[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022041312A1 - Réseau d'immersion à réflexion métallique à faible polarisation et à efficacité de diffraction élevée, et système optique - Google Patents

Réseau d'immersion à réflexion métallique à faible polarisation et à efficacité de diffraction élevée, et système optique Download PDF

Info

Publication number
WO2022041312A1
WO2022041312A1 PCT/CN2020/113661 CN2020113661W WO2022041312A1 WO 2022041312 A1 WO2022041312 A1 WO 2022041312A1 CN 2020113661 W CN2020113661 W CN 2020113661W WO 2022041312 A1 WO2022041312 A1 WO 2022041312A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
grating
dielectric layer
metal reflection
diffraction efficiency
Prior art date
Application number
PCT/CN2020/113661
Other languages
English (en)
Chinese (zh)
Inventor
潘俏
沈为民
Original Assignee
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学 filed Critical 苏州大学
Publication of WO2022041312A1 publication Critical patent/WO2022041312A1/fr

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1861Reflection gratings characterised by their structure, e.g. step profile, contours of substrate or grooves, pitch variations, materials

Definitions

  • the invention relates to the technical field of gratings, in particular to a metal reflection immersion grating with low polarization and high diffraction efficiency and an optical system.
  • grating-type hyperspectral imaging instruments especially for spectrometers used for atmospheric composition detection
  • gratings with low polarization, high diffraction efficiency, and high dispersion characteristics are one of the core components for the instrument to achieve high-precision detection and inversion.
  • the volume and mass of the system increase dramatically.
  • E.Hulthén proposed the concept of immersion grating (see E.Hulthén, and H.Neuhaus, Nature, 1954, 173(4401):442-443.), when the grating surface is immersed in a medium with a refractive index of n, its spectrum The resolving power is n-fold higher than without immersion.
  • the linear dimension of the immersion grating will be reduced by a factor of n, and the size of other optical components in the spectrometer will also be reduced, which greatly reduces the overall size of the grating. size and mass of the machine.
  • metal reflection gratings can achieve high diffraction efficiency in a wide wavelength range.
  • the grating groove shape can achieve both low polarization and high diffraction efficiency only if the grating groove shape meets the conditions of large duty cycle and high depth period ratio.
  • the groove tolerance of the grating has a great influence, which poses a great challenge to the processing and manufacturing process of the grating. Therefore, it is of research significance and application value to design an easy-to-implement low-polarization and high-diffraction-efficiency metal reflective immersion grating.
  • the technical problem to be solved by the present invention is to provide a metal reflection immersion grating with low polarization and high diffraction efficiency and an optical system, which can realize low polarization and high diffraction efficiency, reduce the difficulty of the manufacturing process, and have important applications in the field of high-resolution atmospheric detection. value.
  • the present invention provides a low-polarization and high-diffraction-efficiency metal reflection immersion grating, which includes a grating layer, and the grating layer includes a plurality of first grooves arranged in an array;
  • a dielectric layer covering the surface of the grating layer with an equal thickness, the thickness of the dielectric layer is less than the groove depth of the grating layer, and a second groove body is formed on the surface of the dielectric layer;
  • a metal reflective layer which is located on the side of the dielectric layer away from the grating layer, and one side of the metal reflective layer fills the second groove body;
  • a first interface is formed between the grating layer and the dielectric layer, and a second interface is formed between the dielectric layer and the metal reflection layer;
  • the incident light is incident toward the first interface through the interior of the grating layer, and a diffraction effect occurs between the first interface, the dielectric layer and the second interface to generate diffracted light, and the diffracted light is
  • the metal reflective layer reflects and emerges from the interior of the grating layer.
  • the thickness a of the dielectric layer, the duty cycle f of the grating layer, and the duty cycle t of the metal reflective layer satisfy the constraints:
  • the period d of the grating layer is 700-1050 nm
  • the groove depth-to-period ratio h of the grating layer is 0.7-0.9
  • the duty cycle f of the grating layer is in the range of 0.2-0.4
  • the The duty ratio t of the metal reflective layer is 0.2-0.45
  • the thickness a of the dielectric layer is 80-250 nm.
  • the groove density of the grating layer is 950-1430 line pairs/mm.
  • the grating layer is made of fused silica optical glass.
  • the dielectric layer is made of oxide material, and the real part of the complex refractive index of the dielectric layer ranges from 1.6 to 2.5, and the imaginary part ranges from 0 to 1*10 -2 .
  • the dielectric layer is Al 2 O 3 , HfO 2 , Ta 2 O 5 or TiO 2 .
  • the material of the metal reflective layer is gold, silver or aluminum.
  • the present invention also discloses an optical system, comprising the above-mentioned immersion grating, characterized in that the incident angle of the incident light is 40°-50°.
  • the bandwidth of the incident light is 10-120 nm, and the wavelength of the incident light is 1550-2400 nm.
  • the -1st order diffraction efficiency of the immersion grating TE polarization and TM polarization of the present invention is higher than 80% in the entire working bandwidth, the relative linear polarization degree is less than 1.5%, and the diffraction efficiency is higher than 85% at the central wavelength of the working bandwidth.
  • the degree of linear polarization is less than 1%.
  • the immersion grating of the present invention can achieve low polarization and high diffraction efficiency in a wide bandwidth (10-120 nanometers).
  • the immersion grating of the present invention effectively reduces the duty ratio of the grating under the conditions of high groove density and large incident angle, reduces the difficulty of the manufacturing process, and has important application value in the field of high-resolution atmospheric detection.
  • Fig. 1 is the structural representation of the present invention
  • Fig. 2 is the variation curve of the average diffraction efficiency at the center wavelength of the working band in the first embodiment with the thickness a of the dielectric layer;
  • Fig. 3 is the variation curve of the relative linear polarization degree DP at the center wavelength of the working band in the first embodiment with the thickness a of the dielectric layer;
  • Fig. 4 is the diffraction efficiency and relative linear polarization curve of the immersion grating that a is 115nm in embodiment one;
  • Fig. 5 is the variation trend of the average diffraction efficiency at the center wavelength of the working band in the second embodiment with the thickness a of the dielectric layer and the duty cycle f of the grating layer;
  • Fig. 7 is the diffraction efficiency and relative linear polarization curve of the immersion grating when f is 0.2 and a is 180 nm in Example 2;
  • Fig. 10 is the curve of the diffraction efficiency and the relative linear polarization degree of the immersion grating when f is 0.25 and a is 192 nm in Example 3.
  • the present invention discloses a metal reflection immersion grating with low polarization and high diffraction efficiency, which includes a grating layer 3 , a dielectric layer 4 and a metal reflection layer 5 .
  • the grating layer 3 includes a plurality of first groove bodies arranged in an array, and the first groove bodies are rectangular grooves.
  • the grating structure is directly etched on the surface of the base material where the grating layer 3 is located.
  • the dielectric layer 4 covers the surface of the grating layer 3 with an equal thickness, and the thickness of the dielectric layer 4 is smaller than the groove depth of the grating layer 3, that is, the dielectric layer 4 does not fill the first groove of the grating layer 3. In this way, the surface of the dielectric layer 4 forms
  • the second groove body has the same shape as the first groove body, and the dimensions are different.
  • the metal reflective layer 5 is located on the side of the dielectric layer 4 away from the grating layer 3, and the side of the metal reflective layer 5 fills the second groove.
  • the metal reflective layer 5 is generally thicker, so as to ensure that diffracted light can be reflected. In this way, the metal reflective layer 5 forms the inverse structure of the dielectric layer 4 .
  • a first interface 6 is formed between the grating layer 3 and the dielectric layer 4
  • a second interface 7 is formed between the dielectric layer 4 and the metal reflection layer 5 .
  • the incident light enters the direction of the first interface 6 through the interior of the grating layer 3, and a diffraction effect occurs between the first interface 6, the dielectric layer 4 and the second interface 7 to generate diffracted light, and the diffracted light passes through the metal reflective layer. 5 is reflected and emerges from the interior of the grating layer 3 .
  • is the incident angle of the light beam
  • d is the period of the grating layer 3
  • the corresponding groove density is 1/d
  • a is the thickness of the dielectric layer 4 .
  • the thickness a of the dielectric layer 4, the duty cycle f of the grating layer 3 and the duty cycle t of the metal reflective layer 5 satisfy the constraints:
  • the TE polarized incident photoelectric field vector vibration direction is perpendicular to the incident plane, and the diffraction efficiency is ⁇ TE .
  • the vibration direction of the magnetic field vector of the TM polarized incident light is perpendicular to the incident plane, and the diffraction efficiency is ⁇ TM .
  • the relative linear polarization degree DP is defined as follows:
  • the period d of the grating layer 3 is 700-1050 nm, the groove depth to period ratio h of the grating layer 3 is 0.7-0.9, the duty cycle f of the grating layer 3 is in the range of 0.2-0.4; the duty cycle t of the metal reflective layer 5 is 0.2-0.45; the thickness a of the dielectric layer 4 is 80-250 nm.
  • the groove density of the grating layer 3 is 950-1430 line pairs/mm.
  • the grating layer 3 is made of fused silica optical glass.
  • the dielectric layer 4 is made of oxide material, the real part of the complex refractive index of the dielectric layer 4 ranges from 1.6 to 2.5, and the imaginary part ranges from 0 to 1*10 -2 .
  • the dielectric layer 4 is Al 2 O 3 , HfO 2 , Ta 2 O 5 or TiO 2 .
  • the material of the metal reflection layer 5 is gold, silver or aluminum.
  • the present invention also discloses an optical system, comprising the above-mentioned immersion grating, the incident angle of the incident light is 40°-50°; the bandwidth of the incident light is 10-120nm, and the wavelength of the incident light is 1550-2400nm .
  • the present invention can obtain immersion gratings with different diffraction efficiencies and relative linear polarization degrees by changing the film layer structure and film layer material of the immersion grating, which will be explained and described below with reference to specific embodiments.
  • the material of the grating layer 3 is fused silica optical glass, the material of the dielectric layer 4 is TiO 2 , the metal reflective layer 5 is silver, the period d of the grating layer 3 is 690 nanometers, the groove depth to period ratio h of the grating layer 3 is 0.8, The duty ratio f of the grating layer 3 is 0.3, and the duty ratio t of the metal reflective layer 5 is 0.37.
  • the incident angle ⁇ of the incident light in the grating layer 3 is 47°.
  • FIG. 2 it is the variation curve of the average diffraction efficiency at the center wavelength of the working band with the thickness a of the dielectric layer 4 .
  • Fig. 3 is the change curve of the relative linear polarization degree DP at the central wavelength of the working band with the thickness a of the dielectric layer 4; it can be seen from Fig. 2 and Fig. 3 that when the thickness a of the dielectric layer is 115 nm, the immersion grating has better performance Diffraction efficiency and relative linear polarization degree.
  • FIG. 4 which is the diffraction efficiency and relative linear polarization degree curves of the immersion grating with the thickness a of the dielectric layer 4 of 115 nm in the present embodiment as a function of wavelength.
  • the -1st order diffraction efficiency of TE polarization and TM polarization are both higher than 80%
  • the relative linear polarization degree is less than 1%
  • the diffraction efficiency of TE polarization and TM polarization at the central wavelength is higher than 85% %
  • the relative linear polarization degree is close to 0.
  • the grating layer 3 is made of fused silica optical glass
  • the dielectric layer 4 is Al 2 O 3
  • the metal reflective layer 5 is silver
  • the period d of the grating layer 3 is 690 nm
  • the groove depth to period ratio h of the grating layer 3 is 0.8
  • the duty ratio t of the metal reflection layer 5 is 0.2.
  • the incident angle ⁇ of the incident light in the grating layer 3 is 48°.
  • Fig. 5 is the variation trend of the average diffraction efficiency at the center wavelength of the working band with the thickness a of the dielectric layer 4 and the duty cycle f of the grating layer 3 in the second embodiment
  • Fig. 6 is the relative linear polarization degree DP at the center wavelength of the working band
  • the colors in the figure represent the average diffraction efficiency and the relative linear polarization degree. 5 and 6, it can be seen that the duty cycle f of the grating layer 3 is 0.2, the thickness a of the dielectric layer 4 is 180 nm, and the immersion grating has better diffraction efficiency and relative linear polarization degree.
  • the duty ratio f of the grating layer 3 is 0.2, and the thickness a of the dielectric layer 4 is 180 nm
  • the diffraction efficiency and relative linear polarization degree curves of the immersion grating are shown.
  • the working band of the grating is 1595-1625 nanometers. In the range of 1595-1625 nanometers, the -1 order diffraction efficiencies of TE polarization and TM polarization are both higher than 85%, and the relative linear polarization degree is less than 1%.
  • the material of the grating layer 3 is fused silica optical glass, the medium layer 4 is TiO 2 , the metal reflective layer 5 is silver, the period d of the grating layer 3 is 1010 nm, the groove depth to period ratio h of the grating layer 3 is 0.8, and the metal reflective layer is The duty cycle t of 5 is 0.4.
  • the incident angle ⁇ of the incident light in the grating layer 3 is 43°.
  • Fig. 8 is the variation trend of the average diffraction efficiency at the center wavelength of the working band in Example 3 with the thickness a of the dielectric layer 4 and the duty cycle f of the grating layer 3; the relative linear polarization DP at the center wavelength of Fig. 9 varies with the dielectric layer
  • the changing trend of the thickness a of 4 and the duty cycle f of the grating layer 3, the colors in the figure represent the average diffraction efficiency and the relative linear polarization degree. 8 and 9, when the duty cycle of the grating layer 3 is 0.25 and the thickness a of the dielectric layer 4 is 192 nm, the immersion grating has better diffraction efficiency and relative linear polarization degree.
  • the diffraction efficiency and relative linear polarization degree curves of the immersion grating are shown.
  • the working band of the grating is 2250-2350 nanometers. In the range of 2250-2350 nm, the -1st order diffraction efficiency of TE polarization and TM polarization are both higher than 82%, the relative linear polarization degree is less than 1.5%, and the diffraction efficiency of TE polarization and TM polarization at the central wavelength is higher than 85%, The relative linear polarization degree is close to 0.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polarising Elements (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

Sont divulgués un réseau d'immersion à réflexion métallique à faible polarisation et une efficacité de diffraction élevée, et un système optique. Le réseau comprend : une couche de réseau comprenant une pluralité de premières fentes agencées en un réseau ; une couche diélectrique, qui recouvre la surface de la couche de réseau à une épaisseur égale, l'épaisseur de la couche diélectrique étant inférieure à la profondeur de la fente de la couche de réseau, et une seconde fente étant formée dans une surface de la couche diélectrique ; et une couche de réflexion métallique située sur le côté de la couche diélectrique qui est à l'opposé de la couche de réseau, un côté de la couche de réflexion métallique remplissant la seconde fente, une première interface étant formée entre la couche de réseau et la couche diélectrique, et une seconde interface étant formée entre la couche diélectrique et la couche de réflexion métallique ; et la lumière incidente est incidente, à travers l'intérieur de la couche de réseau, à la première interface, un effet de diffraction se produit entre la première interface, la couche diélectrique et la seconde interface de manière à générer une lumière diffractée, et la lumière diffractée étant réfléchie par la couche de réflexion métallique et étant émergente de l'intérieur de la couche de réseau. Le réseau peut obtenir une faible polarisation et une efficacité de diffraction élevée, peut réduire la difficulté d'un processus de fabrication, et présente une valeur d'application importante dans le domaine du sondage atmosphérique à haute résolution.
PCT/CN2020/113661 2020-08-24 2020-09-07 Réseau d'immersion à réflexion métallique à faible polarisation et à efficacité de diffraction élevée, et système optique WO2022041312A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010856613.0A CN111708113B (zh) 2020-08-24 2020-08-24 低偏振高衍射效率金属反射浸没光栅及光学系统
CN202010856613.0 2020-08-24

Publications (1)

Publication Number Publication Date
WO2022041312A1 true WO2022041312A1 (fr) 2022-03-03

Family

ID=72547465

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/113661 WO2022041312A1 (fr) 2020-08-24 2020-09-07 Réseau d'immersion à réflexion métallique à faible polarisation et à efficacité de diffraction élevée, et système optique

Country Status (2)

Country Link
CN (1) CN111708113B (fr)
WO (1) WO2022041312A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113205899B (zh) * 2021-04-25 2023-02-28 中国工程物理研究院激光聚变研究中心 一种x射线折射闪耀光栅及制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000162409A (ja) * 1998-11-30 2000-06-16 Minolta Co Ltd 固浸レンズ及びその製造方法
WO2003046624A1 (fr) * 2001-11-26 2003-06-05 Lnl Optenia Inc. Reseau en escalier metallise a dependance reduite de la polarisation utilisant des couches dielectriques d'espacement
CN1815275A (zh) * 2006-03-08 2006-08-09 中国科学院上海光学精密机械研究所 背入射式石英反射偏振分束光栅及其制备方法
FR2942549A1 (fr) * 2009-02-25 2010-08-27 Horiba Jobin Yvon Sas Reseau de diffraction polarisant, coupleur a reseau de diffraction polarisant et systeme planaire d'imagerie ou de transport de faisceau optique a coupleurs diffractifs polarisants

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003062870A1 (fr) * 2002-01-23 2003-07-31 Chromaplex, Inc. Structure de reseau de diffraction lamellaire dont l'efficacite est independante de la polarisation
EP2533077A1 (fr) * 2011-06-08 2012-12-12 Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO Réseau de diffraction et son procédé de production
US10551626B2 (en) * 2015-09-22 2020-02-04 Ram Photonics, LLC Method and system for multispectral beam combiner
CN107942425B (zh) * 2016-10-13 2021-05-04 上海矽越光电科技有限公司 掩埋金属型宽带反射光栅及其制作方法
CN110165553B (zh) * 2019-06-17 2020-10-30 长春理工大学 一种基于液晶的高对比光栅结构
CN111261983B (zh) * 2020-01-16 2021-03-23 北京环境特性研究所 一种封闭式周期金属光栅ssp太赫兹滤波器及调谐方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000162409A (ja) * 1998-11-30 2000-06-16 Minolta Co Ltd 固浸レンズ及びその製造方法
WO2003046624A1 (fr) * 2001-11-26 2003-06-05 Lnl Optenia Inc. Reseau en escalier metallise a dependance reduite de la polarisation utilisant des couches dielectriques d'espacement
CN1815275A (zh) * 2006-03-08 2006-08-09 中国科学院上海光学精密机械研究所 背入射式石英反射偏振分束光栅及其制备方法
FR2942549A1 (fr) * 2009-02-25 2010-08-27 Horiba Jobin Yvon Sas Reseau de diffraction polarisant, coupleur a reseau de diffraction polarisant et systeme planaire d'imagerie ou de transport de faisceau optique a coupleurs diffractifs polarisants

Also Published As

Publication number Publication date
CN111708113B (zh) 2020-11-17
CN111708113A (zh) 2020-09-25

Similar Documents

Publication Publication Date Title
JP4800437B2 (ja) 可視スペクトル用の広帯域ワイヤグリッド偏光子
EP2128665B1 (fr) Filtre optique à plasmons localisés
US7158302B2 (en) Wire grid polarizer with double metal layers
KR20200024097A (ko) 광학 필터, 광학 필터 시스템, 분광기 및 그 제조 방법
US20130242391A1 (en) Optical device and method for manufacturing same
Kim et al. Realizing vibrant and high-contrast reflective structural colors from lossy metals supporting dielectric gratings
CN1316265C (zh) 具有双金属层光栅的偏光组件及其制造方法
WO2022041312A1 (fr) Réseau d'immersion à réflexion métallique à faible polarisation et à efficacité de diffraction élevée, et système optique
Kim et al. Lithography-free and Highly angle sensitive structural coloration using Fabry–Perot resonance of tin
CN116940866A (zh) 自对准纳米柱涂层及其制造方法
Wang et al. Simultaneous broadband and high circular dichroism with two-dimensional all-dielectric chiral metasurface
Fu et al. A fully functionalized metamaterial perfect absorber with simple design and implementation
CN102520471A (zh) 偏振无关宽带反射光栅
JP2018132728A (ja) 反射型回折格子、レーザ発振器およびレーザ加工機
CN114942519A (zh) 基于超表面结构色的彩色纳米印刷设计方法
CN110716255A (zh) 实现-2级宽带高效率的三层全介质矩形光栅
JP4162987B2 (ja) 反射型回折格子
US20230085245A1 (en) Systems and methods of broadband achromatic metasurface waveplates
Chen et al. Application of surface plasmon polaritons in cmos digital imaging
Zhu et al. Optical design of prism-grating-prism imaging spectrometers
CN106918852A (zh) 一种大角度离轴聚焦平面透镜
Li et al. Environment-dependent broadband perfect absorption of metal-insulator-metal metamaterial systems
TWI820663B (zh) 高繞射效率和寬頻譜介電光柵結構
Mateus et al. Ultra broadband mirror using sub-wavelength grating
CN116879991A (zh) 一种高衍射效率低偏振大入射角浸没光栅

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20950981

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20950981

Country of ref document: EP

Kind code of ref document: A1