WO2022042662A1 - 仿生与双疏高效能水基钻井液 - Google Patents
仿生与双疏高效能水基钻井液 Download PDFInfo
- Publication number
- WO2022042662A1 WO2022042662A1 PCT/CN2021/114849 CN2021114849W WO2022042662A1 WO 2022042662 A1 WO2022042662 A1 WO 2022042662A1 CN 2021114849 W CN2021114849 W CN 2021114849W WO 2022042662 A1 WO2022042662 A1 WO 2022042662A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- alkyl
- formula
- structural unit
- substituted
- biomimetic
- Prior art date
Links
- 238000005553 drilling Methods 0.000 title claims abstract description 163
- 239000012530 fluid Substances 0.000 title claims abstract description 128
- 239000011664 nicotinic acid Substances 0.000 title claims abstract description 42
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title description 52
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 92
- 239000000314 lubricant Substances 0.000 claims abstract description 25
- 239000003112 inhibitor Substances 0.000 claims abstract description 19
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 claims description 83
- 230000003592 biomimetic effect Effects 0.000 claims description 63
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 51
- -1 perfluorosulfonyl halide Chemical class 0.000 claims description 47
- 238000006243 chemical reaction Methods 0.000 claims description 45
- 229920000642 polymer Polymers 0.000 claims description 43
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 claims description 34
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 claims description 32
- 229920001661 Chitosan Polymers 0.000 claims description 31
- 229910052799 carbon Inorganic materials 0.000 claims description 30
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 29
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 claims description 28
- 239000006087 Silane Coupling Agent Substances 0.000 claims description 24
- 150000007942 carboxylates Chemical class 0.000 claims description 24
- 150000001875 compounds Chemical class 0.000 claims description 24
- 239000002245 particle Substances 0.000 claims description 23
- 241000234282 Allium Species 0.000 claims description 21
- 235000002732 Allium cepa var. cepa Nutrition 0.000 claims description 21
- 229920000768 polyamine Polymers 0.000 claims description 21
- 239000007787 solid Substances 0.000 claims description 21
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 20
- 125000006539 C12 alkyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 claims description 18
- 125000002947 alkylene group Chemical group 0.000 claims description 18
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 claims description 18
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 claims description 18
- HUMNYLRZRPPJDN-UHFFFAOYSA-N benzaldehyde Chemical compound O=CC1=CC=CC=C1 HUMNYLRZRPPJDN-UHFFFAOYSA-N 0.000 claims description 16
- 229920002401 polyacrylamide Polymers 0.000 claims description 16
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 claims description 14
- 125000002704 decyl group Chemical class [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 claims description 14
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 13
- 239000002109 single walled nanotube Substances 0.000 claims description 13
- 125000004209 (C1-C8) alkyl group Chemical group 0.000 claims description 12
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 12
- 229910052739 hydrogen Inorganic materials 0.000 claims description 12
- 125000002347 octyl group Chemical class [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 claims description 12
- BRLQWZUYTZBJKN-UHFFFAOYSA-N Epichlorohydrin Chemical compound ClCC1CO1 BRLQWZUYTZBJKN-UHFFFAOYSA-N 0.000 claims description 10
- 229920002873 Polyethylenimine Polymers 0.000 claims description 10
- 239000002041 carbon nanotube Substances 0.000 claims description 10
- 229910021393 carbon nanotube Inorganic materials 0.000 claims description 10
- 239000002131 composite material Substances 0.000 claims description 10
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 claims description 10
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 claims description 10
- 239000005995 Aluminium silicate Substances 0.000 claims description 9
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 claims description 9
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 claims description 9
- FQPSGWSUVKBHSU-UHFFFAOYSA-N methacrylamide Chemical compound CC(=C)C(N)=O FQPSGWSUVKBHSU-UHFFFAOYSA-N 0.000 claims description 9
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 9
- DDFHBQSCUXNBSA-UHFFFAOYSA-N 5-(5-carboxythiophen-2-yl)thiophene-2-carboxylic acid Chemical compound S1C(C(=O)O)=CC=C1C1=CC=C(C(O)=O)S1 DDFHBQSCUXNBSA-UHFFFAOYSA-N 0.000 claims description 8
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 claims description 8
- 239000002253 acid Substances 0.000 claims description 8
- 229910052783 alkali metal Inorganic materials 0.000 claims description 8
- 150000001340 alkali metals Chemical class 0.000 claims description 8
- 125000004432 carbon atom Chemical group C* 0.000 claims description 8
- 229910052736 halogen Inorganic materials 0.000 claims description 8
- 150000002367 halogens Chemical group 0.000 claims description 8
- 125000004051 hexyl group Chemical class [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 claims description 8
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 claims description 8
- QNGNSVIICDLXHT-UHFFFAOYSA-N para-ethylbenzaldehyde Natural products CCC1=CC=C(C=O)C=C1 QNGNSVIICDLXHT-UHFFFAOYSA-N 0.000 claims description 8
- 229910052700 potassium Inorganic materials 0.000 claims description 8
- 229910052708 sodium Inorganic materials 0.000 claims description 8
- 239000011734 sodium Substances 0.000 claims description 8
- QYBKVVRRGQSGDC-UHFFFAOYSA-N triethyl methyl silicate Chemical compound CCO[Si](OC)(OCC)OCC QYBKVVRRGQSGDC-UHFFFAOYSA-N 0.000 claims description 8
- XDLMVUHYZWKMMD-UHFFFAOYSA-N 3-trimethoxysilylpropyl 2-methylprop-2-enoate Chemical compound CO[Si](OC)(OC)CCCOC(=O)C(C)=C XDLMVUHYZWKMMD-UHFFFAOYSA-N 0.000 claims description 7
- BHFJBHMTEDLICO-UHFFFAOYSA-N Perfluorooctylsulfonyl fluoride Chemical group FC(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)S(F)(=O)=O BHFJBHMTEDLICO-UHFFFAOYSA-N 0.000 claims description 7
- 239000002585 base Substances 0.000 claims description 7
- 125000003161 (C1-C6) alkylene group Chemical group 0.000 claims description 6
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 claims description 6
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 6
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical group [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims description 6
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 claims description 6
- 239000000460 chlorine Chemical group 0.000 claims description 6
- 229910052801 chlorine Chemical group 0.000 claims description 6
- 229910052731 fluorine Inorganic materials 0.000 claims description 6
- 239000011737 fluorine Substances 0.000 claims description 6
- 125000001153 fluoro group Chemical group F* 0.000 claims description 6
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 claims description 5
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical class COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 claims description 5
- 229940048053 acrylate Drugs 0.000 claims description 5
- GQOKIYDTHHZSCJ-UHFFFAOYSA-M dimethyl-bis(prop-2-enyl)azanium;chloride Chemical compound [Cl-].C=CC[N+](C)(C)CC=C GQOKIYDTHHZSCJ-UHFFFAOYSA-M 0.000 claims description 5
- OFHKMSIZNZJZKM-UHFFFAOYSA-N 1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-heptadecafluorooctyl prop-2-enoate Chemical compound FC(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)OC(=O)C=C OFHKMSIZNZJZKM-UHFFFAOYSA-N 0.000 claims description 4
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 claims description 4
- 125000000217 alkyl group Chemical group 0.000 claims description 4
- 235000019270 ammonium chloride Nutrition 0.000 claims description 4
- PYGSKMBEVAICCR-UHFFFAOYSA-N hexa-1,5-diene Chemical group C=CCCC=C PYGSKMBEVAICCR-UHFFFAOYSA-N 0.000 claims description 4
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 claims description 4
- 239000002048 multi walled nanotube Substances 0.000 claims description 4
- 125000004191 (C1-C6) alkoxy group Chemical group 0.000 claims description 3
- HSDJWNJDPDJOEV-UHFFFAOYSA-N 1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexane-1-sulfonyl fluoride Chemical group FC(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)S(F)(=O)=O HSDJWNJDPDJOEV-UHFFFAOYSA-N 0.000 claims description 3
- ACPXSFMFCSCMCY-UHFFFAOYSA-N 1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OC(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F ACPXSFMFCSCMCY-UHFFFAOYSA-N 0.000 claims description 3
- MASLUGIZOMEMQX-UHFFFAOYSA-N 1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl prop-2-enoate Chemical compound FC(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)OC(=O)C=C MASLUGIZOMEMQX-UHFFFAOYSA-N 0.000 claims description 3
- QILGVWIMFQATRQ-UHFFFAOYSA-N 1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-henicosafluorodecyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OC(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F QILGVWIMFQATRQ-UHFFFAOYSA-N 0.000 claims description 3
- HAGZZKFZSAMMFD-UHFFFAOYSA-N 1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-henicosafluorodecyl prop-2-enoate Chemical compound FC(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)OC(=O)C=C HAGZZKFZSAMMFD-UHFFFAOYSA-N 0.000 claims description 3
- AUZRCMMVHXRSGT-UHFFFAOYSA-N 2-methylpropane-1-sulfonic acid;prop-2-enamide Chemical compound NC(=O)C=C.CC(C)CS(O)(=O)=O AUZRCMMVHXRSGT-UHFFFAOYSA-N 0.000 claims description 3
- PUXCPQLMEYZWBC-UHFFFAOYSA-N C(C(=C)C)(=O)OC(C(CCCCCCCC(F)(F)F)(F)F)(F)F Chemical compound C(C(=C)C)(=O)OC(C(CCCCCCCC(F)(F)F)(F)F)(F)F PUXCPQLMEYZWBC-UHFFFAOYSA-N 0.000 claims description 3
- PJANXHGTPQOBST-VAWYXSNFSA-N Stilbene Natural products C=1C=CC=CC=1/C=C/C1=CC=CC=C1 PJANXHGTPQOBST-VAWYXSNFSA-N 0.000 claims description 3
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 claims description 3
- KCXFHTAICRTXLI-UHFFFAOYSA-N propane-1-sulfonic acid Chemical compound CCCS(O)(=O)=O KCXFHTAICRTXLI-UHFFFAOYSA-N 0.000 claims description 3
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 claims description 3
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 claims description 3
- PJANXHGTPQOBST-UHFFFAOYSA-N stilbene Chemical compound C=1C=CC=CC=1C=CC1=CC=CC=C1 PJANXHGTPQOBST-UHFFFAOYSA-N 0.000 claims description 3
- 235000021286 stilbenes Nutrition 0.000 claims description 3
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 claims description 3
- 229920002554 vinyl polymer Polymers 0.000 claims description 3
- 125000006528 (C2-C6) alkyl group Chemical group 0.000 claims description 2
- DVRQSALCLMEVIH-UHFFFAOYSA-N 1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexane-1-sulfonyl chloride Chemical group FC(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)S(Cl)(=O)=O DVRQSALCLMEVIH-UHFFFAOYSA-N 0.000 claims description 2
- JVJVAVWMGAQRFN-UHFFFAOYSA-N 1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-heptadecafluorooctyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OC(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F JVJVAVWMGAQRFN-UHFFFAOYSA-N 0.000 claims description 2
- MLRMMQUHIRBUFZ-UHFFFAOYSA-N 1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-henicosafluorodecane-1-sulfonyl chloride Chemical compound FC(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)S(Cl)(=O)=O MLRMMQUHIRBUFZ-UHFFFAOYSA-N 0.000 claims description 2
- QMNUYVWNQITPHA-UHFFFAOYSA-N 1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-henicosafluorodecane-1-sulfonyl fluoride Chemical compound FC(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)S(F)(=O)=O QMNUYVWNQITPHA-UHFFFAOYSA-N 0.000 claims description 2
- PQUXFUBNSYCQAL-UHFFFAOYSA-N 1-(2,3-difluorophenyl)ethanone Chemical compound CC(=O)C1=CC=CC(F)=C1F PQUXFUBNSYCQAL-UHFFFAOYSA-N 0.000 claims description 2
- VILCJCGEZXAXTO-UHFFFAOYSA-N 2,2,2-tetramine Chemical compound NCCNCCNCCN VILCJCGEZXAXTO-UHFFFAOYSA-N 0.000 claims description 2
- NGNBDVOYPDDBFK-UHFFFAOYSA-N 2-[2,4-di(pentan-2-yl)phenoxy]acetyl chloride Chemical compound CCCC(C)C1=CC=C(OCC(Cl)=O)C(C(C)CCC)=C1 NGNBDVOYPDDBFK-UHFFFAOYSA-N 0.000 claims description 2
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical group [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 claims description 2
- SCTMVRVOGJDCRL-UHFFFAOYSA-N CC=CC(O)=O.[Na] Chemical compound CC=CC(O)=O.[Na] SCTMVRVOGJDCRL-UHFFFAOYSA-N 0.000 claims description 2
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical compound NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 claims description 2
- HETCEOQFVDFGSY-UHFFFAOYSA-N Isopropenyl acetate Chemical compound CC(=C)OC(C)=O HETCEOQFVDFGSY-UHFFFAOYSA-N 0.000 claims description 2
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 claims description 2
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 claims description 2
- MLHOXUWWKVQEJB-UHFFFAOYSA-N Propyleneglycol diacetate Chemical compound CC(=O)OC(C)COC(C)=O MLHOXUWWKVQEJB-UHFFFAOYSA-N 0.000 claims description 2
- 150000001335 aliphatic alkanes Chemical class 0.000 claims description 2
- 125000003545 alkoxy group Chemical group 0.000 claims description 2
- 235000012211 aluminium silicate Nutrition 0.000 claims description 2
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 claims description 2
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Chemical group BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 claims description 2
- 229910052794 bromium Chemical group 0.000 claims description 2
- 238000007334 copolymerization reaction Methods 0.000 claims description 2
- LDHQCZJRKDOVOX-NSCUHMNNSA-N crotonic acid Chemical compound C\C=C\C(O)=O LDHQCZJRKDOVOX-NSCUHMNNSA-N 0.000 claims description 2
- 125000004177 diethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 claims description 2
- IOMDIVZAGXCCAC-UHFFFAOYSA-M diethyl-bis(prop-2-enyl)azanium;chloride Chemical compound [Cl-].C=CC[N+](CC)(CC)CC=C IOMDIVZAGXCCAC-UHFFFAOYSA-M 0.000 claims description 2
- ITAHRPSKCCPKOK-UHFFFAOYSA-N ethyl trimethyl silicate Chemical compound CCO[Si](OC)(OC)OC ITAHRPSKCCPKOK-UHFFFAOYSA-N 0.000 claims description 2
- UQXMIPQJJDKQHZ-UHFFFAOYSA-N ethyl tripropyl silicate Chemical compound CCCO[Si](OCC)(OCCC)OCCC UQXMIPQJJDKQHZ-UHFFFAOYSA-N 0.000 claims description 2
- 125000000816 ethylene group Chemical group [H]C([H])([*:1])C([H])([H])[*:2] 0.000 claims description 2
- UQSQSQZYBQSBJZ-UHFFFAOYSA-N fluorosulfonic acid Chemical compound OS(F)(=O)=O UQSQSQZYBQSBJZ-UHFFFAOYSA-N 0.000 claims description 2
- 150000004820 halides Chemical class 0.000 claims description 2
- 125000000555 isopropenyl group Chemical group [H]\C([H])=C(\*)C([H])([H])[H] 0.000 claims description 2
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical group O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 claims description 2
- SFLULBKYTSNESB-UHFFFAOYSA-N methyl tripropyl silicate Chemical compound CCCO[Si](OC)(OCCC)OCCC SFLULBKYTSNESB-UHFFFAOYSA-N 0.000 claims description 2
- 125000006606 n-butoxy group Chemical group 0.000 claims description 2
- 150000004291 polyenes Chemical class 0.000 claims description 2
- 150000004756 silanes Chemical class 0.000 claims description 2
- 229940047670 sodium acrylate Drugs 0.000 claims description 2
- SONHXMAHPHADTF-UHFFFAOYSA-M sodium;2-methylprop-2-enoate Chemical compound [Na+].CC(=C)C([O-])=O SONHXMAHPHADTF-UHFFFAOYSA-M 0.000 claims description 2
- FAGUFWYHJQFNRV-UHFFFAOYSA-N tetraethylenepentamine Chemical compound NCCNCCNCCNCCN FAGUFWYHJQFNRV-UHFFFAOYSA-N 0.000 claims description 2
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 claims 6
- 229910000077 silane Inorganic materials 0.000 claims 6
- 125000003368 amide group Chemical group 0.000 claims 1
- 125000004368 propenyl group Chemical group C(=CC)* 0.000 claims 1
- 239000011435 rock Substances 0.000 abstract description 16
- 239000003208 petroleum Substances 0.000 abstract description 5
- 235000001968 nicotinic acid Nutrition 0.000 abstract description 4
- 241001465754 Metazoa Species 0.000 abstract description 2
- 239000000178 monomer Substances 0.000 description 54
- 239000007789 gas Substances 0.000 description 48
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 34
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 27
- 238000000034 method Methods 0.000 description 24
- 239000003999 initiator Substances 0.000 description 18
- 238000005520 cutting process Methods 0.000 description 17
- 230000000694 effects Effects 0.000 description 16
- 238000005516 engineering process Methods 0.000 description 16
- 238000002360 preparation method Methods 0.000 description 16
- 239000000243 solution Substances 0.000 description 15
- 239000007864 aqueous solution Substances 0.000 description 13
- 238000011161 development Methods 0.000 description 13
- 230000018109 developmental process Effects 0.000 description 13
- 238000012360 testing method Methods 0.000 description 13
- 230000015572 biosynthetic process Effects 0.000 description 12
- 238000005755 formation reaction Methods 0.000 description 12
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 11
- 239000000047 product Substances 0.000 description 11
- 239000007795 chemical reaction product Substances 0.000 description 10
- USHAGKDGDHPEEY-UHFFFAOYSA-L potassium persulfate Chemical compound [K+].[K+].[O-]S(=O)(=O)OOS([O-])(=O)=O USHAGKDGDHPEEY-UHFFFAOYSA-L 0.000 description 10
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 9
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 9
- 238000001816 cooling Methods 0.000 description 9
- 238000006116 polymerization reaction Methods 0.000 description 9
- 239000012670 alkaline solution Substances 0.000 description 8
- 238000007720 emulsion polymerization reaction Methods 0.000 description 8
- 230000007613 environmental effect Effects 0.000 description 8
- 239000012065 filter cake Substances 0.000 description 8
- 239000002904 solvent Substances 0.000 description 8
- 206010042674 Swelling Diseases 0.000 description 7
- 238000003912 environmental pollution Methods 0.000 description 7
- 230000004048 modification Effects 0.000 description 7
- 238000012986 modification Methods 0.000 description 7
- 239000002086 nanomaterial Substances 0.000 description 7
- 239000011148 porous material Substances 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 238000011084 recovery Methods 0.000 description 7
- 230000008961 swelling Effects 0.000 description 7
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- 0 CC(C)(C)C(*)(*)C(*)(C(C)(C)C)C(N)=O Chemical compound CC(C)(C)C(*)(*)C(*)(C(C)(C)C)C(N)=O 0.000 description 6
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 6
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- ROOXNKNUYICQNP-UHFFFAOYSA-N ammonium persulfate Chemical compound [NH4+].[NH4+].[O-]S(=O)(=O)OOS([O-])(=O)=O ROOXNKNUYICQNP-UHFFFAOYSA-N 0.000 description 6
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 6
- 239000010428 baryte Substances 0.000 description 6
- 229910052601 baryte Inorganic materials 0.000 description 6
- 230000008901 benefit Effects 0.000 description 6
- 239000011521 glass Substances 0.000 description 6
- 230000036571 hydration Effects 0.000 description 6
- 238000006703 hydration reaction Methods 0.000 description 6
- 230000035699 permeability Effects 0.000 description 6
- 239000012265 solid product Substances 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 238000010998 test method Methods 0.000 description 6
- 230000032683 aging Effects 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 229910001385 heavy metal Inorganic materials 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 239000003381 stabilizer Substances 0.000 description 5
- 208000001840 Dandruff Diseases 0.000 description 4
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 4
- 239000004793 Polystyrene Substances 0.000 description 4
- NYRAVIYBIHCEGB-UHFFFAOYSA-N [K].[Ca] Chemical compound [K].[Ca] NYRAVIYBIHCEGB-UHFFFAOYSA-N 0.000 description 4
- 239000003153 chemical reaction reagent Substances 0.000 description 4
- 239000008367 deionised water Substances 0.000 description 4
- 229910021641 deionized water Inorganic materials 0.000 description 4
- 238000004945 emulsification Methods 0.000 description 4
- 239000003995 emulsifying agent Substances 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 230000005764 inhibitory process Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000002077 nanosphere Substances 0.000 description 4
- 231100000252 nontoxic Toxicity 0.000 description 4
- 230000003000 nontoxic effect Effects 0.000 description 4
- 229920002223 polystyrene Polymers 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 239000002002 slurry Substances 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid Substances OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- XDQWJFXZTAWJST-UHFFFAOYSA-N 3-triethoxysilylpropyl prop-2-enoate Chemical compound CCO[Si](OCC)(OCC)CCCOC(=O)C=C XDQWJFXZTAWJST-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 3
- 229960000583 acetic acid Drugs 0.000 description 3
- 239000003929 acidic solution Substances 0.000 description 3
- 239000008186 active pharmaceutical agent Substances 0.000 description 3
- 229910001870 ammonium persulfate Inorganic materials 0.000 description 3
- 239000000440 bentonite Substances 0.000 description 3
- 229910000278 bentonite Inorganic materials 0.000 description 3
- 229940092782 bentonite Drugs 0.000 description 3
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 230000021523 carboxylation Effects 0.000 description 3
- 238000006473 carboxylation reaction Methods 0.000 description 3
- 239000003638 chemical reducing agent Substances 0.000 description 3
- 239000011651 chromium Substances 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 239000008398 formation water Substances 0.000 description 3
- 239000012362 glacial acetic acid Substances 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 125000001261 isocyanato group Chemical group *N=C=O 0.000 description 3
- 239000011259 mixed solution Substances 0.000 description 3
- 229910017604 nitric acid Inorganic materials 0.000 description 3
- NLKNQRATVPKPDG-UHFFFAOYSA-M potassium iodide Chemical compound [K+].[I-] NLKNQRATVPKPDG-UHFFFAOYSA-M 0.000 description 3
- 238000011085 pressure filtration Methods 0.000 description 3
- 238000010008 shearing Methods 0.000 description 3
- 230000005476 size effect Effects 0.000 description 3
- 239000002689 soil Substances 0.000 description 3
- 238000001179 sorption measurement Methods 0.000 description 3
- GMASXFZZQFMQMW-UHFFFAOYSA-N 2-methyl-N-(2-tripropoxysilylethyl)prop-2-enamide Chemical compound CCCO[Si](CCNC(C(C)=C)=O)(OCCC)OCCC GMASXFZZQFMQMW-UHFFFAOYSA-N 0.000 description 2
- LSPQKBGLFBSJDW-UHFFFAOYSA-N 2-methyl-n-(2-trimethoxysilylethyl)prop-2-enamide Chemical compound CO[Si](OC)(OC)CCNC(=O)C(C)=C LSPQKBGLFBSJDW-UHFFFAOYSA-N 0.000 description 2
- HRWGWHCYOOVEJO-UHFFFAOYSA-N 2-methyl-n-(triethoxysilylmethyl)prop-2-enamide Chemical compound CCO[Si](OCC)(OCC)CNC(=O)C(C)=C HRWGWHCYOOVEJO-UHFFFAOYSA-N 0.000 description 2
- IPEXBPKLBUTTGK-UHFFFAOYSA-N 2-methyl-n-(trimethoxysilylmethyl)prop-2-enamide Chemical compound CO[Si](OC)(OC)CNC(=O)C(C)=C IPEXBPKLBUTTGK-UHFFFAOYSA-N 0.000 description 2
- FGSFVBRPCKXYDI-UHFFFAOYSA-N 2-triethoxysilylethyl 2-methylprop-2-enoate Chemical compound CCO[Si](OCC)(OCC)CCOC(=O)C(C)=C FGSFVBRPCKXYDI-UHFFFAOYSA-N 0.000 description 2
- PSLRXNFNXYNXEK-UHFFFAOYSA-N 2-triethoxysilylethyl prop-2-enoate Chemical compound CCO[Si](OCC)(OCC)CCOC(=O)C=C PSLRXNFNXYNXEK-UHFFFAOYSA-N 0.000 description 2
- RDCTZTAAYLXPDJ-UHFFFAOYSA-N 2-trimethoxysilylethyl 2-methylprop-2-enoate Chemical compound CO[Si](OC)(OC)CCOC(=O)C(C)=C RDCTZTAAYLXPDJ-UHFFFAOYSA-N 0.000 description 2
- BUJVPKZRXOTBGA-UHFFFAOYSA-N 2-trimethoxysilylethyl prop-2-enoate Chemical compound CO[Si](OC)(OC)CCOC(=O)C=C BUJVPKZRXOTBGA-UHFFFAOYSA-N 0.000 description 2
- XNLCJDXTAMGDDI-UHFFFAOYSA-N 2-tripropoxysilylethyl 2-methylprop-2-enoate Chemical compound CCCO[Si](OCCC)(OCCC)CCOC(=O)C(C)=C XNLCJDXTAMGDDI-UHFFFAOYSA-N 0.000 description 2
- XLWXXGVVLTXOSL-UHFFFAOYSA-N 2-tripropoxysilylethyl prop-2-enoate Chemical compound CCCO[Si](OCCC)(OCCC)CCOC(=O)C=C XLWXXGVVLTXOSL-UHFFFAOYSA-N 0.000 description 2
- URDOJQUSEUXVRP-UHFFFAOYSA-N 3-triethoxysilylpropyl 2-methylprop-2-enoate Chemical compound CCO[Si](OCC)(OCC)CCCOC(=O)C(C)=C URDOJQUSEUXVRP-UHFFFAOYSA-N 0.000 description 2
- JZYAVTAENNQGJB-UHFFFAOYSA-N 3-tripropoxysilylpropyl 2-methylprop-2-enoate Chemical compound CCCO[Si](OCCC)(OCCC)CCCOC(=O)C(C)=C JZYAVTAENNQGJB-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 2
- OGGIGSFQMOXHAS-UHFFFAOYSA-N CCO[Si](CCNC(=O)C(=C)C)(OCC)OCC Chemical compound CCO[Si](CCNC(=O)C(=C)C)(OCC)OCC OGGIGSFQMOXHAS-UHFFFAOYSA-N 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 2
- 101150026303 HEX1 gene Proteins 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- GHTLTFFZHMSQSC-UHFFFAOYSA-N N-(2-trimethoxysilylethyl)prop-2-enamide Chemical compound C(C=C)(=O)NCC[Si](OC)(OC)OC GHTLTFFZHMSQSC-UHFFFAOYSA-N 0.000 description 2
- KCSHIMBYEOEWHO-UHFFFAOYSA-N N-(2-tripropoxysilylethyl)prop-2-enamide Chemical compound CCCO[Si](CCNC(C=C)=O)(OCCC)OCCC KCSHIMBYEOEWHO-UHFFFAOYSA-N 0.000 description 2
- NKGOMRKLTGNTNA-UHFFFAOYSA-N N-(tripropoxysilylmethyl)prop-2-enamide Chemical compound CCCO[Si](CNC(C=C)=O)(OCCC)OCCC NKGOMRKLTGNTNA-UHFFFAOYSA-N 0.000 description 2
- WKBUFLFOTXIORM-UHFFFAOYSA-N [SiH4].C(C=C)(=O)NCCC[Si](OC)(OC)OC Chemical compound [SiH4].C(C=C)(=O)NCCC[Si](OC)(OC)OC WKBUFLFOTXIORM-UHFFFAOYSA-N 0.000 description 2
- MUFPSRMWYSPCIB-UHFFFAOYSA-N [butan-2-yloxy(dipropoxy)silyl]methyl prop-2-enoate Chemical compound CCCO[Si](COC(=O)C=C)(OCCC)OC(C)CC MUFPSRMWYSPCIB-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000001476 alcoholic effect Effects 0.000 description 2
- 235000011114 ammonium hydroxide Nutrition 0.000 description 2
- 229910052785 arsenic Inorganic materials 0.000 description 2
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 2
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 2
- ONCZQWJXONKSMM-UHFFFAOYSA-N dialuminum;disodium;oxygen(2-);silicon(4+);hydrate Chemical compound O.[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[Na+].[Na+].[Al+3].[Al+3].[Si+4].[Si+4].[Si+4].[Si+4] ONCZQWJXONKSMM-UHFFFAOYSA-N 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- IDGUHHHQCWSQLU-UHFFFAOYSA-N ethanol;hydrate Chemical compound O.CCO IDGUHHHQCWSQLU-UHFFFAOYSA-N 0.000 description 2
- FWDBOZPQNFPOLF-UHFFFAOYSA-N ethenyl(triethoxy)silane Chemical compound CCO[Si](OCC)(OCC)C=C FWDBOZPQNFPOLF-UHFFFAOYSA-N 0.000 description 2
- NKSJNEHGWDZZQF-UHFFFAOYSA-N ethenyl(trimethoxy)silane Chemical compound CO[Si](OC)(OC)C=C NKSJNEHGWDZZQF-UHFFFAOYSA-N 0.000 description 2
- NNBRCHPBPDRPIT-UHFFFAOYSA-N ethenyl(tripropoxy)silane Chemical compound CCCO[Si](OCCC)(OCCC)C=C NNBRCHPBPDRPIT-UHFFFAOYSA-N 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- 239000001307 helium Substances 0.000 description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 230000008676 import Effects 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000003350 kerosene Substances 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000005461 lubrication Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 2
- 229910052753 mercury Inorganic materials 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- WBVIDUVVOLEHIO-UHFFFAOYSA-N n-(2-triethoxysilylethyl)prop-2-enamide Chemical compound CCO[Si](OCC)(OCC)CCNC(=O)C=C WBVIDUVVOLEHIO-UHFFFAOYSA-N 0.000 description 2
- VZEXPNPNFOCCOH-UHFFFAOYSA-N n-(triethoxysilylmethyl)prop-2-enamide Chemical compound CCO[Si](OCC)(OCC)CNC(=O)C=C VZEXPNPNFOCCOH-UHFFFAOYSA-N 0.000 description 2
- VERHEKWGDRQWPH-UHFFFAOYSA-N n-(trimethoxysilylmethyl)prop-2-enamide Chemical compound CO[Si](OC)(OC)CNC(=O)C=C VERHEKWGDRQWPH-UHFFFAOYSA-N 0.000 description 2
- 150000002790 naphthalenes Chemical class 0.000 description 2
- 229910052754 neon Inorganic materials 0.000 description 2
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 230000003204 osmotic effect Effects 0.000 description 2
- 238000011056 performance test Methods 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 229920001568 phenolic resin Polymers 0.000 description 2
- 239000005011 phenolic resin Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- KDCYKKMWRUZITI-UHFFFAOYSA-N prop-1-enyl(tripropoxy)silane Chemical compound CCCO[Si](OCCC)(OCCC)C=CC KDCYKKMWRUZITI-UHFFFAOYSA-N 0.000 description 2
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 2
- 239000005871 repellent Substances 0.000 description 2
- 230000002940 repellent Effects 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 238000000518 rheometry Methods 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 239000003079 shale oil Substances 0.000 description 2
- 239000000779 smoke Substances 0.000 description 2
- 238000002791 soaking Methods 0.000 description 2
- 229940080314 sodium bentonite Drugs 0.000 description 2
- 229910000280 sodium bentonite Inorganic materials 0.000 description 2
- 231100000419 toxicity Toxicity 0.000 description 2
- 230000001988 toxicity Effects 0.000 description 2
- MJINPUKGRATQAC-UHFFFAOYSA-N triethoxy(prop-1-enyl)silane Chemical compound CCO[Si](OCC)(OCC)C=CC MJINPUKGRATQAC-UHFFFAOYSA-N 0.000 description 2
- UZIAQVMNAXPCJQ-UHFFFAOYSA-N triethoxysilylmethyl 2-methylprop-2-enoate Chemical compound CCO[Si](OCC)(OCC)COC(=O)C(C)=C UZIAQVMNAXPCJQ-UHFFFAOYSA-N 0.000 description 2
- WDUXKFKVDQRWJN-UHFFFAOYSA-N triethoxysilylmethyl prop-2-enoate Chemical compound CCO[Si](OCC)(OCC)COC(=O)C=C WDUXKFKVDQRWJN-UHFFFAOYSA-N 0.000 description 2
- OWUTVCVPEOXXHD-UHFFFAOYSA-N trimethoxy(prop-1-enyl)silane Chemical compound CO[Si](OC)(OC)C=CC OWUTVCVPEOXXHD-UHFFFAOYSA-N 0.000 description 2
- UOKUUKOEIMCYAI-UHFFFAOYSA-N trimethoxysilylmethyl 2-methylprop-2-enoate Chemical compound CO[Si](OC)(OC)COC(=O)C(C)=C UOKUUKOEIMCYAI-UHFFFAOYSA-N 0.000 description 2
- JPPHEZSCZWYTOP-UHFFFAOYSA-N trimethoxysilylmethyl prop-2-enoate Chemical compound CO[Si](OC)(OC)COC(=O)C=C JPPHEZSCZWYTOP-UHFFFAOYSA-N 0.000 description 2
- 238000001132 ultrasonic dispersion Methods 0.000 description 2
- 238000001291 vacuum drying Methods 0.000 description 2
- 238000009423 ventilation Methods 0.000 description 2
- 238000009736 wetting Methods 0.000 description 2
- 125000000229 (C1-C4)alkoxy group Chemical group 0.000 description 1
- NFZPJJDSEDIWGX-UHFFFAOYSA-N 1,1,2,2,10,10,10-heptafluorodecyl prop-2-enoate Chemical compound C(C=C)(=O)OC(C(CCCCCCCC(F)(F)F)(F)F)(F)F NFZPJJDSEDIWGX-UHFFFAOYSA-N 0.000 description 1
- OSNIIMCBVLBNGS-UHFFFAOYSA-N 1-(1,3-benzodioxol-5-yl)-2-(dimethylamino)propan-1-one Chemical compound CN(C)C(C)C(=O)C1=CC=C2OCOC2=C1 OSNIIMCBVLBNGS-UHFFFAOYSA-N 0.000 description 1
- LCPVQAHEFVXVKT-UHFFFAOYSA-N 2-(2,4-difluorophenoxy)pyridin-3-amine Chemical compound NC1=CC=CN=C1OC1=CC=C(F)C=C1F LCPVQAHEFVXVKT-UHFFFAOYSA-N 0.000 description 1
- HGEKXQRHZRDGKO-UHFFFAOYSA-N 3-tripropoxysilylpropyl prop-2-enoate Chemical compound CCCO[Si](OCCC)(OCCC)CCCOC(=O)C=C HGEKXQRHZRDGKO-UHFFFAOYSA-N 0.000 description 1
- 240000006108 Allium ampeloprasum Species 0.000 description 1
- 235000005254 Allium ampeloprasum Nutrition 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 208000032170 Congenital Abnormalities Diseases 0.000 description 1
- 241001412225 Firmiana simplex Species 0.000 description 1
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical group CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- 150000001265 acyl fluorides Chemical class 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- 238000001391 atomic fluorescence spectroscopy Methods 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- 231100000209 biodegradability test Toxicity 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000012267 brine Substances 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000009920 chelation Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000002734 clay mineral Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000009918 complex formation Effects 0.000 description 1
- 238000006482 condensation reaction Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000004993 emission spectroscopy Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000009616 inductively coupled plasma Methods 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000011081 inoculation Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 230000020477 pH reduction Effects 0.000 description 1
- QZHDEAJFRJCDMF-UHFFFAOYSA-N perfluorohexanesulfonic acid Chemical compound OS(=O)(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F QZHDEAJFRJCDMF-UHFFFAOYSA-N 0.000 description 1
- YVBBRRALBYAZBM-UHFFFAOYSA-N perfluorooctane Chemical compound FC(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F YVBBRRALBYAZBM-UHFFFAOYSA-N 0.000 description 1
- 238000000053 physical method Methods 0.000 description 1
- 239000012286 potassium permanganate Substances 0.000 description 1
- ZMYXZXUHYAGGKG-UHFFFAOYSA-N propoxysilane Chemical compound CCCO[SiH3] ZMYXZXUHYAGGKG-UHFFFAOYSA-N 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000004626 scanning electron microscopy Methods 0.000 description 1
- 238000001350 scanning transmission electron microscopy Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 239000011669 selenium Substances 0.000 description 1
- CHQMHPLRPQMAMX-UHFFFAOYSA-L sodium persulfate Substances [Na+].[Na+].[O-]S(=O)(=O)OOS([O-])(=O)=O CHQMHPLRPQMAMX-UHFFFAOYSA-L 0.000 description 1
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- OBTWBSRJZRCYQV-UHFFFAOYSA-N sulfuryl difluoride Chemical compound FS(F)(=O)=O OBTWBSRJZRCYQV-UHFFFAOYSA-N 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- KVTDUVNUUSLFRR-UHFFFAOYSA-N tripropoxysilylmethyl prop-2-enoate Chemical compound CCCO[Si](OCCC)(OCCC)COC(=O)C=C KVTDUVNUUSLFRR-UHFFFAOYSA-N 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K8/00—Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
- C09K8/02—Well-drilling compositions
- C09K8/04—Aqueous well-drilling compositions
- C09K8/14—Clay-containing compositions
- C09K8/18—Clay-containing compositions characterised by the organic compounds
- C09K8/22—Synthetic organic compounds
- C09K8/24—Polymers
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K8/00—Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
- C09K8/02—Well-drilling compositions
- C09K8/04—Aqueous well-drilling compositions
- C09K8/14—Clay-containing compositions
- C09K8/16—Clay-containing compositions characterised by the inorganic compounds other than clay
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K8/00—Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
- C09K8/02—Well-drilling compositions
- C09K8/04—Aqueous well-drilling compositions
- C09K8/14—Clay-containing compositions
- C09K8/18—Clay-containing compositions characterised by the organic compounds
- C09K8/20—Natural organic compounds or derivatives thereof, e.g. polysaccharides or lignin derivatives
- C09K8/206—Derivatives of other natural products, e.g. cellulose, starch, sugars
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2208/00—Aspects relating to compositions of drilling or well treatment fluids
- C09K2208/10—Nanoparticle-containing well treatment fluids
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2208/00—Aspects relating to compositions of drilling or well treatment fluids
- C09K2208/12—Swell inhibition, i.e. using additives to drilling or well treatment fluids for inhibiting clay or shale swelling or disintegrating
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2208/00—Aspects relating to compositions of drilling or well treatment fluids
- C09K2208/34—Lubricant additives
Definitions
- the invention relates to the field of oil field chemistry in the petroleum industry, in particular to a bionic and amphiphobic high-efficiency water-based drilling fluid.
- Drilling is the only engineering and technical means to connect underground oil and gas with the ground.
- Drilling fluid is an engineering fluid technology that ensures the safe, efficient and smooth implementation of drilling engineering, also known as the "blood" of drilling engineering.
- blood also known as the "blood” of drilling engineering.
- the newly discovered unconventional and complex oil and gas resources in my country and the world are mainly distributed in mountainous areas, deserts, plateaus, loess plateaus, the Arctic Circle and ocean-covered areas.
- drilling fluids such as "well wall collapse, stuck and stuck drilling, lost circulation, unclean wellbore, damage to oil and gas layers, and environmental pollution", or frequent occurrence of accidents, low oil and gas production, and high cost
- drilling fluid technology is facing unprecedented challenges, severely restricting the success or failure of drilling unconventional and complex oil and gas wells and the process of exploration and development.
- oil-based drilling fluid has excellent wellbore stability, lubricity and oil and gas layer protection, and is usually the first choice for drilling difficult wells, it suffers from serious environmental pollution and high preparation costs. , It is difficult to deal with lost circulation, difficult to carry cuttings, and poor cementing quality for a long time, which limits its application. Therefore, under the new normal of more and more complex drilling conditions, strict environmental protection requirements and sharp fluctuations in oil prices, since the 21st century, domestic and foreign hot research has been focused on high-performance water-based drilling fluids with the advantages of "water-based and oil-based drilling fluids".
- the purpose of the present invention is to introduce bionics into the field of drilling fluids, and combine with the theory of the double-sparse type of the underground rock surface, to propose a drilling fluid system that meets the needs of "safe, efficient, economical, and environmentally friendly" drilling and the coordinated development of the petroleum industry and environmental protection,
- a bionic and amphiphobic drilling fluid especially a bionic and amphiphobic high-efficiency water-based drilling fluid
- the drilling fluid contains a bionic wall solidifying agent, a biomimetic lubricant, a super dual Thinner, chip carrier and biomimetic shale inhibitor;
- the biomimetic wall-fixing agent contains the structural unit represented by the formula (1-a), the structural unit represented by the formula (2-a), the structural unit represented by the formula (3-a) and the formula (4-a)
- the acrylamide-based polymer of the structural unit shown wherein the structural unit represented by the formula (1-a), the structural unit represented by the formula (2-a), the structural unit represented by the formula (3-a) and The molar ratio of the structural unit represented by the formula (4-a) is 1:(1.05-3):(0.5-0.95):(0.2-0.9);
- the biomimetic lubricant is a block polymer, and the polymer comprises a block A containing a carboxylate structural unit and a benzene structural unit, and a block B connected with the block A and containing an acrylamide structural unit ;
- the benzene-containing structural unit is the structural unit shown in formula (1-b);
- the carboxylate structural unit is one of the structural units shown in formula (2-b) and formula (3-b). one or more; the acrylamide structural unit is the structural unit shown in formula (4-b);
- R 1 '-R 2 ', R 4 '-R 6 ', R 8 '-R 10 ' and R 12 '-R 14 ' are each independently selected from H and C1-C6 alkyl;
- L 1 ' is selected from C0-C6 alkylene;
- R 7 ' and R 11 ' are selected from C1-C8 alkyl;
- R 15 ' is selected from H, C1-C8 alkyl or -L 2 '-SOOM', L 2 'is selected from C1-C6 alkylene,
- M' is H or an alkali metal element;
- R 3 ' is selected from H, C1-C6 alkyl, phenyl or phenyl-substituted C1-C6 alkyl;
- the super-amphiphobic agent is a modified carbon nanotube with a modified group on the surface, wherein the modified group includes a silane coupling agent containing an unsaturated carbon-carbon double bond, a silane coupling agent of the formula R 1 SO 2 X Represented perfluorosulfonyl halide and modified group provided by siloxane represented by formula R 3 Si(OR 2 ) 3 ; wherein, R 1 is a perfluoro-substituted C4-C12 alkyl group, and X represents a halogen; R 3 is selected from C1-C6 alkyl and C1-C6 alkoxy, R 2 is selected from C1-C6 alkyl;
- the chip carrier is an Al 2 O 3 /SiO 2 composite material, and the composite material includes solid particles containing Al 2 O 3 and SiO 2 and a polyacrylamide polymer modified on the surface of the solid particles; wherein, the Polyacrylamide polymers contain structural units represented by formula (1-c) and formula (2-c):
- R 1 "-R 6 " are independently selected from H or C1-C6 alkyl;
- L" is selected from C0-C6 alkylene;
- R 7 " is selected from C6-C20 alkyl substituted by halogen ;
- the biomimetic shale inhibitor is modified chitosan, and the modified chitosan is connected with a modified group of the structure shown in formula (1-d); formula (1-d): -CH 2 - CH(OH)CH 2 -polyamine structure; the polyamine structure is provided by polyamine compounds.
- the second aspect of the present invention provides the application of the above drilling fluid in oil and gas drilling.
- the invention is based on the theory of bionics and the theory of amphiphobic type on the surface of underground rock, and by imitating the special properties of animals and plants in nature, the bionic wall fixing agent, bionic lubricant, super-amphiphobic agent, chip carrying agent and biomimetic shale inhibitor are used in series
- the bionic treatment agent is the core to form a set of bionic and amphiphobic drilling fluid systems for unconventional and complex oil and gas wells. From the international frontier method that only improves the self-inhibition and lubricity of the drilling fluid itself, it is expanded to improve the quality of the well wall while drilling at the same time.
- the average well collapse rate is reduced by 82.6%
- the leakage rate is reduced by 80.6%
- the friction complexity rate is reduced by more than 80%
- the speed is increased by more than 30%
- the oil and gas well production is more than 1.5 times higher than before, making it necessary to use oil-based drilling fluids.
- Wells that can only be drilled have been transformed into water-based drilling fluids, which has become an effective core technology for the development of unconventional oil and gas resources with "scale, benefit, and environmental protection", and has opened up new research directions for reservoir protection technology. The coordinated development of petroleum industry and environmental protection.
- One aspect of the present invention provides a biomimetic and amphiphobic drilling fluid, the drilling fluid containing a biomimetic wall solidifying agent, a biomimetic lubricant, a super-amphiphobic agent, a chip-carrying agent and a biomimetic shale inhibitor;
- the biomimetic wall-fixing agent contains the structural unit represented by the formula (1-a), the structural unit represented by the formula (2-a), the structural unit represented by the formula (3-a) and the formula (4-a)
- the acrylamide-based polymer of the structural unit shown wherein the structural unit represented by the formula (1-a), the structural unit represented by the formula (2-a), the structural unit represented by the formula (3-a) and The molar ratio of the structural unit represented by the formula (4-a) is 1:(1.05-3):(0.5-0.95):(0.2-0.9);
- the biomimetic lubricant is a block polymer, and the polymer comprises a block A containing a carboxylate structural unit and a benzene structural unit, and a block B connected with the block A and containing an acrylamide structural unit ;
- the benzene-containing structural unit is the structural unit shown in formula (1-b);
- the carboxylate structural unit is one of the structural units shown in formula (2-b) and formula (3-b). one or more; the acrylamide structural unit is the structural unit shown in formula (4-b);
- R 1 '-R 2 ', R 4 '-R 6 ', R 8 '-R 10 ' and R 12 '-R 14 ' are each independently selected from H and C1-C6 alkyl;
- L 1 ' is selected from C0-C6 alkylene;
- R 7 ' and R 11 ' are selected from C1-C8 alkyl;
- R 15 ' is selected from H, C1-C8 alkyl or -L 2 '-SOOM', L 2 'is selected from C1-C6 alkylene,
- M' is H or an alkali metal element;
- R 3 ' is selected from H, C1-C6 alkyl, phenyl or phenyl-substituted C1-C6 alkyl;
- the super-amphiphobic agent is a modified carbon nanotube with a modified group on the surface, wherein the modified group includes a silane coupling agent containing an unsaturated carbon-carbon double bond, a silane coupling agent of the formula R 1 SO 2 X Represented perfluorosulfonyl halide and modified group provided by siloxane represented by formula R 3 Si(OR 2 ) 3 ; wherein, R 1 is a perfluoro-substituted C4-C12 alkyl group, and X represents a halogen; R 3 is selected from C1-C6 alkyl and C1-C6 alkoxy, R 2 is selected from C1-C6 alkyl;
- the chip carrier is an Al 2 O 3 /SiO 2 composite material, and the composite material includes solid particles containing Al 2 O 3 and SiO 2 and a polyacrylamide polymer modified on the surface of the solid particles; wherein, the Polyacrylamide polymers contain structural units represented by formula (1-c) and formula (2-c):
- R 1 "-R 6 " are independently selected from H or C1-C6 alkyl;
- L" is selected from C0-C6 alkylene;
- R 7 " is selected from C6-C20 alkyl substituted by halogen ;
- the biomimetic shale inhibitor is modified chitosan, and the modified chitosan is connected with a modified group of the structure shown in formula (1-d); formula (1-d): -CH 2 - CH(OH)CH 2 -polyamine structure; the polyamine structure is provided by polyamine compounds.
- the polymer for biomimetic wall fixing agent provided by the present invention can inhibit the hydration expansion of shale and stabilize the well wall, and is a non-toxic and degradable well wall stabilizer.
- the water-based drilling fluid system mainly composed of this wellbore stabilizer has good rheological fluid loss performance, and is non-toxic and degradable.
- the structural unit represented by formula (1-a), the structural unit represented by formula (2-a), the structural unit represented by formula (3-a), and the structural unit represented by formula (4) is 1:(1.1-2):(0.6-0.95):(0.5-0.9), preferably 1:(1.2-1.5):(0.8-0.9):(0.7 -0.85).
- the weight-average molecular weight of the polymer used as the biomimetic wall-fixing agent is 80,000-250,000 g/mol, preferably 95,000-220,000 g/mol, more preferably 100,000-200,000 g/mol (for example, 105,000-198,000 g/mol), and further It is preferably 130000-160000 g/mol.
- R 1 -R 7 , R 10 -R 12 and R 13 -R 15 are each independently selected from H and C1-C4 alkyl; R 8 -R 9 and R 16 are selected from C1-C6 alkyl; M is selected from From H, Na or K; L 1 and L 2 are each independently selected from C0-C4 alkylene.
- R 1 -R 7 , R 10 -R 12 and R 13 -R 15 are each independently selected from H, methyl, ethyl or n-propyl;
- R 8 -R 9 and R 16 are selected from methyl, ethyl, n-propyl, isopropyl, n-butyl or isobutyl;
- M is selected from H, Na or K;
- L 1 and L 2 are each independently absent, -CH 2 -, -CH 2 CH 2 - , -CH2CH2CH2- , or -CH2CH2CH2CH2- .
- the structural unit represented by formula (1-a) is provided by acrylamide and/or methacrylamide;
- the structural unit represented by formula (2-a) is provided by dimethyl diallyl ammonium chloride, dimethacrylate Methyl diallyl ammonium fluoride, diethyl diallyl ammonium chloride, diethyl diallyl ammonium fluoride, dimethyl bis(2-enylbutyl) ammonium chloride, dimethyl One or more of bis(2-enylbutyl)ammonium fluoride, diethylbis(2-enylbutyl)ammonium chloride, and diethylbis(2-enylbutyl)ammonium fluoride provide;
- the structural unit represented by formula (3-a) is provided by one or more of acrylic acid, methacrylic acid, 2-butenoic acid, sodium acrylate, sodium methacrylate and sodium 2-butenoic acid;
- the structural unit shown in -a) is provided by one or
- a method for preparing a polymer suitable for a wellbore stabilizer comprising: in the presence of an initiator, in an aqueous solvent, mixing the monomer represented by the formula (1'-a), the formula ( The monomer represented by 2'-a), the monomer represented by the formula (3'-a) and the monomer represented by the formula (4'-a) are subjected to a polymerization reaction, wherein the monomer represented by the formula (1'-a) The amount of the monomer shown, the monomer shown by the formula (2'-a), the monomer shown by the formula (3'-a) and the monomer shown by the formula (4'-a) is 1: (1.05-3): (0.5-0.95): (0.2-0.9);
- the groups of the above-mentioned monomers can be specifically selected according to the structural units described above.
- the monomer represented by formula (1'-a), the monomer represented by formula (2'-a), the monomer represented by formula (3'-a) and the monomer represented by formula (4'-a) The molar ratio of the monomers shown is 1:(1.1-2):(0.6-0.95):(0.5-0.9), preferably 1:(1.2-1.5):(0.8-0.9):(0.7-0.85) .
- the method enables the weight average molecular weight of the polymer to be 80,000-250,000 g/mol, preferably 95,000-220,000 g/mol, more preferably 100,000-200,000 g/mol (for example, 105,000-198,000 g/mol), even more preferably It is 130000-160000 g/mol.
- the conditions of the polymerization reaction include: a temperature of 60-80° C. and a time of 3-6 h. More preferably, the conditions of the polymerization reaction include: a temperature of 65-69° C. and a time of 3-5 h.
- the air in the reaction system can also be replaced by ventilation, and the gas introduced can be selected from nitrogen, helium, neon and other basic reaction inert gases.
- the initiator is one or more of ammonium persulfate, potassium persulfate and sodium persulfate, and the amount thereof is preferably 0.05-2.5 wt %, preferably 0.1-1 wt %, more preferably 0.4-0.7 wt % % by weight (monomer represented by formula (1'-a), monomer represented by formula (2'-a), monomer represented by formula (3'-a), and formula (4'-a) The total weight of monomers shown is based).
- the block polymer of the present invention can effectively improve the friction performance of the adsorption film on the surface of the cuttings and improve the temperature resistance of the water-based drilling fluid lubricant.
- This kind of lubricant can effectively improve the drilling of complex structure wells.
- the speed and wellbore are stable, and the water-based drilling fluid system composed of this lubricant will greatly promote the speed and efficiency of complex structure well drilling in the future.
- the molar ratio of the benzene structural unit, the carboxylate structural unit and the acrylamide structural unit is (2-10): 1: (0.01-0.8), preferably ( 2-5): 1: (0.1-0.5), more preferably (2.2-5): 1: (0.12-0.3);, still more preferably (2.2-3.5): 1: (0.12-0.2).
- the block A is a trackless copolymerization block composed of a benzene-containing structural unit and a carboxylate structural unit, or a block A1 composed of a benzene-containing structural unit and a carboxylate structural unit.
- a diblock polymer block composed of block A2.
- the weight average molecular weight of the block polymer is 10000-50000 g/mol, preferably 12000-40000 g/mol, more preferably 15000-30000 g/mol, for example 15000-25000 g/mol.
- R 1 '-R 2 ', R 4 '-R 6 ', R 8 '-R 10 ' and R 12 '-R 14 ' are each independently selected from H and C1-C4 alkyl;
- L 1 ' is selected from C0-C4 alkylene;
- R 7 ' and R 11 ' are each independently selected from C1-C6 alkyl;
- R 15 is selected from H, C1-C6 alkyl or -L 2 -SOOM', L 2 ' is selected from C1-C6 alkylene,
- M' is H, Na or K;
- R 3 ' is selected from H, C1-C4 alkyl, phenyl or phenyl-substituted C1-C4 alkyl .
- R1' - R2', R4' - R6', R8' - R10 ' and R12' - R14 ' are each independently selected from H, methyl, ethyl or n-propyl ;
- L 1 ' is absent, -CH 2 -, -CH 2 CH 2 -, -CH 2 CH 2 CH 2 - or -CH 2 CH 2 CH 2 CH 2 -;
- R 7 ' and R 11 ' are each independently Selected from methyl, ethyl, n-propyl, isopropyl, n-butyl or isobutyl;
- R 15 ' is selected from H, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl Butyl, -CH2 -SOOM', -CH2CH2-SOOM', -CH2CH2CH2 - SOOM', -CH( CH3 ) CH
- the benzene-containing structural unit is provided by a compound selected from styrene and its derivatives and stilbene and its derivatives;
- the carboxylate structural unit is provided by a compound selected from butyl acrylate and its derivatives, methyl acrylate Compounds of methyl methacrylate and its derivatives, vinyl acetate and its derivatives are provided;
- the acrylamide structural units are selected from the group consisting of acrylamide and its derivatives, 2-acrylamide propanesulfonic acid and its derivatives and 2 - Compounds of acrylamide-2-methylpropanesulfonic acid and its derivatives are provided.
- the benzene-containing structural unit may also be provided by polystyrene, such as polystyrene with a molecular weight of 5000-10000 g/mol (preferably 5000-8000 g/mol).
- a method for preparing a block polymer for lubricants comprising:
- the acrylamide-based monomer is introduced into the product of the first emulsion polymerization to carry out the second emulsion polymerization;
- the benzene-containing monomer is a benzene-containing polymer composed of a structural unit represented by formula (1-b) or a monomer represented by formula (1'-b);
- the carboxylate monomer is One or more of the monomers represented by formula (2'-b) and formula (3'-b);
- the acrylamide-based monomer is the monomer represented by formula (4'-b);
- R 1 '-R 2 ', R 4 '-R 6 ', R 8 '-R 10 ' and R 12 '-R 14 ' are each independently selected from H and C1-C6 alkyl;
- L 1 ' is selected from C0-C6 alkylene;
- R 7 ' and R 11 ' are selected from C1-C8 alkyl;
- R 15 ' is selected from H, C1-C8 alkyl or -L 2 '-SOOM', L 2 'is selected from C1-C6 alkylene,
- M' is H or an alkali metal element;
- R 3 ' is selected from H, C1-C6 alkyl, phenyl or phenyl-substituted C1-C6 alkyl
- the molar ratio of the benzene-containing monomer, carboxylate monomer and acrylamide monomer is (2-10):1:(0.01-0.8), preferably (2-5):1: (0.1-0.5), more preferably (2.2-5):1:(0.12-0.3), still more preferably (2.2-3.5):1:(0.12-0.2).
- the weight average molecular weight of the block polymer is 10000-50000 g/mol, preferably 12000-40000 g/mol, more preferably 15000-30000 g/mol, for example 15000-25000 g/mol.
- the respective groups of the above-mentioned monomers can be selected according to the structural units described above.
- the benzene-containing monomer is a compound selected from styrene and its derivatives and stilbene and its derivatives;
- the carboxylate monomer is selected from butyl acrylate and its derivatives, methyl acrylate
- the acrylamide monomers are selected from the group consisting of acrylamide and its derivatives, 2-acrylamide propanesulfonic acid and its derivatives and 2-acrylamide and its derivatives.
- the benzene-containing monomer can also be provided by polystyrene, such as polystyrene with a molecular weight of 5000-10000 g/mol (preferably 5000-8000 g/mol).
- the first introducing agent and the second initiator are each independently selected from potassium persulfate or ammonium persulfate.
- the amount of the first introduction agent can be 0.005-0.5 mol% (preferably 0.01-0.1 mol%, more preferably 0.01-0.03 mol% mol%).
- the amount of the second introducing agent may be 0.001-0.05 mol% (preferably 0.005-0.02 mol%, for example, 0.005-0.015 mol%).
- the benzene-containing monomer can be washed with an alkaline aqueous solution before being used, for example, an alkaline aqueous solution of 10-20% by weight can be used, and the alkaline compound can be sodium hydroxide, potassium hydroxide, lithium hydroxide, Ammonia etc.
- the benzene-containing monomer and the carboxylate monomer can be mixed and emulsified by shearing, and then the first initiator is introduced to carry out the first emulsion polymerization reaction.
- the shearing emulsification process includes shearing and emulsification of benzene-containing monomers and carboxylate monomers in water, and the amounts of the benzene-containing monomers and carboxylate monomers are such that the obtained emulsion contains The total concentration of benzene monomer and carboxylate monomer is 0.1-0.5 mol/mL.
- the air in the emulsion can also be replaced by ventilation, and the gas introduced can be selected from nitrogen, helium, neon and other basically reactive inert gases.
- the conditions for the first emulsion polymerization include: a temperature of 30-50° C. and a time of 30-90 min.
- the conditions for the second emulsion polymerization include: a temperature of 60-70° C. and a time of 1.5-6 h, preferably 2-4 h.
- the super-amphiphobic agent provided by the present invention can have high electronegativity and easy to construct low surface energy surface characteristics, effectively reverse the surface wettability, prevent the liquid phase from contacting the clay minerals in the reservoir, and at the same time
- the small-scale effect of nanomaterials greatly reduces the frictional resistance between solid phase particles and between drilling tools during drilling, and seals pores and fractures at the nanometer level, so that one agent can be used for multiple purposes.
- a high-efficiency water-based drilling fluid system is formed to improve the drilling speed of complex wells and further promote the exploration and development of unconventional oil and gas reservoirs.
- R 1 is a perfluoro-substituted C6-C10 alkyl group
- X represents fluorine or chlorine
- R 3 is selected from C2-C6 alkyl groups and C2-C6 alkoxy groups
- R 2 is selected from C1-C4 alkyl. More preferably, R 3 is selected from C1-C4 alkyl and C1-C4 alkoxy, and R 2 is selected from C1-C4 alkyl.
- R 1 is perfluoro-substituted C6 alkyl, perfluoro-substituted C8 alkyl or perfluoro-substituted C10 alkyl
- X represents fluorine or chlorine
- R 3 is selected from methyl, ethyl, n-propyl, n-butyl, methoxy, ethoxy, n-propoxy or n-butoxy
- R 2 is selected from methyl, ethyl, n-propyl, isopropyl or n-butyl.
- the silane coupling agent containing unsaturated carbon-carbon double bonds is an acryloxy C1-C8 alkyltrialkoxysilane, a methacryloyloxy C1-C8 alkyltrialkoxysilane
- silanes acrylamido C1-C8 alkyltrialkoxysilanes, methacrylamido C1-C8 alkyltrialkoxysilanes, vinyltrialkoxysilanes and acryltrialkoxysilanes
- the perfluorosulfonyl halide represented by the formula R 1 SO 2 X is perfluorohexylsulfonyl fluoride, perfluorohexylsulfonyl chloride, perfluorooctylsulfonyl fluoride, perfluorooctylsulfonyl fluoride
- acid chloride perfluorodecylsulf
- the alkyltrialkoxysilane of acryloyloxy C1-C8 can be specifically selected from acryloyloxymethyltrimethoxysilane, acryloyloxymethyltriethoxysilane, acryloyloxymethyl Tri-n-propoxysilane, 2-acryloyloxyethyltrimethoxysilane, 2-acryloyloxyethyltriethoxysilane, 2-acryloyloxyethyltri-n-propoxysilane, gamma - Acryloyloxypropyltrimethoxysilane, gamma-acryloyloxypropyltriethoxysilane, gamma-acryloyloxypropyltri-n-propoxysilane.
- the alkyltrialkoxysilane of methacryloyloxy C1-C8 can be specifically selected from methacryloyloxymethyltrimethoxysilane, methacryloyloxymethyltriethoxysilane, methyl Acryloyloxymethyltri-n-propoxysilane, 2-methacryloyloxyethyltrimethoxysilane, 2-methacryloyloxyethyltriethoxysilane, 2-methacryloyl Oxyethyltri-n-propoxysilane, ⁇ -methacryloyloxypropyltrimethoxysilane, ⁇ -methacryloyloxypropyltriethoxysilane, ⁇ -methacryloyloxy Propyl tri-n-propoxysilane.
- the alkyltrialkoxysilane of acrylamido C1-C8 can be specifically selected from acrylamidomethyltrimethoxysilane, acrylamidomethyltriethoxysilane, acrylamidomethyltri-n-propoxysilane , 2-acrylamidoethyltrimethoxysilane, 2-acrylamidoethyltriethoxysilane, 2-acrylamidoethyltri-n-propoxysilane, ⁇ -acrylamidopropyltrimethoxysilane Silane, gamma-acrylamidopropyltriethoxysilane, gamma-acrylamidopropyltri-n-propoxysilane.
- the alkyltrialkoxysilane of methacrylamido C1-C8 can be specifically selected from methacrylamidomethyltrimethoxysilane, methacrylamidomethyltriethoxysilane, methacrylamido Methyltri-n-propoxysilane, 2-methacrylamidoethyltrimethoxysilane, 2-methacrylamidoethyltriethoxysilane, 2-methacrylamidoethyltri-n-propyl Oxysilane, gamma-methacrylamidopropyltrimethoxysilane, gamma-methacrylamidopropyltriethoxysilane, gamma-methacrylamidopropyltri-n-propoxysilane.
- the vinyltrialkoxysilane can be specifically selected from vinyltrimethoxysilane, vinyltriethoxysilane, and vinyltri-n-propoxysilane.
- the propenyltrialkoxysilane can be specifically selected from propenyltrimethoxysilane, propenyltriethoxysilane, and propenyltri-n-propoxysilane.
- the silane coupling agent containing unsaturated carbon-carbon double bonds is ⁇ -methacryloyloxypropyltrimethoxysilane; the formula R 1 SO 2
- the perfluorosulfonyl halide represented by X is perfluorooctanesulfonyl fluoride, and the siloxane represented by the formula R 3 Si(OR 2 ) 3 is methoxytriethoxysilane.
- the carbon nanotubes are single-walled carbon nanotubes or multi-walled carbon nanotubes; more preferably, the diameter of the single-walled carbon nanotubes is 2-50 nm (preferably 5-30 nm, such as 2- 12nm, 10-25nm), the length is 1000-20000nm (preferably 5000-15000nm, such as 10000-15000nm); the inner diameter of the multi-walled carbon nanotubes is 2-30nm (preferably 5-30nm, such as 2- 12nm, 10-25nm), the outer diameter is 5-50nm (preferably 10-30nm, such as 10-25nm, 12-15nm), and the length is 1000-30000nm (preferably 5000-25000nm, such as 15000-20000nm).
- modified carbon nanotubes modified carbon nanotubes, modified groups provided by a silane coupling agent containing unsaturated carbon-carbon double bonds, perfluorosulfonic acid represented by formula R 1 SO 2 X
- the molar ratio of the modified group provided by the acid halide and the modified group provided by the siloxane represented by the formula R 3 Si(OR 2 ) 3 is 1:0.05-0.5:0.2-5:0.5-6, preferably 1:0.05-0.5:0.2-5:0.5-6 1:0.1-0.3:0.5-2:1-3, more preferably 1:0.2-0.25:1-2:1.5-3.
- the preparation method of above-mentioned super-amphiphobic agent wherein, the method comprises:
- the acid-containing solution is a mixed solution of strong acid (selected from concentrated sulfuric acid or concentrated nitric acid) and hydrogen peroxide.
- the sulfuric acid concentration of the concentrated sulfuric acid may be 70% by weight or more, especially 90% by weight or more, and more preferably 98% or more.
- the nitric acid concentration of the concentrated nitric acid may be 50% by weight or more, preferably 60% by weight or more, and particularly 65% by weight or more.
- the concentration of hydrogen peroxide may be 3-30% by weight, or may be 5-20% by weight.
- the weight ratio of the strong acid to the amount of hydrogen peroxide is 1:0.5-10, preferably 1:2-3.
- the carboxylation treatment can form an appropriate amount of oxygen-containing groups on the surface of the carbon nanotubes, so as to allow subsequent contact reactions to form the modified groups required by the present invention.
- the amount of the acid-containing solution can be varied within a wide range, and is usually sufficient to fully disperse the carbon nanotubes.
- the conditions for the carboxylation treatment include: a temperature of 50-100° C. and a time of 25-100 min.
- the conditions for the first contact reaction include: a temperature of 50-100° C. and a time of 25-100 min; and the conditions of the second contact reaction include: a temperature of 50-100° C. and a time of 1.5-8 h.
- the conditions of the first contact reaction include: the temperature is 60-90°C, and the time is 30-90min; the conditions of the second contact reaction include: the temperature is 60-90°C (preferably 70-80°C ), the time is 2-6h (preferably 2-4h).
- the chip-carrying agent of the present invention can effectively improve the wettability of the cuttings surface, and convert the wettability of the surface of the cuttings from hydrophilic and lipophilic to hydrophobic and oleophobic gas wettability, thereby reducing the relative density of the cuttings
- the chip-carrying effect of the system is improved through the rheological properties of the polymer; the Al 2 O 3 /SiO 2 composite material of the present invention can effectively improve the wetting performance of the cuttings surface as a high-efficiency chip-carrying agent, and make the surface of the cuttings hydrophilic and hydrophilic.
- the wettability of oil is transformed into hydrophobic and oleophobic gas-wetting properties, thereby reducing the relative density of cuttings, and at the same time improving the chip-carrying effect of the system through the rheological properties of the polymer.
- this chip-carrying agent as the core, a set of high-efficiency chip-carrying water-based drilling fluid system is formed, which improves the drilling speed of complex wells and the efficiency of wellbore purification, and further promotes the exploration and development of unconventional oil and gas reservoirs.
- R 1 "-R 6 " are independently selected from H or C1-C4 alkyl; L " is selected from C0-C4 alkylene; R 7 " is selected from halogenated Substituted C4-C16 alkyl.
- R 1 "-R 6 " are each independently selected from H, methyl, ethyl or n-propyl; L" is absent, -CH 2 -, -CH 2 CH 2 -, -CH 2 CH 2 CH 2 -or -CH 2 CH 2 CH 2 CH 2 -; R 7 ′′ is selected from C6-C12 alkyl substituted by fluorine, chlorine or bromine.
- R 7 " is selected from perfluoro-substituted C6 alkyl, undecafluoro-substituted C6 alkyl, nonafluoro-substituted C6 alkyl, perfluoro-substituted C8 alkyl, pentafluoro-substituted C8 alkyl, Tridecafluoro substituted C8 alkyl, undecafluoro substituted C8 alkyl, nonafluoro substituted C8 alkyl, perfluoro substituted C10 alkyl, nonadecafluoro substituted C10 alkyl, heptadecafluoro substituted C10 alkane base, C10 alkyl substituted by pentafluoro, C10 alkyl substituted by tridecafluoro, C10 alkyl substituted by undecafluoro, C10 alkyl substituted by nonafluoro, C12 alkyl substituted by perfluoro, tetraflu
- the structural unit represented by formula (1-c) is provided by acrylamide and/or methacrylamide;
- the structural unit represented by formula (2-c) is provided by nonafluorohexyl acrylate, nonafluorohexyl methacrylate ester, perfluorohexyl acrylate, perfluorohexyl methacrylate, tridecafluorooctyl acrylate, tridecafluorooctyl methacrylate, perfluorooctyl acrylate, perfluorooctyl methacrylate, heptafluorooctyl acrylate
- decyl ester, heptafluorodecyl methacrylate, perfluorodecyl acrylate, and perfluorodecyl methacrylate are provided.
- the molar ratio of the structural units represented by formula (1-c) and formula (2-c) is 1:0.2-5, preferably 1:0.4-1, more Preferably, the ratio is 1:0.5-0.8; or, in the composite material, the solid particles calculated as Al 2 O 3 and the polyacrylamide-based polymer have the structures shown in formula (1-c) and formula (2-c)
- the molar ratio of the units is 1:(1-15):(0.5-10), preferably 1:(2-10):(1-5), more preferably 1:(2-8):(1-3 ).
- the molecular weight of the polyacrylamide polymer is 20000-120000 g/mol, preferably 30000-97000 g/mol, more preferably 40000-90000 g/mol.
- the molar ratio of Al 2 O 3 and SiO 2 is 1:1-5, preferably 1:2-4; or the solid particles contain Al 2 O 3 silicate, It is preferably kaolin, more preferably nano-kaolin, and its particle size may be, for example, 50-2000 nm, preferably 100-1000 nm, such as 100-500 nm.
- the solid particles are combined with the polyacrylamide polymer through a silane coupling agent.
- the silane coupling agent is a silane coupling agent containing unsaturated carbon-carbon double bonds, more preferably, the silane coupling agent containing unsaturated carbon-carbon double bonds is acryloxy C1-C8 Alkyltrialkoxysilane, methacryloyloxy C1-C8 alkyltrialkoxysilane, acrylamide C1-C8 alkyltrialkoxysilane, methacrylamido C1-C8 One or more of alkyltrialkoxysilanes, vinyltrialkoxysilanes, and propenyltrialkoxysilanes.
- the alkyltrialkoxysilane of acryloyloxy C1-C8 can be specifically selected from acryloyloxymethyltrimethoxysilane, acryloyloxymethyltriethoxysilane, acryloyloxymethyltri-n-normal Propoxysilane, 2-acryloyloxyethyltrimethoxysilane, 2-acryloyloxyethyltriethoxysilane, 2-acryloyloxyethyltri-n-propoxysilane, gamma-propylene Acyloxypropyltrimethoxysilane, ⁇ -acryloyloxypropyltriethoxysilane, ⁇ -acryloyloxypropyltri-n-propoxysilane.
- the alkyltrialkoxysilane of methacryloyloxy C1-C8 can be specifically selected from methacryloyloxymethyltrimethoxysilane, methacryloyloxymethyltriethoxysilane, methyl Acryloyloxymethyltri-n-propoxysilane, 2-methacryloyloxyethyltrimethoxysilane, 2-methacryloyloxyethyltriethoxysilane, 2-methacryloyl Oxyethyltri-n-propoxysilane, ⁇ -methacryloyloxypropyltrimethoxysilane, ⁇ -methacryloyloxypropyltriethoxysilane, ⁇ -methacryloyloxy Propyl tri-n-propoxysilane.
- the alkyltrialkoxysilane of acrylamido C1-C8 can be specifically selected from acrylamidomethyltrimethoxysilane, acrylamidomethyltriethoxysilane, acrylamidomethyltri-n-propoxysilane , 2-acrylamidoethyltrimethoxysilane, 2-acrylamidoethyltriethoxysilane, 2-acrylamidoethyltri-n-propoxysilane, ⁇ -acrylamidopropyltrimethoxysilane Silane, gamma-acrylamidopropyltriethoxysilane, gamma-acrylamidopropyltri-n-propoxysilane.
- the alkyltrialkoxysilane of methacrylamido C1-C8 can be specifically selected from methacrylamidomethyltrimethoxysilane, methacrylamidomethyltriethoxysilane, methacrylamido Methyltri-n-propoxysilane, 2-methacrylamidoethyltrimethoxysilane, 2-methacrylamidoethyltriethoxysilane, 2-methacrylamidoethyltri-n-propyl Oxysilane, gamma-methacrylamidopropyltrimethoxysilane, gamma-methacrylamidopropyltriethoxysilane, gamma-methacrylamidopropyltri-n-propoxysilane.
- the vinyltrialkoxysilane can be specifically selected from vinyltrimethoxysilane, vinyltriethoxysilane, and vinyltri-n-propoxysilane.
- the propenyltrialkoxysilane can be specifically selected from propenyltrimethoxysilane, propenyltriethoxysilane, and propenyltri-n-propoxysilane.
- the silane coupling agent is preferably ⁇ -methacryloyloxypropyltrimethoxysilane (KH-570).
- the preparation method of Al 2 O 3 /SiO 2 composite material includes:
- step (2) The product after the surface modification in step (1) is subjected to a polymerization reaction with compounds represented by formula (1'-c) and formula (2'-c);
- R 1 "-R 6 " are independently selected from H or C1-C6 alkyl; L” is selected from C0-C6 alkylene; R 7 " is selected from C6-C20 alkyl substituted by halogen .
- the compound represented by formula (1'-c) is selected from acrylamide and/or methacrylamide;
- the compound represented by formula (2'-c) is selected from acrylic acid nine Fluorohexyl, nonafluorohexyl methacrylate, perfluorohexyl acrylate, perfluorohexyl methacrylate, tridecafluorooctyl acrylate, tridecafluorooctyl methacrylate, perfluorooctyl acrylate, methyl methacrylate
- perfluorooctyl acrylate, heptafluorodecyl acrylate, heptafluorodecyl methacrylate, perfluorodecyl acrylate and perfluorodecyl methacrylate is selected from acrylic acid nine Fluorohexyl, nonafluorohexyl methacrylate, perfluorohexyl acrylate, perfluorohe
- the conditions for the surface modification include: a temperature of 40-80° C. and a time of 25-100 min.
- the conditions of the polymerization reaction include: a temperature of 40-80° C. and a time of 1.5-8 h.
- the conditions for the surface modification include: a temperature of 45-65° C. and a time of 30-90 min.
- the conditions of the polymerization reaction include: a temperature of 45-65° C. and a time of 2-6 h.
- the solid particles and the silane coupling agent can be dispersed and mixed in a solvent
- the solvent can be an alcohol solvent, especially an alcohol-water mixed solvent (the alcohol/water volume ratio can be 1:1-3, preferably 1:1-1.5)
- the alcohol can be selected from methanol, ethanol, ethylene glycol and the like.
- the amount thereof can be varied within a wide range, for example, the content of the solid particles in the solvent can be 0.01-10 g/mL, preferably 0.05-2 g/mL, more preferably 0.05-0.2 g/mL.
- the polymerization reaction in step (2), can be carried out in the presence of an initiator, and the initiator can be selected from a variety of initiators that can initiate the polymerization of the monomers of the present invention, such as potassium persulfate, One or more of ammonium persulfate, etc. Its amount can be adjusted according to the needs of the polymerization reaction.
- the initiator in order to modify the surface of the solid particles with a more suitable polymer chain to obtain a more superior chip carrying effect, preferably, relative to formula (1'-c) and formula (2'-c) Based on the total weight of the compounds shown, the initiator is used in an amount of 0.1-3% by weight, preferably 0.5-1.5% by weight.
- the drilling fluid of the present invention may also contain a plugging agent, preferably nano-onion carbon is used as the biomimetic plugging agent.
- the biomimetic plugging agent provided by the invention has a high matching between the nano-scale spherical structure and the pore size, which can significantly improve the plugging effect; and has excellent performance, which can be suitable for the development of modern drilling fluids.
- Nano-onion carbons are nano-scale spherical structures composed of multi-shelled concentric graphite layers. Due to their curved and closed special graphite layered structure and large specific surface area, they have excellent physical and chemical properties and exhibit excellent small size. effect, quantum size effect, and superior thermal stability. The nano-scale spherical structure and its excellent performance can effectively seal the special fractures and pores in shale, improve the wellbore stability, and have little effect on reservoir damage and environmental pollution. A set of onion carbon micro-nano structure biomimetic plugging agents is formed with this onion carbon micro-nano structure as the core, which can effectively improve the exploration and development of unconventional oil and gas resources, shale gas and tight oil.
- the diameter of the nano onion carbon is 10-100 nm, preferably 30-40 nm.
- the innermost layer of the nano onion carbon consists of 50-80 carbon atoms, preferably 60-70 carbon atoms.
- the spacing between the layers of the nano onion carbon is 0.1-0.5 nm, preferably 0.25-0.35 nm.
- the number of carbon layers of the nano onion carbon is 10-100 layers, preferably 50-80 layers.
- the carbon molecules of CNOs are spherical in shape, similar to carbon nanotubes with an aspect ratio of about 1:1.
- the inner layer of CNOs is composed of 60 carbon atoms, and the number of carbon atoms in each layer increases exponentially with 60n 2 (n is the number of layers), and the distance between the layers is about 0.335 nm.
- the nano onion carbon can be prepared in a conventional manner in the art according to the requirements of the present invention for the nano onion carbon.
- the preparation method of the nano-onion carbon structure biomimetic plugging agent includes: pouring a certain amount of naphthalene into an alcohol solution, stirring to form a supersaturated solution, and then pouring the supersaturated solution into an alcohol lamp containing a wick. After cleaning the glass funnel, fix it upside down on the iron frame, light the alcohol lamp containing saturated naphthalene, and smoke and bake on the wide mouth of the glass funnel. During this process, the alcohol lamp should be moved appropriately to make the sample fully adhere to the wide mouth of the glass funnel. The samples from the wide mouth were collected, and the collected samples were washed several times with absolute ethanol and deionized water, and dried in a vacuum drying oven at 60 °C for 12 h.
- the onion carbon micro-nano structure biomimetic plugging agent has excellent physical and chemical properties, and exhibits excellent small size effect and quantum size effect; Good stability; onion carbon micro-nano structure biomimetic plugging agent can efficiently plug special fractures and pores in shale, and improve wellbore stability; the nano-scale spherical structure of the biomimetic plugging agent has a high matching pore size , can significantly improve the blocking effect.
- the onion carbon micro-nano structure biomimetic plugging agent can effectively plug the special fractures and pores in mud shale and has little effect on reservoir damage and environmental pollution.
- the nano-scale spherical structure of the onion carbon micro-nano structure biomimetic plugging agent has a high match with the pore size, which can significantly improve the plugging effect; and has excellent performance, which can be suitable for the development of modern drilling fluids.
- the modified chitosan provided by the present invention can effectively inhibit the hydration expansion and dispersion of shale, has no negative impact on the performance of drilling fluid, and has no toxic and side effects, and can improve the performance of shale oil and gas wells. wellbore stability.
- the molecular weight of the chitosan is 20000-100000 g/mol, preferably 40000-90000 g/mol, more preferably 50000-85000 g/mol, for example 50000-75000 g/mol.
- the polyamine structure can be, for example, -NH-(CH 2 CH 2 NH)n-CH 2 CH 2 -NH 2 , or a -NH-polyamine residue.
- the polyamine compound is one or more of polyene polyamine and polyethyleneimine, preferably diethylenetriamine, triethylenetetramine, tetraethylenepentamine and polyethyleneimine one or more.
- polyethyleneimine can be, for example, polyethyleneimine with a molecular weight of 300-5000 g/mol (preferably 600-3000 g/mol, more preferably 600-1500 g/mol).
- the modified group of the structure represented by the formula (1-d) is provided by the reaction of epichlorohydrin and a polyamine compound.
- the content of the modified group of the structure represented by the formula (1) is 5-25% by weight, preferably 8-20% by weight, more preferably 8.5-17% by weight weight%.
- the chitosan is connected to the modified group of the structure represented by formula (1) through a group provided by benzaldehyde.
- the preparation method of the modified chitosan comprises:
- the swelling treatment can be a conventional chitosan swelling treatment process in the field, such as contacting chitosan with an acidic solution to promote the swelling of chitosan
- the acidic solution can be an aqueous solution of glacial acetic acid, hydrochloric acid
- concentration of aqueous solution etc. can be, for example, 1-5 wt%, and the amount thereof can be varied in a wide range, for example, the amount of the acidic solution can be 10-30 mL relative to 1 g of chitosan.
- the conditions of the swelling treatment can be, for example, a temperature of 20-40° C. and a time of 20-60 min.
- the first contact reaction can be directly carried out by introducing an alcohol solvent and benzaldehyde.
- the conditions of the first contact reaction include: a temperature of 60-80° C. and a time of 5-8 hours.
- the reaction of benzaldehyde and chitosan is the conventional condensation reaction of benzoic acid and chitosan in the art.
- the reaction product can be washed and dried.
- the alcoholic solvent can be alcohol or alcohol-water mixture, preferably alcohol, the alcohol here can be one or more of methanol, ethanol, n-propanol, etc., and its consumption can vary within a wide range, For example, relative to 1 g of chitosan, the amount of the alcohol solvent is 10-100 mL, for example, 20-50 mL.
- the product obtained from the first contact reaction is subjected to a second contact reaction with epichlorohydrin in the first alkaline solution, so that groups having a propylene oxide structure can be substituted on the chitosan, so as to facilitate subsequent
- the third contact reaction reacts with the amine group.
- the conditions of the second contact reaction include: a temperature of 45-60° C. and a time of 3-6 h.
- the first alkaline solution can be an aqueous solution of an alkaline reagent or ammonia water, wherein the alkaline reagent can be selected from, for example, one or more of sodium hydroxide, potassium hydroxide, lithium hydroxide, etc. , its concentration can be, for example, 0.2-0.6 mol/L, and its dosage can be varied within a wide range, for example, relative to 1 g of chitosan, the dosage of the first alkaline solution is 50-200 mL.
- the alkaline reagent can be selected from, for example, one or more of sodium hydroxide, potassium hydroxide, lithium hydroxide, etc.
- its concentration can be, for example, 0.2-0.6 mol/L
- its dosage can be varied within a wide range, for example, relative to 1 g of chitosan
- the dosage of the first alkaline solution is 50-200 mL.
- the product obtained from the second contact reaction is subjected to a third contact reaction with a polyamine compound in a second alkaline solution, so that a modified group including a polyamine group can be formed on the chitosan.
- the conditions of the third contact reaction include: a temperature of 50-80° C. and a time of 3-6 h.
- the second alkaline solution can be an aqueous solution of an alkaline reagent or ammonia water, wherein the alkaline reagent can be selected from, for example, one or more of sodium hydroxide, potassium hydroxide, lithium hydroxide, etc. , its concentration can be, for example, 0.02-0.3 mol/L, and its dosage can be varied within a wide range, for example, relative to 1 g of chitosan, the dosage of the first alkaline solution is 50-200 mL.
- the alkaline reagent can be selected from, for example, one or more of sodium hydroxide, potassium hydroxide, lithium hydroxide, etc.
- its concentration can be, for example, 0.02-0.3 mol/L
- its dosage can be varied within a wide range, for example, relative to 1 g of chitosan
- the dosage of the first alkaline solution is 50-200 mL.
- the weight ratio of chitosan and benzaldehyde dosage is 1:2-6, preferably 1:2-4;
- the weight ratio of the consumption of chitosan and epichlorohydrin is 1:5-20, preferably 1:8-15;
- the weight ratio of epichlorohydrin and the amount of the polyamine compound is 1:0.05-0.5.
- the dosage of each of the above-mentioned treatment agents can be varied within a wide range, preferably, based on the total weight of the water-based drilling fluid excluding the weighting agent, the content of the bionic wall-fixing agent is 0.5-3% by weight;
- the content of the biomimetic lubricant is 0.5-3% by weight;
- the content of the super-amphiphobic agent is 1-5% by weight;
- the content of the chip-carrying agent is 1-5% by weight;
- the biomimetic shale inhibitor The content is 0.5-3% by weight.
- the content of the biomimetic plugging agent is preferably 1-3% by weight.
- the water-based drilling fluid may also contain other additives commonly used in the art, such as bentonite, fluid loss reducer, tackifier, anti-slump agent, weighting agent, alkaline regulator, KCl, etc.
- additives commonly used in the art, such as bentonite, fluid loss reducer, tackifier, anti-slump agent, weighting agent, alkaline regulator, KCl, etc.
- the type and content of the compound can be those conventionally used in the art, which are not particularly limited in the present invention.
- the second aspect of the present invention provides the application of the above drilling fluid in oil and gas drilling.
- the drilling fluid system provided by the present invention has the following advantages: the system not only prevents or reduces the damage of the drilling fluid to the wellbore ("external cause” anti-slump) by controlling the external factors affecting the rock strength, but also improves the cohesive strength of the rock and the The rock cementation force ("internal cause” solidifies the well wall to prevent collapse); not only inhibits the occurrence of osmotic hydration, but also inhibits the occurrence of surface hydration well.
- the overall stability of the wellbore is maintained through the combination of "internal and external factors”.
- This system utilizes a series of new materials of biomimetic treatment agents to protect unconventional oil and gas reservoirs by means of "physical-chemical” synergy, and realizes the transformation from physical method to physical chemical method.
- This system realizes "safe, efficient, economical, and environmentally friendly” drilling, and at the same time effectively increases the production of oil and gas wells, and solves "wellbore collapse, stuck and stuck drilling, lost circulation, unclean wellbore, oil and gas reservoir damage, and environmental pollution”
- Such drilling fluid technical problems have provided strong technical support for the realization of my country's "shale revolution”.
- the system transforms the original flow type lubrication into "flow and bond type” lubrication, which is the direct friction between the drilling tool and the borehole wall into the sliding between the films.
- flow and bond type is the direct friction between the drilling tool and the borehole wall into the sliding between the films.
- the shear emulsification reaction occurs, and then nitrogen gas is introduced for 30min to replace the air in the reaction vessel, and the temperature is increased to 40 ° C to add the initiator potassium persulfate (the amount is 0.02mol%, relative to styrene and butyl acrylate)
- KH570 ie ⁇ -methacryloyloxypropyltrimethoxysilane
- the surface morphologies of the samples were observed by scanning electron microscopy and transmission electron microscopy.
- a lot of onion carbon nanospheres with uniform size can be seen, there are certain adhesion or stacking between the balls, and there are dense wrinkle layers inside the balls.
- the diameter of the observed carbon nano onion balls was measured to be about 30-40 nm.
- the inner layer of the onion carbon nanosphere is composed of 60 carbon atoms, the number of carbon atoms in each layer increases exponentially with 60n 2 (n is the number of layers, and the number of layers is 50 layers), and the distance between the layers is about 0.335 nm.
- Bionic and amphiphobic drilling fluid 0.15% soil slurry (water slurry containing 0.15% by weight of bentonite) + 2% by weight of bionic wall solidifier GB-1 + 1.5% by weight of biomimetic lubricant GF-1 + 2.5% by weight of super duplex Repellent agent SA-1+2wt% chip carrier HEX-1+1.5wt% biomimetic plugging agent onion carbon nanospheres+1.5wt% biomimetic shale inhibitor EFYZ-1+0.5wt% sulfomethyl phenolic resin Fluid loss agent (purchased from Xinxiang Xinlei Oilfield Auxiliary Co., Ltd. SMP-II, the same below) + 7% by weight KCl, additionally add barite to adjust to the required density (the above weight percentage does not include barite into the calculation Scope).
- Biomimetic and amphiphobic drilling fluid 0.15% soil slurry (water slurry containing 0.15% by weight bentonite) + 1.5% by weight bionic wall solidifier GB-2 + 1.5% by weight biomimetic lubricant GF-2 + 3% by weight super duplex Repellent agent SA-2+1.5wt% chip carrier HEX-2+1.5wt% biomimetic plugging agent onion carbon nanospheres+1wt% biomimetic shale inhibitor EFYZ-2+0.5wt% sulfomethyl phenolic resin Fluid loss agent + 6 wt% KCl, additionally add barite to adjust to the required density (the above weight percentages do not include barite into the calculation range).
- Typical oil-based drilling fluid 80% by weight 3 # white oil + 3% by weight auxiliary emulsifier (VERSACOAT purchased from M-ISWACO company as auxiliary emulsifier) + 1 weight% main emulsifier (VERSAMUL purchased from M-ISWACO company As main emulsifier)+4wt% wetting agent (VERSAWET from M-ISWACO company)+20wt% calcium chloride solution+1wt% organic soil (VG-SUPREME brand from M-ISWACO company)+ 0.5% cutting agent (HRP brand purchased from Halliburton Company) + 4% by weight of ultrafine calcium + 2% plugging fluid loss reducer (purchased from Hubei Hanke New Technology Co., Ltd. HOF fluid loss reducer), in addition Add barite to adjust to the required density (the above weight percentages do not include barite into the calculation).
- VERSACOAT purchased from M-ISWACO company as auxiliary emulsifier
- VERSAMUL purchased from M-ISWACO company As
- PV plastic viscosity, measured by a Paradigm six-speed viscometer, in mpa s;
- AV refers to the apparent viscosity, measured by a Paradigm six-speed viscometer, in mpa s;
- Normal temperature and medium pressure filtration loss (FL API ) and high temperature and high pressure filtration loss FL HTHP (temperature 150°C, pressure difference 3.5MPa): According to the oil and gas industry standard SY/T5621-1993 "Drilling Fluid Test Procedure", use ZNG-3 six Combined with medium pressure water loss meter and 42-2A high temperature and high pressure water loss meter to measure medium pressure fluid loss FL ( API ) (test temperature 25°C, test pressure 0.69MPa), high temperature and high pressure fluid loss FL ( HTHP ) (test temperature The aging temperature is the same as that of the drilling fluid to be tested, and the test pressure is 3.5MPa).
- the filter cake viscosity coefficient test method includes: using the NZ-3A filter cake viscosity coefficient tester of Qingdao Jiaonan Analytical Instrument Factory to measure the viscosity coefficient of the drilling fluid API filter cake. Place the slider of the instrument lightly on the filter cake, and then turn the slider over after standing for one minute. When the slider starts to slide, read the angle value of the slider flip, and find the tangent value corresponding to the inversion angle, which is the viscosity coefficient of the filter cake.
- the test method of permeability recovery value includes: using JHCF-1 core dynamic damage contamination tester, and testing the permeability recovery value of core after drilling fluid pollution according to the reservoir pollution evaluation experimental method, the method is as follows:
- the aging conditions are 150°C, 16h; the high temperature and high pressure filtration loss measurement temperature is 150°C, and the pressure difference is 3.5MPa.
- the friction force is reduced, and the bionic bonding lubricant is combined to greatly reduce the internal friction of the drilling fluid; at the same time, the capillary self-suction force is reversed into resistance, preventing the liquid phase from entering the core, and achieving the effect of protecting the oil and gas layers.
- Core recovery rate Select cuttings (12-1-B5, 12-1-B6 and 12-1-6) from 3 wells in the extremely prone to collapse section of the South China Sea offshore oilfield and shale gas wells in Weiyuan and Changning
- the cuttings were placed in the aging tanks of typical oil-based drilling fluid and bionic and amphiphobic drilling fluids, respectively, and rolled at 150 °C for 16 hours to measure the primary recovery rate of cuttings; The secondary recovery rate of cuttings was measured.
- both the bionic and amphiphobic drilling fluids of the present invention have good inhibitory performance, can significantly improve the rolling recovery rate of shale in water, and reduce the linear expansion rate of sodium bentonite.
- the cuttings from the easily collapsed section of the offshore oilfield in the South China Sea were crushed and pressed into cores with similar properties, which were put into the aging tanks of typical oil-based drilling fluid and bionic and amphiphobic drilling fluids respectively. After aging for 3d and 10d, the core was taken out to measure the compressive strength, as shown in Table 4.
- drilling fluid system Typical oil-based drilling fluid Biomimetic and Amphiphobic Drilling Fluid Example 1 Core strength after 3d, MPa 4.74 4.94 Core strength after 10d, MPa 2.19 2.59
- the original strength of the core is 8.89MPa, 1.82MPa after soaking in water for 3min; the strength before and after continuous soaking for 3d and 10d at 120°C and 3.5MPa.
- Table 4 shows that after 3 days, the compressive strength of the core was increased by 4.22% with the bionic and amphiphobic drilling fluids compared with the typical oil-based drilling fluid; after 10 days, the compressive strength was increased by 18.26%.
- the bionic and amphiphobic drilling fluids achieve the purpose of improving the core strength, and with the increase of time, the greater the improvement is. It can be seen that the cementation force and cohesion between rock particles are improved by the chelation of the bionic wall solidifying agent, the surface hydration and osmotic hydration are prevented by the formation of microscopic biomesh gel on the surface of the core, and the super-amphiphobic agent is combined to wet the surface of the core. The inversion solves the problem of capillary effect. First, the wellbore stability of the water-based drilling fluid is higher than that of the oil-based drilling fluid, which solves the long-term unsolved technical problems at home and abroad.
- test results of heavy metal ion content, biotoxicity and biodegradability show that the drilling fluid system of the present invention (tested with the drilling fluid sample of Example 1) is safe, non-toxic and biodegradable.
- the test methods for heavy metal ion content include: heavy metal detection according to "HJ-776-2015 Determination of 32 Elements in Water Quality Inductively Coupled Plasma Emission Spectrometry” and “HJ 694-2014 Determination of Mercury, Arsenic, Selenium, Bismuth and Antimony in Water Quality” Atomic Fluorescence Spectrometry.
- Biotoxicity and biodegradability test methods include: according to "Q/SY 111-2007 Oilfield Chemicals, Drilling Fluid Biological Toxicity Classification and Detection Methods Luminescent Bacteria Method", use the luminescent bacteria method to test the EC50 value to evaluate its biological toxicity; use BOD /COD ratio method for biodegradability detection, specifically using the standard "HJ 132-2003 Determination of Chemical Oxygen Demand of High Chloride Wastewater Potassium Iodide Alkaline Potassium Permanganate Method” and "HJ 505-2009 Water Quality Five-day Biochemical Oxygen Demand ( BOD5) Determination Dilution and Inoculation Method” to test COD and BOD respectively.
- the bionic and amphiphobic drilling fluids have good rheological properties and fluid loss and wall-building properties, and their "inhibition, lubricity and protection of oil and gas layers" are better than typical oil-based drilling fluids, and they are non-toxic and environmentally acceptable. Accepted, it can effectively solve the technical problems of drilling fluid such as well collapse, high friction resistance, and serious damage to oil and gas layers that are often encountered in unconventional and complex oil and gas drilling such as tight and shale, and meet the drilling needs of "safe, efficient, economical and environmentally friendly”.
- the Jimsar JHW023 horizontal well is located in the Lucaogou Formation block in the Ji37 well area of the Jimsar Sag.
- complex strata are prone to occur mainly in the Badaowan Formation, Jiucaiyuan Formation and Wutonggou Formation with a well depth of 2400-2800m.
- the upper part of the well section is prone to lost circulation, and the junction of the leek garden and the Wutong ditch is prone to collapse, resulting in complex downhole situations such as tripping and encountering obstacles.
- the third drilling of the JHW023 horizontal well in Jimusar has been completed, and the third drilling has adopted the bionic and dual sparse drilling fluid technology.
- the technical difficulties of drilling fluid in the third opening stage mainly include: the fractures of the Lucaogou Formation reservoirs are prone to well collapse and lost circulation; the horizontal section is difficult to carry rock, and it is easy to generate cuttings beds, resulting in blockage and large circulation resistance. , it is easy to leak the formation, which is easy to cause the well wall to collapse; the contact surface between the drilling tool and the well wall in the horizontal section is large, which is easy to cause sticking and so on.
- the cuttings returned from Well JHW023 drilled by the bionic and amphiphobic drilling fluid system are regular, and the amount of returned cuttings is large and consistent with the drilling time, indicating that the drilling fluid has good inhibitory performance and sand-carrying performance; the total cost of this well is the lowest, saving about 2.3 million yuan in drilling fluid cost compared with the offset well of the same well type; and the well diameter of the horizontal well section of the three open reservoirs is relatively regular, and the average well diameter expansion rate of the reservoir section is -1.35% , the average well diameter expansion rate of the same well type near well reservoir section is 2.04%.
Landscapes
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Lubricants (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
本发明涉及石油工业相油田化学领域,具体涉及仿生与双疏钻井液。该钻井液含有仿生固壁剂、仿生润滑剂、超双疏剂、携屑剂和仿生页岩抑制剂。本发明以仿生学理论和井下岩石表面双疏型理论为基础,通过仿自然界动植物特殊性能仿生固壁剂、仿生润滑剂、超双疏剂、携屑剂和仿生页岩抑制剂,以系列仿生处理剂为核心形成一套应相于非常规复杂油气井相仿生与双疏钻井液体系。
Description
相关申请的交叉引用
本申请要求2020年08月26日提交的中国专利申请202010874082.8的权益,该申请的内容通过引用被合并于本文。
本发明涉及石油工业的油田化学领域,具体涉及仿生与双疏高效能水基钻井液。
美国通过实现“页岩革命”使美国短短十余年由全球最大油气进口国迅速变为出口国,而且改变了全球能源格局。“页岩革命”实质上是一场“技术革命”,且安全、高效、低成本钻井液技术是促成美国页岩革命的关键技术。
我国油气资源供需矛盾已严重危及国家能源安全。2019年石油对外依存度达到72%,远超出国际公认的50%安全警戒线;天然气对外依存度已快速增长至43%以上。同时,我国87.4%以上的石油进口需通过霍尔木兹海峡、马六甲海峡等“咽喉”要道,变幻莫测的国际风云使我国油气进口通道时刻面临严峻风险,油气供应安全威胁巨大,增加国内油气产量是破解该困局的重要途径。
我国非常规和复杂油气资源量巨大,居世界第二,并占据我国剩余油气资源75%以上,是保障我国能源战略安全的重要接替资源,使非常规和复杂油气已逐渐成为我国勘探开发的主战场,在国际上也已成为研究热点与勘探开发重点。
钻井是使地下油气与地面连通的唯一工程技术手段,钻井液是保障钻井工程安全高效顺利实施的工程流体技术,又称钻井工程的“血液”。但是,我国乃至全球新发现的非常规和复杂油气资源主要分布在山区、沙漠、高原、黄土塬、北极圈和海洋覆盖地区,钻遇的地质和地面条件越来越复杂,勘探开发难度越来越大,遭遇与钻井液有关的“井壁坍塌、阻卡与卡钻、井漏、井眼不清洁、油气层损害、环境污染”等复杂情况或事故频繁发生、油气产量低、成本居高不下、效率低下,使钻井液技术面临前所未有的挑战,严重制约非常规和复杂油气井钻井成败和勘探开发进程,已成为高效勘探开发非常规和复杂油气的“卡脖子”技术难题。
同时,与美国相比,我国非常规和复杂油气层埋藏更深、地层压力和温度更高、断层与裂缝更多、岩石种类与性质更复杂,使“井壁坍塌、阻卡与卡钻、井漏、井眼不清洁、油气层损害、环境污染”更具复杂性和特殊性。水基钻井液在“井壁稳定性、润滑性、保护油气层”方面存在先天缺陷,使国内原有水基钻井液技术无法解决这些难题,美国先进技术不仅对我国严格封锁而且不适合复杂地层情况、也不能解决这些技术难题;油基钻井液虽然具有优良的井壁稳定性、润滑性和油气层保护性,并通常成为钻高难度井的首选,但因存在环境污染严重、配制成本高、井漏处理难度大、携屑困难、长时期固井质量差等缺陷,使其应用受限。因此,在钻遇地层情况越来越复杂、环保要求严格和油价大幅波动的新常态下,21世纪以来,国内外热点研究“具水基和油基钻井液”优点的高性能水基钻井液,虽然近10余年来取得了一定进展,但仅仅是某方面的性能与以前相比有一定程度的提高,并未取得实质性突破,如:井壁稳定性、润滑性和保护油气层效果未达到、更未超过油基钻井液水平,使“井壁坍塌、阻卡与卡钻、井漏、井眼不清洁、油气层损害、环境污染”不仅是钻井液领域的关键性和共性重大技术难题,而且是高效勘探开发非常规和复杂油气,以及实现我国“页岩革命”的“卡脖 子”技术难题。
因依靠现有钻井液理论与技术已无法解决钻探中遭遇的钻井液技术难题,因此,必须立足自主创新,与其它学科新发展起来的先进理论和方法相结合,追求理论、方法和技术创新,首先发明钻井液系列新材料,继而发明原创性水基钻井液体系,创建全新的钻井液理论与技术,解决目前国内外在非常规和复杂油气钻井过程中长期未解决的“井壁坍塌、阻卡与卡钻、井漏、井眼不清洁、油气层损害、环境污染”的关键性、共性和卡脖子技术难题,并为中国模式“页岩革命”的实现提供一项核心技术,满足“安全、高效、经济、环保”钻探以及石油工业与环境保护协调发展的需要。
发明内容
本发明的目的在于将仿生学引入钻井液领域,并结合井下岩石表面双疏型理论,提出满足“安全、高效、经济、环保”钻探以及石油工业与环境保护协调发展的需要的钻井液体系,为了实现上述目的,本发明一方面提供一种仿生与双疏钻井液(特别是一种仿生与双疏高效能水基钻井液),该钻井液含有仿生固壁剂、仿生润滑剂、超双疏剂、携屑剂和仿生页岩抑制剂;
所述仿生固壁剂为含有式(1-a)所示的结构单元、式(2-a)所示的结构单元、式(3-a)所示的结构单元和式(4-a)所示的结构单元的丙烯酰胺类聚合物,其中,式(1-a)所示的结构单元、式(2-a)所示的结构单元、式(3-a)所示的结构单元和式(4-a)所示的结构单元的摩尔比为1:(1.05-3):(0.5-0.95):(0.2-0.9);
其中,R
1-R
7、R
10-R
12和R
13-R
15各自独立地选自H和C1-C6的烷基;R
8-R
9和R
16选自C1-C8的烷基;M选自H或碱金属元素;L
1和L
2各自独立地选自C0-C6的亚烷基;
所述仿生润滑剂为嵌段聚合物,该段聚合物包括含羧酸酯类结构单元和含苯结构单元的嵌段A,以及与嵌段A连接的含丙烯酰胺类结构单元的嵌段B;所述含苯结构单元为式(1-b)所示的结构单元;所述羧酸酯类结构单元为式(2-b)和式(3-b)所示的结构单元中的一种或多种;所述丙烯酰胺类结构单元为式(4-b)所示的结构单元;
其中,R
1’-R
2’、R
4’-R
6’、R
8’-R
10’和R
12’-R
14’各自独立地选自H和C1-C6的烷基;L
1’选自C0-C6的亚烷基;R
7’和R
11’选自C1-C8的烷基;R
15’选自H、C1-C8的烷基或-L
2’-SOOM’,L
2’选自C1-C6的亚烷基,M’为H或碱金属元素;R
3’选自H、C1-C6的烷基、苯基或苯基取代的C1-C6的烷基;
所述超双疏剂为表面具有改性基团的改性碳纳米管,其中,所述改性基团包括由含不饱和碳碳双键的硅烷偶联剂、由式R
1SO
2X表示的全氟磺酰卤和由式R
3Si(OR
2)
3表示的硅氧烷提供的改性基团;其中,R
1为全氟取代的C4-C12的烷基,X表示卤素;R
3选自C1-C6的烷基和C1-C6的烷氧基,R
2选自C1-C6的烷基;
所述携屑剂为Al
2O
3/SiO
2复合材料,该复合材料包括含有Al
2O
3和SiO
2的固体颗粒,以及在固体颗粒表面修饰的聚丙烯酰胺类聚合物;其中,所述聚丙烯酰胺类聚合物含有式(1-c)和式(2-c)所示的结构单元:
其中,R
1”-R
6”各自独立地选自H或C1-C6的烷基;L”选自C0-C6的亚烷基;R
7”选自被卤素取代的C6-C20的烷基;
所述仿生页岩抑制剂为改性壳聚糖,所述改性壳聚糖上连接有式(1-d)所示结构的改性基团;式(1-d):-CH
2-CH(OH)CH
2-多胺结构;所述多胺结构由多胺类化合物提供。
本发明第二方面提供上述钻井液在油气钻井中的应用。
本发明以仿生学理论和井下岩石表面双疏型理论为基础,通过仿自然界动植物特殊性能仿生固壁剂、仿生润滑剂、超双疏剂、携屑剂和仿生页岩抑制剂,以系列仿生处理剂为核心形成一套应用于非常规复杂油气井的仿生与双疏钻井液体系,由国际前沿仅提高钻井液自身抑制性和润滑性的外因法,拓展为同时随钻提高井壁质量的内外因结合法,使井壁岩石强度遭受破坏转变为随钻固壁、岩石毛细管对水分的吸力反转为阻力、井壁高摩阻转变为超低摩阻,并使水基钻井液的井壁稳定性、润滑性和储层保护效果超过典型油基钻井液;同时,废弃钻井液环境可接受,成为自然界植物的养分和生态循环系统中的一环,使其由环保型升级为生态型钻井液,实现了“成井率高、储层保护效果好、成本低、环境友好”一体化目标,解决了国内外10余年未将油基钻井液的优点融入水基钻井液的重大技术难题,平均井塌率减小82.6%、井漏发生率降低80.6%、摩阻复杂率降低80%以上、提速30%以上、油气井产量较以前提高1.5倍以上,使原来必须使用油基钻井液方可完钻的井转变为水基钻井液完钻,已成为“规模、效益、环保”开发非常规油气资源行之有效的核心技术,并为保护储层技术开辟了新的研究方向,推动了石油工业与环境保护的协调发展。
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。
本发明一方面提供一种仿生与双疏钻井液,该钻井液含有仿生固壁剂、仿生润滑剂、超双疏剂、携屑剂和仿生页岩抑制剂;
所述仿生固壁剂为含有式(1-a)所示的结构单元、式(2-a)所示的结构单元、式(3-a)所示的结构单元和式(4-a)所示的结构单元的丙烯酰胺类聚合物,其中,式(1-a)所示的结构单元、式(2-a)所示的结构单元、式(3-a)所示的结构单元和式(4-a)所示的结构单元的摩尔比为1:(1.05-3):(0.5-0.95):(0.2-0.9);
其中,R
1-R
7、R
10-R
12和R
13-R
15各自独立地选自H和C1-C6的烷基;R
8-R
9和R
16选自C1-C8的烷基;M选自H或碱金属元素;L
1和L
2各自独立地选自C0-C6的亚烷基;
所述仿生润滑剂为嵌段聚合物,该段聚合物包括含羧酸酯类结构单元和含苯结构单元的嵌段A,以及与嵌段A连接的含丙烯酰胺类结构单元的嵌段B;所述含苯结构单元为式(1-b)所示的结构单元;所述羧酸酯类结构单元为式(2-b)和式(3-b)所示的结构单元中的一种或多种;所述丙烯酰胺类结构单元为式(4-b)所示的结构单元;
其中,R
1’-R
2’、R
4’-R
6’、R
8’-R
10’和R
12’-R
14’各自独立地选自H和C1-C6的烷基;L
1’选自C0-C6 的亚烷基;R
7’和R
11’选自C1-C8的烷基;R
15’选自H、C1-C8的烷基或-L
2’-SOOM’,L
2’选自C1-C6的亚烷基,M’为H或碱金属元素;R
3’选自H、C1-C6的烷基、苯基或苯基取代的C1-C6的烷基;
所述超双疏剂为表面具有改性基团的改性碳纳米管,其中,所述改性基团包括由含不饱和碳碳双键的硅烷偶联剂、由式R
1SO
2X表示的全氟磺酰卤和由式R
3Si(OR
2)
3表示的硅氧烷提供的改性基团;其中,R
1为全氟取代的C4-C12的烷基,X表示卤素;R
3选自C1-C6的烷基和C1-C6的烷氧基,R
2选自C1-C6的烷基;
所述携屑剂为Al
2O
3/SiO
2复合材料,该复合材料包括含有Al
2O
3和SiO
2的固体颗粒,以及在固体颗粒表面修饰的聚丙烯酰胺类聚合物;其中,所述聚丙烯酰胺类聚合物含有式(1-c)和式(2-c)所示的结构单元:
其中,R
1”-R
6”各自独立地选自H或C1-C6的烷基;L”选自C0-C6的亚烷基;R
7”选自被卤素取代的C6-C20的烷基;
所述仿生页岩抑制剂为改性壳聚糖,所述改性壳聚糖上连接有式(1-d)所示结构的改性基团;式(1-d):-CH
2-CH(OH)CH
2-多胺结构;所述多胺结构由多胺类化合物提供。
根据本发明,本发明提供的仿生固壁剂用聚合物能够抑制页岩水化膨胀稳定井壁并无毒可降解的井壁稳定剂,此类井壁稳定剂能够有效提高岩石强度,抑制页岩水化膨在达到稳定井壁的效果,同时以该井壁稳定剂为主要组成的水基钻井液体系对流变滤失性能良好,无毒可降解。
优选地,所述仿生固壁剂中,式(1-a)所示的结构单元、式(2-a)所示的结构单元、式(3-a)所示的结构单元和式(4-a)所示的结构单元的摩尔比为1:(1.1-2):(0.6-0.95):(0.5-0.9),优选为1:(1.2-1.5):(0.8-0.9):(0.7-0.85)。
优选地,作为仿生固壁剂的聚合物的重均分子量为80000-250000g/mol,优选为95000-220000g/mol,更优选为100000-200000g/mol(例如为105000-198000g/mol),更进一步优选为130000-160000g/mol。
R
1-R
7、R
10-R
12和R
13-R
15各自独立地选自H和C1-C4的烷基;R
8-R
9和R
16选自C1-C6的烷基;M选自H、Na或K;L
1和L
2各自独立地选自C0-C4的亚烷基。
优选地,R
1-R
7、R
10-R
12和R
13-R
15各自独立地选自H、甲基、乙基或正丙基;R
8-R
9和R
16选自甲基、乙基、正丙基、异丙基、正丁基或异丁基;M选自H、Na或K;L
1和L
2各自独立地为不存在、-CH
2-、-CH
2CH
2-、-CH
2CH
2CH
2-或-CH
2CH
2CH
2CH
2-。
优选地,式(1-a)所示的结构单元由丙烯酰胺和/或甲基丙烯酰胺提供;式(2-a)所示的结构单元由二甲基二烯丙基氯化铵、二甲基二烯丙基氟化铵、二乙基二烯丙基氯化铵、二乙基二烯丙基氟化铵、二甲基二(2-烯丁基)氯化铵、二甲基二(2-烯丁基)氟化铵、二乙基二(2-烯丁基)氯化铵和二乙基二(2-烯丁基)氟化铵中的一种或多种提供;式(3-a)所示的结构单元由丙烯酸、甲基丙烯酸、2-丁烯酸、丙烯酸钠、甲基丙烯酸钠和2-丁烯酸钠中的一种或多种提供;式(4-a)所示的结构单元由乙酸乙烯酯、正丙酸乙烯酯、乙酸异丙烯酯、正丙酸异丙烯酯、乙酸丙烯酯和正丙酸丙烯酯中的一种或多种提供。
其中,优选情况下,适用于井壁稳定剂的聚合物的制备方法,该方法包括:在引发剂存在下, 在含水溶剂中,将式(1’-a)所示的单体、式(2’-a)所示的单体、式(3’-a)所示的单体和式(4’-a)所示的单体进行聚合反应,其中,式(1’-a)所示的单体、式(2’-a)所示的单体、式(3’-a)所示的单体和式(4’-a)所示的单体的用量摩尔比为1:(1.05-3):(0.5-0.95):(0.2-0.9);
其中,R
1-R
7、R
10-R
12和R
13-R
15各自独立地选自H和C1-C6的烷基;R
8-R
9和R
16选自C1-C8的烷基;M选自H或碱金属元素;L
1和L
2各自独立地选自C0-C6的亚烷基。
上述单体的基团可以根据上文描述的结构单元进行具体选择。
优选地,式(1’-a)所示的单体、式(2’-a)所示的单体、式(3’-a)所示的单体和式(4’-a)所示的单体的用量摩尔比为1:(1.1-2):(0.6-0.95):(0.5-0.9),优选为1:(1.2-1.5):(0.8-0.9):(0.7-0.85)。
优选地,该方法使得所述聚合物的重均分子量为80000-250000g/mol,优选为95000-220000g/mol,更优选为100000-200000g/mol(例如为105000-198000g/mol),更进一步优选为130000-160000g/mol。
优选地,所述聚合反应的条件包括:温度为60-80℃,时间为3-6h。更优选地,所述聚合反应的条件包括:温度为65-69℃,时间为3-5h。为了使得引发反应可以顺利进行,还可以通气置换反应体系中的空气,通入的气体可以是选自氮气、氦气、氖气等基本反应惰性的气体。
优选地,所述引发剂为过硫酸铵、过硫酸钾和过硫酸钠中的一种或多种,其用量优选为0.05-2.5重量,优选为0.1-1重量%,更优选为0.4-0.7重量%(以式(1’-a)所示的单体、式(2’-a)所示的单体、式(3’-a)所示的单体和式(4’-a)所示的单体的总重量为基准)。
根据本发明,本发明作为润滑剂的嵌段聚合物能够有效改善岩屑表面吸附膜摩擦性能同时提高体系抗温性的水基钻井液润滑剂,此类润滑剂能够有效提高复杂结构井的钻井速度和井壁稳定,该润滑剂组成的水基钻井液体系对今后复杂结构井钻井的提速提效有相当大的促进作用。
优选地,所述仿生润滑剂中,所述含苯结构单元、羧酸酯类结构单元和丙烯酰胺类结构单元的摩尔比为(2-10):1:(0.01-0.8),优选为(2-5):1:(0.1-0.5),更优选为(2.2-5):1:(0.12-0.3);,更进一步优选为(2.2-3.5):1:(0.12-0.2)。
优选地,所述嵌段A为由含苯结构单元和羧酸酯类结构单元组成的无轨共聚嵌段,或者为由含苯结构单元构成的嵌段A1和由羧酸酯类结构单元组成的嵌段A2构成的两嵌段聚合物嵌段。
优选地,所述嵌段聚合物的重均分子量为10000-50000g/mol,优选为12000-40000g/mol,更优选为15000-30000g/mol,例如为15000-25000g/mol。
优选地,R
1’-R
2’、R
4’-R
6’、R
8’-R
10’和R
12’-R
14’各自独立地选自H和C1-C4的烷基;L
1’选自C0-C4 的亚烷基;R
7’和R
11’各自独立地选自C1-C6的烷基;R
15选自H、C1-C6的烷基或-L
2-SOOM’,L
2’选自C1-C6的亚烷基,M’为H、Na或K;;R
3’选自H、C1-C4的烷基、苯基或苯基取代的C1-C4的烷基。
优选地,R
1’-R
2’、R
4’-R
6’、R
8’-R
10’和R
12’-R
14’各自独立地选自H、甲基、乙基或正丙基;L
1’为不存在、-CH
2-、-CH
2CH
2-、-CH
2CH
2CH
2-或-CH
2CH
2CH
2CH
2-;R
7’和R
11’各自独立地选自甲基、乙基、正丙基、异丙基、正丁基或异丁基;R
15’选自H、甲基、乙基、正丙基、异丙基、正丁基、异丁基、-CH
2-SOOM’、-CH
2CH
2-SOOM’、-CH
2CH
2CH
2-SOOM’、-CH(CH
3)CH
2-SOOM’、-CH
2CH(CH
3)-SOOM’、-C(CH
3)
2-SOOM’、-CH
2CH
2CH
2CH
2-SOOM’、-CH(CH
3)CH
2CH
2-SOOM’、-CH
2CH(CH
3)CH
2-SOOM’、-CH
2CH
2CH(CH
3)-SOOM’、-C(CH
3)
2CH
2-SOOM’或-CH
2C(CH
3)
2-SOOM’,M’为H、Na或K;R
3’选自H、甲基、乙基、正丙基、苯基或苄基。
优选地,所述含苯结构单元由选自苯乙烯及其衍生物和二苯乙烯及其衍生物的化合物提供;所述羧酸酯类结构单元由选自丙烯酸丁酯及其衍生物、甲基丙烯酸甲酯及其衍生物、乙酸乙烯酯及其衍生物的化合物提供;所述丙烯酰胺类结构单元由选自丙烯酰胺及其衍生物、2-丙烯酰胺丙磺酸及其衍生物和2-丙烯酰胺-2甲基丙磺酸及其衍生物的化合物提供。所述含苯结构单元还可以由聚苯乙烯提供,例如分子量为5000-10000g/mol(优选为5000-8000g/mol)的聚苯乙烯。
优选情况下,用于润滑剂的嵌段聚合物的制备方法,该方法包括:
(1)在第一引发剂存在下,将含苯单体和羧酸酯类单体进行第一乳液聚合;
(2)在第二引发剂存在下,将丙烯酰胺类单体引入至第一乳液聚合的产物中以进行第二乳液聚合;
其中,所述含苯单体为由式(1-b)所示的结构单元构成的含苯聚合物或者式(1’-b)所示的单体;所述羧酸酯类单体为式(2’-b)和式(3’-b)所示的单体中的一种或多种;所述丙烯酰胺类单体为式(4’-b)所示的单体;
其中,R
1’-R
2’、R
4’-R
6’、R
8’-R
10’和R
12’-R
14’各自独立地选自H和C1-C6的烷基;L
1’选自C0-C6的亚烷基;R
7’和R
11’选自C1-C8的烷基;R
15’选自H、C1-C8的烷基或-L
2’-SOOM’,L
2’选自C1-C6的亚烷基,M’为H或碱金属元素;R
3’选自H、C1-C6的烷基、苯基或苯基取代的C1-C6的烷基
优选地,所述含苯单体、羧酸酯类单体和丙烯酰胺类单体的摩尔比为(2-10):1:(0.01-0.8), 优选为(2-5):1:(0.1-0.5),更优选为(2.2-5):1:(0.12-0.3),更进一步优选为(2.2-3.5):1:(0.12-0.2)。
优选地,所述嵌段聚合物的重均分子量为10000-50000g/mol,优选为12000-40000g/mol,更优选为15000-30000g/mol,例如为15000-25000g/mol。
上述单体的各个基团可以根据上述描述的结构单元进行选择。
优选地,所述含苯单体由选自苯乙烯及其衍生物和二苯乙烯及其衍生物的化合物;所述羧酸酯类单体由选自丙烯酸丁酯及其衍生物、甲基丙烯酸甲酯及其衍生物、乙酸乙烯酯及其衍生物的化合物供;所述丙烯酰胺类单体由选自丙烯酰胺及其衍生物、2-丙烯酰胺丙磺酸及其衍生物和2-丙烯酰胺-2甲基丙磺酸及其衍生物的化合物。其中,所述含苯单体还可以由聚苯乙烯提供,例如分子量为5000-10000g/mol(优选为5000-8000g/mol)的聚苯乙烯。
优选地,所述第一引入剂和第二引发剂各自独立地选自过硫酸钾或过硫酸铵。其中,相对于含苯单体和羧酸酯类单体的总摩尔量,所述第一引入剂的用量可以为0.005-0.5mol%(优选为0.01-0.1mol%,更优选为0.01-0.03mol%)。相对于含苯单体、羧酸酯类单体和丙烯酰胺类单体的总摩尔量,所述第二引入剂的用量可以为0.001-0.05mol%(优选为0.005-0.02mol%,例如为0.005-0.015mol%)。
其中,含苯单体在进行使用前,可以先用碱性水溶液进行洗涤,例如可以采用10-20重量%的碱性水溶液,碱性化合物可以为氢氧化钠、氢氧化钾、氢氧化锂、氨水等。
在进行第一乳液聚合前,可以先将含苯单体和羧酸酯类单体进行混合并剪切乳化,而后再引入第一引发剂进行第一乳液聚合反应。其中,所述剪切乳化过程,包括将含苯单体和羧酸酯类单体在水中进行剪切乳化,该含苯单体和羧酸酯类单体的用量使得所得乳化液中,含苯单体和羧酸酯类单体的总浓度为0.1-0.5mol/mL。
为了使得引发的第一乳液聚合顺利进行,还可以通气置换乳化液中的空气,通入的气体可以是选自氮气、氦气、氖气等基本反应惰性的气体。
优选地,所述第一乳液聚合的条件包括:温度为30-50℃,时间为30-90min。
优选地,所述第二乳液聚合的条件包括:温度为60-70℃,时间为1.5-6h,优选为2-4h。
根据本发明,本发明提供的该超双疏剂能够所具有的高电负性易构造低表面能的表面特性,有效反转表面润湿性能,阻止液相与储层粘土矿物的接触,同时纳米材料的小尺度效应使得钻井过程中固相颗粒间以及钻具间的摩擦阻力大大降低,并对纳微米级别的孔缝进行封堵,从而实现一剂多用。并以此超双疏剂为核心形成一套高效水基钻井液体系,提高复杂井钻井速度,进一步促进非常规油气藏的勘探开发。
优选地,R
1为全氟取代的C6-C10的烷基,X表示氟或氯;R
3选自C2-C6的烷基和C2-C6的烷氧基,R
2选自C1-C4的烷基。更优选地,R
3选自C1-C4的烷基和C1-C4的烷氧基,R
2选自C1-C4的烷基。
优选地,R
1为全氟取代的C6烷基、全氟取代的C8烷基或全氟取代的C10烷基,X表示氟或氯;R
3选自甲基、乙基、正丙基、正丁基、甲氧基、乙氧基、正丙氧基或正丁氧基;R
2选自甲基、乙基、正丙基、异丙基或正丁基。
优选地,所述含不饱和碳碳双键的硅烷偶联剂为丙烯酰氧基C1-C8的烷基三烷氧基硅烷、甲基丙烯酰氧基C1-C8的烷基三烷氧基硅烷、丙烯酰胺基C1-C8的烷基三烷氧基硅烷、甲基丙烯酰胺基C1-C8的烷基三烷氧基硅烷、乙烯基三烷氧基硅烷和丙烯基三烷氧基硅烷中的一种或多种;所述由式 R
1SO
2X表示的全氟磺酰卤为全氟己基磺酰氟、全氟己基磺酰氯、全氟辛基磺酰氟、全氟辛基磺酰氯、全氟癸基磺酰氟和全氟癸基磺酰氯中的一种或多种;所述由式R
3Si(OR
2)
3表示的硅氧烷为甲氧基三乙氧基硅烷、甲氧基三丙氧基硅烷、乙氧氧基三丙氧基硅烷和乙氧氧基三甲氧基硅烷中的一种或多种。
其中,丙烯酰氧基C1-C8的烷基三烷氧基硅烷具体可以选自丙烯酰氧基甲基三甲氧基硅烷、丙烯酰氧基甲基三乙氧基硅烷、丙烯酰氧基甲基三正丙氧基硅烷、2-丙烯酰氧基乙基三甲氧基硅烷、2-丙烯酰氧基乙基三乙氧基硅烷、2-丙烯酰氧基乙基三正丙氧基硅烷、γ-丙烯酰氧基丙基三甲氧基硅烷、γ-丙烯酰氧基丙基三乙氧基硅烷、γ-丙烯酰氧基丙基三正丙氧基硅烷。
甲基丙烯酰氧基C1-C8的烷基三烷氧基硅烷具体可以选自甲基丙烯酰氧基甲基三甲氧基硅烷、甲基丙烯酰氧基甲基三乙氧基硅烷、甲基丙烯酰氧基甲基三正丙氧基硅烷、2-甲基丙烯酰氧基乙基三甲氧基硅烷、2-甲基丙烯酰氧基乙基三乙氧基硅烷、2-甲基丙烯酰氧基乙基三正丙氧基硅烷、γ-甲基丙烯酰氧基丙基三甲氧基硅烷、γ-甲基丙烯酰氧基丙基三乙氧基硅烷、γ-甲基丙烯酰氧基丙基三正丙氧基硅烷。
丙烯酰胺基C1-C8的烷基三烷氧基硅烷具体可以选自丙烯酰胺基甲基三甲氧基硅烷、丙烯酰胺基甲基三乙氧基硅烷、丙烯酰胺基甲基三正丙氧基硅烷、2-丙烯酰胺基乙基三甲氧基硅烷、2-丙烯酰胺基乙基三乙氧基硅烷、2-丙烯酰胺基乙基三正丙氧基硅烷、γ-丙烯酰胺基丙基三甲氧基硅烷、γ-丙烯酰胺基丙基三乙氧基硅烷、γ-丙烯酰胺基丙基三正丙氧基硅烷。
甲基丙烯酰胺基C1-C8的烷基三烷氧基硅烷具体可以选自甲基丙烯酰胺基甲基三甲氧基硅烷、甲基丙烯酰胺基甲基三乙氧基硅烷、甲基丙烯酰胺基甲基三正丙氧基硅烷、2-甲基丙烯酰胺基乙基三甲氧基硅烷、2-甲基丙烯酰胺基乙基三乙氧基硅烷、2-甲基丙烯酰胺基乙基三正丙氧基硅烷、γ-甲基丙烯酰胺基丙基三甲氧基硅烷、γ-甲基丙烯酰胺基丙基三乙氧基硅烷、γ-甲基丙烯酰胺基丙基三正丙氧基硅烷。
乙烯基三烷氧基硅烷具体可以选自乙烯基三甲氧基硅烷、乙烯基三乙氧基硅烷、乙烯基三正丙氧基硅烷。
丙烯基三烷氧基硅烷具体可以选自丙烯基三甲氧基硅烷、丙烯基三乙氧基硅烷、丙烯基三正丙氧基硅烷。
在本发明的一种优选的实施方式中,所述含不饱和碳碳双键的硅烷偶联剂为γ-甲基丙烯酰氧基丙基三甲氧基硅烷;所述由式R
1SO
2X表示的全氟磺酰卤为全氟辛基磺酰氟,所述由式R
3Si(OR
2)
3表示的硅氧烷为甲氧基三乙氧基硅烷。
优选地,所述碳纳米管为单壁碳纳米管或多壁碳纳米管;更优选地,所述单壁碳纳米管的管径为2-50nm(优选为5-30nm,例如为2-12nm、10-25nm),长度为1000-20000nm(优选为5000-15000nm,例如为10000-15000nm);所述多壁碳纳米管的内径为2-30nm(优选为5-30nm,例如为2-12nm、10-25nm),外径为5-50nm(优选为10-30nm,例如为10-25nm、12-15nm),长度为1000-30000nm(优选为5000-25000nm,例如为15000-20000nm)。
优选地,所述改性碳纳米管中,改性碳纳米管、由含不饱和碳碳双键的硅烷偶联剂提供的改性基团、由式R
1SO
2X表示的全氟磺酰卤提供的改性基团和由式R
3Si(OR
2)
3表示的硅氧烷提供的改性基团的摩尔比为1:0.05-0.5:0.2-5:0.5-6,优选为1:0.1-0.3:0.5-2:1-3,更优选为1:0.2-0.25:1-2:1.5-3。
优选地,上述超双疏剂的制备方法,其中,该方法包括:
(1)将碳纳米管在含酸溶液中进行羧基化处理;
(2)将羧基化处理后的碳纳米管与含不饱和碳碳双键的硅烷偶联剂进行第一接触反应;
(3)将第一接触反应后的产物中引入由式R
1SO
2X表示的全氟磺酰卤和由式R
3Si(OR
2)
3表示的硅氧烷以进行第二接触反应。
优选地,所述含酸溶液为强酸(选自浓硫酸或浓硝酸)与双氧水的混合溶液。其中,所述浓硫酸的硫酸浓度可以为70重量%以上,特别是90重量%以上,更优选为98%以上。浓硝酸的硝酸浓度可以为50重量%以上,优选为60重量%以上,特别是65重量%以上。双氧水的浓度可以为3-30重量%,或者可以为5-20重量%。其中,所述含酸溶液中,强酸与双氧水用量的重量比为1:0.5-10,优选为1:2-3。
根据本发明,所述羧基化处理可以使得碳纳米管表面形成适量的含氧集团,以允许后续的接触反应而形成本发明所需的改性基团。其中,含酸溶液的用量可以在较宽的范围内变动,通常可以足以充分分散碳纳米管即可,例如含酸溶液的用量使得碳纳米管的含量为0.5-10重量%。
优选地,所述羧基化处理的条件包括:温度为50-100℃,时间为25-100min。
优选地,所述第一接触反应的条件包括:温度为50-100℃,时间为25-100min;所述第二接触反应的条件包括:温度为50-100℃,时间为1.5-8h。
更优选地,所述第一接触反应的条件包括:温度为60-90℃,时间为30-90min;所述第二接触反应的条件包括:温度为60-90℃(优选为70-80℃),时间为2-6h(优选为2-4h)。
根据本发明,本发明的携屑剂能够有效改善岩屑表面润湿性能,将岩屑表面亲水亲油的润湿性转变成疏水疏油的气润湿性能,从而降低岩屑的相对密度,同时通过聚合物的流变性能提高体系的携屑效果;本发明的Al
2O
3/SiO
2复合材料作为高效携屑剂能够有效改善岩屑表面润湿性能,将岩屑表面亲水亲油的润湿性转变成疏水疏油的气润湿性能,从而降低岩屑的相对密度,同时通过聚合物的流变性能提高体系的携屑效果。并以此携屑剂为核心形成一套高效携屑水基钻井液体系,提高复杂井钻井速度和井眼净化效率,进一步促进非常规油气藏的勘探开发。
优选地,所述携屑剂中,R
1”-R
6”各自独立地选自H或C1-C4的烷基;L”选自C0-C4的亚烷基;R
7”选自被卤素取代的C4-C16的烷基。
优选地,R
1”-R
6”各自独立地选自H、甲基、乙基或正丙基;L”为不存在、-CH
2-、-CH
2CH
2-、-CH
2CH
2CH
2-或-CH
2CH
2CH
2CH
2-;R
7”选自被氟、氯或溴取代的C6-C12的烷基。
优选地,R
7”选自全氟取代的C6烷基、十一氟取代的C6烷基、九氟取代的C6烷基、全氟取代的C8烷基、十五氟取代的C8烷基、十三氟取代的C8烷基、十一氟取代的C8烷基、九氟取代的C8烷基、全氟取代的C10烷基、十九氟取代的C10烷基、十七氟取代的C10烷基、十五氟取代的C10烷基、十三氟取代的C10烷基、十一氟取代的C10烷基、九氟取代的C10烷基、全氟取代的C12烷基、二十三氟取代的C12烷基、二十一氟取代的C12烷基、十九氟取代的C12烷基、十七氟取代的C12烷基、十五氟取代的C12烷基、十三氟取代的C12烷基、十一氟取代的C12烷基或九氟取代的C12烷基。
优选地,式(1-c)所示的结构单元由丙烯酰胺和/或甲基丙烯酰胺提供;式(2-c)所示的结构单元由丙烯酸九氟己酯、甲基丙烯酸九氟己酯、丙烯酸全氟己酯、甲基丙烯酸全氟己酯、丙烯酸十三氟辛酯、甲基丙烯酸十三氟辛酯、丙烯酸全氟辛酯、甲基丙烯酸全氟辛酯、丙烯酸十七氟癸酯、甲基丙烯酸十七氟癸酯、丙烯酸全氟癸酯和甲基丙烯酸全氟癸酯中的一种或多种提供。
优选地,所述聚丙烯酰胺类聚合物中,式(1-c)和式(2-c)所示的结构单元的摩尔比为1:0.2-5,优选为1:0.4-1,更优选为1:0.5-0.8;或者,所述复合材料中,以Al
2O
3计固体颗粒与所述聚丙烯酰胺 类聚合物中式(1-c)和式(2-c)所示的结构单元的摩尔比为1:(1-15):(0.5-10),优选为1:(2-10):(1-5),更优选为1:(2-8):(1-3)。
优选地,所述聚丙烯酰胺类聚合物的分子量为20000-120000g/mol,优选为30000-97000g/mol,更优选为40000-90000g/mol。
优选地,所述固体颗粒中,Al
2O
3和SiO
2的摩尔比为1:1-5,优选为1:2-4;或者所述固体颗粒的含有Al
2O
3的硅酸盐,优选为高岭土,更优选为纳米高岭土,其颗粒尺寸例如可以为50-2000nm,优选为100-1000nm,例如为100-500nm。
优选地,所述固体颗粒与聚丙烯酰胺类聚合物之间通过硅烷偶联剂结合。优选地,所述硅烷偶联剂为含不饱和碳碳双键的硅烷偶联剂,更优选地,所述含不饱和碳碳双键的硅烷偶联剂为丙烯酰氧基C1-C8的烷基三烷氧基硅烷、甲基丙烯酰氧基C1-C8的烷基三烷氧基硅烷、丙烯酰胺基C1-C8的烷基三烷氧基硅烷、甲基丙烯酰胺基C1-C8的烷基三烷氧基硅烷、乙烯基三烷氧基硅烷和丙烯基三烷氧基硅烷中的一种或多种。
丙烯酰氧基C1-C8的烷基三烷氧基硅烷具体可以选自丙烯酰氧基甲基三甲氧基硅烷、丙烯酰氧基甲基三乙氧基硅烷、丙烯酰氧基甲基三正丙氧基硅烷、2-丙烯酰氧基乙基三甲氧基硅烷、2-丙烯酰氧基乙基三乙氧基硅烷、2-丙烯酰氧基乙基三正丙氧基硅烷、γ-丙烯酰氧基丙基三甲氧基硅烷、γ-丙烯酰氧基丙基三乙氧基硅烷、γ-丙烯酰氧基丙基三正丙氧基硅烷。
甲基丙烯酰氧基C1-C8的烷基三烷氧基硅烷具体可以选自甲基丙烯酰氧基甲基三甲氧基硅烷、甲基丙烯酰氧基甲基三乙氧基硅烷、甲基丙烯酰氧基甲基三正丙氧基硅烷、2-甲基丙烯酰氧基乙基三甲氧基硅烷、2-甲基丙烯酰氧基乙基三乙氧基硅烷、2-甲基丙烯酰氧基乙基三正丙氧基硅烷、γ-甲基丙烯酰氧基丙基三甲氧基硅烷、γ-甲基丙烯酰氧基丙基三乙氧基硅烷、γ-甲基丙烯酰氧基丙基三正丙氧基硅烷。
丙烯酰胺基C1-C8的烷基三烷氧基硅烷具体可以选自丙烯酰胺基甲基三甲氧基硅烷、丙烯酰胺基甲基三乙氧基硅烷、丙烯酰胺基甲基三正丙氧基硅烷、2-丙烯酰胺基乙基三甲氧基硅烷、2-丙烯酰胺基乙基三乙氧基硅烷、2-丙烯酰胺基乙基三正丙氧基硅烷、γ-丙烯酰胺基丙基三甲氧基硅烷、γ-丙烯酰胺基丙基三乙氧基硅烷、γ-丙烯酰胺基丙基三正丙氧基硅烷。
甲基丙烯酰胺基C1-C8的烷基三烷氧基硅烷具体可以选自甲基丙烯酰胺基甲基三甲氧基硅烷、甲基丙烯酰胺基甲基三乙氧基硅烷、甲基丙烯酰胺基甲基三正丙氧基硅烷、2-甲基丙烯酰胺基乙基三甲氧基硅烷、2-甲基丙烯酰胺基乙基三乙氧基硅烷、2-甲基丙烯酰胺基乙基三正丙氧基硅烷、γ-甲基丙烯酰胺基丙基三甲氧基硅烷、γ-甲基丙烯酰胺基丙基三乙氧基硅烷、γ-甲基丙烯酰胺基丙基三正丙氧基硅烷。
乙烯基三烷氧基硅烷具体可以选自乙烯基三甲氧基硅烷、乙烯基三乙氧基硅烷、乙烯基三正丙氧基硅烷。
丙烯基三烷氧基硅烷具体可以选自丙烯基三甲氧基硅烷、丙烯基三乙氧基硅烷、丙烯基三正丙氧基硅烷。
在本发明一种优选的实施方式中,所述硅烷偶联剂优选为γ-甲基丙烯酰氧基丙基三甲氧基硅烷(KH-570)。
优选地,Al
2O
3/SiO
2复合材料的制备方法,该方法包括:
(1)采用硅烷偶联剂对含有Al
2O
3和SiO
2的固体颗粒进行表面修饰;
(2)在步骤(1)表面修饰后的产物与式(1’-c)和式(2’-c)所示的化合物进行聚合反应;
其中,R
1”-R
6”各自独立地选自H或C1-C6的烷基;L”选自C0-C6的亚烷基;R
7”选自被卤素取代的C6-C20的烷基。
上述化合物如上文中所描述的进行选择和配比。
在本发明的一种优选的实施方式中,式(1’-c)所示的化合物选自丙烯酰胺和/或甲基丙烯酰胺;式(2’-c)所示的化合物选自丙烯酸九氟己酯、甲基丙烯酸九氟己酯、丙烯酸全氟己酯、甲基丙烯酸全氟己酯、丙烯酸十三氟辛酯、甲基丙烯酸十三氟辛酯、丙烯酸全氟辛酯、甲基丙烯酸全氟辛酯、丙烯酸十七氟癸酯、甲基丙烯酸十七氟癸酯、丙烯酸全氟癸酯和甲基丙烯酸全氟癸酯中的一种或多种。
优选地,步骤(1)中,所述表面修饰的条件包括:温度为40-80℃,时间为25-100min。步骤(2)中,所述聚合反应的条件包括:温度为40-80℃,时间为1.5-8h。
更优选地,所述表面修饰的条件包括:温度为45-65℃,时间为30-90min。
更优选地,所述聚合反应的条件包括:温度为45-65℃,时间为2-6h。
在本发明中,步骤(1)中,可以将固体颗粒与硅烷偶联剂在溶剂中进行分散混合,其中,溶剂可以为醇类溶剂,特别是醇水混合溶剂(其醇/水体积比可以为1:1-3,优选为1:1-1.5),醇可以选自甲醇、乙醇、乙二醇等。其用量可以在较宽范围内变动,例如可以使得固体颗粒在溶剂中的含量为0.01-10g/mL,优选为0.05-2g/mL,更优选为0.05-0.2g/mL。
在本发明中,步骤(2)中,聚合反应可以在引发剂存在下进行,该引发剂可以选自多种可引发本发明的单体进行聚合反应的引发剂,例如可以为过硫酸钾、过硫酸铵等中的一种或多种。其用量可以根据聚合反应的需要进行调整。在本发明中,为了使得固体颗粒表面修饰更为适宜的聚合物链,以获得更为优越的携屑效果,优选地,相对于式(1’-c)和式(2’-c)所示的化合物的总重量,所述引发剂的用量为0.1-3重量%,优选为0.5-1.5重量%。
根据本发明,本发明的钻井液还可以含有封堵剂,优选采用纳米洋葱碳作为仿生封堵剂。本发明提供的仿生封堵剂的纳米级球状结构与孔隙尺寸匹配较高,能显著提高封堵效果;并且具有优良的性能,能够适用于现代钻井液发展的需求。
纳米洋葱碳(CNOs)是多壳层同心石墨层构成的纳米级球状结构,由于其弯曲闭合的特殊石墨层状结构和大的比表面积而具有优异的物理、化学性能,表现出优异的小尺寸效应、量子尺寸效应以及优越的热稳定性。纳米级球状结构和其优良的性能能够高效对泥页岩中的特殊裂缝孔隙进行封堵,提高井壁稳定性;并且对储层损害和环境污染几乎没有影响。以此洋葱碳微纳米结构为核心形成一套洋葱碳微纳米结构仿生封堵剂,可有效提高非常规油气资源页岩气和致密油的勘探和开发。
优选地,所述仿生封堵剂中,所述纳米洋葱碳的直径为10-100nm,优选为30-40nm。
优选地,所述纳米洋葱碳的最内层由50-80个碳原子组成,优选为60-70个碳原子。
优选地,所述纳米洋葱碳各层之间的间距为0.1-0.5nm,优选为0.25-0.35nm。
优选地,所述纳米洋葱碳具有的碳层数为10-100层,优选为50-80层。
在本发明的一种优选的实施方式中,CNOs其碳分子为套球状,类似于长径比约为1∶1的碳纳米管。CNOs内层是由60个碳原子组成,每一层碳原子数以60n
2(n为层数)呈指数级递增,各层间距约为0.335nm。
纳米洋葱碳可以根据本发明对纳米洋葱碳的要求采用本领域常规的方式制得。例如,纳米洋葱碳结构仿生封堵剂制备方法包括:将一定量的萘倒入的酒精溶液,搅拌使其形成过饱和溶液,然后将过饱和溶液倒入含有灯芯的酒精灯中。将玻璃漏斗清洁干净后倒立固定在铁架上,将含有饱和萘的酒精灯点燃,在玻璃漏斗的广口部位熏烤。此过程要适当移动酒精灯,使样品充分附着在玻璃漏斗的广口部位。收集广口部位的样品,将收集到的样品用无水乙醇和去离子水清洗数次,在真空干燥箱中于60℃下干燥12h。
本发明中,洋葱碳微纳米结构仿生封堵剂具有优异的物理、化学性能,表现出优异的小尺寸效应、量子尺寸效应;洋葱碳微纳米结构仿生封堵剂具有良好的耐温性能,热稳定性好;洋葱碳微纳米结构仿生封堵剂能够高效对泥页岩中的特殊裂缝孔隙进行封堵,提高井壁稳定性;该仿生封堵剂的纳米级球状结构与孔隙尺寸匹配较高,能显著提高封堵效果。洋葱碳微纳米结构仿生封堵剂能够有效对泥页岩中的特殊裂缝孔隙进行封堵同时对储层损害和环境污染几乎没有影响。洋葱碳微纳米结构仿生封堵剂的纳米级球状结构与孔隙尺寸匹配较高,能显著提高封堵效果;并且具有优良的性能,能够适用于现代钻井液发展的需求。
根据本发明,本发明提供的改性壳聚糖作为页岩抑制剂能够有效抑制泥页岩水化膨胀与分散,并且对钻井液性能无负面影响,且无毒副作用,可提高页岩油气井井壁稳定性。
优选地,所述壳聚糖的分子量为20000-100000g/mol,优选为40000-90000g/mol,更优选为50000-85000g/mol,例如为50000-75000g/mol。
优选地,该多胺结构例如可以为-NH-(CH
2CH
2NH)n-CH
2CH
2-NH
2,或者为-NH-聚胺类残基。
优选地,所述多胺类化合物为多烯多胺和聚乙烯亚胺中的一种或多种,优选为二乙烯三胺、三乙烯四胺、四乙烯五胺和聚乙烯亚胺中的一种或多种。其中,聚乙烯亚胺例如可以为分子量为300-5000g/mol(优选为600-3000g/mol,更优选为600-1500g/mol)的聚乙烯亚胺。
优选地,所述式(1-d)所示结构的改性基团由环氧氯丙烷和多胺类化合物反应提供。
优选地,相对于改性壳聚糖的总量,所述式(1)所示结构的改性基团的含量为5-25重量%,优选为8-20重量,更优选为8.5-17重量%。
优选地,所述壳聚糖是通过由苯甲醛提供的基团与式(1)所示结构的改性基团进行连接。
优选地,所述改性壳聚糖的制备方法包括:
(1)将壳聚糖进行酸化溶胀处理;
(2)在醇类溶剂中,将酸化溶胀处理后的壳聚糖与苯甲醛进行第一接触反应;
(3)在第一碱性溶液中,将第一接触反应后的产物与环氧氯丙烷进行第二接触反应;
(4)在第二碱性溶液中,将第二接触反应的产物与所述多胺类化合物进行第三接触反应,以使得壳聚糖上连接式(1-d)所示结构的改性基团。
根据本发明,所述溶胀处理可以为本领域常规的壳聚糖溶胀处理过程,例如可以为将壳聚糖与酸性溶液接触,以促使壳聚糖溶胀,该酸性溶液可以是冰醋酸水溶液、盐酸水溶液等,其浓度例如可以为1-5重量%,其用量可以在较宽范围内变动,例如相对于1g的壳聚糖,该酸性溶液的用量可以为10-30mL。该溶胀处理的条件例如可以为:温度为20-40℃,时间为20-60min。
经过所述溶胀处理后,可以直接在引入醇类溶剂和苯甲醛下直接进行第一接触反应。优选地,所述第一接触反应的条件包括:温度为60-80℃,时间为5-8h。其中,苯甲醛和壳聚糖的反应为本领域常规的苯甲酸与壳聚糖缩合反应。经过第一接触反应后,可以将反应产物进行洗涤和干燥处理。
其中,所述醇类溶剂可以是醇或者醇水混合物,优选为醇,这里的醇可以是甲醇、乙醇、正丙 醇等中的一种或多种,其用量可以在较宽范围内变动,例如相对于1g的壳聚糖,该醇类溶剂的用量为10-100mL,例如为20-50mL。
根据本发明,将第一接触反应所得产物在第一碱性溶液中与环氧氯丙烷进行第二接触反应,由此使得壳聚糖上能够取代上具有环氧丙烷结构的基团,以便后续第三接触反应与胺基反应。其中,优选地,所述第二接触反应的条件包括:温度为45-60℃,时间为3-6h。
根据本发明,所述第一碱性溶液可以碱性试剂的水溶液或者氨水,其中,所述碱性试剂例如可以选自氢氧化钠、氢氧化钾、氢氧化锂等中的一种或多种,其浓度例如可以为0.2-0.6mol/L,其用量可以在较宽范围内变动,例如相对于1g的壳聚糖,该第一碱性溶液的用量为50-200mL。
经过所述第二接触反应后,将反应产物进行洗涤和干燥处理。
根据本发明,将第二接触反应所得产物在第二碱性溶液中与多胺类化合物进行第三接触反应,即可在壳聚糖上形成包括多胺类基团的改性基团。其中,优选地,所述第三接触反应的条件包括:温度为50-80℃,时间为3-6h。
根据本发明,所述第二碱性溶液可以碱性试剂的水溶液或者氨水,其中,所述碱性试剂例如可以选自氢氧化钠、氢氧化钾、氢氧化锂等中的一种或多种,其浓度例如可以为0.02-0.3mol/L,其用量可以在较宽范围内变动,例如相对于1g的壳聚糖,该第一碱性溶液的用量为50-200mL。
优选地,壳聚糖和苯甲醛用量的重量比为1:2-6,优选为1:2-4;
优选地,壳聚糖和环氧氯丙烷的用量的重量比为1:5-20,优选为1:8-15;
优选地,环氧氯丙烷和多胺类化合物用量的重量比为1:0.05-0.5。
根据本发明,上述各个处理剂的用量可以在较宽范围内变动,优选地,以除去加重剂的水基钻井液的总重量计,所述仿生固壁剂的含量为0.5-3重量%;所述仿生润滑剂的含量为0.5-3重量%;所述超双疏剂的含量为1-5重量%;所述携屑剂的含量为1-5重量%;所述仿生页岩抑制剂的含量为0.5-3重量%。在含有仿生封堵剂的情况下,所述仿生封堵剂的含量优选为1-3重量%。
根据本发明,所述水基钻井液还可以含有本领域常规采用的其他添加剂,例如膨润土、降滤失剂、增粘剂、防塌剂、加重剂、碱性调节剂、KCl等,这些添加剂的种类和含量都可以为本领域常规采用的种类和含量,本发明对此并无特别的限定。
本发明第二方面提供上述钻井液在油气钻井中的应用。
本发明提供的钻井液体系具有如下优点:本体系不仅通过控制影响岩石强度的外在因素,阻止或减少钻井液对井壁的破坏(“外因”防塌),也提高了岩石内聚强度和岩石胶结力(“内因”固化井壁防塌);不仅抑制了渗透水化的发生,也很好的抑制了表面水化的发生。整体通过“内外因”结合的途径,维持井壁稳定。本体系利用系列仿生处理剂新材料,通过“物理-化学”协同增效的方法保护非常规油气储层,实现了从物理法向物理化学法的转变。本体系实现了“安全、高效、经济、环保”钻井,同时有效提高油气井产量,解决了“井壁坍塌、阻卡与卡钻、井漏、井眼不清洁、油气层损害、环境污染”等钻井液技术难题,为我国“页岩革命”的实现提供了强有力的技术支撑。本体系使原来的流动型润滑向“流动和键合型”润滑的转变,是钻具与井壁间的直接摩擦转变为膜之间的滑动。首次将仿生学理论和井下岩石表面双疏型理论引入钻井液领域。
以下将通过实施例对本发明进行详细描述。
仿生固壁剂制备例1
将四种单体按DMDAAC(二甲基二烯丙基氯化铵):AM(丙烯酰胺):AA(丙烯酸):Vac (乙酸乙烯酯)=6:5:4.5:4.25的摩尔比加入到100mL的蒸馏水中(使得反应体系中的四种单体总摩尔浓度为0.004mol/mL),通入氮气以除氧,而后加入引发剂(NH
4)
2S
2O
8占体系总质量0.6重量%(占四种单体总重量的百分比,以下同),在69℃下且一直保持无氧条件搅拌300r/min反应3h,得到井壁稳定剂用聚合物GB-1,其重均分子量为155000g/mol。
仿生固壁剂制备例2
将四种单体按DMDAAC:甲基丙烯酰胺:AA:Vac=6:5:4:3.8的摩尔比加入到100mL的蒸馏水中(使得反应体系中的总摩尔浓度为0.004mol/mL),通入氮气以除氧,而后加入引发剂过硫酸钾占体系总质量0.5重量%,在65℃下且一直保持无氧条件搅拌300r/min反应5h,得到井壁稳定剂用聚合物GB-2,其重均分子量为138000g/mol。
仿生润滑剂制备例1
常温下用20重量%NaOH水溶液对苯乙烯进行洗涤,然后将洗涤后的苯乙烯按苯乙烯:丙烯酸丁酯=7:3的摩尔比加入250ml去离子水(用量使得总浓度为0.2mol/mL)中混合发生剪切乳化反应,然后通入氮气30min置换反应容器内的空气,升高温度至50℃加入引发剂过硫酸钾(用量为0.01mol%,相对于苯乙烯和丙烯酸丁酯的总摩尔用量),并在50℃下反应90min;而后按苯乙烯:丙烯酸丁酯:丙烯酰胺=7:3:0.4的摩尔比加入丙烯酰胺,升高温度至80℃后加入引发剂过硫酸钾(用量为0.005mol%,用对于苯乙烯、丙烯酸丁酯和丙烯酰胺的总摩尔用量)继续反应4h,最后降至室温后所得反应产物即为抗高温、强吸附键合润滑剂GF-1,其重均分子量为20000g/mol。
仿生润滑剂制备例2
常温下用20重量%NaOH水溶液对苯乙烯进行洗涤,然后将洗涤后的苯乙烯按苯乙烯:甲基丙烯酸甲酯=6:2的摩尔比加入250ml去离子水(用量使得总浓度为0.3mol/mL)中混合发生剪切乳化反应,然后通入氮气30min置换反应容器内的空气,升高温度至40℃加入引发剂过硫酸钾(用量为0.02mol%,相对于苯乙烯和丙烯酸丁酯的总摩尔用量),并在50℃下反应80min;而后按苯乙烯:甲基丙烯酸甲酯:甲基丙烯酰胺=6:2:0.3的摩尔比加入甲基丙烯酰胺,升高温度至70℃后加入引发剂过硫酸钾(用量为0.01mol%,相对于苯乙烯、丙烯酸丁酯和丙烯酰胺的总摩尔用量)继续反应3h,最后降至室温后所得反应产物即为抗高温、强吸附键合润滑剂GF-2,其重均分子量为15000g/mol。
超双疏剂制备例1
(1)向浓硫酸与双氧水混合溶液(浓硫酸与双氧水的重量比为1:3,浓硫酸的浓度为98重量%,双氧水的浓度为30重量%)中加入单壁碳纳米管(购自浙江亚美纳米科技有限公司,该单壁碳纳米管的管径为10nm,长度为15000nm),并使得碳纳米管的含量为0.5重量%,而后升高温度至90℃超声分散30min。
(2)按照单壁碳纳米管(以碳元素计):KH570(即γ-甲基丙烯酰氧基丙基三甲氧基硅烷)=1:0.2的摩尔比加入KH570,并将温度调节至75℃反应60min。
(3)紧接着在溶液中按照单壁碳纳米管(以碳元素计):全氟辛基磺酰氟:甲氧基三乙氧基硅烷=1:1:2的摩尔比加入全氟辛基磺酰氟与甲氧基三乙氧基硅烷,继续在75℃下反应4h,降至室温后水清洗干净,得到反应产物即为超双疏剂SA-1。
超双疏剂制备例2
(1)向浓硫酸与双氧水混合溶液(浓硫酸与双氧水的重量比为1:2.5,浓硫酸的浓度为95重量%,双氧水的浓度为25重量%)中加入单壁碳纳米管(购自浙江亚美纳米科技有限公司,该单壁碳纳米管的管径为5nm,长度为10000nm),并使得碳纳米管的含量为2重量%,而后升高温度至90℃超声分散40min。
(2)按照单壁碳纳米管(以碳元素计):丙烯酰氧基丙基三乙氧基硅烷=1:0.25的摩尔比加入丙烯酰氧基丙基三乙氧基硅烷,并将温度调节至90℃反应90min。
(3)紧接着在溶液中按照单壁碳纳米管(以碳元素计):全氟己基磺酰氟:甲氧基三乙氧基硅烷=1:1.5:2的摩尔比加入全氟己基磺酰氟与甲氧基三乙氧基硅烷,继续在90℃下反应6h,降至室温后水清洗干净,得到反应产物即为超双疏剂SA-2。
携屑剂制备例1
(1)在100mL乙醇水混合溶液(乙醇/水体积比为1:1)中,加入10g的纳米高岭土(Al
2O
3/SiO
2的摩尔比1:2,颗粒大小为200nm),并超声分散30min。而后按照纳米高岭土(以Al
2O
3计):KH570=1:1的摩尔比加入KH570,升高温度至55℃反应30min。
(2)紧接着在溶液中按照纳米高岭土(以Al
2O
3计):甲基丙烯酸十三氟辛酯:丙烯酰胺=1:3:4的摩尔比加入甲基丙烯酸十三氟辛酯与丙烯酰胺,并加入1重量%的引发剂过硫酸钾(以甲基丙烯酸十三氟辛酯与丙烯酰胺总质量为基准),继续在55℃下反应4h,降至室温后得到反应产物即为携屑剂HEX-1,经过鉴定,携屑剂HEX-1上具有分子量为45000g/mol聚丙烯酰胺类聚合物。
携屑剂制备例2
(1)在100mL乙醇水混合溶液(乙醇/水体积比为1:2)中,加入5g的纳米高岭土(Al
2O
3/SiO
2的摩尔比1:2,颗粒大小为400nm),并超声分散30min。而后按照纳米高岭土(以Al
2O
3计):丙烯酰氧基丙基三乙氧基硅烷=1:1.5的摩尔比加入丙烯酰氧基丙基三乙氧基硅烷,升高温度至65℃反应40min。
(2)紧接着在溶液中按照纳米高岭土(以Al
2O
3计):甲基丙烯酸十三氟辛酯:甲基丙烯酰胺=1:3:6的摩尔比加入甲基丙烯酸十三氟辛酯与甲基丙烯酰胺,并加入0.8重量%的引发剂过硫酸钾(以甲基丙烯酸十三氟辛酯与甲基丙烯酰胺总质量为基准),继续在65℃下反应5h,降至室温后得到反应产物即为携屑剂HEX-2,经过鉴定,携屑剂HEX-2上具有分子量为85000g/mol聚丙烯酰胺类聚合物。
仿生封堵剂制备例1
将一定量的萘倒入30ml的酒精溶液,搅拌使其形成过饱和溶液,然后将过饱和溶液倒入含有灯芯的酒精灯中。将玻璃漏斗清洁干净后倒立固定在铁架上,将含有饱和萘的酒精灯点燃,在玻璃漏斗的广口部位熏烤。此过程要适当移动酒精灯,使样品充分附着在玻璃漏斗的广口部位。收集广口部位的样品,将收集到的样品用无水乙醇和去离子水清洗数次,在真空干燥箱中于60℃下干燥12h。
通过扫描电子显微镜和透射电子显微镜观察样品的表面形貌。可以观看到很多尺寸均匀的洋葱碳纳米球,球与球之间有一定的粘连或堆垛,球的内部有密集的褶皱层。经测量,观察到的碳纳米洋 葱球的直径约为30~40nm。该洋葱碳纳米球内层是由60个碳原子组成,每一层碳原子数以60n
2(n为层数,层数在50层)呈指数级递增,各层间距约为0.335nm。
仿生页岩抑制剂制备例1
(1)称取3g的壳聚糖(分子量为50000g/mol)加入到40ml的2重量%冰醋酸水溶液溶胀30min。
(2)后用40mL无水乙醇稀释,调节pH=5,滴加11.7g苯甲醛完成后,水浴加热至70℃,搅拌反应6h,降至室温后用乙醇、乙醚洗涤,恒温干燥后得到固体产物A。
(3)接着将产物固体A和250ml 0.4mol/L NaOH水溶液,水浴加热至55℃,加入30ml环氧氯丙烷搅拌反应5h,降至室温后用丙酮,乙醚,各洗2次,60℃真空干燥,得到固体产物B。
(4)最后将固体产物B和180ml 0.1mol/L NaOH水溶液,水浴加热至60℃,加入13g聚乙烯亚胺(分子量为1000g/mol),搅拌反应4h,降至室温后将产物用丙酮沉淀,干燥并粉碎,所得粉末状反应产物即为环保型页岩抑制剂EFYZ-1,其由环氧氯丙烷和聚乙烯亚胺提供的改性基团的含量为14.5重量%。
仿生页岩抑制剂制备例2
(1)称取3g的壳聚糖(分子量为75000g/mol)加入到40ml的2%冰醋酸溶胀30min。
(2)后用50mL无水乙醇稀释,调节pH=5,滴加10g苯甲醛完成后,水浴加热至65℃,搅拌反应7h,降至室温后用乙醇、乙醚洗涤,恒温干燥后得到固体产物A。
(3)接着产物固体A和250ml 0.5mol/L NaOH水溶液,水浴加热至60℃,加入25ml环氧氯丙烷搅拌反应5h,降至室温后用丙酮,乙醚,各洗2次,60℃真空干燥,得到固体产物B。
(4)最后固体产物B和180ml 0.0.5mol/L NaOH水溶液,水浴加热至70℃,加入10g聚乙烯亚胺(分子量为600g/mol),搅拌反应4h,降至室温后将产物用丙酮沉淀,干燥并粉碎,所得粉末状反应产物即为环保型页岩抑制剂EFYZ-2,其由环氧氯丙烷和聚乙烯亚胺提供的改性基团的含量为9.0重量%。
实施例1
仿生与双疏钻井液:0.15%土浆(含有0.15%重量%膨润土的水浆体)+2重量%仿生固壁剂GB-1+1.5重量%仿生润滑剂GF-1+2.5重量%超双疏剂SA-1+2重量%携屑剂HEX-1+1.5重量%仿生封堵剂洋葱碳纳米球+1.5重量%仿生页岩抑制剂EFYZ-1+0.5重量%的磺甲基酚醛树脂降滤失剂(购自新乡市鑫磊油田助剂有限公司的SMP-II,以下同)+7重量%KCl,另外添加重晶石调整到要求密度(以上重量百分比并不将重晶石纳入计算范围)。
实施例2
仿生与双疏钻井液:0.15%土浆(含有0.15%重量%膨润土的水浆体)+1.5重量%仿生固壁剂GB-2+1.5重量%仿生润滑剂GF-2+3重量%超双疏剂SA-2+1.5重量%携屑剂HEX-2+1.5重量%仿生封堵剂洋葱碳纳米球+1重量%仿生页岩抑制剂EFYZ-2+0.5重量%的磺甲基酚醛树脂降滤失剂+6重量%KCl,另外添加重晶石调整到要求密度(以上重量百分比并不将重晶石纳入计算范围)。
对比例1
典型油基钻井液:80重量%3
#白油+3重量%辅乳化剂(购自M-ISWACO公司的VERSACOAT作为辅乳化剂)+1重量%主乳化剂(购自M-ISWACO公的VERSAMUL作为主乳化剂)+4重量%润湿剂(购自M-ISWACO公的VERSAWET)+20重量%氯化钙溶液+1重量%有机土(购自M-ISWACO公司的VG-SUPREME牌号)+0.5%提切剂(购自Halliburton公司的HRP牌号)+4重量%超细钙+2%封堵降滤失剂(购自湖北汉科新技术股份有限公司的HOF降滤失剂),另外添加重晶石调整到要求密度(以上重量百分比并不将重晶石纳入计算范围)。
钻井液流变性、滤失造壁性和保护油气层效果评价测试例1
将上述仿生与双疏钻井液和油基钻井液利用六速粘度计测量其流变性,测试结果见下表,测试方法具体如下:
“PV”是指塑性黏度,由范式六速粘度计测得,单位为mpa·s;
PV=θ
600-θ
300
“AV”是指表观黏度,由范式六速粘度计测得,单位为mpa·s;
“YP”是指动切力,由范式六速粘度计测得数据计算得到,单位为Pa;
YP=0.511(θ
300-PV)
常温中压滤失量(FL
API)和高温高压滤失量FL
HTHP(温度150℃、压差3.5MPa):按照石油天然气行业标准SY/T5621-1993《钻井液测试程序》利用ZNG-3六联中压失水仪和42-2A高温高压失水仪来测定中压滤失量FL(
API)(测试温度25℃,测试压力0.69MPa),高温高压滤失量FL(
HTHP)(测试温度与待测的钻井液相应的老化温度相同,测试压力3.5MPa)。
滤饼粘滞系数测试方法包括:使用青岛胶南分析仪器厂的NZ-3A型滤饼粘滞系数测定仪测定钻井液API滤饼的粘滞系数。将仪器滑块轻放在滤饼上,静置一分钟后翻转滑板,当滑块开始滑动时读取滑板翻转的角度值,找到反转角度对应的正切值即为滤饼的粘滞系数。
渗透率恢复值测试方法包括:使用JHCF-1型岩心动态损害污染实验仪,按照储层污染评价实验方法测试钻井液污染后岩心的渗透率恢复值,方法如下:
1.岩样用地层水完全饱和,静止老化24h以上,本实验使用SY/T5358-2002标准模拟地层水进行实验。2.在围压为4MPa,流速为2.0mL/min条件下,用模拟地层水驱替岩心,待压力稳定后测得岩心的盐水渗透率,再用中性煤油进行驱替,待压力稳定后测得岩心的油相渗透率Ko;3.用钻井液对岩心进行反向污染,污染时的压力与驱替压力保持相等,污染时间为2h,污染后从夹持器中取出岩心,刮去滤饼,然后改变流体流动方向。在流速为2.0mL/min的条件下,用中性煤油正向驱替,待压力稳定后测定岩心经钻井液污染后的油相渗透率Ko’;4.计算经钻井液污染后的岩心渗透率恢复值Ko’/Ko。
表1
注:老化条件150℃、16h;高温高压滤失量测定温度150℃、压差3.5MPa。
由表1可知,与油基钻井液相比,仿生与双疏钻井液的动塑比更高、流变性更好、滤失造壁性相当,且首次使水基钻井液的润滑性和保护油气层效果高于油基钻井液。这是由于超双疏剂在滤饼表面形成了微纳米乳突结构、降低了表面能,继而呈强自清洁性,使金属与滤饼之间的直接摩擦变为膜之间的滑动、大幅降低摩擦力,再结合仿生键合润滑剂大大降低了钻井液内部摩阻;同时,使毛细管自吸力反转为阻力,阻止液相进入岩心内部,达到保护油气层的效果。
钻井液抑制性能测试例2
(1)岩心回收率:选取中国南海海上油田极易井塌井段3口井岩屑(12-1-B5、12-1-B6和12-1-6)和威远、长宁页岩气井岩屑,分别放置于典型油基钻井液和仿生与双疏钻井液的老化罐中,在150℃条件下滚动16h,测得岩屑的一次回收率;取回收的岩屑再次重复上述步骤,测得岩屑的二次回收率。
(2)线性膨胀率:称取5g钠基膨润土于岩心套筒中,10MPa下压持5min,将待测钻井液和清水分别加入测试套筒中,采用常温常压CPZ-Ⅱ双通道泥页岩膨胀仪(青岛胶南分析仪器厂)进行膨胀性实验。
表2
注:滚动条件150℃、16h。
通过上表可以看出,本发明的仿生与双疏钻井液均具有较好抑制性能,能够显著提页岩在水中的滚动回收率,并降低钠基膨润土的线性膨胀率。
岩心抗压强度测试例3
将中国南海海上油田极易井塌井段的岩屑研碎,压制成性能相似的岩心,分别放入典型油基钻 井液和仿生与双疏钻井液的老化罐中,在120℃条件下,老化3d和10d,取出岩心测定抗压强度,如表4所示。
表4
钻井液体系 | 典型油基钻井液 | 仿生与双疏钻井液实施例1 |
3d后岩心强度,MPa | 4.74 | 4.94 |
10d后岩心强度,MPa | 2.19 | 2.59 |
注:岩心原始强度8.89MPa、清水浸泡3min后1.82MPa;在120℃,3.5MPa下,连续浸泡3d、10d前后的强度。
表4可知,3天后,仿生与双疏钻井液使岩心的抗压强度比典型油基钻井液提高了4.22%;10天后提高了18.26%。仿生与双疏钻井液实现了提高岩心强度的目的,且随时间的增加,提高幅度越大。可见,通过仿生固壁剂的螯合作用提高岩石颗粒间胶结力和内聚力、通过在岩心表面形成微观生物网凝胶阻止表面水化和渗透水化,再结合超双疏剂对岩心表面润湿反转解决毛细效应问题,首先实现了水基钻井液的井壁稳定性高于油基钻井液,解决了国内外长期未解决的技术难题。
环保性能测试例4
通过重金属离子含量、生物毒性和生物降解性测试结果表明(表5、6),本发明的钻井液体系(以实施例1的钻井液样品测试)安全无毒,并可生物降解。其中,重金属离子含量测试方法包括:重金属检测依据《HJ-776-2015水质32种元素的测定电感耦合等离子体发射光谱法》和《HJ 694-2014水质汞、砷、硒、铋和锑的测定原子荧光法》进行测试。
生物毒性和生物降解性测试方法包括:根据《Q/SY 111-2007油田化学剂、钻井液生物毒性分级及检测方法发光细菌法》,采用发光细菌法测试EC50值,评价其生物毒性;采用BOD/COD比值法进行生物降解性检测,具体采用标准《HJ 132-2003高氯废水化学需氧量的测定碘化钾碱性高锰酸钾法》和《HJ 505-2009水质五日生化需氧量(BOD5)的测定稀释与接种法》分别进行COD、BOD的测试。
表5重金属离子含量测定
重金属种类 | 镉(Cd) | 汞(Hg) | 铅(Pb) | 总铬(TCr) | 砷(As) |
含量,mg/kg | 8.5 | 7.65 | 356 | 189 | 45 |
表6环保性能评价
样品 | EC 50(mg/L) | COD Cr(mg/L) | BOD 5(mg/L) | BOD 5/COD Cr | 生物降解性 |
钻井液 | 3.06×10 4 | 2.04×10 5 | 2.53×10 4 | 0.124 | 可降解 |
通过以上评价可知,仿生与双疏钻井液具有良好的流变性和滤失造壁性,其“抑制性、润滑性和保护油气层效果”优于典型油基钻井液,且无毒、环境可接受,可有效解决致密、页岩等非常规、复杂油气钻探中常遇的井塌、高摩阻、油气层损害严重等钻井液技术难题,满足“安全、高效、经济、环保”的钻探需要。
仿生与双疏钻井液高质量完钻页岩油水平井应用测试例5
吉木萨尔JHW023水平井位于吉木萨尔凹陷吉37井区芦草沟组区块,钻井过程中易出现复杂的地层主要是井深在2400-2800m的八道湾组、韭菜园组、梧桐沟组。在该井段的上部易发生井漏,进 入韭菜园和梧桐沟交接处易垮塌,造成起下钻遇阻等井下复杂情况。吉木萨尔JHW023水平井三开完钻,第三开采用仿生与双疏钻井液技术。而在三开阶段的钻井液技术难题主要有:芦草沟组储层裂缝性发育,易发生井塌、井漏;水平段携岩困难,易产生岩屑床,造成阻卡,循环阻力大,易蹩漏地层,易引起井壁坍塌;水平段钻井钻具与井壁接触面大,易造成粘卡等。
采用仿生与双疏钻井液体系(实施例1的钻井液体系)完钻的JHW023井返出的岩屑规整,返出岩屑量大且与钻时吻合,表明此钻井液具有良好的抑制性能和携砂性能;该井总成本最低,比同井型邻井节约230万元左右钻井液费用;而且三开储层水平井段井径比较规则,储层段平均井径扩大率-1.35%,同井型临井储层段平均井径扩大率2.04%。充分体现仿生与双疏钻井液的防塌性、抑制能力、封堵能力、润滑性、滤失造壁性等优良;摩阻小于100KN、循环压耗和扭矩低,井壁稳定性和润滑性与油基钻井液相当等优越性。
表7 JHW023井与邻井成本对比
井号 | 总成本/万元 | 油层平均井径扩大率/% | 备注 |
JHW023 | 180 | -1.35 | 仿生与双疏钻井液 |
JHW007 | 235 | 3.56 | 钾钙基混油钻井液 |
JHW015 | 371 | -1.51 | 钾钙基混油钻井液 |
JHW016 | 329 | 2.38 | 钾钙基混油钻井液 |
JHW017 | 738 | 0.69 | 钾钙基混油钻井液 |
综上所述,通过非常规油气井中的现场应用证明,在井下岩石表面双疏性理论和井壁岩石孔缝封堵理论指导下,创建的仿生与双疏钻井液技术不仅解决了钻井过程中井壁坍塌、油气层损害、摩阻磨损大、钻速慢、井眼不清洁等技术难题,而且对促成广大科技人员进行钻井液研究与设计时,从以往仅仅关注如何提高钻井液本身性能转变为如何实现“性能、效果、成本”协同、从“高性能”转变为“高效能”,实现“安全、高效、经济、环保”钻井具有重要意义。同时,与仿生钻井液技术结合,在国际上首次实现了水基钻井液的抑制性、润滑性和保护油气层效果超过了油基钻井液水平的跨越式进步。
以上详细描述了本发明的优选实施方式,但是,本发明并不限于此。在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,包括各个技术特征以任何其它的合适方式进行组合,
这些简单变型和组合同样应当视为本发明所公开的内容,均属于本发明的保护范围。
Claims (10)
- 一种仿生与双疏钻井液,其特征在于,该钻井液含有仿生固壁剂、仿生润滑剂、超双疏剂、携屑剂和仿生页岩抑制剂;所述仿生固壁剂为含有式(1-a)所示的结构单元、式(2-a)所示的结构单元、式(3-a)所示的结构单元和式(4-a)所示的结构单元的丙烯酰胺类聚合物,其中,式(1-a)所示的结构单元、式(2-a)所示的结构单元、式(3-a)所示的结构单元和式(4-a)所示的结构单元的摩尔比为1:(1.05-3):(0.5-0.95):(0.2-0.9);其中,R 1-R 7、R 10-R 12和R 13-R 15各自独立地选自H和C1-C6的烷基;R 8-R 9和R 16选自C1-C8的烷基;M选自H或碱金属元素;L 1和L 2各自独立地选自C0-C6的亚烷基;所述仿生润滑剂为嵌段聚合物,该段聚合物包括含羧酸酯类结构单元和含苯结构单元的嵌段A,以及与嵌段A连接的含丙烯酰胺类结构单元的嵌段B;所述含苯结构单元为式(1-b)所示的结构单元;所述羧酸酯类结构单元为式(2-b)和式(3-b)所示的结构单元中的一种或多种;所述丙烯酰胺类结构单元为式(4-b)所示的结构单元;其中,R 1’-R 2’、R 4’-R 6’、R 8’-R 10’和R 12’-R 14’各自独立地选自H和C1-C6的烷基;L 1’选自C0-C6 的亚烷基;R 7’和R 11’选自C1-C8的烷基;R 15’选自H、C1-C8的烷基或-L 2’-SOOM’,L 2’选自C1-C6的亚烷基,M’为H或碱金属元素;R 3’选自H、C1-C6的烷基、苯基或苯基取代的C1-C6的烷基;所述超双疏剂为表面具有改性基团的改性碳纳米管,其中,所述改性基团包括由含不饱和碳碳双键的硅烷偶联剂、由式R 1SO 2X表示的全氟磺酰卤和由式R 3Si(OR 2) 3表示的硅氧烷提供的改性基团;其中,R 1为全氟取代的C4-C12的烷基,X表示卤素;R 3选自C1-C6的烷基和C1-C6的烷氧基,R 2选自C1-C6的烷基;所述携屑剂为Al 2O 3/SiO 2复合材料,该复合材料包括含有Al 2O 3和SiO 2的固体颗粒,以及在固体颗粒表面修饰的聚丙烯酰胺类聚合物;其中,所述聚丙烯酰胺类聚合物含有式(1-c)和式(2-c)所示的结构单元:其中,R 1”-R 6”各自独立地选自H或C1-C6的烷基;L”选自C0-C6的亚烷基;R 7”选自被卤素取代的C6-C20的烷基;所述仿生页岩抑制剂为改性壳聚糖,所述改性壳聚糖上连接有式(1-d)所示结构的改性基团;式(1-d):-CH 2-CH(OH)CH 2-多胺结构;所述多胺结构由多胺类化合物提供。
- 根据权利要求1所述的钻井液,其中,所述仿生固壁剂中,式(1-a)所示的结构单元、式(2-a)所示的结构单元、式(3-a)所示的结构单元和式(4-a)所示的结构单元的摩尔比为1:(1.1-2):(0.6-0.95):(0.5-0.9),优选为1:(1.2-1.5):(0.8-0.9):(0.7-0.85);优选地,作为仿生固壁剂的聚合物的重均分子量为80000-250000g/mol,优选为95000-220000g/mol,更优选为100000-200000g/mol;优选地,R 1-R 7、R 10-R 12和R 13-R 15各自独立地选自H和C1-C4的烷基;R 8-R 9和R 16选自C1-C6的烷基;M选自H、Na或K;L 1和L 2各自独立地选自C0-C4的亚烷基;优选地,R 1-R 7、R 10-R 12和R 13-R 15各自独立地选自H、甲基、乙基或正丙基;R 8-R 9和R 16选自甲基、乙基、正丙基、异丙基、正丁基或异丁基;M选自H、Na或K;L 1和L 2各自独立地为不存在、-CH 2-、-CH 2CH 2-、-CH 2CH 2CH 2-或-CH 2CH 2CH 2CH 2-;优选地,式(1-a)所示的结构单元由丙烯酰胺和/或甲基丙烯酰胺提供;式(2-a)所示的结构单元由二甲基二烯丙基氯化铵、二甲基二烯丙基氟化铵、二乙基二烯丙基氯化铵、二乙基二烯丙基氟化铵、二甲基二(2-烯丁基)氯化铵、二甲基二(2-烯丁基)氟化铵、二乙基二(2-烯丁基)氯化铵和二乙基二(2-烯丁基)氟化铵中的一种或多种提供;式(3-a)所示的结构单元由丙烯酸、甲基丙烯酸、2-丁烯酸、丙烯酸钠、甲基丙烯酸钠和2-丁烯酸钠中的一种或多种提供;式(4-a)所示的结构单元由乙酸乙烯酯、正丙酸乙烯酯、乙酸异丙烯酯、正丙酸异丙烯酯、乙酸丙烯酯和正丙酸丙烯酯中的一种或多种提供。
- 根据权利要求1或2所述的钻井液,其中,所述仿生润滑剂中,所述含苯结构单元、羧酸酯类结构单元和丙烯酰胺类结构单元的摩尔比为(2-10):1:(0.01-0.8),优选为(2-5):1:(0.1-0.5),更优选为(2.2-5):1:(0.12-0.3);优选地,所述嵌段A为由含苯结构单元和羧酸酯类结构单元组成的无轨共聚嵌段,或者为由含苯结构单元构成的嵌段A1和由羧酸酯类结构单元组成的嵌段A2构成的两嵌段聚合物嵌段;优选地,作为仿生润滑剂的嵌段聚合物的重均分子量为10000-50000g/mol,优选为12000-40000g/mol,更优选为15000-30000g/mol;优选地,R 1’-R 2’、R 4’-R 6’、R 8’-R 10’和R 12’-R 14’各自独立地选自H和C1-C4的烷基;L 1’选自C0-C4的亚烷基;R 7’和R 11’各自独立地选自C1-C6的烷基;R 15选自H、C1-C6的烷基或-L 2-SOOM’,L 2’选自C1-C6的亚烷基,M’为H、Na或K;R 3’选自H、C1-C4的烷基、苯基或苯基取代的C1-C4的烷基;优选地,R 1’-R 2’、R 4’-R 6’、R 8’-R 10’和R 12’-R 14’各自独立地选自H、甲基、乙基或正丙基;L 1’为不存在、-CH 2-、-CH 2CH 2-、-CH 2CH 2CH 2-或-CH 2CH 2CH 2CH 2-;R 7’和R 11’各自独立地选自甲基、乙基、正丙基、异丙基、正丁基或异丁基;R 15’选自H、甲基、乙基、正丙基、异丙基、正丁基、异丁基、-CH 2-SOOM’、-CH 2CH 2-SOOM’、-CH 2CH 2CH 2-SOOM’、-CH(CH 3)CH 2-SOOM’、-CH 2CH(CH 3)-SOOM’、-C(CH 3) 2-SOOM’、-CH 2CH 2CH 2CH 2-SOOM’、-CH(CH 3)CH 2CH 2-SOOM’、-CH 2CH(CH 3)CH 2-SOOM’、-CH 2CH 2CH(CH 3)-SOOM’、-C(CH 3) 2CH 2-SOOM’或-CH 2C(CH 3) 2-SOOM’,M’为H、Na或K;R 3’选自H、甲基、乙基、正丙基、苯基或苄基;优选地,所述含苯结构单元由选自苯乙烯及其衍生物和二苯乙烯及其衍生物的化合物提供;所述羧酸酯类结构单元由选自丙烯酸丁酯及其衍生物、甲基丙烯酸甲酯及其衍生物、乙酸乙烯酯及其衍生物的化合物提供;所述丙烯酰胺类结构单元由选自丙烯酰胺及其衍生物、2-丙烯酰胺丙磺酸及其衍生物和2-丙烯酰胺-2甲基丙磺酸及其衍生物的化合物提供。
- 根据权利要求1-3中任意一项所述的钻井液,其中,所述超双疏剂中,R 1为全氟取代的C6-C10的烷基,X表示氟或氯;R 3选自C2-C6的烷基和C2-C6的烷氧基,R 2选自C1-C4的烷基;优选地,R 1为全氟取代的C6烷基、全氟取代的C8烷基或全氟取代的C10烷基,X表示氟或氯;R 3选自乙基、正丙基、正丁基、乙氧基、正丙氧基或正丁氧基;R 2选自甲基、乙基、正丙基、异丙基或正丁基;优选地,所述含不饱和碳碳双键的硅烷偶联剂为丙烯酰氧基C1-C8的烷基三烷氧基硅烷、甲基丙烯酰氧基C1-C8的烷基三烷氧基硅烷、丙烯酰胺基C1-C8的烷基三烷氧基硅烷、甲基丙烯酰胺基C1-C8的烷基三烷氧基硅烷、乙烯基三烷氧基硅烷和丙烯基三烷氧基硅烷中的一种或多种;所述由式R 1SO 2X表示的全氟磺酰卤为全氟己基磺酰氟、全氟己基磺酰氯、全氟辛基磺酰氟、全氟辛基磺酰氯、全氟癸基磺酰氟和全氟癸基磺酰氯中的一种或多种;所述由式R 3Si(OR 2) 3表示的硅氧烷为甲氧基三乙氧基硅烷、甲氧基三丙氧基硅烷、乙氧氧基三丙氧基硅烷和乙氧氧基三甲氧基硅烷中的一种或多种;优选地,所述含不饱和碳碳双键的硅烷偶联剂为γ-甲基丙烯酰氧基丙基三甲氧基硅烷;所述由式R 1SO 2X表示的全氟磺酰卤为全氟辛基磺酰氟,所述由式R 3Si(OR 2) 3表示的硅氧烷为甲氧基三乙氧基硅烷;优选地,所述碳纳米管为单壁碳纳米管或多壁碳纳米管;更优选地,所述单壁碳纳米管的管径为2-50nm,长度为1000-20000nm;所述多壁碳纳米管的内径为2-30nm,外径为5-50nm,长度为1000-30000nm;更优选地,所述单壁碳纳米管的管径为5-30nm,长度为5000-15000nm;所述多壁碳纳米管的内径为5-30nm,外径为10-30nm,长度为5000-25000nm;优选地,所述改性碳纳米管中,改性碳纳米管、由含不饱和碳碳双键的硅烷偶联剂提供的改性基团、由式R 1SO 2X表示的全氟磺酰卤提供的改性基团和由式R 3Si(OR 2) 3表示的硅氧烷提供的改性基团的摩尔比为1:0.05-0.5:0.2-5:0.5-6,优选为1:0.1-0.3:0.5-2:1-3。
- 根据权利要求1-4中任意一项所述的钻井液,其中,所述携屑剂中,R 1”-R 6”各自独立地选自H或C1-C4的烷基;L”选自C0-C4的亚烷基;R 7”选自被卤素取代的C4-C16的烷基;优选地,R 1”-R 6”各自独立地选自H、甲基、乙基或正丙基;L”为不存在、-CH 2-、-CH 2CH 2-、-CH 2CH 2CH 2-或-CH 2CH 2CH 2CH 2-;R 7”选自被氟、氯或溴取代的C6-C12的烷基;优选地,R 7”选自全氟取代的C6烷基、十一氟取代的C6烷基、九氟取代的C6烷基、全氟取代的C8烷基、十五氟取代的C8烷基、十三氟取代的C8烷基、十一氟取代的C8烷基、九氟取代的C8烷基、全氟取代的C10烷基、十九氟取代的C10烷基、十七氟取代的C10烷基、十五氟取代的C10烷基、十三氟取代的C10烷基、十一氟取代的C10烷基、九氟取代的C10烷基、全氟取代的C12烷 基、二十三氟取代的C12烷基、二十一氟取代的C12烷基、十九氟取代的C12烷基、十七氟取代的C12烷基、十五氟取代的C12烷基、十三氟取代的C12烷基、十一氟取代的C12烷基或九氟取代的C12烷基;优选地,式(1-c)所示的结构单元由丙烯酰胺和/或甲基丙烯酰胺提供;式(2-c)所示的结构单元由丙烯酸九氟己酯、甲基丙烯酸九氟己酯、丙烯酸全氟己酯、甲基丙烯酸全氟己酯、丙烯酸十三氟辛酯、甲基丙烯酸十三氟辛酯、丙烯酸全氟辛酯、甲基丙烯酸全氟辛酯、丙烯酸十七氟癸酯、甲基丙烯酸十七氟癸酯、丙烯酸全氟癸酯和甲基丙烯酸全氟癸酯中的一种或多种提供;优选地,所述聚丙烯酰胺类聚合物中,式(1-c)和式(2-c)所示的结构单元的摩尔比为1:0.2-5,优选为1:0.4-1,更优选为1:0.5-0.8;或者,所述复合材料中,以Al 2O 3计固体颗粒与所述聚丙烯酰胺类聚合物中式(1-c)和式(2-c)所示的结构单元的摩尔比为1:(0.5-10):(1-15),优选为1:(1-5):(2-10),更优选为1:(1-3):(2-8);优选地,所述聚丙烯酰胺类聚合物的分子量为20000-120000g/mol,优选为30000-97000g/mol,更优选为40000-90000g/mol;优选地,所述固体颗粒中,Al 2O 3和SiO 2的摩尔比为1:1-5,优选为1:2-4;或者所述固体颗粒的含有Al 2O 3的硅酸盐,优选为高岭土,更优选为纳米高岭土;优选地,所述固体颗粒与聚丙烯酰胺类聚合物之间通过硅烷偶联剂结合,优选地,所述硅烷偶联剂为含不饱和碳碳双键的硅烷偶联剂,更优选地,所述含不饱和碳碳双键的硅烷偶联剂为丙烯酰氧基C1-C8的烷基三烷氧基硅烷、甲基丙烯酰氧基C1-C8的烷基三烷氧基硅烷、丙烯酰胺基C1-C8的烷基三烷氧基硅烷、甲基丙烯酰胺基C1-C8的烷基三烷氧基硅烷、乙烯基三烷氧基硅烷和丙烯基三烷氧基硅烷中的一种或多种。
- 根据权利要求1-5中任意一项所述的钻井液,其中,所述钻井液还含有仿生封堵剂,所述仿生封堵剂为纳米洋葱碳;优选地,所述仿生封堵剂中,所述纳米洋葱碳的直径为10-100nm,优选为30-40nm;优选地,所述纳米洋葱碳的最内层由50-80个碳原子组成,优选为60-70个碳原子;优选地,所述纳米洋葱碳各层之间的间距为0.1-0.5nm,优选为0.25-0.35nm;优选地,所述纳米洋葱碳具有的碳层数为10-100层,优选为50-80层。
- 根据权利要求1-6中任意一项所述的钻井液,其中,所述仿生页岩抑制剂中,所述多胺类化合物为多烯多胺和聚乙烯亚胺中的一种或多种,优选为二乙烯三胺、三乙烯四胺、四乙烯五胺和聚乙烯亚胺中的一种或多种;优选地,所述式(1-d)所示结构的改性基团由环氧氯丙烷和多胺类化合物反应提供;优选地,相对于改性壳聚糖的总量,所述改性基团的含量为5-25重量%,优选为8-20重量,更优选为8.5-17重量%;优选地,所述壳聚糖是通过由苯甲醛提供的基团与式(1)所示结构的改性基团进行连接。
- 根据权利要求1-7中任意一项所述的钻井液,其中,所述仿生固壁剂的含量为0.5-3重量%;所述仿生润滑剂的含量为0.5-3重量%;所述超双疏剂的含量为1-5重量%;所述携屑剂的含量为1-5重量%;所述仿生页岩抑制剂的含量为0.5-3重量%。
- 根据权利要求6所述的钻井液,其中,所述仿生封堵剂的含量为1-3重量%。
- 权利要求1-9中任意一项所述的钻井液在油气钻井中的应用。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP21860496.5A EP4155364A4 (en) | 2020-08-26 | 2021-08-26 | HIGH-PERFORMANCE WATER-BASED BIONIC AND BIPHOBIC DRILLING FLUID |
US18/148,939 US11787990B2 (en) | 2020-08-26 | 2022-12-30 | Bionic and dual-phobic high-performance water-based drilling fluid |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010874082 | 2020-08-26 | ||
CN202010874082.8 | 2020-08-26 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/148,939 Continuation US11787990B2 (en) | 2020-08-26 | 2022-12-30 | Bionic and dual-phobic high-performance water-based drilling fluid |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022042662A1 true WO2022042662A1 (zh) | 2022-03-03 |
Family
ID=80352708
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/114849 WO2022042662A1 (zh) | 2020-08-26 | 2021-08-26 | 仿生与双疏高效能水基钻井液 |
Country Status (4)
Country | Link |
---|---|
US (1) | US11787990B2 (zh) |
EP (1) | EP4155364A4 (zh) |
CN (1) | CN114350332B (zh) |
WO (1) | WO2022042662A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115057967A (zh) * | 2022-07-13 | 2022-09-16 | 中国石油大学(华东) | 一种抗高温水基钻井液用微凝胶化学固壁剂及其制备方法与应用 |
CN115109181A (zh) * | 2022-05-31 | 2022-09-27 | 中国石油大学(北京) | 用于油基钻井液的超分子堵漏凝胶聚合物及其制备方法和应用、一种钻井液 |
US20230151266A1 (en) * | 2021-11-16 | 2023-05-18 | Halliburton Energy Services, Inc. | Dried shale inhibitor additives |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115895629B (zh) * | 2022-11-03 | 2023-11-07 | 中国石油大学(华东) | 一种双疏型磺化碳纳米管/改性氧化石墨烯润湿反转剂及其制备方法与应用 |
CN116589632B (zh) * | 2023-03-13 | 2024-04-12 | 中国石油大学(华东) | 一种水基钻井液用抗高温低粘超支化固壁剂及其制备方法与应用 |
CN118126690B (zh) * | 2024-05-07 | 2024-07-05 | 中国石油化工股份有限公司石油勘探开发研究院 | 碳纳米管封堵剂及其制备方法和应用以及压井液 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150240143A1 (en) * | 2014-02-24 | 2015-08-27 | Guancheng JIANG | Biomimetic polymer for stabilizing wellbore and method for preparation of the same and drilling fluid |
CN104946216A (zh) * | 2015-05-14 | 2015-09-30 | 中国石油大学(北京) | 一种仿生钻井液及其制备方法 |
CN105802593A (zh) * | 2016-05-20 | 2016-07-27 | 中国石油大学(北京) | 适于页岩气水平井的高密度水基钻井液 |
CN105907380A (zh) * | 2016-05-20 | 2016-08-31 | 中国石油大学(北京) | 钻井液的添加剂组合物和适于页岩气水平井的类油基钻井液 |
CN106010478A (zh) * | 2016-05-20 | 2016-10-12 | 中国石油大学(北京) | 钻井液的添加剂组合物和适合页岩气水平井的水基钻井液 |
CN106010482A (zh) * | 2016-05-20 | 2016-10-12 | 中国石油大学(北京) | 适合页岩气水平井的环保型水基钻井液 |
CN106634878A (zh) * | 2016-11-16 | 2017-05-10 | 中国石油大学(北京) | 钻井液添加剂组合物及其应用和适于高承压随钻堵漏的水基钻井液及其应用 |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4299710A (en) * | 1975-05-30 | 1981-11-10 | Rohm And Haas Company | Drilling fluid and method |
US6831042B2 (en) * | 2002-06-17 | 2004-12-14 | Nalco Company | Use of anionic dispersion polymers as viscosity modifiers in aqueous drilling fluids |
GB2420572A (en) * | 2004-11-10 | 2006-05-31 | Ciba Spec Chem Water Treat Ltd | Inhibition of clay or shale |
FR2901154B1 (fr) * | 2006-05-18 | 2008-07-18 | Arkema France | Utilisation de materiaux composites a base de nanotubes de carbone comme agents viscosifiants de solutions aqueuses |
WO2009156372A1 (en) * | 2008-06-23 | 2009-12-30 | M-I Drilling Fluids Uk Limited | Copolymer for shale stabilization and method of use |
US20130341028A1 (en) * | 2010-06-28 | 2013-12-26 | Baker Hughes Incorporated | Controllably tuning properties of a fluid using modified nanoparticles |
WO2012064745A2 (en) * | 2010-11-08 | 2012-05-18 | University Of Florida Research Foundation, Inc. | Articles having superhydrophobic and oleophobic surfaces |
CN102050885A (zh) * | 2010-11-19 | 2011-05-11 | 陕西科技大学 | 一种支化多胺基壳聚糖衍生物及其制备方法 |
US20140090850A1 (en) * | 2012-10-03 | 2014-04-03 | Battelion Energy LLC | Shale oil and gas fracturing fluids containing additives of low environmental impact |
CN104193927A (zh) * | 2014-08-20 | 2014-12-10 | 浙江大学 | 一种超微滤膜用聚苯乙烯嵌段共聚物的合成方法 |
WO2016051777A1 (ja) * | 2014-09-30 | 2016-04-07 | 株式会社日本触媒 | 含水状態の吸水性樹脂を液状化する方法および収縮させる方法 |
AU2015384773B2 (en) * | 2015-03-05 | 2018-08-09 | Halliburton Energy Services, Inc. | Biopolymer composite for water-based treatment fluids |
CN106497538A (zh) * | 2016-10-25 | 2017-03-15 | 长江大学 | 不含油相的减阻、助排和粘土稳定“三合一”滑溜水浓缩体系 |
CN109890933B (zh) * | 2016-11-04 | 2022-03-08 | 沙特阿拉伯石油公司 | 控制用于封堵流动通道的补注水性树脂组合物的凝胶时间 |
US20180320056A1 (en) * | 2017-05-04 | 2018-11-08 | Baker Hughes Incorporated | Suspensions of nonpolar nanoparticles for enhanced recovery of heavy oils |
CN109337657B (zh) * | 2018-09-04 | 2020-04-24 | 中国石油大学(北京) | 适用于水基钻井液用氟碳活性剂类超双疏携屑剂的改性二氧化硅材料及其制备方法和应用 |
CN113651932B (zh) * | 2020-08-26 | 2022-06-24 | 中国石油大学(北京) | 适用于水基钻井液抗高温和强吸附键合润滑剂的嵌段聚合物 |
CN113773815A (zh) * | 2020-08-26 | 2021-12-10 | 中国石油大学(北京) | 含有洋葱碳微纳米结构仿生封堵剂的钻井液 |
CN113698796B (zh) * | 2020-08-26 | 2022-03-22 | 中国石油大学(北京) | 抗高温水基钻井液用超双疏剂 |
CN113698510B (zh) * | 2020-08-26 | 2022-06-17 | 中国石油大学(北京) | 改性壳聚糖作为水基钻井液用环保型仿生页岩抑制剂 |
CN113667462B (zh) * | 2020-08-26 | 2022-10-21 | 中国石油大学(北京) | 适用于水基钻井液用高效携屑剂Al2O3/SiO2复合材料 |
CN113698534A (zh) * | 2020-08-26 | 2021-11-26 | 中国石油大学(北京) | 高性能环保水基钻井液用井壁稳定剂用聚合物 |
-
2021
- 2021-08-26 CN CN202110989480.9A patent/CN114350332B/zh active Active
- 2021-08-26 EP EP21860496.5A patent/EP4155364A4/en active Pending
- 2021-08-26 WO PCT/CN2021/114849 patent/WO2022042662A1/zh unknown
-
2022
- 2022-12-30 US US18/148,939 patent/US11787990B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150240143A1 (en) * | 2014-02-24 | 2015-08-27 | Guancheng JIANG | Biomimetic polymer for stabilizing wellbore and method for preparation of the same and drilling fluid |
CN104946216A (zh) * | 2015-05-14 | 2015-09-30 | 中国石油大学(北京) | 一种仿生钻井液及其制备方法 |
CN105802593A (zh) * | 2016-05-20 | 2016-07-27 | 中国石油大学(北京) | 适于页岩气水平井的高密度水基钻井液 |
CN105907380A (zh) * | 2016-05-20 | 2016-08-31 | 中国石油大学(北京) | 钻井液的添加剂组合物和适于页岩气水平井的类油基钻井液 |
CN106010478A (zh) * | 2016-05-20 | 2016-10-12 | 中国石油大学(北京) | 钻井液的添加剂组合物和适合页岩气水平井的水基钻井液 |
CN106010482A (zh) * | 2016-05-20 | 2016-10-12 | 中国石油大学(北京) | 适合页岩气水平井的环保型水基钻井液 |
CN106634878A (zh) * | 2016-11-16 | 2017-05-10 | 中国石油大学(北京) | 钻井液添加剂组合物及其应用和适于高承压随钻堵漏的水基钻井液及其应用 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4155364A4 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20230151266A1 (en) * | 2021-11-16 | 2023-05-18 | Halliburton Energy Services, Inc. | Dried shale inhibitor additives |
CN115109181A (zh) * | 2022-05-31 | 2022-09-27 | 中国石油大学(北京) | 用于油基钻井液的超分子堵漏凝胶聚合物及其制备方法和应用、一种钻井液 |
CN115057967A (zh) * | 2022-07-13 | 2022-09-16 | 中国石油大学(华东) | 一种抗高温水基钻井液用微凝胶化学固壁剂及其制备方法与应用 |
Also Published As
Publication number | Publication date |
---|---|
US11787990B2 (en) | 2023-10-17 |
EP4155364A4 (en) | 2023-12-06 |
CN114350332B (zh) | 2023-01-31 |
EP4155364A1 (en) | 2023-03-29 |
US20230133053A1 (en) | 2023-05-04 |
CN114350332A (zh) | 2022-04-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022042662A1 (zh) | 仿生与双疏高效能水基钻井液 | |
CN108026438B (zh) | 稳定化的包含离子的纳米粒子组合物 | |
AU2010290979B2 (en) | Cement compositions and associated methods comprising sub-micron calcium carbonate and latex | |
EP2164918B1 (en) | Oil-well cement fluid loss additive composition | |
CN106753287B (zh) | 一种深海和冻土区钻探用超低温钻井液 | |
WO2018048569A1 (en) | Ductile cementing materials and the use thereof in high stress cementing applications | |
CN103146364A (zh) | 一种强抑制水基钻井液 | |
CN101555404A (zh) | 一种环保型低伤害无固相压井液及其应用 | |
Khan et al. | Development of high temperature high pressure (HTHP) water based drilling mud using synthetic polymers, and nanoparticles | |
BR112018007816B1 (pt) | Método para cimentar um furo de poço | |
WO2015089885A1 (zh) | 一种海水基速溶压裂液及其配制方法 | |
Li et al. | A zwitterionic copolymer as fluid loss reducer for water-based drilling fluids in high temperature and high salinity conditions | |
WO2019010771A1 (zh) | 一种深井聚磺钻井液及其制备方法 | |
WO2015126402A1 (en) | Fluorinated carbon dioxide swellable polymers and method of use | |
CN111662690A (zh) | 一种钻井液用抗高温增粘剂及其生产方法 | |
CN109535317B (zh) | 一种抗高温抗钙保护油气储层水基钻井液降滤失剂及钻井液及其应用 | |
WO2014085317A1 (en) | High temperature viscosifier for insulating packer fluids | |
CN114214046A (zh) | 一种抗高温改性二氧化锰纳米封堵剂及油基钻井液 | |
CN113698796B (zh) | 抗高温水基钻井液用超双疏剂 | |
Khan et al. | Development of high temperature pressure (HTHP) water based drilling mud using synthetic polymers, and nanoparticles | |
Li et al. | Novel plugging agent for oil-based drilling fluids to overcome the borehole instability problem in shale formations | |
CN114085551B (zh) | 含二氧化硅组合处理剂的井眼强化型双疏无土相油基钻井液 | |
CN108977185B (zh) | 一种用于清除煤粉的清洗液及其制备方法和应用 | |
CN117106424B (zh) | 一种用于页岩油防塌减阻水基钻井液及其制备方法 | |
Pan et al. | Research progress of hydroxyethyl cellulose materials in oil and gas drilling and production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21860496 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021860496 Country of ref document: EP Effective date: 20221221 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |