[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022044219A1 - Refrigeration cycle device - Google Patents

Refrigeration cycle device Download PDF

Info

Publication number
WO2022044219A1
WO2022044219A1 PCT/JP2020/032448 JP2020032448W WO2022044219A1 WO 2022044219 A1 WO2022044219 A1 WO 2022044219A1 JP 2020032448 W JP2020032448 W JP 2020032448W WO 2022044219 A1 WO2022044219 A1 WO 2022044219A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
heat exchanger
flow path
refrigerant circuit
peripheral surface
Prior art date
Application number
PCT/JP2020/032448
Other languages
French (fr)
Japanese (ja)
Inventor
智隆 石川
宗 野本
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2020/032448 priority Critical patent/WO2022044219A1/en
Priority to JP2022545167A priority patent/JP7357804B2/en
Publication of WO2022044219A1 publication Critical patent/WO2022044219A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit

Definitions

  • This disclosure relates to a refrigeration cycle device.
  • a refrigeration cycle device provided with a safety valve for discharging the refrigerant to the outside of the refrigerant circuit when the pressure of the refrigerant enclosed in the refrigerant circuit rises excessively (for example, Japanese Patent Application Laid-Open No. 2003-336917). reference).
  • a refrigeration cycle device when the pressure of the refrigerant on the inlet side of the safety valve becomes equal to or higher than the outlet pressure of the safety valve, the refrigerant is discharged from the safety valve to the outside of the refrigerant circuit.
  • the refrigerant is discharged from the safety valve to the outside of the refrigerant circuit until the pressure of the refrigerant on the inlet side of the safety valve becomes equal to or lower than the shutoff pressure of the safety valve. It is realized only by discharging the refrigerant from the refrigerant circuit to the outside of the refrigerant circuit. Therefore, in the refrigeration cycle device, the amount of refrigerant released in order to reduce the pressure of the refrigerant from the outlet pressure of the safety valve to the pressure at which it stops is relatively large, and it is difficult to suppress the amount of refrigerant released. there were.
  • the amount of refrigerant released is relatively large, the amount of refrigerant refilled will be relatively large when the refrigeration cycle device is reused. Further, when the amount of the refrigerant released is relatively large, the refrigerating machine oil is likely to be discharged to the outside of the refrigerant circuit together with the refrigerant, and the refrigerating machine oil may need to be refilled. In addition, if the amount of refrigerant released is relatively large, there is an increased risk that the operator may come into contact with the released refrigerant and suffer low-temperature burns.
  • a main object of the present disclosure is to provide a refrigerating cycle device capable of suppressing an excessive increase in the pressure of the refrigerant while suppressing the amount of refrigerant released as compared with a conventional refrigerating cycle device.
  • the refrigeration cycle apparatus includes a first refrigerant circuit in which the first refrigerant circulates and a second refrigerant circuit in which the second refrigerant circulates.
  • the first refrigerant circuit and the second refrigerant circuit include a first heat exchanger that exchanges heat between the first refrigerant and the second refrigerant.
  • the first refrigerant circuit is connected to the first part, which is a part of the first refrigerant circuit, the second part, which is another part of the first refrigerant circuit, and the first part, and is the outer periphery of the second part. Further includes a blowout portion arranged to face the surface. When the pressure of the first refrigerant in the first refrigerant circuit becomes equal to or higher than a predetermined value, the blowout portion blows out the first refrigerant to the outer peripheral surface.
  • a refrigerating cycle device capable of suppressing the amount of refrigerant released as compared with a conventional refrigerating cycle device while suppressing an excessive rise in the pressure of the refrigerant.
  • FIG. It is a block diagram which shows the refrigeration cycle apparatus which concerns on Embodiment 1.
  • FIG. It is a block diagram which shows the refrigeration cycle apparatus which concerns on Embodiment 2.
  • the refrigeration cycle device 100 includes a first refrigerant circuit 10 and a second refrigerant circuit 20.
  • the refrigeration cycle device 100 is a dual refrigeration cycle device.
  • the first refrigerant circuit 10 mainly includes a first heat exchanger 1, a second heat exchanger 2, a pump 3, a receiver 4, and a blowout portion 5.
  • the first refrigerant circuit 10 is filled with the first refrigerant.
  • the first refrigerant circulates through the pump 3, the second heat exchanger 2, the first heat exchanger 1, and the receiver 4 in the order described.
  • the second refrigerant circuit 20 mainly includes a first heat exchanger 1, a compressor 21, a third heat exchanger 22, and an expansion valve 23.
  • the second refrigerant circuit 20 is filled with the second refrigerant.
  • the second refrigerant circulates the compressor 21, the third heat exchanger 22, the expansion valve 23, and the first heat exchanger 1 in the order described.
  • the first heat exchanger 1 is a heat exchanger that exchanges heat between the first refrigerant and the second refrigerant.
  • the first refrigerant is condensed by the heat exchange, and the second refrigerant is evaporated by the heat exchange.
  • the first heat exchanger 1 is a cascade condenser, which acts as a condenser in the first refrigerant circuit 10 and as an evaporator in the second refrigerant circuit 20.
  • the second heat exchanger 2 acts as an evaporator in the first refrigerant circuit 10.
  • the second heat exchanger 2 is a heat exchanger that exchanges heat between, for example, a first refrigerant and a heat medium such as air around the second heat exchanger 2, and acts as a cooler for cooling the heat medium.
  • the second heat exchanger 2 is arranged in a space to be cooled, for example, an internal space of a showcase.
  • the third heat exchanger 22 acts as a condenser in the second refrigerant circuit 20.
  • the third heat exchanger 22 is a heat exchanger that exchanges heat between, for example, a second refrigerant and a heat medium such as air around the third heat exchanger 22.
  • the first heat exchanger 1 has a first lower flow path 1a located on the downstream side of the first refrigerant circuit 10 and a first upper flow path 1b located on the upstream side of the first refrigerant circuit 10.
  • the second heat exchanger 2 has a second lower flow path 2b located on the downstream side of the first refrigerant circuit 10 and a second upper flow path 2a located on the upstream side of the first refrigerant circuit 10.
  • Each of the first lower flow path 1a, the first upper flow path 1b, the second upper flow path 2a, and the second lower flow path 2b includes, for example, a plurality of heat transfer tubes and a distribution unit connected to each end of the plurality of heat transfer tubes.
  • the first refrigerant circuit 10 includes a first refrigerant flow path from the first lower flow path 1a of the first heat exchanger 1 to the second upper flow path 2a of the second heat exchanger 2, and a downstream side of the second heat exchanger. It has a second refrigerant flow path from the portion located in the above to the portion located on the upstream side of the first heat exchanger.
  • the pump 3 and the receiver 4 are arranged in the first refrigerant flow path.
  • the first refrigerant flow path includes a refrigerant flow path 11 connecting between the first lower flow path 1a of the first heat exchanger 1 and the receiver 4, a refrigerant flow path 12 connecting between the receiver 4 and the pump 3, and a refrigerant flow path 12. It has a refrigerant flow path 13 that connects the pump 3 and the second upper flow path 2a of the second heat exchanger 2.
  • the second refrigerant flow path has a refrigerant flow path 14 that connects between the second lower flow path 2b of the second heat exchanger 2 and the first upper flow path 1b of the first heat exchanger 1.
  • Pump 3 sends out the first refrigerant.
  • the pump 3 is a liquid pump that sends out the first refrigerant in a liquid state.
  • the receiver 4 temporarily stores the first refrigerant inside the receiver 4.
  • the first refrigerant is gas-liquid separated.
  • the first refrigerant flowing out from the receiver 4 to the pump 3 is a saturated liquid having no degree of supercooling.
  • the receiver 4 has a lower portion 4a located below and an upper portion 4b located above the lower portion 4a.
  • the first refrigerant, which is saturated steam, is stored inside the upper portion 4b.
  • the receiver 4 has an outer peripheral surface located outside the first refrigerant circuit 10.
  • the blowout portion 5 is connected to the refrigerant flow path 12 and is arranged so as to face the outer peripheral surface of the upper portion 4b of the receiver 4.
  • a predetermined value for example, the outlet pressure of the safety valve 5b described later
  • the blowout portion 5 has, for example, a pipeline 5a and a safety valve 5b.
  • the pipeline 5a is branched from the refrigerant flow path 12.
  • the safety valve 5b mainly includes, for example, a refrigerant flow path connecting an inlet side opening, an outlet side opening, an inlet side opening and an outlet side opening, and a valve body that opens and closes the refrigerant flow path. Have in.
  • the inlet side opening is connected to the pipeline 5a.
  • the outlet-side opening forms a blowout port of the blowout portion 5, and is arranged so as to face the outer peripheral surface of the upper portion 4b of the receiver 4 at a distance from each other.
  • the outlet of the outlet 5 faces, for example, in the horizontal direction.
  • the distance between the blowout port of the blowout portion 5 and the outer peripheral surface of the upper portion 4b is set so that the first refrigerant blown out from the blowout port of the blowout portion 5 reaches the outer peripheral surface.
  • the pressure on the inlet side when the safety valve 5b opens (the blowout pressure of the safety valve 5b) is set to be equal to or lower than the withstand voltage (design pressure) of the refrigerant pipe of the first refrigerant circuit 10.
  • the pressure on the inlet side when the safety valve 5b is closed (the blow-off pressure of the safety valve 5b) is set to be less than the withstand voltage (design pressure) of the refrigerant pipe of the first refrigerant circuit 10.
  • the first refrigerant circuit 10 includes a first part P1 which is a part of the first refrigerant circuit 10, a second part P2 which is another part of the first refrigerant circuit 10, and a first part.
  • the blowout portion 5 which is connected to P1 and is arranged so as to face the outer peripheral surface of the second portion P2c is included.
  • the first part P1 is a part through which the first refrigerant in a liquid state is circulated or stored.
  • a liquid single-phase first refrigerant or a gas-liquid two-phase first refrigerant having a dryness of 50% or less is referred to as a liquid first refrigerant.
  • the second part P2 is a part where the first refrigerant in a gas state is circulated or stored.
  • a gas single-phase first refrigerant or a gas-liquid two-phase first refrigerant having a dryness of more than 50% is referred to as a gas-state first refrigerant.
  • the first refrigerant in the liquid state circulates in the first part P1 and the first refrigerant in the gas state circulates in the second part P2.
  • the first refrigerant in the liquid state is stored in the first part P1
  • the first refrigerant in the gas state is stored in the second part P2.
  • at least a part of the first refrigerant flow path is the first part P1
  • at least a part of the second refrigerant flow path and the upper part 4b of the receiver in the first refrigerant flow path is the second part P2. Is.
  • the blowing part 5 blows out the first refrigerant of the first part P1 to the outer peripheral surface of the upper part 4b.
  • the pressure of the first refrigerant at room temperature is higher than the withstand voltage of the first refrigerant circuit 10.
  • the pressure of the first refrigerant at room temperature is, for example, 3 MPa or more.
  • the first refrigerant contains, for example, carbon dioxide (CO2).
  • the pressure of carbon dioxide at room temperature is 5 MPa or more.
  • the first refrigerant circuit 10 is sealed, and the first refrigerant sealed in the first refrigerant circuit 10 circulates in the direction indicated by the arrow in FIG.
  • the first refrigerant which is the saturated liquid flowing out of the receiver 4 flows into the second heat exchanger 2 via the refrigerant flow path 12, the pump 3, and the refrigerant flow path 13.
  • the saturated liquid state first refrigerant exchanges heat with a heat medium such as air in the second heat exchanger 2 and evaporates. As a result, the heat medium is cooled.
  • the dryness of the first refrigerant flowing through the second lower flow path 2b of the second heat exchanger 2 is higher than the dryness of the first refrigerant flowing through the second upper flow path 2a of the second heat exchanger 2.
  • the second lower flow path 2b of the second heat exchanger 2 is a portion through which the first refrigerant in a gas state flows in the first refrigerant circuit 10 during normal operation.
  • the gas-state first refrigerant flowing out of the second heat exchanger 2 flows into the first heat exchanger 1 via the refrigerant flow path 14.
  • the first refrigerant in the gas state exchanges heat with the second refrigerant in the first heat exchanger 1 and condenses.
  • the second refrigerant evaporates.
  • the dryness of the first refrigerant flowing through the first upper flow path 1b of the first heat exchanger 1 is higher than the dryness of the first refrigerant flowing through the first lower flow path 1a of the first heat exchanger 1.
  • the first upper flow path 1b of the first heat exchanger 1 is a portion through which the first refrigerant in a gas state flows in the first refrigerant circuit 10 during normal operation.
  • the liquid-state first refrigerant flowing out of the first heat exchanger 1 flows into the receiver 4 via the refrigerant flow path 11.
  • the first refrigerant is gas-liquid separated at the receiver 4.
  • the upper portion 4b of the receiver 4 is a portion in which the first refrigerant in the gas state is stored in the first refrigerant circuit 10 during normal operation.
  • the first lower flow path 1a, the refrigerant flow path 11, the refrigerant flow path 12, the refrigerant flow path 13, and the second upper flow path 2a of the second heat exchanger 2 are the first refrigerant in normal operation. This is the portion where the first refrigerant in a liquid state flows in the circuit 10.
  • the second heat exchanger 2 acts as a cooler.
  • the outer peripheral surface of the receiver 4 does not come into contact with the first refrigerant.
  • the time when the normal operation of the refrigeration cycle device 100 is stopped will be described.
  • the temperature of the first refrigerant in the first refrigerant circuit 10 rises, and the pressure of the first refrigerant also rises accordingly.
  • the first refrigerant in the gas state is the second lower flow path 2b of the second heat exchanger 2, the refrigerant flow path 14, and the first upper flow path 1b of the first heat exchanger 1. And is stored in the upper portion 4b of the receiver 4.
  • the safety valve 5b opens and the first refrigerant is directed from the blowout portion 5 toward the outer peripheral surface of the upper portion 4b of the receiver 4. Is blown out.
  • the refrigerant blown out from the blowout portion 5 reaches the outer peripheral surface of the upper portion 4b of the receiver 4 and cools the upper portion 4b from the outside.
  • the pressure of the first refrigerant in the first refrigerant circuit 10 decreases.
  • the safety valve 5b closes again and the blowing of the first refrigerant stops.
  • the refrigerating cycle device 100 When the refrigerating cycle device 100 resumes the normal operation after the operation is stopped, the first refrigerant is refilled in the first refrigerant circuit 10 before the restart of the normal operation, if necessary.
  • the refrigeration cycle device 100 includes a first refrigerant circuit 10 in which the first refrigerant circulates, and a second refrigerant circuit 20 in which the second refrigerant circulates.
  • the first refrigerant circuit 10 and the second refrigerant circuit 20 include a first heat exchanger 1 in which the first refrigerant and the second refrigerant exchange heat with each other to condense the first refrigerant and evaporate the second refrigerant.
  • the first refrigerant circuit 10 is connected to a first part P1 which is a part of the first refrigerant circuit 10, a second part P2 which is another part of the first refrigerant circuit 10, and a first part P1.
  • blowout portion 5 arranged so as to face the outer peripheral surface of the second portion P2 is included.
  • the blowout portion 5 blows out the first refrigerant to the outer peripheral surface.
  • the first refrigerant in the first refrigerant circuit 10 is blown out from the blowout portion 5 to the outside of the first refrigerant circuit 10, so that the pressure of the first refrigerant in the first refrigerant circuit 10 is reached. Excessive rise is suppressed. Further, the blowing portion 5 blows the first refrigerant onto the outer peripheral surface of the second portion P2 of the first refrigerant circuit 10, whereby the first refrigerant in the second portion P2 is cooled and the first refrigerant in the second portion P2 is cooled. The pressure of the refrigerant drops.
  • the pressure of the first refrigerant in the first refrigerant circuit 10 is compared with the refrigerating cycle device in which the blowing portion is provided so as to simply blow the first refrigerant to the outside of the first refrigerant circuit. Since the increase is suppressed, the amount of refrigerant blown out to the outside of the first refrigerant circuit 10 can be reduced.
  • the first part P1 is a part where the first refrigerant in a liquid state is circulated or stored
  • the second part P2 is a part where the first refrigerant in a gas state is circulated or stored. be.
  • the blowing portion 5 blows out the first refrigerant of the first part P1 to the outer peripheral surface of the second part P2.
  • the first refrigerant in the liquid state is blown out to the outer peripheral surface of the second part P2 in which the first refrigerant in the gas state flows or is stored, the first refrigerant in the gas state is the second part.
  • the first refrigerant in a gas state is more likely to be liquefied, and the pressure increase of the first refrigerant is suppressed more effectively.
  • the amount of the refrigerant blown out to the outside of the first refrigerant circuit 10 can be reduced as compared with the case where the first refrigerant in the gas state is blown out to the outer peripheral surface of the second part P2. ..
  • the first refrigerant circuit 10 further includes a second heat exchanger 2 in which the first refrigerant evaporates.
  • the first refrigerant circuit 10 has a first refrigerant flow path from a first lower flow path 1a located on the downstream side of the first heat exchanger 1 to a second upper flow path 2a located on the upstream side of the second heat exchanger 2. It has a second lower flow path 2b located on the downstream side of the second heat exchanger and a second refrigerant flow path from the first upper flow path 1b located on the upstream side of the first heat exchanger.
  • the first refrigerant flow path is arranged between the first lower flow path 1a of the first heat exchanger 1 and the second upper flow path 2a of the second heat exchanger 2, and the receiver 4 in which the first refrigerant is stored is stored.
  • the first part P1 is a part of the refrigerant flow path 12 included in the first refrigerant flow path.
  • the second part P2 is an upper part 4b located above the receiver 4.
  • the first refrigerant in the gas state in the upper portion 4b is cooled by exchanging heat with the first refrigerant in the liquid state blown out on the outer peripheral surface of the upper portion 4b, and the gas state in the upper portion 4b.
  • the liquefaction of the first refrigerant is promoted.
  • the pressure increase of the first refrigerant is suppressed more effectively, so that the amount of the refrigerant blown out to the outside of the first refrigerant circuit 10 can be reduced.
  • the first refrigerant circuit 10 further includes a pump 3 that sends out the first refrigerant.
  • the first refrigerant circulates in order through the pump 3, the second heat exchanger 2, the first heat exchanger 1, and the receiver 4.
  • the first part P1 is a part of the refrigerant flow path 12 that connects between the first heat exchanger 1 and the pump 3, more specifically, between the receiver 4 and the pump 3 in the first refrigerant flow path. Is.
  • the first refrigerant contains carbon dioxide.
  • the withstand voltage of the first refrigerant circuit 10 is set lower than the pressure of the first refrigerant at room temperature. Therefore, the manufacturing cost of the refrigerating cycle device 100 is lower than the manufacturing cost of the refrigerating cycle device in which the withstand voltage of the first refrigerant circuit is set higher than the pressure of the first refrigerant at room temperature.
  • the first refrigerant circuit 10 may include a plurality of second heat exchangers 2 connected in parallel with each other.
  • the outlet of the outlet 5 is arranged above the outer peripheral surface of the second portion P2, and may be provided so as to blow out the first refrigerant downward.
  • the central axis of the blowout port of the blowout portion 5 intersects the horizontal direction, for example, along the vertical direction.
  • the refrigerating cycle apparatus 101 according to the second embodiment has basically the same configuration as the refrigerating cycle apparatus 100 according to the first embodiment, but the blowout portion 5 is a first heat exchanger. It differs from the refrigeration cycle apparatus 100 in that it is provided so as to blow out on the outer peripheral surface of the first upper flow path 1b of 1.
  • the blowout portion 5 is connected to the refrigerant flow path 12 and is arranged so as to face the outer peripheral surface of the first upper flow path 1b of the first heat exchanger 1.
  • the blowout portion 5 transfers a part of the first refrigerant in the refrigerant flow path 12 to the first upper flow path of the first heat exchanger 1. Blow out on the outer peripheral surface of 1b.
  • the blowout port of the blowout portion 5 is arranged above, for example, the outer peripheral surface of the first upper flow path 1b, and is provided so as to blow out the first refrigerant downward.
  • the refrigerating cycle device 101 Since the refrigerating cycle device 101 has basically the same configuration as the refrigerating cycle device 100, the same effect as that of the refrigerating cycle device 100 can be obtained.
  • the refrigerating cycle apparatus 102 according to the third embodiment has basically the same configuration as the refrigerating cycle apparatus 100 according to the first embodiment, but the blowout portion 5 is a second heat exchanger. It differs from the refrigeration cycle device 100 in that it is provided so as to blow out on the outer peripheral surface of the second lower flow path 2b of 2.
  • the blowout portion 5 is connected to the refrigerant flow path 12 and is arranged so as to face the outer peripheral surface of the second lower flow path 2b of the second heat exchanger 2.
  • the blowout portion 5 uses a part of the first refrigerant in the refrigerant flow path 12 as the second lower flow path of the second heat exchanger 2. Blow out on the outer peripheral surface of 2b.
  • the blowout port of the blowout portion 5 is arranged above, for example, the outer peripheral surface of the second lower flow path 2b, and is provided so as to blow out the first refrigerant downward.
  • the refrigerating cycle device 102 Since the refrigerating cycle device 102 has basically the same configuration as the refrigerating cycle device 100, the same effect as that of the refrigerating cycle device 100 can be obtained.
  • the refrigerating cycle apparatus 103 according to the fourth embodiment has basically the same configuration as the refrigerating cycle apparatus 100 according to the first embodiment, but the blowing portion 5 is a refrigerant flow path 14. It differs from the refrigeration cycle device 100 in that it is provided so as to blow out on the outer peripheral surface.
  • the blowout portion 5 is connected to the refrigerant flow path 12 and is arranged so as to face the outer peripheral surface of the refrigerant flow path 14. When the pressure of the first refrigerant in the refrigerant flow path 12 becomes equal to or higher than a predetermined value, the blowout portion 5 blows out a part of the first refrigerant in the refrigerant flow path 12 to the outer peripheral surface of the refrigerant flow path 14.
  • the refrigerating cycle device 103 Since the refrigerating cycle device 103 has basically the same configuration as the refrigerating cycle device 100, the same effect as that of the refrigerating cycle device 100 can be obtained.
  • the refrigerating cycle apparatus 104 according to the fifth embodiment has basically the same configuration as the refrigerating cycle apparatus 100 according to the first embodiment, but has the first heat of the first refrigerant circuit 10. It differs from the refrigeration cycle device 100 in that the exchanger 1, the blowout portion 5, and the second refrigerant circuit 20 are housed in the outdoor unit 31.
  • the pump 3 and the receiver 4 are also housed in the outdoor unit 31.
  • the second heat exchanger 2 is housed in the indoor unit 32.
  • the refrigerating cycle device 104 has basically the same configuration as the refrigerating cycle device 100, the same effect as that of the refrigerating cycle device 100 can be obtained. Further, in the refrigerating cycle device 104, since the target material to which the first refrigerant is sprayed from the blowout portion 5 and the blowout portion 5 is housed in the outdoor unit 31, the first refrigerant blown out from the blowout portion 5 does not scatter indoors. ..
  • the refrigerating cycle device 104 is the refrigerating cycle device 101 or the refrigerating cycle device 104 except that the first heat exchanger 1 and the blowing portion 5 of the first refrigerant circuit 10 and the second refrigerant circuit 20 are housed in the outdoor unit 31. It may have the same configuration as the cycle device 103.
  • the refrigerating cycle device 105 according to the sixth embodiment has basically the same configuration as the refrigerating cycle device 104 according to the fifth embodiment, but is housed in the outdoor unit 31. It differs from the refrigeration cycle device 105 in that it further includes a case 40 that surrounds the blowout portion 5 and the outer peripheral surface of the second portion P2.
  • the case 40 may be provided so as to surround at least the safety valve 5b of the blowout portion 5 and the outer peripheral surface of the second portion P2.
  • the pipeline 5a and the safety valve 5b of the blowout portion 5 and the second portion may be provided. It is provided so as to surround the outer peripheral surface of P2.
  • the case 40 is arranged below the insertion hole 41 through which the refrigerant flow path 11 is passed, the insertion hole 42 through which the refrigerant flow path 12 is passed, and the receiver 4, the insertion hole 41, and the insertion hole 42. Includes the dish portion 43.
  • the case 40 prevents the first refrigerant blown out from the blowout portion 5 from scattering.
  • the dish portion 43 temporarily stores the first refrigerant blown out from the blowout portion 5.
  • the refrigerating cycle device 105 Since the refrigerating cycle device 105 has basically the same configuration as the refrigerating cycle device 104, the same effect as that of the refrigerating cycle device 100 can be obtained. Further, in the refrigerating cycle device 105, the case 40 prevents the refrigerant blown out from the blown-out portion 5 from scattering, and temporarily stores the refrigerant blown out from the blown-out portion 5. Therefore, in the refrigerating cycle device 105, it is easier to recover the first refrigerant blown out from the blowing portion 5 as compared with the refrigerating cycle device 104 not provided with the case 40.
  • the first heat exchanger 1, the blowout portion 5, and the second refrigerant circuit 20 of the first refrigerant circuit 10 are housed in the outdoor unit 31, and the case. It may have the same configuration as any of the refrigeration cycle devices 101 to 103 except that it includes 40.
  • the case 40 surrounds the outer peripheral surface of the blowout portion 5 and the first upper flow path 1b.
  • the case 40 surrounds the outer peripheral surface of the blowout portion 5 and the second lower flow path 2b.
  • the case 40 surrounds the blowout portion 5 and the outer peripheral surface of the refrigerant flow path 14.
  • Embodiment 7 As shown in FIG. 7, the refrigerating cycle apparatus 106 according to the seventh embodiment has basically the same configuration as the refrigerating cycle apparatus 101 according to the second embodiment, but the first refrigerant circuit 10 has a receiver 4. It differs from the refrigeration cycle device 101 in that it does not include it.
  • the first refrigerant circuit 10 includes a first heat exchanger 1, a second heat exchanger 2, and a pump 3.
  • the first refrigerant flow path of the first refrigerant circuit 10 includes a refrigerant flow path 15 connecting between the first lower flow path 1a of the first heat exchanger 1 and the pump 3, and the pump 3 and the second heat exchanger 2. It has a refrigerant flow path 13 connected to the second upper flow path 2a of the above.
  • the refrigerant flow path 15 is a portion through which the first refrigerant in a liquid state flows during normal operation of the refrigeration cycle device 106.
  • the blowout portion 5 is connected to the refrigerant flow path 15 and is arranged so as to face the outer peripheral surface of the first upper flow path 1b of the first heat exchanger 1.
  • the blowout portion 5 transfers a part of the first refrigerant in the refrigerant flow path 15 to the first upper flow path of the first heat exchanger 1. Blow out on the outer peripheral surface of 1b.
  • the refrigeration cycle device 106 Since the refrigeration cycle device 106 has basically the same configuration as the refrigeration cycle device 101, it can exert the same effect as the refrigeration cycle device 101.
  • the refrigerating cycle device 106 may have the same configuration as the refrigerating cycle device 102, except that the first refrigerant circuit 10 does not include the receiver 4. Further, in the refrigeration cycle device 106, similarly to the refrigeration cycle devices 104 and 105, the first heat exchanger 1 and the blowout portion 5 of the first refrigerant circuit 10 and the second refrigerant circuit 20 are housed in the outdoor unit 31. May be good. Further, the refrigerating cycle device 106 may further include a case 40, similarly to the refrigerating cycle device 105.
  • Embodiment 8 As shown in FIG. 8, the refrigerating cycle apparatus 107 according to the eighth embodiment has basically the same configuration as the refrigerating cycle apparatus 100 according to the first embodiment, but the first refrigerant circuit 10 is attached to the pump 3. It differs from the refrigeration cycle apparatus 100 in that it includes the first compressor 6 instead.
  • the first refrigerant circuit 10 includes a first compressor 6, a first heat exchanger 1, a receiver 4, an expansion valve 7, and a second heat exchanger 2.
  • the first compressor 6 compresses the first refrigerant.
  • the expansion valve 7 the first refrigerant expands.
  • the first compressor 6 is arranged in the second refrigerant flow path.
  • the expansion valve 7 is arranged in the first refrigerant flow path.
  • the first refrigerant circulates through the first compressor 6, the first heat exchanger 1, the receiver 4, the expansion valve 7, and the second heat exchanger 2 in the order described.
  • the first refrigerant flow path of the first refrigerant circuit 10 is a refrigerant flow path 11 connecting between the first lower flow path 1a of the first heat exchanger 1 and the receiver 4, and between the receiver 4 and the expansion valve 7. It has a refrigerant flow path 16 to be connected, and a refrigerant flow path 17 to connect between the expansion valve 7 and the second upper flow path 2a of the second heat exchanger 2.
  • the second refrigerant flow path of the first refrigerant circuit 10 is a refrigerant flow path 18 connecting between the second lower flow path 2b of the second heat exchanger 2 and the suction port of the first compressor 6, and the first compression. It has a refrigerant flow path 19 that connects the discharge port of the machine 6 and the first upper flow path 1b of the first heat exchanger 1.
  • the blowout portion 5 is connected to the refrigerant flow path 16 of the first refrigerant flow path.
  • the blowing portion 5 blows out the first refrigerant to, for example, the outer peripheral surface of the upper portion 4b of the receiver 4.
  • the refrigerating cycle device 107 has basically the same configuration as the refrigerating cycle device 100, the same effect as that of the refrigerating cycle device 100 can be obtained.
  • the refrigeration cycle device 107 may have the same configuration as any of the refrigeration cycle devices 101 to 106, except that the first refrigerant circuit 10 includes the first compressor 6 and the expansion valve 7.
  • the blowout portion 5 of the refrigeration cycle device 107 may be provided so as to blow out the first refrigerant to a part of the second refrigerant flow path.
  • the outlet side opening of the safety valve 5b constitutes the outlet of the outlet 5, but the present invention is not limited to this.
  • the blowout portion 5 of the refrigeration cycle devices 100 to 107 may further include a nozzle connected to the outlet side opening of the safety valve 5b.
  • the nozzle has an inlet side opening connected to the outlet side opening of the safety valve 5b, and an outlet side opening arranged so as to face the outer peripheral surface of the second portion P2 at a distance from each other. ..
  • the outlet-side opening of the nozzle constitutes the outlet of the blowout portion 5.
  • the timing at which the blowing unit 5 blows out the first refrigerant is controlled by, for example, a control unit.
  • the control unit instructs the blowout unit 5 to blow out the first refrigerant.
  • the pressure sensor may be provided to measure the pressure of the first refrigerant in the first refrigerant flow path, or may be provided to measure the pressure of the first refrigerant in the second refrigerant flow path. May be good.
  • 1 1st heat exchanger 1a 1st lower flow path, 1b 1st upper flow path, 2 2nd heat exchanger, 2a 2nd upper flow path, 2b 2nd lower flow path, 3 pump, 4 receiver, 4a lower part, 4b upper part Part, 5 blowout part, 5a pipeline, 5b safety valve, 6th first compressor, 7,23 expansion valve, 10th first refrigerant circuit, 11,12,13,14,15,16,17,18,19 refrigerant flow Road, 20 2nd refrigerant circuit, 21 compressor, 22 3rd heat exchanger, 31 outdoor unit, 32 indoor unit, 40 case, 41, 42 insertion hole, 43 dish part, 100, 101, 102, 103, 104, 105, 106, 107 Refrigerating cycle device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

A refrigeration cycle device (100) is provided with a first refrigerant circuit (10) in which a first refrigerant circulates and a second refrigerant circuit (20) in which a second refrigerant circulates. The first refrigerant circuit and the second refrigerant circuit include a first heat exchanger (1) that exchanges heat between the first refrigerant and the second refrigerant. The first refrigerant circuit further includes a first part, which is a part of the first refrigerant circuit, a second part, which is another part of the first refrigerant circuit, and a blowout part (5) that is connected to the first part and is arranged to face an outer peripheral surface of the second part. The blowout part blows the first refrigerant onto the outer peripheral surface when the pressure of the first refrigerant in the first refrigerant circuit becomes a predetermined value or more.

Description

冷凍サイクル装置Refrigeration cycle device
 本開示は、冷凍サイクル装置に関する。 This disclosure relates to a refrigeration cycle device.
 従来、冷媒回路に封入された冷媒の圧力が過上昇したときに、冷媒を冷媒回路の外部へ放出するための安全弁を備える冷凍サイクル装置が知られている(例えば、特開2003-336917号公報参照)。このような冷凍サイクル装置では、安全弁の入口側の冷媒の圧力が安全弁の吹出し圧力以上となると、冷媒が安全弁から冷媒回路の外部へ放出される。 Conventionally, there is known a refrigeration cycle device provided with a safety valve for discharging the refrigerant to the outside of the refrigerant circuit when the pressure of the refrigerant enclosed in the refrigerant circuit rises excessively (for example, Japanese Patent Application Laid-Open No. 2003-336917). reference). In such a refrigeration cycle device, when the pressure of the refrigerant on the inlet side of the safety valve becomes equal to or higher than the outlet pressure of the safety valve, the refrigerant is discharged from the safety valve to the outside of the refrigerant circuit.
特開2003-336917号公報Japanese Patent Application Laid-Open No. 2003-336917
 上記冷凍サイクル装置では、安全弁の入口側の冷媒の圧力が安全弁の吹止まり圧力以下となるまで冷媒が安全弁から冷媒回路の外部へ放出されるが、安全弁の入口側の冷媒の圧力低下は、安全弁から冷媒回路の外部へ冷媒を放出することのみによって実現される。そのため、上記冷凍サイクル装置では、冷媒の圧力を安全弁の吹出し圧力から吹止まり圧力以下にまで低下させるために必要となる冷媒の放出量は比較的多く、冷媒の放出量を抑制することは困難であった。 In the refrigeration cycle device, the refrigerant is discharged from the safety valve to the outside of the refrigerant circuit until the pressure of the refrigerant on the inlet side of the safety valve becomes equal to or lower than the shutoff pressure of the safety valve. It is realized only by discharging the refrigerant from the refrigerant circuit to the outside of the refrigerant circuit. Therefore, in the refrigeration cycle device, the amount of refrigerant released in order to reduce the pressure of the refrigerant from the outlet pressure of the safety valve to the pressure at which it stops is relatively large, and it is difficult to suppress the amount of refrigerant released. there were.
 冷媒の放出量が比較的多い場合、冷凍サイクル装置を再使用する際に冷媒の再充填量が比較的多くなる。また、冷媒の放出量が比較的多い場合、冷凍機油が冷媒とともに冷媒回路の外部に放出されやすくなり、冷凍機油の再充填が必要となるおそれがある。また、冷媒の放出量が比較的多い場合、作業者が放出された冷媒に触れてしまい低温やけどを負うリスクも高まる。 If the amount of refrigerant released is relatively large, the amount of refrigerant refilled will be relatively large when the refrigeration cycle device is reused. Further, when the amount of the refrigerant released is relatively large, the refrigerating machine oil is likely to be discharged to the outside of the refrigerant circuit together with the refrigerant, and the refrigerating machine oil may need to be refilled. In addition, if the amount of refrigerant released is relatively large, there is an increased risk that the operator may come into contact with the released refrigerant and suffer low-temperature burns.
 本開示の主たる目的は、冷媒の圧力の過上昇を抑制しながらも、従来の冷凍サイクル装置と比べて冷媒の放出量を抑制できる冷凍サイクル装置を提供することにある。 A main object of the present disclosure is to provide a refrigerating cycle device capable of suppressing an excessive increase in the pressure of the refrigerant while suppressing the amount of refrigerant released as compared with a conventional refrigerating cycle device.
 本開示に係る冷凍サイクル装置は、第1冷媒が循環する第1冷媒回路と、第2冷媒が循環する第2冷媒回路とを備える。第1冷媒回路および第2冷媒回路は、第1冷媒と第2冷媒との間で熱交換する第1熱交換器を含む。第1冷媒回路は、第1冷媒回路の一部である第1部と、第1冷媒回路の他の一部である第2部と、第1部に接続されておりかつ第2部の外周面と対向するように配置されている吹き出し部とをさらに含む。吹き出し部は、第1冷媒回路内の第1冷媒の圧力が予め定められた値以上になると、第1冷媒を上記外周面に吹き出す。 The refrigeration cycle apparatus according to the present disclosure includes a first refrigerant circuit in which the first refrigerant circulates and a second refrigerant circuit in which the second refrigerant circulates. The first refrigerant circuit and the second refrigerant circuit include a first heat exchanger that exchanges heat between the first refrigerant and the second refrigerant. The first refrigerant circuit is connected to the first part, which is a part of the first refrigerant circuit, the second part, which is another part of the first refrigerant circuit, and the first part, and is the outer periphery of the second part. Further includes a blowout portion arranged to face the surface. When the pressure of the first refrigerant in the first refrigerant circuit becomes equal to or higher than a predetermined value, the blowout portion blows out the first refrigerant to the outer peripheral surface.
 本開示によれば、冷媒の圧力の過上昇を抑制しながらも、従来の冷凍サイクル装置と比べて冷媒の放出量を抑制できる冷凍サイクル装置を提供できる。 According to the present disclosure, it is possible to provide a refrigerating cycle device capable of suppressing the amount of refrigerant released as compared with a conventional refrigerating cycle device while suppressing an excessive rise in the pressure of the refrigerant.
実施の形態1に係る冷凍サイクル装置を示すブロック図である。It is a block diagram which shows the refrigeration cycle apparatus which concerns on Embodiment 1. FIG. 実施の形態2に係る冷凍サイクル装置を示すブロック図である。It is a block diagram which shows the refrigeration cycle apparatus which concerns on Embodiment 2. 実施の形態3に係る冷凍サイクル装置を示すブロック図である。It is a block diagram which shows the refrigeration cycle apparatus which concerns on Embodiment 3. 実施の形態4に係る冷凍サイクル装置を示すブロック図である。It is a block diagram which shows the refrigeration cycle apparatus which concerns on Embodiment 4. 実施の形態5に係る冷凍サイクル装置を示すブロック図である。It is a block diagram which shows the refrigeration cycle apparatus which concerns on Embodiment 5. 実施の形態6に係る冷凍サイクル装置を示すブロック図である。It is a block diagram which shows the refrigeration cycle apparatus which concerns on Embodiment 6. 実施の形態7に係る冷凍サイクル装置を示すブロック図である。It is a block diagram which shows the refrigeration cycle apparatus which concerns on Embodiment 7. 実施の形態8に係る冷凍サイクル装置を示すブロック図である。It is a block diagram which shows the refrigeration cycle apparatus which concerns on Embodiment 8.
 以下、図面を参照して、本開示の実施の形態について説明する。なお、以下の図面において同一または相当する部分には同一の参照番号を付しその説明は繰返さない。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. In the following drawings, the same or corresponding parts will be given the same reference number and the explanation will not be repeated.
 実施の形態1.
 図1に示されるように、実施の形態1に係る冷凍サイクル装置100は、第1冷媒回路10および第2冷媒回路20を備える。言い換えると、冷凍サイクル装置100は、二元冷凍サイクル装置である。
Embodiment 1.
As shown in FIG. 1, the refrigeration cycle device 100 according to the first embodiment includes a first refrigerant circuit 10 and a second refrigerant circuit 20. In other words, the refrigeration cycle device 100 is a dual refrigeration cycle device.
 第1冷媒回路10は、第1熱交換器1、第2熱交換器2、ポンプ3、レシーバ4、および吹き出し部5を主に備える。第1冷媒回路10には、第1冷媒が封入されている。第1冷媒回路において、第1冷媒は、ポンプ3、第2熱交換器2、第1熱交換器1、およびレシーバ4を、この記載順に循環する。 The first refrigerant circuit 10 mainly includes a first heat exchanger 1, a second heat exchanger 2, a pump 3, a receiver 4, and a blowout portion 5. The first refrigerant circuit 10 is filled with the first refrigerant. In the first refrigerant circuit, the first refrigerant circulates through the pump 3, the second heat exchanger 2, the first heat exchanger 1, and the receiver 4 in the order described.
 第2冷媒回路20は、第1熱交換器1、圧縮機21、第3熱交換器22、および膨張弁23を主に備える。第2冷媒回路20には、第2冷媒が封入されている。第2冷媒回路において、第2冷媒は、圧縮機21、第3熱交換器22、膨張弁23、および第1熱交換器1を、この記載順に循環する。 The second refrigerant circuit 20 mainly includes a first heat exchanger 1, a compressor 21, a third heat exchanger 22, and an expansion valve 23. The second refrigerant circuit 20 is filled with the second refrigerant. In the second refrigerant circuit, the second refrigerant circulates the compressor 21, the third heat exchanger 22, the expansion valve 23, and the first heat exchanger 1 in the order described.
 第1熱交換器1は、第1冷媒と第2冷媒とを熱交換する熱交換器である。第1熱交換器1では、第1冷媒が上記熱交換により凝縮し、第2冷媒が上記熱交換により蒸発する。第1熱交換器1は、カスケード凝縮器であり、第1冷媒回路10では凝縮器として作用し、第2冷媒回路20では蒸発器として作用する。第2熱交換器2は、第1冷媒回路10において蒸発器として作用する。第2熱交換器2では、例えば第1冷媒と第2熱交換器2の周囲の空気などの熱媒体とを熱交換する熱交換器であり、当該熱媒体を冷却する冷却器として作用する。第2熱交換器2は、例えばショーケースの内部空間などの冷却されるべき空間内に配置されている。第3熱交換器22は、第2冷媒回路20において凝縮器として作用する。第3熱交換器22は、例えば第2冷媒と第3熱交換器22の周囲の空気などの熱媒体とを熱交換する熱交換器である。 The first heat exchanger 1 is a heat exchanger that exchanges heat between the first refrigerant and the second refrigerant. In the first heat exchanger 1, the first refrigerant is condensed by the heat exchange, and the second refrigerant is evaporated by the heat exchange. The first heat exchanger 1 is a cascade condenser, which acts as a condenser in the first refrigerant circuit 10 and as an evaporator in the second refrigerant circuit 20. The second heat exchanger 2 acts as an evaporator in the first refrigerant circuit 10. The second heat exchanger 2 is a heat exchanger that exchanges heat between, for example, a first refrigerant and a heat medium such as air around the second heat exchanger 2, and acts as a cooler for cooling the heat medium. The second heat exchanger 2 is arranged in a space to be cooled, for example, an internal space of a showcase. The third heat exchanger 22 acts as a condenser in the second refrigerant circuit 20. The third heat exchanger 22 is a heat exchanger that exchanges heat between, for example, a second refrigerant and a heat medium such as air around the third heat exchanger 22.
 第1熱交換器1は、第1冷媒回路10の下流側に位置する第1下流路1aと、第1冷媒回路10の上流側に位置する第1上流路1bとを有している。第2熱交換器2は、第1冷媒回路10の下流側に位置する第2下流路2bと、第1冷媒回路10の上流側に位置する第2上流路2aとを有している。第1下流路1a、第1上流路1b、第2上流路2a、および第2下流路2bの各々は、例えば複数の伝熱管および複数の伝熱管の各一端に接続された分配部を含む。 The first heat exchanger 1 has a first lower flow path 1a located on the downstream side of the first refrigerant circuit 10 and a first upper flow path 1b located on the upstream side of the first refrigerant circuit 10. The second heat exchanger 2 has a second lower flow path 2b located on the downstream side of the first refrigerant circuit 10 and a second upper flow path 2a located on the upstream side of the first refrigerant circuit 10. Each of the first lower flow path 1a, the first upper flow path 1b, the second upper flow path 2a, and the second lower flow path 2b includes, for example, a plurality of heat transfer tubes and a distribution unit connected to each end of the plurality of heat transfer tubes.
 第1冷媒回路10は、第1熱交換器1の第1下流路1aから第2熱交換器2の第2上流路2aに至る第1冷媒流路と、前記第2熱交換器の下流側に位置する部分から前記第1熱交換器の上流側に位置する部分に至る第2冷媒流路とを有している。ポンプ3およびレシーバ4は、第1冷媒流路内に配置されている。 The first refrigerant circuit 10 includes a first refrigerant flow path from the first lower flow path 1a of the first heat exchanger 1 to the second upper flow path 2a of the second heat exchanger 2, and a downstream side of the second heat exchanger. It has a second refrigerant flow path from the portion located in the above to the portion located on the upstream side of the first heat exchanger. The pump 3 and the receiver 4 are arranged in the first refrigerant flow path.
 第1冷媒流路は、第1熱交換器1の第1下流路1aとレシーバ4との間を接続する冷媒流路11、レシーバ4とポンプ3との間を接続する冷媒流路12、およびポンプ3と第2熱交換器2の第2上流路2aとの間を接続する冷媒流路13を有している。第2冷媒流路は、第2熱交換器2の第2下流路2bと第1熱交換器1の第1上流路1bとの間を接続する冷媒流路14を有している。 The first refrigerant flow path includes a refrigerant flow path 11 connecting between the first lower flow path 1a of the first heat exchanger 1 and the receiver 4, a refrigerant flow path 12 connecting between the receiver 4 and the pump 3, and a refrigerant flow path 12. It has a refrigerant flow path 13 that connects the pump 3 and the second upper flow path 2a of the second heat exchanger 2. The second refrigerant flow path has a refrigerant flow path 14 that connects between the second lower flow path 2b of the second heat exchanger 2 and the first upper flow path 1b of the first heat exchanger 1.
 ポンプ3は、第1冷媒を送り出す。好ましくは、ポンプ3は、液状態の第1冷媒を送り出す液ポンプである。 Pump 3 sends out the first refrigerant. Preferably, the pump 3 is a liquid pump that sends out the first refrigerant in a liquid state.
 レシーバ4は、その内部において第1冷媒を一時的に貯留する。レシーバ4において、第1冷媒は気液分離される。レシーバ4からポンプ3へ流出する第1冷媒は、過冷却度を有さない飽和液となっている。レシーバ4は、下方に位置する下方部4aと、下方部4aよりも上方に位置する上方部4bとを有している。レシーバ4に流入した第1冷媒のうち、飽和蒸気である第1冷媒は、上方部4bの内部に貯留される。レシーバ4は、第1冷媒回路10の外部に位置する外周面を有している。 The receiver 4 temporarily stores the first refrigerant inside the receiver 4. In the receiver 4, the first refrigerant is gas-liquid separated. The first refrigerant flowing out from the receiver 4 to the pump 3 is a saturated liquid having no degree of supercooling. The receiver 4 has a lower portion 4a located below and an upper portion 4b located above the lower portion 4a. Of the first refrigerants that have flowed into the receiver 4, the first refrigerant, which is saturated steam, is stored inside the upper portion 4b. The receiver 4 has an outer peripheral surface located outside the first refrigerant circuit 10.
 吹き出し部5は、冷媒流路12に接続されておりかつレシーバ4の上方部4bの外周面と対向するように配置されている。吹き出し部5は、冷媒流路12内の第1冷媒の圧力が予め定められた値(例えば後述する安全弁5bの吹出し圧力)以上になると、冷媒流路12内の第1冷媒の一部を上方部4bの上記外周面に吹き出す。 The blowout portion 5 is connected to the refrigerant flow path 12 and is arranged so as to face the outer peripheral surface of the upper portion 4b of the receiver 4. When the pressure of the first refrigerant in the refrigerant flow path 12 becomes equal to or higher than a predetermined value (for example, the outlet pressure of the safety valve 5b described later), the blowout portion 5 upwards a part of the first refrigerant in the refrigerant flow path 12. It is blown out to the outer peripheral surface of the portion 4b.
 具体的には、吹き出し部5は、例えば、管路5aおよび安全弁5bを有している。管路5aは、冷媒流路12から分岐されている。安全弁5bは、例えば、入口側開口部と、出口側開口部と、入口側開口部と出口側開口部との間を接続する冷媒流路と、該冷媒流路を開閉する弁体とを主に有している。入口側開口部は、管路5aに接続されている。出口側開口部は、吹き出し部5の吹き出し口を成しており、レシーバ4の上方部4bの外周面と間隔を隔てて対向するように配置されている。吹き出し部5の吹き出し口は、例えば水平方向に向いている。吹き出し部5の吹き出し口と上方部4bの外周面との間の間隔は、吹き出し部5の吹き出し口から吹き出された第1冷媒が当該外周面に達するように、設定されている。 Specifically, the blowout portion 5 has, for example, a pipeline 5a and a safety valve 5b. The pipeline 5a is branched from the refrigerant flow path 12. The safety valve 5b mainly includes, for example, a refrigerant flow path connecting an inlet side opening, an outlet side opening, an inlet side opening and an outlet side opening, and a valve body that opens and closes the refrigerant flow path. Have in. The inlet side opening is connected to the pipeline 5a. The outlet-side opening forms a blowout port of the blowout portion 5, and is arranged so as to face the outer peripheral surface of the upper portion 4b of the receiver 4 at a distance from each other. The outlet of the outlet 5 faces, for example, in the horizontal direction. The distance between the blowout port of the blowout portion 5 and the outer peripheral surface of the upper portion 4b is set so that the first refrigerant blown out from the blowout port of the blowout portion 5 reaches the outer peripheral surface.
 安全弁5bが開くときの入口側の圧力(安全弁5bの吹出し圧力)は、第1冷媒回路10の冷媒配管の耐圧(設計圧)以下に設定される。安全弁5bが閉じるときの入口側の圧力(安全弁5bの吹止まり圧力)は、第1冷媒回路10の冷媒配管の耐圧(設計圧)未満に設定される。 The pressure on the inlet side when the safety valve 5b opens (the blowout pressure of the safety valve 5b) is set to be equal to or lower than the withstand voltage (design pressure) of the refrigerant pipe of the first refrigerant circuit 10. The pressure on the inlet side when the safety valve 5b is closed (the blow-off pressure of the safety valve 5b) is set to be less than the withstand voltage (design pressure) of the refrigerant pipe of the first refrigerant circuit 10.
 異なる観点から言えば、第1冷媒回路10は、第1冷媒回路10の一部である第1部P1と、第1冷媒回路10の他の一部である第2部P2と、第1部P1に接続されておりかつ第2部P2cの外周面と対向するように配置されている吹き出し部5を含む。上記第1部P1は、液状態の第1冷媒が流通または貯留される部分である。本開示では、液単相の第1冷媒、または気液二相であって乾き度が50%以下の状態の第1冷媒を、液状態の第1冷媒とよぶ。上記第2部P2は、ガス状態の第1冷媒が流通または貯留される部分である。本開示では、ガス単相の第1冷媒、または気液二相であって乾き度が50%よりも高い状態の第1冷媒を、ガス状態の第1冷媒とよぶ。 From a different point of view, the first refrigerant circuit 10 includes a first part P1 which is a part of the first refrigerant circuit 10, a second part P2 which is another part of the first refrigerant circuit 10, and a first part. The blowout portion 5 which is connected to P1 and is arranged so as to face the outer peripheral surface of the second portion P2c is included. The first part P1 is a part through which the first refrigerant in a liquid state is circulated or stored. In the present disclosure, a liquid single-phase first refrigerant or a gas-liquid two-phase first refrigerant having a dryness of 50% or less is referred to as a liquid first refrigerant. The second part P2 is a part where the first refrigerant in a gas state is circulated or stored. In the present disclosure, a gas single-phase first refrigerant or a gas-liquid two-phase first refrigerant having a dryness of more than 50% is referred to as a gas-state first refrigerant.
 冷凍サイクル装置100の通常動作時には、液状態の第1冷媒が上記第1部P1を流通し、ガス状態の第1冷媒が上記第2部P2を流通する。冷凍サイクル装置100の通常動作が停止された時には、液状態の第1冷媒が上記第1部P1に貯留され、ガス状態の第1冷媒が上記第2部P2に貯留される。冷凍サイクル装置100では、第1冷媒流路の少なくとも一部が第1部P1であり、第2冷媒流路および第1冷媒流路内のレシーバの上方部4bの少なくとも一部が第2部P2である。吹き出し部5は、上記第1部P1の第1冷媒の圧力が予め定められた値以上になると、第1部P1の第1冷媒を上方部4bの外周面に吹き出す。 During normal operation of the refrigeration cycle device 100, the first refrigerant in the liquid state circulates in the first part P1 and the first refrigerant in the gas state circulates in the second part P2. When the normal operation of the refrigeration cycle device 100 is stopped, the first refrigerant in the liquid state is stored in the first part P1, and the first refrigerant in the gas state is stored in the second part P2. In the refrigerating cycle apparatus 100, at least a part of the first refrigerant flow path is the first part P1, and at least a part of the second refrigerant flow path and the upper part 4b of the receiver in the first refrigerant flow path is the second part P2. Is. When the pressure of the first refrigerant of the first part P1 becomes equal to or higher than a predetermined value, the blowing part 5 blows out the first refrigerant of the first part P1 to the outer peripheral surface of the upper part 4b.
 第1冷媒の常温での圧力は、第1冷媒回路10の耐圧よりも高い。第1冷媒の常温での圧力は、例えば3MPa以上である。第1冷媒は、例えば二酸化炭素(CO2)を含む。常温での二酸化炭素の圧力は、5MPa以上である。 The pressure of the first refrigerant at room temperature is higher than the withstand voltage of the first refrigerant circuit 10. The pressure of the first refrigerant at room temperature is, for example, 3 MPa or more. The first refrigerant contains, for example, carbon dioxide (CO2). The pressure of carbon dioxide at room temperature is 5 MPa or more.
 次に、冷凍サイクル装置100の通常動作について説明する。冷凍サイクル装置100の通常動作時には、第1冷媒回路10は密閉されており、第1冷媒回路10に封入された第1冷媒は図1中の矢印に示す方向に循環する。上述のように、レシーバ4から流出した飽和液である第1冷媒は、冷媒流路12、ポンプ3、および冷媒流路13を経て、第2熱交換器2に流入する。飽和液状態の第1冷媒は、第2熱交換器2において空気などの熱媒体と熱交換して蒸発する。これにより、該熱媒体は冷却される。第2熱交換器2の第2下流路2bを流れる第1冷媒の乾き度は、第2熱交換器2の第2上流路2aを流れる第1冷媒の乾き度よりも高い。第2熱交換器2の第2下流路2bは、通常動作時の第1冷媒回路10においてガス状態の第1冷媒が流通する部分である。 Next, the normal operation of the refrigeration cycle device 100 will be described. During normal operation of the refrigeration cycle device 100, the first refrigerant circuit 10 is sealed, and the first refrigerant sealed in the first refrigerant circuit 10 circulates in the direction indicated by the arrow in FIG. As described above, the first refrigerant, which is the saturated liquid flowing out of the receiver 4, flows into the second heat exchanger 2 via the refrigerant flow path 12, the pump 3, and the refrigerant flow path 13. The saturated liquid state first refrigerant exchanges heat with a heat medium such as air in the second heat exchanger 2 and evaporates. As a result, the heat medium is cooled. The dryness of the first refrigerant flowing through the second lower flow path 2b of the second heat exchanger 2 is higher than the dryness of the first refrigerant flowing through the second upper flow path 2a of the second heat exchanger 2. The second lower flow path 2b of the second heat exchanger 2 is a portion through which the first refrigerant in a gas state flows in the first refrigerant circuit 10 during normal operation.
 第2熱交換器2から流出したガス状態の第1冷媒は、冷媒流路14を経て、第1熱交換器1に流入する。ガス状態の第1冷媒は、第1熱交換器1において第2冷媒と熱交換して凝縮する。これにより、第2冷媒は蒸発する。第1熱交換器1の第1上流路1bを流れる第1冷媒の乾き度は、第1熱交換器1の第1下流路1aを流れる第1冷媒の乾き度よりも高い。第1熱交換器1の第1上流路1bは、通常動作時の第1冷媒回路10においてガス状態の第1冷媒が流通する部分である。 The gas-state first refrigerant flowing out of the second heat exchanger 2 flows into the first heat exchanger 1 via the refrigerant flow path 14. The first refrigerant in the gas state exchanges heat with the second refrigerant in the first heat exchanger 1 and condenses. As a result, the second refrigerant evaporates. The dryness of the first refrigerant flowing through the first upper flow path 1b of the first heat exchanger 1 is higher than the dryness of the first refrigerant flowing through the first lower flow path 1a of the first heat exchanger 1. The first upper flow path 1b of the first heat exchanger 1 is a portion through which the first refrigerant in a gas state flows in the first refrigerant circuit 10 during normal operation.
 第1熱交換器1から流出した液状態の第1冷媒は、冷媒流路11を経て、レシーバ4に流入する。第1冷媒は、レシーバ4において気液分離される。レシーバ4の上方部4bは、通常動作時の第1冷媒回路10においてガス状態の第1冷媒が貯留される部分である。第1熱交換器1の第1下流路1a、冷媒流路11、冷媒流路12、冷媒流路13、および第2熱交換器2の第2上流路2aは、通常動作時の第1冷媒回路10において液状態の第1冷媒が流通する部分である。 The liquid-state first refrigerant flowing out of the first heat exchanger 1 flows into the receiver 4 via the refrigerant flow path 11. The first refrigerant is gas-liquid separated at the receiver 4. The upper portion 4b of the receiver 4 is a portion in which the first refrigerant in the gas state is stored in the first refrigerant circuit 10 during normal operation. The first lower flow path 1a, the refrigerant flow path 11, the refrigerant flow path 12, the refrigerant flow path 13, and the second upper flow path 2a of the second heat exchanger 2 are the first refrigerant in normal operation. This is the portion where the first refrigerant in a liquid state flows in the circuit 10.
 このように、冷凍サイクル装置100の通常動作時には、第2熱交換器2が冷却器として作用する。なお、通常動作時には、レシーバ4の外周面は第1冷媒と接しない。 As described above, during the normal operation of the refrigerating cycle device 100, the second heat exchanger 2 acts as a cooler. During normal operation, the outer peripheral surface of the receiver 4 does not come into contact with the first refrigerant.
 次に、冷凍サイクル装置100の通常動作が停止した時について説明する。冷凍サイクル装置100の通常動作が例えば冷凍サイクル装置100の故障または停電によって停止すると、第1冷媒回路10内の第1冷媒の温度は上昇し、これに伴い当該第1冷媒の圧力も上昇する。動作停止時の第1冷媒回路10において、ガス状態の第1冷媒は、第2熱交換器2の第2下流路2b、冷媒流路14、第1熱交換器1の第1上流路1b、およびレシーバ4の上方部4bに貯留される。第1冷媒回路10内の第1冷媒の圧力が吹き出し部5の安全弁5bの吹出し圧力に達すると、安全弁5bが開き、第1冷媒が吹き出し部5からレシーバ4の上方部4bの外周面に向けて吹き出される。吹き出し部5から吹き出された冷媒は、レシーバ4の上方部4bの外周面に到達し、上方部4bを外部から冷却する。これにより、第1冷媒回路10内の第1冷媒の圧力が低下する。第1冷媒回路10内の第1冷媒の圧力が安全弁5bの吹止まり圧力に達すると、安全弁5bが再び閉じて、第1冷媒の吹き出しが停止する。 Next, the time when the normal operation of the refrigeration cycle device 100 is stopped will be described. When the normal operation of the refrigerating cycle device 100 is stopped due to, for example, a failure or a power failure of the refrigerating cycle device 100, the temperature of the first refrigerant in the first refrigerant circuit 10 rises, and the pressure of the first refrigerant also rises accordingly. In the first refrigerant circuit 10 when the operation is stopped, the first refrigerant in the gas state is the second lower flow path 2b of the second heat exchanger 2, the refrigerant flow path 14, and the first upper flow path 1b of the first heat exchanger 1. And is stored in the upper portion 4b of the receiver 4. When the pressure of the first refrigerant in the first refrigerant circuit 10 reaches the outlet pressure of the safety valve 5b of the blowout portion 5, the safety valve 5b opens and the first refrigerant is directed from the blowout portion 5 toward the outer peripheral surface of the upper portion 4b of the receiver 4. Is blown out. The refrigerant blown out from the blowout portion 5 reaches the outer peripheral surface of the upper portion 4b of the receiver 4 and cools the upper portion 4b from the outside. As a result, the pressure of the first refrigerant in the first refrigerant circuit 10 decreases. When the pressure of the first refrigerant in the first refrigerant circuit 10 reaches the stop pressure of the safety valve 5b, the safety valve 5b closes again and the blowing of the first refrigerant stops.
 冷凍サイクル装置100が上記動作停止時後に上記通常動作を再開する場合、必要に応じて、通常動作の再開前に第1冷媒が第1冷媒回路10に再充填される。 When the refrigerating cycle device 100 resumes the normal operation after the operation is stopped, the first refrigerant is refilled in the first refrigerant circuit 10 before the restart of the normal operation, if necessary.
 <作用効果>
 冷凍サイクル装置100は、第1冷媒が循環する第1冷媒回路10と、第2冷媒が循環する第2冷媒回路20とを備える。第1冷媒回路10および第2冷媒回路20は、第1冷媒と第2冷媒とを熱交換して、第1冷媒が凝縮して第2冷媒が蒸発する第1熱交換器1を含む。第1冷媒回路10は、第1冷媒回路10の一部である第1部P1と、第1冷媒回路10の他の一部である第2部P2と、第1部P1に接続されておりかつ第2部P2の外周面と対向するように配置されている吹き出し部5とをさらに含む。吹き出し部5は、第1冷媒回路10内の第1冷媒の圧力が安全弁5bの吹出し圧力以上になると、第1冷媒を上記外周面に吹き出す。
<Action effect>
The refrigeration cycle device 100 includes a first refrigerant circuit 10 in which the first refrigerant circulates, and a second refrigerant circuit 20 in which the second refrigerant circulates. The first refrigerant circuit 10 and the second refrigerant circuit 20 include a first heat exchanger 1 in which the first refrigerant and the second refrigerant exchange heat with each other to condense the first refrigerant and evaporate the second refrigerant. The first refrigerant circuit 10 is connected to a first part P1 which is a part of the first refrigerant circuit 10, a second part P2 which is another part of the first refrigerant circuit 10, and a first part P1. Further, the blowout portion 5 arranged so as to face the outer peripheral surface of the second portion P2 is included. When the pressure of the first refrigerant in the first refrigerant circuit 10 becomes equal to or higher than the pressure of the safety valve 5b, the blowout portion 5 blows out the first refrigerant to the outer peripheral surface.
 冷凍サイクル装置100の動作停止時には、第1冷媒回路10内の第1冷媒が吹き出し部5から第1冷媒回路10の外部に吹き出されることによって、第1冷媒回路10内の第1冷媒の圧力の過上昇が抑制される。さらに、吹き出し部5が第1冷媒を第1冷媒回路10の第2部P2の外周面に吹き出すことにより、当該第2部P2内の第1冷媒が冷却され、第2部P2内の第1冷媒の圧力が低下する。その結果、冷凍サイクル装置100では、吹き出し部が単に第1冷媒回路の外部に第1冷媒を吹き出すように設けられている冷凍サイクル装置と比べて、第1冷媒回路10内の第1冷媒の圧力上昇が抑制されるため、第1冷媒回路10の外部に吹き出される冷媒量が低減され得る。 When the operation of the refrigerating cycle device 100 is stopped, the first refrigerant in the first refrigerant circuit 10 is blown out from the blowout portion 5 to the outside of the first refrigerant circuit 10, so that the pressure of the first refrigerant in the first refrigerant circuit 10 is reached. Excessive rise is suppressed. Further, the blowing portion 5 blows the first refrigerant onto the outer peripheral surface of the second portion P2 of the first refrigerant circuit 10, whereby the first refrigerant in the second portion P2 is cooled and the first refrigerant in the second portion P2 is cooled. The pressure of the refrigerant drops. As a result, in the refrigerating cycle device 100, the pressure of the first refrigerant in the first refrigerant circuit 10 is compared with the refrigerating cycle device in which the blowing portion is provided so as to simply blow the first refrigerant to the outside of the first refrigerant circuit. Since the increase is suppressed, the amount of refrigerant blown out to the outside of the first refrigerant circuit 10 can be reduced.
 冷凍サイクル装置100では、上記第1部P1は、液状態の第1冷媒が流通または貯留される部分であり、上記第2部P2は、ガス状態の第1冷媒が流通または貯留される部分である。吹き出し部5は、上記第1部P1の第1冷媒の圧力が予め定められた値以上になると、上記第1部P1の第1冷媒を上記第2部P2の外周面に吹き出す。 In the refrigeration cycle apparatus 100, the first part P1 is a part where the first refrigerant in a liquid state is circulated or stored, and the second part P2 is a part where the first refrigerant in a gas state is circulated or stored. be. When the pressure of the first refrigerant of the first part P1 becomes equal to or higher than a predetermined value, the blowing portion 5 blows out the first refrigerant of the first part P1 to the outer peripheral surface of the second part P2.
 冷凍サイクル装置100では、液状態の第1冷媒がガス状態の第1冷媒が流通または貯留される上記第2部P2の外周面に吹き出されるため、ガス状態の第1冷媒が上記第2部P2の外周面に吹き出される場合と比べて、ガス状態の第1冷媒が液化されやすく、第1冷媒の圧力上昇がより効果的に抑制される。その結果、冷凍サイクル装置100では、ガス状態の第1冷媒が上記第2部P2の外周面に吹き出される場合と比べて、第1冷媒回路10の外部に吹き出される冷媒量が低減され得る。 In the refrigeration cycle apparatus 100, since the first refrigerant in the liquid state is blown out to the outer peripheral surface of the second part P2 in which the first refrigerant in the gas state flows or is stored, the first refrigerant in the gas state is the second part. Compared with the case where it is blown out to the outer peripheral surface of P2, the first refrigerant in a gas state is more likely to be liquefied, and the pressure increase of the first refrigerant is suppressed more effectively. As a result, in the refrigerating cycle apparatus 100, the amount of the refrigerant blown out to the outside of the first refrigerant circuit 10 can be reduced as compared with the case where the first refrigerant in the gas state is blown out to the outer peripheral surface of the second part P2. ..
 冷凍サイクル装置100において、第1冷媒回路10は、第1冷媒が蒸発する第2熱交換器2をさらに含む。第1冷媒回路10は、第1熱交換器1の下流側に位置する第1下流路1aから第2熱交換器2の上流側に位置する第2上流路2aに至る第1冷媒流路と、第2熱交換器の下流側に位置する第2下流路2bから第1熱交換器の上流側に位置する第1上流路1bに至る第2冷媒流路とを有している。第1冷媒流路は、第1熱交換器1の第1下流路1aと第2熱交換器2の第2上流路2aとの間に配置されておりかつ第1冷媒が貯留されるレシーバ4を含む。上記第1部P1は、第1冷媒流路に含まれる冷媒流路12の一部である。上記第2部P2は、レシーバ4の上方に位置する上方部4bである。 In the refrigeration cycle device 100, the first refrigerant circuit 10 further includes a second heat exchanger 2 in which the first refrigerant evaporates. The first refrigerant circuit 10 has a first refrigerant flow path from a first lower flow path 1a located on the downstream side of the first heat exchanger 1 to a second upper flow path 2a located on the upstream side of the second heat exchanger 2. It has a second lower flow path 2b located on the downstream side of the second heat exchanger and a second refrigerant flow path from the first upper flow path 1b located on the upstream side of the first heat exchanger. The first refrigerant flow path is arranged between the first lower flow path 1a of the first heat exchanger 1 and the second upper flow path 2a of the second heat exchanger 2, and the receiver 4 in which the first refrigerant is stored is stored. including. The first part P1 is a part of the refrigerant flow path 12 included in the first refrigerant flow path. The second part P2 is an upper part 4b located above the receiver 4.
 冷凍サイクル装置100では、上方部4b内のガス状態の第1冷媒は上方部4bの外周面に吹き出された液状態の第1冷媒と熱交換することによって冷却され、上方部4b内のガス状態の第1冷媒の液化が促される。その結果、冷凍サイクル装置100では、第1冷媒の圧力上昇がより効果的に抑制されるため、第1冷媒回路10の外部に吹き出される冷媒量が低減され得る。 In the refrigerating cycle apparatus 100, the first refrigerant in the gas state in the upper portion 4b is cooled by exchanging heat with the first refrigerant in the liquid state blown out on the outer peripheral surface of the upper portion 4b, and the gas state in the upper portion 4b. The liquefaction of the first refrigerant is promoted. As a result, in the refrigeration cycle device 100, the pressure increase of the first refrigerant is suppressed more effectively, so that the amount of the refrigerant blown out to the outside of the first refrigerant circuit 10 can be reduced.
 冷凍サイクル装置100では、第1冷媒回路10は、第1冷媒を送り出すポンプ3をさらに含む。第1冷媒は、ポンプ3、第2熱交換器2、第1熱交換器1、およびレシーバ4を順に循環する。上記第1部P1は、第1冷媒流路のうち第1熱交換器1とポンプ3との間、より具体的にはレシーバ4とポンプ3との間を接続する冷媒流路12の一部である。 In the refrigeration cycle device 100, the first refrigerant circuit 10 further includes a pump 3 that sends out the first refrigerant. The first refrigerant circulates in order through the pump 3, the second heat exchanger 2, the first heat exchanger 1, and the receiver 4. The first part P1 is a part of the refrigerant flow path 12 that connects between the first heat exchanger 1 and the pump 3, more specifically, between the receiver 4 and the pump 3 in the first refrigerant flow path. Is.
 冷凍サイクル装置100では、第1冷媒は二酸化炭素を含む。第1冷媒回路10の耐圧は、第1冷媒の常温での圧力よりも低く設定されている。そのため、冷凍サイクル装置100の製造コストは、第1冷媒回路の耐圧が第1冷媒の常温での圧力よりも高く設定されている冷凍サイクル装置の製造コストと比べて、低い。 In the refrigeration cycle device 100, the first refrigerant contains carbon dioxide. The withstand voltage of the first refrigerant circuit 10 is set lower than the pressure of the first refrigerant at room temperature. Therefore, the manufacturing cost of the refrigerating cycle device 100 is lower than the manufacturing cost of the refrigerating cycle device in which the withstand voltage of the first refrigerant circuit is set higher than the pressure of the first refrigerant at room temperature.
 なお、冷凍サイクル装置100において、第1冷媒回路10は、互いに並列に接続された複数の第2熱交換器2を備えていてもよい。 In the refrigeration cycle device 100, the first refrigerant circuit 10 may include a plurality of second heat exchangers 2 connected in parallel with each other.
 また、冷凍サイクル装置100において、吹き出し部5の吹き出し口は、上記第2部P2の外周面よりも上方に配置されており、第1冷媒を下方に吹き出すように設けられていてもよい。この場合、吹き出し部5の吹き出し口の中心軸は、水平方向に対して交差しており、例えば鉛直方向に沿っている。 Further, in the refrigeration cycle device 100, the outlet of the outlet 5 is arranged above the outer peripheral surface of the second portion P2, and may be provided so as to blow out the first refrigerant downward. In this case, the central axis of the blowout port of the blowout portion 5 intersects the horizontal direction, for example, along the vertical direction.
 実施の形態2.
 図2に示されるように、実施の形態2に係る冷凍サイクル装置101は、実施の形態1に係る冷凍サイクル装置100と基本的に同様の構成を備えるが、吹き出し部5が第1熱交換器1の第1上流路1bの外周面に吹き出すように設けられている点で、冷凍サイクル装置100とは異なる。
Embodiment 2.
As shown in FIG. 2, the refrigerating cycle apparatus 101 according to the second embodiment has basically the same configuration as the refrigerating cycle apparatus 100 according to the first embodiment, but the blowout portion 5 is a first heat exchanger. It differs from the refrigeration cycle apparatus 100 in that it is provided so as to blow out on the outer peripheral surface of the first upper flow path 1b of 1.
 吹き出し部5は、冷媒流路12に接続されておりかつ第1熱交換器1の第1上流路1bの外周面と対向するように配置されている。吹き出し部5は、冷媒流路12内の第1冷媒の圧力が予め定められた値以上になると、冷媒流路12内の第1冷媒の一部を第1熱交換器1の第1上流路1bの外周面に吹き出す。吹き出し部5の吹き出し口は、例えば第1上流路1bの外周面よりも上方に配置されており、第1冷媒を下方に吹き出すように設けられている。 The blowout portion 5 is connected to the refrigerant flow path 12 and is arranged so as to face the outer peripheral surface of the first upper flow path 1b of the first heat exchanger 1. When the pressure of the first refrigerant in the refrigerant flow path 12 becomes equal to or higher than a predetermined value, the blowout portion 5 transfers a part of the first refrigerant in the refrigerant flow path 12 to the first upper flow path of the first heat exchanger 1. Blow out on the outer peripheral surface of 1b. The blowout port of the blowout portion 5 is arranged above, for example, the outer peripheral surface of the first upper flow path 1b, and is provided so as to blow out the first refrigerant downward.
 冷凍サイクル装置101は、冷凍サイクル装置100と基本的に同様の構成を備えるため、冷凍サイクル装置100と同様の効果を奏することができる。 Since the refrigerating cycle device 101 has basically the same configuration as the refrigerating cycle device 100, the same effect as that of the refrigerating cycle device 100 can be obtained.
 実施の形態3.
 図3に示されるように、実施の形態3に係る冷凍サイクル装置102は、実施の形態1に係る冷凍サイクル装置100と基本的に同様の構成を備えるが、吹き出し部5が第2熱交換器2の第2下流路2bの外周面に吹き出すように設けられている点で、冷凍サイクル装置100とは異なる。
Embodiment 3.
As shown in FIG. 3, the refrigerating cycle apparatus 102 according to the third embodiment has basically the same configuration as the refrigerating cycle apparatus 100 according to the first embodiment, but the blowout portion 5 is a second heat exchanger. It differs from the refrigeration cycle device 100 in that it is provided so as to blow out on the outer peripheral surface of the second lower flow path 2b of 2.
 吹き出し部5は、冷媒流路12に接続されておりかつ第2熱交換器2の第2下流路2bの外周面と対向するように配置されている。吹き出し部5は、冷媒流路12内の第1冷媒の圧力が予め定められた値以上になると、冷媒流路12内の第1冷媒の一部を第2熱交換器2の第2下流路2bの外周面に吹き出す。吹き出し部5の吹き出し口は、例えば第2下流路2bの外周面よりも上方に配置されており、第1冷媒を下方に吹き出すように設けられている。 The blowout portion 5 is connected to the refrigerant flow path 12 and is arranged so as to face the outer peripheral surface of the second lower flow path 2b of the second heat exchanger 2. When the pressure of the first refrigerant in the refrigerant flow path 12 becomes equal to or higher than a predetermined value, the blowout portion 5 uses a part of the first refrigerant in the refrigerant flow path 12 as the second lower flow path of the second heat exchanger 2. Blow out on the outer peripheral surface of 2b. The blowout port of the blowout portion 5 is arranged above, for example, the outer peripheral surface of the second lower flow path 2b, and is provided so as to blow out the first refrigerant downward.
 冷凍サイクル装置102は、冷凍サイクル装置100と基本的に同様の構成を備えるため、冷凍サイクル装置100と同様の効果を奏することができる。 Since the refrigerating cycle device 102 has basically the same configuration as the refrigerating cycle device 100, the same effect as that of the refrigerating cycle device 100 can be obtained.
 実施の形態4.
 図4に示されるように、実施の形態4に係る冷凍サイクル装置103は、実施の形態1に係る冷凍サイクル装置100と基本的に同様の構成を備えるが、吹き出し部5が冷媒流路14の外周面に吹き出すように設けられている点で、冷凍サイクル装置100とは異なる。
Embodiment 4.
As shown in FIG. 4, the refrigerating cycle apparatus 103 according to the fourth embodiment has basically the same configuration as the refrigerating cycle apparatus 100 according to the first embodiment, but the blowing portion 5 is a refrigerant flow path 14. It differs from the refrigeration cycle device 100 in that it is provided so as to blow out on the outer peripheral surface.
 吹き出し部5は、冷媒流路12に接続されておりかつ冷媒流路14の外周面と対向するように配置されている。吹き出し部5は、冷媒流路12内の第1冷媒の圧力が予め定められた値以上になると、冷媒流路12内の第1冷媒の一部を冷媒流路14の外周面に吹き出す。 The blowout portion 5 is connected to the refrigerant flow path 12 and is arranged so as to face the outer peripheral surface of the refrigerant flow path 14. When the pressure of the first refrigerant in the refrigerant flow path 12 becomes equal to or higher than a predetermined value, the blowout portion 5 blows out a part of the first refrigerant in the refrigerant flow path 12 to the outer peripheral surface of the refrigerant flow path 14.
 冷凍サイクル装置103は、冷凍サイクル装置100と基本的に同様の構成を備えるため、冷凍サイクル装置100と同様の効果を奏することができる。 Since the refrigerating cycle device 103 has basically the same configuration as the refrigerating cycle device 100, the same effect as that of the refrigerating cycle device 100 can be obtained.
 実施の形態5.
 図5に示されるように、実施の形態5に係る冷凍サイクル装置104は、実施の形態1に係る冷凍サイクル装置100と基本的に同様の構成を備えるが、第1冷媒回路10の第1熱交換器1および吹き出し部5、ならびに第2冷媒回路20が室外機31に収容されている点で、冷凍サイクル装置100とは異なる。
Embodiment 5.
As shown in FIG. 5, the refrigerating cycle apparatus 104 according to the fifth embodiment has basically the same configuration as the refrigerating cycle apparatus 100 according to the first embodiment, but has the first heat of the first refrigerant circuit 10. It differs from the refrigeration cycle device 100 in that the exchanger 1, the blowout portion 5, and the second refrigerant circuit 20 are housed in the outdoor unit 31.
 第1冷媒回路10において、ポンプ3およびレシーバ4も、室外機31に収容されている。第1冷媒回路10において、第2熱交換器2は、室内機32に収容されている。 In the first refrigerant circuit 10, the pump 3 and the receiver 4 are also housed in the outdoor unit 31. In the first refrigerant circuit 10, the second heat exchanger 2 is housed in the indoor unit 32.
 冷凍サイクル装置104は、冷凍サイクル装置100と基本的に同様の構成を備えるため、冷凍サイクル装置100と同様の効果を奏することができる。さらに、冷凍サイクル装置104では、吹き出し部5および吹き出し部5から第1冷媒が吹き付けられる対象材は室外機31に収容されているため、吹き出し部5から吹き出された第1冷媒が室内を飛散しない。 Since the refrigerating cycle device 104 has basically the same configuration as the refrigerating cycle device 100, the same effect as that of the refrigerating cycle device 100 can be obtained. Further, in the refrigerating cycle device 104, since the target material to which the first refrigerant is sprayed from the blowout portion 5 and the blowout portion 5 is housed in the outdoor unit 31, the first refrigerant blown out from the blowout portion 5 does not scatter indoors. ..
 なお、冷凍サイクル装置104は、第1冷媒回路10の第1熱交換器1および吹き出し部5、ならびに第2冷媒回路20が室外機31に収容されている点を除き、冷凍サイクル装置101または冷凍サイクル装置103と同様の構成を備えていてもよい。 The refrigerating cycle device 104 is the refrigerating cycle device 101 or the refrigerating cycle device 104 except that the first heat exchanger 1 and the blowing portion 5 of the first refrigerant circuit 10 and the second refrigerant circuit 20 are housed in the outdoor unit 31. It may have the same configuration as the cycle device 103.
 実施の形態6.
 図6に示されるように、実施の形態6に係る冷凍サイクル装置105は、実施の形態5に係る冷凍サイクル装置104と基本的に同様の構成を備えるが、室外機31に収容されておりかつ吹き出し部5および上記第2部P2の外周面を囲うケース40をさらに備える点で、冷凍サイクル装置105とは異なる。
Embodiment 6.
As shown in FIG. 6, the refrigerating cycle device 105 according to the sixth embodiment has basically the same configuration as the refrigerating cycle device 104 according to the fifth embodiment, but is housed in the outdoor unit 31. It differs from the refrigeration cycle device 105 in that it further includes a case 40 that surrounds the blowout portion 5 and the outer peripheral surface of the second portion P2.
 ケース40は、少なくとも吹き出し部5の安全弁5bと上記第2部P2の外周面とを囲むように設けられていればよいが、例えば吹き出し部5の管路5aおよび安全弁5b、ならびに上記第2部P2の外周面を囲むように設けられている。ケース40は、冷媒流路11が通されている挿通孔41と、冷媒流路12が通されている挿通孔42と、レシーバ4、挿通孔41および挿通孔42よりも下方に配置されている皿部43とを含む。ケース40は、吹き出し部5から吹き出された第1冷媒の飛散を防止する。皿部43は、吹き出し部5から吹き出された第1冷媒を一時的に貯留する。 The case 40 may be provided so as to surround at least the safety valve 5b of the blowout portion 5 and the outer peripheral surface of the second portion P2. For example, the pipeline 5a and the safety valve 5b of the blowout portion 5 and the second portion may be provided. It is provided so as to surround the outer peripheral surface of P2. The case 40 is arranged below the insertion hole 41 through which the refrigerant flow path 11 is passed, the insertion hole 42 through which the refrigerant flow path 12 is passed, and the receiver 4, the insertion hole 41, and the insertion hole 42. Includes the dish portion 43. The case 40 prevents the first refrigerant blown out from the blowout portion 5 from scattering. The dish portion 43 temporarily stores the first refrigerant blown out from the blowout portion 5.
 冷凍サイクル装置105は、冷凍サイクル装置104と基本的に同様の構成を備えるため、冷凍サイクル装置100と同様の効果を奏することができる。さらに、冷凍サイクル装置105では、ケース40が、吹き出し部5から吹き出された冷媒の飛散を防止し、かつ吹き出し部5から吹き出された冷媒を一時的に貯留する。そのため、冷凍サイクル装置105では、ケース40を備えない冷凍サイクル装置104と比べて、吹き出し部5から吹き出された第1冷媒の回収が容易である。 Since the refrigerating cycle device 105 has basically the same configuration as the refrigerating cycle device 104, the same effect as that of the refrigerating cycle device 100 can be obtained. Further, in the refrigerating cycle device 105, the case 40 prevents the refrigerant blown out from the blown-out portion 5 from scattering, and temporarily stores the refrigerant blown out from the blown-out portion 5. Therefore, in the refrigerating cycle device 105, it is easier to recover the first refrigerant blown out from the blowing portion 5 as compared with the refrigerating cycle device 104 not provided with the case 40.
 なお、実施の形態6に係る冷凍サイクル装置105は、第1冷媒回路10の第1熱交換器1、吹き出し部5、および第2冷媒回路20が室外機31に収容されている点、並びにケース40を備えている点を除き、冷凍サイクル装置101~103のいずれかと同様の構成を備えていてもよい。吹き出し部5が第1熱交換器1の第1上流路1bの外周面に第1冷媒を吹き出す場合、ケース40は吹き出し部5および第1上流路1bの当該外周面を囲う。吹き出し部5が第2熱交換器2の第2下流路2bの外周面に第1冷媒を吹き出す場合、ケース40は吹き出し部5および第2下流路2bの当該外周面を囲う。吹き出し部5が冷媒流路14の外周面に第1冷媒を吹き出す場合、ケース40は吹き出し部5および冷媒流路14の当該外周面を囲う。 In the refrigeration cycle device 105 according to the sixth embodiment, the first heat exchanger 1, the blowout portion 5, and the second refrigerant circuit 20 of the first refrigerant circuit 10 are housed in the outdoor unit 31, and the case. It may have the same configuration as any of the refrigeration cycle devices 101 to 103 except that it includes 40. When the blowout portion 5 blows out the first refrigerant to the outer peripheral surface of the first upper flow path 1b of the first heat exchanger 1, the case 40 surrounds the outer peripheral surface of the blowout portion 5 and the first upper flow path 1b. When the blowout portion 5 blows out the first refrigerant to the outer peripheral surface of the second lower flow path 2b of the second heat exchanger 2, the case 40 surrounds the outer peripheral surface of the blowout portion 5 and the second lower flow path 2b. When the blowout portion 5 blows out the first refrigerant to the outer peripheral surface of the refrigerant flow path 14, the case 40 surrounds the blowout portion 5 and the outer peripheral surface of the refrigerant flow path 14.
 実施の形態7.
 図7に示されるように、実施の形態7に係る冷凍サイクル装置106は、実施の形態2に係る冷凍サイクル装置101と基本的に同様の構成を備えるが、第1冷媒回路10がレシーバ4を含まない点で、冷凍サイクル装置101とは異なる。
Embodiment 7.
As shown in FIG. 7, the refrigerating cycle apparatus 106 according to the seventh embodiment has basically the same configuration as the refrigerating cycle apparatus 101 according to the second embodiment, but the first refrigerant circuit 10 has a receiver 4. It differs from the refrigeration cycle device 101 in that it does not include it.
 第1冷媒回路10は、第1熱交換器1、第2熱交換器2、およびポンプ3を含む。第1冷媒回路10の上記第1冷媒流路は、第1熱交換器1の第1下流路1aとポンプ3との間を接続する冷媒流路15、およびポンプ3と第2熱交換器2の第2上流路2aとの間を接続する冷媒流路13を有している。冷媒流路15は、冷凍サイクル装置106の通常動作時に液状態の第1冷媒が流通する部分である。 The first refrigerant circuit 10 includes a first heat exchanger 1, a second heat exchanger 2, and a pump 3. The first refrigerant flow path of the first refrigerant circuit 10 includes a refrigerant flow path 15 connecting between the first lower flow path 1a of the first heat exchanger 1 and the pump 3, and the pump 3 and the second heat exchanger 2. It has a refrigerant flow path 13 connected to the second upper flow path 2a of the above. The refrigerant flow path 15 is a portion through which the first refrigerant in a liquid state flows during normal operation of the refrigeration cycle device 106.
 吹き出し部5は、冷媒流路15と接続されておりかつ第1熱交換器1の第1上流路1bの外周面と対向するように配置されている。吹き出し部5は、冷媒流路15内の第1冷媒の圧力が予め定められた値以上になると、冷媒流路15内の第1冷媒の一部を第1熱交換器1の第1上流路1bの外周面に吹き出す。 The blowout portion 5 is connected to the refrigerant flow path 15 and is arranged so as to face the outer peripheral surface of the first upper flow path 1b of the first heat exchanger 1. When the pressure of the first refrigerant in the refrigerant flow path 15 becomes equal to or higher than a predetermined value, the blowout portion 5 transfers a part of the first refrigerant in the refrigerant flow path 15 to the first upper flow path of the first heat exchanger 1. Blow out on the outer peripheral surface of 1b.
 冷凍サイクル装置106は、冷凍サイクル装置101と基本的に同様の構成を備えるため、冷凍サイクル装置101と同様の効果を奏することができる。 Since the refrigeration cycle device 106 has basically the same configuration as the refrigeration cycle device 101, it can exert the same effect as the refrigeration cycle device 101.
 なお、冷凍サイクル装置106は、第1冷媒回路10がレシーバ4を含まない点を除き、冷凍サイクル装置102と同様の構成を備えていてもよい。また、冷凍サイクル装置106は、冷凍サイクル装置104,105と同様に、第1冷媒回路10の第1熱交換器1および吹き出し部5、ならびに第2冷媒回路20が室外機31に収容されていてもよい。また、冷凍サイクル装置106は、冷凍サイクル装置105と同様に、ケース40を更に備えていてもよい。 The refrigerating cycle device 106 may have the same configuration as the refrigerating cycle device 102, except that the first refrigerant circuit 10 does not include the receiver 4. Further, in the refrigeration cycle device 106, similarly to the refrigeration cycle devices 104 and 105, the first heat exchanger 1 and the blowout portion 5 of the first refrigerant circuit 10 and the second refrigerant circuit 20 are housed in the outdoor unit 31. May be good. Further, the refrigerating cycle device 106 may further include a case 40, similarly to the refrigerating cycle device 105.
 実施の形態8.
 図8に示されるように、実施の形態8に係る冷凍サイクル装置107は、実施の形態1に係る冷凍サイクル装置100と基本的に同様の構成を備えるが、第1冷媒回路10がポンプ3に代えて第1圧縮機6を含む点で、冷凍サイクル装置100とは異なる。
Embodiment 8.
As shown in FIG. 8, the refrigerating cycle apparatus 107 according to the eighth embodiment has basically the same configuration as the refrigerating cycle apparatus 100 according to the first embodiment, but the first refrigerant circuit 10 is attached to the pump 3. It differs from the refrigeration cycle apparatus 100 in that it includes the first compressor 6 instead.
 第1冷媒回路10は、第1圧縮機6、第1熱交換器1、レシーバ4、膨張弁7、および第2熱交換器2を含む。第1圧縮機6は、第1冷媒を圧縮する。膨張弁7において、第1冷媒は膨張する。第1圧縮機6は、上記第2冷媒流路内に配置されている。膨張弁7は、上記第1冷媒流路内に配置されている。第1冷媒は、第1圧縮機6、第1熱交換器1、レシーバ4、膨張弁7、および第2熱交換器2をこの記載順に循環する。 The first refrigerant circuit 10 includes a first compressor 6, a first heat exchanger 1, a receiver 4, an expansion valve 7, and a second heat exchanger 2. The first compressor 6 compresses the first refrigerant. In the expansion valve 7, the first refrigerant expands. The first compressor 6 is arranged in the second refrigerant flow path. The expansion valve 7 is arranged in the first refrigerant flow path. The first refrigerant circulates through the first compressor 6, the first heat exchanger 1, the receiver 4, the expansion valve 7, and the second heat exchanger 2 in the order described.
 第1冷媒回路10の上記第1冷媒流路は、第1熱交換器1の第1下流路1aとレシーバ4との間を接続する冷媒流路11、レシーバ4と膨張弁7との間を接続する冷媒流路16、膨張弁7と第2熱交換器2の第2上流路2aとの間を接続する冷媒流路17を有している。第1冷媒回路10の上記第2冷媒流路は、第2熱交換器2の第2下流路2bと第1圧縮機6の吸入口との間を接続する冷媒流路18、および第1圧縮機6の吐出口と第1熱交換器1の第1上流路1bとの間を接続する冷媒流路19を有している。 The first refrigerant flow path of the first refrigerant circuit 10 is a refrigerant flow path 11 connecting between the first lower flow path 1a of the first heat exchanger 1 and the receiver 4, and between the receiver 4 and the expansion valve 7. It has a refrigerant flow path 16 to be connected, and a refrigerant flow path 17 to connect between the expansion valve 7 and the second upper flow path 2a of the second heat exchanger 2. The second refrigerant flow path of the first refrigerant circuit 10 is a refrigerant flow path 18 connecting between the second lower flow path 2b of the second heat exchanger 2 and the suction port of the first compressor 6, and the first compression. It has a refrigerant flow path 19 that connects the discharge port of the machine 6 and the first upper flow path 1b of the first heat exchanger 1.
 吹き出し部5は、上記第1冷媒流路の冷媒流路16と接続されている。吹き出し部5は、例えばレシーバ4の上方部4bの外周面に第1冷媒を吹き出す。 The blowout portion 5 is connected to the refrigerant flow path 16 of the first refrigerant flow path. The blowing portion 5 blows out the first refrigerant to, for example, the outer peripheral surface of the upper portion 4b of the receiver 4.
 冷凍サイクル装置107は、冷凍サイクル装置100と基本的に同様の構成を備えるため、冷凍サイクル装置100と同様の効果を奏することができる。 Since the refrigerating cycle device 107 has basically the same configuration as the refrigerating cycle device 100, the same effect as that of the refrigerating cycle device 100 can be obtained.
 なお、冷凍サイクル装置107は、第1冷媒回路10が第1圧縮機6および膨張弁7を含む点を除き、冷凍サイクル装置101~106のいずれかと同様の構成を備えていてもよい。冷凍サイクル装置107の吹き出し部5は、上記第2冷媒流路の一部に第1冷媒を吹き出すように設けられていてもよい。 The refrigeration cycle device 107 may have the same configuration as any of the refrigeration cycle devices 101 to 106, except that the first refrigerant circuit 10 includes the first compressor 6 and the expansion valve 7. The blowout portion 5 of the refrigeration cycle device 107 may be provided so as to blow out the first refrigerant to a part of the second refrigerant flow path.
 図1~8に示される冷凍サイクル装置100~107では、安全弁5bの出口側開口部が吹き出し部5の吹き出し口を構成しているが、これに限られるものではない。冷凍サイクル装置100~107の吹き出し部5は、安全弁5bの出口側開口部に接続されたノズルをさらに含んでいてもよい。ノズルは、安全弁5bの出口側開口部に接続された入口側開口部と、上記第2部P2の外周面と間隔を隔てて対向するように配置された出口側開口部とを有している。この場合、ノズルの出口側開口部が、吹き出し部5の吹き出し口を構成している。このような吹き出し部5が第1冷媒を吹き出すタイミングは、例えば制御部によって制御される。制御部は、例えば圧力センサにより測定される第1冷媒の圧力が予め定められた値以上となると、吹き出し部5に対し第1冷媒の吹き出しを指示する。圧力センサは、第1冷媒流路内の第1冷媒の圧力を測定するように設けられていてもよいし、第2冷媒流路内の第1冷媒の圧力を測定するように設けられていてもよい。 In the refrigeration cycle devices 100 to 107 shown in FIGS. 1 to 8, the outlet side opening of the safety valve 5b constitutes the outlet of the outlet 5, but the present invention is not limited to this. The blowout portion 5 of the refrigeration cycle devices 100 to 107 may further include a nozzle connected to the outlet side opening of the safety valve 5b. The nozzle has an inlet side opening connected to the outlet side opening of the safety valve 5b, and an outlet side opening arranged so as to face the outer peripheral surface of the second portion P2 at a distance from each other. .. In this case, the outlet-side opening of the nozzle constitutes the outlet of the blowout portion 5. The timing at which the blowing unit 5 blows out the first refrigerant is controlled by, for example, a control unit. For example, when the pressure of the first refrigerant measured by the pressure sensor becomes equal to or higher than a predetermined value, the control unit instructs the blowout unit 5 to blow out the first refrigerant. The pressure sensor may be provided to measure the pressure of the first refrigerant in the first refrigerant flow path, or may be provided to measure the pressure of the first refrigerant in the second refrigerant flow path. May be good.
 以上のように本開示の実施の形態について説明を行なったが、上述の実施の形態を様々に変形することも可能である。また、本開示の範囲は上述の実施の形態に限定されるものではない。本開示の範囲は、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更を含むことが意図される。 Although the embodiment of the present disclosure has been described as described above, it is also possible to modify the above-described embodiment in various ways. Further, the scope of the present disclosure is not limited to the above-described embodiment. The scope of the present disclosure is indicated by the scope of claims and is intended to include all modifications within the meaning and scope equivalent to the scope of claims.
 1 第1熱交換器、1a 第1下流路、1b 第1上流路、2 第2熱交換器、2a 第2上流路、2b 第2下流路、3 ポンプ、4 レシーバ、4a 下方部、4b 上方部、5 吹き出し部、5a 管路、5b 安全弁、6 第1圧縮機、7,23 膨張弁、10 第1冷媒回路、11,12,13,14,15,16,17,18,19 冷媒流路、20 第2冷媒回路、21 圧縮機、22 第3熱交換器、31 室外機、32 室内機、40 ケース、41,42 挿通孔、43 皿部、100,101,102,103,104,105,106,107 冷凍サイクル装置。 1 1st heat exchanger, 1a 1st lower flow path, 1b 1st upper flow path, 2 2nd heat exchanger, 2a 2nd upper flow path, 2b 2nd lower flow path, 3 pump, 4 receiver, 4a lower part, 4b upper part Part, 5 blowout part, 5a pipeline, 5b safety valve, 6th first compressor, 7,23 expansion valve, 10th first refrigerant circuit, 11,12,13,14,15,16,17,18,19 refrigerant flow Road, 20 2nd refrigerant circuit, 21 compressor, 22 3rd heat exchanger, 31 outdoor unit, 32 indoor unit, 40 case, 41, 42 insertion hole, 43 dish part, 100, 101, 102, 103, 104, 105, 106, 107 Refrigerating cycle device.

Claims (12)

  1.  第1冷媒が循環する第1冷媒回路と、
     第2冷媒が循環する第2冷媒回路とを備え、
     前記第1冷媒回路および前記第2冷媒回路は、前記第1冷媒と前記第2冷媒との間で熱交換する第1熱交換器を含み、
     前記第1冷媒回路は、前記第1冷媒回路の一部である第1部と、前記第1冷媒回路の他の一部である第2部と、前記第1部に接続されておりかつ前記第2部の外周面と対向するように配置されている吹き出し部とをさらに含み、
     前記吹き出し部は、前記第1冷媒回路内の前記第1冷媒の圧力が予め定められた値以上になると、前記第1冷媒を前記外周面に吹き出す、冷凍サイクル装置。
    The first refrigerant circuit in which the first refrigerant circulates,
    It is equipped with a second refrigerant circuit in which the second refrigerant circulates.
    The first refrigerant circuit and the second refrigerant circuit include a first heat exchanger that exchanges heat between the first refrigerant and the second refrigerant.
    The first refrigerant circuit is connected to the first part, which is a part of the first refrigerant circuit, the second part, which is another part of the first refrigerant circuit, and the first part. Further includes a blowout portion arranged so as to face the outer peripheral surface of the second portion, and includes a blowout portion.
    The blowing portion is a refrigerating cycle device that blows out the first refrigerant to the outer peripheral surface when the pressure of the first refrigerant in the first refrigerant circuit becomes a predetermined value or more.
  2.  前記第1部は、液状態の前記第1冷媒が流通または貯留される部分であり、
     前記第2部は、ガス状態の前記第1冷媒が流通または貯留される部分であり、
     前記吹き出し部は、前記第1冷媒の圧力が前記予め定められた値以上になると、前記第1部の前記第1冷媒を前記外周面に吹き出す、請求項1に記載の冷凍サイクル装置。
    The first part is a part through which the first refrigerant in a liquid state is circulated or stored.
    The second part is a part through which the first refrigerant in a gas state is circulated or stored.
    The refrigerating cycle apparatus according to claim 1, wherein the blowing portion blows out the first refrigerant of the first portion to the outer peripheral surface when the pressure of the first refrigerant becomes equal to or higher than the predetermined value.
  3.  前記第1熱交換器では、前記第1冷媒が凝縮して前記第2冷媒が蒸発し、
     前記第1冷媒回路は、前記第1冷媒が蒸発する第2熱交換器をさらに含み、
     前記第1冷媒回路は、前記第1熱交換器の下流側に位置する部分から前記第2熱交換器の上流側に位置する部分に至る第1冷媒流路と、前記第2熱交換器の下流側に位置する部分から前記第1熱交換器の上流側に位置する部分に至る第2冷媒流路とを有し、
     前記第1冷媒流路は、前記第1熱交換器の下流側に位置する部分と前記第2熱交換器の上流側に位置する部分との間に配置されておりかつ前記第1冷媒が貯留されるレシーバを含み、
     前記第1部は、前記第1冷媒流路の一部であり、
     前記第2部は、前記レシーバの上方に位置する部分である、請求項2に記載の冷凍サイクル装置。
    In the first heat exchanger, the first refrigerant condenses and the second refrigerant evaporates.
    The first refrigerant circuit further includes a second heat exchanger in which the first refrigerant evaporates.
    The first refrigerant circuit includes a first refrigerant flow path from a portion located on the downstream side of the first heat exchanger to a portion located on the upstream side of the second heat exchanger, and the second heat exchanger. It has a second refrigerant flow path from a portion located on the downstream side to a portion located on the upstream side of the first heat exchanger.
    The first refrigerant flow path is arranged between a portion located on the downstream side of the first heat exchanger and a portion located on the upstream side of the second heat exchanger, and the first refrigerant is stored. Including receivers
    The first part is a part of the first refrigerant flow path, and is a part of the first refrigerant flow path.
    The refrigeration cycle apparatus according to claim 2, wherein the second part is a portion located above the receiver.
  4.  前記第1熱交換器では、前記第1冷媒が凝縮して前記第2冷媒が蒸発し、
     前記第1冷媒回路は、前記第1冷媒が蒸発する第2熱交換器をさらに含み、
     前記第1冷媒回路は、前記第1熱交換器の下流側に位置する部分から前記第2熱交換器の上流側に位置する部分に至る第1冷媒流路と、前記第2熱交換器の下流側に位置する部分から前記第1熱交換器の上流側に位置する部分に至る第2冷媒流路とを有し、
     前記第1部は、前記第1冷媒流路の一部であり、
     前記第2部は、前記第2冷媒流路の一部である、請求項2に記載の冷凍サイクル装置。
    In the first heat exchanger, the first refrigerant condenses and the second refrigerant evaporates.
    The first refrigerant circuit further includes a second heat exchanger in which the first refrigerant evaporates.
    The first refrigerant circuit includes a first refrigerant flow path from a portion located on the downstream side of the first heat exchanger to a portion located on the upstream side of the second heat exchanger, and the second heat exchanger. It has a second refrigerant flow path from a portion located on the downstream side to a portion located on the upstream side of the first heat exchanger.
    The first part is a part of the first refrigerant flow path.
    The refrigerating cycle apparatus according to claim 2, wherein the second part is a part of the second refrigerant flow path.
  5.  前記第1冷媒回路は、前記第1冷媒を送り出すポンプをさらに含み、
     前記第1冷媒は、前記ポンプ、前記第2熱交換器、および前記第1熱交換器を順に循環し、
     前記第1部は、前記第1冷媒流路のうち前記第1熱交換器と前記ポンプとの間を接続する部分である、請求項3または4に記載の冷凍サイクル装置。
    The first refrigerant circuit further includes a pump that delivers the first refrigerant.
    The first refrigerant circulates in order through the pump, the second heat exchanger, and the first heat exchanger.
    The refrigeration cycle apparatus according to claim 3 or 4, wherein the first part is a portion of the first refrigerant flow path that connects the first heat exchanger and the pump.
  6.  前記第1冷媒回路は、前記第1冷媒を圧縮する第1圧縮機、および前記第1冷媒が膨張する膨張弁をさらに含み、
     前記第1冷媒は、前記第1圧縮機、前記第1熱交換器、前記膨張弁、および前記第2熱交換器を順に循環し、
     前記第1部は、前記第1冷媒流路のうち、前記第1熱交換器と前記膨張弁との間を接続する部分である、請求項3または4に記載の冷凍サイクル装置。
    The first refrigerant circuit further includes a first compressor that compresses the first refrigerant, and an expansion valve in which the first refrigerant expands.
    The first refrigerant circulates in this order through the first compressor, the first heat exchanger, the expansion valve, and the second heat exchanger.
    The refrigerating cycle apparatus according to claim 3 or 4, wherein the first part is a portion of the first refrigerant flow path that connects the first heat exchanger and the expansion valve.
  7.  前記吹き出し部は、前記外周面よりも上方に配置されており、前記第1冷媒を下方に吹き出す、請求項1~6のいずれか1項に記載の冷凍サイクル装置。 The refrigerating cycle apparatus according to any one of claims 1 to 6, wherein the blowing portion is arranged above the outer peripheral surface and blows out the first refrigerant downward.
  8.  前記第1冷媒回路の前記第1熱交換器および前記吹き出し部、および前記第2冷媒回路は、室外機に収容されている、請求項1~7のいずれか1項に記載の冷凍サイクル装置。 The refrigerating cycle apparatus according to any one of claims 1 to 7, wherein the first heat exchanger and the blowing portion of the first refrigerant circuit, and the second refrigerant circuit are housed in an outdoor unit.
  9.  前記室外機に収容されており、かつ前記吹き出し部および前記第2部の前記外周面を囲うケースをさらに備える、請求項8に記載の冷凍サイクル装置。 The refrigerating cycle apparatus according to claim 8, further comprising a case housed in the outdoor unit and surrounding the blowout portion and the outer peripheral surface of the second portion.
  10.  前記第1冷媒の圧力が前記予め定められた値以下であるときに、前記第1冷媒回路は密閉されており、かつ前記第1冷媒は前記第1冷媒回路に封入されており、
     前記第1冷媒の圧力が前記予め定められた値以上になるときにのみ、前記第1冷媒は前記第1冷媒回路の外部に配置された前記外周面に吹き出される、請求項1~9のいずれか1項に記載の冷凍サイクル装置。
    When the pressure of the first refrigerant is equal to or less than the predetermined value, the first refrigerant circuit is sealed, and the first refrigerant is enclosed in the first refrigerant circuit.
    Claims 1 to 9, wherein the first refrigerant is blown out to the outer peripheral surface arranged outside the first refrigerant circuit only when the pressure of the first refrigerant becomes equal to or higher than the predetermined value. The refrigerating cycle apparatus according to any one item.
  11.  前記第1冷媒は、二酸化炭素を含む、請求項1~10のいずれか1項に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to any one of claims 1 to 10, wherein the first refrigerant contains carbon dioxide.
  12.  前記吹き出し部は、安全弁を含み、
     前記吹き出し部は、前記第1部の前記第1冷媒の圧力が前記予め定められた値以上になると、前記第1部の前記第1冷媒を前記外周面に吹き出す、請求項1~11のいずれか1項に記載の冷凍サイクル装置。
    The blowout portion includes a safety valve and includes a safety valve.
    Any of claims 1 to 11, wherein the blowing portion blows out the first refrigerant of the first part to the outer peripheral surface when the pressure of the first refrigerant of the first part becomes equal to or higher than the predetermined value. The refrigerating cycle apparatus according to item 1.
PCT/JP2020/032448 2020-08-27 2020-08-27 Refrigeration cycle device WO2022044219A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/032448 WO2022044219A1 (en) 2020-08-27 2020-08-27 Refrigeration cycle device
JP2022545167A JP7357804B2 (en) 2020-08-27 2020-08-27 Refrigeration cycle equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/032448 WO2022044219A1 (en) 2020-08-27 2020-08-27 Refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2022044219A1 true WO2022044219A1 (en) 2022-03-03

Family

ID=80354915

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/032448 WO2022044219A1 (en) 2020-08-27 2020-08-27 Refrigeration cycle device

Country Status (2)

Country Link
JP (1) JP7357804B2 (en)
WO (1) WO2022044219A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003336917A (en) * 2002-05-17 2003-11-28 Sanden Corp Cooling device
JP2007218535A (en) * 2006-02-17 2007-08-30 Daikin Ind Ltd Air conditioner
WO2015140876A1 (en) * 2014-03-17 2015-09-24 三菱電機株式会社 Refrigeration cycle device
WO2017126058A1 (en) * 2016-01-20 2017-07-27 三菱電機株式会社 Refrigeration cycle device
WO2018047265A1 (en) * 2016-09-08 2018-03-15 三菱電機株式会社 Heat pump device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003336917A (en) * 2002-05-17 2003-11-28 Sanden Corp Cooling device
JP2007218535A (en) * 2006-02-17 2007-08-30 Daikin Ind Ltd Air conditioner
WO2015140876A1 (en) * 2014-03-17 2015-09-24 三菱電機株式会社 Refrigeration cycle device
WO2017126058A1 (en) * 2016-01-20 2017-07-27 三菱電機株式会社 Refrigeration cycle device
WO2018047265A1 (en) * 2016-09-08 2018-03-15 三菱電機株式会社 Heat pump device

Also Published As

Publication number Publication date
JPWO2022044219A1 (en) 2022-03-03
JP7357804B2 (en) 2023-10-06

Similar Documents

Publication Publication Date Title
US20080302129A1 (en) Refrigeration system for transcritical operation with economizer and low-pressure receiver
KR101173157B1 (en) Air-Conditioning System for Vehicle having Water-Cooled Condenser and Water-Cooled Heat Exchanger for Supercooling
JP4118254B2 (en) Refrigeration equipment
JPWO2017221400A1 (en) Refrigeration cycle equipment
WO2002077542A3 (en) Heating and refrigeration systems using refrigerant mass flow
JP4983330B2 (en) Refrigeration cycle equipment
KR101649193B1 (en) Cascade refrigeration cycle system
WO2021234956A1 (en) Heat exchanger, outdoor unit, and refrigeration cycle device
WO2022044219A1 (en) Refrigeration cycle device
KR20090013222A (en) Refrigeration device
JP2008116135A (en) Heat exchanger and refrigeration device
US20120137723A1 (en) Air conditioner
KR100505236B1 (en) Air-conditioner
KR100516645B1 (en) Structure for prevention of dew condensation in refrigerator
JP6991866B2 (en) Steam compression refrigerator
JP2005337577A5 (en)
JP2005337577A (en) Refrigerating device
WO2020245982A1 (en) Heat exchanger and refrigeration cycle device
JP4722963B2 (en) refrigerator
KR101914499B1 (en) Air conditioner
JP7542579B2 (en) Refrigeration Cycle Equipment
KR100745420B1 (en) Air conditioner
US20230204260A1 (en) Heat exchange device and cooling system having the same
WO2021117254A1 (en) Spot cooler device
KR0147099B1 (en) Heat exchanger of airconditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20951472

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022545167

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20951472

Country of ref document: EP

Kind code of ref document: A1