WO2022044286A1 - Near-infrared cut filter and imaging device provided with same - Google Patents
Near-infrared cut filter and imaging device provided with same Download PDFInfo
- Publication number
- WO2022044286A1 WO2022044286A1 PCT/JP2020/032735 JP2020032735W WO2022044286A1 WO 2022044286 A1 WO2022044286 A1 WO 2022044286A1 JP 2020032735 W JP2020032735 W JP 2020032735W WO 2022044286 A1 WO2022044286 A1 WO 2022044286A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cut filter
- infrared cut
- atom
- wavelength
- filter according
- Prior art date
Links
- 238000003384 imaging method Methods 0.000 title description 2
- 238000002834 transmittance Methods 0.000 claims abstract description 164
- 229920005989 resin Polymers 0.000 claims abstract description 97
- 239000011347 resin Substances 0.000 claims abstract description 97
- 239000000758 substrate Substances 0.000 claims abstract description 77
- 239000010410 layer Substances 0.000 claims description 136
- 239000011521 glass Substances 0.000 claims description 119
- 239000000463 material Substances 0.000 claims description 50
- 238000010521 absorption reaction Methods 0.000 claims description 16
- 229910052719 titanium Inorganic materials 0.000 claims description 16
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 claims description 11
- 229910019142 PO4 Inorganic materials 0.000 claims description 9
- 239000010452 phosphate Substances 0.000 claims description 9
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims description 9
- 239000006059 cover glass Substances 0.000 claims description 5
- 239000002356 single layer Substances 0.000 claims description 4
- 230000002708 enhancing effect Effects 0.000 claims 1
- 230000001419 dependent effect Effects 0.000 abstract 1
- 239000005303 fluorophosphate glass Substances 0.000 abstract 1
- 239000005365 phosphate glass Substances 0.000 abstract 1
- 239000010408 film Substances 0.000 description 80
- 230000003595 spectral effect Effects 0.000 description 77
- 239000000975 dye Substances 0.000 description 46
- 239000010936 titanium Substances 0.000 description 33
- 238000010586 diagram Methods 0.000 description 29
- 150000001875 compounds Chemical class 0.000 description 17
- 230000035945 sensitivity Effects 0.000 description 16
- 230000010363 phase shift Effects 0.000 description 15
- 230000000007 visual effect Effects 0.000 description 15
- -1 polyparaphenylene Polymers 0.000 description 12
- 238000000576 coating method Methods 0.000 description 11
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 10
- 238000000034 method Methods 0.000 description 10
- 230000015572 biosynthetic process Effects 0.000 description 9
- 239000011248 coating agent Substances 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 9
- 230000003287 optical effect Effects 0.000 description 9
- 239000007788 liquid Substances 0.000 description 8
- 229920000178 Acrylic resin Polymers 0.000 description 7
- 239000004925 Acrylic resin Substances 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 7
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 7
- 230000004048 modification Effects 0.000 description 7
- 238000012986 modification Methods 0.000 description 7
- 238000004031 devitrification Methods 0.000 description 6
- 230000001771 impaired effect Effects 0.000 description 6
- 239000012964 benzotriazole Substances 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 241000511976 Hoya Species 0.000 description 4
- 229910003849 O-Si Inorganic materials 0.000 description 3
- 229910003872 O—Si Inorganic materials 0.000 description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 238000012937 correction Methods 0.000 description 3
- 230000009477 glass transition Effects 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 229920001225 polyester resin Polymers 0.000 description 3
- 239000004645 polyester resin Substances 0.000 description 3
- 229920005672 polyolefin resin Polymers 0.000 description 3
- JYEUMXHLPRZUAT-UHFFFAOYSA-N 1,2,3-triazine Chemical compound C1=CN=NN=C1 JYEUMXHLPRZUAT-UHFFFAOYSA-N 0.000 description 2
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 2
- 229910004261 CaF 2 Inorganic materials 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 239000004721 Polyphenylene oxide Substances 0.000 description 2
- 230000002745 absorbent Effects 0.000 description 2
- 239000002250 absorbent Substances 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 2
- 239000000443 aerosol Substances 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 2
- 239000012965 benzophenone Substances 0.000 description 2
- QRUDEWIWKLJBPS-UHFFFAOYSA-N benzotriazole Chemical compound C1=CC=C2N[N][N]C2=C1 QRUDEWIWKLJBPS-UHFFFAOYSA-N 0.000 description 2
- 229910052792 caesium Inorganic materials 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 239000007822 coupling agent Substances 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000000921 elemental analysis Methods 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229920001230 polyarylate Polymers 0.000 description 2
- 229920005668 polycarbonate resin Polymers 0.000 description 2
- 239000004431 polycarbonate resin Substances 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 229920000570 polyether Polymers 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 239000009719 polyimide resin Substances 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 229910052712 strontium Inorganic materials 0.000 description 2
- ANRHNWWPFJCPAZ-UHFFFAOYSA-M thionine Chemical compound [Cl-].C1=CC(N)=CC2=[S+]C3=CC(N)=CC=C3N=C21 ANRHNWWPFJCPAZ-UHFFFAOYSA-M 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 1
- HQQTZCPKNZVLFF-UHFFFAOYSA-N 4h-1,2-benzoxazin-3-one Chemical compound C1=CC=C2ONC(=O)CC2=C1 HQQTZCPKNZVLFF-UHFFFAOYSA-N 0.000 description 1
- 241000282693 Cercopithecidae Species 0.000 description 1
- 229920001651 Cyanoacrylate Polymers 0.000 description 1
- PNKUSGQVOMIXLU-UHFFFAOYSA-N Formamidine Chemical compound NC=N PNKUSGQVOMIXLU-UHFFFAOYSA-N 0.000 description 1
- SIKJAQJRHWYJAI-UHFFFAOYSA-N Indole Chemical compound C1=CC=C2NC=CC2=C1 SIKJAQJRHWYJAI-UHFFFAOYSA-N 0.000 description 1
- MWCLLHOVUTZFKS-UHFFFAOYSA-N Methyl cyanoacrylate Chemical compound COC(=O)C(=C)C#N MWCLLHOVUTZFKS-UHFFFAOYSA-N 0.000 description 1
- 239000004962 Polyamide-imide Substances 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 229920000265 Polyparaphenylene Polymers 0.000 description 1
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- YHWCPXVTRSHPNY-UHFFFAOYSA-N butan-1-olate;titanium(4+) Chemical compound [Ti+4].CCCC[O-].CCCC[O-].CCCC[O-].CCCC[O-] YHWCPXVTRSHPNY-UHFFFAOYSA-N 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 150000004662 dithiols Chemical class 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- DWYMPOCYEZONEA-UHFFFAOYSA-L fluoridophosphate Chemical compound [O-]P([O-])(F)=O DWYMPOCYEZONEA-UHFFFAOYSA-L 0.000 description 1
- 239000012760 heat stabilizer Substances 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 229910052809 inorganic oxide Inorganic materials 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 239000004611 light stabiliser Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- FTWUXYZHDFCGSV-UHFFFAOYSA-N n,n'-diphenyloxamide Chemical compound C=1C=CC=CC=1NC(=O)C(=O)NC1=CC=CC=C1 FTWUXYZHDFCGSV-UHFFFAOYSA-N 0.000 description 1
- AUONHKJOIZSQGR-UHFFFAOYSA-N oxophosphane Chemical compound P=O AUONHKJOIZSQGR-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- XNGIFLGASWRNHJ-UHFFFAOYSA-L phthalate(2-) Chemical compound [O-]C(=O)C1=CC=CC=C1C([O-])=O XNGIFLGASWRNHJ-UHFFFAOYSA-L 0.000 description 1
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 1
- 239000001007 phthalocyanine dye Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 229920000412 polyarylene Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 239000011112 polyethylene naphthalate Substances 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 150000004032 porphyrins Chemical class 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- YGSDEFSMJLZEOE-UHFFFAOYSA-M salicylate Chemical compound OC1=CC=CC=C1C([O-])=O YGSDEFSMJLZEOE-UHFFFAOYSA-M 0.000 description 1
- 229960001860 salicylate Drugs 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
- G02B5/22—Absorbing filters
Definitions
- the present invention relates to a near-infrared cut filter arranged in front of a solid-state image sensor and used for correcting the visual sensitivity of the solid-state image sensor, and an image pickup device including the same.
- Such a near-infrared cut filter is arranged in the optical path to the solid-state image sensor, but in order to reduce the size of the entire image pickup device, a near-infrared cut filter having a configuration that doubles as a cover glass of the image pickup device is also practical.
- Patent Document 1 a near-infrared cut filter having a configuration that doubles as a cover glass of the image pickup device is also practical.
- FIG. 17 is an example of the configuration of the near-infrared cut filter (conventional example) described in Patent Document 1.
- the near-infrared cut filter described in Patent Document 1 is formed on one main surface of the transparent base material 13 and the transparent base material 13, and is light in the near-infrared wavelength region and the ultraviolet wavelength region. It is provided with an absorption layer 11 that absorbs light, and a reflection layer 12 that is formed on the other main surface of the transparent substrate 13 and controls the transmission and shielding of light in a specific wavelength region.
- the reflective layer 12 is made of a dielectric multilayer film having a thickness of 2 to 10 ⁇ m, in which a low refractive index dielectric film (low dielectric film) and a high refractive index dielectric film (high refractive index film) are alternately laminated.
- a low refractive index dielectric film low dielectric film
- high refractive index film high refractive index film
- the near-infrared cut filter described in Patent Document 1 includes a reflective layer 12 composed of a relatively thick (thickness 2 to 10 ⁇ m) dielectric multilayer film, light is obliquely emitted to the reflective layer 12. When incident, the optical path length becomes long, and there is a problem that a phase shift occurs.
- FIG. 18 is a diagram showing a spectral transmittance curve of the reflective layer 12 of the near-infrared cut filter of FIG. 17, a spectral transmittance curve (solid line) when the incident angle is 0 °, and a spectrum when the incident angle is 30 °.
- the transmittance curve (broken line) is shown.
- FIG. 19 is a diagram showing a spectral transmittance curve of the near-infrared cut filter of FIG. 17, a spectral transmittance curve (solid line) when the incident angle is 0 °, and a spectral transmittance when the incident angle is 30 °.
- a curve (broken line) is shown.
- the spectral transmittance curve shifts to the short wavelength side due to the influence of the phase shift (P1 part in FIG. 18), or the spectral transmittance. There is a problem that ripples occur in the curve (P2 part in FIG. 18).
- a wavelength shift occurs in the spectral transmittance curve of the reflective layer 12
- a wavelength shift also occurs in the spectral transmittance curve of the near-infrared cut filter (P3 portion in FIG. 19), and the color reproducibility of the solid-state imaging device is reduced. There is a risk.
- the present invention has been made in view of such circumstances, and an object thereof is a near-infrared cut filter having extremely little dependence on an incident angle and having excellent oblique incident characteristics, and such a near-infrared cut filter. It is to provide the image pickup apparatus provided with.
- the near-infrared cut filter of the present invention is made of a fluoride-based glass or a phosphate-based glass, and has a transparent substrate having an average transmittance of 3% or less in the wavelength range of 800 to 950 nm and a transparent substrate. It is characterized by comprising a resin layer formed on at least one main surface and absorbing light having a specific wavelength.
- the reflection layer composed of the conventional dielectric multilayer film is unnecessary (that is, because the reflection layer is not provided), the light is obliquely incident on the near-infrared cut filter. Even if this is the case, the optical path length is unlikely to change, and the occurrence of phase shift is suppressed. Therefore, wavelength shift and ripple hardly occur in the spectral transmittance curve of the near-infrared cut filter.
- the half-value wavelength on the short wavelength side of the transmittance curve of the transparent substrate is 335 to 400 nm, and the half-value wavelength on the long wavelength side is 590 to 630 nm.
- the transparent substrate preferably has an average transmittance of 18% or less in the wavelength range of 650 to 720 nm.
- the transparent substrate preferably has an average transmittance of 10% or less in the wavelength range of 720 to 750 nm.
- the resin layer can contain a transparent resin and a dye uniformly dispersed in the transparent resin.
- the dye preferably contains an ultraviolet absorbing dye having a maximum absorption wavelength of 340 to 400 nm. Further, the dye preferably contains a first near-infrared absorption dye having a maximum absorption wavelength of 650 to 760 nm. Further, in this case, the dye preferably contains a second near-infrared absorption dye having a maximum absorption wavelength of 800 to 1200 nm.
- the resin layer can contain one or more selected from Ti atom, Zr atom and Al atom together with Si atom.
- a bonding layer that enhances the adhesion between the transparent substrate and the resin layer can be provided between the transparent substrate and the resin layer.
- the bonding layer has a single-layer structure containing one or more selected from Ti atom, Zr atom and Al atom together with Si atom.
- the ratio of the total number of atoms of Ti atom, Zr atom and Al atom to the total number of Si atom, Ti atom, Zr atom and Al atom in the bonding layer exceeds 0 atomic% and 33.3 atomic% or less. Is preferable.
- a first antireflection film can be provided on the resin layer, and a second antireflection film can be provided on the other main surface of the transparent base material.
- the half-value wavelength on the short wavelength side of the transmittance curve is 385 to 430 nm and the half-value wavelength on the long wavelength side is 590 to 630 nm.
- the first antireflection film and the second antireflection film are each composed of a dielectric multilayer film having a thickness of 500 nm or less. Further, in this case, the number of dielectric multilayer films is preferably 10 or less.
- the dielectric multilayer film is a low refractive index film made of a material having a refractive index of 1.1 to 1.5 and a high refractive index film made of a material having a refractive index of 2.0 to 2.5. And are preferably formed by being alternately laminated.
- the dielectric multilayer film is a low refractive index film made of a material having a refractive index of 1.1 to 1.3 and a high refractive index film made of a material having a refractive index of 1.4 to 1.6. And are preferably formed by being alternately laminated.
- the thickness of the transparent base material is preferably 0.01 to 1.5 mm.
- the image pickup device of the present invention is characterized by including a solid-state image pickup device and any of the above-mentioned near-infrared cut filters. Further, in this case, the near-infrared cut filter is arranged immediately in front of the solid-state image sensor, and can be configured to also serve as a cover glass.
- a near-infrared cut filter having extremely little dependence on the incident angle and having excellent oblique incident characteristics is realized. Further, an image pickup device equipped with such a near-infrared cut filter and having excellent color reproducibility is realized.
- FIG. 1 is a diagram illustrating a configuration of a near-infrared cut filter according to a first embodiment of the present invention.
- FIG. 2 is a vertical sectional view illustrating the configuration of an image pickup apparatus equipped with a near-infrared cut filter according to the first embodiment of the present invention.
- FIG. 3 is a diagram showing a spectral transmittance curve of a glass substrate used in the near-infrared cut filter according to the first embodiment (Example 1) of the present invention.
- FIG. 4 is a diagram showing a spectral transmittance curve of the near-infrared cut filter according to the first embodiment (Example 1) of the present invention.
- FIG. 1 is a diagram illustrating a configuration of a near-infrared cut filter according to a first embodiment of the present invention.
- FIG. 2 is a vertical sectional view illustrating the configuration of an image pickup apparatus equipped with a near-infrared cut filter according to the first embodiment of the present invention.
- FIG. 5 is a diagram showing a spectral transmittance curve of a near-infrared cut filter according to a first embodiment (Example 2) of the present invention and a glass substrate used in the near-infrared cut filter.
- FIG. 6 is a diagram showing a spectral transmittance curve of a near-infrared cut filter according to a first embodiment (Example 3) of the present invention and a glass substrate used in the near-infrared cut filter.
- FIG. 7 is a diagram showing a spectral transmittance curve of a near-infrared cut filter according to a first embodiment (Example 4) of the present invention and a glass substrate used in the near-infrared cut filter.
- FIG. 8 is a diagram showing a spectral transmittance curve of a near-infrared cut filter according to a first embodiment (Example 5) of the present invention and a glass substrate used in the near-infrared cut filter.
- FIG. 9 is a diagram showing a spectral transmittance curve of a near-infrared cut filter according to a comparative example of the present invention and a glass substrate used in the near-infrared cut filter.
- FIG. 10 is a vertical cross-sectional view illustrating the configuration of the near-infrared cut filter according to the second embodiment of the present invention.
- FIG. 11 is a diagram showing a spectral transmittance curve of the near-infrared cut filter according to the second embodiment (Example 6) of the present invention.
- FIG. 12 is a diagram showing a spectral transmittance curve of the near-infrared cut filter according to the second embodiment (Example 7) of the present invention.
- FIG. 13 is a diagram showing a spectral transmittance curve of the near-infrared cut filter according to the second embodiment (Example 8) of the present invention.
- FIG. 14 is a diagram showing a spectral transmittance curve of the near-infrared cut filter according to the second embodiment (Example 9) of the present invention.
- FIG. 15 is a diagram showing a spectral transmittance curve of the near-infrared cut filter according to the second embodiment (Example 10) of the present invention.
- FIG. 16 is a vertical cross-sectional view illustrating the configuration of the near-infrared cut filter according to the third embodiment (Example 11) of the present invention.
- FIG. 17 is a vertical sectional view showing the configuration of a conventional near-infrared cut filter.
- FIG. 18 is a diagram showing a spectral transmittance curve of a reflective layer used in a conventional near-infrared cut filter.
- FIG. 19 is a diagram showing a spectral transmittance curve of a conventional near-infrared cut filter.
- FIGS. 1A and 1B are views for explaining the configuration of the near-infrared cut filter 100 according to the first embodiment of the present invention
- FIG. 1A is a plan view
- FIG. 1B is a vertical sectional view. be.
- FIG. 2 is a vertical cross-sectional view illustrating the configuration of the image pickup apparatus 1 in which the opening of the package 300 of the solid-state image pickup device 200 is sealed by the near-infrared cut filter 100 of the present embodiment.
- the near-infrared cut filter 100 of the present embodiment is attached to the front surface of the package 300 for accommodating the solid-state image sensor 200 to protect the solid-state image sensor 200 and the solid-state image sensor 200. It is an optical element used for visual sensitivity correction.
- the near-infrared cut filter 100 of the present embodiment has a rectangular plate-like appearance (for example, 6 mm (horizontal direction) ⁇ 5 mm (longitudinal direction)), and has a glass base material 101 (transparent group). The material) and the resin layer 102 formed on one main surface of the glass base material 101 (the upper surface in FIG. 1B).
- the glass base material 101 of the present embodiment is an absorbent glass substrate made of phosphate-based glass or fluoride-based glass.
- the thickness of the glass base material 101 of the present embodiment is not particularly limited, but is preferably in the range of 0.01 to 1.5 mm, more preferably 0.01 to 0.70 mm, from the viewpoint of reducing the size and weight. Those having a thickness of 0.01 to 0.30 mm are more preferable.
- the phosphate-based glass in the present embodiment is a glass containing P and O as essential components and other optional components, and a glass containing CuO is particularly preferable. Since the phosphate-based glass contains CuO, near-infrared light can be absorbed more effectively. Examples of other optional components of the phosphate-based glass include Ca, Mg, Sr, Ba, Li, Na, K, and Cs.
- P 2 O 5 More than 0% by mass and 70% by mass or less, Al 2 O 3 : 0-40% by mass, BaO: 0-40% by mass, CuO: 0-40% by mass Is preferable.
- P 2 O 5 20-60% by mass
- Al 2 O 3 0 to 10% by mass
- BaO 0 to 10% by mass
- CuO 0 to 10% by mass Is more preferable.
- P 2 O 5 20-60% by mass
- Al 2 O 3 1 to 10% by mass
- CuO: 1-10% by mass It is more preferable to include.
- the fluoride-based glass in the present embodiment is a glass containing P, O, F as essential components and other optional components, and a glass containing CuO is particularly preferable. Since the futurate-based glass contains CuO, near-infrared light can be absorbed more effectively.
- examples of other optional components of the phosphate-based glass include Ca, Mg, Sr, Ba, Li, Na, K, Cs and the like.
- one containing BaO is preferably used.
- the devitrification resistance and the meltability of the glass can be improved. If it is more than 10%, devitrification is likely to occur, so 0 to 10% is preferable.
- the BaO content is more preferably 1 to 10%, even more preferably 1 to 5%.
- one containing Al 2 O 3 is preferably used.
- the stability and chemical durability of the glass can be improved. If it is more than 10%, devitrification is likely to occur, so 0 to 10% is preferable.
- the content of Al 2 O 3 is more preferably 1 to 10%, further preferably 1 to 5%.
- one containing Y2O3 is preferably used.
- the refractive index can be increased while maintaining the thermal stability. If it is more than 10%, devitrification is likely to occur, and the glass transition temperature and the yield point temperature increase. Therefore, 0 to 10% is preferable.
- the content of Y 2 O 3 is more preferably 1 to 10%, further preferably 1 to 5%.
- one containing BaCl 2 is preferably used as the futurate-based glass.
- the difference between the crystallization start temperature (Tx) and the glass transition temperature (Tg) of the glass becomes large, and the stability of the glass against devitrification is improved. If it is more than 10%, devitrification is likely to occur, so 0 to 10% is preferable.
- the content of BaCl 2 is more preferably 1 to 10%, further preferably 1 to 5%.
- P 2 O 5 More than 0% by mass and 70% by mass or less, Al 2 O 3 : 0-40% by mass, BaO: 0-40% by mass, CuO: 0-40% by mass It is preferable that the fluoride is contained in an amount of more than 0% by mass and 40% by mass or less.
- P 2 O 5 20-60% by mass
- Al 2 O 3 0 to 10% by mass
- BaO 0-10% by mass
- CuO 0 to 10% by mass It is more preferable to contain 1 to 30% by mass of fluoride.
- P 2 O 5 20-60% by mass
- Al 2 O 3 1 to 10% by mass
- BaO 1-10% by mass
- CuO 1-10% by mass It is more preferable to contain 2 to 30% by mass of fluoride.
- Examples of the fluoride include one or more selected from MgF 2 , CaF 2 , SrF 2 , and the like.
- P 2 O 5 40 to 50% by mass
- Al 2 O 3 1 to 10% by mass
- BaO 1-10% by mass
- CuO 1-10% by mass
- MgF 2 1 to 10% by mass
- CaF 2 1 to 10% by mass
- SrF 2 1 to 10% by mass
- Y 2 O 3 1 to 10% by mass
- BaCl 2 0 to 1% by mass
- the glass substrate 101 of the present embodiment is configured so that the average transmittance in the wavelength range of 800 to 950 nm is 3% or less.
- the glass substrate 101 having a small average transmittance in the wavelength range of 800 to 950 nm is used, visible light is used without using the reflective film (dielectric multilayer film) used in the conventional near-infrared cut filter.
- a cut filter that selectively transmits light in a region can be manufactured.
- the glass substrate 101 preferably has an average transmittance of 10% or less, more preferably 8% or less, and further preferably 7% or less in the wavelength range of 720 to 750 nm.
- the glass substrate 101 preferably has a half-wavelength (UV_ ⁇ 50) on the short wavelength side of the transmittance curve in the range of 335 to 400 nm, more preferably in the range of 335 to 380 nm, and more preferably in the range of 340 to 350 nm. It is more preferable to be in. Further, the glass substrate 101 preferably has a half-wavelength (NIR_ ⁇ 50) on the long wavelength side of the transmittance curve in the range of 590 to 630 nm, and more preferably in the range of 610 to 624 nm.
- UV_ ⁇ 50 half-wavelength
- NIR_ ⁇ 50 half-wavelength
- the half-value wavelength means the wavelength when the transmittance becomes 50%
- the half-value wavelength (UV_ ⁇ 50) on the short wavelength side means the transmittance becomes 50% at the rising edge of the transmittance curve
- the half-value wavelength (NIR_ ⁇ 50) on the long wavelength side refers to the wavelength at which the transmittance becomes 50% at the falling edge of the transmittance curve.
- the glass substrate 101 preferably has an average transmittance of 18% or less, more preferably 17% or less, and further preferably 16% or less in the wavelength range of 650 to 720 nm.
- the resin layer 102 of the present embodiment is a layer composed of a dye and a resin that absorb light of a specific wavelength.
- the resin layer 102 contains, for example, at least one of a near-infrared absorbing dye and an ultraviolet absorbing dye and a transparent resin, and it is preferable that the dye is uniformly dissolved or dispersed in the transparent resin.
- the near-infrared absorbing dye constituting the resin layer 102 conventionally known dyes can be adopted, for example, cyanine-based dyes, polymethine-based dyes, squarylium-based dyes, porphyrin-based dyes, metal dithiol complex-based dyes, and phthalocyanine-based dyes.
- cyanine-based dyes polymethine-based dyes, squarylium-based dyes, porphyrin-based dyes, metal dithiol complex-based dyes, and phthalocyanine-based dyes.
- One or more selected from dyes, diimonium dyes and inorganic oxide particles can be used, and one or more selected from squarylium dyes, cyanine dyes and phthalocyanine dyes are more preferable.
- the ultraviolet absorbing dye constituting the resin layer 102 conventionally known ones can be adopted, for example, a benzotriazole-based compound, a benzophenone-based compound, a triazine-based compound, a benzoxazinone-based compound, a cyanoacrylate-based compound, and an oxanilide-based compound.
- a benzotriazole-based compound a benzophenone-based compound, a triazine-based compound, a benzoxazinone-based compound, a cyanoacrylate-based compound, and an oxanilide-based compound.
- One or more selected from compounds, salicylate-based compounds, formamidine-based compounds, indol-based compounds, and azomethine-based compounds can be used, and one or more selected from benzotriazole-based compounds, benzophenone-based compounds, and triazine-based compounds are more. preferable.
- the resin constituting the resin layer 102 a conventionally known transparent resin can be adopted, and acrylic resin, epoxy resin, en-thiol resin, polycarbonate resin, polyether resin, polyarylate resin, polysulfone resin, and polyether monkey can be used. Examples thereof include one or more selected from phon resin, polyparaphenylene resin, polyarylene ether phosphine oxide resin, polyimide resin, polyamideimide resin, polyolefin resin, cyclic olefin resin and polyester resin.
- a resin having a high glass transition point (Tg) is preferable from the viewpoint of transparency, solubility of the near-infrared absorbing dye in the transparent resin, and heat resistance, and therefore a thermosetting resin is preferable.
- polyester resin polycarbonate resin, polyether sulfone resin, polyarylate resin, polyimide resin, and epoxy resin
- polyester resin one or more selected from polyethylene terephthalate resin and polyethylene naphthalate resin are preferable.
- thermoplastic resin can be suitably used as a transparent resin by increasing the heat resistance by adjusting functional groups and the like.
- acrylic resins, polyamide resins, polyolefin resins and the like, which can increase heat resistance by adjusting functional groups and the like, can also be used as the transparent resin.
- the resin layer 102 further includes a color correction dye, a leveling agent, an antistatic agent, a heat stabilizer, a light stabilizer, and an antioxidant to the extent that the effects of the present invention are not impaired.
- a color correction dye e.g., a color correction dye, a leveling agent, an antistatic agent, a heat stabilizer, a light stabilizer, and an antioxidant to the extent that the effects of the present invention are not impaired.
- Dispersant, flame retardant, lubricant, plasticizer and other optional components may be contained.
- a dye, a transparent resin, and an optional compounding component are dissolved or dispersed in a solvent to prepare a resin film-forming liquid, which is coated and dried, and further cured if necessary. It can be formed by.
- the resin film-forming liquid may contain a known surfactant such as a cationic type, an anion type, or a nonionic type.
- one or more coating methods selected from a dip coating method, a cast coating method, a spray coating method, a spin coating method and the like can be adopted.
- the resin layer 102 is a layer formed on the glass base material 101 and configured to absorb light having a specific wavelength, and the absorption wavelength is set according to the spectral transmittance characteristics of the glass base material 101. By setting (that is, selecting the optimum dye), light in the desired visible light region can be extracted.
- Absorbent dyes and those containing.
- the resin layer 102 can further contain a near-infrared absorbing dye (second near-infrared absorbing dye) having a maximum absorption wavelength of 800 to 1200 nm.
- the resin layer 102 of the present embodiment is formed on one main surface of the glass base material 101 (the upper surface in FIG. 1B), but is not limited to such a configuration. ..
- the resin layer 102 may be formed on the other main surface of the glass base material 101 (the lower surface in FIG. 1B), or may be formed on both sides of the glass base material 101. Further, the resin layer 102 does not necessarily have to be one layer, and may be composed of a plurality of layers.
- the spectral transmittance curve of the near-infrared cut filter 100 on which the resin layer 102 is formed has a half-value wavelength (UV_ ⁇ 50) on the short wavelength side of the transmittance curve of 385 to 430 nm and a half-value wavelength (NIR_ ⁇ 50) on the long wavelength side. ) Is 3.0% or less in the wavelength range of 590 to 630 nm and 800 to 950 nm, and the characteristics are close to those of human visual sensitivity (details will be described later).
- the image pickup device 1 includes a solid-state image pickup element 200, a package 300 for accommodating the solid-state image pickup element 200, and a near-infrared cut filter 100 attached to the front surface of the package 300. ..
- Examples of the solid-state image sensor 200 include image sensors such as CCD (Charge-Coupled Device) and CMOS (Complementary Metal Oxide Semiconductor).
- image sensors such as CCD (Charge-Coupled Device) and CMOS (Complementary Metal Oxide Semiconductor).
- the solid-state image sensor 200 is arranged substantially in the center of the bottom surface of the box-shaped package 300 so that the other main surface side (lower side in FIG. 1B) of the near-infrared cut filter 100 faces the solid-state image sensor 200. Is attached to the opening of the package 300.
- the resin layer 102 side of the near-infrared cut filter 100 is an incident surface on which light directed toward the solid-state image sensor 200 is incident, and the other main surface side of the near-infrared cut filter 100 is an exit surface.
- the configuration is not necessarily limited to this, and the near-infrared cut filter 100 may be mounted upside down (that is, the resin layer 102 faces the solid-state image sensor 200).
- the near-infrared cut filter 100 is attached to the opening of the package 300 and has a configuration that also serves as a so-called cover glass, but the configuration is not necessarily limited to such a configuration. ..
- the image pickup device 1 may include a lens group (not shown) that guides light to the solid-state image pickup device 200.
- the near-infrared cut filter 100 may be arranged closer to the image pickup device 1 than the lens group, and a cover glass may be provided further closer to the image pickup device 1 than the near-infrared cut filter 100.
- the near-infrared cut filter 100 of the present embodiment will be further described with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples.
- FIG. 3 is a diagram showing a spectral transmittance curve of the glass substrate 101 of Example 1, in which the vertical axis represents the transmittance (%) and the horizontal axis represents the wavelength (nm).
- the glass substrate 101 of this embodiment has an average transmittance of 1.4% (that is, 3% or less) in the wavelength range of 800 to 950 nm.
- the glass substrate 101 of this embodiment has an average transmittance of 4.5% (that is, 10% or less) in the wavelength range of 720 to 750 nm.
- the half-value wavelength (UV_ ⁇ 50) on the short wavelength side of the transmittance curve is about 343 nm (that is, within the range of 335 to 400 nm), and the half-value wavelength (NIR_ ⁇ 50) on the long wavelength side. Is about 619 nm (that is, in the range of 590 to 630 nm). Further, the glass substrate 101 of this embodiment has an average transmittance of 15.5% (that is, 18% or less) in the wavelength range of 650 to 720 nm.
- resin layer 102 Acrylic resin (transparent resin), benzotriazole compound and triazine compound (ultraviolet absorption dye), and squarylium compound and cyanine compound (first near-infrared absorption dye) are mixed in a container at a predetermined mixing ratio to form a resin.
- the film-forming solution was adjusted, and the obtained resin film-forming solution was applied onto the glass substrate 101 using a spin coater. Then, the glass substrate 101 coated with the resin film forming liquid was placed on a hot plate heated to 160 ° C. and heated for 20 minutes to be cured, thereby producing the near-infrared cut filter 100 of the present embodiment.
- FIG. 4 is a diagram showing a spectral transmittance curve of the near-infrared cut filter 100 of Example 1, a spectral transmittance curve (solid line) when the incident angle is 0 °, and a spectral transmittance when the incident angle is 30 °. A curve (broken line) is shown.
- the spectral transmittance curve of the near-infrared cut filter 100 of this embodiment has a half-value wavelength (UV_ ⁇ 50) on the short wavelength side of the transmittance curve of about 410 nm and a half-value wavelength (NIR_ ⁇ 50) on the long wavelength side.
- UV_ ⁇ 50 half-value wavelength
- NIR_ ⁇ 50 half-value wavelength
- the average transmittance in the wavelength range of about 610 nm and 800 to 950 nm was 1.3%, and a characteristic close to human visual sensitivity was obtained. Further, since the near-infrared cut filter 100 of this embodiment does not have a reflective film like the conventional near-infrared cut filter, the performance as a cut filter is remarkably improved even when light having an incident angle of 30 ° is incident. The generation of impaired phase shift, wavelength shift and ripple is suppressed.
- Example 2 In the near-infrared cut filter 100 of Example 2, a fluorophosphate-based glass (CXD700) manufactured by HOYA Co., Ltd. having a thickness of 0.8 mm was selected as the glass base material 101, and the resin layer 102 was formed of an acrylic resin (Acrylic resin). It is different from Example 1 in that it is formed of a transparent resin), a benzotriazole compound and a triazine compound (ultraviolet absorbing dye) (that is, it does not contain a near infrared absorbing dye).
- a fluorophosphate-based glass CXD700 manufactured by HOYA Co., Ltd. having a thickness of 0.8 mm
- the resin layer 102 was formed of an acrylic resin (Acrylic resin). It is different from Example 1 in that it is formed of a transparent resin), a benzotriazole compound and a triazine compound (ultraviolet absorbing dye) (that is, it does not contain a near infrare
- FIG. 5 is a diagram showing a spectral transmittance curve (dotted line) of the glass substrate 101 of Example 2 and a spectral transmittance curve (solid line, broken line) of the near-infrared cut filter 100 of Example 2.
- a spectral transmittance curve (solid line) when the incident angle is 0 ° and a spectral transmittance curve (broken line) when the incident angle is 30 ° are shown.
- the glass substrate 101 of this embodiment has an average transmittance of 0.1% or less (that is, 3% or less) in the wavelength range of 800 to 950 nm. Further, the glass substrate 101 of this example has an average transmittance of 0.2% (that is, 10% or less) in the wavelength range of 720 to 750 nm. Further, in the glass substrate 101 of this embodiment, the half-value wavelength (UV_ ⁇ 50) on the short wavelength side of the transmittance curve is about 353 nm (that is, within the range of 335 to 400 nm), and the half-value wavelength (NIR_ ⁇ 50) on the long wavelength side. Is about 591 nm (that is, within the range of 590 to 630 nm). Further, the glass substrate 101 of this embodiment has an average transmittance of 3.1% (that is, 18% or less) in the wavelength range of 650 to 720 nm.
- the near-infrared cut filter 100 of this embodiment has a half-value wavelength (UV_ ⁇ 50) on the short wavelength side of the transmittance curve of about 405 nm and a half-value wavelength (NIR_ ⁇ 50) on the long wavelength side of about 591 nm in the wavelength range of 800 to 950 nm.
- the average transmittance was 0.1% or less, and a characteristic close to human visual sensitivity was obtained. Since the near-infrared cut filter 100 of this embodiment does not have a reflective film like the conventional near-infrared cut filter, the performance as a cut filter is remarkably improved even when light having an incident angle of 30 ° is incident. The generation of impaired phase shift, wavelength shift and ripple is suppressed.
- Example 3 The near-infrared cut filter 100 of Example 3 is different from Example 1 in that a futurate-based glass (CXD700) manufactured by HOYA Corporation having a thickness of 1.0 mm is selected as the glass base material 101.
- a futurate-based glass CXD700 manufactured by HOYA Corporation having a thickness of 1.0 mm is selected as the glass base material 101.
- FIG. 6 is a diagram showing a spectral transmittance curve (dotted line) of the glass substrate 101 of Example 3 and a spectral transmittance curve (solid line, broken line) of the near-infrared cut filter 100 of Example 3.
- a spectral transmittance curve (solid line) when the incident angle is 0 ° and a spectral transmittance curve (broken line) when the incident angle is 30 ° are shown.
- the glass substrate 101 of this embodiment has an average transmittance of 0.2% (that is, 3% or less) in the wavelength range of 800 to 950 nm. Further, the glass substrate 101 of this embodiment has an average transmittance of 1.0% (that is, 10% or less) in the wavelength range of 720 to 750 nm. Further, in the glass substrate 101 of the present embodiment, the half-value wavelength (UV_ ⁇ 50) on the short wavelength side of the transmittance curve is about 347 nm (that is, within the range of 335 to 400 nm), and the half-value wavelength (NIR_ ⁇ 50) on the long wavelength side. Is about 602 nm (that is, in the range of 590 to 630 nm). Further, the glass substrate 101 of this embodiment has an average transmittance of 6.8% (that is, 18% or less) in the wavelength range of 650 to 720 nm.
- the near-infrared cut filter 100 of this embodiment has a half-value wavelength (UV_ ⁇ 50) on the short wavelength side of the transmittance curve of about 404 nm and a half-value wavelength (NIR_ ⁇ 50) on the long wavelength side of about 596 nm, in the wavelength range of 800 to 950 nm.
- the average transmittance was 0.2%, and a characteristic close to human visual sensitivity was obtained. Since the near-infrared cut filter 100 of this embodiment does not have a reflective film like the conventional near-infrared cut filter, the performance as a cut filter is remarkably improved even when light having an incident angle of 30 ° is incident. The generation of impaired phase shift, wavelength shift and ripple is suppressed.
- Example 4 For the near-infrared cut filter 100 of Example 4, a cyanine compound (near) of the resin layer 102 was selected from HOYA Corporation's fluoride-based glass (CXD700) having a thickness of 0.23 mm as the glass base material 101. It differs from Example 1 in that the content of the infrared absorbing dye) is changed.
- CXD700 HOYA Corporation's fluoride-based glass
- FIG. 7 is a diagram showing a spectral transmittance curve (dotted line) of the glass substrate 101 of Example 4 and a spectral transmittance curve (solid line, broken line) of the near-infrared cut filter 100 of Example 4.
- a spectral transmittance curve (solid line) when the incident angle is 0 ° and a spectral transmittance curve (broken line) when the incident angle is 30 ° are shown.
- the glass substrate 101 of this embodiment has an average transmittance of 1.0% (that is, 3% or less) in the wavelength range of 800 to 950 nm. Further, the glass substrate 101 of this embodiment has an average transmittance of 3.4% (that is, 10% or less) in the wavelength range of 720 to 750 nm. Further, in the glass substrate 101 of this embodiment, the half-value wavelength (UV_ ⁇ 50) on the short wavelength side of the transmittance curve is about 344 nm (that is, within the range of 335 to 400 nm), and the half-value wavelength (NIR_ ⁇ 50) on the long wavelength side. Is about 615 nm (that is, in the range of 590 to 630 nm). Further, the glass substrate 101 of this embodiment has an average transmittance of 13.2% (that is, 18% or less) in the wavelength range of 650 to 720 nm.
- the near-infrared cut filter 100 of this embodiment has a half-value wavelength (UV_ ⁇ 50) on the short wavelength side of the transmittance curve of about 404 nm and a half-value wavelength (NIR_ ⁇ 50) on the long wavelength side of about 603 nm in the wavelength range of 800 to 950 nm.
- the average transmittance was 0.9%, and the characteristics close to those of human visual sensitivity were obtained. Since the near-infrared cut filter 100 of this embodiment does not have a reflective film like the conventional near-infrared cut filter, the performance as a cut filter is remarkably improved even when light having an incident angle of 30 ° is incident. The generation of impaired phase shift, wavelength shift and ripple is suppressed.
- Example 5 In the near-infrared cut filter 100 of Example 5, a 0.30 mm-thick HOYA Co., Ltd. fluorinated glass (CXD700) was selected as the glass base material 101, and the resin layer 102 was formed of an acrylic resin (Acrylic resin). A point formed by a transparent resin), a benzotriazole compound and a triazine compound (ultraviolet absorbing dye), a squarylium compound and a cyanine compound (a first near-infrared absorbing dye), and a diionium compound (a second near-infrared absorbing dye) ( That is, the point that the second near-infrared absorbing dye is added) is different from Example 1.
- CXD700 fluorinated glass
- FIG. 8 is a diagram showing a spectral transmittance curve (dotted line) of the glass substrate 101 of Example 5 and a spectral transmittance curve (solid line, broken line) of the near-infrared cut filter 100 of Example 5.
- a spectral transmittance curve (solid line) when the incident angle is 0 ° and a spectral transmittance curve (broken line) when the incident angle is 30 ° are shown.
- the glass substrate 101 of this embodiment has an average transmittance of 0.2% (that is, 3% or less) in the wavelength range of 800 to 950 nm. Further, the glass substrate 101 of this embodiment has an average transmittance of 1.3% (that is, 10% or less) in the wavelength range of 720 to 750 nm. Further, in the glass substrate 101 of this embodiment, the half-value wavelength (UV_ ⁇ 50) on the short wavelength side of the transmittance curve is about 348 nm (that is, within the range of 335 to 400 nm), and the half-value wavelength (NIR_ ⁇ 50) on the long wavelength side. Is about 604 nm (that is, within the range of 590 to 630 nm). Further, the glass substrate 101 of this embodiment has an average transmittance of 7.7% (that is, 18% or less) in the wavelength range of 650 to 720 nm.
- the near-infrared cut filter 100 of the present embodiment has a half-value wavelength (UV_ ⁇ 50) on the short wavelength side of the transmittance curve of about 406 nm and a half-value wavelength (NIR_ ⁇ 50) on the long wavelength side of about 604 nm, in a wavelength range of 800 to 950 nm.
- the average transmittance was 0.1%, and a characteristic close to human visual sensitivity was obtained. Since the near-infrared cut filter 100 of this embodiment does not have a reflective film like the conventional near-infrared cut filter, the performance as a cut filter is remarkably improved even when light having an incident angle of 30 ° is incident. The generation of impaired phase shift, wavelength shift and ripple is suppressed.
- Comparative Example 1 The near-infrared cut filter of Comparative Example 1 is different from Example 1 in that futurate-based glass (CXA700, thickness 0.21 mm) manufactured by HOYA Corporation is selected as the glass base material, and the resin layer is different from that of Example 1. It is the same as the resin layer 102 of Example 1.
- futurate-based glass CXA700, thickness 0.21 mm
- FIG. 9 is a diagram showing a spectral transmittance curve (dotted line) of the glass substrate of Comparative Example 1 and a spectral transmittance curve (solid line, broken line) of the near-infrared cut filter of Comparative Example 1.
- a spectral transmittance curve (solid line) when the incident angle is 0 ° and a spectral transmittance curve (broken line) when the incident angle is 30 ° are shown.
- the glass substrate of this modification has an average transmittance of 4.3% (that is, larger than 3%) in the wavelength range of 800 to 950 nm. Further, the glass substrate of this modification has an average transmittance of 9.7% (that is, 10% or less) in the wavelength range of 720 to 750 nm. Further, in the glass substrate of this modification, the half-value wavelength (UV_ ⁇ 50) on the short wavelength side of the transmittance curve is about 338 nm (that is, within the range of 335 to 400 nm), and the half-value wavelength (NIR_ ⁇ 50) on the long wavelength side is. It is about 632 nm (that is, outside the range of 590 to 630 nm). Further, the glass substrate of this modification has an average transmittance of 23.8% (that is, larger than 18%) in the wavelength range of 650 to 720 nm.
- the near-infrared cut filter of this comparative example has a half-value wavelength (UV_ ⁇ 50) on the short wavelength side of the transmittance curve of about 404 nm, a half-value wavelength (NIR_ ⁇ 50) on the long wavelength side of about 610 nm, and an average in the wavelength range of 800 to 950 nm.
- the transmittance was 4.1%. That is, the near-infrared cut filter of this comparative example has a higher average transmittance in the wavelength range of 800 to 950 nm than the near-infrared cut filter 100 of Examples 1 to 5.
- the near-infrared cut filter 100 of this modification also does not have a reflective film like the conventional near-infrared cut filter like the near-infrared cut filters 100 of Examples 1 to 5, and therefore has an incident angle of 30 °. Even if light is incident, the occurrence of phase shift, wavelength shift, and ripple that significantly impair the performance of the cut filter is suppressed.
- the near-infrared cut filter of Comparative Example 1 has a higher average transmittance (that is, larger than 3%) in the wavelength range of 800 to 950 nm as compared with the near-infrared cut filter 100 of Examples 1 to 5. Therefore, the color reproducibility is poor.
- it is effective to form a reflective layer as used in the conventional near-infrared cut filter, but if a reflective layer is used, phase shift occurs and wavelength shift or wavelength shift occurs. Problems such as ripples occur.
- the glass substrate 101 has a very low average transmittance in the wavelength range of 800 to 950 nm (that is,). (3% or less) is used, and characteristics close to human visual sensitivity are obtained without using a conventional reflective layer.
- the near-infrared cut filter 100 of the present embodiment does not use the conventional reflective layer, the dependence on the incident angle is extremely small, and the oblique incident characteristics are excellent. Further, in the image pickup apparatus 1 using such a near-infrared cut filter 100, the generation of ghosts is suppressed, so that an image having excellent color reproducibility can be obtained.
- the half-value wavelength (UV_ ⁇ 50) on the short wavelength side of the transmittance curve is close to about 404 to 410 nm
- the half-value wavelength (NIR_ ⁇ 50) on the long wavelength side is close to about 591 to 610 nm.
- the infrared cut filter 100 has been exemplified, it is not limited to those having such characteristics.
- the ultraviolet absorbing dye, the first near infrared absorbing dye, and the second near infrared absorbing dye of the resin layer 102, and adjusting the mixing ratio of these the short wavelength side of the transmittance curve can be selected.
- the half-value wavelength can be adjusted in the range of 385 to 430 nm
- the half-value wavelength on the long wavelength side can be adjusted in the range of 590 to 630 nm.
- FIG. 10 is a vertical sectional view illustrating the configuration of the near-infrared cut filter 100A according to the second embodiment of the present invention.
- the near-infrared cut filter 100A of the present embodiment has an antireflection film 103 on the upper surface of the resin layer 102 (the surface opposite to the glass base material 101), and is the other side of the glass base material 101. It differs from the near-infrared cut filter 100 of the first embodiment in that the antireflection film 104 is provided on the main surface (lower surface in FIG. 10).
- the antireflection films 103 and 104 By forming the antireflection films 103 and 104 in this way, it is possible to suppress reflection at the interface (that is, the entrance surface and the emission surface) of the near-infrared cut filter 100A, so that the transmittance can be increased (improved). ..
- the antireflection films 103 and 104 of the present embodiment are layers for preventing reflection at the interface between the entrance surface and the emission surface of the near infrared cut filter 100A, specifically, a dielectric film having a low refractive index and a high refractive index. It is composed of a dielectric multilayer film in which dielectric films are alternately laminated.
- the material of the dielectric film constituting the dielectric multilayer film can be freely selected according to the desired optical characteristics, but the refractive index of the low refractive index material for forming the low refractive index dielectric layer is , 1.1 to 1.5 is preferable, and as the low refractive index material, for example, SiO 2 , MgF 2 , SiO 2 hollow element, a low refractive index sol gel coat having an aerosol structure, or the like can be applied. Further, the refractive index of the high-refractive index material for forming the high-refractive index dielectric layer is preferably in the range of 2.0 to 2.5, and examples of the high-refractive index material include ZrO 2 .
- Ta 2 O 5 , TIO 2 , Nb 2 O 5 , and the like can be applied. Further, a material having a refractive index of 1.4 to 1.6 (for example, SiO 2 ) can also be used as a high refractive index material, and in this case, a material having a refractive index of 1.1 to 1.3 (for example, aerosol coat) can be used. ) Can be applied as a low refractive index material.
- the antireflection function can be easily imparted by utilizing the interference of light generated by each dielectric film.
- the optical path length becomes long when the light is obliquely incident, and the interference conditions of the reflected light in each layer are disrupted, which causes problems such as wavelength shift and ripple.
- such a wavelength shift or ripple causes an increase in reflected light, and is observed as a kind of ghost on the solid-state image sensor 200, which causes a problem that accurate color reproducibility cannot be obtained. Therefore, in the present embodiment, in order to avoid such a problem, the number of film layers of the dielectric multilayer film is set to 10 or less.
- the number of film layers is particularly preferably 5 or less, more preferably 3 or less.
- the thickness of the dielectric film constituting the dielectric multilayer film can be freely selected according to the desired optical characteristics, but is preferably 50 nm to 1 ⁇ m, and more preferably 50 nm to 500 nm. Further, the thickness of the entire dielectric multilayer film (that is, the antireflection films 103 and 104) is set to 500 nm or less.
- the resin layer 102 of the present embodiment is formed on one main surface (upper surface in FIG. 10) of the glass base material 101, the resin layer 102 is similar to the first embodiment. It may be formed on the other main surface of the glass base material 101 (lower surface in FIG. 10), or may be formed on both sides of the glass base material 101. Further, the resin layer 102 does not necessarily have to be one layer, and may be composed of a plurality of layers.
- the near-infrared cut filter 100A of the present embodiment will be further described with reference to examples, but the present invention is not limited to the following examples.
- Antireflection films 103 and 104 were further formed on the near-infrared cut filter 100 of Example 1 by the following procedure (3. Formation of antireflection films 103 and 104) to prepare the near-infrared cut filter 100A of Example 6. .. [3. Formation of antireflection films 103 and 104] On the upper surface of the resin layer 102 of the near-infrared cut filter 100 of Example 1 (the surface opposite to the glass substrate 101) and on the other main surface of the glass substrate 101 (the lower surface in FIG. 10), so-called.
- the dielectric thin films (dielectric layers 1 to 5) in Table 1 are sequentially formed (that is, the antireflection films 103 and 104 are formed), and the near-infrared cut filter 100A of Example 6 is formed.
- FIG. 11 is a diagram showing a spectral transmittance curve of the near-infrared cut filter 100A of Example 6, a spectral transmittance curve (solid line) when the incident angle is 0 °, and a spectral transmittance when the incident angle is 30 °. A curve (broken line) is shown.
- the half-value wavelength (UV_ ⁇ 50) on the short wavelength side of the transmittance curve is about 390 nm
- the half-value wavelength (NIR_ ⁇ 50) on the long wavelength side is about 610 nm, 800 to 800.
- the average transmittance in the wavelength range of 950 nm was 1.2%, and a characteristic close to human visual sensitivity was obtained.
- the near-infrared cut filter 100A of this embodiment has a dielectric multilayer film as the antireflection films 103 and 104, the thickness thereof is sufficiently thin (because it is 500 nm or less), so that the incident angle is 30 °. Even if the light is incident on the surface, the occurrence of phase shift, wavelength shift and ripple, which significantly impairs the performance as a cut filter, is suppressed.
- the transmittance is higher than that of the near-infrared cut filter 100 of the first embodiment (that is, as compared with FIG. 4). , The peak transmittance is about 95%.
- Example 7 Antireflection films 103 and 104 were formed on the near-infrared cut filter 100 of Example 2 in the same procedure as in Example 6, and the near-infrared cut filter 100A of Example 7 was prepared.
- FIG. 12 is a diagram showing a spectral transmittance curve of the near-infrared cut filter 100A of Example 7, a spectral transmittance curve (solid line) when the incident angle is 0 °, and a spectral transmittance when the incident angle is 30 °. A curve (broken line) is shown.
- the half-value wavelength (UV_ ⁇ 50) on the short wavelength side of the transmittance curve is about 403 nm
- the half-value wavelength (NIR_ ⁇ 50) on the long wavelength side is about 596 nm, 800 to 800.
- the average transmittance in the wavelength range of 950 nm was 0.1% or less, and a characteristic close to human visual sensitivity was obtained.
- the near-infrared cut filter 100A of this embodiment has a dielectric multilayer film as the antireflection films 103 and 104, the thickness thereof is sufficiently thin (because it is 500 nm or less), so that the incident angle is 30 °. Even if the light is incident on the surface, the occurrence of phase shift, wavelength shift and ripple, which significantly impairs the performance as a cut filter, is suppressed.
- the transmittance is higher than that of the near-infrared cut filter 100 of the second embodiment (that is, compared with FIG. 5). , The peak transmittance is about 95%.
- Example 8 Antireflection films 103 and 104 were formed on the near-infrared cut filter 100 of Example 3 in the same procedure as in Example 6, and the near-infrared cut filter 100A of Example 8 was prepared.
- FIG. 13 is a diagram showing a spectral transmittance curve of the near-infrared cut filter 100A of Example 8, a spectral transmittance curve (solid line) when the incident angle is 0 °, and a spectral transmittance when the incident angle is 30 °. A curve (broken line) is shown.
- the half-value wavelength (UV_ ⁇ 50) on the short wavelength side of the transmittance curve is about 402 nm
- the half-value wavelength (NIR_ ⁇ 50) on the long wavelength side is about 601 nm, 800 to 800.
- the average transmittance in the wavelength range of 950 nm was 0.2%, and a characteristic close to human visual sensitivity was obtained.
- the near-infrared cut filter 100A of this embodiment has a dielectric multilayer film as the antireflection films 103 and 104, the thickness thereof is sufficiently thin (because it is 500 nm or less), so that the incident angle is 30 °. Even if the light is incident on the surface, the occurrence of phase shift, wavelength shift and ripple, which significantly impairs the performance as a cut filter, is suppressed.
- the near-infrared cut filter 100A of this embodiment includes the antireflection films 103 and 104, the transmittance is higher than that of the near-infrared cut filter 100 of Example 3 (that is, compared with FIG. 6). , The peak transmittance is about 97%.
- Example 9 Antireflection films 103 and 104 were formed on the near-infrared cut filter 100 of Example 4 in the same procedure as in Example 6, and the near-infrared cut filter 100A of Example 9 was prepared.
- FIG. 14 is a diagram showing a spectral transmittance curve of the near-infrared cut filter 100A of Example 9, a spectral transmittance curve (solid line) when the incident angle is 0 °, and a spectral transmittance when the incident angle is 30 °. A curve (broken line) is shown.
- the near-infrared cut filter 100A of the present embodiment has a half-value wavelength (UV_ ⁇ 50) on the short wavelength side of the transmittance curve of about 402 nm and a half-value wavelength (NIR_ ⁇ 50) on the long wavelength side of about 608 nm, 800 to 800.
- UV_ ⁇ 50 half-value wavelength
- NIR_ ⁇ 50 half-value wavelength
- the average transmittance in the wavelength range of 950 nm was 0.9%, and a characteristic close to human visual sensitivity was obtained.
- the near-infrared cut filter 100A of this embodiment has a dielectric multilayer film as the antireflection films 103 and 104, the thickness thereof is sufficiently thin (because it is 500 nm or less), so that the incident angle is 30 °. Even if the light is incident on the surface, the occurrence of phase shift, wavelength shift and ripple, which significantly impairs the performance as a cut filter, is suppressed.
- the near-infrared cut filter 100A of this embodiment includes the antireflection films 103 and 104, the transmittance is higher than that of the near-infrared cut filter 100 of Example 4 (that is, compared with FIG. 7). , The peak transmittance is about 98%.
- Example 10 Antireflection films 103 and 104 were formed on the near-infrared cut filter 100 of Example 5 in the same procedure as in Example 6, and the near-infrared cut filter 100A of Example 10 was prepared.
- FIG. 15 is a diagram showing a spectral transmittance curve of the near-infrared cut filter 100A of Example 10, a spectral transmittance curve (solid line) when the incident angle is 0 °, and a spectral transmittance when the incident angle is 30 °. A curve (broken line) is shown.
- the half-value wavelength (UV_ ⁇ 50) on the short wavelength side of the transmittance curve is about 404 nm
- the half-value wavelength (NIR_ ⁇ 50) on the long wavelength side is about 604 nm, 800 to 800.
- the average transmittance in the wavelength range of 950 nm was 0.1%, and a characteristic close to human visual sensitivity was obtained.
- the near-infrared cut filter 100A of this embodiment has a dielectric multilayer film as the antireflection films 103 and 104, the thickness thereof is sufficiently thin (because it is 500 nm or less), so that the incident angle is 30 °. Even if the light is incident on the surface, the occurrence of phase shift, wavelength shift and ripple, which significantly impairs the performance as a cut filter, is suppressed.
- the near-infrared cut filter 100A of this embodiment includes the antireflection films 103 and 104, the transmittance is higher than that of the near-infrared cut filter 100 of Example 5 (that is, compared with FIG. 8).
- the peak transmittance is about 93%.
- the near-infrared cut filters 100A of Examples 6 to 10 have excellent oblique incident characteristics and high transmittance. Further, the image pickup apparatus 1 using such a near-infrared cut filter 100 can obtain an image that is bright and has excellent color reproducibility.
- FIG. 16 is a vertical sectional view illustrating the configuration of the near-infrared cut filter 100B according to the third embodiment of the present invention.
- the near-infrared cut filter 100B of the present embodiment is close to the first embodiment in that the near-infrared cut filter 100B includes a bonding layer 105 for bonding the glass base material 101 and the resin layer 102. It is different from the infrared cut filter 100.
- the bonding layer 105 is formed in this way, the adhesion between the glass base material 101 and the resin layer 102 can be enhanced, so that the reliability can be improved.
- the bonding layer 105 of the present embodiment is based on such findings, and has a single-layer structure containing one or more selected from Ti atoms, Zr atoms, and Al atoms together with Si atoms.
- the single-layer structure is a measurement image (image contrast) obtained when measured by a scanning transmission electron microscope-energy dispersive X-ray spectrophotometer (STEM-EDX) under the following measurement conditions.
- the thickness of the bonding layer 105 is preferably 1000 nm or less, more preferably 10 to 500 nm, and even more preferably 30 to 300 nm.
- the thickness of the bonding layer 105 is 1000 nm or less, it becomes easy to suppress the occurrence of unevenness during the formation (firing) of the bonding layer 105, and the film surface of the bonding layer 105 can be easily made uniform.
- the thickness of the bonding layer 105 is 10 nm or more, the bonding layer 105 tends to exhibit sufficient bonding strength, and the mechanical strength of the near-infrared cut filter 100B can be easily improved.
- the thickness of the bonding layer 105 is the thickness of the bonding layer 105 in the measured image (image contrast) of the cross section of the near-infrared cut filter 100B obtained when measured using the STEM-EDX. It means the arithmetic mean value when the point is measured.
- the bonding layer 105 of the present embodiment contains one or more selected from Ti atom, Zr atom and Al atom together with Si atom, but is contained in the bonding layer 105 together with Si atom, Ti atom, Zr atom and Al.
- the Ti atom is preferable as one or more selected from the atoms.
- the ratio ⁇ (atomic%) of the total number of Ti atoms, Zr atoms and Al atoms to the total number of Si atoms, Ti atoms, Zr atoms and Al atoms (total number of atoms) is , 0 atomic% and preferably 33.3 atomic% or less, more preferably 9 to 33.3 atomic%, still more preferably 12 to 33.3 atomic%.
- the ratio ⁇ of the total number of Ti atoms, Zr atoms and Al atoms to the total number of Si atoms, Ti atoms, Zr atoms and Al atoms constituting the bonding layer 105 (total number of atoms) ⁇ ( Atomic%) means a value calculated by the following method.
- the STEM-EDX measurement of the optical filter is performed under the above-mentioned measurement conditions to obtain a STEM-EDX line (EDX line (K line) detection intensity line in the depth direction of each element constituting the optical filter).
- the value obtained by multiplying the k factor of the atom by K Ti , the k factor of the Zr atom by K Zr , and the k factor of the Al atom by K Al ) can be regarded as corresponding to the weight ratio of each constituent element. Therefore, for example, the weight ratio A Ti (% by weight) of the Ti atoms constituting the bonding layer can be calculated by the following formula. (4) Further, it can be considered that the value obtained by dividing the value obtained by multiplying the EDX-ray integrated intensity X of each atom by the k factor by each atomic weight M corresponds to the ratio of the number of atoms of each constituent element.
- the number of Ti atoms constituting the bonding layer 105 is the number of atoms.
- the ratio ⁇ Ti (atomic%) of can be calculated by the following formula. Further, the ratio ⁇ (atomic%) of the total number of atoms of Ti atom, Zr atom and Al atom constituting the bonding layer 105 can be calculated by the following formula.
- the bonding layer 105 contains Si atoms and Ti atoms but does not contain Zr atoms and Al atoms
- the ratio ⁇ of the total number of Ti atoms, Zr atoms, and Al atoms constituting the bonding layer 105 ( Atomic%) can be calculated by the following formula.
- K Si 1.000
- K Ti 1.033
- K Zr 5.696
- K Al 1.050.
- the near-infrared cut filter 100B of the present embodiment will be further described with reference to examples, but the present invention is not limited to the following examples.
- Example 11 A bonding layer 105 was formed on the glass substrate 101 of Example 1 by the following procedure (4. Formation of the bonding layer 105). Then, the resin layer 102 was formed on the upper surface of the bonding layer 105 by the same procedure as in Example 1 (2. Formation of the resin layer 102) to prepare a near-infrared cut filter 100B. [4. Formation of bonding layer 105] 1. 1. Preparation of Coupling Agent-Containing Coating Solution (1) 0.3 mL of 0.5 N (mol / L) HCl aqueous solution and 2.2 mL of 2-methoxyethanol were weighed in a container and mixed in a hermetically sealed manner.
- Titanium (IV) n-butoxide (Ti (OC 4 H 9 ) 4 ) is further added to the above container in a predetermined ratio (for example, 3 to 20 mol%), and the mixture is sealed for 30 minutes. By mixing, a coating liquid containing a coupling agent was prepared. At this time, it is considered that the reaction represented by the following reaction formula occurred in the container. 4OH-Si (OC 2 H 5 ) 3 + Ti (OC 4 H 9 ) 4 ⁇ Ti (O-Si (OC 2 H 5 ) 3 ) 4 + 4C 4 H 9 OH
- the obtained coating film forming liquid was applied onto the glass substrate 101 using a spin coater so as to have a concentration of 0.03 mL / cm2.
- the glass substrate 101 coated with the coating film forming liquid was placed on a hot plate heated to 250 ° C. and heated for 30 minutes for dehydration condensation to form a cured film (bonding layer 105) on the surface.
- the resin layer 102 was formed on the upper surface of the bonding layer 105 by the same procedure as in Example 1 (2. Formation of the resin layer 102) to prepare a near-infrared cut filter 100B.
- the bonding layer 105 between the glass base material 101 and the resin layer 102 By forming the bonding layer 105 between the glass base material 101 and the resin layer 102 in this way, the adhesion between the glass base material 101 and the resin layer 102 can be significantly improved, and the reliability can be dramatically improved. Can be improved.
- the bonding layer 105 of the present embodiment contains one or more selected from Ti atom, Zr atom and Al atom together with Si atom, but instead of forming the bonding layer 105, each component of the bonding layer 105 is used. It can also be contained in the resin layer 102. That is, the resin layer 102 can be configured to contain one or more selected from Ti atoms, Zr atoms, and Al atoms together with Si atoms.
- the bonding layer 105 of the present embodiment is said to contain one or more selected from Ti atoms, Zr atoms and Al atoms together with Si atoms, but it is intended to improve the adhesion between the glass substrate 101 and the resin layer 102.
- a transparent vapor deposition type or coating type adhesive can be applied.
- the resin layer 102 of the present embodiment is formed on one main surface (upper surface in FIG. 16) of the glass base material 101 via the bonding layer 105, but is similar to the first embodiment.
- the resin layer 102 may be formed on the other main surface (lower surface in FIG. 16) of the glass base material 101 via the bonding layer 105, or may be formed on both sides of the glass base material 101. good.
- the resin layer 102 does not necessarily have to be one layer, and may be composed of a plurality of layers.
- Image pickup device 11 Absorption layer 12: Reflective layer 13: Transparent substrate 100: Near infrared cut filter 100A: Near infrared cut filter 100B: Near infrared cut filter 101: Glass substrate 102: Resin layer 103: Antireflection film 104 : Antireflection film 105: Bonding layer 200: Solid image pickup element 300: Package
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Filters (AREA)
- Solid State Image Pick-Up Elements (AREA)
Abstract
Provided is a near-infrared cut filter that is much less dependent of the angle of incidence, and has excellent oblique incidence characteristics. The near-infrared cut filter comprises: a transparent substrate that is made of a fluorophosphate glass or a phosphate glass, and that has an average transmittance of at most 3% in the wavelength range of 800-950 nm; and a resin layer that is formed on at least one main surface of the transparent substrate, and that absorbs light having a specific wavelength.
Description
本発明は、固体撮像素子の前面に配置され、固体撮像素子の視感度補正に用いられる近赤外線カットフィルタ及びそれを備える撮像装置に関する。
The present invention relates to a near-infrared cut filter arranged in front of a solid-state image sensor and used for correcting the visual sensitivity of the solid-state image sensor, and an image pickup device including the same.
近年、CCDやCMOSなどの固体撮像素子を内蔵した撮像装置がデジタルカメラや情報携帯端末機器等に使用されている。このような撮像装置においては、固体撮像素子が近紫外域から近赤外域にわたる分光感度を有しているため、入射光の近赤外線部分をカットして人間の視感度に近くなるように補正する近赤外線カットフィルタを備えている。このような近赤外線カットフィルタは、固体撮像素子までの光路中に配置されるが、撮像装置全体のサイズを小さくするため、撮像装置のカバーガラスを兼ねるような構成の近赤外線カットフィルタも実用に供されている(例えば、特許文献1)。
In recent years, image pickup devices with built-in solid-state image sensors such as CCD and CMOS have been used in digital cameras, information mobile terminal devices, and the like. In such an image pickup device, since the solid-state image sensor has spectral sensitivity from the near-ultraviolet region to the near-infrared region, the near-infrared portion of the incident light is cut and corrected so as to be close to the human visual sensitivity. It is equipped with a near-infrared cut filter. Such a near-infrared cut filter is arranged in the optical path to the solid-state image sensor, but in order to reduce the size of the entire image pickup device, a near-infrared cut filter having a configuration that doubles as a cover glass of the image pickup device is also practical. Provided (for example, Patent Document 1).
図17は、特許文献1に記載の近赤外線カットフィルタ(従来例)の構成の一例である。図17に示すように、特許文献1に記載の近赤外線カットフィルタは、透明基材13と、透明基材13の一方の主面上に形成され、近赤外波長領域及び紫外線波長領域の光を吸収する吸収層11と、透明基材13の他方の主面上に形成され、特定の波長領域の光の透過と遮蔽を制御する反射層12と、を備えている。反射層12は、低屈折率の誘電体膜(低誘電体膜)と高屈折率の誘電体膜(高誘電体膜)とを交互に積層した、厚さ2~10μmの誘電体多層膜から構成されており、反射層12の分光透過率が所定の要件を満たすように構成することで、特に長波長側で比視感度曲線に近い分光特性を有し、入射角依存性が少ない近赤外線カットフィルタを実現している。
FIG. 17 is an example of the configuration of the near-infrared cut filter (conventional example) described in Patent Document 1. As shown in FIG. 17, the near-infrared cut filter described in Patent Document 1 is formed on one main surface of the transparent base material 13 and the transparent base material 13, and is light in the near-infrared wavelength region and the ultraviolet wavelength region. It is provided with an absorption layer 11 that absorbs light, and a reflection layer 12 that is formed on the other main surface of the transparent substrate 13 and controls the transmission and shielding of light in a specific wavelength region. The reflective layer 12 is made of a dielectric multilayer film having a thickness of 2 to 10 μm, in which a low refractive index dielectric film (low dielectric film) and a high refractive index dielectric film (high refractive index film) are alternately laminated. By being configured so that the spectral transmittance of the reflective layer 12 satisfies a predetermined requirement, the near infrared rays have spectral characteristics close to the relative visibility curve, especially on the long wavelength side, and have little dependence on the incident angle. A cut filter is realized.
しかしながら、特許文献1に記載の近赤外線カットフィルタは、比較的厚め(厚さ2~10μm)の誘電体多層膜から構成された反射層12を備えているため、反射層12に斜めに光が入射すると光路長が長くなり、位相ずれが発生するといった問題がある。
However, since the near-infrared cut filter described in Patent Document 1 includes a reflective layer 12 composed of a relatively thick (thickness 2 to 10 μm) dielectric multilayer film, light is obliquely emitted to the reflective layer 12. When incident, the optical path length becomes long, and there is a problem that a phase shift occurs.
図18は、図17の近赤外線カットフィルタの反射層12の分光透過率曲線を示す図であり、入射角0°のときの分光透過率曲線(実線)と、入射角30°のときの分光透過率曲線(破線)を示している。また、図19は、図17の近赤外線カットフィルタの分光透過率曲線を示す図であり、入射角0°のときの分光透過率曲線(実線)と、入射角30°のときの分光透過率曲線(破線)を示している。
FIG. 18 is a diagram showing a spectral transmittance curve of the reflective layer 12 of the near-infrared cut filter of FIG. 17, a spectral transmittance curve (solid line) when the incident angle is 0 °, and a spectrum when the incident angle is 30 °. The transmittance curve (broken line) is shown. Further, FIG. 19 is a diagram showing a spectral transmittance curve of the near-infrared cut filter of FIG. 17, a spectral transmittance curve (solid line) when the incident angle is 0 °, and a spectral transmittance when the incident angle is 30 °. A curve (broken line) is shown.
図18に示すように、反射層12に入射角30°の光が入射すると、位相ずれの影響によって、分光透過率曲線が短波長側にシフトしたり(図18のP1部)、分光透過率曲線にリップルが発生する(図18のP2部)、といった問題がある。そして、反射層12の分光透過率曲線に波長シフトが生じると、近赤外線カットフィルタの分光透過率曲線にも波長シフトが生じ(図19のP3部)、固体撮像素子の色再現性が低減するおそれがある。また、反射層12の分光透過率曲線にリップルが生じると、近赤外線カットフィルタの分光透過率曲線にもリップルが生じ(図19のP4部)、固体撮像素子上で一種のゴーストが観測されてしまうおそれがあった。そのため、斜入射光によっても、波長シフトやリップルを生じない、優れた斜入射特性を備える近赤外線カットフィルタが求められていた。
As shown in FIG. 18, when light having an incident angle of 30 ° is incident on the reflective layer 12, the spectral transmittance curve shifts to the short wavelength side due to the influence of the phase shift (P1 part in FIG. 18), or the spectral transmittance. There is a problem that ripples occur in the curve (P2 part in FIG. 18). When a wavelength shift occurs in the spectral transmittance curve of the reflective layer 12, a wavelength shift also occurs in the spectral transmittance curve of the near-infrared cut filter (P3 portion in FIG. 19), and the color reproducibility of the solid-state imaging device is reduced. There is a risk. Further, when ripples occur in the spectral transmittance curve of the reflective layer 12, ripples also occur in the spectral transmittance curve of the near-infrared cut filter (P4 part in FIG. 19), and a kind of ghost is observed on the solid-state image sensor. There was a risk that it would end up. Therefore, there has been a demand for a near-infrared cut filter having excellent oblique incident characteristics that does not cause wavelength shift or ripple even with oblique incident light.
本発明は、このような事情に鑑みてなされたものであり、その目的とするところは、入射角依存性が極めて少なく、斜入射特性に優れる近赤外線カットフィルタ、およびそのような近赤外線カットフィルタを備える撮像装置を提供することである。
The present invention has been made in view of such circumstances, and an object thereof is a near-infrared cut filter having extremely little dependence on an incident angle and having excellent oblique incident characteristics, and such a near-infrared cut filter. It is to provide the image pickup apparatus provided with.
上記目的を達成するために本発明者が鋭意検討したところ、フツリン酸塩系ガラス又はリン酸塩系ガラスからなる透明基材の分光透過率曲線において、特に800~950nmの波長域に注目し、800~950nmの波長域の平均透過率が小さいものを使用すると、従来の近赤外線カットフィルタに用いられていた反射膜を使用せずに、可視光領域の光を選択的に透過するカットフィルタを製造できることを見出した。本発明は、かかる知見に基づいてなされたものである。
As a result of diligent studies by the present inventor in order to achieve the above object, attention was paid particularly to the wavelength range of 800 to 950 nm in the spectral transmittance curve of the transparent substrate made of fluoride-based glass or phosphate-based glass. If a cut filter with a small average transmittance in the wavelength range of 800 to 950 nm is used, a cut filter that selectively transmits light in the visible light region can be used without using the reflective film used in the conventional near-infrared cut filter. Found that it can be manufactured. The present invention has been made based on such findings.
すなわち、本発明の近赤外線カットフィルタは、フツリン酸塩系ガラス又はリン酸塩系ガラスからなり、800~950nmの波長域における平均透過率が3%以下である透明基材と、透明基材の少なくとも一方の主面上に形成され、特定の波長の光を吸収する樹脂層と、を備えることを特徴とする。
That is, the near-infrared cut filter of the present invention is made of a fluoride-based glass or a phosphate-based glass, and has a transparent substrate having an average transmittance of 3% or less in the wavelength range of 800 to 950 nm and a transparent substrate. It is characterized by comprising a resin layer formed on at least one main surface and absorbing light having a specific wavelength.
このような構成によれば、従来のような誘電体多層膜から構成された反射層が不要となるため(つまり、反射層を備えないため)、近赤外線カットフィルタに対して斜めに光が入射したとしても光路長の変化が生じ難く、位相ずれの発生が抑制される。従って、近赤外線カットフィルタの分光透過率曲線において、波長シフトやリップルが殆ど発生しない。
With such a configuration, since the reflection layer composed of the conventional dielectric multilayer film is unnecessary (that is, because the reflection layer is not provided), the light is obliquely incident on the near-infrared cut filter. Even if this is the case, the optical path length is unlikely to change, and the occurrence of phase shift is suppressed. Therefore, wavelength shift and ripple hardly occur in the spectral transmittance curve of the near-infrared cut filter.
また、透明基材の透過率曲線の短波長側の半値波長が335~400nmであり、長波長側の半値波長が590~630nmであることが好ましい。
Further, it is preferable that the half-value wavelength on the short wavelength side of the transmittance curve of the transparent substrate is 335 to 400 nm, and the half-value wavelength on the long wavelength side is 590 to 630 nm.
また、透明基材は、650~720nmの波長域における平均透過率が18%以下であることが好ましい。
Further, the transparent substrate preferably has an average transmittance of 18% or less in the wavelength range of 650 to 720 nm.
また、透明基材は、720~750nmの波長域における平均透過率が10%以下であることが好ましい。
Further, the transparent substrate preferably has an average transmittance of 10% or less in the wavelength range of 720 to 750 nm.
また、樹脂層は、透明樹脂と、該透明樹脂中に均一に分散してなる色素と、を含むことができる。また、この場合、色素は、340~400nmに極大吸収波長を有する紫外線吸収色素を含むことが好ましい。また、色素は、650~760nmに極大吸収波長を有する第1の近赤外吸収色素を含むことが好ましい。また、この場合、色素は、800~1200nmに極大吸収波長を有する第2の近赤外吸収色素を含むことが好ましい。
Further, the resin layer can contain a transparent resin and a dye uniformly dispersed in the transparent resin. Further, in this case, the dye preferably contains an ultraviolet absorbing dye having a maximum absorption wavelength of 340 to 400 nm. Further, the dye preferably contains a first near-infrared absorption dye having a maximum absorption wavelength of 650 to 760 nm. Further, in this case, the dye preferably contains a second near-infrared absorption dye having a maximum absorption wavelength of 800 to 1200 nm.
また、樹脂層は、Si原子とともに、Ti原子、Zr原子およびAl原子から選ばれる一種以上を含むことができる。
Further, the resin layer can contain one or more selected from Ti atom, Zr atom and Al atom together with Si atom.
また、透明基板と樹脂層との間に、透明基板と樹脂層の密着性を高める接合層を備えることができる。また、この場合、接合層は、Si原子とともに、Ti原子、Zr原子およびAl原子から選ばれる一種以上を含む単層構造を有することが好ましい。また、この場合、接合層において、Si原子、Ti原子、Zr原子およびAl原子の総数に占める、Ti原子、Zr原子およびAl原子の合計原子数の割合が、0atomic%を超え33.3atomic%以下であることが好ましい。
Further, a bonding layer that enhances the adhesion between the transparent substrate and the resin layer can be provided between the transparent substrate and the resin layer. Further, in this case, it is preferable that the bonding layer has a single-layer structure containing one or more selected from Ti atom, Zr atom and Al atom together with Si atom. Further, in this case, the ratio of the total number of atoms of Ti atom, Zr atom and Al atom to the total number of Si atom, Ti atom, Zr atom and Al atom in the bonding layer exceeds 0 atomic% and 33.3 atomic% or less. Is preferable.
また、樹脂層上に第1の反射防止膜を備え、透明基材の他方の主面上に第2の反射防止膜を備えることができる。また、この場合、透過率曲線の短波長側の半値波長が385~430nmであり、長波長側の半値波長が590~630nmであることが好ましい。また、この場合、第1の反射防止膜及び第2の反射防止膜が、それぞれ、厚さ500nm以下の誘電体多層膜によって構成されていることが好ましい。また、この場合、誘電体多層膜が、10層以下であることが好ましい。
Further, a first antireflection film can be provided on the resin layer, and a second antireflection film can be provided on the other main surface of the transparent base material. Further, in this case, it is preferable that the half-value wavelength on the short wavelength side of the transmittance curve is 385 to 430 nm and the half-value wavelength on the long wavelength side is 590 to 630 nm. Further, in this case, it is preferable that the first antireflection film and the second antireflection film are each composed of a dielectric multilayer film having a thickness of 500 nm or less. Further, in this case, the number of dielectric multilayer films is preferably 10 or less.
また、誘電体多層膜は、屈折率1.1~1.5の材料から構成される低屈折誘電体膜と、屈折率2.0~2.5の材料から構成される高屈折誘電体膜と、が交互に積層されて形成されていることが好ましい。
The dielectric multilayer film is a low refractive index film made of a material having a refractive index of 1.1 to 1.5 and a high refractive index film made of a material having a refractive index of 2.0 to 2.5. And are preferably formed by being alternately laminated.
また、誘電体多層膜は、屈折率1.1~1.3の材料から構成される低屈折誘電体膜と、屈折率1.4~1.6の材料から構成される高屈折誘電体膜と、が交互に積層されて形成されていることが好ましい。
The dielectric multilayer film is a low refractive index film made of a material having a refractive index of 1.1 to 1.3 and a high refractive index film made of a material having a refractive index of 1.4 to 1.6. And are preferably formed by being alternately laminated.
また、透明基材の厚さが、0.01~1.5mmであることが好ましい。
Further, the thickness of the transparent base material is preferably 0.01 to 1.5 mm.
また、別の観点からは、本発明の撮像装置は、固体撮像素子と、上記いずれかの近赤外線カットフィルタとを備えることを特徴とする。また、この場合、近赤外線カットフィルタが、固体撮像素子の直前に配置され、カバーガラスを兼ねるように構成することができる。
From another point of view, the image pickup device of the present invention is characterized by including a solid-state image pickup device and any of the above-mentioned near-infrared cut filters. Further, in this case, the near-infrared cut filter is arranged immediately in front of the solid-state image sensor, and can be configured to also serve as a cover glass.
以上のように、本発明によれば、入射角依存性が極めて少なく、斜入射特性に優れる近赤外線カットフィルタが実現される。また、そのような近赤外線カットフィルタを備え色再現性に優れる撮像装置が実現される。
As described above, according to the present invention, a near-infrared cut filter having extremely little dependence on the incident angle and having excellent oblique incident characteristics is realized. Further, an image pickup device equipped with such a near-infrared cut filter and having excellent color reproducibility is realized.
以下、本発明の実施の形態について図面を参照して詳細に説明する。なお、図中同一又は相当部分には同一の符号を付してその説明は繰り返さない。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The same or corresponding parts in the drawings are designated by the same reference numerals and the description thereof will not be repeated.
(第1の実施形態)
図1は、本発明の第1の実施形態に係る近赤外線カットフィルタ100の構成を説明する図であり、図1(a)は平面図であり、図1(b)は、縦断面図である。また、図2は、本実施形態の近赤外線カットフィルタ100によって、固体撮像素子200のパッケージ300の開口部が封止された撮像装置1の構成を説明する縦断面図である。図1及び図2に示すように、本実施形態の近赤外線カットフィルタ100は、固体撮像素子200を収納するパッケージ300の前面に取り付けられ、固体撮像素子200を保護すると共に、固体撮像素子200の視感度補正に用いられる光学素子である。 (First Embodiment)
1A and 1B are views for explaining the configuration of the near-infrared cut filter 100 according to the first embodiment of the present invention, FIG. 1A is a plan view, and FIG. 1B is a vertical sectional view. be. Further, FIG. 2 is a vertical cross-sectional view illustrating the configuration of the image pickup apparatus 1 in which the opening of the package 300 of the solid-state image pickup device 200 is sealed by the near-infrared cut filter 100 of the present embodiment. As shown in FIGS. 1 and 2, the near-infrared cut filter 100 of the present embodiment is attached to the front surface of the package 300 for accommodating the solid-state image sensor 200 to protect the solid-state image sensor 200 and the solid-state image sensor 200. It is an optical element used for visual sensitivity correction.
図1は、本発明の第1の実施形態に係る近赤外線カットフィルタ100の構成を説明する図であり、図1(a)は平面図であり、図1(b)は、縦断面図である。また、図2は、本実施形態の近赤外線カットフィルタ100によって、固体撮像素子200のパッケージ300の開口部が封止された撮像装置1の構成を説明する縦断面図である。図1及び図2に示すように、本実施形態の近赤外線カットフィルタ100は、固体撮像素子200を収納するパッケージ300の前面に取り付けられ、固体撮像素子200を保護すると共に、固体撮像素子200の視感度補正に用いられる光学素子である。 (First Embodiment)
1A and 1B are views for explaining the configuration of the near-
図1に示すように、本実施形態の近赤外線カットフィルタ100は、矩形板状(例えば、6mm(横方向)×5mm(縦方向))の外観を呈しており、ガラス基材101(透明基材)と、ガラス基材101の一方の主面上(図1(b)において上側の面)に形成された樹脂層102とから構成されている。
As shown in FIG. 1, the near-infrared cut filter 100 of the present embodiment has a rectangular plate-like appearance (for example, 6 mm (horizontal direction) × 5 mm (longitudinal direction)), and has a glass base material 101 (transparent group). The material) and the resin layer 102 formed on one main surface of the glass base material 101 (the upper surface in FIG. 1B).
[ガラス基材]
本実施形態のガラス基材101は、リン酸塩系ガラスまたはフツリン酸塩系ガラスからなる吸収ガラス基板である。本実施形態のガラス基材101の厚みは、特に限定されないが、小型軽量化を図る観点から、0.01~1.5mmの範囲が好ましく、0.01~0.70mmのものがより好ましく、0.01~0.30mmのものがさらに好ましい。 [Glass substrate]
Theglass base material 101 of the present embodiment is an absorbent glass substrate made of phosphate-based glass or fluoride-based glass. The thickness of the glass base material 101 of the present embodiment is not particularly limited, but is preferably in the range of 0.01 to 1.5 mm, more preferably 0.01 to 0.70 mm, from the viewpoint of reducing the size and weight. Those having a thickness of 0.01 to 0.30 mm are more preferable.
本実施形態のガラス基材101は、リン酸塩系ガラスまたはフツリン酸塩系ガラスからなる吸収ガラス基板である。本実施形態のガラス基材101の厚みは、特に限定されないが、小型軽量化を図る観点から、0.01~1.5mmの範囲が好ましく、0.01~0.70mmのものがより好ましく、0.01~0.30mmのものがさらに好ましい。 [Glass substrate]
The
本実施形態におけるリン酸塩系ガラスとは、必須成分としてのP、Oと、他の任意成分とを含むガラスであり、CuOを含むものが特に好ましい。リン酸塩系ガラスがCuOを含むことにより、近赤外光をより効果的に吸収することができる。リン酸塩系ガラスの他の任意成分としては例えば、Ca、Mg、Sr、Ba、Li、Na、K、Csなどが挙げられる。
The phosphate-based glass in the present embodiment is a glass containing P and O as essential components and other optional components, and a glass containing CuO is particularly preferable. Since the phosphate-based glass contains CuO, near-infrared light can be absorbed more effectively. Examples of other optional components of the phosphate-based glass include Ca, Mg, Sr, Ba, Li, Na, K, and Cs.
リン酸塩系ガラスの具体例としては、
P2O5: 0質量%を超え70質量%以下、
Al2O3: 0~40質量%、
BaO: 0~40質量%、
CuO: 0~40質量%
を含むものが好ましい。 As a specific example of phosphate-based glass,
P 2 O 5 : More than 0% by mass and 70% by mass or less,
Al 2 O 3 : 0-40% by mass,
BaO: 0-40% by mass,
CuO: 0-40% by mass
Is preferable.
P2O5: 0質量%を超え70質量%以下、
Al2O3: 0~40質量%、
BaO: 0~40質量%、
CuO: 0~40質量%
を含むものが好ましい。 As a specific example of phosphate-based glass,
P 2 O 5 : More than 0% by mass and 70% by mass or less,
Al 2 O 3 : 0-40% by mass,
BaO: 0-40% by mass,
CuO: 0-40% by mass
Is preferable.
また、
P2O5: 20~60質量%、
Al2O3: 0~10質量%、
BaO: 0~10 質量%、
CuO: 0~10質量%
を含むものがより好ましい。 again,
P 2 O 5 : 20-60% by mass,
Al 2 O 3 : 0 to 10% by mass,
BaO: 0 to 10% by mass,
CuO: 0 to 10% by mass
Is more preferable.
P2O5: 20~60質量%、
Al2O3: 0~10質量%、
BaO: 0~10 質量%、
CuO: 0~10質量%
を含むものがより好ましい。 again,
P 2 O 5 : 20-60% by mass,
Al 2 O 3 : 0 to 10% by mass,
BaO: 0 to 10% by mass,
CuO: 0 to 10% by mass
Is more preferable.
また、
P2O5: 20~60質量%、
Al2O3: 1~10質量%、
BaO: 1~10質量%、
CuO: 1~10質量%
を含むものがさらに好ましい。 again,
P 2 O 5 : 20-60% by mass,
Al 2 O 3 : 1 to 10% by mass,
BaO: 1-10% by mass,
CuO: 1-10% by mass
It is more preferable to include.
P2O5: 20~60質量%、
Al2O3: 1~10質量%、
BaO: 1~10質量%、
CuO: 1~10質量%
を含むものがさらに好ましい。 again,
P 2 O 5 : 20-60% by mass,
Al 2 O 3 : 1 to 10% by mass,
BaO: 1-10% by mass,
CuO: 1-10% by mass
It is more preferable to include.
また、本実施形態におけるフツリン酸塩系ガラスとは、必須成分としてのP、O、Fと、他の任意成分とを含むガラスであり、CuOを含むものが特に好ましい。フツリン酸塩系ガラスがCuOを含むことにより、近赤外光をより効果的に吸収することができる。フツリン酸塩系ガラスの他の任意成分としては例えば、Ca、Mg、Sr、Ba、Li、Na、K、Csなどが挙げられる。
Further, the fluoride-based glass in the present embodiment is a glass containing P, O, F as essential components and other optional components, and a glass containing CuO is particularly preferable. Since the futurate-based glass contains CuO, near-infrared light can be absorbed more effectively. Examples of other optional components of the phosphate-based glass include Ca, Mg, Sr, Ba, Li, Na, K, Cs and the like.
また、フツリン酸塩系ガラスとしては、BaOを含むものが好ましく用いられる。BaOを0%以上含有することで、ガラスの耐失透性と、熔融性とを向上させることができる。10%より多いと失透し易くなるため、0~10%が好適である。また、BaOの含有率は、1~10%がより好ましく、1~5%がさらに好ましい。
Further, as the futurate-based glass, one containing BaO is preferably used. By containing 0% or more of BaO, the devitrification resistance and the meltability of the glass can be improved. If it is more than 10%, devitrification is likely to occur, so 0 to 10% is preferable. The BaO content is more preferably 1 to 10%, even more preferably 1 to 5%.
また、フツリン酸塩系ガラスとしては、Al2O3を含むものが好ましく用いられる。Al2O3を0%以上含有することで、ガラスの安定性と、化学的耐久性を向上させることができる。10%より多いと失透し易くなるため、0~10%が好適である。また、Al2O3の含有率は、1~10%がより好ましく、1~5%がさらに好ましい。
Further, as the futurate-based glass, one containing Al 2 O 3 is preferably used. By containing 0% or more of Al 2 O 3 , the stability and chemical durability of the glass can be improved. If it is more than 10%, devitrification is likely to occur, so 0 to 10% is preferable. Further, the content of Al 2 O 3 is more preferably 1 to 10%, further preferably 1 to 5%.
また、フツリン酸塩系ガラスとしては、Y2O3を含むものが好ましく用いられる。Y2O3を0%以上含有することで、熱的安定性を維持しつつ、屈折率を高めることができる。10%より多いと失透し易くなり、また、ガラス転移温度や屈伏点温度が上昇するため、0~10%が好適である。また、Y2O3の含有率は、1~10%がより好ましく、1~5%がさらに好ましい。
Further, as the futurate - based glass, one containing Y2O3 is preferably used. By containing 0% or more of Y2O3 , the refractive index can be increased while maintaining the thermal stability. If it is more than 10%, devitrification is likely to occur, and the glass transition temperature and the yield point temperature increase. Therefore, 0 to 10% is preferable. Further, the content of Y 2 O 3 is more preferably 1 to 10%, further preferably 1 to 5%.
また、フツリン酸塩系ガラスとしては、BaCl2を含むものが好ましく用いられる。BaCl2により適量のClをガラス中に導入することによって、ガラスの結晶化開始温度(Tx)とガラス転移温度(Tg)の差が大きくなり、ガラスの失透に対する安定性が向上する。10%より多いと失透し易くなるため、0~10%が好適である。また、BaCl2の含有率は、1~10%がより好ましく、1~5%がさらに好ましい。
Further, as the futurate-based glass, one containing BaCl 2 is preferably used. By introducing an appropriate amount of Cl into the glass by BaCl 2 , the difference between the crystallization start temperature (Tx) and the glass transition temperature (Tg) of the glass becomes large, and the stability of the glass against devitrification is improved. If it is more than 10%, devitrification is likely to occur, so 0 to 10% is preferable. Further, the content of BaCl 2 is more preferably 1 to 10%, further preferably 1 to 5%.
フツリン酸塩系ガラスの具体例としては、
P2O5: 0質量%を超え70質量%以下、
Al2O3: 0~40質量%、
BaO: 0~40質量%、
CuO: 0~40質量%
を含み、さらにフッ化物を、0質量%を超え40質量%以下含む
ものが好ましい。 As a specific example of futurate-based glass,
P 2 O 5 : More than 0% by mass and 70% by mass or less,
Al 2 O 3 : 0-40% by mass,
BaO: 0-40% by mass,
CuO: 0-40% by mass
It is preferable that the fluoride is contained in an amount of more than 0% by mass and 40% by mass or less.
P2O5: 0質量%を超え70質量%以下、
Al2O3: 0~40質量%、
BaO: 0~40質量%、
CuO: 0~40質量%
を含み、さらにフッ化物を、0質量%を超え40質量%以下含む
ものが好ましい。 As a specific example of futurate-based glass,
P 2 O 5 : More than 0% by mass and 70% by mass or less,
Al 2 O 3 : 0-40% by mass,
BaO: 0-40% by mass,
CuO: 0-40% by mass
It is preferable that the fluoride is contained in an amount of more than 0% by mass and 40% by mass or less.
また、
P2O5: 20~60質量%、
Al2O3: 0~10質量%、
BaO: 0~10質量%、
CuO: 0~10質量%
を含み、さらにフッ化物を1~30質量%含む
ものがより好ましい。 again,
P 2 O 5 : 20-60% by mass,
Al 2 O 3 : 0 to 10% by mass,
BaO: 0-10% by mass,
CuO: 0 to 10% by mass
It is more preferable to contain 1 to 30% by mass of fluoride.
P2O5: 20~60質量%、
Al2O3: 0~10質量%、
BaO: 0~10質量%、
CuO: 0~10質量%
を含み、さらにフッ化物を1~30質量%含む
ものがより好ましい。 again,
P 2 O 5 : 20-60% by mass,
Al 2 O 3 : 0 to 10% by mass,
BaO: 0-10% by mass,
CuO: 0 to 10% by mass
It is more preferable to contain 1 to 30% by mass of fluoride.
また、
P2O5: 20~60質量%、
Al2O3: 1~10質量%、
BaO: 1~10質量%、
CuO: 1~10質量%
を含み、さらにフッ化物を2~30質量%含む
ものがさらに好ましい。 again,
P 2 O 5 : 20-60% by mass,
Al 2 O 3 : 1 to 10% by mass,
BaO: 1-10% by mass,
CuO: 1-10% by mass
It is more preferable to contain 2 to 30% by mass of fluoride.
P2O5: 20~60質量%、
Al2O3: 1~10質量%、
BaO: 1~10質量%、
CuO: 1~10質量%
を含み、さらにフッ化物を2~30質量%含む
ものがさらに好ましい。 again,
P 2 O 5 : 20-60% by mass,
Al 2 O 3 : 1 to 10% by mass,
BaO: 1-10% by mass,
CuO: 1-10% by mass
It is more preferable to contain 2 to 30% by mass of fluoride.
なお、上記フッ化物としては、MgF2、CaF2、SrF2等から選ばれる一種以上が挙げられる。
Examples of the fluoride include one or more selected from MgF 2 , CaF 2 , SrF 2 , and the like.
このようなフツリン酸塩系ガラスの具体例としては、
P2O5: 40~50質量%、
Al2O3: 1~10質量%、
BaO: 1~10質量%、
CuO: 1~10質量%、
MgF2: 1~10質量%、
CaF2: 1~10質量%、
SrF2: 1~10質量%、
Y2O3: 1~10質量%、
BaCl2: 0~1質量%、
を含むものが特に好ましい。 As a specific example of such a fluoride-based glass,
P 2 O 5 : 40 to 50% by mass,
Al 2 O 3 : 1 to 10% by mass,
BaO: 1-10% by mass,
CuO: 1-10% by mass,
MgF 2 : 1 to 10% by mass,
CaF 2 : 1 to 10% by mass,
SrF 2 : 1 to 10% by mass,
Y 2 O 3 : 1 to 10% by mass,
BaCl 2 : 0 to 1% by mass,
Those containing the above are particularly preferable.
P2O5: 40~50質量%、
Al2O3: 1~10質量%、
BaO: 1~10質量%、
CuO: 1~10質量%、
MgF2: 1~10質量%、
CaF2: 1~10質量%、
SrF2: 1~10質量%、
Y2O3: 1~10質量%、
BaCl2: 0~1質量%、
を含むものが特に好ましい。 As a specific example of such a fluoride-based glass,
P 2 O 5 : 40 to 50% by mass,
Al 2 O 3 : 1 to 10% by mass,
BaO: 1-10% by mass,
CuO: 1-10% by mass,
MgF 2 : 1 to 10% by mass,
CaF 2 : 1 to 10% by mass,
SrF 2 : 1 to 10% by mass,
Y 2 O 3 : 1 to 10% by mass,
BaCl 2 : 0 to 1% by mass,
Those containing the above are particularly preferable.
なお、詳細は後述するが、本実施形態のガラス基材101は、800~950nmの波長域における平均透過率が3%以下となるように構成されている。このように、800~950nmの波長域の平均透過率が小さいガラス基材101を用いると、従来の近赤外線カットフィルタに用いられていた反射膜(誘電体多層膜)を用いることなく、可視光領域の光を選択的に透過するカットフィルタを製造できる。
Although details will be described later, the glass substrate 101 of the present embodiment is configured so that the average transmittance in the wavelength range of 800 to 950 nm is 3% or less. As described above, when the glass substrate 101 having a small average transmittance in the wavelength range of 800 to 950 nm is used, visible light is used without using the reflective film (dielectric multilayer film) used in the conventional near-infrared cut filter. A cut filter that selectively transmits light in a region can be manufactured.
また、ガラス基材101は、720~750nmの波長域における平均透過率が10%以下であることが好ましく、8%以下であるとより好ましく、7%以下であるとさらに好ましい。
Further, the glass substrate 101 preferably has an average transmittance of 10% or less, more preferably 8% or less, and further preferably 7% or less in the wavelength range of 720 to 750 nm.
また、ガラス基材101は、透過率曲線の短波長側の半値波長(UV_λ50)が335~400nmの範囲にあることが好ましく、335~380nmの範囲にあることがより好ましく、340~350nmの範囲にあることがさらに好ましい。また、ガラス基材101は、透過率曲線の長波長側の半値波長(NIR_λ50)が590~630nmの範囲にあることが好ましく、610~624nmの範囲にあることがより好ましい。なお、本明細書において、半値波長とは、透過率が50%となるときの波長をいい、短波長側の半値波長(UV_λ50)とは、透過率曲線の立ち上がりで透過率が50%となるときの波長をいい、長波長側の半値波長(NIR_λ50)とは、透過率曲線の立ち下がりで透過率が50%となるときの波長をいう。
Further, the glass substrate 101 preferably has a half-wavelength (UV_λ50) on the short wavelength side of the transmittance curve in the range of 335 to 400 nm, more preferably in the range of 335 to 380 nm, and more preferably in the range of 340 to 350 nm. It is more preferable to be in. Further, the glass substrate 101 preferably has a half-wavelength (NIR_λ50) on the long wavelength side of the transmittance curve in the range of 590 to 630 nm, and more preferably in the range of 610 to 624 nm. In the present specification, the half-value wavelength means the wavelength when the transmittance becomes 50%, and the half-value wavelength (UV_λ50) on the short wavelength side means the transmittance becomes 50% at the rising edge of the transmittance curve. The half-value wavelength (NIR_λ50) on the long wavelength side refers to the wavelength at which the transmittance becomes 50% at the falling edge of the transmittance curve.
また、ガラス基材101は、650~720nmの波長域における平均透過率が18%以下であることが好ましく、17%以下であるとより好ましく、16%以下であるとさらに好ましい。
Further, the glass substrate 101 preferably has an average transmittance of 18% or less, more preferably 17% or less, and further preferably 16% or less in the wavelength range of 650 to 720 nm.
[樹脂層]
本実施形態の樹脂層102は、特定の波長の光を吸収する色素と樹脂とによって構成された層である。樹脂層102は、例えば、近赤外吸収色素及び紫外線吸収色素の少なくともいずれか一方と、透明樹脂とを含むものであり、透明樹脂中に色素が均一に溶解または分散してなるものが好ましい。 [Resin layer]
Theresin layer 102 of the present embodiment is a layer composed of a dye and a resin that absorb light of a specific wavelength. The resin layer 102 contains, for example, at least one of a near-infrared absorbing dye and an ultraviolet absorbing dye and a transparent resin, and it is preferable that the dye is uniformly dissolved or dispersed in the transparent resin.
本実施形態の樹脂層102は、特定の波長の光を吸収する色素と樹脂とによって構成された層である。樹脂層102は、例えば、近赤外吸収色素及び紫外線吸収色素の少なくともいずれか一方と、透明樹脂とを含むものであり、透明樹脂中に色素が均一に溶解または分散してなるものが好ましい。 [Resin layer]
The
樹脂層102を構成する近赤外線吸収色素としては、従来公知のものを採用することができ、例えば、シアニン系色素、ポリメチン系色素、スクアリリウム系色素、ポルフィリン系色素、金属ジチオール錯体系色素、フタロシアニン系色素、ジイモニウム系色素および無機酸化物粒子から選ばれる一種以上などを使用することができ、スクアリリウム系色素、シアニン系色素、フタロシアニン系色素から選ばれる一種以上がより好ましい。
As the near-infrared absorbing dye constituting the resin layer 102, conventionally known dyes can be adopted, for example, cyanine-based dyes, polymethine-based dyes, squarylium-based dyes, porphyrin-based dyes, metal dithiol complex-based dyes, and phthalocyanine-based dyes. One or more selected from dyes, diimonium dyes and inorganic oxide particles can be used, and one or more selected from squarylium dyes, cyanine dyes and phthalocyanine dyes are more preferable.
樹脂層102を構成する紫外線吸収色素としては、従来公知のものを採用することができ、例えば、ベンゾトリアゾール系化合物、ベンゾフェノン系化合物、トリアジン系化合物、ベンゾオキサジノン系化合物、シアノアクリレート系、オキザニリド系化合物、サリシレート系化合物、ホルムアミジン系化合物、インドール系化合物、アゾメチン系化合物から選ばれる一種以上などを使用することができ、ベンゾトリアゾール系化合物、ベンゾフェノン系化合物、トリアジン系化合物から選ばれる一種以上がより好ましい。
As the ultraviolet absorbing dye constituting the resin layer 102, conventionally known ones can be adopted, for example, a benzotriazole-based compound, a benzophenone-based compound, a triazine-based compound, a benzoxazinone-based compound, a cyanoacrylate-based compound, and an oxanilide-based compound. One or more selected from compounds, salicylate-based compounds, formamidine-based compounds, indol-based compounds, and azomethine-based compounds can be used, and one or more selected from benzotriazole-based compounds, benzophenone-based compounds, and triazine-based compounds are more. preferable.
樹脂層102を構成する樹脂としては、従来公知の透明樹脂を採用することができ、アクリル樹脂、エポキシ樹脂、エン・チオール樹脂、ポリカーボネート樹脂、ポリエーテル樹脂、ポリアリレート樹脂、ポリサルホン樹脂、ポリエーテルサルホン樹脂、ポリパラフェニレン樹脂、ポリアリーレンエーテルフォスフィンオキシド樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリオレフィン樹脂、環状オレフィン樹脂およびポリエステル樹脂から選ばれる一種以上が挙げられる。透明樹脂としては、透明性、近赤外線吸収色素の透明樹脂に対する溶解性および耐熱性の観点から、ガラス転移点(Tg)の高いものが好ましく、このため、熱硬化性樹脂が好適である。具体的には、ポリエステル樹脂、ポリカーボネート樹脂、ポリエーテルサルホン樹脂、ポリアリレート樹脂、ポリイミド樹脂、およびエポキシ樹脂から選ばれる一種以上を使用することができる。ポリエステル樹脂としては、ポリエチレンテレフタレート樹脂、ポリエチレンナフタレート樹脂から選ばれる一種以上が好ましい。また、熱可塑性の樹脂であっても、官能基等の調整により耐熱性を高めることにより、透明樹脂として好適に使用され得る。例えば、官能基等の調整により耐熱性を高め得るアクリル系樹脂、ポリアミド系樹脂、ポリオレフィン系樹脂等も、透明樹脂として使用できる。
As the resin constituting the resin layer 102, a conventionally known transparent resin can be adopted, and acrylic resin, epoxy resin, en-thiol resin, polycarbonate resin, polyether resin, polyarylate resin, polysulfone resin, and polyether monkey can be used. Examples thereof include one or more selected from phon resin, polyparaphenylene resin, polyarylene ether phosphine oxide resin, polyimide resin, polyamideimide resin, polyolefin resin, cyclic olefin resin and polyester resin. As the transparent resin, a resin having a high glass transition point (Tg) is preferable from the viewpoint of transparency, solubility of the near-infrared absorbing dye in the transparent resin, and heat resistance, and therefore a thermosetting resin is preferable. Specifically, one or more selected from polyester resin, polycarbonate resin, polyether sulfone resin, polyarylate resin, polyimide resin, and epoxy resin can be used. As the polyester resin, one or more selected from polyethylene terephthalate resin and polyethylene naphthalate resin are preferable. Further, even a thermoplastic resin can be suitably used as a transparent resin by increasing the heat resistance by adjusting functional groups and the like. For example, acrylic resins, polyamide resins, polyolefin resins and the like, which can increase heat resistance by adjusting functional groups and the like, can also be used as the transparent resin.
樹脂層102は、上記近赤外線吸収色素および透明樹脂以外に、さらに、本発明の効果を損なわない範囲で、色調補正色素、レベリング剤、帯電防止剤、熱安定剤、光安定剤、酸化防止剤、分散剤、難燃剤、滑剤、可塑剤等の任意成分を含有してもよい。
In addition to the near-infrared absorbing dye and the transparent resin, the resin layer 102 further includes a color correction dye, a leveling agent, an antistatic agent, a heat stabilizer, a light stabilizer, and an antioxidant to the extent that the effects of the present invention are not impaired. , Dispersant, flame retardant, lubricant, plasticizer and other optional components may be contained.
樹脂層102は、例えば、色素と、透明樹脂と、任意配合成分とを、溶媒に溶解または分散させて樹脂膜形成液を調製し、これを塗工し乾燥させ、さらに必要に応じて硬化させることにより形成することができる。なお、樹脂膜形成液は、カチオン系、アニオン系、ノニオン系等の公知の界面活性剤を含むものであってもよい。
In the resin layer 102, for example, a dye, a transparent resin, and an optional compounding component are dissolved or dispersed in a solvent to prepare a resin film-forming liquid, which is coated and dried, and further cured if necessary. It can be formed by. The resin film-forming liquid may contain a known surfactant such as a cationic type, an anion type, or a nonionic type.
また、樹脂膜形成液の塗工には、浸漬コーティング法、キャストコーティング法、スプレーコーティング法、スピンコーティング法等から選ばれる一種以上のコーティング法を採用することができる。
Further, for the coating of the resin film forming liquid, one or more coating methods selected from a dip coating method, a cast coating method, a spray coating method, a spin coating method and the like can be adopted.
このように、樹脂層102は、ガラス基材101上に形成され、特定の波長の光を吸収するように構成された層であり、ガラス基材101の分光透過率特性に応じて吸収波長を設定する(つまり、最適な色素を選択する)ことにより、所望の可視光領域の光を抽出できる。
具体的には、本実施形態の樹脂層102においては、340~400nmに極大吸収波長を有する紫外線吸収色素と、650~760nmに極大吸収波長を有する近赤外吸収色素(第1の近赤外吸収色素)と、を含むものを採用することができる。 また、樹脂層102は、800~1200nmに極大吸収波長を有する近赤外吸収色素(第2の近赤外吸収色素)をさらに含むことができる。
なお、本実施形態の樹脂層102は、ガラス基材101の一方の主面上(図1(b)において上側の面)に形成されているが、このような構成に限定されるものではない。樹脂層102は、ガラス基材101の他方の主面上(図1(b)において下側の面)に形成されてもよく、また、ガラス基材101の両面に形成されてもよい。また、樹脂層102は必ずしも一層である必要はなく、複数層で構成することもできる。 As described above, theresin layer 102 is a layer formed on the glass base material 101 and configured to absorb light having a specific wavelength, and the absorption wavelength is set according to the spectral transmittance characteristics of the glass base material 101. By setting (that is, selecting the optimum dye), light in the desired visible light region can be extracted.
Specifically, in theresin layer 102 of the present embodiment, an ultraviolet absorbing dye having a maximum absorption wavelength of 340 to 400 nm and a near infrared absorbing dye having a maximum absorption wavelength of 650 to 760 nm (first near infrared). Absorbent dyes) and those containing. Further, the resin layer 102 can further contain a near-infrared absorbing dye (second near-infrared absorbing dye) having a maximum absorption wavelength of 800 to 1200 nm.
Theresin layer 102 of the present embodiment is formed on one main surface of the glass base material 101 (the upper surface in FIG. 1B), but is not limited to such a configuration. .. The resin layer 102 may be formed on the other main surface of the glass base material 101 (the lower surface in FIG. 1B), or may be formed on both sides of the glass base material 101. Further, the resin layer 102 does not necessarily have to be one layer, and may be composed of a plurality of layers.
具体的には、本実施形態の樹脂層102においては、340~400nmに極大吸収波長を有する紫外線吸収色素と、650~760nmに極大吸収波長を有する近赤外吸収色素(第1の近赤外吸収色素)と、を含むものを採用することができる。 また、樹脂層102は、800~1200nmに極大吸収波長を有する近赤外吸収色素(第2の近赤外吸収色素)をさらに含むことができる。
なお、本実施形態の樹脂層102は、ガラス基材101の一方の主面上(図1(b)において上側の面)に形成されているが、このような構成に限定されるものではない。樹脂層102は、ガラス基材101の他方の主面上(図1(b)において下側の面)に形成されてもよく、また、ガラス基材101の両面に形成されてもよい。また、樹脂層102は必ずしも一層である必要はなく、複数層で構成することもできる。 As described above, the
Specifically, in the
The
そして、このような樹脂層102が形成された近赤外線カットフィルタ100の分光透過率曲線は、透過率曲線の短波長側の半値波長(UV_λ50)が385~430nm、長波長側の半値波長(NIR_λ50)が590~630nm、800~950nmの波長域における平均透過率が3.0%以下となり、人間の視感度に近い特性のものとなる(詳細は後述)。
The spectral transmittance curve of the near-infrared cut filter 100 on which the resin layer 102 is formed has a half-value wavelength (UV_λ50) on the short wavelength side of the transmittance curve of 385 to 430 nm and a half-value wavelength (NIR_λ50) on the long wavelength side. ) Is 3.0% or less in the wavelength range of 590 to 630 nm and 800 to 950 nm, and the characteristics are close to those of human visual sensitivity (details will be described later).
[撮像装置]
次に、本発明に係る撮像装置について説明する。図2に示すように、本発明に係る撮像装置1は、固体撮像素子200と、固体撮像素子200を収納するパッケージ300と、パッケージ300の前面に取り付けられる近赤外線カットフィルタ100とを備えている。 [Image pickup device]
Next, the image pickup apparatus according to the present invention will be described. As shown in FIG. 2, theimage pickup device 1 according to the present invention includes a solid-state image pickup element 200, a package 300 for accommodating the solid-state image pickup element 200, and a near-infrared cut filter 100 attached to the front surface of the package 300. ..
次に、本発明に係る撮像装置について説明する。図2に示すように、本発明に係る撮像装置1は、固体撮像素子200と、固体撮像素子200を収納するパッケージ300と、パッケージ300の前面に取り付けられる近赤外線カットフィルタ100とを備えている。 [Image pickup device]
Next, the image pickup apparatus according to the present invention will be described. As shown in FIG. 2, the
固体撮像素子200としては、CCD(Charge-Coupled Device)やCMOS(Complementary Metal Oxide Semiconductor)等のイメージセンサを挙げることができる。
Examples of the solid-state image sensor 200 include image sensors such as CCD (Charge-Coupled Device) and CMOS (Complementary Metal Oxide Semiconductor).
固体撮像素子200は、枡形のパッケージ300の底面の略中央部に配置され、近赤外線カットフィルタ100の他方の主面側(図1(b)において下側)が固体撮像素子200と対向するようにパッケージ300の開口部に取り付けられる。なお、図2においては、近赤外線カットフィルタ100の樹脂層102側が固体撮像素子200に向かう光が入射する入射面となっており、近赤外線カットフィルタ100の他方の主面側が出射面となっているが、必ずしもこのような構成に限定されるものではなく、近赤外線カットフィルタ100は上下逆向きに(つまり、樹脂層102が固体撮像素子200と対向するように)取り付けられてもよい。
The solid-state image sensor 200 is arranged substantially in the center of the bottom surface of the box-shaped package 300 so that the other main surface side (lower side in FIG. 1B) of the near-infrared cut filter 100 faces the solid-state image sensor 200. Is attached to the opening of the package 300. In FIG. 2, the resin layer 102 side of the near-infrared cut filter 100 is an incident surface on which light directed toward the solid-state image sensor 200 is incident, and the other main surface side of the near-infrared cut filter 100 is an exit surface. However, the configuration is not necessarily limited to this, and the near-infrared cut filter 100 may be mounted upside down (that is, the resin layer 102 faces the solid-state image sensor 200).
また、図2の撮像装置1においては、近赤外線カットフィルタ100がパッケージ300の開口部に取り付けられ、いわゆるカバーガラスを兼ねる構成となっているが、必ずしもこのような構成に限定されるものではない。例えば、撮像装置1は、固体撮像素子200に光を導光するレンズ群(不図示)を備えてもよい。このとき、例えば、近赤外線カットフィルタ100をレンズ群よりも撮像装置1側に配置し、近赤外線カットフィルタ100よりもさらに撮像装置1側に、カバーガラスを設けてもよい。
Further, in the image pickup apparatus 1 of FIG. 2, the near-infrared cut filter 100 is attached to the opening of the package 300 and has a configuration that also serves as a so-called cover glass, but the configuration is not necessarily limited to such a configuration. .. For example, the image pickup device 1 may include a lens group (not shown) that guides light to the solid-state image pickup device 200. At this time, for example, the near-infrared cut filter 100 may be arranged closer to the image pickup device 1 than the lens group, and a cover glass may be provided further closer to the image pickup device 1 than the near-infrared cut filter 100.
以下、本実施形態の近赤外線カットフィルタ100について、実施例及び比較例を挙げて更に説明するが、本発明は以下の実施例に限定されるものではない。
Hereinafter, the near-infrared cut filter 100 of the present embodiment will be further described with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples.
(実施例1)
[1.ガラス基材101の選定]
実施例1のガラス基材101として、HOYA(株)製のフツリン酸塩系ガラス(CXD700、厚さ0.21mm)を選定した。図3は、実施例1のガラス基材101の分光透過率曲線を示す図であり、縦軸は透過率(%)であり、横軸は波長(nm)である。
図3に示すように、本実施例のガラス基材101は、800~950nmの波長域における平均透過率が1.4%(つまり、3%以下)になっている。
また、本実施例のガラス基材101は、720~750nmの波長域における平均透過率が4.5%(つまり、10%以下)になっている。
また、本実施例のガラス基材101は、透過率曲線の短波長側の半値波長(UV_λ50)が約343nm(つまり、335~400nmの範囲内)であり、長波長側の半値波長(NIR_λ50)が約619nm(つまり、590~630nmの範囲内)になっている。
また、本実施例のガラス基材101は、650~720nmの波長域における平均透過率が15.5%(つまり、18%以下)になっている。 (Example 1)
[1. Selection of glass substrate 101]
As theglass substrate 101 of Example 1, phthalate-based glass (CXD700, thickness 0.21 mm) manufactured by HOYA Corporation was selected. FIG. 3 is a diagram showing a spectral transmittance curve of the glass substrate 101 of Example 1, in which the vertical axis represents the transmittance (%) and the horizontal axis represents the wavelength (nm).
As shown in FIG. 3, theglass substrate 101 of this embodiment has an average transmittance of 1.4% (that is, 3% or less) in the wavelength range of 800 to 950 nm.
Further, theglass substrate 101 of this embodiment has an average transmittance of 4.5% (that is, 10% or less) in the wavelength range of 720 to 750 nm.
Further, in theglass substrate 101 of this embodiment, the half-value wavelength (UV_λ50) on the short wavelength side of the transmittance curve is about 343 nm (that is, within the range of 335 to 400 nm), and the half-value wavelength (NIR_λ50) on the long wavelength side. Is about 619 nm (that is, in the range of 590 to 630 nm).
Further, theglass substrate 101 of this embodiment has an average transmittance of 15.5% (that is, 18% or less) in the wavelength range of 650 to 720 nm.
[1.ガラス基材101の選定]
実施例1のガラス基材101として、HOYA(株)製のフツリン酸塩系ガラス(CXD700、厚さ0.21mm)を選定した。図3は、実施例1のガラス基材101の分光透過率曲線を示す図であり、縦軸は透過率(%)であり、横軸は波長(nm)である。
図3に示すように、本実施例のガラス基材101は、800~950nmの波長域における平均透過率が1.4%(つまり、3%以下)になっている。
また、本実施例のガラス基材101は、720~750nmの波長域における平均透過率が4.5%(つまり、10%以下)になっている。
また、本実施例のガラス基材101は、透過率曲線の短波長側の半値波長(UV_λ50)が約343nm(つまり、335~400nmの範囲内)であり、長波長側の半値波長(NIR_λ50)が約619nm(つまり、590~630nmの範囲内)になっている。
また、本実施例のガラス基材101は、650~720nmの波長域における平均透過率が15.5%(つまり、18%以下)になっている。 (Example 1)
[1. Selection of glass substrate 101]
As the
As shown in FIG. 3, the
Further, the
Further, in the
Further, the
[2.樹脂層102の形成]
容器内で、アクリル樹脂(透明樹脂)、ベンゾトリアゾール化合物とトリアジン系化合物(紫外線吸収色素)、及びスクアリリウム化合物とシアニン化合物(第1の近赤外吸収色素)を所定の混合比で混合して樹脂膜形成液を調整し、得られた樹脂膜形成液を、スピンコーターを用いて、ガラス基材101上に、塗布した。そして、樹脂膜形成液が塗布されたガラス基材101を160℃に加熱したホットプレートに乗せ、20分間加熱して硬化させることより、本実施形態の近赤外線カットフィルタ100を作成した。 [2. Formation of resin layer 102]
Acrylic resin (transparent resin), benzotriazole compound and triazine compound (ultraviolet absorption dye), and squarylium compound and cyanine compound (first near-infrared absorption dye) are mixed in a container at a predetermined mixing ratio to form a resin. The film-forming solution was adjusted, and the obtained resin film-forming solution was applied onto theglass substrate 101 using a spin coater. Then, the glass substrate 101 coated with the resin film forming liquid was placed on a hot plate heated to 160 ° C. and heated for 20 minutes to be cured, thereby producing the near-infrared cut filter 100 of the present embodiment.
容器内で、アクリル樹脂(透明樹脂)、ベンゾトリアゾール化合物とトリアジン系化合物(紫外線吸収色素)、及びスクアリリウム化合物とシアニン化合物(第1の近赤外吸収色素)を所定の混合比で混合して樹脂膜形成液を調整し、得られた樹脂膜形成液を、スピンコーターを用いて、ガラス基材101上に、塗布した。そして、樹脂膜形成液が塗布されたガラス基材101を160℃に加熱したホットプレートに乗せ、20分間加熱して硬化させることより、本実施形態の近赤外線カットフィルタ100を作成した。 [2. Formation of resin layer 102]
Acrylic resin (transparent resin), benzotriazole compound and triazine compound (ultraviolet absorption dye), and squarylium compound and cyanine compound (first near-infrared absorption dye) are mixed in a container at a predetermined mixing ratio to form a resin. The film-forming solution was adjusted, and the obtained resin film-forming solution was applied onto the
図4は、実施例1の近赤外線カットフィルタ100の分光透過率曲線を示す図であり、入射角0°のときの分光透過率曲線(実線)と、入射角30°のときの分光透過率曲線(破線)を示している。図4に示すように、本実施例の近赤外線カットフィルタ100の分光透過率曲線は、透過率曲線の短波長側の半値波長(UV_λ50)が約410nm、長波長側の半値波長(NIR_λ50)が約610nm、800~950nmの波長域における平均透過率が1.3%となり、人間の視感度に近い特性のものが得られた。
また、本実施例の近赤外線カットフィルタ100は、従来の近赤外線カットフィルタのような反射膜を有していないため、入射角30°の光が入射しても、カットフィルタとしての性能を著しく損なう位相ずれ、波長シフトおよびリップルの発生が抑制される。 FIG. 4 is a diagram showing a spectral transmittance curve of the near-infrared cut filter 100 of Example 1, a spectral transmittance curve (solid line) when the incident angle is 0 °, and a spectral transmittance when the incident angle is 30 °. A curve (broken line) is shown. As shown in FIG. 4, the spectral transmittance curve of the near-infrared cut filter 100 of this embodiment has a half-value wavelength (UV_λ50) on the short wavelength side of the transmittance curve of about 410 nm and a half-value wavelength (NIR_λ50) on the long wavelength side. The average transmittance in the wavelength range of about 610 nm and 800 to 950 nm was 1.3%, and a characteristic close to human visual sensitivity was obtained.
Further, since the near-infrared cut filter 100 of this embodiment does not have a reflective film like the conventional near-infrared cut filter, the performance as a cut filter is remarkably improved even when light having an incident angle of 30 ° is incident. The generation of impaired phase shift, wavelength shift and ripple is suppressed.
また、本実施例の近赤外線カットフィルタ100は、従来の近赤外線カットフィルタのような反射膜を有していないため、入射角30°の光が入射しても、カットフィルタとしての性能を著しく損なう位相ずれ、波長シフトおよびリップルの発生が抑制される。 FIG. 4 is a diagram showing a spectral transmittance curve of the near-
Further, since the near-
(実施例2)
実施例2の近赤外線カットフィルタ100は、ガラス基材101として、厚さ0.8mmのHOYA(株)製のフツリン酸塩系ガラス(CXD700)を選定した点、樹脂層102を、アクリル樹脂(透明樹脂)と、ベンゾトリアゾール化合物とトリアジン系化合物(紫外線吸収色素)によって形成した点(つまり、近赤外吸収色素を含まない点)、で実施例1と異なっている。 (Example 2)
In the near-infrared cut filter 100 of Example 2, a fluorophosphate-based glass (CXD700) manufactured by HOYA Co., Ltd. having a thickness of 0.8 mm was selected as the glass base material 101, and the resin layer 102 was formed of an acrylic resin (Acrylic resin). It is different from Example 1 in that it is formed of a transparent resin), a benzotriazole compound and a triazine compound (ultraviolet absorbing dye) (that is, it does not contain a near infrared absorbing dye).
実施例2の近赤外線カットフィルタ100は、ガラス基材101として、厚さ0.8mmのHOYA(株)製のフツリン酸塩系ガラス(CXD700)を選定した点、樹脂層102を、アクリル樹脂(透明樹脂)と、ベンゾトリアゾール化合物とトリアジン系化合物(紫外線吸収色素)によって形成した点(つまり、近赤外吸収色素を含まない点)、で実施例1と異なっている。 (Example 2)
In the near-
図5は、実施例2のガラス基材101の分光透過率曲線(点線)と、実施例2の近赤外線カットフィルタ100の分光透過率曲線(実線、破線)を示す図である。なお、近赤外線カットフィルタ100の分光透過率曲線については、入射角0°のときの分光透過率曲線(実線)と、入射角30°のときの分光透過率曲線(破線)を示している。
FIG. 5 is a diagram showing a spectral transmittance curve (dotted line) of the glass substrate 101 of Example 2 and a spectral transmittance curve (solid line, broken line) of the near-infrared cut filter 100 of Example 2. As for the spectral transmittance curve of the near-infrared cut filter 100, a spectral transmittance curve (solid line) when the incident angle is 0 ° and a spectral transmittance curve (broken line) when the incident angle is 30 ° are shown.
図5に示すように、本実施例のガラス基材101は、800~950nmの波長域における平均透過率が0.1%以下(つまり、3%以下)になっている。
また、本実施例のガラス基材101は、720~750nmの波長域における平均透過率が0.2%(つまり、10%以下)になっている。
また、本実施例のガラス基材101は、透過率曲線の短波長側の半値波長(UV_λ50)が約353nm(つまり、335~400nmの範囲内)であり、長波長側の半値波長(NIR_λ50)が約591nm(つまり、590~630nmの範囲内)になっている。
また、本実施例のガラス基材101は、650~720nmの波長域における平均透過率が3.1%(つまり、18%以下)になっている。 As shown in FIG. 5, theglass substrate 101 of this embodiment has an average transmittance of 0.1% or less (that is, 3% or less) in the wavelength range of 800 to 950 nm.
Further, theglass substrate 101 of this example has an average transmittance of 0.2% (that is, 10% or less) in the wavelength range of 720 to 750 nm.
Further, in theglass substrate 101 of this embodiment, the half-value wavelength (UV_λ50) on the short wavelength side of the transmittance curve is about 353 nm (that is, within the range of 335 to 400 nm), and the half-value wavelength (NIR_λ50) on the long wavelength side. Is about 591 nm (that is, within the range of 590 to 630 nm).
Further, theglass substrate 101 of this embodiment has an average transmittance of 3.1% (that is, 18% or less) in the wavelength range of 650 to 720 nm.
また、本実施例のガラス基材101は、720~750nmの波長域における平均透過率が0.2%(つまり、10%以下)になっている。
また、本実施例のガラス基材101は、透過率曲線の短波長側の半値波長(UV_λ50)が約353nm(つまり、335~400nmの範囲内)であり、長波長側の半値波長(NIR_λ50)が約591nm(つまり、590~630nmの範囲内)になっている。
また、本実施例のガラス基材101は、650~720nmの波長域における平均透過率が3.1%(つまり、18%以下)になっている。 As shown in FIG. 5, the
Further, the
Further, in the
Further, the
そして、本実施例の近赤外線カットフィルタ100は、透過率曲線の短波長側の半値波長(UV_λ50)が約405nm、長波長側の半値波長(NIR_λ50)が約591nm、800~950nmの波長域における平均透過率が0.1%以下となり、人間の視感度に近い特性のものが得られた。
なお、本実施例の近赤外線カットフィルタ100も、従来の近赤外線カットフィルタのような反射膜を有していないため、入射角30°の光が入射しても、カットフィルタとしての性能を著しく損なう位相ずれ、波長シフトおよびリップルの発生が抑制されている。 The near-infrared cut filter 100 of this embodiment has a half-value wavelength (UV_λ50) on the short wavelength side of the transmittance curve of about 405 nm and a half-value wavelength (NIR_λ50) on the long wavelength side of about 591 nm in the wavelength range of 800 to 950 nm. The average transmittance was 0.1% or less, and a characteristic close to human visual sensitivity was obtained.
Since the near-infrared cut filter 100 of this embodiment does not have a reflective film like the conventional near-infrared cut filter, the performance as a cut filter is remarkably improved even when light having an incident angle of 30 ° is incident. The generation of impaired phase shift, wavelength shift and ripple is suppressed.
なお、本実施例の近赤外線カットフィルタ100も、従来の近赤外線カットフィルタのような反射膜を有していないため、入射角30°の光が入射しても、カットフィルタとしての性能を著しく損なう位相ずれ、波長シフトおよびリップルの発生が抑制されている。 The near-
Since the near-
(実施例3)
実施例3の近赤外線カットフィルタ100は、ガラス基材101として、厚さ1.0mmのHOYA(株)製のフツリン酸塩系ガラス(CXD700)を選定した点で実施例1と異なっている。 (Example 3)
The near-infrared cut filter 100 of Example 3 is different from Example 1 in that a futurate-based glass (CXD700) manufactured by HOYA Corporation having a thickness of 1.0 mm is selected as the glass base material 101.
実施例3の近赤外線カットフィルタ100は、ガラス基材101として、厚さ1.0mmのHOYA(株)製のフツリン酸塩系ガラス(CXD700)を選定した点で実施例1と異なっている。 (Example 3)
The near-
図6は、実施例3のガラス基材101の分光透過率曲線(点線)と、実施例3の近赤外線カットフィルタ100の分光透過率曲線(実線、破線)を示す図である。なお、近赤外線カットフィルタ100の分光透過率曲線については、入射角0°のときの分光透過率曲線(実線)と、入射角30°のときの分光透過率曲線(破線)を示している。
FIG. 6 is a diagram showing a spectral transmittance curve (dotted line) of the glass substrate 101 of Example 3 and a spectral transmittance curve (solid line, broken line) of the near-infrared cut filter 100 of Example 3. As for the spectral transmittance curve of the near-infrared cut filter 100, a spectral transmittance curve (solid line) when the incident angle is 0 ° and a spectral transmittance curve (broken line) when the incident angle is 30 ° are shown.
図6に示すように、本実施例のガラス基材101は、800~950nmの波長域における平均透過率が0.2%(つまり、3%以下)になっている。
また、本実施例のガラス基材101は、720~750nmの波長域における平均透過率が1.0%(つまり、10%以下)になっている。
また、本実施例のガラス基材101は、透過率曲線の短波長側の半値波長(UV_λ50)が約347nm(つまり、335~400nmの範囲内)であり、長波長側の半値波長(NIR_λ50)が約602nm(つまり、590~630nmの範囲内)になっている。
また、本実施例のガラス基材101は、650~720nmの波長域における平均透過率が6.8%(つまり、18%以下)になっている。 As shown in FIG. 6, theglass substrate 101 of this embodiment has an average transmittance of 0.2% (that is, 3% or less) in the wavelength range of 800 to 950 nm.
Further, theglass substrate 101 of this embodiment has an average transmittance of 1.0% (that is, 10% or less) in the wavelength range of 720 to 750 nm.
Further, in theglass substrate 101 of the present embodiment, the half-value wavelength (UV_λ50) on the short wavelength side of the transmittance curve is about 347 nm (that is, within the range of 335 to 400 nm), and the half-value wavelength (NIR_λ50) on the long wavelength side. Is about 602 nm (that is, in the range of 590 to 630 nm).
Further, theglass substrate 101 of this embodiment has an average transmittance of 6.8% (that is, 18% or less) in the wavelength range of 650 to 720 nm.
また、本実施例のガラス基材101は、720~750nmの波長域における平均透過率が1.0%(つまり、10%以下)になっている。
また、本実施例のガラス基材101は、透過率曲線の短波長側の半値波長(UV_λ50)が約347nm(つまり、335~400nmの範囲内)であり、長波長側の半値波長(NIR_λ50)が約602nm(つまり、590~630nmの範囲内)になっている。
また、本実施例のガラス基材101は、650~720nmの波長域における平均透過率が6.8%(つまり、18%以下)になっている。 As shown in FIG. 6, the
Further, the
Further, in the
Further, the
そして、本実施例の近赤外線カットフィルタ100は、透過率曲線の短波長側の半値波長(UV_λ50)が約404nm、長波長側の半値波長(NIR_λ50)が約596nm、800~950nmの波長域における平均透過率が0.2%となり、人間の視感度に近い特性のものが得られた。
なお、本実施例の近赤外線カットフィルタ100も、従来の近赤外線カットフィルタのような反射膜を有していないため、入射角30°の光が入射しても、カットフィルタとしての性能を著しく損なう位相ずれ、波長シフトおよびリップルの発生が抑制されている。 The near-infrared cut filter 100 of this embodiment has a half-value wavelength (UV_λ50) on the short wavelength side of the transmittance curve of about 404 nm and a half-value wavelength (NIR_λ50) on the long wavelength side of about 596 nm, in the wavelength range of 800 to 950 nm. The average transmittance was 0.2%, and a characteristic close to human visual sensitivity was obtained.
Since the near-infrared cut filter 100 of this embodiment does not have a reflective film like the conventional near-infrared cut filter, the performance as a cut filter is remarkably improved even when light having an incident angle of 30 ° is incident. The generation of impaired phase shift, wavelength shift and ripple is suppressed.
なお、本実施例の近赤外線カットフィルタ100も、従来の近赤外線カットフィルタのような反射膜を有していないため、入射角30°の光が入射しても、カットフィルタとしての性能を著しく損なう位相ずれ、波長シフトおよびリップルの発生が抑制されている。 The near-
Since the near-
(実施例4)
実施例4の近赤外線カットフィルタ100は、ガラス基材101として、厚さ0.23mmのHOYA(株)製のフツリン酸塩系ガラス(CXD700)を選定した点、樹脂層102のシアニン化合物(近赤外線吸収色素)の含有量を変更した点、で実施例1と異なっている。 (Example 4)
For the near-infrared cut filter 100 of Example 4, a cyanine compound (near) of the resin layer 102 was selected from HOYA Corporation's fluoride-based glass (CXD700) having a thickness of 0.23 mm as the glass base material 101. It differs from Example 1 in that the content of the infrared absorbing dye) is changed.
実施例4の近赤外線カットフィルタ100は、ガラス基材101として、厚さ0.23mmのHOYA(株)製のフツリン酸塩系ガラス(CXD700)を選定した点、樹脂層102のシアニン化合物(近赤外線吸収色素)の含有量を変更した点、で実施例1と異なっている。 (Example 4)
For the near-
図7は、実施例4のガラス基材101の分光透過率曲線(点線)と、実施例4の近赤外線カットフィルタ100の分光透過率曲線(実線、破線)を示す図である。なお、近赤外線カットフィルタ100の分光透過率曲線については、入射角0°のときの分光透過率曲線(実線)と、入射角30°のときの分光透過率曲線(破線)を示している。
FIG. 7 is a diagram showing a spectral transmittance curve (dotted line) of the glass substrate 101 of Example 4 and a spectral transmittance curve (solid line, broken line) of the near-infrared cut filter 100 of Example 4. As for the spectral transmittance curve of the near-infrared cut filter 100, a spectral transmittance curve (solid line) when the incident angle is 0 ° and a spectral transmittance curve (broken line) when the incident angle is 30 ° are shown.
図7に示すように、本実施例のガラス基材101は、800~950nmの波長域における平均透過率が1.0%(つまり、3%以下)になっている。
また、本実施例のガラス基材101は、720~750nmの波長域における平均透過率が3.4%(つまり、10%以下)になっている。
また、本実施例のガラス基材101は、透過率曲線の短波長側の半値波長(UV_λ50)が約344nm(つまり、335~400nmの範囲内)であり、長波長側の半値波長(NIR_λ50)が約615nm(つまり、590~630nmの範囲内)になっている。
また、本実施例のガラス基材101は、650~720nmの波長域における平均透過率が13.2%(つまり、18%以下)になっている。 As shown in FIG. 7, theglass substrate 101 of this embodiment has an average transmittance of 1.0% (that is, 3% or less) in the wavelength range of 800 to 950 nm.
Further, theglass substrate 101 of this embodiment has an average transmittance of 3.4% (that is, 10% or less) in the wavelength range of 720 to 750 nm.
Further, in theglass substrate 101 of this embodiment, the half-value wavelength (UV_λ50) on the short wavelength side of the transmittance curve is about 344 nm (that is, within the range of 335 to 400 nm), and the half-value wavelength (NIR_λ50) on the long wavelength side. Is about 615 nm (that is, in the range of 590 to 630 nm).
Further, theglass substrate 101 of this embodiment has an average transmittance of 13.2% (that is, 18% or less) in the wavelength range of 650 to 720 nm.
また、本実施例のガラス基材101は、720~750nmの波長域における平均透過率が3.4%(つまり、10%以下)になっている。
また、本実施例のガラス基材101は、透過率曲線の短波長側の半値波長(UV_λ50)が約344nm(つまり、335~400nmの範囲内)であり、長波長側の半値波長(NIR_λ50)が約615nm(つまり、590~630nmの範囲内)になっている。
また、本実施例のガラス基材101は、650~720nmの波長域における平均透過率が13.2%(つまり、18%以下)になっている。 As shown in FIG. 7, the
Further, the
Further, in the
Further, the
そして、本実施例の近赤外線カットフィルタ100は、透過率曲線の短波長側の半値波長(UV_λ50)が約404nm、長波長側の半値波長(NIR_λ50)が約603nm、800~950nmの波長域における平均透過率が0.9%となり、人間の視感度に近い特性のものが得られた。
なお、本実施例の近赤外線カットフィルタ100も、従来の近赤外線カットフィルタのような反射膜を有していないため、入射角30°の光が入射しても、カットフィルタとしての性能を著しく損なう位相ずれ、波長シフトおよびリップルの発生が抑制されている。 The near-infrared cut filter 100 of this embodiment has a half-value wavelength (UV_λ50) on the short wavelength side of the transmittance curve of about 404 nm and a half-value wavelength (NIR_λ50) on the long wavelength side of about 603 nm in the wavelength range of 800 to 950 nm. The average transmittance was 0.9%, and the characteristics close to those of human visual sensitivity were obtained.
Since the near-infrared cut filter 100 of this embodiment does not have a reflective film like the conventional near-infrared cut filter, the performance as a cut filter is remarkably improved even when light having an incident angle of 30 ° is incident. The generation of impaired phase shift, wavelength shift and ripple is suppressed.
なお、本実施例の近赤外線カットフィルタ100も、従来の近赤外線カットフィルタのような反射膜を有していないため、入射角30°の光が入射しても、カットフィルタとしての性能を著しく損なう位相ずれ、波長シフトおよびリップルの発生が抑制されている。 The near-
Since the near-
(実施例5)
実施例5の近赤外線カットフィルタ100は、ガラス基材101として、厚さ0.30mmのHOYA(株)製のフツリン酸塩系ガラス(CXD700)を選定した点、樹脂層102を、アクリル樹脂(透明樹脂)、ベンゾトリアゾール化合物とトリアジン系化合物(紫外線吸収色素)、スクアリリウム化合物とシアニン化合物(第1の近赤外吸収色素)、ジイオニウム化合物(第2の近赤外吸収色素)によって形成した点(つまり、第2の近赤外吸収色素を追加した点)、で実施例1と異なっている。 (Example 5)
In the near-infrared cut filter 100 of Example 5, a 0.30 mm-thick HOYA Co., Ltd. fluorinated glass (CXD700) was selected as the glass base material 101, and the resin layer 102 was formed of an acrylic resin (Acrylic resin). A point formed by a transparent resin), a benzotriazole compound and a triazine compound (ultraviolet absorbing dye), a squarylium compound and a cyanine compound (a first near-infrared absorbing dye), and a diionium compound (a second near-infrared absorbing dye) ( That is, the point that the second near-infrared absorbing dye is added) is different from Example 1.
実施例5の近赤外線カットフィルタ100は、ガラス基材101として、厚さ0.30mmのHOYA(株)製のフツリン酸塩系ガラス(CXD700)を選定した点、樹脂層102を、アクリル樹脂(透明樹脂)、ベンゾトリアゾール化合物とトリアジン系化合物(紫外線吸収色素)、スクアリリウム化合物とシアニン化合物(第1の近赤外吸収色素)、ジイオニウム化合物(第2の近赤外吸収色素)によって形成した点(つまり、第2の近赤外吸収色素を追加した点)、で実施例1と異なっている。 (Example 5)
In the near-
図8は、実施例5のガラス基材101の分光透過率曲線(点線)と、実施例5の近赤外線カットフィルタ100の分光透過率曲線(実線、破線)を示す図である。なお、近赤外線カットフィルタ100の分光透過率曲線については、入射角0°のときの分光透過率曲線(実線)と、入射角30°のときの分光透過率曲線(破線)を示している。
FIG. 8 is a diagram showing a spectral transmittance curve (dotted line) of the glass substrate 101 of Example 5 and a spectral transmittance curve (solid line, broken line) of the near-infrared cut filter 100 of Example 5. As for the spectral transmittance curve of the near-infrared cut filter 100, a spectral transmittance curve (solid line) when the incident angle is 0 ° and a spectral transmittance curve (broken line) when the incident angle is 30 ° are shown.
図8に示すように、本実施例のガラス基材101は、800~950nmの波長域における平均透過率が0.2%(つまり、3%以下)になっている。
また、本実施例のガラス基材101は、720~750nmの波長域における平均透過率が1.3%(つまり、10%以下)になっている。
また、本実施例のガラス基材101は、透過率曲線の短波長側の半値波長(UV_λ50)が約348nm(つまり、335~400nmの範囲内)であり、長波長側の半値波長(NIR_λ50)が約604nm(つまり、590~630nmの範囲内)になっている。
また、本実施例のガラス基材101は、650~720nmの波長域における平均透過率が7.7%(つまり、18%以下)になっている。 As shown in FIG. 8, theglass substrate 101 of this embodiment has an average transmittance of 0.2% (that is, 3% or less) in the wavelength range of 800 to 950 nm.
Further, theglass substrate 101 of this embodiment has an average transmittance of 1.3% (that is, 10% or less) in the wavelength range of 720 to 750 nm.
Further, in theglass substrate 101 of this embodiment, the half-value wavelength (UV_λ50) on the short wavelength side of the transmittance curve is about 348 nm (that is, within the range of 335 to 400 nm), and the half-value wavelength (NIR_λ50) on the long wavelength side. Is about 604 nm (that is, within the range of 590 to 630 nm).
Further, theglass substrate 101 of this embodiment has an average transmittance of 7.7% (that is, 18% or less) in the wavelength range of 650 to 720 nm.
また、本実施例のガラス基材101は、720~750nmの波長域における平均透過率が1.3%(つまり、10%以下)になっている。
また、本実施例のガラス基材101は、透過率曲線の短波長側の半値波長(UV_λ50)が約348nm(つまり、335~400nmの範囲内)であり、長波長側の半値波長(NIR_λ50)が約604nm(つまり、590~630nmの範囲内)になっている。
また、本実施例のガラス基材101は、650~720nmの波長域における平均透過率が7.7%(つまり、18%以下)になっている。 As shown in FIG. 8, the
Further, the
Further, in the
Further, the
そして、本実施例の近赤外線カットフィルタ100は、透過率曲線の短波長側の半値波長(UV_λ50)が約406nm、長波長側の半値波長(NIR_λ50)が約604nm、800~950nmの波長域における平均透過率が0.1%となり、人間の視感度に近い特性のものが得られた。
なお、本実施例の近赤外線カットフィルタ100も、従来の近赤外線カットフィルタのような反射膜を有していないため、入射角30°の光が入射しても、カットフィルタとしての性能を著しく損なう位相ずれ、波長シフトおよびリップルの発生が抑制されている。(比較例1)
比較例1の近赤外線カットフィルタは、ガラス基材として、HOYA(株)製のフツリン酸塩系ガラス(CXA700、厚さ0.21mm)を選定した点で実施例1と異なり、樹脂層は、実施例1の樹脂層102と同一のものである。 The near-infrared cut filter 100 of the present embodiment has a half-value wavelength (UV_λ50) on the short wavelength side of the transmittance curve of about 406 nm and a half-value wavelength (NIR_λ50) on the long wavelength side of about 604 nm, in a wavelength range of 800 to 950 nm. The average transmittance was 0.1%, and a characteristic close to human visual sensitivity was obtained.
Since the near-infrared cut filter 100 of this embodiment does not have a reflective film like the conventional near-infrared cut filter, the performance as a cut filter is remarkably improved even when light having an incident angle of 30 ° is incident. The generation of impaired phase shift, wavelength shift and ripple is suppressed. (Comparative Example 1)
The near-infrared cut filter of Comparative Example 1 is different from Example 1 in that futurate-based glass (CXA700, thickness 0.21 mm) manufactured by HOYA Corporation is selected as the glass base material, and the resin layer is different from that of Example 1. It is the same as theresin layer 102 of Example 1.
なお、本実施例の近赤外線カットフィルタ100も、従来の近赤外線カットフィルタのような反射膜を有していないため、入射角30°の光が入射しても、カットフィルタとしての性能を著しく損なう位相ずれ、波長シフトおよびリップルの発生が抑制されている。(比較例1)
比較例1の近赤外線カットフィルタは、ガラス基材として、HOYA(株)製のフツリン酸塩系ガラス(CXA700、厚さ0.21mm)を選定した点で実施例1と異なり、樹脂層は、実施例1の樹脂層102と同一のものである。 The near-
Since the near-
The near-infrared cut filter of Comparative Example 1 is different from Example 1 in that futurate-based glass (CXA700, thickness 0.21 mm) manufactured by HOYA Corporation is selected as the glass base material, and the resin layer is different from that of Example 1. It is the same as the
図9は、比較例1のガラス基材の分光透過率曲線(点線)と、比較例1の近赤外線カットフィルタの分光透過率曲線(実線、破線)を示す図である。なお、近赤外線カットフィルタの分光透過率曲線については、入射角0°のときの分光透過率曲線(実線)と、入射角30°のときの分光透過率曲線(破線)を示している。
FIG. 9 is a diagram showing a spectral transmittance curve (dotted line) of the glass substrate of Comparative Example 1 and a spectral transmittance curve (solid line, broken line) of the near-infrared cut filter of Comparative Example 1. As for the spectral transmittance curve of the near-infrared cut filter, a spectral transmittance curve (solid line) when the incident angle is 0 ° and a spectral transmittance curve (broken line) when the incident angle is 30 ° are shown.
図9に示すように、本変形例のガラス基材は、800~950nmの波長域における平均透過率が4.3%に(つまり、3%より大きく)なっている。
また、本変形例のガラス基材は、720~750nmの波長域における平均透過率が9.7%(つまり、10%以下)になっている。
また、本変形例のガラス基材は、透過率曲線の短波長側の半値波長(UV_λ50)が約338nm(つまり、335~400nmの範囲内)であり、長波長側の半値波長(NIR_λ50)が約632nm(つまり、590~630nmの範囲外)になっている。
また、本変形例のガラス基材は、650~720nmの波長域における平均透過率が23.8%に(つまり、18%より大きく)なっている。 As shown in FIG. 9, the glass substrate of this modification has an average transmittance of 4.3% (that is, larger than 3%) in the wavelength range of 800 to 950 nm.
Further, the glass substrate of this modification has an average transmittance of 9.7% (that is, 10% or less) in the wavelength range of 720 to 750 nm.
Further, in the glass substrate of this modification, the half-value wavelength (UV_λ50) on the short wavelength side of the transmittance curve is about 338 nm (that is, within the range of 335 to 400 nm), and the half-value wavelength (NIR_λ50) on the long wavelength side is. It is about 632 nm (that is, outside the range of 590 to 630 nm).
Further, the glass substrate of this modification has an average transmittance of 23.8% (that is, larger than 18%) in the wavelength range of 650 to 720 nm.
また、本変形例のガラス基材は、720~750nmの波長域における平均透過率が9.7%(つまり、10%以下)になっている。
また、本変形例のガラス基材は、透過率曲線の短波長側の半値波長(UV_λ50)が約338nm(つまり、335~400nmの範囲内)であり、長波長側の半値波長(NIR_λ50)が約632nm(つまり、590~630nmの範囲外)になっている。
また、本変形例のガラス基材は、650~720nmの波長域における平均透過率が23.8%に(つまり、18%より大きく)なっている。 As shown in FIG. 9, the glass substrate of this modification has an average transmittance of 4.3% (that is, larger than 3%) in the wavelength range of 800 to 950 nm.
Further, the glass substrate of this modification has an average transmittance of 9.7% (that is, 10% or less) in the wavelength range of 720 to 750 nm.
Further, in the glass substrate of this modification, the half-value wavelength (UV_λ50) on the short wavelength side of the transmittance curve is about 338 nm (that is, within the range of 335 to 400 nm), and the half-value wavelength (NIR_λ50) on the long wavelength side is. It is about 632 nm (that is, outside the range of 590 to 630 nm).
Further, the glass substrate of this modification has an average transmittance of 23.8% (that is, larger than 18%) in the wavelength range of 650 to 720 nm.
そして、本比較例の近赤外線カットフィルタは、透過率曲線の短波長側の半値波長(UV_λ50)が約404nm、長波長側の半値波長(NIR_λ50)が約610nm、800~950nmの波長域における平均透過率が4.1%となった。つまり、本比較例の近赤外線カットフィルタは、実施例1~5の近赤外線カットフィルタ100と比較して、800~950nmの波長域における平均透過率が高いものとなった。
なお、本変形例の近赤外線カットフィルタ100も、実施例1~5の近赤外線カットフィルタ100と同様、従来の近赤外線カットフィルタのような反射膜を有していないため、入射角30°の光が入射しても、カットフィルタとしての性能を著しく損なう位相ずれ、波長シフトおよびリップルの発生が抑制されている。 The near-infrared cut filter of this comparative example has a half-value wavelength (UV_λ50) on the short wavelength side of the transmittance curve of about 404 nm, a half-value wavelength (NIR_λ50) on the long wavelength side of about 610 nm, and an average in the wavelength range of 800 to 950 nm. The transmittance was 4.1%. That is, the near-infrared cut filter of this comparative example has a higher average transmittance in the wavelength range of 800 to 950 nm than the near-infrared cut filter 100 of Examples 1 to 5.
The near-infrared cut filter 100 of this modification also does not have a reflective film like the conventional near-infrared cut filter like the near-infrared cut filters 100 of Examples 1 to 5, and therefore has an incident angle of 30 °. Even if light is incident, the occurrence of phase shift, wavelength shift, and ripple that significantly impair the performance of the cut filter is suppressed.
なお、本変形例の近赤外線カットフィルタ100も、実施例1~5の近赤外線カットフィルタ100と同様、従来の近赤外線カットフィルタのような反射膜を有していないため、入射角30°の光が入射しても、カットフィルタとしての性能を著しく損なう位相ずれ、波長シフトおよびリップルの発生が抑制されている。 The near-infrared cut filter of this comparative example has a half-value wavelength (UV_λ50) on the short wavelength side of the transmittance curve of about 404 nm, a half-value wavelength (NIR_λ50) on the long wavelength side of about 610 nm, and an average in the wavelength range of 800 to 950 nm. The transmittance was 4.1%. That is, the near-infrared cut filter of this comparative example has a higher average transmittance in the wavelength range of 800 to 950 nm than the near-
The near-
このように、比較例1の近赤外線カットフィルタは、実施例1~5の近赤外線カットフィルタ100と比較して、800~950nmの波長域における平均透過率が高い(つまり、3%より大きい)ため、色再現性が悪いものとなる。この問題を対策するためには、従来の近赤外線カットフィルタで用いられているように、反射層を形成することが有効であるが、反射層を用いると、位相ずれが発生し、波長シフトやリップルが発生する、といった問題が発生する。
つまり、本実施形態(実施例1~5)の近赤外線カットフィルタ100においては、かかる問題を解決するため、ガラス基材101として、800~950nmの波長域における平均透過率が非常に低い(つまり、3%以下)ものを使用し、従来の反射層を使用することなく、人間の視感度に近い特性を得ている。 As described above, the near-infrared cut filter of Comparative Example 1 has a higher average transmittance (that is, larger than 3%) in the wavelength range of 800 to 950 nm as compared with the near-infrared cut filter 100 of Examples 1 to 5. Therefore, the color reproducibility is poor. In order to deal with this problem, it is effective to form a reflective layer as used in the conventional near-infrared cut filter, but if a reflective layer is used, phase shift occurs and wavelength shift or wavelength shift occurs. Problems such as ripples occur.
That is, in the near-infrared cut filter 100 of the present embodiment (Examples 1 to 5), in order to solve such a problem, the glass substrate 101 has a very low average transmittance in the wavelength range of 800 to 950 nm (that is,). (3% or less) is used, and characteristics close to human visual sensitivity are obtained without using a conventional reflective layer.
つまり、本実施形態(実施例1~5)の近赤外線カットフィルタ100においては、かかる問題を解決するため、ガラス基材101として、800~950nmの波長域における平均透過率が非常に低い(つまり、3%以下)ものを使用し、従来の反射層を使用することなく、人間の視感度に近い特性を得ている。 As described above, the near-infrared cut filter of Comparative Example 1 has a higher average transmittance (that is, larger than 3%) in the wavelength range of 800 to 950 nm as compared with the near-
That is, in the near-
このように、本実施形態の近赤外線カットフィルタ100は、従来の反射層を使用していないため、入射角依存性が極めて少なく、斜入射特性に優れたものとなる。また、このような近赤外線カットフィルタ100を用いた撮像装置1は、ゴーストの発生が抑制されるため、色再現性に優れた画像を得ることができる。
As described above, since the near-infrared cut filter 100 of the present embodiment does not use the conventional reflective layer, the dependence on the incident angle is extremely small, and the oblique incident characteristics are excellent. Further, in the image pickup apparatus 1 using such a near-infrared cut filter 100, the generation of ghosts is suppressed, so that an image having excellent color reproducibility can be obtained.
以上が本発明の実施形態の説明であるが、本発明は、上記の実施形態の構成に限定されるものではなく、その技術的思想の範囲内で様々な変形が可能である。
The above is the description of the embodiment of the present invention, but the present invention is not limited to the configuration of the above-described embodiment, and various modifications can be made within the scope of the technical idea thereof.
例えば、本実施形態(実施例1~5)においては、透過率曲線の短波長側の半値波長(UV_λ50)が約404~410nm、長波長側の半値波長(NIR_λ50)が約591~610nmの近赤外線カットフィルタ100を例示したが、このような特性のものに限定されるものではない。樹脂層102の紫外線吸収色素、第1の近赤外吸収色素、及び第2の近赤外吸収色素を適宜選択し、またこれらの混合比を調整することにより、透過率曲線の短波長側の半値波長を385~430nmの範囲内で調整でき、長波長側の半値波長を590~630nmの範囲内で調整できる。
For example, in the present embodiment (Examples 1 to 5), the half-value wavelength (UV_λ50) on the short wavelength side of the transmittance curve is close to about 404 to 410 nm, and the half-value wavelength (NIR_λ50) on the long wavelength side is close to about 591 to 610 nm. Although the infrared cut filter 100 has been exemplified, it is not limited to those having such characteristics. By appropriately selecting the ultraviolet absorbing dye, the first near infrared absorbing dye, and the second near infrared absorbing dye of the resin layer 102, and adjusting the mixing ratio of these, the short wavelength side of the transmittance curve can be selected. The half-value wavelength can be adjusted in the range of 385 to 430 nm, and the half-value wavelength on the long wavelength side can be adjusted in the range of 590 to 630 nm.
(第2の実施形態)
図10は、本発明の第2の実施形態に係る近赤外線カットフィルタ100Aの構成を説明する縦断面図である。図10に示すように、本実施形態の近赤外線カットフィルタ100Aは、樹脂層102の上面(ガラス基材101とは反対側の面)に反射防止膜103を備え、ガラス基材101の他方の主面上(図10において下側の面)に反射防止膜104を備える点で、第1の実施形態の近赤外線カットフィルタ100とは異なる。
このように反射防止膜103、104を形成すると、近赤外線カットフィルタ100Aの界面(つまり、入射面及び出射面)での反射を抑えることができるため、透過率を高める(改善する)ことができる。 (Second embodiment)
FIG. 10 is a vertical sectional view illustrating the configuration of the near-infrared cut filter 100A according to the second embodiment of the present invention. As shown in FIG. 10, the near-infrared cut filter 100A of the present embodiment has an antireflection film 103 on the upper surface of the resin layer 102 (the surface opposite to the glass base material 101), and is the other side of the glass base material 101. It differs from the near-infrared cut filter 100 of the first embodiment in that the antireflection film 104 is provided on the main surface (lower surface in FIG. 10).
By forming the antireflection films 103 and 104 in this way, it is possible to suppress reflection at the interface (that is, the entrance surface and the emission surface) of the near-infrared cut filter 100A, so that the transmittance can be increased (improved). ..
図10は、本発明の第2の実施形態に係る近赤外線カットフィルタ100Aの構成を説明する縦断面図である。図10に示すように、本実施形態の近赤外線カットフィルタ100Aは、樹脂層102の上面(ガラス基材101とは反対側の面)に反射防止膜103を備え、ガラス基材101の他方の主面上(図10において下側の面)に反射防止膜104を備える点で、第1の実施形態の近赤外線カットフィルタ100とは異なる。
このように反射防止膜103、104を形成すると、近赤外線カットフィルタ100Aの界面(つまり、入射面及び出射面)での反射を抑えることができるため、透過率を高める(改善する)ことができる。 (Second embodiment)
FIG. 10 is a vertical sectional view illustrating the configuration of the near-
By forming the
本実施形態の反射防止膜103、104は、近赤外線カットフィルタ100Aの入射面及び出射面の界面における反射を防止する層であり、具体的には低屈折率の誘電体膜と高屈折率の誘電体膜とを交互に積層した誘電体多層膜によって構成されている。
The antireflection films 103 and 104 of the present embodiment are layers for preventing reflection at the interface between the entrance surface and the emission surface of the near infrared cut filter 100A, specifically, a dielectric film having a low refractive index and a high refractive index. It is composed of a dielectric multilayer film in which dielectric films are alternately laminated.
誘電体多層膜を構成する誘電体膜の材料は、所望の光学特性に応じて自由に選択することができるが、低屈折率の誘電体層を構成するための低屈折率材料の屈折率は、1.1~1.5の範囲にあることが好ましく、低屈折率材料としては、例えば、SiO2、MgF2、SiO2中空子やエアゾル構造を有する低屈折ゾルゲルコートなどを適用できる。また、高屈折率の誘電体層を構成するための高屈折率材料の屈折率は、2.0~2.5の範囲にあることが好ましく、高屈折率材料としては、例えば、ZrO2、Ta2O5、TiO2、Nb2O5などを適用できる。
また、屈折率1.4~1.6の材料(例えば、SiO2)を高屈折率材料として使用することもでき、この場合、屈折率1.1~1.3の材料(例えば、エアゾルコート)を低屈折率材料として適用できる。 The material of the dielectric film constituting the dielectric multilayer film can be freely selected according to the desired optical characteristics, but the refractive index of the low refractive index material for forming the low refractive index dielectric layer is , 1.1 to 1.5 is preferable, and as the low refractive index material, for example, SiO 2 , MgF 2 , SiO 2 hollow element, a low refractive index sol gel coat having an aerosol structure, or the like can be applied. Further, the refractive index of the high-refractive index material for forming the high-refractive index dielectric layer is preferably in the range of 2.0 to 2.5, and examples of the high-refractive index material include ZrO 2 . Ta 2 O 5 , TIO 2 , Nb 2 O 5 , and the like can be applied.
Further, a material having a refractive index of 1.4 to 1.6 (for example, SiO 2 ) can also be used as a high refractive index material, and in this case, a material having a refractive index of 1.1 to 1.3 (for example, aerosol coat) can be used. ) Can be applied as a low refractive index material.
また、屈折率1.4~1.6の材料(例えば、SiO2)を高屈折率材料として使用することもでき、この場合、屈折率1.1~1.3の材料(例えば、エアゾルコート)を低屈折率材料として適用できる。 The material of the dielectric film constituting the dielectric multilayer film can be freely selected according to the desired optical characteristics, but the refractive index of the low refractive index material for forming the low refractive index dielectric layer is , 1.1 to 1.5 is preferable, and as the low refractive index material, for example, SiO 2 , MgF 2 , SiO 2 hollow element, a low refractive index sol gel coat having an aerosol structure, or the like can be applied. Further, the refractive index of the high-refractive index material for forming the high-refractive index dielectric layer is preferably in the range of 2.0 to 2.5, and examples of the high-refractive index material include ZrO 2 . Ta 2 O 5 , TIO 2 , Nb 2 O 5 , and the like can be applied.
Further, a material having a refractive index of 1.4 to 1.6 (for example, SiO 2 ) can also be used as a high refractive index material, and in this case, a material having a refractive index of 1.1 to 1.3 (for example, aerosol coat) can be used. ) Can be applied as a low refractive index material.
このように、反射防止膜103、104に誘電体多層膜を用いることにより、各誘電体膜で生じる光の干渉を利用して、容易に反射防止機能を付与することができる。しかしながら、膜層数が多くなると、光の斜入射時に光路長が長くなり、各層における反射光の干渉条件が崩れるため、波長シフトやリップルが生じるといった問題が発生する。また、このような波長シフトやリップルは、反射光の増大を招き、固体撮像素子200上では一種のゴーストとして観測され、正確な色再現性を得ることができないという問題も発生する。そこで、本実施形態においては、かかる問題を回避するため、誘電体多層膜の膜層数を10層以下となるように構成している。なお、膜層数は、特に5層以下、さらには3層以下であることが好ましい。
また、誘電体多層膜を構成する誘電体膜の厚さは、所望の光学特性に応じて自由に選択することができるが、好ましくは50nm~1μmであり、より好ましくは50nm~500nmである。
また、誘電体多層膜全体(つまり、反射防止膜103、104)の厚さは、500nm以下に設定されている。 As described above, by using the dielectric multilayer film for the antireflection films 103 and 104, the antireflection function can be easily imparted by utilizing the interference of light generated by each dielectric film. However, when the number of film layers is large, the optical path length becomes long when the light is obliquely incident, and the interference conditions of the reflected light in each layer are disrupted, which causes problems such as wavelength shift and ripple. Further, such a wavelength shift or ripple causes an increase in reflected light, and is observed as a kind of ghost on the solid-state image sensor 200, which causes a problem that accurate color reproducibility cannot be obtained. Therefore, in the present embodiment, in order to avoid such a problem, the number of film layers of the dielectric multilayer film is set to 10 or less. The number of film layers is particularly preferably 5 or less, more preferably 3 or less.
The thickness of the dielectric film constituting the dielectric multilayer film can be freely selected according to the desired optical characteristics, but is preferably 50 nm to 1 μm, and more preferably 50 nm to 500 nm.
Further, the thickness of the entire dielectric multilayer film (that is, theantireflection films 103 and 104) is set to 500 nm or less.
また、誘電体多層膜を構成する誘電体膜の厚さは、所望の光学特性に応じて自由に選択することができるが、好ましくは50nm~1μmであり、より好ましくは50nm~500nmである。
また、誘電体多層膜全体(つまり、反射防止膜103、104)の厚さは、500nm以下に設定されている。 As described above, by using the dielectric multilayer film for the
The thickness of the dielectric film constituting the dielectric multilayer film can be freely selected according to the desired optical characteristics, but is preferably 50 nm to 1 μm, and more preferably 50 nm to 500 nm.
Further, the thickness of the entire dielectric multilayer film (that is, the
なお、本実施形態の樹脂層102は、ガラス基材101の一方の主面上(図10)において上側の面)に形成されているが、第1の実施形態と同様、樹脂層102は、ガラス基材101の他方の主面上(図10において下側の面)に形成されてもよく、また、ガラス基材101の両面に形成されてもよい。また、樹脂層102は必ずしも一層である必要はなく、複数層で構成することもできる。
Although the resin layer 102 of the present embodiment is formed on one main surface (upper surface in FIG. 10) of the glass base material 101, the resin layer 102 is similar to the first embodiment. It may be formed on the other main surface of the glass base material 101 (lower surface in FIG. 10), or may be formed on both sides of the glass base material 101. Further, the resin layer 102 does not necessarily have to be one layer, and may be composed of a plurality of layers.
以下、本実施形態の近赤外線カットフィルタ100Aについて、実施例を挙げて更に説明するが、本発明は以下の実施例に限定されるものではない。
Hereinafter, the near-infrared cut filter 100A of the present embodiment will be further described with reference to examples, but the present invention is not limited to the following examples.
(実施例6)
実施例1の近赤外線カットフィルタ100に、以下の手順(3.反射防止膜103、104の形成)によってさらに反射防止膜103、104を形成し、実施例6の近赤外線カットフィルタ100Aを作成した。
[3.反射防止膜103、104の形成]
実施例1の近赤外線カットフィルタ100の樹脂層102の上面(ガラス基材101とは反対側の面)及びガラス基材101の他方の主面上(図10において下側の面)に、いわゆるゾル・ゲル法を用いて、表1の誘電体薄膜(誘電体層1~5)を順番に形成し(つまり、反射防止膜103、104を形成し)、実施例6の近赤外線カットフィルタ100Aを得た。 (Example 6)
Antireflection films 103 and 104 were further formed on the near-infrared cut filter 100 of Example 1 by the following procedure (3. Formation of antireflection films 103 and 104) to prepare the near-infrared cut filter 100A of Example 6. ..
[3. Formation ofantireflection films 103 and 104]
On the upper surface of theresin layer 102 of the near-infrared cut filter 100 of Example 1 (the surface opposite to the glass substrate 101) and on the other main surface of the glass substrate 101 (the lower surface in FIG. 10), so-called. Using the sol-gel method, the dielectric thin films (dielectric layers 1 to 5) in Table 1 are sequentially formed (that is, the antireflection films 103 and 104 are formed), and the near-infrared cut filter 100A of Example 6 is formed. Got
実施例1の近赤外線カットフィルタ100に、以下の手順(3.反射防止膜103、104の形成)によってさらに反射防止膜103、104を形成し、実施例6の近赤外線カットフィルタ100Aを作成した。
[3.反射防止膜103、104の形成]
実施例1の近赤外線カットフィルタ100の樹脂層102の上面(ガラス基材101とは反対側の面)及びガラス基材101の他方の主面上(図10において下側の面)に、いわゆるゾル・ゲル法を用いて、表1の誘電体薄膜(誘電体層1~5)を順番に形成し(つまり、反射防止膜103、104を形成し)、実施例6の近赤外線カットフィルタ100Aを得た。 (Example 6)
[3. Formation of
On the upper surface of the
図11は、実施例6の近赤外線カットフィルタ100Aの分光透過率曲線を示す図であり、入射角0°のときの分光透過率曲線(実線)と、入射角30°のときの分光透過率曲線(破線)を示している。図11に示すように、本実施例の近赤外線カットフィルタ100Aは、透過率曲線の短波長側の半値波長(UV_λ50)が約390nm、長波長側の半値波長(NIR_λ50)が約610nm、800~950nmの波長域における平均透過率が1.2%となり、人間の視感度に近い特性のものが得られた。
また、本実施例の近赤外線カットフィルタ100Aは、反射防止膜103、104として誘電体多層膜を有しているものの、その厚みが十分に薄いため(500nm以下であるため)、入射角30°の光が入射しても、カットフィルタとしての性能を著しく損なう位相ずれ、波長シフトおよびリップルの発生が抑制されている。
また、本実施例の近赤外線カットフィルタ100Aは、反射防止膜103、104を備えるため、実施例1の近赤外線カットフィルタ100と比較して(つまり、図4と比較して)透過率が高く、透過率のピークは約95%になっている。 FIG. 11 is a diagram showing a spectral transmittance curve of the near-infrared cut filter 100A of Example 6, a spectral transmittance curve (solid line) when the incident angle is 0 °, and a spectral transmittance when the incident angle is 30 °. A curve (broken line) is shown. As shown in FIG. 11, in the near-infrared cut filter 100A of this embodiment, the half-value wavelength (UV_λ50) on the short wavelength side of the transmittance curve is about 390 nm, and the half-value wavelength (NIR_λ50) on the long wavelength side is about 610 nm, 800 to 800. The average transmittance in the wavelength range of 950 nm was 1.2%, and a characteristic close to human visual sensitivity was obtained.
Further, although the near-infrared cut filter 100A of this embodiment has a dielectric multilayer film as the antireflection films 103 and 104, the thickness thereof is sufficiently thin (because it is 500 nm or less), so that the incident angle is 30 °. Even if the light is incident on the surface, the occurrence of phase shift, wavelength shift and ripple, which significantly impairs the performance as a cut filter, is suppressed.
Further, since the near-infrared cut filter 100A of the present embodiment includes the antireflection films 103 and 104, the transmittance is higher than that of the near-infrared cut filter 100 of the first embodiment (that is, as compared with FIG. 4). , The peak transmittance is about 95%.
また、本実施例の近赤外線カットフィルタ100Aは、反射防止膜103、104として誘電体多層膜を有しているものの、その厚みが十分に薄いため(500nm以下であるため)、入射角30°の光が入射しても、カットフィルタとしての性能を著しく損なう位相ずれ、波長シフトおよびリップルの発生が抑制されている。
また、本実施例の近赤外線カットフィルタ100Aは、反射防止膜103、104を備えるため、実施例1の近赤外線カットフィルタ100と比較して(つまり、図4と比較して)透過率が高く、透過率のピークは約95%になっている。 FIG. 11 is a diagram showing a spectral transmittance curve of the near-
Further, although the near-
Further, since the near-
(実施例7)
実施例2の近赤外線カットフィルタ100に、実施例6と同様の手順で反射防止膜103、104を形成し、実施例7の近赤外線カットフィルタ100Aを作成した。 (Example 7)
Antireflection films 103 and 104 were formed on the near-infrared cut filter 100 of Example 2 in the same procedure as in Example 6, and the near-infrared cut filter 100A of Example 7 was prepared.
実施例2の近赤外線カットフィルタ100に、実施例6と同様の手順で反射防止膜103、104を形成し、実施例7の近赤外線カットフィルタ100Aを作成した。 (Example 7)
図12は、実施例7の近赤外線カットフィルタ100Aの分光透過率曲線を示す図であり、入射角0°のときの分光透過率曲線(実線)と、入射角30°のときの分光透過率曲線(破線)を示している。図12に示すように、本実施例の近赤外線カットフィルタ100Aは、透過率曲線の短波長側の半値波長(UV_λ50)が約403nm、長波長側の半値波長(NIR_λ50)が約596nm、800~950nmの波長域における平均透過率が0.1%以下となり、人間の視感度に近い特性のものが得られた。
また、本実施例の近赤外線カットフィルタ100Aは、反射防止膜103、104として誘電体多層膜を有しているものの、その厚みが十分に薄いため(500nm以下であるため)、入射角30°の光が入射しても、カットフィルタとしての性能を著しく損なう位相ずれ、波長シフトおよびリップルの発生が抑制されている。
また、本実施例の近赤外線カットフィルタ100Aは、反射防止膜103、104を備えるため、実施例2の近赤外線カットフィルタ100と比較して(つまり、図5と比較して)透過率が高く、透過率のピークは約95%になっている。 FIG. 12 is a diagram showing a spectral transmittance curve of the near-infrared cut filter 100A of Example 7, a spectral transmittance curve (solid line) when the incident angle is 0 °, and a spectral transmittance when the incident angle is 30 °. A curve (broken line) is shown. As shown in FIG. 12, in the near-infrared cut filter 100A of this embodiment, the half-value wavelength (UV_λ50) on the short wavelength side of the transmittance curve is about 403 nm, and the half-value wavelength (NIR_λ50) on the long wavelength side is about 596 nm, 800 to 800. The average transmittance in the wavelength range of 950 nm was 0.1% or less, and a characteristic close to human visual sensitivity was obtained.
Further, although the near-infrared cut filter 100A of this embodiment has a dielectric multilayer film as the antireflection films 103 and 104, the thickness thereof is sufficiently thin (because it is 500 nm or less), so that the incident angle is 30 °. Even if the light is incident on the surface, the occurrence of phase shift, wavelength shift and ripple, which significantly impairs the performance as a cut filter, is suppressed.
Further, since the near-infrared cut filter 100A of the present embodiment includes the antireflection films 103 and 104, the transmittance is higher than that of the near-infrared cut filter 100 of the second embodiment (that is, compared with FIG. 5). , The peak transmittance is about 95%.
また、本実施例の近赤外線カットフィルタ100Aは、反射防止膜103、104として誘電体多層膜を有しているものの、その厚みが十分に薄いため(500nm以下であるため)、入射角30°の光が入射しても、カットフィルタとしての性能を著しく損なう位相ずれ、波長シフトおよびリップルの発生が抑制されている。
また、本実施例の近赤外線カットフィルタ100Aは、反射防止膜103、104を備えるため、実施例2の近赤外線カットフィルタ100と比較して(つまり、図5と比較して)透過率が高く、透過率のピークは約95%になっている。 FIG. 12 is a diagram showing a spectral transmittance curve of the near-
Further, although the near-
Further, since the near-
(実施例8)
実施例3の近赤外線カットフィルタ100に、実施例6と同様の手順で反射防止膜103、104を形成し、実施例8の近赤外線カットフィルタ100Aを作成した。 (Example 8)
Antireflection films 103 and 104 were formed on the near-infrared cut filter 100 of Example 3 in the same procedure as in Example 6, and the near-infrared cut filter 100A of Example 8 was prepared.
実施例3の近赤外線カットフィルタ100に、実施例6と同様の手順で反射防止膜103、104を形成し、実施例8の近赤外線カットフィルタ100Aを作成した。 (Example 8)
図13は、実施例8の近赤外線カットフィルタ100Aの分光透過率曲線を示す図であり、入射角0°のときの分光透過率曲線(実線)と、入射角30°のときの分光透過率曲線(破線)を示している。図13に示すように、本実施例の近赤外線カットフィルタ100Aは、透過率曲線の短波長側の半値波長(UV_λ50)が約402nm、長波長側の半値波長(NIR_λ50)が約601nm、800~950nmの波長域における平均透過率が0.2%となり、人間の視感度に近い特性のものが得られた。
また、本実施例の近赤外線カットフィルタ100Aは、反射防止膜103、104として誘電体多層膜を有しているものの、その厚みが十分に薄いため(500nm以下であるため)、入射角30°の光が入射しても、カットフィルタとしての性能を著しく損なう位相ずれ、波長シフトおよびリップルの発生が抑制されている。
また、本実施例の近赤外線カットフィルタ100Aは、反射防止膜103、104を備えるため、実施例3の近赤外線カットフィルタ100と比較して(つまり、図6と比較して)透過率が高く、透過率のピークは約97%になっている。 FIG. 13 is a diagram showing a spectral transmittance curve of the near-infrared cut filter 100A of Example 8, a spectral transmittance curve (solid line) when the incident angle is 0 °, and a spectral transmittance when the incident angle is 30 °. A curve (broken line) is shown. As shown in FIG. 13, in the near-infrared cut filter 100A of this embodiment, the half-value wavelength (UV_λ50) on the short wavelength side of the transmittance curve is about 402 nm, and the half-value wavelength (NIR_λ50) on the long wavelength side is about 601 nm, 800 to 800. The average transmittance in the wavelength range of 950 nm was 0.2%, and a characteristic close to human visual sensitivity was obtained.
Further, although the near-infrared cut filter 100A of this embodiment has a dielectric multilayer film as the antireflection films 103 and 104, the thickness thereof is sufficiently thin (because it is 500 nm or less), so that the incident angle is 30 °. Even if the light is incident on the surface, the occurrence of phase shift, wavelength shift and ripple, which significantly impairs the performance as a cut filter, is suppressed.
Further, since the near-infrared cut filter 100A of this embodiment includes the antireflection films 103 and 104, the transmittance is higher than that of the near-infrared cut filter 100 of Example 3 (that is, compared with FIG. 6). , The peak transmittance is about 97%.
また、本実施例の近赤外線カットフィルタ100Aは、反射防止膜103、104として誘電体多層膜を有しているものの、その厚みが十分に薄いため(500nm以下であるため)、入射角30°の光が入射しても、カットフィルタとしての性能を著しく損なう位相ずれ、波長シフトおよびリップルの発生が抑制されている。
また、本実施例の近赤外線カットフィルタ100Aは、反射防止膜103、104を備えるため、実施例3の近赤外線カットフィルタ100と比較して(つまり、図6と比較して)透過率が高く、透過率のピークは約97%になっている。 FIG. 13 is a diagram showing a spectral transmittance curve of the near-
Further, although the near-
Further, since the near-
(実施例9)
実施例4の近赤外線カットフィルタ100に、実施例6と同様の手順で反射防止膜103、104を形成し、実施例9の近赤外線カットフィルタ100Aを作成した。 (Example 9)
Antireflection films 103 and 104 were formed on the near-infrared cut filter 100 of Example 4 in the same procedure as in Example 6, and the near-infrared cut filter 100A of Example 9 was prepared.
実施例4の近赤外線カットフィルタ100に、実施例6と同様の手順で反射防止膜103、104を形成し、実施例9の近赤外線カットフィルタ100Aを作成した。 (Example 9)
図14は、実施例9の近赤外線カットフィルタ100Aの分光透過率曲線を示す図であり、入射角0°のときの分光透過率曲線(実線)と、入射角30°のときの分光透過率曲線(破線)を示している。図14に示すように、本実施例の近赤外線カットフィルタ100Aは、透過率曲線の短波長側の半値波長(UV_λ50)が約402nm、長波長側の半値波長(NIR_λ50)が約608nm、800~950nmの波長域における平均透過率が0.9%となり、人間の視感度に近い特性のものが得られた。
また、本実施例の近赤外線カットフィルタ100Aは、反射防止膜103、104として誘電体多層膜を有しているものの、その厚みが十分に薄いため(500nm以下であるため)、入射角30°の光が入射しても、カットフィルタとしての性能を著しく損なう位相ずれ、波長シフトおよびリップルの発生が抑制されている。
また、本実施例の近赤外線カットフィルタ100Aは、反射防止膜103、104を備えるため、実施例4の近赤外線カットフィルタ100と比較して(つまり、図7と比較して)透過率が高く、透過率のピークは約98%になっている。 FIG. 14 is a diagram showing a spectral transmittance curve of the near-infrared cut filter 100A of Example 9, a spectral transmittance curve (solid line) when the incident angle is 0 °, and a spectral transmittance when the incident angle is 30 °. A curve (broken line) is shown. As shown in FIG. 14, the near-infrared cut filter 100A of the present embodiment has a half-value wavelength (UV_λ50) on the short wavelength side of the transmittance curve of about 402 nm and a half-value wavelength (NIR_λ50) on the long wavelength side of about 608 nm, 800 to 800. The average transmittance in the wavelength range of 950 nm was 0.9%, and a characteristic close to human visual sensitivity was obtained.
Further, although the near-infrared cut filter 100A of this embodiment has a dielectric multilayer film as the antireflection films 103 and 104, the thickness thereof is sufficiently thin (because it is 500 nm or less), so that the incident angle is 30 °. Even if the light is incident on the surface, the occurrence of phase shift, wavelength shift and ripple, which significantly impairs the performance as a cut filter, is suppressed.
Further, since the near-infrared cut filter 100A of this embodiment includes the antireflection films 103 and 104, the transmittance is higher than that of the near-infrared cut filter 100 of Example 4 (that is, compared with FIG. 7). , The peak transmittance is about 98%.
また、本実施例の近赤外線カットフィルタ100Aは、反射防止膜103、104として誘電体多層膜を有しているものの、その厚みが十分に薄いため(500nm以下であるため)、入射角30°の光が入射しても、カットフィルタとしての性能を著しく損なう位相ずれ、波長シフトおよびリップルの発生が抑制されている。
また、本実施例の近赤外線カットフィルタ100Aは、反射防止膜103、104を備えるため、実施例4の近赤外線カットフィルタ100と比較して(つまり、図7と比較して)透過率が高く、透過率のピークは約98%になっている。 FIG. 14 is a diagram showing a spectral transmittance curve of the near-
Further, although the near-
Further, since the near-
(実施例10)
実施例5の近赤外線カットフィルタ100に、実施例6と同様の手順で反射防止膜103、104を形成し、実施例10の近赤外線カットフィルタ100Aを作成した。 (Example 10)
Antireflection films 103 and 104 were formed on the near-infrared cut filter 100 of Example 5 in the same procedure as in Example 6, and the near-infrared cut filter 100A of Example 10 was prepared.
実施例5の近赤外線カットフィルタ100に、実施例6と同様の手順で反射防止膜103、104を形成し、実施例10の近赤外線カットフィルタ100Aを作成した。 (Example 10)
図15は、実施例10の近赤外線カットフィルタ100Aの分光透過率曲線を示す図であり、入射角0°のときの分光透過率曲線(実線)と、入射角30°のときの分光透過率曲線(破線)を示している。図15に示すように、本実施例の近赤外線カットフィルタ100Aは、透過率曲線の短波長側の半値波長(UV_λ50)が約404nm、長波長側の半値波長(NIR_λ50)が約604nm、800~950nmの波長域における平均透過率が0.1%となり、人間の視感度に近い特性のものが得られた。
また、本実施例の近赤外線カットフィルタ100Aは、反射防止膜103、104として誘電体多層膜を有しているものの、その厚みが十分に薄いため(500nm以下であるため)、入射角30°の光が入射しても、カットフィルタとしての性能を著しく損なう位相ずれ、波長シフトおよびリップルの発生が抑制されている。
また、本実施例の近赤外線カットフィルタ100Aは、反射防止膜103、104を備えるため、実施例5の近赤外線カットフィルタ100と比較して(つまり、図8と比較して)透過率が高く、透過率のピークは約93%になっている。 FIG. 15 is a diagram showing a spectral transmittance curve of the near-infrared cut filter 100A of Example 10, a spectral transmittance curve (solid line) when the incident angle is 0 °, and a spectral transmittance when the incident angle is 30 °. A curve (broken line) is shown. As shown in FIG. 15, in the near-infrared cut filter 100A of this embodiment, the half-value wavelength (UV_λ50) on the short wavelength side of the transmittance curve is about 404 nm, and the half-value wavelength (NIR_λ50) on the long wavelength side is about 604 nm, 800 to 800. The average transmittance in the wavelength range of 950 nm was 0.1%, and a characteristic close to human visual sensitivity was obtained.
Further, although the near-infrared cut filter 100A of this embodiment has a dielectric multilayer film as the antireflection films 103 and 104, the thickness thereof is sufficiently thin (because it is 500 nm or less), so that the incident angle is 30 °. Even if the light is incident on the surface, the occurrence of phase shift, wavelength shift and ripple, which significantly impairs the performance as a cut filter, is suppressed.
Further, since the near-infrared cut filter 100A of this embodiment includes the antireflection films 103 and 104, the transmittance is higher than that of the near-infrared cut filter 100 of Example 5 (that is, compared with FIG. 8). The peak transmittance is about 93%.
また、本実施例の近赤外線カットフィルタ100Aは、反射防止膜103、104として誘電体多層膜を有しているものの、その厚みが十分に薄いため(500nm以下であるため)、入射角30°の光が入射しても、カットフィルタとしての性能を著しく損なう位相ずれ、波長シフトおよびリップルの発生が抑制されている。
また、本実施例の近赤外線カットフィルタ100Aは、反射防止膜103、104を備えるため、実施例5の近赤外線カットフィルタ100と比較して(つまり、図8と比較して)透過率が高く、透過率のピークは約93%になっている。 FIG. 15 is a diagram showing a spectral transmittance curve of the near-
Further, although the near-
Further, since the near-
このように、実施例6~10の近赤外線カットフィルタ100Aは、斜入射特性に優れ、かつ透過率が高いものとなる。また、このような近赤外線カットフィルタ100を用いた撮像装置1は、明るく、色再現性にも優れた画像を得ることができる。
As described above, the near-infrared cut filters 100A of Examples 6 to 10 have excellent oblique incident characteristics and high transmittance. Further, the image pickup apparatus 1 using such a near-infrared cut filter 100 can obtain an image that is bright and has excellent color reproducibility.
(第3の実施形態)
図16は、本発明の第3の実施形態に係る近赤外線カットフィルタ100Bの構成を説明する縦断面図である。図16に示すように、本実施形態の近赤外線カットフィルタ100Bは、ガラス基材101と樹脂層102との間に、両者を接合する接合層105を備える点で、第1の実施形態の近赤外線カットフィルタ100とは異なる。
このように接合層105を形成すると、ガラス基材101と樹脂層102との密着性を高めることができるため、信頼性を向上させることができる。 (Third embodiment)
FIG. 16 is a vertical sectional view illustrating the configuration of the near-infrared cut filter 100B according to the third embodiment of the present invention. As shown in FIG. 16, the near-infrared cut filter 100B of the present embodiment is close to the first embodiment in that the near-infrared cut filter 100B includes a bonding layer 105 for bonding the glass base material 101 and the resin layer 102. It is different from the infrared cut filter 100.
When thebonding layer 105 is formed in this way, the adhesion between the glass base material 101 and the resin layer 102 can be enhanced, so that the reliability can be improved.
図16は、本発明の第3の実施形態に係る近赤外線カットフィルタ100Bの構成を説明する縦断面図である。図16に示すように、本実施形態の近赤外線カットフィルタ100Bは、ガラス基材101と樹脂層102との間に、両者を接合する接合層105を備える点で、第1の実施形態の近赤外線カットフィルタ100とは異なる。
このように接合層105を形成すると、ガラス基材101と樹脂層102との密着性を高めることができるため、信頼性を向上させることができる。 (Third embodiment)
FIG. 16 is a vertical sectional view illustrating the configuration of the near-
When the
本発明者が鋭意検討した結果、Si原子と、Ti原子、Zr原子およびAl原子から選ばれる一種以上とを含む接合成分を用いると、ガラス基材101と樹脂層102との密着性を高めることができることを見出した。本実施形態の接合層105は、かかる知見に基づくものであり、Si原子とともに、Ti原子、Zr原子およびAl原子から選ばれる一種以上を含む単層構造を有するものである。
なお、本明細書において、単層構造とは、下記測定条件で、走査型透過電子顕微鏡-エネルギー分散型X線分光分析器(STEM-EDX)により測定したときに、得られる測定画像(像コントラスト)または元素分析結果から、同一組成を有する形成材料からなることが特定される層構造を意味する。
<測定条件>
走査型透過電子顕微鏡:日本電子(株)製 ARM200F
エネルギー分散型X線分光分析器:日本電子(株)製 JED-2300T
試料調製:集束イオンビーム加工(FIB)
加速電圧:200kV
元素分析:EDXマッピング(解像度:256×256) As a result of diligent studies by the present inventor, when a bonding component containing a Si atom and one or more selected from Ti atom, Zr atom and Al atom is used, the adhesion between theglass substrate 101 and the resin layer 102 is enhanced. I found that I could do it. The bonding layer 105 of the present embodiment is based on such findings, and has a single-layer structure containing one or more selected from Ti atoms, Zr atoms, and Al atoms together with Si atoms.
In the present specification, the single-layer structure is a measurement image (image contrast) obtained when measured by a scanning transmission electron microscope-energy dispersive X-ray spectrophotometer (STEM-EDX) under the following measurement conditions. ) Or the layer structure specified from the elemental analysis results to be made of a forming material having the same composition.
<Measurement conditions>
Scanning transmission electron microscope: ARM200F manufactured by JEOL Ltd.
Energy Dispersive X-ray Spectroscopy Analyzer: JED-2300T manufactured by JEOL Ltd.
Sample preparation: Focused ion beam processing (FIB)
Acceleration voltage: 200kV
Elemental analysis: EDX mapping (resolution: 256 x 256)
なお、本明細書において、単層構造とは、下記測定条件で、走査型透過電子顕微鏡-エネルギー分散型X線分光分析器(STEM-EDX)により測定したときに、得られる測定画像(像コントラスト)または元素分析結果から、同一組成を有する形成材料からなることが特定される層構造を意味する。
<測定条件>
走査型透過電子顕微鏡:日本電子(株)製 ARM200F
エネルギー分散型X線分光分析器:日本電子(株)製 JED-2300T
試料調製:集束イオンビーム加工(FIB)
加速電圧:200kV
元素分析:EDXマッピング(解像度:256×256) As a result of diligent studies by the present inventor, when a bonding component containing a Si atom and one or more selected from Ti atom, Zr atom and Al atom is used, the adhesion between the
In the present specification, the single-layer structure is a measurement image (image contrast) obtained when measured by a scanning transmission electron microscope-energy dispersive X-ray spectrophotometer (STEM-EDX) under the following measurement conditions. ) Or the layer structure specified from the elemental analysis results to be made of a forming material having the same composition.
<Measurement conditions>
Scanning transmission electron microscope: ARM200F manufactured by JEOL Ltd.
Energy Dispersive X-ray Spectroscopy Analyzer: JED-2300T manufactured by JEOL Ltd.
Sample preparation: Focused ion beam processing (FIB)
Acceleration voltage: 200kV
Elemental analysis: EDX mapping (resolution: 256 x 256)
接合層105の厚みは、1000nm以下であることが好ましく、10~500nmであることがより好ましく、30~300nmであることがさらに好ましい。
接合層105の厚みが1000nm以下であることにより、接合層105の形成時(焼成時)におけるムラの発生を抑制し易くなり、接合層105の膜面を容易に均一化することができる。
また、接合層105の厚みが10nm以上である場合、接合層105が十分な接合強度を発揮し易くなって、近赤外線カットフィルタ100Bの機械的強度を容易に向上することができる。
なお、本明細書において、接合層105の厚みは、上記STEM-EDXを用いて測定したときに得られる近赤外線カットフィルタ100Bの断面の測定画像(像コントラスト)において、接合層105の厚みを50点測定したときの算術平均値を意味する。 The thickness of thebonding layer 105 is preferably 1000 nm or less, more preferably 10 to 500 nm, and even more preferably 30 to 300 nm.
When the thickness of thebonding layer 105 is 1000 nm or less, it becomes easy to suppress the occurrence of unevenness during the formation (firing) of the bonding layer 105, and the film surface of the bonding layer 105 can be easily made uniform.
Further, when the thickness of thebonding layer 105 is 10 nm or more, the bonding layer 105 tends to exhibit sufficient bonding strength, and the mechanical strength of the near-infrared cut filter 100B can be easily improved.
In the present specification, the thickness of thebonding layer 105 is the thickness of the bonding layer 105 in the measured image (image contrast) of the cross section of the near-infrared cut filter 100B obtained when measured using the STEM-EDX. It means the arithmetic mean value when the point is measured.
接合層105の厚みが1000nm以下であることにより、接合層105の形成時(焼成時)におけるムラの発生を抑制し易くなり、接合層105の膜面を容易に均一化することができる。
また、接合層105の厚みが10nm以上である場合、接合層105が十分な接合強度を発揮し易くなって、近赤外線カットフィルタ100Bの機械的強度を容易に向上することができる。
なお、本明細書において、接合層105の厚みは、上記STEM-EDXを用いて測定したときに得られる近赤外線カットフィルタ100Bの断面の測定画像(像コントラスト)において、接合層105の厚みを50点測定したときの算術平均値を意味する。 The thickness of the
When the thickness of the
Further, when the thickness of the
In the present specification, the thickness of the
本実施形態の接合層105は、Si原子とともに、Ti原子、Zr原子およびAl原子から選ばれる一種以上を含むものであるが、Si原子とともに接合層105中に含有される、Ti原子、Zr原子およびAl原子から選ばれる一種以上としては、Ti原子であることが好ましい。
The bonding layer 105 of the present embodiment contains one or more selected from Ti atom, Zr atom and Al atom together with Si atom, but is contained in the bonding layer 105 together with Si atom, Ti atom, Zr atom and Al. The Ti atom is preferable as one or more selected from the atoms.
本実施形態の接合層105において、Si原子、Ti原子、Zr原子およびAl原子の総数(総原子数)に占める、Ti原子、Zr原子およびAl原子の合計原子数の割合α(atomic%)は、0atomic%を超え33.3atomic%以下であることが好ましく、9~33.3atomic%であることがより好ましく、12~33.3atomic%であることがさらに好ましい。なお、本明細書において、接合層105を構成するSi原子、Ti原子、Zr原子およびAl原子の総数(総原子数)に占める、Ti原子、Zr原子およびAl原子の合計原子数の割合α(atomic%)は、以下の方法により算出される値を意味する。
(1)上述した測定条件により光学フィルターのSTEM-EDX測定を行って、STEM-EDXライン(光学フィルターを構成する各元素の深さ方向におけるEDX線(K線)検出強度ライン)を得る。
(2)接合層105を構成する領域における、Si原子のEDX線積算強度XSi、Ti原子のEDX線積算強度XTi、Zr原子のEDX線積算強度XZrおよびAl原子のEDX線積算強度XAlをそれぞれ求める。
(3)(2)で求めた各EDX線積算強度にkファクター(加速電圧や検出効率に依存する、原子番号ごとに異なる補正係数。以下便宜的に、Si原子のkファクターをKSi、Ti原子のkファクターをKTi、Zr原子のkファクターをKZr、Al原子のkファクターをKAlとする。)を掛けた値が、各構成元素の重量比に対応するとみなし得る。このため、例えば接合層を構成するTi原子の重量割合ATi(重量%)は下記式により算出することができる。
(4)さらに、上記各原子のEDX線積算強度Xにkファクターを掛けた値を、各々の原子量Mで除した値が、各構成元素の原子数の比に対応するとみなし得る。このため、Si原子の原子量をMSi、Ti原子の原子量をMTi、Zr原子の原子量をMZr、Al原子の原子量をMAlとした場合、例えば接合層105を構成するTi原子の原子数の割合αTi(atomic%)は下記式により算出することができる。
また、接合層105を構成するTi原子、Zr原子およびAl原子の合計原子数の割合α(atomic%)は、下記式により算出することができる。
例えば、接合層105中にSi原子およびTi原子が含まれるが、Zr原子およびAl原子が含まれない場合、接合層105を構成するTi原子、Zr原子およびAl原子の合計原子数の割合α(atomic%)は、下記式により算出することができる。
なお、本実施形態においては、KSi=1.000、KTi=1.033、KZr=5.696、KAl=1.050とした。
In the bonding layer 105 of the present embodiment, the ratio α (atomic%) of the total number of Ti atoms, Zr atoms and Al atoms to the total number of Si atoms, Ti atoms, Zr atoms and Al atoms (total number of atoms) is , 0 atomic% and preferably 33.3 atomic% or less, more preferably 9 to 33.3 atomic%, still more preferably 12 to 33.3 atomic%. In the present specification, the ratio α of the total number of Ti atoms, Zr atoms and Al atoms to the total number of Si atoms, Ti atoms, Zr atoms and Al atoms constituting the bonding layer 105 (total number of atoms) α ( Atomic%) means a value calculated by the following method.
(1) The STEM-EDX measurement of the optical filter is performed under the above-mentioned measurement conditions to obtain a STEM-EDX line (EDX line (K line) detection intensity line in the depth direction of each element constituting the optical filter).
(2) EDX ray integrated intensity X Si of Si atom, EDX ray integrated intensity X Ti of Ti atom, EDX ray integrated intensity X Zr of Zr atom, and EDX ray integrated intensity X of Al atom in the region constituting thebonding layer 105. Find Al respectively.
(3) A k-factor (correction coefficient that depends on the acceleration voltage and detection efficiency and differs for each atomic number. For convenience, the k-factor of the Si atom is K Si , Ti) for each EDX-ray integrated intensity obtained in (2). The value obtained by multiplying the k factor of the atom by K Ti , the k factor of the Zr atom by K Zr , and the k factor of the Al atom by K Al ) can be regarded as corresponding to the weight ratio of each constituent element. Therefore, for example, the weight ratio A Ti (% by weight) of the Ti atoms constituting the bonding layer can be calculated by the following formula.
(4) Further, it can be considered that the value obtained by dividing the value obtained by multiplying the EDX-ray integrated intensity X of each atom by the k factor by each atomic weight M corresponds to the ratio of the number of atoms of each constituent element. Therefore, when the atomic weight of the Si atom is M Si , the atomic weight of the Ti atom is M Ti , the atomic weight of the Zr atom is M Zr , and the atomic weight of the Al atom is M Al , for example, the number of Ti atoms constituting the bonding layer 105 is the number of atoms. The ratio α Ti (atomic%) of can be calculated by the following formula.
Further, the ratio α (atomic%) of the total number of atoms of Ti atom, Zr atom and Al atom constituting the bonding layer 105 can be calculated by the following formula.
For example, when the bonding layer 105 contains Si atoms and Ti atoms but does not contain Zr atoms and Al atoms, the ratio α of the total number of Ti atoms, Zr atoms, and Al atoms constituting the bonding layer 105 ( Atomic%) can be calculated by the following formula.
In this embodiment, K Si = 1.000, K Ti = 1.033, K Zr = 5.696, and K Al = 1.050.
(1)上述した測定条件により光学フィルターのSTEM-EDX測定を行って、STEM-EDXライン(光学フィルターを構成する各元素の深さ方向におけるEDX線(K線)検出強度ライン)を得る。
(2)接合層105を構成する領域における、Si原子のEDX線積算強度XSi、Ti原子のEDX線積算強度XTi、Zr原子のEDX線積算強度XZrおよびAl原子のEDX線積算強度XAlをそれぞれ求める。
(3)(2)で求めた各EDX線積算強度にkファクター(加速電圧や検出効率に依存する、原子番号ごとに異なる補正係数。以下便宜的に、Si原子のkファクターをKSi、Ti原子のkファクターをKTi、Zr原子のkファクターをKZr、Al原子のkファクターをKAlとする。)を掛けた値が、各構成元素の重量比に対応するとみなし得る。このため、例えば接合層を構成するTi原子の重量割合ATi(重量%)は下記式により算出することができる。
(1) The STEM-EDX measurement of the optical filter is performed under the above-mentioned measurement conditions to obtain a STEM-EDX line (EDX line (K line) detection intensity line in the depth direction of each element constituting the optical filter).
(2) EDX ray integrated intensity X Si of Si atom, EDX ray integrated intensity X Ti of Ti atom, EDX ray integrated intensity X Zr of Zr atom, and EDX ray integrated intensity X of Al atom in the region constituting the
(3) A k-factor (correction coefficient that depends on the acceleration voltage and detection efficiency and differs for each atomic number. For convenience, the k-factor of the Si atom is K Si , Ti) for each EDX-ray integrated intensity obtained in (2). The value obtained by multiplying the k factor of the atom by K Ti , the k factor of the Zr atom by K Zr , and the k factor of the Al atom by K Al ) can be regarded as corresponding to the weight ratio of each constituent element. Therefore, for example, the weight ratio A Ti (% by weight) of the Ti atoms constituting the bonding layer can be calculated by the following formula.
以下、本実施形態の近赤外線カットフィルタ100Bについて、実施例を挙げて更に説明するが、本発明は以下の実施例に限定されるものではない。
Hereinafter, the near-infrared cut filter 100B of the present embodiment will be further described with reference to examples, but the present invention is not limited to the following examples.
(実施例11)
実施例1のガラス基材101に、以下の手順(4.接合層105の形成)によって接合層105を形成した。そして、接合層105の上面に、実施例1と同様の手順(2.樹脂層102の形成)で樹脂層102の形成し、近赤外線カットフィルタ100Bを作成した。
[4.接合層105の形成]
1.カップリング剤含有塗布液の調製
(1)容器中に0.5N(mol/L)のHCl水溶液0.3mLと2-メトキシエタノール2.2mLを秤量し、密閉下で混合した。
(2)上記容器内にオルトケイ酸テトラエチル(Si(OC2H5)4)を加え、密閉下で30分間混合し、下記反応式で表される反応を生じさせた。
Si(OC2H5)4+H2O → HO-Si(OC2H5)3+C2H5OH
上記反応により水が全て消費され水酸基が生じるため、加水分解速度の速いTiのアルコキシドを加えても水酸化物が析出せず、溶液が均質となることが期待された。
(3)上記容器内にさらにチタン(IV)n-ブトキシド(Ti(OC4H9)4)を所定の割合(例えば、3~20モル%)になるように添加し、密閉下で30分間混合することにより、カップリング剤含有塗布液を調製した。
なお、このとき容器内では下記反応式で表される反応が生じたと考えられる。
4OH-Si(OC2H5)3+Ti(OC4H9)4→Ti(O-Si(OC2H5)3)4+4C4H9OH (Example 11)
Abonding layer 105 was formed on the glass substrate 101 of Example 1 by the following procedure (4. Formation of the bonding layer 105). Then, the resin layer 102 was formed on the upper surface of the bonding layer 105 by the same procedure as in Example 1 (2. Formation of the resin layer 102) to prepare a near-infrared cut filter 100B.
[4. Formation of bonding layer 105]
1. 1. Preparation of Coupling Agent-Containing Coating Solution (1) 0.3 mL of 0.5 N (mol / L) HCl aqueous solution and 2.2 mL of 2-methoxyethanol were weighed in a container and mixed in a hermetically sealed manner.
(2) Tetraethyl orthosilicate (Si (OC 2 H 5 ) 4 ) was added to the above container and mixed for 30 minutes under a closed seal to cause a reaction represented by the following reaction formula.
Si (OC 2 H 5 ) 4 + H 2 O → HO-Si (OC 2 H 5 ) 3 + C 2 H 5 OH
Since all the water is consumed and hydroxyl groups are generated by the above reaction, it was expected that the hydroxide would not precipitate even if Ti alkoxide having a high hydrolysis rate was added, and the solution would be homogeneous.
(3) Titanium (IV) n-butoxide (Ti (OC 4 H 9 ) 4 ) is further added to the above container in a predetermined ratio (for example, 3 to 20 mol%), and the mixture is sealed for 30 minutes. By mixing, a coating liquid containing a coupling agent was prepared.
At this time, it is considered that the reaction represented by the following reaction formula occurred in the container.
4OH-Si (OC 2 H 5 ) 3 + Ti (OC 4 H 9 ) 4 → Ti (O-Si (OC 2 H 5 ) 3 ) 4 + 4C 4 H 9 OH
実施例1のガラス基材101に、以下の手順(4.接合層105の形成)によって接合層105を形成した。そして、接合層105の上面に、実施例1と同様の手順(2.樹脂層102の形成)で樹脂層102の形成し、近赤外線カットフィルタ100Bを作成した。
[4.接合層105の形成]
1.カップリング剤含有塗布液の調製
(1)容器中に0.5N(mol/L)のHCl水溶液0.3mLと2-メトキシエタノール2.2mLを秤量し、密閉下で混合した。
(2)上記容器内にオルトケイ酸テトラエチル(Si(OC2H5)4)を加え、密閉下で30分間混合し、下記反応式で表される反応を生じさせた。
Si(OC2H5)4+H2O → HO-Si(OC2H5)3+C2H5OH
上記反応により水が全て消費され水酸基が生じるため、加水分解速度の速いTiのアルコキシドを加えても水酸化物が析出せず、溶液が均質となることが期待された。
(3)上記容器内にさらにチタン(IV)n-ブトキシド(Ti(OC4H9)4)を所定の割合(例えば、3~20モル%)になるように添加し、密閉下で30分間混合することにより、カップリング剤含有塗布液を調製した。
なお、このとき容器内では下記反応式で表される反応が生じたと考えられる。
4OH-Si(OC2H5)3+Ti(OC4H9)4→Ti(O-Si(OC2H5)3)4+4C4H9OH (Example 11)
A
[4. Formation of bonding layer 105]
1. 1. Preparation of Coupling Agent-Containing Coating Solution (1) 0.3 mL of 0.5 N (mol / L) HCl aqueous solution and 2.2 mL of 2-methoxyethanol were weighed in a container and mixed in a hermetically sealed manner.
(2) Tetraethyl orthosilicate (Si (OC 2 H 5 ) 4 ) was added to the above container and mixed for 30 minutes under a closed seal to cause a reaction represented by the following reaction formula.
Si (OC 2 H 5 ) 4 + H 2 O → HO-Si (OC 2 H 5 ) 3 + C 2 H 5 OH
Since all the water is consumed and hydroxyl groups are generated by the above reaction, it was expected that the hydroxide would not precipitate even if Ti alkoxide having a high hydrolysis rate was added, and the solution would be homogeneous.
(3) Titanium (IV) n-butoxide (Ti (OC 4 H 9 ) 4 ) is further added to the above container in a predetermined ratio (for example, 3 to 20 mol%), and the mixture is sealed for 30 minutes. By mixing, a coating liquid containing a coupling agent was prepared.
At this time, it is considered that the reaction represented by the following reaction formula occurred in the container.
4OH-Si (OC 2 H 5 ) 3 + Ti (OC 4 H 9 ) 4 → Ti (O-Si (OC 2 H 5 ) 3 ) 4 + 4C 4 H 9 OH
2.塗布膜の形成
上記カップリング剤含有塗布液を含有する容器内に対し、さらに0.5NのHCl水溶液1.2mLと、水4.7mLと、2-メトキシエタノール8.1mLを秤量し、密閉下で30分間混合して塗布膜形成液を調製した。
このとき容器内では下記反応式で表される反応が生じたと考えられる。
Ti{(O-Si(OC2H5)3}4+12H2O→Ti{(O-Si(OH)3}4+12C2H5OH
HO-Si(OC2H5)3+3H2O→ Si(OH)4 + 3C2H5OH
得られた塗布膜形成液を、スピンコーターを用いてガラス基材101上に、0.03mL/cm2となるように塗布した。
上記塗布膜形成液が塗布されたガラス基材101を250℃に加熱したホットプレートに乗せ、30分間加熱して脱水縮合させることにより表面に硬化膜(接合層105)を形成した。 2. 2. Formation of coating film In the container containing the above-mentioned coupling agent-containing coating liquid, 1.2 mL of 0.5 N HCl aqueous solution, 4.7 mL of water and 8.1 mL of 2-methoxyethanol are weighed and sealed. Was mixed for 30 minutes to prepare a coating film-forming solution.
At this time, it is considered that the reaction represented by the following reaction formula occurred in the container.
Ti {(O-Si (OC 2 H 5 ) 3 } 4 + 12H 2 O → Ti {(O-Si (OH) 3 } 4 + 12C 2 H 5 OH
HO-Si (OC 2 H 5 ) 3 + 3H 2 O → Si (OH) 4 + 3C 2 H 5 OH
The obtained coating film forming liquid was applied onto theglass substrate 101 using a spin coater so as to have a concentration of 0.03 mL / cm2.
Theglass substrate 101 coated with the coating film forming liquid was placed on a hot plate heated to 250 ° C. and heated for 30 minutes for dehydration condensation to form a cured film (bonding layer 105) on the surface.
上記カップリング剤含有塗布液を含有する容器内に対し、さらに0.5NのHCl水溶液1.2mLと、水4.7mLと、2-メトキシエタノール8.1mLを秤量し、密閉下で30分間混合して塗布膜形成液を調製した。
このとき容器内では下記反応式で表される反応が生じたと考えられる。
Ti{(O-Si(OC2H5)3}4+12H2O→Ti{(O-Si(OH)3}4+12C2H5OH
HO-Si(OC2H5)3+3H2O→ Si(OH)4 + 3C2H5OH
得られた塗布膜形成液を、スピンコーターを用いてガラス基材101上に、0.03mL/cm2となるように塗布した。
上記塗布膜形成液が塗布されたガラス基材101を250℃に加熱したホットプレートに乗せ、30分間加熱して脱水縮合させることにより表面に硬化膜(接合層105)を形成した。 2. 2. Formation of coating film In the container containing the above-mentioned coupling agent-containing coating liquid, 1.2 mL of 0.5 N HCl aqueous solution, 4.7 mL of water and 8.1 mL of 2-methoxyethanol are weighed and sealed. Was mixed for 30 minutes to prepare a coating film-forming solution.
At this time, it is considered that the reaction represented by the following reaction formula occurred in the container.
Ti {(O-Si (OC 2 H 5 ) 3 } 4 + 12H 2 O → Ti {(O-Si (OH) 3 } 4 + 12C 2 H 5 OH
HO-Si (OC 2 H 5 ) 3 + 3H 2 O → Si (OH) 4 + 3C 2 H 5 OH
The obtained coating film forming liquid was applied onto the
The
次いで、接合層105の上面に、実施例1と同様の手順(2.樹脂層102の形成)で樹脂層102の形成し、近赤外線カットフィルタ100Bを作成した。
Next, the resin layer 102 was formed on the upper surface of the bonding layer 105 by the same procedure as in Example 1 (2. Formation of the resin layer 102) to prepare a near-infrared cut filter 100B.
このように、ガラス基材101と樹脂層102との間に接合層105を形成すると、ガラス基材101と樹脂層102との密着性を格段に高めることができるため、信頼性を飛躍的に向上させることができる。
By forming the bonding layer 105 between the glass base material 101 and the resin layer 102 in this way, the adhesion between the glass base material 101 and the resin layer 102 can be significantly improved, and the reliability can be dramatically improved. Can be improved.
なお、本実施形態の接合層105は、Si原子とともに、Ti原子、Zr原子およびAl原子から選ばれる一種以上を含むものであるが、接合層105を形成する代わりに、接合層105の各成分を、樹脂層102に含有させることもできる。つまり、樹脂層102が、Si原子とともに、Ti原子、Zr原子およびAl原子から選ばれる一種以上を含むように構成することができる。
The bonding layer 105 of the present embodiment contains one or more selected from Ti atom, Zr atom and Al atom together with Si atom, but instead of forming the bonding layer 105, each component of the bonding layer 105 is used. It can also be contained in the resin layer 102. That is, the resin layer 102 can be configured to contain one or more selected from Ti atoms, Zr atoms, and Al atoms together with Si atoms.
また、本実施形態の接合層105は、Si原子とともに、Ti原子、Zr原子およびAl原子から選ばれる一種以上を含むものであるとしたが、ガラス基材101と樹脂層102との密着性を高めることができればよく、例えば、透明な蒸着型又は塗布型の接着剤を適用することもできる。
Further, the bonding layer 105 of the present embodiment is said to contain one or more selected from Ti atoms, Zr atoms and Al atoms together with Si atoms, but it is intended to improve the adhesion between the glass substrate 101 and the resin layer 102. For example, a transparent vapor deposition type or coating type adhesive can be applied.
また、本実施形態の樹脂層102は、接合層105を介してガラス基材101の一方の主面上(図16において上側の面)に形成されているが、第1の実施形態と同様、樹脂層102は、接合層105を介してガラス基材101の他方の主面上(図16において下側の面)に形成されてもよく、また、ガラス基材101の両面に形成されてもよい。また、樹脂層102は必ずしも一層である必要はなく、複数層で構成することもできる。
Further, the resin layer 102 of the present embodiment is formed on one main surface (upper surface in FIG. 16) of the glass base material 101 via the bonding layer 105, but is similar to the first embodiment. The resin layer 102 may be formed on the other main surface (lower surface in FIG. 16) of the glass base material 101 via the bonding layer 105, or may be formed on both sides of the glass base material 101. good. Further, the resin layer 102 does not necessarily have to be one layer, and may be composed of a plurality of layers.
なお、今回開示された実施の形態は、全ての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は、上記した説明ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
It should be noted that the embodiment disclosed this time is an example in all respects and should be considered not to be restrictive. The scope of the present invention is shown by the scope of claims, not the above description, and is intended to include all modifications within the meaning and scope equivalent to the scope of claims.
1 :撮像装置
11 :吸収層
12 :反射層
13 :透明基材
100 :近赤外線カットフィルタ
100A :近赤外線カットフィルタ
100B :近赤外線カットフィルタ
101 :ガラス基材
102 :樹脂層
103 :反射防止膜
104 :反射防止膜
105 :接合層
200 :固体撮像素子
300 :パッケージ 1: Image pickup device 11: Absorption layer 12: Reflective layer 13: Transparent substrate 100: Nearinfrared cut filter 100A: Near infrared cut filter 100B: Near infrared cut filter 101: Glass substrate 102: Resin layer 103: Antireflection film 104 : Antireflection film 105: Bonding layer 200: Solid image pickup element 300: Package
11 :吸収層
12 :反射層
13 :透明基材
100 :近赤外線カットフィルタ
100A :近赤外線カットフィルタ
100B :近赤外線カットフィルタ
101 :ガラス基材
102 :樹脂層
103 :反射防止膜
104 :反射防止膜
105 :接合層
200 :固体撮像素子
300 :パッケージ 1: Image pickup device 11: Absorption layer 12: Reflective layer 13: Transparent substrate 100: Near
Claims (21)
- フツリン酸塩系ガラス又はリン酸塩系ガラスからなり、800~950nmの波長域における平均透過率が3%以下である透明基材と、
前記透明基材の少なくとも一方の主面上に形成され、特定の波長の光を吸収する樹脂層と、
を備えることを特徴とする近赤外線カットフィルタ。 A transparent substrate made of fluoride-based glass or phosphate-based glass and having an average transmittance of 3% or less in the wavelength range of 800 to 950 nm.
A resin layer formed on at least one main surface of the transparent substrate and absorbing light having a specific wavelength,
A near-infrared cut filter characterized by being equipped with. - 前記透明基材の透過率曲線の短波長側の半値波長が335~400nmであり、長波長側の半値波長が590~630nmであることを特徴とする請求項1に記載の近赤外線カットフィルタ。 The near-infrared cut filter according to claim 1, wherein the half-value wavelength on the short wavelength side of the transmittance curve of the transparent substrate is 335 to 400 nm, and the half-value wavelength on the long wavelength side is 590 to 630 nm.
- 前記透明基材は、650~720nmの波長域における平均透過率が18%以下であることを特徴とする請求項1又は請求項2に記載の近赤外線カットフィルタ。 The near-infrared cut filter according to claim 1 or 2, wherein the transparent substrate has an average transmittance of 18% or less in the wavelength range of 650 to 720 nm.
- 前記透明基材は、720~750nmの波長域における平均透過率が10%以下であることを特徴とする請求項1から請求項3のいずれか一項に記載の近赤外線カットフィルタ。 The near-infrared cut filter according to any one of claims 1 to 3, wherein the transparent substrate has an average transmittance of 10% or less in a wavelength range of 720 to 750 nm.
- 前記樹脂層は、透明樹脂と、該透明樹脂中に均一に分散してなる色素と、を含むことを特徴とする請求項1から請求項4のいずれか一項に記載の近赤外線カットフィルタ。 The near-infrared cut filter according to any one of claims 1 to 4, wherein the resin layer contains a transparent resin and a dye uniformly dispersed in the transparent resin.
- 前記色素は、340~400nmに極大吸収波長を有する紫外線吸収色素を含むことを特徴とする請求項5に記載の近赤外線カットフィルタ。 The near-infrared cut filter according to claim 5, wherein the dye contains an ultraviolet absorbing dye having a maximum absorption wavelength of 340 to 400 nm.
- 前記色素は、650~760nmに極大吸収波長を有する第1の近赤外吸収色素を含むことを特徴とする請求項5又は請求項6に記載の近赤外線カットフィルタ。 The near-infrared cut filter according to claim 5 or 6, wherein the dye contains a first near-infrared absorbing dye having a maximum absorption wavelength of 650 to 760 nm.
- 前記色素は、800~1200nmに極大吸収波長を有する第2の近赤外吸収色素を含むことを特徴とする請求項7に記載の近赤外線カットフィルタ。 The near-infrared cut filter according to claim 7, wherein the dye contains a second near-infrared absorbing dye having a maximum absorption wavelength of 800 to 1200 nm.
- 前記樹脂層が、Si原子とともに、Ti原子、Zr原子およびAl原子から選ばれる一種以上を含むことを特徴とする請求項1から請求項8のいずれか一項に記載の近赤外線カットフィルタ。 The near-infrared cut filter according to any one of claims 1 to 8, wherein the resin layer contains one or more selected from Ti atom, Zr atom and Al atom together with Si atom.
- 前記透明基板と前記樹脂層との間に、前記透明基板と前記樹脂層の密着性を高める接合層を備えることを特徴とする請求項1から請求項9のいずれか一項に記載の近赤外線カットフィルタ。 The near infrared ray according to any one of claims 1 to 9, wherein a bonding layer for enhancing the adhesion between the transparent substrate and the resin layer is provided between the transparent substrate and the resin layer. Cut filter.
- 前記接合層は、Si原子とともに、Ti原子、Zr原子およびAl原子から選ばれる一種以上を含む単層構造を有することを特徴とする請求項10に記載の近赤外線カットフィルタ。 The near-infrared cut filter according to claim 10, wherein the bonding layer has a single-layer structure containing one or more selected from Ti atom, Zr atom and Al atom together with Si atom.
- 前記接合層において、Si原子、Ti原子、Zr原子およびAl原子の総数に占める、Ti原子、Zr原子およびAl原子の合計原子数の割合が、0atomic%を超え33.3atomic%以下であることを特徴とする請求項11に記載の近赤外線カットフィルタ。 In the bonding layer, the ratio of the total number of atoms of Ti atom, Zr atom and Al atom to the total number of Si atom, Ti atom, Zr atom and Al atom is more than 0 atomic% and 33.3 atomic% or less. The near-infrared cut filter according to claim 11.
- 前記樹脂層上に第1の反射防止膜を備え、前記透明基材の他方の主面上に第2の反射防止膜を備えることを特徴とする請求項1から請求項12のいずれか一項に記載の近赤外線カットフィルタ。 One of claims 1 to 12, wherein a first antireflection film is provided on the resin layer, and a second antireflection film is provided on the other main surface of the transparent substrate. Near infrared cut filter described in.
- 透過率曲線の短波長側の半値波長が385~430nmであり、長波長側の半値波長が590~630nmであることを特徴とする請求項13に記載の近赤外線カットフィルタ。 The near-infrared cut filter according to claim 13, wherein the half-value wavelength on the short wavelength side of the transmittance curve is 385 to 430 nm, and the half-value wavelength on the long wavelength side is 590 to 630 nm.
- 前記第1の反射防止膜及び前記第2の反射防止膜が、それぞれ、厚さ500nm以下の誘電体多層膜によって構成されていることを特徴とする請求項13又は請求項14に記載の近赤外線カットフィルタ。 13. The near-infrared ray according to claim 13, wherein the first antireflection film and the second antireflection film are each composed of a dielectric multilayer film having a thickness of 500 nm or less. Cut filter.
- 前記誘電体多層膜が、10層以下であることを特徴とする請求項15に記載の近赤外線カットフィルタ。 The near-infrared cut filter according to claim 15, wherein the dielectric multilayer film has 10 or less layers.
- 前記誘電体多層膜は、屈折率1.1~1.5の材料から構成される低屈折誘電体膜と、屈折率2.0~2.5の材料から構成される高屈折誘電体膜と、が交互に積層されて形成されていることを特徴とする請求項15又は請求項16に記載の近赤外線カットフィルタ。 The dielectric multilayer film includes a low refractive index film made of a material having a refractive index of 1.1 to 1.5 and a high refractive index film made of a material having a refractive index of 2.0 to 2.5. The near-infrared cut filter according to claim 15 or 16, wherein the above are alternately laminated and formed.
- 前記誘電体多層膜は、屈折率1.1~1.3の材料から構成される低屈折誘電体膜と、屈折率1.4~1.6の材料から構成される高屈折誘電体膜と、が交互に積層されて形成されていることを特徴とする請求項15又は請求項16に記載の近赤外線カットフィルタ。 The dielectric multilayer film includes a low refractive index film made of a material having a refractive index of 1.1 to 1.3 and a high refractive index film made of a material having a refractive index of 1.4 to 1.6. The near-infrared cut filter according to claim 15 or 16, wherein the above are alternately laminated and formed.
- 前記透明基材の厚さが、0.01~1.5mmであることを特徴とする請求項1から請求項18のいずれか一項に記載の近赤外線カットフィルタ。 The near-infrared cut filter according to any one of claims 1 to 18, wherein the thickness of the transparent base material is 0.01 to 1.5 mm.
- 固体撮像素子と、請求項1から請求項19のいずれか一項に記載の近赤外線カットフィルタとを備えることを特徴とする撮像装置。 An image pickup apparatus including a solid-state image pickup device and the near-infrared cut filter according to any one of claims 1 to 19.
- 前記近赤外線カットフィルタが、前記固体撮像素子の直前に配置され、カバーガラスを兼ねることを特徴とする請求項20に記載の撮像装置。 The image pickup apparatus according to claim 20, wherein the near-infrared cut filter is arranged immediately in front of the solid-state image pickup element and also serves as a cover glass.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/032735 WO2022044286A1 (en) | 2020-08-28 | 2020-08-28 | Near-infrared cut filter and imaging device provided with same |
TW109129966A TW202208892A (en) | 2020-08-28 | 2020-09-01 | Near-infrared cut filter and imaging device provided with same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/032735 WO2022044286A1 (en) | 2020-08-28 | 2020-08-28 | Near-infrared cut filter and imaging device provided with same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022044286A1 true WO2022044286A1 (en) | 2022-03-03 |
Family
ID=80352928
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/032735 WO2022044286A1 (en) | 2020-08-28 | 2020-08-28 | Near-infrared cut filter and imaging device provided with same |
Country Status (2)
Country | Link |
---|---|
TW (1) | TW202208892A (en) |
WO (1) | WO2022044286A1 (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004083290A (en) * | 2002-07-05 | 2004-03-18 | Hoya Corp | Near-infrared absorption glass, element and filter and process for manufacturing molded product of the glass |
JP2017090687A (en) * | 2015-11-10 | 2017-05-25 | 旭硝子株式会社 | Near-infrared absorbing glass wafer and semiconductor wafer laminate |
WO2017130825A1 (en) * | 2016-01-29 | 2017-08-03 | 富士フイルム株式会社 | Composition, film, near-infrared cutoff filter, laminate, pattern formation method, solid-state image sensor, image display device, infrared sensor and color filter |
WO2017154560A1 (en) * | 2016-03-09 | 2017-09-14 | 日本電気硝子株式会社 | Near-infrared absorption filter glass |
JP2018049250A (en) * | 2016-06-01 | 2018-03-29 | 日本電気硝子株式会社 | Method and device for manufacturing near infrared absorbing glass |
JP2019211773A (en) * | 2018-06-04 | 2019-12-12 | Hoya Candeo Optronics株式会社 | Optical filter and imaging device |
JP2020042289A (en) * | 2015-07-09 | 2020-03-19 | 日本板硝子株式会社 | Infrared cut filter and image capturing device |
-
2020
- 2020-08-28 WO PCT/JP2020/032735 patent/WO2022044286A1/en active Application Filing
- 2020-09-01 TW TW109129966A patent/TW202208892A/en unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004083290A (en) * | 2002-07-05 | 2004-03-18 | Hoya Corp | Near-infrared absorption glass, element and filter and process for manufacturing molded product of the glass |
JP2020042289A (en) * | 2015-07-09 | 2020-03-19 | 日本板硝子株式会社 | Infrared cut filter and image capturing device |
JP2017090687A (en) * | 2015-11-10 | 2017-05-25 | 旭硝子株式会社 | Near-infrared absorbing glass wafer and semiconductor wafer laminate |
WO2017130825A1 (en) * | 2016-01-29 | 2017-08-03 | 富士フイルム株式会社 | Composition, film, near-infrared cutoff filter, laminate, pattern formation method, solid-state image sensor, image display device, infrared sensor and color filter |
WO2017154560A1 (en) * | 2016-03-09 | 2017-09-14 | 日本電気硝子株式会社 | Near-infrared absorption filter glass |
JP2018049250A (en) * | 2016-06-01 | 2018-03-29 | 日本電気硝子株式会社 | Method and device for manufacturing near infrared absorbing glass |
JP2019211773A (en) * | 2018-06-04 | 2019-12-12 | Hoya Candeo Optronics株式会社 | Optical filter and imaging device |
Also Published As
Publication number | Publication date |
---|---|
TW202208892A (en) | 2022-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7520564B2 (en) | Near-infrared cut filter and imaging device equipped with same | |
US11675116B2 (en) | Near-infrared cut-off filter and imaging device including the same | |
JP6087464B1 (en) | Infrared cut filter and imaging optical system | |
US10386555B2 (en) | Optical filter, and imaging device comprising same | |
KR101374755B1 (en) | Infrared blocking filter | |
JP5849719B2 (en) | Light absorber and imaging device using the same | |
KR20170074911A (en) | Optical arrangement for a camera module, camera module with optical arrangement and method of manufacturing the optical arrangement | |
CN110095831A (en) | Cutoff filter and photographic device | |
KR20240008967A (en) | Optical filter and imaging apparatus | |
KR20180116374A (en) | Laminated structure of cover glass, camera structure, imaging device | |
TW202113424A (en) | Optical member and camera module to provide an optical member which selectively reflects visible light in a specific wavelength region but suppresses the reflection of light in a specific wavelength region | |
JP6772450B2 (en) | Near-infrared absorbing glass wafer and semiconductor wafer laminate | |
JP2019066742A (en) | Optical filter and image capturing device | |
JP2017167557A (en) | Light absorber and image capturing device using the same | |
WO2022154017A1 (en) | Near-infrared cut filter and imaging device having same | |
WO2022044286A1 (en) | Near-infrared cut filter and imaging device provided with same | |
KR20200134243A (en) | Optical filter and its use | |
JP2018132609A (en) | Infrared cut filter and imaging optical system | |
US20190369312A1 (en) | Optical filter and imaging apparatus | |
JP7586387B1 (en) | Optical Filters | |
US20220179141A1 (en) | Optical filter and imaging device | |
WO2024143129A1 (en) | Optical filter | |
US20240199547A1 (en) | Optical absorbent composition | |
WO2023248903A1 (en) | Optical filter and imaging device | |
KR20160067058A (en) | Optical filter for image pickup device, and image pickup device containing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20951536 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20951536 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |