[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022044102A1 - 光導波路部品およびその製造方法 - Google Patents

光導波路部品およびその製造方法 Download PDF

Info

Publication number
WO2022044102A1
WO2022044102A1 PCT/JP2020/031935 JP2020031935W WO2022044102A1 WO 2022044102 A1 WO2022044102 A1 WO 2022044102A1 JP 2020031935 W JP2020031935 W JP 2020031935W WO 2022044102 A1 WO2022044102 A1 WO 2022044102A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
core
optical waveguide
sio
circuit
Prior art date
Application number
PCT/JP2020/031935
Other languages
English (en)
French (fr)
Inventor
優生 倉田
賢哉 鈴木
祥江 森本
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to US18/006,449 priority Critical patent/US20230266534A1/en
Priority to PCT/JP2020/031935 priority patent/WO2022044102A1/ja
Priority to JP2022544919A priority patent/JP7401824B2/ja
Publication of WO2022044102A1 publication Critical patent/WO2022044102A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1228Tapered waveguides, e.g. integrated spot-size transformers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/30Optical coupling means for use between fibre and thin-film device
    • G02B6/305Optical coupling means for use between fibre and thin-film device and having an integrated mode-size expanding section, e.g. tapered waveguide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1223Basic optical elements, e.g. light-guiding paths high refractive index type, i.e. high-contrast waveguides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12035Materials
    • G02B2006/12061Silicon
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12166Manufacturing methods
    • G02B2006/12195Tapering

Definitions

  • the present invention relates to an optical waveguide component applicable to an optical communication system.
  • SiPh Silicon photonics
  • SiPh Silicon photonics
  • An optical functional element such as a photodiode (PD) that converts optical and electrical signals and an optical modulator that modulates the intensity and phase of an optical signal is also required in the transmission device.
  • PD photodiode
  • the above-mentioned SiPh circuit is suitable for a high-performance optical electron integrated device that integrates an optical waveguide that performs optical signal processing and an optical device such as a PD that performs photoelectric conversion in order to expand the communication capacity.
  • an optical circuit function and an optical functional element using SiPh it is possible to realize a compact optical signal transmission / reception function.
  • a small optical transmission / reception module using SiPh has been developed (Patent Document 1).
  • SiPh circuit is small and has the advantage of being able to realize various optical functions such as optical-electric conversion and modulation, the difference in the specific refractive index between the core and the cladding is large, so problems due to manufacturing errors may occur.
  • wavelength duplexers such as Machzenda optical interferometers and arrayed waveguide gratings (AWG: Arrayed Waveguide Grating)
  • AWG arrayed Waveguide Grating
  • a small manufacturing error causes a large phase error and deteriorates the optical characteristics. It ends up.
  • the SiPh circuit since the mode field of the propagating light is small, there is a problem that the loss is large in connection with the optical fiber having a large mode field and the transmission characteristic is deteriorated.
  • SiPh has the above-mentioned problems in terms of the accuracy of the optical circuit function and the connectivity with the optical fiber, and a higher-performance optical circuit has been required.
  • a quartz-based planar lightwave circuit (PLC: Planar Lightwave Circuit) is known as another optical circuit that compensates for the above-mentioned drawbacks of the SiPh circuit.
  • PLC Planar Lightwave Circuit
  • PLC is a waveguide type optical device that has excellent features such as low loss, high reliability, and high degree of freedom in design.
  • a PLC with integrated functions is installed. Since the phase error is small in PLC, high-precision and large-scale wavelength combined / demultiplexing is possible (Patent Document 1), and the polarization dependence and temperature dependence are also small, and the optical circuit function that is not suitable for SiPh circuit is high. It can be realized in performance.
  • the optical waveguide is made of the same material system as the optical fiber, the propagation loss is small, and by bringing the mode field closer to the optical fiber, low loss coupling with the optical fiber can be realized.
  • FIG. 1 is a diagram showing a configuration of an optical circuit in which a SiPh circuit and a PLC are butted and coupled.
  • FIG. 1 (a) is a top view of the substrate surface (xy surface) of an optical circuit including "butt coupling", and (b) is a top view of the optical circuit board (Ib-Ib line) to be coupled to the substrate surface. It is sectional drawing cut in the vertical plane (xz plane).
  • the form of butt-coupling optical circuits made of different materials as shown in FIG. 1 is called "hybrid integration".
  • the optical circuit is composed of SiPh circuit 1 and PLC2, both of which are fixed via an adhesive 14.
  • the optical waveguide 4 is configured between the underclad layer 8 created on the substrate 7 and the overclad layer 9.
  • the optical waveguide of the optical circuit 1 includes a square-shaped ordinary optical waveguide 4a and a tapered portion 4b as a spot size converter (SSC) at the tip.
  • SSC spot size converter
  • the optical waveguide 5a is configured between the underclad layer 11 created on the substrate 10 and the overclad layer 12.
  • the separately manufactured SiPh circuit 1 and PLC2 are fixed by the adhesive 14, so that the distance between the optical waveguides is completely zero, which causes processing error. Difficult due to mounting errors. Therefore, light is emitted from one optical waveguide into the space (adhesive 14), and the beam is incident on the other optical waveguide to be paired to perform optical coupling (also referred to as optical connection).
  • optical coupling also referred to as optical connection.
  • the core should be centered with high accuracy with an appropriate interval between SiPh circuit 1 and PLC2 to fix both. Is required.
  • it is necessary to butt-couple the optical waveguides on the respective substrates, and there are problems of complicated alignment and diffraction loss due to the adhesive thickness of the bonded portion.
  • a "monolithic integration” approach in which optical waveguides made of different materials are integrated on a common single substrate.
  • Both the SiPh circuit and the PLC are optical circuits formed on a Si substrate, and the materials of the substrate are the same.
  • SOI Silicon On Insulator
  • FIG. 2 is a diagram conceptually explaining a process of monolithically integrating optical circuits of different optical waveguides. Since FIG. 2 focuses on the explanation of the manufacturing process, the configuration in which different optical waveguides are connected is not shown, and only the cross section perpendicular to the length direction of the optical waveguide is shown.
  • the SOI substrate 13 is first prepared in the first step.
  • the SOI substrate 13 includes a BOX layer 8 of an embedded oxide film (BOX: Buried OXide) and an uppermost Si layer 4 on the Si substrate 7.
  • the Si layer 4 is processed to create a Si core 4a of the optical waveguide of the SiPh circuit 1.
  • the SiO 2 film 5 is deposited on the entire surface of the BOX layer 8 including the Si core 4a.
  • the SiO 2 film 5 is processed to create the SiO 2 core 5a which is the optical waveguide core of the PLC 2.
  • the overclad layer 9 is deposited.
  • the overclad layer 9 is removed from the processing portion required for the SiPh circuit 1 in order to create the wiring pattern.
  • two optical circuits consisting of a SiPh circuit 1 including a Si core 4a and an optical waveguide of a different material of PLC2 including a SiO 2 core 5a are formed into one wafer ( Can be integrated on the SIO board).
  • monolithic integration complicated alignment in the optical circuit by the "butt coupling" of the hybrid integration shown in FIG. 1 and connection by an adhesive are not required, and the SiPh circuit 1 and the PLC 2 can be connected without a gap. can.
  • the optical circuit by monolithic integration shown in FIG. 2 solves the problem of the optical circuit in the hybrid integration, the problem of optical connection loss still remains. Specifically, there is a problem of inconsistency in the mode field diameter (MFD: Mode Field Diameter) of the propagating light between two optical waveguides made of different materials, and inconsistency in the core height between the two optical waveguides. ..
  • MFD Mode Field Diameter
  • FIG. 3 is a diagram illustrating the misalignment of the optical waveguide of the monolithic integrated optical circuit. Similar to FIG. 1, FIG. 3A is a top view of the substrate surface (xy surface) of the monolithically integrated optical circuit, and FIG. 3B is a substrate surface passing through an optical waveguide (IIIb-IIIb line). It is sectional drawing which cut in the plane perpendicular to (x-z plane).
  • the optical circuit by monolithic integration of FIG. 3 is manufactured by a series of steps described in FIG. 2, and the configuration of the cross-sectional view of (b) is the configuration of two optical waveguides manufactured by the step of FIG. It corresponds to. As can be understood from the manufacturing process of FIG.
  • the center heights of the Si core 4 and the SiO 2 core 5a are deviated in the direction perpendicular to the substrate (z-axis direction), and the light propagating through the two cores 4, 5a
  • the center of the mode field is also displaced, causing optical connection loss.
  • FIG. 4 is a diagram showing a configuration for eliminating the positional deviation of the optical waveguide in monolithic integration. Similar to FIGS. 1 and 3, FIG. 4A is a top view of the substrate surface (xy surface) of the monolithically integrated optical circuit, and FIG. 4B is an optical waveguide (IVb-IVb line). It is a cross-sectional view cut by a plane (x-z plane) perpendicular to the substrate plane through the above.
  • the upper surface of the underclad of the BOX layer 8 is scraped off on the PLC2 side to form an underclad 8-2 having a lowered height so that the center heights of the two cores 4 and 5a are matched. be able to. Even in this configuration, the mismatch of the MFD at the boundary surface between the SiPh circuit 1 and the PLC2 where the Si core 4 is interrupted still remains, resulting in an optical connection loss.
  • the present invention has been made in view of such a problem, and an object of the present invention is to provide an optical waveguide component that realizes a low-loss optical connection with a simple structure and a manufacturing method.
  • One embodiment of the present invention is a first optical circuit having an optical waveguide component for optically connecting optical waveguides made of different materials on a substrate and having an optical waveguide as a first core made of the first material.
  • a second optical circuit having an optical waveguide as a second core made of a second material having a lower refractive index than the first material, and an optical connection portion between the first core and the second core.
  • the second core is such that the region of the first core is included in the region of the second core. It is configured to extend to the circuit, and has a longitudinal taper structure in the optical connection portion in which the height of the extended second core decreases from the first optical circuit toward the second optical circuit. It is a characteristic optical waveguide component.
  • Another embodiment of the present invention is a method of manufacturing an optical waveguide component for optically connecting optical waveguides made of different materials, in which a first core made of the first material is formed on a substrate provided with an underclad layer. Steps to be performed, the high-level surface corresponding to the first optical circuit, the low-level surface corresponding to the second optical circuit, and the high-level surface toward the second optical circuit by processing the underclad layer. A step of forming a protrusion extending along the first core and a step of depositing a core layer of a second material having a refractive index lower than that of the first material on the processed underclad layer.
  • the region of the first core is configured to be included in the region of the second core in a cross section perpendicular to the length direction of the second core, and the height of the second core is from the first optical circuit. It is a manufacturing method including a step that forms a vertically tapered structure that becomes lower toward the second optical circuit.
  • FIG. It is a figure which shows the structure of the cross section of each part of the optical connection part of the optical waveguide component of Example 1.
  • FIG. It is a figure which shows the structure of Example 2 of the optical circuit including the optical waveguide component of this disclosure. It is a figure which shows the structure of the upper surface and the side surface of the optical waveguide component of Example 2.
  • FIG. It is a figure which shows the structure of the cross section of each part of the optical waveguide component of Example 2.
  • FIG. It is a figure which shows the structure of another optical circuit of Example 2.
  • FIG. It is a figure which shows the modification of the structure of the protrusion of the optical waveguide component of this disclosure.
  • the optical waveguide component of the present disclosure provides a configuration in which two optical waveguides made of different materials are optically connected with low loss.
  • a first optical circuit containing a core made of a first material and a second optical circuit containing a core made of a second material are configured on a single substrate.
  • the optical waveguide component of the present disclosure includes an optical connection portion between two optical circuits, and the core cross-sectional region of one optical waveguide is included in the core cross-section region of the other optical waveguide between the two optical waveguides. It has a heavy structure.
  • the optical connection portion is provided with an underclad protrusion extending from the high surface of the underclad toward the low surface along the first core, and the width of the protrusion gradually increases toward the second optical circuit. It has a structure that narrows to.
  • a second core region formed by extending from the second optical circuit covers the first core, and the height of the extended second core region is the height of the second light. It has a vertical taper structure that gradually decreases toward the circuit.
  • the area of the underclad protrusion gradually decreases, and the area ratio occupied by the second core region extended from the second optical circuit gradually increases.
  • FIG. 5 is a diagram showing the configuration of an optical waveguide component in which different optical waveguides of the present disclosure are coupled.
  • FIG. 5A is a top view of the substrate surface (xy surface) of the optical waveguide component 100
  • FIG. 5B is a cross section (x) passing through the center of two optical waveguides (Vb—Vb line).
  • -Z plane) is a side view
  • (c) is a cross-sectional view of each part of the optical waveguide cut from a plane (yz plane) perpendicular to the length direction.
  • a first optical circuit SiPh circuit 1 having Si as a core 4 and a second optical circuit (PLC2) having SiO 2 as a core 5 are formed on a common substrate 7, and 2 Optical signals are input and output between two optical circuits. Between the two optical circuits 1 and 2, an optical connection portion 3 for gradually matching the heights of the cores of optical waveguides made of different materials is provided.
  • the region of the first optical circuit 1 and the region of the second optical circuit 2 have underclad layers 8-1 and 8-2 having different heights.
  • the underclad layers 8-1 and 8-2 having different heights can be understood from the side view of FIG. 1 (b) and the AA'cross section and the DD'cross section of FIG. 1 (c). .. In this respect, it is similar to the configuration of the underclad layer provided with a step due to monolithic integration shown in FIG.
  • the difference from the optical circuit of the prior art is that in the optical connection portion 3, from the "high surface” of the underclad 8-1 of the first optical circuit 1 to the underclad "8-2" of the second optical circuit 2. It is provided with protrusions 8-3 formed extending along the Si core 4a toward the lower surface of the light.
  • the high surface of the underclad 8-1 is referred to as a “high surface”
  • the low surface of the underclad 8-2 is referred to as a “low surface”.
  • the width of the underclad protrusion 8-3 has a structure that gradually narrows toward the second optical circuit 2.
  • the Si core 4b is continuously formed up to the middle of the upper surface of the protrusion 8-3, and the Si core of the first optical circuit 1 is viewed in a cross section perpendicular to the length direction of the optical waveguide.
  • the SiO 2 core 5-2 of the second optical circuit 2 is configured to include 4a and 4b.
  • a characteristic vertical taper structure 5-3 is formed so as to cover the protrusion 8-3 corresponding to the above-mentioned underclad protrusion 8-3 of the optical connection portion 3.
  • the longitudinal taper structure 5-3 of SiO 2 is continuous from the SiO 2 core 5-2 of the second optical circuit 2 and is "integrated" together with the SiO 2 region 5-1 of the first optical circuit 1. It is formed. That is, the SiO 2 region 5-1 and the longitudinal taper structure 5-3 and the SiO 2 core 5-2 are formed at the same time by the step of depositing the common SiO 2 film and the step of manufacturing the optical waveguide.
  • the three regions 5-1, 5-2, and 5-3 formed by the above-mentioned SiO 2 film formed along the Si cores 4a and 4b are single SiO in the top view of FIG. 1 (a). It is shown as 2 regions 5.
  • the SiO 2 region 5 is from the SiO 2 region 5-1 of the AA ′ cross section of the first optical circuit 1 to the BB ′ cross section, C.
  • the shape and height are gradually changed from the vertical taper structure 5-3 in the -C'cross section to the SiO 2 core 5-2 in the DD' cross section of the second optical circuit 2.
  • the shape and height of the uppermost portion of the overclad 9 covering the entire SiO 2 region 5 are changing.
  • the vertical taper structure 5-3 described above has a structure in which the protrusions 8-3 gradually narrow toward the second optical circuit 2.
  • This vertical taper structure utilizes the effect that the height of the SiO 2 film is lowered as the SiO 2 film is deposited in a narrow region in the thin film deposition process.
  • the SiO 2 region 5-1 is formed so as to surround the Si core 4.
  • This io 2 region 5-1 is continuously and integrally manufactured from the SiO 2 core 5-2 in the second optical circuit 2, but is regarded as a “clad” in the optical waveguide of the first optical circuit 1. Note that it works.
  • the core of the second optical circuit 2 functions as a cladding in the first optical circuit 1.
  • the cross-sectional region of the waveguide core 4 of the first optical circuit 1 is the cross-sectional region of the waveguide core 5-2 of the second optical circuit 2. It can be seen that it is contained in.
  • the optical signal can be propagated so as to bring the center of the MF closer to each other, and the coupling loss can be reduced.
  • the configuration of the optical waveguide component 100 in which different optical waveguides of the present disclosure are coupled, and the mechanism and effect of reducing the coupling loss will be described from various viewpoints.
  • the optical waveguide component 100 is refracted by a first optical waveguide having a first core 4a (Si) and a first core on a common single substrate 7.
  • a second optical waveguide having a second 5-2 core (SiO 2 ) made of a material having a low index is monolithically integrated.
  • the configuration of the optical connection portion 3 between the two optical circuits 1 and 2 will be seen from the transition of the core form of the optical waveguide.
  • a region where the second core 5-2 and the first core 4b overlap on the extension of the first core 4a
  • the above-mentioned vertical taper structure 5-3 is configured over an overlapping region and a non-overlapping region.
  • the vertical taper structure 5-3 has a second core 5-3 from the overlapping region side to the non-overlapping region side of the optical connection portion 3 with the upper surface of the substrate as a reference in the direction perpendicular to the substrate surface of the substrate 7 (z direction).
  • the height of 2 is gradually decreasing.
  • the MFD of the SiPh circuit 1 is enlarged and matched by a spot size converter (SSC) in accordance with the MFD on the PLC2 side having a large MFD.
  • SSC spot size converter
  • the SSC structure can be realized by a thin tapered Si core 4b whose width narrows from the rectangular Si core 4a toward the tip, as shown in FIG. 4 of the prior art.
  • a step is provided on the upper surface of the underclad 8-1 and 8-2 directly above the substrate 7.
  • a protrusion 8-3 formed by extending from the high surface toward the low surface side of the underclad along the Si core 4a is configured with this step in between.
  • the width of the protrusion 8-3 has a horizontal (y-direction) taper structure that gradually narrows toward the PLC2 side. Due to the tapered structure of the protrusion 8-3 corresponding to the fine tapered structure of the Si core, the Si core is covered with the SiO 2 film while gradually lowering the height from the SiPh circuit 1 toward the PLC2.
  • the vertical taper structure 5-3 of the optical connection portion 3 is formed by the fine taper structure of the Si core and the taper structure of the protrusion 8-3.
  • the SiO 2 core 5-1 that functions as the clad of the first optical waveguide, the vertical taper structure 5-3 of the optical connection portion 3, and the SiO 2 core 5-2 of the second optical waveguide are continuously and smoothly configured. Will be done.
  • the above-mentioned vertical taper structure 5-3 is a second optical waveguide of the SiO 2 core 5-2 gradually while suppressing the transition of the propagating light whose MFD is expanded upward on the substrate by the taper structure of the Si core 4b. Can be transitioned to the propagation mode of. Further, since the regions of the Si core 4a and the SiO 2 core 5-2 overlap in the cross section perpendicular to the waveguide length direction, the mode mismatch can be reduced. As a result, the optical connection of the SiPh circuit 1 and the PLC2 can be realized easily and with low loss.
  • the manufacturing procedure of the optical waveguide component 100 of FIG. 1 is briefly described, it is substantially the same as the manufacturing procedure of the monolithic integrated optical circuit described with reference to FIG.
  • a SiO 2 thin film is deposited on a Si or SiO 2 substrate by 10 to 20 ⁇ m as an underclad, 3 to 10 ⁇ m as a core, and about 10 to 20 ⁇ m as an overclad.
  • the SOI substrate 13 can be used for the substrate 7, the underclad layers 8-1, 8-2, and the Si core 4.
  • the SiO 2 thickness of the BOX layer forming the underclad layer is preferably 10 to 20 ⁇ m, and the thickness of the Si layer which is the SOI layer is preferably 0.1 to 0.5 ⁇ m depending on the design of the optical waveguide of the core.
  • the Si cores 4a and 4b of the SiPh circuit 1 are processed by the process shown in FIG.
  • the steps of the underclad layers 8-1 and 8-2 and the protrusions 8-3 are formed.
  • the SiO 2 layer which becomes the SiO 2 core of the PLC 2 is deposited, and the SiO 2 region 5 including the SiO 2 core 5-2 is further processed.
  • the SiO 2 layer 9 to be overcladed the first optical circuit 1 by the Si core 4 and the second optical circuit 2 by the SiO 2 core 5-2 are placed on the wafer of the SOI substrate 13. Accumulate.
  • various SSC structures that gradually reduce the light confinement effect on the SiPh circuit side and expand the MF can be used in order to match the MFD.
  • a waveguide structure such as a segmented Si waveguide can be provided.
  • various variations are possible with respect to the tapered structure in the shape of the protrusion 8-3 of the underclad. In the example of the protrusion 8-3 of FIG. 5, as is clear from the cross-sectional view of FIG.
  • the protrusion 8-3 a simple narrowing gradually in the width direction (y-axis direction) of the optical waveguide of the protrusion 8-3. It has a structure. As the cross-sectional area of the underclad rectangle of the protrusion 8-3 gradually decreases toward the second optical circuit 2, the SiO 2 layer covers the underclad rectangle while lowering its height, and a vertical taper 5-3 is formed. Rectangle. If the effective cross-sectional area (density or occupancy) of the underclad of the protrusion 8-3 can be gradually reduced toward the second optical circuit while manufacturing the Si core 4b halfway, the protrusion 8-3
  • the composition can take various forms. For example, both sides of the protrusion can be made into a slope and gradually lowered, or both sides can be made into a staircase and lowered. Finally, another specific configuration of the protrusion will be briefly described as a modification in FIG.
  • the SiO 2 core 5-2 of the PLC 2 is formed by forming the above-mentioned underclad step and protrusion, and then depositing the SiO 2 layer on the wafer and processing it by etching or the like.
  • the SiO 2 sedimentary layer so as to cover and overlap the Si core 4a of the SiPh circuit 1
  • the SiO 2 core 5 is continuous along the Si core 4a on the SiPh circuit side beyond the boundary with the SiPh circuit. Will be configured.
  • the SiO 2 layer deposited at this time has the same thickness in the PLC2 and SiPh circuits.
  • the SiO 2 layer is deposited so that the height of the SiO 2 layer decreases as the width gradually narrows due to the tapered structure of the protruding portion 8-3.
  • This change in the height of the SiO 2 layer reflects the effect of reducing the deposited height in the convex portion of the small region as compared with the convex portion of the large region when depositing SiO 2 . ..
  • the height of the upper surface of the SiO 2 core with respect to the height of the lower surface of the underclad 8-2 is such that the SiPh circuit 1 side (cross section AA') is on the PLC2 side (cross section AA'). It is higher than the cross section DD'). In the middle, due to the taper in the width direction of the protrusion 8-3, the height position of the deposited SiO 2 is gradually lowered from the wide SiPh circuit 1 side to the narrow PLC2 side of the protrusion 8-3. (Cross section BB' ⁇ Cross section CC').
  • the height of the SiO 2 layer gradually decreases from the SiPh circuit 1 side toward the PLC2 side, and the SiO 2 layers 5-1 and 5-2 having different heights are formed by the vertical taper structure 5-3. It becomes a connected structure.
  • the light confinement effect is gradually weakened by the SSC structure of the fine taper 4b of the Si core, and at the same time, in the vertical taper structure 5-3, the light starts to be coupled to the SiO 2 core on the Si core.
  • the height of the SiO 2 core gradually decreases, and the occupancy rate of the SiO 2 core increases with respect to the protrusions 8-3 of the underclad.
  • the protrusions 8-3 gradually reduce the cross-sectional area toward the second optical circuit (PLC2).
  • the propagating light of the Si core is gradually coupled to the mode formed by the SiO 2 core above the Si core and the SiO 2 cores on both sides of the protrusions 8-3.
  • the optical connection portion 3 has a structure in which the ratios of the two components (underclad 8-3 and SiO 2 core 5-3) are gradually exchanged in the cross section, and the change in the vertical direction (z-axis) of the substrate at the center of the MF becomes small. It has become.
  • butt coupling is performed transitionally while mode coupling, and loss due to MF center deviation and MF mismatch can be reduced.
  • the optical waveguide component 100 of the present disclosure also contributes to increased tolerance for Si core width manufacturing errors with respect to optical connection loss fluctuations.
  • the Si core 4b and the SiO 2 layer extended from the SiO 2 core 5-2 overlap each other, so that the Si core 4b and the SiO 2 layer extended from the SiO 2 core 5-2 overlap each other.
  • Si core width tolerance is large. As an example, when the width of the Si core is thickened due to a manufacturing error, the light confinement effect of the Si core becomes strong.
  • the mode transition between the two waveguides is less likely to occur. Therefore, in the structure of adibatic coupling, the mode transition is not performed as designed. As a result, inconsistency in the center of the MF occurs between the MF of the optical connection portion and the MF of the optical waveguide on the SiPh or PLC side, resulting in an optical connection loss.
  • the Si core 4b is gradually covered with the SiO 2 layer by the protrusion 8-3 and the corresponding vertical taper structure 5-3 toward the PLC2 side.
  • the centers of the MF made of the Si core and the MF made of the SiO 2 core are close to each other, and even when the light is strongly confined by the Si core, the optical connection loss due to the mismatch of the MF center is reduced. Therefore, the fluctuation of the optical connection loss due to the manufacturing error of the Si core width is suppressed, which leads to the expansion of tolerance.
  • the height of the protrusion 8-3 in the vertical direction (z-axis) of the substrate from the lower surface of the underclad 8-2 is set to a value obtained by subtracting half the thickness of the Si core from half the thickness of the SiO 2 core. Is desirable.
  • the protrusion 8-3 When the structure of the protrusion 8-3 is completed at the tip of the SSC structure due to the fine taper 4b of the Si core, the height of the SiO 2 core changes significantly before and after the tip of the fine taper 4b.
  • the protrusion 8-3 includes a non-overlapping region extending further toward the PLC 2 than the tip of the fine taper 4b of the Si core, and the width of the non-overlapping region is tapered. It is desirable that it becomes narrower.
  • the protruding portion 8-3 shown in FIG. 5A has a continuous integrated region and a non-overlapping region, and has a simple tapered shape as a whole.
  • the overlapping region and the non-overlapping region are conveniently referred to before and after the end point of the Si core, and mean that the Si core ends in the middle of the protrusion 8-3 in the waveguide length direction. is doing.
  • the width of the protruding portion 8-3 is about the same as that of the Si cores 4a and 4b, the side surface of the Si core is exposed during processing of the protruding portion 8-3, causing damage such as surface roughness and affecting the propagation characteristics. May cause. It is desirable that the width of the protrusion 8-3 in the horizontal direction of the substrate is larger than the width of the Si cores 4a and 4b, whereby damage to the Si core during processing of the protrusion 8-3 can be suppressed.
  • an example is a structure in which the Si core 4 of the optical waveguide of the first optical circuit and the SiO 2 core 5-2 of the optical waveguide of the second optical circuit are optically connected on a common single substrate.
  • the effect of suppressing optical connection loss has been described.
  • the effect of the configuration of the optical waveguide component 100 of the present disclosure is not limited to a specific material.
  • Si, SiN, and SiON are used as the first core of the first material having a high refractive index
  • SiO 2 , SiO X , a polymer, etc. are used as the second core of the second material having a lower refractive index than the first material. Even when the above materials are used, the same effect of suppressing optical connection loss can be realized.
  • the present invention also has an aspect of a method for manufacturing an optical waveguide component that optically connects optical waveguides made of different materials.
  • the structure of the optical waveguide component that optically connects the optical waveguide of the first optical circuit and the optical waveguide of the second optical circuit is manufactured.
  • the outline of the manufacturing method is as follows.
  • the first step is a step of forming the first cores 4a and 4b from the first material on the substrate 13 provided with the underclad layer. At the same time, a tapered structure of the first core in the optical connection portion 3 is also formed.
  • the first core can be a Si core. Further, as the substrate 13, an SOI substrate can be used.
  • the underclad layer is processed so that the high surface of the underclad 8-1 corresponding to the first optical circuit 1 and the low surface of the underclad 8-2 corresponding to the second optical circuit 2 are formed. And, it is a step of forming the protrusion 8-3 extending from the higher surface toward the second optical circuit along the first core 4b. At this time, an underclad step structure and a tapered structure of the protrusions 8-3 are formed. In the case of protrusions having a more complicated structure as described later, another step may be added.
  • the third step is to deposit a core layer of the second material having a refractive index lower than that of the first material on the processed underclad layer.
  • the second material may be, for example, a SiO 2 film.
  • a structure is formed in which the height of the core layer gradually decreases toward the second optical circuit in a place where the vertical taper structure is formed later. This structure is due to the effect that when depositing the core layer of the second material, the deposition height is reduced in the convex portion of the small region as compared with the convex portion of the large region.
  • the deposited core layer is processed to form the second cores 5-1, 5-3, and 5-2 from the first optical circuit 1 to the second optical circuit 2.
  • the second core is configured such that the region of the first core is included in the region of the second core in the cross section perpendicular to the length direction of the optical waveguide.
  • This is a step of forming a vertical taper structure 5-3 in which the height of the core decreases from the first optical circuit 1 toward the second optical circuit 2.
  • a vertical taper structure 5-3 with a second core corresponding to the underclad protrusions 8-3 is formed.
  • the overclad layer 9 that covers the second core and the entire underclad is formed, and an optical waveguide component including the optical connection portion 3 is manufactured.
  • the optical waveguide component of the present disclosure monolithically integrates SiPh circuit 1 and PLC2 on one substrate by using an SOI substrate.
  • a step having a high-level surface and a low-level surface is provided in the BOX layer made of SiO 2 which is an underclad.
  • an underclad protrusion is formed from the high surface side of the step to the low surface side along the Si waveguide, and a taper in the width direction of the protrusion is provided from the Si optical waveguide to the SiO 2 optical waveguide.
  • a vertical taper structure is further formed in which the height in the substrate thickness direction of the SiO 2 film deposited on the optical connection portion gradually decreases corresponding to the taper in the width direction of the protrusion. ..
  • the vertical taper structure corresponding to the protrusion makes it possible to gradually bring the center of gravity of the SiO 2 core closer to the center of the Si core. It is possible to suppress the deviation between the MF center of the light propagating through the Si optical waveguide and the MF center of the light propagating through the SiO 2 optical waveguide in the optical connection portion, and reduce the loss due to the mismatch of the MF center.
  • the Si core is gradually covered with the SiO 2 core, so that the MFD conversion from the Si optical waveguide to the SiO 2 optical waveguide can be realized with low loss.
  • FIG. 6 is a diagram showing the configuration of the first embodiment of the optical circuit including the optical waveguide component of the present disclosure.
  • the optical circuit 20 of FIG. 6 is composed of a plurality of input optical waveguides 24 for signal light composed of Si cores, a plurality of output waveguides 25 for signal light composed of corresponding SiO 2 cores, and an optical connection unit 23. To. Using such an optical circuit 20, the optical connection loss in the optical connection unit 23 was evaluated, and the effect of reducing the optical connection loss was verified. First, the structure of each part of the optical circuit 20 is shown.
  • the chip of FIG. 6 which is the optical circuit 20 has a size of 5 mm in length and 10 mm in width, and the Si optical waveguide 24 of the SiPh circuit and the SiO 2 optical waveguide 25 of the PLC are integrated.
  • the signal light is input from the Si optical waveguide 24 of the input optical waveguide provided on the short side of the chip.
  • the signal light is output by the output waveguide 25 formed on the short side (PLC side) opposite to the Si optical waveguide 24.
  • Four input optical waveguides 24 are provided at a pitch of 250 ⁇ m, each of which is composed of a Si optical waveguide from the optical input unit to the optical connection unit 23 and a SiO 2 optical waveguide from the optical connection unit 23 to the optical output unit.
  • An S-shaped waveguide structure is provided between the optical connection unit 23 and the optical output unit.
  • Each configuration of the Si optical waveguide 24 and the SiO 2 optical waveguide 25 is as follows.
  • the film thickness of the BOX layer of SiO 2 as an underclad is 15 ⁇ m
  • the thickness of the SOI layer of Si as a Si core is 0.22 ⁇ m.
  • the Si core is formed by processing the Si layer to a width of 0.5 ⁇ m by photolithography and etching, and the Si layer is also removed by etching in the region where the PLC is formed.
  • the underclad is etched by 2.14 ⁇ m in the region where the PLC is formed. In this etching process, high-level surfaces, low-level surfaces, and protrusions of the underclad are formed. In the case of a more complicated protrusion configuration as described later in FIG. 13, some additional processing steps may be required.
  • a SiO 2 film to be a SiO 2 core is deposited on the substrate by 4.5 ⁇ m by a method such as CVD or sputtering. After that, a SiO 2 core having a height and a width of 4.5 ⁇ m is formed by photolithography and etching.
  • a Si optical waveguide and a SiO 2 optical waveguide are formed by depositing 14.5 ⁇ m of a SiO 2 layer which is an overclad of a SiPh circuit and a PLC on a substrate. At this time, by doping the SiO 2 core on the PLC side with Ge or the like, an optical waveguide having a refractive index difference of 2.0% between the core and the cladding is configured.
  • FIG. 7 is a diagram showing a configuration of an optical connection portion of the optical circuit of the first embodiment. It should be noted that the optical waveguide component 200 of FIG. 7 corresponds to the vicinity of the optical connection portion 23 of the optical circuit of FIG. 6, and a part of the optical circuit of FIG. 6 is cut out and shown.
  • FIG. 7A is a top view of the substrate surface (xy surface) of the optical waveguide component 200
  • FIG. 7B is a cross section passing through the center of the two optical waveguides (VIIb-VIIb line). It is a side view of (x-z plane).
  • FIG. 8 is a cross-sectional view in which a plane (yz plane) perpendicular to the length direction is cut at different locations of the optical connection portion of the optical waveguide component of the first embodiment.
  • 7 and 8 show the optical connection 23 between the first optical circuit 21 (SiPh) and the second optical circuit 22 (PLC), the five cross sections of FIG. 7 and FIG. Each cross section corresponds.
  • SiPh first optical circuit 21
  • PLC second optical circuit 22
  • the structural difference between the optical waveguide components of FIGS. 5 and 7 lies in the configuration of the protrusion formed by extending from the higher surface of the underclad 28-1 and 28-2.
  • the protrusion 8-3 in FIG. 5 had a simple tapered shape, but the protrusion in this embodiment is composed of three consecutive portions 28-3, 28-4, 28-5, and (a) in FIG. ), It has a rocket-like shape.
  • the protrusion is provided with a tapered first portion 28-3, a linear second portion 28-4, and a tapered third portion 28-5, thereby gradually extending the width toward the PLC side. It has a structure that narrows.
  • the Si-core optical waveguide has a tapered first portion 28-3 with a fine taper 24b and a linear second portion 28-4 with a thinner constant-width Si core 24c.
  • the configuration of the protruding portion in FIG. 8 can also be seen as a second portion 28-4 inserted in the middle of the taper of the protruding portion 8-3 in FIG.
  • the tapered first portion 28-3 and the tapered third portion 28-5 of the protruding portion have vertically tapered structures 25-3 and 25 with two layers of SiO, respectively. -5 is formed.
  • the height of the continuously formed SiO 2 film region 25 gradually decreases from the first optical circuit (SiPh circuit) to the second optical circuit (PLC). You can see that.
  • the height of the SiO 2 film region 25 is from the SiO 2 region 25-1 (cross section VIIIA-VIIIA') to the SiO 2 optical waveguide.
  • the width of the Si optical waveguide 24b is gradually narrowed as a tapered portion 24b in the first portion 28-3 of the protruding portion of the optical connection portion over 300 ⁇ m from a width of 0.5 ⁇ m to a width of 0.2 ⁇ m.
  • the straight portion 24c having a width of 0.2 ⁇ m is extended by 300 ⁇ m to form an SSC structure.
  • the tapered portion 24b and the straight portion 24c the extended waveguide is propagated, and the tapered portion 24b stabilizes the propagating state of the expanded light. The effect of making it is obtained.
  • the first portion 28-3 of the protruding portion is formed so as to have a width of 4.5 ⁇ m at the start position of the tapered portion 24b of the Si core and a width of 1.5 ⁇ m at the end position of the tapered portion so as to gradually narrow in a tapered shape. Will be done.
  • the second portion 28-4 of the protruding portion is extended along the straight portion 24c of the Si core while maintaining a width of 1.5 ⁇ m.
  • the taper of the third portion 28-5 of the protruding portion is extended by 100 ⁇ m even after the end of the straight portion 24c of the Si core, and the tip is narrowed in a tapered shape.
  • the protrusions 28-3 to 28-5 in the optical connection portion 23 of the first embodiment are also formed by photolithography and etching, and the width of the Si optical wave guide is increased so that the Si optical wave guides 24b and 24c are not damaged by etching. It is desirable that the protrusions 28-3 to 28-5 have a large width. Further, it is desirable that the SSC structure of the Si optical waveguides 24b and 24c has a fine taper shape so as to match the change in the taper width of the protrusions 28-3 to 28-5.
  • the SiO 2 core is formed.
  • the value is obtained by subtracting half the thickness of the Si core 24 from half the thickness of 25-2.
  • the height of the protrusion from the lower surface is 2.14 ⁇ m (4.5 ⁇ m / 2-0.22 ⁇ m / 2).
  • the upper surface of the protruding portion coincides with the bottom surface of the Si core 4 (higher surface of the underclad), and the height of the bottom of the protruding portion coincides with the lower surface of the SiO 2 core (lower surface of the underclad).
  • the third portion 28-5 where the protrusion ends, it is preferable to provide a fine taper that gradually narrows the width to a position extending from the end of the straight portion 24c of the Si core. Due to the tapered structure of the third portion 28-5, the height of the SiO 2 core in the vertical direction (z direction) of the substrate is prevented from suddenly changing, and the shape of the SiO 2 core is suddenly changed at the final portion of the protrusion. Reflection loss can be suppressed.
  • the SiO 2 region has a width of 4.5 ⁇ m and is continuously and integrally formed from the SiO 2 region 25-1 on the Si core of the first optical circuit 21 to the SiO 2 core 25-2 of the second optical circuit. ing.
  • the height of the SiO 2 region was 6.64 ⁇ m in the first portion 28-3 where the protrusion started, with reference to the lower surface (underclad 28-2 upper surface) of the protrusion.
  • the height of the SiO 2 region gradually decreases as the width of the first portion 28-3 of the protrusion becomes narrower (cross section VIIIB-VIIIB'), and the height at the position where the width of the protrusion becomes 1.5 ⁇ m. It became 5.5 ⁇ m (cross section VIIIC-VIIIC').
  • the height of the SiO 2 region is further lowered (cross section VIIID-VIIID'), and the SiO 2 core 25-2 is 4.5 ⁇ m.
  • Light with a wavelength of 1.55 ⁇ m is input to the optical circuit 20 of Example 1 from the SiPh side with an optical fiber, and the light intensity when the light output from the PLC side is combined with another optical fiber is measured for each channel by a power meter. The measurement and insertion loss were evaluated.
  • two types of optical circuits differing only in the structure of the optical connection portion were separately manufactured. One is due to the monolithic integration without the underclad step shown in FIG. 3, and the other is due to the monolithic integration with the underclad step shown in FIG. Separately from these, a test optical circuit composed only of the Si optical waveguide and a test optical circuit composed of only the SiO 2 optical waveguide were manufactured. From these, the connection loss with the optical fiber and the propagation loss with the Si optical waveguide and the SiO 2 optical waveguide were evaluated and these values were subtracted to calculate the coupling loss only at the optical connection portion.
  • the configuration of the optical circuit without the underclad step in FIG. 3 had the largest loss and was 5.7 dB.
  • the loss of the configuration of the optical circuit provided with the underclad step in FIG. 4 is reduced to 0.85 dB, but it can be seen that the loss is caused by the inconsistency at the center of the MF.
  • the optical circuit 20 including the optical waveguide component of the present disclosure of FIG. 7 it was confirmed that the loss of the optical connection portion was 0.7 dB, which was even smaller than the configuration of FIG. In the configuration collision of FIG.
  • the MFD size mismatch is reduced by the structure in which the SiO 2 core gradually covers the Si optical waveguide at the optical connection portion.
  • the MF center of the light propagating in the Si optical waveguide and the MF center of the light propagating in the SiO 2 waveguide It is considered that the deviation of the light is suppressed. It was confirmed that the low-loss optical connection of the optical waveguide component of the present disclosure can be realized by a simple structure and a manufacturing method by the configuration of the optical connection portion of the optical waveguide component of this embodiment.
  • FIG. 9 is a diagram showing the configuration of the second embodiment of the optical circuit including the optical waveguide component of the present disclosure.
  • an optical waveguide 35 for signal light input composed of a SiO 2 core provided on one short side of the chip and a bent waveguide 34 composed of a corresponding Si core are provided on the same short side. It is composed of an optical waveguide 36 for output, which is provided with a SiO 2 core.
  • the two SiO 2 cores are connected by two optical connection portions 33-1 and 33-2. Using such an optical circuit 30, the optical connection loss in the two optical connection portions 33 was evaluated, and the effect of reducing the optical connection loss was verified. First, the structure of each part of the optical circuit 30 will be shown.
  • the chip to be the optical circuit 30 has a size of 5 mm in length and 7 mm in width, and the Si optical waveguide 34 of the SiPh circuit and the SiO 2 optical waveguides 35 and 36 of the PLC are monolithically integrated.
  • the optical input is performed from the SiO 2 waveguide 35 provided on the short side of the chip, and the optical output unit is formed on the end face of the same short side as the input unit.
  • the input optical waveguide 35 of the SiO 2 core to the first optical connection portion 33-1 is a SiO 2 waveguide, and the first optical connection portion 33-1 on the input side is passed through the bending waveguide 34 to the second on the output side.
  • Up to the optical connection portion 33-2 of the above is configured with a Si optical waveguide.
  • the SiO 2 optical waveguide constitutes again from the second optical connection portion 33-2 to the optical output portion.
  • Each configuration of the Si optical waveguide and the SiO 2 optical waveguide is as follows.
  • the film thickness of the BOX layer of SiO 2 as an underclad is 15 ⁇ m
  • the thickness of the SOI layer of Si as a Si core is 0.22 ⁇ m.
  • the Si core is formed by processing the Si layer to a width of 0.5 ⁇ m by photolithography and etching, and the Si layer is also removed by etching in the region where the PLC is formed.
  • the underclad is etched by 2.14 ⁇ m in the region where the PLC is formed.
  • the high-level surface, low-level surface, and protruding portion of the underclad shown in FIG. 5 are formed.
  • some further processing steps may be required.
  • a SiO 2 film to be a SiO 2 core is deposited on the substrate by 4.5 ⁇ m by a method such as CVD or sputtering. After that, a SiO 2 core having a height and a width of 4.5 ⁇ m is formed by photolithography and etching. Further, the Si optical waveguide 24 and the SiO 2 optical waveguide are formed by depositing 14.5 ⁇ m of the SiPh circuit and the SiO 2 layer which is the overclad of the PLC on the substrate. At this time, by doping the SiO 2 core on the PLC side with Ge or the like, an optical waveguide having a refractive index difference of 2.0% between the core and the cladding is configured.
  • FIG. 10 is a diagram showing a configuration of an optical connection portion in the optical circuit of the second embodiment.
  • the optical waveguide component 300 of FIG. 10 corresponds to each configuration of the optical connection portions 33-1 and 33-2 of the optical circuit 30 of FIG. 9, and a part of the optical circuit 30 is cut out and shown. I want to be.
  • FIG. 10A is a top view of the substrate surface (xy surface) of the optical waveguide component 300
  • FIG. 10B is a cross section passing through the center of the two optical waveguides (Xb—Xb line). It is a side view of (x-z plane).
  • FIG. 11 is a cross-sectional view in which a plane (yz plane) perpendicular to the length direction is cut at different locations of the optical connection portion of the optical waveguide component of the second embodiment.
  • 10 and 11 show an optical connection 33 between the first optical circuit 31 (SiPh) and the second optical circuit 32 (PLC), with the six cross-sectional lines of FIG.
  • Each cross section (AA'to FF') of 11 corresponds to each other.
  • the difference between the optical connection portion in the optical circuit 30 of the second embodiment, the basic configuration of the optical connection portion shown in FIG. 5, and the optical connection portion of the first embodiment of FIG. I will focus on the points.
  • the protruding portion of the present embodiment is a configuration in which the configuration of the optical connection portion of the first embodiment is gradually changed in multiple steps.
  • the protrusion consists of four consecutive portions 38-3 to 38-6, the width changes more smoothly than the configuration of the protrusion in Example 1, and the height of the corresponding vertical taper structure is also lowered in two steps.
  • the protrusion comprises a tapered first portion 38-3, a tapered second portion 38-4, a linear third portion 38-5, and a tapered fourth portion 38-6.
  • the structure is such that the width is gradually narrowed toward the PLC side.
  • the Si core optical waveguide extended from the first optical circuit 31 also gradually changes in multiple stages as follows, corresponding to the structure of each portion of the protruding portion.
  • the Si core is a fine taper 34b, followed by a linear third portion 38-4, which is a thinner constant width Si core 34c.
  • the Si core 34c ends at the start position of the last tapered fourth portion 38-6.
  • the SiO 2 core 35-2 of the second optical circuit 33 is formed by extending from the second optical circuit so as to completely cover the Si core of the first optical circuit 31 and the optical connection portion 33 described above.
  • the SiO 2 core region 35 is integrated.
  • a vertical tapered structure 35-3 is formed substantially corresponding to the first portion 38-4 and the second portion 38-4 having a tapered structure in the above-mentioned protruding portion, and the fourth portion 38-6 is generally formed.
  • a vertical taper structure 35-5 is formed.
  • the vertical taper structure of the SiO 2 core region shows that the height thereof suddenly changes at the boundary of each portion. However, in reality, the height of the SiO 2 core region changes smoothly as shown in the cross section AA'to the cross section FF' in FIG. 11 in response to the narrowing of the width of the protruding portion. Please note that it will go.
  • the optical connection portion 33 between SiPh and PLC in the optical waveguide component 300 of FIGS. 10 and 11 is specifically configured as follows.
  • the Si optical waveguide narrows the width of the second portion 38-4 of the optical connection portion 33 in a tapered shape over 200 ⁇ m from a width of 0.5 ⁇ m to a width of 0.2 ⁇ m. Further, in the third portion 38-5, the width 0.2 ⁇ m is extended by 200 ⁇ m to form an SSC structure.
  • the width of the protruding portion of the underclad 38-1 from the higher surface is narrowed in three steps due to the tapering of the three portions.
  • the width is gradually narrowed from a width wider than the width of the SiO 2 core 35-1, and in the second portion 38-4, the width is further narrowed.
  • the width is gradually narrowed over the entire protrusion by narrowing the width to the tip again at the fourth portion 38-6 via the third portion 38-5 of the same width.
  • the specific size of each part of the protrusion is as follows.
  • the first portion 38-3 of the protrusion has a width of 5.0 ⁇ m on the thick side of the taper, a width of 2.5 ⁇ m on the thin side, and a length of 250 ⁇ m.
  • the second portion 38-4 has a width of 2.5 ⁇ m on the thick side of the taper, a width of 1.25 ⁇ m on the thin side, and a length of 200 ⁇ m.
  • the fourth portion 38-6 was terminated by narrowing the tip to a width of 0 with a width of 1.25 ⁇ m on the thick side of the taper and having a length of 100 ⁇ m.
  • the third portion 38-5 had a length of 200 ⁇ m while maintaining a monospaced width of 1.25 ⁇ m.
  • a taper is provided at the first portion 38-3 of the protrusion to first change the width from wider to narrower than the SiO 2 core 35-1, and then on the Si core 34a from cross-sections AA'to CC'. Suppresses sudden changes in the film thickness of the SiO 2 core 35-1 and overclad 9. Even if the width of the SiO 2 core 35-1 is slightly wider than the design value due to a manufacturing error, the vertical taper structure is formed from the second portion 38-4 to the fourth portion 38-6 according to the length of the above design. It can be installed in the core, leading to improved manufacturing tolerance.
  • the width of the SiO 2 core 35-2 of the second optical circuit 32 is 4.5 ⁇ m on the PLC side, but the width of the optical connection portion 33 is narrowed to 3.5 ⁇ m by a taper of 300 ⁇ m length, and the second It extends to the optical circuit 31 (SiPh circuit) side.
  • the width of the SiO 2 core in the optical connection portion 33 By slightly narrowing the width of the SiO 2 core in the optical connection portion 33, the MFD of the propagating light is reduced, and the matching of the propagating light with the MFD in the SSC structure of the optical waveguides of the Si cores 34b and 34c is improved.
  • the width of the second portion 38-4 of the protrusion is larger than the width of the SiO 2 core regions 35-1 to 35-5. Is also preferably narrowed. By doing so, when viewed in a cross section perpendicular to the length direction of the optical waveguide, the cross-sectional region of the second portion 38-4 to the fourth portion 38-6 of the protrusion is also the second light.
  • the structure is included in the cross-sectional region of the SiO 2 core that extends from the circuit.
  • the width of the protruding portion gradually narrows as it approaches the second optical circuit 32. Further, the height of the SiO 2 core gradually decreases from the first optical circuit 31 toward the second optical circuit 32.
  • the composition ratio (area ratio) of the protruding portion of the underclad and the SiO 2 core covering it also gradually changes.
  • the optical waveguide component of the present disclosure has a mismatch of MFD and MF due to continuous change in size and composition ratio in the optical connection portion between the first optical circuit and the second optical circuit as described above. It can be understood that the mitigation of the center position shift of is realized.
  • the height of the protrusion from the lower surface of the underclad 38-2 is from half the thickness of the SiO 2 core to the Si core so that the center heights of the Si optical waveguide 4 and the core 35-2 of the SiO 2 waveguide match.
  • the value is obtained by subtracting half of the thickness.
  • it was set to 2.14 ⁇ m (4.5 ⁇ m / 2-0.22 ⁇ m / 2).
  • the upper surface of the projecting portion (underclad 38-1 high surface) coincides with the bottom surface of the Si core 4
  • the bottom surface of the projecting portion (underclad 38-2 lower surface) coincides with the bottom surface of the SiO 2 core 35-2. do.
  • the SiO 2 core is used as an input / output optical waveguide on one short side as shown in FIG. 9, and two optical fibers are arranged on the chip end face. At that time, the optical waveguide and the optical fiber can be connected without eccentricity, and the optical connection loss can be reduced.
  • FIG. 12 is a diagram showing a configuration example of another optical circuit including the optical waveguide component of the second embodiment.
  • FIG. 12A is a top view of the substrate surface (xy surface) of the optical circuit 40
  • FIG. 12B is a cross section (x—) passing through the center of the optical waveguide 34, 34a of the optical circuit 40. It is a side view (z plane).
  • the optical circuit 40 of FIG. 12 includes the optical waveguide component 300 of FIG. 10 of Example 2 in the region of the alternate long and short dash line in the top view of (a), and further extends the extension portion on the Si core side of the configuration of Example 2. Shows.
  • the optical connection loss of the optical connection portion 33 was evaluated with light having a wavelength of 1.55 um as in Example 1.
  • the optical connection loss of the optical connection unit 33 of the optical circuit 30 of the second embodiment having the structures of FIGS. 10 and 11 was 0.50 dB.
  • a value smaller than the optical connection loss of 0.70 dB of the optical connection portion 23 of the optical circuit 20 of the first embodiment having the structures of FIGS. 7 and 8 was obtained. It can be seen that the optical connection loss is greatly improved as compared with the loss of 0.85 dB in the configuration in which only the underclad step is provided in the optical circuit of the prior art of FIG.
  • the cross-sectional structure is gradually changed at the optical connection portion due to the double structure in which the cross-sectional region of the Si core is included in the cross-sectional region of the SiO 2 core. ..
  • the area ratio of the SiO 2 core to the protrusion of the underclad increases from the first optical circuit to the second optical circuit, and the SiO 2 core becomes a Si core. Is gradually covering. It is considered that the MFD size mismatch is reduced by the smooth cross-sectional structural change in which the width of the protrusion of the underclad gradually narrows and the height of the SiO 2 core gradually decreases at the same time.
  • the low-loss optical connection of the optical waveguide component of the present disclosure can be realized by a simple structure and manufacturing method.
  • FIG. 13 is a diagram showing a modified example of the configuration of the protrusion in the optical waveguide component of the present disclosure.
  • FIG. 13A shows an optical waveguide component 40-1 in which a protrusion is segmented
  • FIG. 13B shows an optical waveguide component 40-2 in which slope portions are provided on both sides of the protrusion. Both show the structure of only the protruding portion, and the SiO 2 core is formed along the protruding portion as in each of the above-described embodiments.
  • the optical waveguide component 40-1 (a) of FIG. 13 has a protrusion having a structure in which segments having two different widths are alternately connected from the high surface to the low surface of the underclad layer 42. A narrow portion is sandwiched between the three wide portions 44a, 44b, 44c, and the length of the three portions of the protrusion in the optical waveguide direction is gradually shortened.
  • the Si core 43 is formed from the high surface of the underclad layer 42 to the middle of the protruding portion.
  • the SiO 2 core (not shown) with respect to the protrusions of the underclad from the high surface side to the low surface side. Occupancy increases.
  • the protruding portion gradually reduces the cross-sectional area from the high surface side to the low surface side.
  • the optical waveguide component 40-2 of FIG. 13B has a simple rectangular parallelepiped protrusion 44 from the high surface to the low surface of the underclad layer 42. Further, slope portions 45a and 45b are provided on both sides along the protruding portion 44 so as to gradually lower the height from the higher surface to reach the lower surface.
  • the Si core 43 is formed from the high surface of the underclad layer 42 to the middle of the protruding portion 44. Even in a configuration including such a slope portion, when viewed in a cross section perpendicular to the length direction of the optical waveguide, the occupation ratio of the SiO 2 core with respect to the protruding portion of the underclad increases from the high surface side to the low surface side. ..
  • the height of the SiO 2 region gradually decreases toward the lower surface, and a vertically tapered structure is obtained.
  • the slope portion of FIG. 13 (b) may be stepped.
  • the shape of the protrusion can be variously deformed.
  • optical connection portion of the present disclosure by providing the configuration of the optical connection portion of the present disclosure, it is possible to provide an optical waveguide component and a method for manufacturing the same, which realizes a low-loss optical connection with a simple structure.
  • the present invention can be used for a device using optical communication.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

本開示の光導波路部品は、異なる材料で構成される2つ光導波路を低損失で光接続する構成を提供する。第1の材料によるコアを含む第1の光回路と、第2の材料によるコアを含む第2の光回路が、単一の基板上に構成される。本開示の光導波路部品は、2つの光回路の間に光接続部を備え、2つの光導波路間で、一方の光導波路のコア断面領域が他方の光導波路のコア断面領域に内包される二重構造を持つ。光接続部には、アンダークラッドの高位面から、低位面に向かって第1のコアに沿って延びたアンダークラッドの突出部が設けられ、突出部の幅が第2の光回路に向かって徐々に狭まる構成を持つ。光接続部は、第2の光回路から延長して形成された第2のコア領域が第1のコアを覆っており、その延長された第2のコア領域の高さが第2の光回路に向かって徐々に低くなる、縦テーパ構造を持つ。光接続部における断面では、アンダークラッドの突出部の面積が徐々に狭くなり、第2の光回路から延長された第2のコア領域が占める面積比は徐々に大きくなる。

Description

光導波路部品およびその製造方法
 本発明は、光通信システムに応用可能な光導波路部品に関する。
 近年、光ファイバ伝送の普及に伴い、多数の光回路を高密度に集積する技術が求められている。そのような光回路の高密度集積技術の1つとして、シリコンフォトニクス(以下、SiPh)が知られている。SiPhでは、光導波路のコア・クラッド間の比屈折率差が大きいため、曲げ半径の小さい光回路を構成可能で、非常に小型な光回路を実現することができる。伝送装置内には、光と電気の信号を変換するフォトダイオード(PD:Photo Diode)や、光信号の強度や位相の変調を行う光変調器などの光機能素子も必要になる。これらの光機能素子についても、Siによる半導体機能を用いることで、PDや光変調器を実現し、光回路に集積することも可能である。
 上述のSiPh回路は、通信容量の拡大に向けて、光信号処理を行う光導波路と光電変換を行うPD等の光デバイスを集積した高機能な光電子集積型デバイスに好適である。SiPhを用いて光回路機能と光機能素子を集積することで光信号の送受信機能を小型に実現可能になり、例えばSiPhを用いた小型の光送受信モジュールが開発されている(特許文献1)。
 SiPh回路は小型で光―電気変換や変調などの様々な光機能を実現できるメリットがある一方で、コア・クラッド間の比屈折率差が大きいため、作製誤差に起因した問題が起こり得る。具体的には、マッハツェンダ光干渉計やアレイ導波路グレーティング(AWG:Arrayed Waveguide Grating)などの波長合分波器においては、わずかな作製誤差で大きな位相誤差を生じさせてしまい光学特性を劣化させてしまう。またSiPh回路では、伝搬する光のモードフィールドが小さいため、モードフィールドの大きい光ファイバとの接続で損失が大きく、伝送特性を劣化させる問題もある。SiPhは光回路機能の精度や光ファイバとの接続性の面では上述の問題があり、更に高性能な光回路が求められていた。
 上述のSiPh回路の欠点を補う別の光回路として石英系平面光波回路(PLC:Planar Lightwave Circuit)が知られている。PLCは低損失、高信頼性、高い設計自由度などの優れた特徴を持つ導波路型光デバイスであり、実際に光通信伝送システムの伝送装置には合分波器、分岐・結合器等の機能を集積したPLCが搭載されている。PLCでは位相誤差が小さいため、高精度で大規模な波長合分波が可能であり(特許文献1)、偏波依存性や温度依存性も小さく、SiPh回路には向かない光回路機能を高性能に実現できる。またPLCでは光ファイバと同じ材料系で光導波路が構成されているため、伝搬損失が小さく、モードフィールドを光ファイバに近づけることで、光ファイバとの低損失結合が実現できる。上述のような高機能なSiPh回路および高性能なPLCのそれぞれの特長を活かし、これらを組み合わせ、集積することで、より小型で高機能な光デバイスが期待されている。
特許第6290742号 明細書
 しかしながら、SiPh回路およびPLCを結合する場合のように、異種材料からなる光回路同士を結合する際の結合損失が依然として問題であった。別々に作製された光回路同士を結合するには、それぞれの入出力導波路を突合せて調心し固定する「突合せ結合」が必要である。
 図1は、SiPh回路とPLCを突き合わせて結合する光回路の構成を示す図である。図1の(a)は「突合せ結合」を含む光回路の基板面(x-y面)を見た上面図を、(b)は結合する光導波路(Ib-Ib線)を通り基板面に垂直な面(x-z面)で切った断面図である。図1のような異種材料からなる光回路同士を突合せ結合する形態は、「ハイブリッド集積」と呼ばれている。図1の(a)を参照すれば、光回路はSiPh回路1とPLC2からなり、両者は接着剤14を介して固定されている。SiPh回路1では、光導波路4は基板7の上に作成されたアンダークラッド層8と、オーバークラッド層9との間に構成されている。光回路1の光導波路は、角型の通常の光導波路4aと、先端のスポットサイズ変換器(SSC)としてのテーパ部4bからなっている。PLC2では、光導波路5aは、基板10の上に作成されたアンダークラッド層11と、オーバークラッド層12の間に構成されている。
 図1の「突合せ結合」による光回路は、別々に作製されたSiPh回路1とPLC2を接着剤14により固定しているため、光導波路間の距離を完全にゼロにすることは、加工誤差や実装誤差により難しい。そのため一方の光導波路から光が空間(接着剤14)に出射され、そのビームが対となる他方の光導波路に入射されることで光結合(光接続とも言う)が行われる。光が空間に出射する際、回折により出射ビームが拡がるため、出射ビームと入力側導波路の伝搬光のモードフィールドとの重なりが減少して損失が発生する。さらに、光導波路端面と空間との屈折率差により反射が生じて損失が発生するため、SiPh回路1およびPLC2の間で適切な間隔を持って高精度にコアを調心して、両者を固定することが必要になる。このように、ハイブリッド集積のアプローチでは、それぞれの基板上の光導波路を突合せ結合する必要があり、アライメントの煩雑さや結合部の接着剤厚さによる回折損失の問題があった。
 上述のハイブリッド集積に対して、共通の単一の基板上に異なる材料からなる光導波路を集積する「モノリシック集積」のアプローチが知られている。SiPh回路およびPLCはいずれもSi基板上に形成する光回路であって、基板の材料が同じであり、SOI(Silicon On Insulator)基板上にSiコアとSiOコアを形成することで、SiPh回路およびPLCの両方を同時に集積することができる。
 図2は、異なる光導波路の光回路をモノリシック集積する工程を概念的に説明する図である。図2では作製工程の説明に着目しているため、異なる光導波路を接続した構成は示しておらず、光導波路の長さ方向に垂直な断面のみを示している。ハイブリッド集積による光回路の作製工程では、まず第1工程でSOI基板13を準備する。SOI基板13は、Si基板7の上に埋め込み酸化膜(BOX:Buried OXide)のBOX層8と最上層のSi層4を備えている。次の第2工程で、Si層4を加工して、SiPh回路1の光導波路のSiコア4aを作成する。第3工程で、Siコア4aを含むBOX層8の全面にSiO膜5を堆積させる。次に第4工程で、SiO膜5を加工して、PLC2の光導波路コアとなるSiOコア5aを作成する。さらに第5工程で、オーバークラッド層9を堆積させる。最後の第6工程で、配線パターンを作成するためにSiPh回路1の必要な加工箇所に対してオーバークラッド層9を除去する。
 図2のモノリシック集積の一連の工程のフォトリソグラフィープロセスによって、Siコア4aを含むSiPh回路1と、SiOコア5aを含むPLC2の異種材料の光導波路からなる2つの光回路を、1つのウェハ(SIO基板)上へ集積できる。モノリシック集積では、図1に示したハイブリッド集積の「突合せ結合」による光回路における煩雑なアライメントも、接着剤による接続も不要になり、SiPh回路1とPLC2との間隔を開けることなく接続することができる。
 しかしながら、図2に示したモノリシック集積による光回路は、ハイブリッド集積における光回路の問題を解消するものの、依然として光接続損失の問題が残っていた。具体的には、異種材料からなる2つの光導波路間での伝搬光のモードフィールド径(MFD:Mode Field Diameter)の不整合、および、2つの光導波路間のコア高さの不一致の問題である。
 図3は、モノリシック集積した光回路の光導波路中心ずれを説明する図である。図1と同様に図3の(a)はモノリシック集積された光回路の基板面(x-y面)を見た上面図を、(b)は光導波路(IIIb-IIIb線)を通り基板面に垂直な面(x-z面)で切った断面図である。図3のモノリシック集積による光回路は、図2で説明した一連の工程で作製されたものであって、(b)の断面図の構成は図2の工程で作製される2つの光導波路の構成に対応している。図2の作製工程からも理解できるように、基板に垂直方向(z軸方向)において、Siコア4とSiOコア5aの中心高さはずれており、2つのコア4、5aを伝搬する光のモードフィールド中心もずれて、光接続損失が発生する。
 図4は、モノリシック集積における光導波路の位置ずれを解消する構成を示した図である。図1および図3と同様に、図4の(a)はモノリシック集積された光回路の基板面(x-y面)を見た上面図を、(b)は光導波路(IVb-IVb線)を通り基板面に垂直な面(x-z面)で切った断面図である。図4の構成では、PLC2側でBOX層8のアンダークラッドの上面を削り込んで、高さを下げたアンダークラッド8-2とすることで、2つのコア4、5aの中心高さを一致させることができる。この構成でも、Siコア4が途切れるSiPh回路1とPLC2の境界面におけるMFDの不整合は依然として残り、光接続損失となる。
 上述のように、モノリシック集積を使って、Siをコアとする光回路とSiOをコアとする光回路との間で光信号の入出力を行う際には、光接続損失が生じる問題が残っていた。異なる材料をコアとする様々な光回路機能を共通の単一の基板上に集積する異種材料の光集積に適用可能で、低損失な光接続を簡単な構造と作製プロセスで実現することが求められている。
 本発明はこのような問題に鑑みてなされたものであって、目的とするところは、低損失な光接続を簡単な構造と製法で実現する光導波路部品を提供することにある。
 本発明の1つの実施態様は、基板の上に、異なる材料による光導波路を光接続する光導波路部品であって、第1の材料による第1のコアとする光導波路を有する第1の光回路と、前記第1の材料より低い屈折率を有する第2の材料による第2のコアとする光導波路を有する第2の光回路と、前記第1のコアと前記第2のコアの光接続部とを備え、光導波路の長さ方向に垂直な断面において、前記第2のコアは、前記第1のコアの領域が、前記第2のコアの領域に内包されるよう、前記第1の光回路まで延長して構成され、前記光接続部において、前記延長された第2のコアの高さが前記第1の光回路から前記第2の光回路に向かって低くなる縦テーパ構造を有すること特徴とする光導波路部品である。
 本発明の別の実施態様は、異なる材料による光導波路を光接続する光導波路部品の製造方法であって、アンダークラッド層を備えた基板の上に、第1の材料による第1のコアを形成するステップと、前記アンダークラッド層を加工して、第1の光回路に対応する高位面、第2の光回路に対応する低位面、および、前記高位面から前記第2の光回路に向かい前記第1のコアに沿って延びた突出部を形成するステップと、前記加工されたアンダークラッド層の上に、前記第1の材料より低い屈折率を有する第2の材料のコア層を堆積させるステップと、前記堆積したコア層を加工して、前記第1の光回路から前記第2の光回路に渡って、第2のコアを形成するステップであって、前記第2のコアは、光導波路の長さ方向に垂直な断面において、前記第1のコアの領域が前記第2のコアの領域に内包されるよう構成され、前記第2のコアの高さが前記第1の光回路から前記第2の光回路に向かって低くなる縦テーパ構造を形成する、ステップとを備える製造方法である。
 低損失な光接続を簡単な構造で実現する光導波路部品およびその製造方法を提供する。
SiPhとPLCを突き合わせて結合する光回路の構成を示す図である。 異なる光回路をモノリシック集積する工程を概念的に説明する図である。 モノリシック集積した光回路の光導波路中心ずれを説明する図である。 モノリシック集積における導波路位置ずれを解消する構成の図である。 本開示の異なる光導波路を結合した光導波路部品の構成を示す図である。 本開示の光導波路部品を含む光回路の実施例1の構成を示す図である。 実施例1の光導波路部品の光接続部の上面、側面の構成を示す図である。 実施例1の光導波路部品の光接続部の各部の断面の構成を示す図である。 本開示の光導波路部品を含む光回路の実施例2の構成を示す図である。 実施例2の光導波路部品の上面、側面の構成を示す図である。 実施例2の光導波路部品の各部の断面の構成を示す図である。 実施例2の別の光回路の構成を示す図である。 本開示の光導波路部品の突出部の構造の変形例を示す図である。
 本開示の光導波路部品は、異なる材料で構成される2つ光導波路を低損失で光接続する構成を提供する。第1の材料によるコアを含む第1の光回路と、第2の材料によるコアを含む第2の光回路が、単一の基板上に構成される。本開示の光導波路部品は、2つの光回路の間に光接続部を備え、2つの光導波路間で、一方の光導波路のコア断面領域が他方の光導波路のコア断面領域に内包される二重構造を持っている。
 光接続部には、アンダークラッドの高位面から、低位面に向かって第1のコアに沿って延びたアンダークラッドの突出部が設けられ、突出部の幅が第2の光回路に向かって徐々に狭まる構成を持つ。光接続部は、第2の光回路から延長して形成された第2のコア領域が第1のコアを覆っており、その延長された第2のコア領域の高さが、第2の光回路に向かって徐々に低くなる縦テーパ構造を持つ。光接続部における断面では、アンダークラッドの突出部の面積が徐々に狭くなり、第2の光回路から延長された第2のコア領域が占める面積比は徐々に大きくなる。光接続部において断面構造が滑らかに変化することで、MFDの不整合、MF中心のずれが緩和される。以下、図面とともに本開示の光導波路部品の詳細な構成およびその製造方法について説明する。
 図5は、本開示の異なる光導波路を結合した光導波路部品の構成を示した図である。図5の(a)は光導波路部品100の基板面(x-y面)を見た上面図であり、(b)は2本の光導波路(Vb-Vb線)の中心を通る断面(x-z面)の側面図であり、(c)は光導波路の各部で、長さ方向に垂直な面(y-z面)切った断面図である。光導波路部品100は、共通の基板7の上にSiをコア4とする第1の光回路(SiPh回路1)とSiOをコア5とする第2の光回路(PLC2)が形成され、2つの光回路の間で光信号の入出力を行う。2つの光回路1、2の間には、異なる材料の光導波路のコアの高さを徐々に一致させる光接続部3を備えている。
 図1の(a)を参照すると、第1の光回路1の領域と、第2の光回路2の領域は、異なる高さのアンダークラッド層8-1、8-2を持っている。異なる高さのアンダークラッド層8-1、8-2は、図1の(b)の側面図および図1の(c)のA-A´断面、D-D´断面からも理解できるだろう。この点では、図4に示したモノリシック集積による段差を設けたアンダークラッド層の構成と類似している。
 従来技術の光回路との相違点は、光接続部3において、第1の光回路1のアンダークラッド8-1の「高い面」から、第2の光回路2のアンダークラッド「8-2」の低い面に向かって、Siコア4aに沿って延長して形成された突出部8-3を備えていることである。以下、アンダークラッド8-1の高い面を「高位面」、アンダークラッド8-2の低い面を「低位面」と呼ぶ。さらに、アンダークラッドの突出部8-3の幅は、第2の光回路2に向かって徐々に狭まる構成を持っている。光接続部3において、この突出部8-3の上面の途中までSiコア4bが連続して形成され、光導波路の長さ方向に垂直な断面で見て、第1の光回路1のSiコア4a、4bを内包するよう第2の光回路2のSiOコア5-2が構成されている。
 さらに、光接続部3の上述のアンダークラッドの突出部8-3に対応して、突出部8-3を覆うように特徴的な縦テーパ構造5-3が形成される。SiOの縦テーパ構造5-3は、第2の光回路2のSiOコア5-2から連続して、第1の光回路1のSiO領域5-1とともに、「一体のもの」として形成される。すなわち、SiO領域5-1、縦テーパ構造5-3およびSiOコア5-2は、共通のSiO膜の堆積工程と、光導波路の作製工程によって同時に形成される。したがって、Siコア4a、4bに沿って形成された上述のSiO膜による3つの領域5-1、5-2、5―3は、図1の(a)の上面図では、単一のSiO領域5と示されている。図1の(c)の各部の断面図を参照すれば、SiO領域5は、第1の光回路1のA-A´断面のSiO領域5-1から、B-B´断面、C-C´断面の縦テーパ構造5-3を経て、第2の光回路2のD-D´断面のSiOコア5-2まで、徐々にその形状と高さを変化させている。同時に、SiO領域5全体を覆うオーバークラッド9の最上部の形状と高さが変化していることに着目されたい。
 上述の縦テーパ構造5-3は、突出部8-3が第2の光回路2に向かって徐々に幅が狭まる構造を持っている。この縦テーパ構造は、薄膜の堆積プロセス上において、狭い領域にSiO膜を堆積させるほど、その高さが低くなるという効果を利用している。第1の光回路1の領域では、Siコア4を取り囲む様にSiO領域5-1が形成されている。このiO領域5-1は、第2の光回路2におけるSiOコア5-2から連続して一体に作製されたものであるが、第1の光回路1の光導波路では「クラッド」として機能する点に留意されたい。言い換えると、第2の光回路2のコアが、第1の光回路1においてはクラッドとして機能している。このことから、光導波路の長さ方向に垂直な断面で見ると、第1の光回路1の導波路コア4の断面領域は、第2の光回路2の導波路コア5-2の断面領域に内包されていることがわかる。
 図5の(b)に示されたSiOコア5-2から延長して形成された光接続部3の縦テーパ構造5-3によって、Siコア4と、SiOコア5-2との間でMFの中心を近づけるように光信号を伝搬させ、結合損失を減らすことができる。以下、様々な視点から、本開示の異なる光導波路を結合した光導波路部品100の構成と、結合損失を低減の仕組みおよび効果を説明してゆく。
 図5で概要を説明したように、光導波路部品100は、共通の単一の基板7の上に、第1のコア4a(Si)を有する第1の光導波路と、第1のコアより屈折率の低い材料による第2の5-2コア(SiO)を有する第2の光導波路をモノリシック集積している。ここで視点を変えて、2つ光回路1、2の間の光接続部3の構成を、光導波路のコアの形態の遷移から見てみる。第1の光導波路と第2の光導波路とを光接続する光接続部3において、第1のコア4aの延長上には、第2のコア5-2および第1のコア4bが重なる領域(重複領域:B-B´断面)と、重複領域に続けて、第1のコア4bが終わり第2のコア5-2のみからなる領域(非重複領域:C-C´断面)が在る。上述の縦テーパ構造5-3は、重複領域と非重複領域に渡って構成されている。縦テーパ構造5-3は、基板7の基板面に垂直方向(z方向)において基板上面を基準として、光接続部3の重複領域側から非重複領域側に向かって、第2のコア5-2の高さが徐々に低くなっている。
 通常、SiPh回路1およびPLC2の間の光接続部3では、MFDの大きいPLC2側のMFDに合わせてSiPh回路1のMFDをスポットサイズ変換器(SSC)で拡大し整合する。SSC構造は、一例を挙げれば、従来技術の図4でも示したように、矩形形状のSiコア4aから先端に向けて幅が狭まる細テーパのSiコア4bで実現することができる。
 本開示の光導波路部品100では、Siコアの細テーパ構造に加えて、基板7の直上にあるアンダークラッド8-1、8-2の上面に段差が設けられる。この段差を挟んで、Siコア4aに沿ってアンダークラッドの高位面側から低位面側に向かって、高位面から延長して形成された突出部8-3が構成される。突出部8-3の幅は、PLC2側に向かって徐々に狭まる水平方向(y方向)のテーパ構造を備える。Siコアの細テーパ構造と対応した突出部8-3のテーパ構造によって、Siコアは、SiPh回路1からPLC2に向かって、徐々に高さを下げながらSiO膜によって覆われる。Siコアの細テーパ構造および突出部8-3のテーパ構造によって、光接続部3の縦テーパ構造5-3が形成される。第1の光導波路のクラッドとして機能するSiOコア5-1、光接続部3の縦テーパ構造5-3、第2の光導波路のSiOコア5-2が連続的に一体に滑らかに構成される。
 上述の縦テーパ構造5-3は、Siコア4bのテーパ構造でMFDが拡大された伝搬光の基板上方向への遷移を抑制しつつ、徐々にSiOコア5-2の第2の光導波路の伝搬モードに遷移させることができる。また導波路長さ方向に垂直な断面において、Siコア4aおよびSiOコア5-2の領域が重なるため、モードの不整合を減らすこともできる。結果として、SiPh回路1およびPLC2の光接続を簡単かつ低損失に実現することができる。
 ここで図1の光導波路部品100の作製手順を簡単に述べれば、図2で説明したモノリシック集積の光回路の作製手順と概ね同じである。一般的にPLCでは、SiまたはSiOの基板上に、SiO薄膜が、アンダークラッドとして10~20μm、コアとして3~10μm、オーバークラッドとして約10~20μm堆積されている。図5の本開示の光導波路部品100では、基板7、アンダークラッド層8-1、8-2およびSiコア4のために、SOI基板13を利用できる。アンダークラッド層をなすBOX層のSiO厚さは10~20μm、SOI層であるSi層の厚さはコアの光導波路の設計に応じて0.1~0.5μmとするのが好ましい。このようなSOI基板13を用い、図2に示した工程によって、SiPh回路1のSiコア4a、4bの加工を行う。次に、アンダークラッド層8-1、8-2の段差、および突出部8-3を形成する。その後、PLC2のSiOコアとなるSiO層を堆積し、さらにSiOコア5-2を含むSiO領域5を加工する。最後に、オーバークラッドとなるSiO層9を堆積することで、Siコア4による第1の光回路1と、SiOコア5-2による第2の光回路2をSOI基板13のウェハ上に集積する。
 SiPh回路1およびPLC2の光接続部3では、MFDを整合するため、SiPh回路側の光の閉じ込め効果を徐々に減らしてMFを拡大する様々なSSC構造を利用できる。図5のようにSiコアの幅を細テーパ4bで狭める導波路の他、セグメント化したSi導波路等の導波路構造が設けることもできる。同様に、アンダークラッドの突出部8-3の形状におけるテーパ構造についても、様々なバリエーションが可能である。図5の突出部8-3の例では、図5の(c)の断面図から明らかなように、突出部8-3の光導波路の幅方向(y軸方向)について、徐々に狭まる単純な構造としている。突出部8-3のアンダークラッドの矩形の断面積が第2の光回路2に向かって徐々に小さくなることで、SiO層がその高さを下げながら覆い、縦テーパ5―3が形成される。途中までSiコア4bを作製しながら、突出部8-3のアンダークラッドの実効的な断面積(密度または占有率)を第2の光回路に向かって徐々に小さくできれば、突出部8-3の構成は様々な形態を採ることができる。例えば、突出部の両脇をスロープ状にして徐々に下げたり、階段状にして下げたりできる。突出部の他の具体的な構成は、最後に図13において変形例として簡単に説明する。
 PLC2のSiOコア5-2は、上述のアンダークラッドの段差および突出部を形成した後で、SiO層をウェハ上に堆積してエッチング等で加工することで形成される。SiPh回路1のSiコア4a上を覆って重なるようにSiO堆積層を加工することで、SiOコア5はSiPh回路との境界を越えて、SiPh回路側のSiコア4aに沿って連続して構成されることになる。このとき堆積されるSiO層は、PLC2およびSiPh回路で、同じ厚さになる。光接続部3では、SiO層は、突出部8-3のテーパ構造によりその幅が徐々に狭くなるにつれてSiO層の高さが低くなるように堆積される。このSiO層の高さの変化は、SiOを堆積する際に、大きい領域の凸部と比べて、小さい領域の凸部においては堆積高さが減少する効果が反映されているためである。
 図5の(c)を参照すれば、アンダークラッド8-2の低位面の高さを基準としたSiOコア上面の高さは、SiPh回路1側(断面A-A´)がPLC2側(断面D-D´)よりも高くなる。その中間では、突出部8-3の幅方向のテーパにより、突出部8-3の幅の広いSiPh回路1側から幅の狭いPLC2側にかけて、堆積されたSiOの高さ位置が徐々に低くなる(断面B-B´→ 断面C-C´)。光接続部3で、SiPh回路1側からPLC2側に向かってSiO層の高さが徐々に低くなり、異なる高さのSiO層5-1、5-2が縦テーパ構造5-3によって接続された構造となる。
 光接続部3では、Siコアの細テーパ4bのSSC構造により光の閉じ込め効果が徐々に弱くなり、同時に縦テーパ構造5-3において、Siコア上のSiOコアに結合し始める。PLC2側に近づくにつれSiOコア高さが徐々に低くなり、アンダークラッドの突出部8-3に対してSiOコアの占有率が増える。逆に突出部8-3は、第2の光回路(PLC2)に向かって徐々に断面積を減らしている。Siコアの伝搬光は、Siコアの上方のSiOコアと、突出部8-3の両側面のSiOコアとにより形成されるモードに徐々に結合する。光接続部3は、その断面において2つの構成要素(アンダークラッド8-3とSiOコア5-3)の比率が徐々に入れ替わり、MF中心の基板垂直方向(z軸)の変化が小さくなる構造となっている。光接続部3において、モード結合しつつ遷移的に突合せ結合が行われて、MF中心のずれやMFの不整合による損失を減らすことができる。同時に、基板垂直方向におけるSiコアの中心とSiOコアの中心を滑らかに一致させることも可能となっている。
 突出部8-3および縦テーパ構造5-3を有する副次的効果として、本開示の光導波路部品100は、光接続損失変動についての、Siコア幅の製造誤差に対するトレランス拡大にも寄与している。光接続部3において、Siコア4bとSiOコア5-2から延長したSiO層が重複していことで、コア間のモード遷移により光接続するアディアバティック(断熱)光結合構造と比較して、Siコア幅のトレランスが大きくて済む。例としてSiコア幅が製造誤差によりも太く仕上がった場合、Siコアによる光の閉じ込め効果が強くなる。このため、Siコアよりも屈折率の低いSiOコアが近接していても、両導波路間のモード遷移が起きにくくなる。そのため、アディアバティック結合の構造では設計通りにモード遷移が行われない。結果として光接続部のMFとSiPhまたはPLC側の光導波路とのMFとの間で、MF中心の不整合が生じ、光接続損失が生じてしまう。
 一方で本開示の光導波路部品100では、Siコア4bは、PLC2側に向かって突出部8-3および対応する縦テーパ構造5-3によって徐々にSiO層に覆われる。この構造では、SiコアによりなるMFとSiOコアによりなるMFの中心が近くなっており、Siコアによる光の閉じ込めが強い場合でもMF中心の不整合による光接続損失が低減される。そのため、Siコア幅の製造誤差にともなう光接続損失の変動を抑え、トレランスの拡大につながっている。
 アンダークラッド8-2の低位面からの、基板垂直方向(z軸)の突出部8-3の高さは、SiOコア厚さの半分からSiコア厚さの半分を引いた値に設定することが望ましい。このように突出部8-3の高さを設定することによって、Siコア4a、4bを伝搬する光のMF中心とSiOコア5-2を伝搬するMF中心が一致する。
 Siコアの細テーパ4bによるSSC構造の先端で突出部8-3の構造が終わると、細テーパ4bの先端前後でSiOコアの高さが大きく変化してしまう。急激なSiOコア高さの変化を避けるため、突出部8-3は、Siコアの細テーパ4bの先端よりもさらにPLC2側に延びた非重複領域を備え、非重複領域の幅がテーパ状に狭くなるのが望ましい。図5の(a)に示した突出部8-3は、重複領域および非重複領域が連続して一体となっており、全体が単純なテーパ形状となっている。重複領域および非重複領域は、Siコアの終点の前後を便宜的に区別して呼んでいるものであって、突出部8-3の導波路長さ方向の途中でSiコアが終わっていること意味している。
 また、突出部8-3の幅がSiコア4a、4bと同程度の場合、Siコアの特に側面が突出部8-3の加工時に露出して、面荒れ等の損傷が生じ伝搬特性に影響を及ぼす恐れがある。基板水平方向における突出部8-3の幅はSiコア4a、4bの幅より大きいことが望ましく、これにより突出部8-3の加工時のSiコアへの損傷を抑えられる。
 上述の説明では、第1の光回路の光導波路のSiコア4と、第2の光回路の光導波路のSiOコア5-2を、共通の単一の基板上で光接続する構造を例に、光接続損失を抑える効果を述べてきた。しかしながら、本開示の光導波路部品100の構成による効果は、特定の材料だけに限定されない。屈折率の高い第1の材料による第1のコアとしてSi、SiN、SiONを用い、第1の材料よりも屈折率の低い第2の材料の第2のコアとしてSiO、SiO、ポリマー等の材料を用いた場合でも、同様の光接続損失を抑える効果を実現できる。
 本発明は、異なる材料による光導波路を光接続する光導波路部品の製造方法の側面も持っている。以下の製造方法によって、第1の光回路の光導波路と第2の光回路の光導波路とを光接続する光導波路部品の構造が作製される。製造方法の概要を述べれば、以下の工程から構成される。
 第1の工程は、アンダークラッド層を備えた基板13の上に、第1の材料による第1のコア4a、4bを形成するステップである。同時に、光接続部3における第1のコアのテーパ構造も形成される。第1のコアは、Siコアであり得る。また基板13は、SOI基板を使用することができる。
 第2の工程は、アンダークラッド層を加工して、第1の光回路1に対応するアンダークラッド8-1の高位面、第2の光回路2に対応するアンダークラッド8-2の低位面、および、高位面から第2の光回路に向かって第1のコア4bに沿って延びた突出部8-3を形成するステップである。この時、アンダークラッドの段差構造と、突出部8-3のテーパ構造が形成される。後述するようなより複雑な構造の突出部の場合は、別の工程が追加されることもある。
 第3の工程は、加工されたアンダークラッド層の上に、第1の材料より低い屈折率を有する第2の材料のコア層を堆積させるステップである。第2の材料は、例えばSiO膜であり得る。この工程で、後に縦テーパ構造となる場所において、コア層の高さが第2の光回路に向かって徐々に低くなる構造が形成される。この構造は、第2の材料のコア層を堆積する際に、大きい領域の凸部と比べて、小さい領域の凸部においては堆積高さが減少する効果によるものである。
 第4の工程は、前記堆積したコア層を加工して、第1の光回路1から第2の光回路2に渡って、第2のコア5-1、5-3、5-2を形成するステップであって、この第2のコアは、光導波路の長さ方向に垂直な断面において、第1のコアの領域が第2のコアの領域に内包されるよう構成され、さらに第2のコアの高さが第1の光回路1から第2の光回路2に向かって低くなる縦テーパ構造5-3を形成する、ステップである。この工程で、アンダークラッドの突出部8-3に対応した第2のコアによる縦テーパ構造5-3が形成される。
 最後に、第2のコアとアンダークラッド全体を覆う、オーバークラッド層9を形成して、光接続部3を含む光導波路部品を作製される。
 上述のように、本開示の光導波路部品は、SOI基板を用いて、SiPh回路1およびPLC2を1つの基板上にモノリシック集積する。Si光導波路とSiO光導波路の光接続部において、アンダークラッドであるSiOからなるBOX層に、高位面および低位面を有する段差を設ける。さらに段差の高位面側からSi導波路に沿って低位面側へアンダークラッドの突出部を形成し、Si光導波路からSiO光導波路にかけて突出部の幅方向テーパを設ける。光接続部では、突出部の幅方向のテーパに対応して、光接続部の上に堆積されるSiO膜の基板厚さ方向の高さが徐々に低くなる縦テーパ構造がさらに形成される。
 突出部に対応した縦テーパ構造によって、SiOコアの重心を徐々にSiコアの中心に近づけることが可能となる。光接続部におけるSi光導波路を伝搬する光のMF中心とSiO光導波路を伝搬する光のMF中心のずれを抑え、MF中心の不整合による損失を減らすことができる。同時に、Siコアが徐々SiOコアに覆われることでSi光導波路からSiO光導波路へのMFD変換を低損失に実現することができる。光接続部3の構成を備えることによって、1つの基板上で、低損失で高精度な光接続を小型に実現する光導波路部品を提供できる。以下、図5の本発明の光導波路部品の構成に基づいた、さらに具体的な光部品の実施例について説明する。
 図6は、本開示の光導波路部品を含む光回路の実施例1の構成を示す図である。図6の光回路20は、Siコアからなる信号光の複数の入力用光導波路24と、対応するSiOコアからなる信号光の複数の出力用導波路25、および光接続部23で構成される。このような光回路20を用いて、光接続部23における光接続損失を評価し、光接続損失の低減の効果を検証した。最初に、光回路20の各部の構造を示す。
 光回路20となる図6のチップは、サイズが縦5mm、横10mmで、SiPh回路のSi光導波路24とPLCのSiO光導波路25が集積されている。信号光の入力はチップの短辺側に設けられた入力用光導波路のSi光導波路24から行う。信号光の出力は、Si光導波路24に対してチップの反対の短辺側(PLC側)に形成した出力用導波路25で行う。4本の入力光導波路24が250μmピッチで設けられ、それぞれ光入力部から光接続部23までをSi光導波路で、光接続部23から光出力部に至るまでをSiO光導波路で構成する。光接続部23から光出力部に至る間にS字型の導波路構造が設けられている。
 Si光導波路24とSiO光導波路25の各構成は、以下の通りである。チップを構成するSOI基板は、アンダークラッドとなるSiOのBOX層の膜厚が15μm、SiコアとなるSiのSOI層厚さが0.22μmとなっている。SiコアはSi層を幅0.5μmにフォトリソグラフィおよびエッチングにより加工することで形成し、PLCを形成する領域においてもSi層をエッチングで除去しておく。
 次にPLCのSiOコアを形成する前段階として、PLCを形成する領域においてはアンダークラッドを2.14μmエッチングする。このエッチング工程において、アンダークラッドの高位面、低位面、および突出部が形成される。後に図13で説明するような、より複雑な突出部の構成の場合には、さらにいくつかの追加の加工工程を経る場合がある。次に、基板上にSiOコアとなるSiO膜をCVDやスパッタ等の手法により4.5μm堆積させる。その後、フォトリソグラフィとエッチングにより高さと幅が4.5μmのSiOコアが形成されている。さらに基板上にSiPh回路とPLCのオーバークラッドとなるSiO層を14.5μm堆積することで、Si光導波路とSiO光導波路が形成される。このときPLC側のSiOコアにGe等をドーピングすることで、コアとクラッドの屈折率差2.0%の光導波路が構成されている。
 図7は、実施例1の光回路の光接続部の構成を示す図である。図7の光導波路部品200は、図6の光回路の光接続部23の近傍に対応しており、図6の光回路の一部を切り出して示している点に留意されたい。図7の(a)は、光導波路部品200の基板面(x-y面)を見た上面図であり、(b)は、2本の光導波路(VIIb-VIIb線)の中心を通る断面(x-z面)の側面図である。
 図8は、実施例1の光導波路部品の光接続部の異なる箇所で、長さ方向に垂直な面(y-z面)切った断面図である。図7、図8で、第1の光回路21(SiPh)と第2の光回路22(PLC)の間の光接続部23が示されており、図7の5つの断面と、図8の各断面が対応している。以下、図7および図8を参照しながら、実施例1の光接続部と図5に示した基本構成の光接続部との相違点に絞って説明する。
 図5および図7の光導波路部品の構成上の相違点は、アンダークラッド28-1、28-2の高位面から延長して形成される突出部の構成にある。図5の突出部8-3は単純なテーパ形状であったが、本実施例の突出部は、連続した3つの部分28-3、28-4、28-5から成り、図7の(a)の上面図で、概ねロケット様の形状をしていることである。突出部が、テーパ状の第1の部分28-3、直線状の第2の部分28-4、テーパ状の第3の部分28-5を備えることで、段階的にPLC側に向かって幅を狭める構造となっている。Siコア光導波路は、テーパ状の第1の部分28-3で細テーパ24b、直線状の第2の部分28-4でより細い一定幅のSiコア24cとなっている。尚、図8の突出部の構成は、図5の突出部8-3のテーパの途中に第2の部分28-4を挿入したものと見ることもできる。
 図7の(b)を参照すれば、突出部のテーパ状の第1の部分28-3およびテーパ状の第3の部分28-5で、それぞれSiO層による縦テーパ構造25-3、25-5が形成される。突出部の全体を見ると、第1の光回路(SiPh回路)から第2の光回路(PLC)に向かって、連続的に形成されたSiO膜領域25の高さが徐々に下がっていることがわかる。図8の(c)の断面VIIIA-VIIIA´から断面VIIIE-VIIIE´を参照すれば、SiO膜領域25の高さが、SiO領域25-1(断面VIIIA-VIIIA´)からSiO光導波路25-2(断面VIIIE-VIIIE´)まで徐々に低くなっていることがわかる。光接続部23における上述の突出部の構成の相違点を除けば、他の構成は図5の光導波路部品100と同様である。以下、具体的な構成についてさらに説明する。
 Si光導波路24bは、光接続部の突出部の第1の部分28-3において、テーパ状部24bとして幅0.5μmから幅0.2μmまで300μmかけて幅を徐々に狭める。引き続き、突出部の第2の部分28-4において幅0.2μmの直線部24cを300μm延長してSSC構造が形成されている。このように、テーパ状部24b、直線部24cと2段階でSi光導波路の形状を変更する構造で、延長した導波路を伝搬させ、テーパ状部24bによりMFが拡大した光の伝搬状態を安定化させる効果が得られる。
 上述のSiコアのテーパ構造に対応して、突出部の3つの部分が形成されている。突出部の第1の部分28-3は、Siコアのテーパ部24bの開始位置において幅4.5μmとし、テーパ部の終了位置で幅1.5μmとして、テーパ状に徐々に狭くなるように形成される。Siコアの直線部24cでは、突出部の第2の部分28-4は、Siコアの直線部24cに沿って幅1.5μmを保ったまま延長される。さらに、突出部の第3の部分28-5のテーパは、Siコアの直線部24cの終了した後も100μm延長され、テーパ状に先端を狭めて終わる。
 実施例1の光接続部23における突出部28-3~28-5の形成もフォトリソグラフィおよびエッチングにより行われ、Si光導波路24b、24cにエッチングによる損傷が生じないよう、Si光導波路の幅より突出部28-3~28-5の幅が大きいことが望ましい。また突出部28-3~28-5のテーパの幅の変化に合うように、Si光導波路24b、24cのSSC構造は細テーパ形状が望ましい。
 突出部28-3~28-5の低位面からの高さは、Si光導波路のコア24aとSiO光導波路のコア25-2の中心高さが一致するように形成するため、SiOコア25-2の厚さの半分からSiコア24の厚さの半分を引いた値とする。図7および図8の実施例1の構成例では、突出部の低位面からの高さを2.14μm(4.5μm/2-0.22μm/2)とする。このとき、突出部の上面はSiコア4の底面(アンダークラッド高位面)と一致し、突出部の底の高さはSiOコアの底面(アンダークラッド低位面)に一致する。Siコア24およびSiOコア24-2の中心の高さを同じとすることで、光ファイバアレイとチップ20との接続を安定して行うことができる。例えば図6のようにSiコアを一方の入出力導波路とし、SiOコアを他方の入出力導波路として、チップのそれぞれの端面に配置する際、チップ端面とアレイファイバを偏心することなく接続し、偏心による光接続損失を減らすことができる。
 突出部が終了する第3の部分28-5において、Siコアの直線部24cの端部より延長した位置まで、徐々に幅を狭める細テーパを設けるのが好ましい。第3の部分28-5のテーパ構造により、SiOコアの基板垂直方向(z方向)の高さが急に変化することを避け、突出部の最終部でSiOコア形状の急な変化による反射損失を抑制できる。SiO領域は、幅4.5μmで、第1の光回路21のSiコア上のSiO領域25-1から、第2の光回路のSiOコア25-2まで連続して一体に形成されている。
 SiO領域の高さは、突出部の低位面(アンダークラッド28-2上面)を基準として、突出部の始まる第1の部分28-3では6.64μmであった。SiO領域の高さは、突出部の第1の部分28-3の幅が狭くなるにつれて徐々に低くなり(断面VIIIB-VIIIB´)、突出部の幅が1.5μmとなる位置で高さ5.5μmとなった(断面VIIIC-VIIIC´)。突出部の幅が再び狭まり突出部が終了する第3の部分28-5において、SiO領域の高さはさらに低くなり(断面VIIID-VIIID´)、SiOコア25-2においては4.5μmとなった(断面VIIIE-VIIIE´)。このように、段階的にその幅を狭めるテーパ構造を含む突出部28-3~28-5により、突出部の開始から終了にかけてSiO領域高さが6.64から4.5μmに徐々に低くなる縦テーパ構造25-3~25-5が形成される。図5に示した光接続部の基本構造と同様の構成が、図7および図8の光導波路部品の突出部および縦テーパ構造によって実現されていることがわかる。
 実施例1の光回路20に、波長1.55μmの光を光ファイバでSiPh側から入力し、PLC側から出力された光を別の光ファイバへ結合した際の光強度をパワーメータでch毎に測定、挿入損失を評価した。実施例1との比較のため、光接続部の構造のみが異なる2種類の光回路を別に作製した。1つは図3に示したアンダークラッド段差を設けないモノリシック集積によるもの、もう1つは図4に示したアンダークラッド段差を設けたモノリシック集積によるものである。これらとは別に、Si光導波路のみで構成されたテスト光回路、SiO光導波路のみで構成されたテスト光回路を作製した。これらから、光ファイバとの接続損失、Si光導波路およびSiO光導波路で伝搬損失の評価を行ってこれらの値を差し引き、光接続部のみの結合損失を算出した。
 3種類の光接続部では、図3のアンダークラッド段差を設けない光回路の構成が最も損失が大きく、5.7dBであった。一方で図4のアンダークラッド段差を設けた光回路の構成の損失は0.85dBまで低減しているが、MF中心の不整合により損失が生じていたことがわかる。図7の本開示の光導波路部品を含む光回路20では、光接続部の損失は0.7dBと図4の構成よりもさらに小さいことが確認できた。従来技術の図4の構成突では、Si光導波路の小さいMFDからSiO導波路の大きいMFDへの光接続でMFDの不整合により生じる損失が残っていた。図7の光回路20では、光接続部においてSiOコアがSi光導波路を徐々に覆う構造によりMFDサイズの不整合を低減している。さらに、アンダークラッドの高位面からの突出部のテーパ構造と、これを覆うSiO膜の縦テーパ構造により、Si光導波路を伝搬する光のMF中心とSiO導波路を伝搬する光のMF中心のずれを抑制していると考えられる。本実施例の光導波路部品の光接続部の構成により、本開示の光導波路部品の低損失な光接続を簡単な構造と製造方法で実現できることを確認できた。
 図9は、本開示の光導波路部品を含む光回路の実施例2の構成を示す図である。図9の光回路30は、チップの1つの短辺に側に設けられたSiOコアからなる信号光の入力用光導波路35と、対応するSiコアからなる折り曲げ導波路34、同じ短辺に設けられたSiOコアからなる出用光導波路36で構成される。2つのSiOコアの間を、2つの光接続部33-1、33-2で接続している。このような光回路30を用いて、2つの光接続部33における光接続損失を評価し、光接続損失を減らす効果を検証した。最初に、光回路30の各部の構造を示す。
 光回路30となるチップは、サイズが縦5mm、横7mmで、SiPh回路のSi光導波路34とPLCのSiO光導波路35、36がモノリシック集積されている。光入力はチップの短辺側に設けられたSiO導波路35から行い、光出力部は入力部と同じ短辺の端面に形成する。SiOコアの入力光導波路35から第1の光接続部33-1までをSiO導波路で、入力側の第1の光接続部33-1から曲げ導波路34を経て出力側の第2の光接続部33-2に至るまでをSi光導波路で構成する。最後に、第2の光接続部33-2から光出力部までを再びSiO光導波路が構成している。
 Si光導波路およびSiO光導波路の各構成は、以下の通りである。チップを構成するSOI基板は、アンダークラッドとなるSiOのBOX層の膜厚が15μm、SiコアとなるSiのSOI層が0.22μmとなっている。SiコアはSi層を幅0.5μmにフォトリソグラフィおよびエッチングにより加工することで形成し、PLCを形成する領域においてもSi層をエッチングで除去しておく。
 次にPLCのSiOコアを形成する前段階として、PLCを形成する領域においてはアンダークラッドを2.14μmエッチングする。このエッチング工程において、図5に示したアンダークラッドの高位面、低位面、および突出部が形成される。後に図13で説明するような、より複雑な構成の突出部の場合には、さらにいくつかの加工工程を経る場合がある。
 次に、基板上にSiOコアとなるSiO膜をCVDやスパッタ等の手法により4.5μm堆積させる。その後、フォトリソグラフィとエッチングにより高さと幅が4.5μmのSiOコアが形成されている。さらに基板上にSiPh回路とPLCのオーバークラッドとなるSiO層を14.5μm堆積することで、Si光導波路24とSiO光導波路が形成される。このときPLC側のSiOコアにGe等をドーピングすることで、コアとクラッドの屈折率差2.0%の光導波路が構成されている。
 図10は、実施例2の光回路における光接続部の構成を示す図である。図10の光導波路部品300は、図9の光回路30の光接続部33-1、33-2の各構成に対応しており、光回路30の一部を切り出して示している点に留意されたい。図10の(a)は、光導波路部品300の基板面(x-y面)を見た上面図であり、(b)は、2本の光導波路(Xb-Xb線)の中心を通る断面(x-z面)の側面図である。
 図11は、実施例2の光導波路部品の光接続部の異なる箇所で、長さ方向に垂直な面(y-z面)切った断面図である。図10および図11には、第1の光回路31(SiPh)と第2の光回路32(PLC)の間の光接続部33が示されており、図10の6つの断面線と、図11の各断面(A-A´~F-F´)が対応している。以下、図10および図11を参照しながら、実施例2の光回路30における光接続部と、図5に示した光接続部の基本構成および図7の実施例1の光接続部との相違点に絞って説明する。
 図10の光導波路部品と、図5および図7の光導波路部品の構成上の相違点は、アンダークラッド38-1、38-2の高位面から延長して形成される突出部の構成にある。本実施例の突出部は、実施例1の光接続部の構成をさらに多段階的に徐々に変化させたものである。突出部は連続した4つの部分38-3~38-6から成り、実施例1の突出部の構成よりも滑らかに幅が変化し、対応する縦テーパ構造の高さも2段階で低くなっている。突出部は、テーパ状の第1の部分38-3、テーパ状の第2の部分38-4、直線状の第3の部分38-5、テーパ状の第4の部分38-6を備えることで、段階的にPLC側に向かって幅を狭める構造となっている。
 光接続部33において、第1の光回路31から延長されるSiコア光導波路も、突出部の各部分の構造に対応して、以下の様に多段階に徐々に変化している。テーパ状の第1の部分38-3では、第1の光回路のSiコア34aと同じ幅をそのまま延長したものである。テーパ状の第2の部分38-4において、Siコアは細テーパ34bとなり、続く直線状の第3の部分38-4でより細い一定幅のSiコア34cとなっている。最後のテーパ状の第4の部分38-6の開始位置で、Siコア34cが終了する。
 第2の光回路33のSiOコア35-2は、上述の第1の光回路31および光接続部33のSiコアをすっぽりと覆うように、第2の光回路から延長して形成され、図10の(a)の上面図のように一体のSiOコア領域35となっている。上述の突出部においてテーパ構造となっている第1の部分38-4、第2の部分38-4に概ね対応して縦テーパ構造35-3が形成され、第4の部分38-6に概ね対応して縦テーパ構造35-5が形成される。図10の(b)では、SiOコア領域の縦テーパ構造が各部分の境界において、急激にその高さが変化しているように示している。しかしながら実際には、突出部の幅が狭まるのに対応して、図11の断面A-A´から断面F-F´に示したように、滑らかにSiOコア領域の高さが変化してゆくことに留意されたい。
 図10および図11の光導波路部品300におけるSiPhとPLCの間の光接続部33は、具体的に次のように構成されている。Si光導波路は、光接続部33の第2の部分38-4において幅0.5μmから幅0.2μmまで200μmかけてテーパ状に幅を狭める。さらに、第3の部分38-5において幅0.2μmを200μm延長してSSC構造が形成されている。
 アンダークラッド38-1の高位面からの突出部の幅は、3つの部分のテーパにより3段階で狭くなる構造とする。まず突出部の第1の部分38-3においてSiOコア35-1の幅より広い幅から徐々に狭め、第2の部分38-4においてさらに続けて幅を狭める。等幅の第3の部分38-5を経て、第4の部分38-6で再びその先端まで幅を狭めることで、突出部の全体でその幅を徐々に狭めている。突出部の各部分の具体的なサイズは、以下の通りである。突出部の第1の部分38-3は、テーパの太い側で幅5.0μm、細い側で幅2.5μm、長さは250μmとした。第2の部分38-4は、テーパの太い側で幅2.5μm、細い側で幅1.25μm、長さが200μmとした。第4の部分38-6は、テーパの太い側で幅1.25μmとして先端を幅0まで狭めて終端し、長さは100μmとした。第3の部分38-5は、幅1.25μmを等幅に保ったままで長さは200μmとした。
 突出部の第1の部分38-3でテーパを設けて、SiOコア35-1よりも広い幅から狭い幅へまず変化させ、断面A-A´からC-C´にかけてSiコア34a上のSiOコア35-1やオーバークラッド9膜厚の急激な変化を抑える。作製誤差によりSiOコア35-1の幅が設計値より多少太くなっても、第2の部分38-4~第4の部分38-6にかけて上述の設計の長さによって縦テーパ構造をSiOコアに設けることが可能となり、作製トレランスの向上につながる。 
 第2の光回路32のSiOコア35-2の幅は、PLC側においては4.5μmであるが、光接続部33においては300μm長のテーパにより3.5μmまで幅を狭めて第2の光回路31(SiPh回路)側へ延長する。光接続部33においてSiOコア幅をやや狭くすることで伝搬光のMFDを小さくし、Siコア34b、34cの光導波路のSSC構造における伝搬光のMFDとの整合を改善する。本開示の光導波路部品における突出部および対応する縦テーパ構造の効果を得るためには、突出部の第2の部分38-4の幅がSiOコア領域35-1~35-5の幅よりも狭くなっているのが好ましい。このようにすることで、光導波路の長さ方向に垂直な断面で見たときに、突出部の第2の部分38-4から第4の部分38-6の断面領域も、第2の光回路から延長して構成されるSiOコアの断面領域に内包される構造となる。
 このとき突出部の断面に着目すると、第2の光回路32に近づくに従って突出部の幅が徐々に狭まる。また第1の光回路31から第2の光回路32に向かって、SiOコアの高さが徐々に低くなる。アンダークラッドの突出部と、これを覆うSiOコアとの構成比(面積比)も徐々に変化する。光接続部33において、光導波路の長さ方向に垂直な断面を見たとき、上述のように2つの光回路の間でSiOコアとアンダークラッドの構造が徐々に変化している。本開示の光導波路部品は、上述のような第1の光回路および第2の光回路の間の光接続部におけるサイズや構成比が連続的に変化することよって、MFDの不整合と、MFの中心位置ずれの緩和を実現していることが理解できる。
 アンダークラッド38-2の低位面からの突出部の高さは、Si光導波路4とSiO導波路のコア35-2の中心高さが一致するよう、SiOコア厚さの半分からSiコア厚さの半分を引いた値とする。本実施例2では、2.14μm(4.5μm/2-0.22μm/2)とした。このとき、突出部の上面(アンダークラッド38-1高位面)はSiコア4の底面に一致し、突出部の底面(アンダークラッド38-2低位面)はSiOコア35-2の底面に一致する。SiコアとSiOコアの中心の高さを同じとすることで、図9のように1つの短辺上でSiOコアを入出力光導波路とし、チップ端面に2本の光ファイバを配置する際に、光導波路と光ファイバを偏心なく接続し、光接続損失を減らすことができる。
 図12は、実施例2の光導波路部品を含む別の光回路の構成例を示す図である。図12の(a)は、光回路40の基板面(x-y面)を見た上面図であり、(b)は、光回路40の光導波路34、34aの中心を通る断面(x-z面)の側面図である。図12の光回路40は、(a)の上面図において実施例2の図10の光導波路部品300を一点鎖線の領域に含んでおり、実施例2の構成のSiコア側の延長部分をさらに示している。図12の光回路40において、(b)の断面C-C´の構造は、実施例2の図11の断面A-A´と同一である。一方(b)の断面B-B´では、Siコアを覆っていたSiOコア35-1が除去されている。さらに断面A-A´では、SiPh回路側のオーバークラッド9およびSiOコア35-1がいずれも除去され、Siコア34が露出して設けられている。SiPh回路内にSiコアが露出した領域を設けることで、Siコア34へのドーパント導入、半導体の成膜、ヒータや金属配線の形成などのプロセスを行うことができ、光回路の機能性を広げることができる。
 再び実施例2の光導波路部品に戻り、図9の光回路30について、実施例1と同様に、波長1.55umの光で光接続部33の光接続損失を評価した。光接続部33の光接続損失を算出した結果、図10および図11の構造を持つ実施例2の光回路30の光接続部33の光接続損失は0.50dBであった。図7および図8の構造を持つ実施例1の光回路20の光接続部23の光接続損失0.70dBよりさらに小さい値が得られた。図4の従来技術の光回路におけるアンダークラッド段差のみを設けた構成での損失0.85dBと比べれば、大きく光接続損失を改善していることがわかる。
 図10および図11の実施例2の光導波路部品300でも、Siコアの断面領域がSiOコアの断面領域に内包される二重構造により、光接続部で断面構造が徐々に変化している。光導波路の長さ方向に垂直な断面で、第1の光回路から第2の光回路に向かって、アンダークラッドの突出部に対する、SiOコアの面積比が増加し、SiOコアがSiコアを徐々に覆っている。アンダークラッドの突出部の幅が徐々に狭まり、同時にSiOコアの高さが徐々に低くなる滑らかな断面構造変化により、MFDサイズの不整合を低減していると考えられる。また、アンダークラッドの高位面から延長して低位面に向かって形成された突出部の幅のテーパ構造と、対応するSiOコアの縦テーパ構造により、Siコアの伝搬光のMF中心とSiOコアの伝搬光のMF中心のずれを抑えている。本実施例においても、本開示の光導波路部品の低損失な光接続を簡単な構造と製法で実現できることが確認された。
 図13は、本開示の光導波路部品における突出部の構成の変形例を示す図である。図13の(a)は突出部をセグメント化した光導波路部品40-1を、(b)は突出部の両脇にスロープ部を設けた光導波路部品40-2を示している。いずれも突出部のみの構造を示しており、上述の各実施例と同様に、突出部に沿ってSiOコアが形成される。
 図13の(a)の光導波路部品40-1は、アンダークラッド層42の高位面から低位面に向かって、異なる2つの幅のセグメントが交互に連なった構成の突出部を持っている。幅の広い3つの部分44a、44b、44cの間に幅の狭い部分が挟まれており、突出部の3つの部分の光導波路方向の長さは、徐々に短くなっている。Siコア43は、アンダークラッド層42の高位面から突出部の途中まで形成されている。このように突出部をセグメント化した構成でも、光導波路の長さ方向に垂直な断面で見れば、高位面側から低位面に向かって、アンダークラッドの突出部に対して図示しないSiOコアの占有率が増える。逆に突出部は、高位面側から低位面に向かって徐々に断面積を減らすことになる。突出部の実効的な断面積が徐々に減ることで、突出部に対応するSiO領域の高さが徐々に低位面に向かって低くなり、縦テーパ構造が得られる。
 図13の(b)の光導波路部品40-2は、アンダークラッド層42の高位面から低位面に向かって単純な直方体状の突出部44を持っている。さらに突出部44に沿って両脇に、高位面から徐々にその高さを下げて低位面に至るスロープ部45a、45bを設けている。Siコア43は、アンダークラッド層42の高位面から突出部44の途中まで形成されている。このようなスロープ部を含む構成でも、光導波路の長さ方向に垂直な断面で見れば、高位面側から低位面に向かって、アンダークラッドの突出部に対してSiOコアの占有率が増える。突出部の実効的な断面積が徐々に減ることで、SiO領域の高さが低位面に向かって徐々に低くなり、縦テーパ構造が得られる。図13の(b)のスロープ部を階段状にしても良い。上述のように、突出部の形状は様々に変形できる。
 以上詳細に述べたように、本開示の光接続部の構成を備えることによって、低損失な光接続を簡単な構造で実現する光導波路部品およびその製造方法を提供できる。
 本発明は、光通信を用いる装置に利用できる。

Claims (8)

  1.  基板の上に、異なる材料による光導波路を光接続する光導波路部品であって、
     第1の材料による第1のコアとする光導波路を有する第1の光回路と、
     前記第1の材料より低い屈折率の第2の材料による第2のコアとする光導波路を有する第2の光回路と、
     前記第1のコアと前記第2のコアの光接続部とを備え、
     光導波路の長さ方向に垂直な断面において、前記第2のコアは、前記第1のコアの領域が、前記第2のコアの領域に内包されるよう、前記第1の光回路まで延長して構成され、
     前記光接続部において、前記延長された第2のコアの高さが前記第1の光回路から前記第2の光回路に向かって低くなる縦テーパ構造を有すること特徴とする光導波路部品。
  2.  前記基板は、前記第1の光回路における高位面および前記第2の光回路における低位面からなる段差を有するアンダークラッド層を含み、
     前記光接続部において、前記縦テーパ構造に対応して、前記高位面から連続して形成され、前記第2の光回路に向かって徐々に断面積を減らす突出部を有することを特徴とする請求項1に記載の光導波路部品。
  3.  前記突出部は、前記第2の光回路に向かって、幅が狭くなるテーパ構造を含むことを特徴とする請求項2に記載の光導波路部品。
  4.  前記第1のコアは、前記突出部の上面において前記突出部の途中まで延長され、
     前記縦テーパ構造に対応して、スポットサイズ変換器が構成されていることを特徴とする請求項2または3に記載の光導波路部品。
  5.  前記突出部の幅は、前記第1のコアの幅よりも広いことを特徴とする請求項2乃至4いずれかに記載の光導波路部品。
  6.  前記第1のコアの中心高さと、前記第2のコアの中心高さが一致していることを特徴とする請求項1乃至5いずれかに記載の光導波路部品。
  7.  前記アンダークラッド層の材料はSiOであり、
     前記第1の材料は、Si、SiNまたはSiONのいずれかであり、
     前記第2の材料は、SiO、SiOまたはポリマーのいずれかであることを特徴とする請求項2に記載の光導波路部品。
  8.  異なる材料による光導波路を光接続する光導波路部品の製造方法であって、
     アンダークラッド層を備えた基板の上に、第1の材料による第1のコアを形成するステップと、
     前記アンダークラッド層を加工して、第1の光回路に対応する高位面、第2の光回路に対応する低位面、および、前記高位面から前記第2の光回路に向かって前記第1のコアに沿って延びた突出部を形成するステップと、
     前記加工されたアンダークラッド層の上に、前記第1の材料より低い屈折率を有する第2の材料のコア層を堆積させるステップと、
     前記堆積したコア層を加工して、前記第1の光回路から前記第2の光回路に渡って、第2のコアを形成するステップであって、前記第2のコアは、光導波路の長さ方向に垂直な断面において、前記第1のコアの領域が前記第2のコアの領域に内包されるよう構成され、前記第2のコアの高さが前記第1の光回路から前記第2の光回路に向かって低くなる縦テーパ構造を形成する、ステップと
     を備える製造方法。
PCT/JP2020/031935 2020-08-25 2020-08-25 光導波路部品およびその製造方法 WO2022044102A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/006,449 US20230266534A1 (en) 2020-08-25 2020-08-25 Optical Waveguide Device and Method for Manufacturing the Same
PCT/JP2020/031935 WO2022044102A1 (ja) 2020-08-25 2020-08-25 光導波路部品およびその製造方法
JP2022544919A JP7401824B2 (ja) 2020-08-25 2020-08-25 光導波路部品およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/031935 WO2022044102A1 (ja) 2020-08-25 2020-08-25 光導波路部品およびその製造方法

Publications (1)

Publication Number Publication Date
WO2022044102A1 true WO2022044102A1 (ja) 2022-03-03

Family

ID=80354828

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/031935 WO2022044102A1 (ja) 2020-08-25 2020-08-25 光導波路部品およびその製造方法

Country Status (3)

Country Link
US (1) US20230266534A1 (ja)
JP (1) JP7401824B2 (ja)
WO (1) WO2022044102A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05249331A (ja) * 1992-01-09 1993-09-28 Nippon Telegr & Teleph Corp <Ntt> 導波路形ビームスポット変換素子およびその製造方法
JP2003035833A (ja) * 2001-05-14 2003-02-07 Nippon Telegr & Teleph Corp <Ntt> 石英系光導波回路及びその作製方法
JP2004258610A (ja) * 2003-02-04 2004-09-16 Tdk Corp スポットサイズ変換素子及びその製造方法並びにスポットサイズ変換素子を用いた導波路埋め込み型光回路
JP2005538426A (ja) * 2002-08-20 2005-12-15 エルエヌエル・テクノロジーズ・インコーポレイテッド 埋め込みモードコンバータ
US20090297093A1 (en) * 2008-05-28 2009-12-03 Lightwire, Inc. Low index, large mode field diameter optical coupler

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05249331A (ja) * 1992-01-09 1993-09-28 Nippon Telegr & Teleph Corp <Ntt> 導波路形ビームスポット変換素子およびその製造方法
JP2003035833A (ja) * 2001-05-14 2003-02-07 Nippon Telegr & Teleph Corp <Ntt> 石英系光導波回路及びその作製方法
JP2005538426A (ja) * 2002-08-20 2005-12-15 エルエヌエル・テクノロジーズ・インコーポレイテッド 埋め込みモードコンバータ
JP2004258610A (ja) * 2003-02-04 2004-09-16 Tdk Corp スポットサイズ変換素子及びその製造方法並びにスポットサイズ変換素子を用いた導波路埋め込み型光回路
US20090297093A1 (en) * 2008-05-28 2009-12-03 Lightwire, Inc. Low index, large mode field diameter optical coupler

Also Published As

Publication number Publication date
US20230266534A1 (en) 2023-08-24
JP7401824B2 (ja) 2023-12-20
JPWO2022044102A1 (ja) 2022-03-03

Similar Documents

Publication Publication Date Title
US10459163B2 (en) Photonic chip with folding of optical path and integrated collimation structure
US9377587B2 (en) Fiber optic coupler array
US7546007B2 (en) Broadband optical via
US10488596B2 (en) Optical fiber mounted photonic integrated circuit device
JP2004234031A (ja) 平面型光学導波路素子
JP3794327B2 (ja) 光結合器及びその製造方法
KR101121459B1 (ko) 광섬유 및 평면 광학 도파관을 치밀하게 결합하는 방법 및장치
US20200341200A1 (en) Multi-layer grating coupler
JP2016024439A (ja) 光回路部品、および光回路部品と光ファイバとの接続構造
WO2021161371A1 (ja) 光接続素子、光素子、及び光素子の製造方法
JP2018194843A (ja) 折り曲げられた光路の反射構造を有する光チップ
US20200132931A1 (en) Relaxed tolerance adiabatic coupler for optical interconnects
WO2004011979A1 (en) Integrated mode converter, waveguide, and on-chip function
JP4705067B2 (ja) 三次元交差導波路
JP2017173710A (ja) 光ファイバ搭載光集積回路装置
WO2019244554A1 (ja) 平面光波回路及び光デバイス
CN114730047A (zh) 模斑转换器及其制备方法、硅光器件和光通信设备
WO2022044102A1 (ja) 光導波路部品およびその製造方法
JP7356048B2 (ja) 光導波路部品
JP7401823B2 (ja) 光導波路部品およびその製造方法
CN215067407U (zh) 基于soi平台的光分束器
JP5366210B2 (ja) 光導波路
JP2007193049A (ja) 光導波路及び光モジュール
JP2005301301A (ja) 光結合器
WO2024218930A1 (ja) 半導体レーザモジュール、および光通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20951357

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022544919

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20951357

Country of ref document: EP

Kind code of ref document: A1