加させる。制御部132は、「ジェスチャ検出状態(低速)」において、指20のZ軸方向の移動距離が所定距離D2以上の場合([|CurPos.Z - OldPos.Z| ≧ D2])、「ジェスチャ検出状態(低速)」を維持する。また、制御部132は、「ジェスチャ検出状態(低速)」において、変数Delayが所定のタイムアウト時間T1に達したとき([Delay ≧ T1])、「待機状態」に状態遷移する。また、制御部132は、「ジェスチャ検出状態(低速)」において、指20の移動速度が所定速度V1よりも大きい場合([PosVelocity > V1])、「ジェスチャ検出状態(高速)」に状態遷移する。また、制御部132は、「ジェスチャ検出状態(低速)」において、指20が接触していないことが検出された場合([Touch == FALSE])、「非接触状態」に状態遷移する。
Further, the control unit 132 increases the variable Delay in a predetermined processing cycle in the “gesture detection state (slow speed)”. In the "gesture detection state (low speed)", the control unit 132 "gesture detection" when the movement distance of the finger 20 in the Z-axis direction is a predetermined distance D2 or more ([| CurPos.Z-OldPos.Z | ≧ D2]). Maintain "state (slow)". Further, when the variable Delay reaches the predetermined timeout time T1 ([Delay ≧ T1]) in the “gesture detection state (low speed)”, the control unit 132 transitions to the “standby state”. Further, in the "gesture detection state (low speed)", when the movement speed of the finger 20 is higher than the predetermined speed V1 ([PosVelocity> V1]), the control unit 132 transitions to the "gesture detection state (high speed)". .. Further, when it is detected that the finger 20 is not in contact ([Touch == FALSE]) in the "gesture detection state (low speed)", the control unit 132 transitions to the "non-contact state".
<ジェスチャ検出状態(高速)>
制御部132は、「ジェスチャ検出状態(高速)」において、所定の処理周期で、スクロール操作信号を出力する。この際、制御部132は、指20の移動方向に応じたスクロール操作信号を出力する。すなわち、制御部132は、指20の移動方向が、Z軸正方向である場合、操作対象画面の選択項目を上方にスクロールさせるスクロール操作信号を出力する。反対に、制御部132は、指20の移動方向が、Z軸負方向である場合、操作対象画面の選択項目を下方にスクロールさせるスクロール操作信号を出力する。 <Gesture detection state (high speed)>
Thecontrol unit 132 outputs a scroll operation signal in a predetermined processing cycle in the “gesture detection state (high speed)”. At this time, the control unit 132 outputs a scroll operation signal according to the moving direction of the finger 20. That is, when the movement direction of the finger 20 is the positive direction of the Z axis, the control unit 132 outputs a scroll operation signal for scrolling the selected item on the operation target screen upward. On the contrary, when the movement direction of the finger 20 is the negative direction of the Z axis, the control unit 132 outputs a scroll operation signal for scrolling the selection item on the operation target screen downward.
制御部132は、「ジェスチャ検出状態(高速)」において、所定の処理周期で、スクロール操作信号を出力する。この際、制御部132は、指20の移動方向に応じたスクロール操作信号を出力する。すなわち、制御部132は、指20の移動方向が、Z軸正方向である場合、操作対象画面の選択項目を上方にスクロールさせるスクロール操作信号を出力する。反対に、制御部132は、指20の移動方向が、Z軸負方向である場合、操作対象画面の選択項目を下方にスクロールさせるスクロール操作信号を出力する。 <Gesture detection state (high speed)>
The
また、制御部132は、「ジェスチャ検出状態(高速)」において、所定の処理周期で、変数Delayを増加させる。また、制御部132は、「ジェスチャ検出状態(高速)」において、指20の移動速度が所定速度V2よりも大きい場合([PosVelocity > V2])、「ジェスチャ検出状態(高速)」を維持する。また、制御部132は、「ジェスチャ検出状態(高速)」において、指の移動速度が所定速度V2以下となったとき、または、変数Delayが所定のタイムアウト時間T1に達したとき([PosVelocity ≦ V2 || Delay ≧ T1])、「ジェスチャ検出状態(低速)」に状態遷移する。また、制御部132は、「ジェスチャ検出状態(高速)」において、指20が接触していないことが検出された場合([Touch == FALSE])、「フリースクロール状態」に状態遷移する
Further, the control unit 132 increases the variable Delay in a predetermined processing cycle in the “gesture detection state (high speed)”. Further, the control unit 132 maintains the "gesture detection state (high speed)" when the movement speed of the finger 20 is higher than the predetermined speed V2 ([PosVelocity> V2]) in the "gesture detection state (high speed)". Further, the control unit 132 is in the "gesture detection state (high speed)" when the finger movement speed becomes a predetermined speed V2 or less, or when the variable Delay reaches a predetermined timeout time T1 ([PosVelocity ≦ V2). || Delay ≧ T1]), state transition to “gesture detection state (slow speed)”. Further, when it is detected that the finger 20 is not in contact ([Touch == FALSE]) in the "gesture detection state (high speed)", the control unit 132 transitions to the "free scroll state".
<フリースクロール状態>
制御部132は、「フリースクロール状態」において、所定の処理周期で、スクロール操作信号を出力する。この際、制御部132は、スクロール操作信号の出力間隔を、徐々に長くすることにより、操作対象画面のスクロール動作速度を徐々に緩やかにする。また、制御部132は、「フリースクロール状態」において、所定の処理周期で、変数FreeScrollCounterを増加させる。そして、制御部132は、「フリースクロール状態」において、変数FreeScrollCounterが、所定のタイムアウト時間T2に達するまで、且つ、指20が接触したことが検出されていない間([FreeScrollCounter ≦ T2 && Touch == FALSE])、「フリースクロール状態」を維持し、その他の場合は、「非接触状態」に状態遷移する。なお、制御部132は、「フリースクロール状態」において、周辺電極128A~128Dのいずれかに対する指20の接触を検知した場合、スクロール操作信号を出力しない。 <Free scroll state>
Thecontrol unit 132 outputs a scroll operation signal in a predetermined processing cycle in the “free scroll state”. At this time, the control unit 132 gradually increases the output interval of the scroll operation signal to gradually slow down the scroll operation speed of the operation target screen. Further, the control unit 132 increases the variable FreeScrollCounter in a predetermined processing cycle in the “free scroll state”. Then, the control unit 132 is in the "free scroll state" until the variable FreeScrollCounter reaches the predetermined timeout time T2 and while it is not detected that the finger 20 touches ([FreeScrollCounter ≤ T2 && Touch ==]. FALSE]), maintain the "free scroll state", and in other cases, transition to the "non-contact state". When the control unit 132 detects the contact of the finger 20 with any of the peripheral electrodes 128A to 128D in the "free scroll state", the control unit 132 does not output the scroll operation signal.
制御部132は、「フリースクロール状態」において、所定の処理周期で、スクロール操作信号を出力する。この際、制御部132は、スクロール操作信号の出力間隔を、徐々に長くすることにより、操作対象画面のスクロール動作速度を徐々に緩やかにする。また、制御部132は、「フリースクロール状態」において、所定の処理周期で、変数FreeScrollCounterを増加させる。そして、制御部132は、「フリースクロール状態」において、変数FreeScrollCounterが、所定のタイムアウト時間T2に達するまで、且つ、指20が接触したことが検出されていない間([FreeScrollCounter ≦ T2 && Touch == FALSE])、「フリースクロール状態」を維持し、その他の場合は、「非接触状態」に状態遷移する。なお、制御部132は、「フリースクロール状態」において、周辺電極128A~128Dのいずれかに対する指20の接触を検知した場合、スクロール操作信号を出力しない。 <Free scroll state>
The
なお、制御部132は、操作者が指20を離した後、ソフトウェア的に、そのときの指20の移動速度で仮想的な平面上を指20が移動するものと仮定して、その仮想的な平面上における指20の座標の変化(すなわち、指20の移動量)に基づいて、スクロール操作信号を出力する。
It should be noted that the control unit 132 assumes that the finger 20 moves on a virtual plane at the movement speed of the finger 20 at the software at that time after the operator releases the finger 20, and the virtual control unit 132 is assumed to move the finger 20 on a virtual plane. A scroll operation signal is output based on a change in the coordinates of the finger 20 on a flat surface (that is, the amount of movement of the finger 20).
具体的には、制御部132は、仮想的な平面上において、所定の処理周期毎に、指20のZ軸正方向への移動距離(現在の指20のZ軸座標-前回の指20のZ軸座標)が所定距離D1以上の場合、操作対象画面の選択項目を上方にスクロールさせるスクロール操作信号を出力する。
Specifically, the control unit 132 moves the finger 20 in the positive direction of the Z axis (Z-axis coordinates of the current finger 20-the previous finger 20) at predetermined processing cycles on a virtual plane. When the predetermined distance (Z-axis coordinates) is D1 or more, a scroll operation signal for scrolling the selection item on the operation target screen upward is output.
また、制御部132は、仮想的な平面上において、所定の処理周期毎に、指20のZ軸負方向への移動距離(現在の指20のZ軸座標-前回の指20のZ軸座標)が所定距離D1以上の場合、操作対象画面の選択項目を下方にスクロールさせるスクロール操作信号を出力する。
Further, on a virtual plane, the control unit 132 moves the finger 20 in the negative Z-axis direction (Z-axis coordinate of the current finger 20-Z-axis coordinate of the previous finger 20) at predetermined processing cycles. ) Is a predetermined distance D1 or more, a scroll operation signal for scrolling the selected item on the operation target screen downward is output.
そして、制御部132は、仮想的な平面上において、指20の移動速度を徐々に減衰させて、指20の移動距離が0になったとき、スクロール操作信号の出力を終了する。
Then, the control unit 132 gradually attenuates the moving speed of the finger 20 on the virtual plane, and ends the output of the scroll operation signal when the moving distance of the finger 20 becomes 0.
これにより、制御部132は、操作者が指20を離した後も、スクロール操作信号を出力し続けることができ、操作対象画面のスクロール動作が慣性によるものであるかの如く、操作対象画面のスクロール動作速度を徐々に緩やかにして、最終的にスクロール動作を停止させることができる。
As a result, the control unit 132 can continue to output the scroll operation signal even after the operator releases the finger 20, and the operation target screen is as if the scroll operation of the operation target screen is due to inertia. The scroll operation speed can be gradually slowed down, and finally the scroll operation can be stopped.
このように、一変形例に係るタッチ式操作装置200は、制御部132が、仮想的な平面上での指20の移動に基づいて、スクロール操作信号の出力処理を行っているため、指20が接触しているときのスクロール操作信号の出力処理と、指20が離れた後のスクロール操作信号の出力処理とで、同じ処理ロジックを用いることができる。
As described above, in the touch-type operation device 200 according to the modification, the control unit 132 performs the scroll operation signal output processing based on the movement of the finger 20 on the virtual plane, so that the finger 20 is used. The same processing logic can be used for the output processing of the scroll operation signal when the fingers 20 are in contact with each other and the output processing of the scroll operation signal after the finger 20 is released.
(スクロール操作信号の出力例)
図16は、一変形例に係るタッチ式操作装置200が備える制御部132によるスクロール操作信号の出力例を示す図である。 (Example of scroll operation signal output)
FIG. 16 is a diagram showing an output example of a scroll operation signal by thecontrol unit 132 included in the touch-type operation device 200 according to the modification.
図16は、一変形例に係るタッチ式操作装置200が備える制御部132によるスクロール操作信号の出力例を示す図である。 (Example of scroll operation signal output)
FIG. 16 is a diagram showing an output example of a scroll operation signal by the
図16に示す期間S1は、操作者が指20を接触させた状態で高速のスクロール操作を行った期間(すなわち、図15に示す「ジェスチャ検出状態(高速)」にある期間)である。この期間S1では、制御部132は、所定の処理周期でスクロール操作信号を出力する。図16に示す例では、期間S1において、スクロール操作信号が3回出力されている。
The period S1 shown in FIG. 16 is a period during which the operator performs a high-speed scrolling operation while the finger 20 is in contact with the operator (that is, a period in the “gesture detection state (high speed)” shown in FIG. 15). During this period S1, the control unit 132 outputs a scroll operation signal at a predetermined processing cycle. In the example shown in FIG. 16, the scroll operation signal is output three times in the period S1.
図16に示す期間S2は、操作者が指20を離した後の期間である(すなわち、図15に示す「フリースクロール状態」にある期間)である。この期間S2でも、制御部132は、所定の処理周期でスクロール操作信号を出力する。図16に示す例では、期間S2において、スクロール操作信号が5回出力されている。これにより、制御部132は、操作者が指20を離した後も、操作対象画面のスクロール動作を継続させることができる。特に、図16に示すように、制御部132は、期間S2において、スクロール操作信号の出力間隔を徐々に長くして、最終的にスクロール操作信号の出力を終了する。これにより、制御部132は、操作対象画面のスクロール動作が慣性によるものであるかの如く、操作対象画面のスクロール動作速度を徐々に緩やかにして、最終的にスクロール動作を停止させることができる。
The period S2 shown in FIG. 16 is the period after the operator releases the finger 20 (that is, the period in the “free scroll state” shown in FIG. 15). Even in this period S2, the control unit 132 outputs the scroll operation signal at a predetermined processing cycle. In the example shown in FIG. 16, the scroll operation signal is output five times in the period S2. As a result, the control unit 132 can continue the scrolling operation of the operation target screen even after the operator releases the finger 20. In particular, as shown in FIG. 16, the control unit 132 gradually increases the output interval of the scroll operation signal in the period S2, and finally ends the output of the scroll operation signal. As a result, the control unit 132 can gradually slow down the scroll operation speed of the operation target screen and finally stop the scroll operation as if the scroll operation of the operation target screen is due to inertia.
(スクロール操作の一例)
図17は、一変形例に係るタッチ式操作装置200によるスクロール操作の一例を示す図である。 (Example of scroll operation)
FIG. 17 is a diagram showing an example of a scroll operation by the touch-type operation device 200 according to a modification.
図17は、一変形例に係るタッチ式操作装置200によるスクロール操作の一例を示す図である。 (Example of scroll operation)
FIG. 17 is a diagram showing an example of a scroll operation by the touch-
例えば、図17に示すように、操作者が、指20を第1突部112(立体カバー)に接触させながら、指20を第1突部112(立体カバー)の下端部から上方にスライドさせることにより、上方へのスクロール操作がなされる。このとき、制御部132は、所定の処理周期で、操作対象画面を上方へスクロール動作させるためのスクロール操作信号を出力する。そして、制御部132は、上方へのスクロール操作が高速である場合、操作者が指20を第1突部112(立体カバー)から離した後も、操作対象画面を上方へスクロール動作させるためのスクロール操作信号を出力する。
For example, as shown in FIG. 17, the operator slides the finger 20 upward from the lower end portion of the first protrusion 112 (three-dimensional cover) while bringing the finger 20 into contact with the first protrusion 112 (three-dimensional cover). As a result, the scroll operation is performed upward. At this time, the control unit 132 outputs a scroll operation signal for scrolling the operation target screen upward in a predetermined processing cycle. Then, the control unit 132 is for scrolling the operation target screen upward even after the operator releases the finger 20 from the first protrusion 112 (three-dimensional cover) when the upward scroll operation is high speed. Outputs the scroll operation signal.
また、例えば、図17に示すように、操作者が、指20を第1突部112(立体カバー)に接触させながら、指20を第1突部112(立体カバー)の上端部から下方にスライドさせることにより、下方へのスクロール操作がなされる。このとき、制御部132は、所定の処理周期で、操作対象画面を下方へスクロール動作させるためのスクロール操作信号を出力する。そして、制御部132は、下方へのスクロール操作が高速である場合、操作者が指20を第1突部112(立体カバー)から離した後も、操作対象画面を下方へスクロール動作させるためのスクロール操作信号を出力する。
Further, for example, as shown in FIG. 17, the operator moves the finger 20 downward from the upper end portion of the first protrusion 112 (three-dimensional cover) while bringing the finger 20 into contact with the first protrusion 112 (three-dimensional cover). By sliding, the scroll operation is performed downward. At this time, the control unit 132 outputs a scroll operation signal for scrolling the operation target screen downward at a predetermined processing cycle. Then, the control unit 132 is for scrolling the operation target screen downward even after the operator releases the finger 20 from the first protrusion 112 (three-dimensional cover) when the downward scroll operation is high speed. Output the scroll operation signal.
(操作対象画面のスクロール動作の一例)
図18は、一変形例に係るタッチ式操作装置200の制御による操作対象画面のスクロール動作の一例を示す図である。図18に示す画面210は、タッチ式操作装置200に接続された外部機器のディスプレイに表示される操作対象画面の一例である。画面210は、ドラム回転選択式のインターフェースにより、タッチ式操作装置200から供給されるスクロール操作信号によって、上方または下方へスクロール動作し、複数の選択項目の中からの所望する選択項目を選択可能である。画面210は、上下方向における中央にカーソル211が設けられている。画面210は、上下方向へのスクロール動作により、カーソル211によって選択される選択項目が順次変更される。画面210は、タッチ式操作装置200において押下操作がなされたとき、そのときにカーソル211によって選択されている選択項目の選択を確定することができる。 (Example of scrolling operation target screen)
FIG. 18 is a diagram showing an example of scrolling operation of the operation target screen under the control of the touch-type operation device 200 according to the modification. The screen 210 shown in FIG. 18 is an example of an operation target screen displayed on the display of an external device connected to the touch operation device 200. The screen 210 scrolls upward or downward by a scroll operation signal supplied from the touch operation device 200 by the drum rotation selection type interface, and a desired selection item can be selected from a plurality of selection items. be. The screen 210 is provided with a cursor 211 at the center in the vertical direction. On the screen 210, the selection items selected by the cursor 211 are sequentially changed by the scrolling operation in the vertical direction. The screen 210 can confirm the selection of the selection item selected by the cursor 211 at that time when the pressing operation is performed on the touch operation device 200.
図18は、一変形例に係るタッチ式操作装置200の制御による操作対象画面のスクロール動作の一例を示す図である。図18に示す画面210は、タッチ式操作装置200に接続された外部機器のディスプレイに表示される操作対象画面の一例である。画面210は、ドラム回転選択式のインターフェースにより、タッチ式操作装置200から供給されるスクロール操作信号によって、上方または下方へスクロール動作し、複数の選択項目の中からの所望する選択項目を選択可能である。画面210は、上下方向における中央にカーソル211が設けられている。画面210は、上下方向へのスクロール動作により、カーソル211によって選択される選択項目が順次変更される。画面210は、タッチ式操作装置200において押下操作がなされたとき、そのときにカーソル211によって選択されている選択項目の選択を確定することができる。 (Example of scrolling operation target screen)
FIG. 18 is a diagram showing an example of scrolling operation of the operation target screen under the control of the touch-
なお、一変形例に係るタッチ式操作装置200において、上記した制御部132の各処理は、例えば、タッチ式操作装置200が備えるIC、マイコン等において、メモリ(ROM、RAM等)に記憶されたプログラムを、プロセッサ(CPU等)が実行することによって実現される。
In the touch-type operating device 200 according to one modification, each process of the control unit 132 described above is stored in a memory (ROM, RAM, etc.) in, for example, an IC, a microcomputer, or the like included in the touch-type operating device 200. It is realized by executing a program by a processor (CPU or the like).
本国際出願は、2020年8月25日に出願した日本国特許出願第2020-141887号に基づく優先権を主張するものであり、当該出願の全内容を本国際出願に援用する。
This international application claims priority based on Japanese Patent Application No. 2020-141887 filed on August 25, 2020, and the entire contents of this application shall be incorporated into this international application.
10 ステアリングホイール
12 ホイール部
14 ハブ部
16 スポーク部
100 操作位置検出装置
102 ケース
110 操作パネル
110A 表面
111 第1操作領域
112 第1突部
112A 表面
113 第2突部
113A 表面
114A,114B 第2操作領域
115A,115B 第3突部
116A,116B 第3操作領域
117A,117B 第4突部
120 FPC
120A 表面
122A~122G 第1検出電極
124A,124B 第2検出電極
126A,126B 第3検出電極
128A~128D 周辺電極
130 回路基板
132 制御部
134 LED
140 導光シート
200 タッチ式操作装置
210 画面
211 カーソル 10Steering wheel 12 Wheel part 14 Hub part 16 Spoke part 100 Operation position detection device 102 Case 110 Operation panel 110A Surface 111 1st operation area 112 1st protrusion 112A Surface 113 2nd protrusion 113A Surface 114A, 114B 2nd operation area 115A, 115B 3rd protrusion 116A, 116B 3rd operation area 117A, 117B 4th protrusion 120 FPC
120A Surface 122A-122G 1st detection electrode 124A, 124B 2nd detection electrode 126A, 126B 3rd detection electrode 128A-128D Peripheral electrode 130 Circuit board 132 Control unit 134 LED
140Light guide sheet 200 Touch-type operation device 210 Screen 211 Cursor
12 ホイール部
14 ハブ部
16 スポーク部
100 操作位置検出装置
102 ケース
110 操作パネル
110A 表面
111 第1操作領域
112 第1突部
112A 表面
113 第2突部
113A 表面
114A,114B 第2操作領域
115A,115B 第3突部
116A,116B 第3操作領域
117A,117B 第4突部
120 FPC
120A 表面
122A~122G 第1検出電極
124A,124B 第2検出電極
126A,126B 第3検出電極
128A~128D 周辺電極
130 回路基板
132 制御部
134 LED
140 導光シート
200 タッチ式操作装置
210 画面
211 カーソル 10
140
Claims (8)
- 第1方向に並べて配置された複数の検出電極を有する平面基板と、
前記平面基板の一部を覆う絶縁素材からなる立体カバーと
を備え、
前記複数の検出電極のうち、前記第1方向における端部の前記検出電極は、前記立体カバーに覆われてなく、
前記複数の検出電極のうち、前記端部の前記検出電極を除く、前記第1方向における中央部の前記検出電極は、前記立体カバーに覆われており、
前記端部の前記検出電極の前記第1方向の幅は、前記中央部の前記検出電極の前記第1方向の幅よりも小さい
ことを特徴とするタッチ式操作装置。 A flat substrate having a plurality of detection electrodes arranged side by side in the first direction, and
A three-dimensional cover made of an insulating material that covers a part of the flat substrate is provided.
Of the plurality of detection electrodes, the detection electrode at the end in the first direction is not covered with the three-dimensional cover.
Among the plurality of detection electrodes, the detection electrode in the central portion in the first direction, excluding the detection electrode at the end, is covered with the three-dimensional cover.
A touch-type operating device characterized in that the width of the detection electrode at the end in the first direction is smaller than the width of the detection electrode at the center in the first direction. - 前記複数の検出電極のうち、前記第1方向における端から2番目の前記検出電極は、前記立体カバーの前記第1方向の端部と重なる
ことを特徴とする請求項1に記載のタッチ式操作装置。 The touch-type operation according to claim 1, wherein the detection electrode second from the end in the first direction of the plurality of detection electrodes overlaps with the end portion of the solid cover in the first direction. Device. - 前記中央部の複数の前記検出電極によって検出された複数の静電容量値の重心位置を、操作者の指の中心位置として特定する、制御部をさらに備え、
前記中央部の複数の前記検出電極は、前記第1方向の幅が互いに等しい
ことを特徴とする請求項2に記載のタッチ式操作装置。 Further provided with a control unit that identifies the position of the center of gravity of the plurality of capacitance values detected by the plurality of detection electrodes in the central portion as the center position of the operator's finger.
The touch-type operating device according to claim 2, wherein the plurality of detection electrodes in the central portion have the same width in the first direction. - 前記制御部は、
前記複数の検出電極の各々の静電容量値に基づいて、操作者が、前記立体カバーに対して前記指を接触させつつスクロール操作しながら、前記立体カバーから前記指を離す動作を行ったことを検出した場合、
前記操作者が前記指を離す動作を行った後も、前記指を離す前のスクロール速度と、前記指を離してからの経過時間とに基づいて、前記スクロール操作の信号を続けて出力する
ことを特徴とする請求項3に記載のタッチ式操作装置。 The control unit
Based on the capacitance value of each of the plurality of detection electrodes, the operator performed an operation of releasing the finger from the three-dimensional cover while scrolling while bringing the finger into contact with the three-dimensional cover. If is detected,
Even after the operator releases the finger, the scroll operation signal is continuously output based on the scroll speed before the finger is released and the elapsed time after the finger is released. The touch-type operating device according to claim 3. - 前記制御部は、
前記指を離す前のスクロール速度が、所定速度未満の場合、前記操作者が前記指を離す動作を行った後、前記スクロール操作の信号を続けて出力せず、
前記指を離す前のスクロール速度が、前記所定速度以上の場合、前記操作者が前記指を離す動作を行った後、前記スクロール操作の信号を続けて出力する
ことを特徴とする請求項4に記載のタッチ式操作装置。 The control unit
When the scroll speed before releasing the finger is less than the predetermined speed, the operator does not continuously output the signal of the scroll operation after performing the operation of releasing the finger.
The fourth aspect of the present invention is characterized in that when the scroll speed before the finger is released is equal to or higher than the predetermined speed, the operator performs the operation of releasing the finger and then continuously outputs the signal of the scroll operation. The touch-type operating device described. - 前記制御部は、
前記複数の検出電極の各々の静電容量値に基づいて、前記立体カバーに対する押下操作を検出可能であり、
前記押下操作を検出しているとき、前記スクロール操作の検出を行わない
ことを特徴とする請求項4または5に記載のタッチ式操作装置。 The control unit
The pressing operation on the three-dimensional cover can be detected based on the capacitance value of each of the plurality of detection electrodes.
The touch-type operating device according to claim 4, wherein the scrolling operation is not detected when the pressing operation is detected. - 前記制御部は、
前記指を離す動作に続けて前記スクロール操作の信号が出力されているときに、前記押下操作を検出した場合、その時点で、前記スクロール操作によって選択されている項目の選択を確定する
ことを特徴とする請求項6に記載のタッチ式操作装置。 The control unit
When the pressing operation is detected while the scroll operation signal is output following the finger release operation, the selection of the item selected by the scroll operation is confirmed at that time. The touch-type operating device according to claim 6. - 前記平面基板は、
前記第1方向と直交する第2方向における前記複数の検出電極の外側に、複数の周辺電極を有し、
前記制御部は、
前記スクロール操作の信号を出力しているときに、前記周辺電極に対する指の接触を検知した場合、前記スクロール操作の信号の出力を停止する
ことを特徴とする請求項4から7のいずれか一項に記載のタッチ式操作装置。 The flat substrate is
A plurality of peripheral electrodes are provided outside the plurality of detection electrodes in the second direction orthogonal to the first direction.
The control unit
Any one of claims 4 to 7, wherein when the contact of a finger with the peripheral electrode is detected while the scroll operation signal is being output, the output of the scroll operation signal is stopped. The touch-type operation device described in.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-141887 | 2020-08-25 | ||
JP2020141887A JP2023152297A (en) | 2020-08-25 | 2020-08-25 | Operating position sensing device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022044413A1 true WO2022044413A1 (en) | 2022-03-03 |
Family
ID=80353729
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/014355 WO2022044413A1 (en) | 2020-08-25 | 2021-04-02 | Touch operation device |
PCT/JP2021/030990 WO2022045132A1 (en) | 2020-08-25 | 2021-08-24 | Operation position detecting device |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/030990 WO2022045132A1 (en) | 2020-08-25 | 2021-08-24 | Operation position detecting device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2023152297A (en) |
WO (2) | WO2022044413A1 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090021267A1 (en) * | 2006-07-17 | 2009-01-22 | Mykola Golovchenko | Variably dimensioned capacitance sensor elements |
WO2011142332A1 (en) * | 2010-05-13 | 2011-11-17 | アルプス電気株式会社 | Capacitive input device |
JP2012078988A (en) * | 2010-09-30 | 2012-04-19 | Nippon Seiki Co Ltd | Display item selection device and display item selection system |
JP2016012313A (en) * | 2014-06-30 | 2016-01-21 | トヨタ自動車株式会社 | Operating device |
JP2017194877A (en) * | 2016-04-22 | 2017-10-26 | 理想科学工業株式会社 | Display control apparatus |
JP2018055623A (en) * | 2016-09-30 | 2018-04-05 | ブラザー工業株式会社 | Display input device and storage medium |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3792920B2 (en) * | 1998-12-25 | 2006-07-05 | 株式会社東海理化電機製作所 | Touch operation input device |
TW201907279A (en) * | 2015-09-30 | 2019-02-16 | 美商蘋果公司 | Keyboard with adaptive input columns |
JP6664346B2 (en) * | 2017-03-29 | 2020-03-13 | 富士フイルム株式会社 | Touch-type operation device, its operation method and operation program |
-
2020
- 2020-08-25 JP JP2020141887A patent/JP2023152297A/en active Pending
-
2021
- 2021-04-02 WO PCT/JP2021/014355 patent/WO2022044413A1/en active Application Filing
- 2021-08-24 WO PCT/JP2021/030990 patent/WO2022045132A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090021267A1 (en) * | 2006-07-17 | 2009-01-22 | Mykola Golovchenko | Variably dimensioned capacitance sensor elements |
WO2011142332A1 (en) * | 2010-05-13 | 2011-11-17 | アルプス電気株式会社 | Capacitive input device |
JP2012078988A (en) * | 2010-09-30 | 2012-04-19 | Nippon Seiki Co Ltd | Display item selection device and display item selection system |
JP2016012313A (en) * | 2014-06-30 | 2016-01-21 | トヨタ自動車株式会社 | Operating device |
JP2017194877A (en) * | 2016-04-22 | 2017-10-26 | 理想科学工業株式会社 | Display control apparatus |
JP2018055623A (en) * | 2016-09-30 | 2018-04-05 | ブラザー工業株式会社 | Display input device and storage medium |
Also Published As
Publication number | Publication date |
---|---|
WO2022045132A1 (en) | 2022-03-03 |
JP2023152297A (en) | 2023-10-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6004427B2 (en) | Indicator operation detection device | |
US10824262B2 (en) | Touch control device, vehicle having the same, and method for manufacturing the touch control device | |
JP2018032443A (en) | Selective input signal rejection and modification | |
US20070126711A1 (en) | Input device | |
JP5640486B2 (en) | Information display device | |
JP2015033974A (en) | Vehicular operation device | |
WO2012111227A1 (en) | Touch input device, electronic apparatus, and input method | |
WO2022044413A1 (en) | Touch operation device | |
US20060232563A1 (en) | Touch-sense apparatus available for one-dimensional and two-dimensional modes and control method therefor | |
KR102684822B1 (en) | Input apparatus and vehicle | |
EP2962902A1 (en) | Vehicular operating device | |
JP4309377B2 (en) | Pointer display control device and pointing device | |
US9377911B2 (en) | Input device | |
JP2013033309A (en) | Touch panel input operation device | |
JP2012208762A (en) | Touch panel input operation device | |
JP7529380B2 (en) | Vehicle operation control device | |
JP2012190406A (en) | Touch panel input operation device | |
JP6643200B2 (en) | Operation determination device | |
US12111988B1 (en) | Illumination associated with a touch sensitive area | |
JP6649127B2 (en) | Operation device | |
JP6627087B2 (en) | Input device | |
KR20230088985A (en) | Touch input apparatus and method for recognizing touch input applied thereto | |
WO2022259888A1 (en) | Operation input device | |
JP2019032762A (en) | Input device and input method | |
JPH11110124A (en) | Coordinate detector |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21860845 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21860845 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |