WO2021235193A1 - Information processing system, information processing method and program - Google Patents
Information processing system, information processing method and program Download PDFInfo
- Publication number
- WO2021235193A1 WO2021235193A1 PCT/JP2021/016735 JP2021016735W WO2021235193A1 WO 2021235193 A1 WO2021235193 A1 WO 2021235193A1 JP 2021016735 W JP2021016735 W JP 2021016735W WO 2021235193 A1 WO2021235193 A1 WO 2021235193A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- coordinate system
- content
- local coordinate
- glass
- information processing
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/033—Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
- G06F3/0346—Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of the device orientation or free movement in a 3D space, e.g. 3D mice, 6-DOF [six degrees of freedom] pointers using gyroscopes, accelerometers or tilt-sensors
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T19/00—Manipulating 3D models or images for computer graphics
Definitions
- the present invention relates to an information processing system, an information processing method and a program.
- AR Augmented Reality
- AR technology that expands the real environment with a computer is attracting attention.
- AR technology is realized by devices such as AR glasses, head-mounted displays, and projectors that superimpose and display content in real space.
- the position of the content superimposed on the real space changes depending on the position and posture of the device. If an error occurs in the detection result of the sensor that detects the position and orientation of the device, the coordinate system (origin position and coordinate axis position) set in the device will be deviated. When a plurality of devices share one AR space, an error occurs in the relative position between the coordinate systems set for each device, and the position of the content displayed on each device is deviated. Therefore, it is desirable to correct the coordinate system of each device to align the position of the content. However, if the position of the content is corrected during the operation of the content, the operation subject of the content may feel uncomfortable.
- an error information detection unit that detects information on an error that has occurred in a relative position of a plurality of local coordinate systems, and a plurality of local coordinate systems in response to the start of operation of the content.
- a correction unit that corrects the relative positions of all other local coordinate systems with respect to the specific local coordinate system used to generate the content, which the operating subject of the content recognizes as an operation target, based on the error information.
- the information processing system to have is provided. Further, according to the present disclosure, an information processing method in which the information processing of the information processing system is executed by a computer, and a program for realizing the information processing of the information processing system in the computer are provided.
- FIG. 1 is a schematic diagram of the information processing system 1 of the first embodiment.
- the information processing system 1 includes, for example, a processing device 10, a plurality of devices 20, and a storage device 30.
- the processing device 10 generates the content CT displayed by the plurality of devices 20.
- the content CT is superimposed and displayed on the real space RS by the device 20.
- the plurality of devices 20 include, for example, an AR glass 20A, an AR glass 20B, and a projector 20C.
- the AR glasses 20A and the AR glasses 20B are attached to the head of the user U, and the content CT is superimposed and displayed on the real space RS in the field of view of the user U.
- the projector 20C is fixed at a predetermined position in the real space RS and projects the content CT onto the screen SCR provided in the real space RS.
- the screen SCR is, for example, a table.
- FIG. 2 is a diagram showing an example of a coordinate system set in the real space RS.
- a local coordinate system LC is set for each of the plurality of devices 20.
- the local coordinate system LC has an origin and coordinate axes defined for each device 20.
- the origin position and the position of the coordinate axis of the local coordinate system LC are calculated based on information such as the internal parameters for each device 20 included in the registration data 32, the installation position, and the posture at the installation position.
- the processing device 10 calculates the coordinates of the content CT displayed on the device 20 by using the local coordinate system LC set on the device 20.
- the content CT displayed by the AR glass 20A and the AR glass 20B will be referred to as a glass content GC.
- the content CT displayed by the projector 20C is referred to as PJ content.
- the local coordinate system LC set in the AR glass 20A is referred to as a glass coordinate system LCA.
- the local coordinate system LC set in the AR glass 20B is referred to as a glass coordinate system LCB.
- the local coordinate system LC set in the projector 20C is referred to as a PJ coordinate system LCC.
- the reference numeral WC indicates a world coordinate system.
- the world coordinate system WC is a coordinate system that defines the entire real space RS.
- the world coordinate system WC is defined, for example, based on the results of a pre-performed real-space RS scan.
- the PJ coordinate system LCC is defined based on the detection result of a sensor fixed at a predetermined position in the real space RS.
- the glass coordinate system LCA is estimated from the detection result of the sensor mounted on the AR glass 20A.
- the glass coordinate system LCB is estimated from the detection result of the sensor mounted on the AR glass 20B.
- the world coordinate system WC is the coordinate system most conforming to the real world. Therefore, the correction of the positional deviation generated in the content CT of each device 20 may be performed with reference to the world coordinate system WC.
- the PJ coordinate system LCC is used as the reference local coordinate system
- the glass coordinate system LCA and the glass coordinate system LCB are used as the reference local coordinate system without using the world coordinate system WC.
- a relative position correction method of matching is used. This is because the sensor of the projector 20C installed at the fixed position is considered to have a smaller detection error when used for a long time than the sensors of the AR glasses 20A and the AR glasses 20B that move with the user U. be.
- chess is performed by the first user U1 wearing the AR glass 20A and the second user U2 wearing the AR glass 20B.
- the AR glass 20A and the AR glass 20B display a virtual object representing a chess piece as a glass content GC.
- the projector 20C displays a virtual object representing a chess board as PJ content PJC.
- the glass content GC is displayed according to the squares of the PJ content PJC.
- Each device 20 has one or more sensors. Each device 20 outputs the sensor data detected by one or more sensors to the processing device 10.
- the AR glass 20A and the AR glass 20B have a plurality of sensors including a depth sensor, an accelerometer, a microphone and a camera.
- the sensor data output from the AR glasses 20A and the AR glasses 20B is used, for example, for recognizing the real space RS, estimating the position in the real space RS, and detecting the gesture of the user U.
- the projector 20C has a plurality of sensors including a depth sensor, a motion sensor, a microphone and a camera.
- the sensor data output from the projector 20C is used, for example, to detect the position of the user U in the real space RS.
- the processing device 10 is, for example, a glass sensor data acquisition unit 11, a PJ sensor data acquisition unit 12, a space recognition unit 13, a gesture detection unit 14, an interaction detection unit 15, an error information detection unit 16, a correction unit 17, and a content generation unit 18. And has a display control unit 19.
- the glass sensor data acquisition unit 11 acquires, for example, the sensor data output from the AR glass 20A and the AR glass 20B.
- the glass sensor data acquisition unit 11 outputs, for example, the acquired sensor data to the space recognition unit 13 and the gesture detection unit 14.
- the PJ sensor data acquisition unit 12 acquires, for example, the sensor data output from the projector 20C.
- the PJ sensor data acquisition unit 12 outputs, for example, the acquired sensor data to the interaction detection unit 15.
- the space recognition unit 13 recognizes the real space RS around the AR glass 20A and the AR glass 20B, and the AR glass 20A and the AR glass in the real space RS, for example, based on the sensor data acquired from the glass sensor data acquisition unit 11.
- the position of 20B is estimated, and the real objects around the AR glasses 20A and AR glasses 20B are detected.
- Recognition of the real space RS and estimation of the position in the real space RS are performed, for example, by using a technique called SLAM (Simultaneus Localization and Mapping).
- the space recognition unit 13 outputs, for example, information on the glass coordinate system (information on the position of the origin and the position of the coordinate axis) generated using SLAM and information on the environment map to the error information detection unit 16.
- the gesture detection unit 14 detects the gestures of the first user U1 and the second user U2 based on the sensor data acquired from the glass sensor data acquisition unit 11, for example. For example, the gesture detection unit 14 detects the gesture based on the movement of the operation part OP (the part where the operation subject interacts with the content CT) of the user U who is the operation subject of the content CT.
- the operation part OP the part where the operation subject interacts with the content CT
- the operation site OP is a site where the position or form of the content CT can be changed by the movement.
- the operation site OP is the hand or finger of the user U in contact with the content CT.
- the operation site OP is , The hand or finger of the user U separated from the content CT by a predetermined distance.
- the gesture detection unit 14 identifies the user U who operates the content CT, for example, based on the sensor data acquired from the glass sensor data acquisition unit 11.
- the gesture detection unit 14 outputs, for example, information about the operation subject of the content CT and the gesture for the content CT performed by the operation subject to the content generation unit 18.
- the gesture detection unit 14 detects, for example, the coordinates of the operation site OP in the glass coordinate system LCA and the glass coordinate system LCB, respectively, based on the sensor data acquired from the glass sensor data acquisition unit 11.
- the gesture detection unit 14 outputs the coordinate information of the operation site OP detected for each glass coordinate system to the error information detection unit 16.
- the gesture detection unit 14 outputs a detection error signal to the error information detection unit 16, for example, when the operation subject of the content CT cannot be detected or when the coordinates of the operation site OP cannot be detected.
- the interaction detection unit 15 detects the coordinates of the operation site OP in the PJ coordinate system LCC, for example, based on the sensor data acquired from the PJ sensor data acquisition unit 12.
- the interaction detection unit 15 outputs, for example, the coordinate information of the operation site OP in the PJ coordinate system LCC to the error information detection unit 16.
- the interaction detection unit 15 determines, for example, the accuracy of the sensor data acquired from the PJ sensor data acquisition unit 12.
- the accuracy of the sensor data is quantified according to, for example, the distance between the sensor and the user U, the size of the operation site OP superimposed on the content CT, and the like. For example, when the user U is located at a position far away from the sensor of the projector 20C, or when occlusion occurs with respect to the sensor of the projector 20C, the accuracy of the calculated sensor data is low. For example, when the accuracy of the sensor data is equal to or less than the threshold value, the interaction detection unit 15 outputs a detection error signal to the error information detection unit 16.
- the error information detection unit 16 detects information on errors that occur at relative positions of a plurality of local coordinate systems LC.
- the error information detection unit 16 detects, for example, the deviation generated at the relative positions of the origin and the coordinate axes of the plurality of local coordinate systems LC as error information.
- the error information detection unit 16 detects error information based on the coordinates of the operation site OP detected for each local coordinate system LC, for example. For example, as an initial setting, it is assumed that the origin positions and coordinate axis positions of all the local coordinate system LCs are calibrated so as to match. In the initial state immediately after calibration, the coordinates of the operation site OP in the PJ coordinate system LCC and the coordinates of the operation site OP in the glass coordinate system LCA match. After that, it is assumed that the coordinates of the operation site OP in the PJ coordinate system LCC become (30, 40, 50) and the coordinates of the operation site OP in the glass coordinate system LCA become (25, 45, 55) due to long-term use. .. In this case, the error generated in the relative position between the PJ coordinate system LCC and the glass coordinate system LCA is calculated as (-5, 5, 5).
- the error information detection unit 16 outputs, for example, error information to the correction unit 17. For example, when the error information detection unit 16 acquires a detection error signal from the gesture detection unit 14 and the interaction detection unit 15, the error information detection unit 16 outputs the correction error signal to the correction unit 17.
- the correction unit 17 corrects, for example, the relative positions of all other local coordinate system LCs with respect to the specific local coordinate system LC based on the error information in response to the start of the operation of the content CT. For example, when the correction unit 17 acquires a correction error signal from the error information detection unit 16, the correction unit 17 does not correct the local coordinate system LC.
- the specific local coordinate system LC is the local coordinate system LC used to generate the content CT that the operating subject of the content CT recognizes as an operation target.
- the origin position and the position of the coordinate axis of the local coordinate system LC other than the specific local coordinate system LC are moved to the position where the error of the relative position with the specific local coordinate system LC becomes small. It is preferred that the origins and axes of the other local coordinate system LCs move to positions where the relative position errors that occur with the particular local coordinate system LC are offset.
- FIG. 3 is a diagram showing the arrangement of each local coordinate system LC after a predetermined time has elapsed from the initial state.
- the dotted line shows the arrangement of the local coordinate system LC in the initial state.
- the solid line shows the arrangement of the local coordinate system LC after the lapse of a predetermined time.
- the glass coordinate system LCA is in a state of being rotated by the rotation amount RT in the first direction D1 as compared with the initial state.
- the glass coordinate system LCB is in a state of being translated by a distance PM in the second direction D2 as compared with the initial state.
- the position of the PJ coordinate system LCC has not changed.
- FIG. 4 shows an example in which the first user U1 performs an operation of moving a piece to the glass content GC as the first case.
- the operating subject is the first user U1.
- the content CT recognized by the operation subject as the operation target is the glass content GC generated by using the glass coordinate system LCA.
- the positions of the glass coordinate system LCB and the PJ coordinate system LCC are corrected with reference to the glass coordinate system LCA. For example, the origin position and the position of the coordinate axis of the glass coordinate system LCB and the PJ coordinate system LCC move to a position where the error of the relative position with the glass coordinate system LCA becomes small.
- FIG. 4 shows an example in which the first user U1 performs an operation of moving a piece to the glass content GC as the first case.
- the operating subject is the first user U1.
- the content CT recognized by the operation subject as the operation target is the glass content GC generated by using the glass coordinate system LCA.
- the glass coordinate system LCB is corrected by rotating in the first direction D1 by the rotation amount RT and translating in the third direction D3 opposite to the second direction D2 by the distance PM.
- a correction is performed to rotate the PJ coordinate system LCC by the rotation amount RT in the first direction D1.
- FIG. 5 shows, as a second case, a correction method when the second user U2 performs an operation of moving a piece with respect to the glass content GC.
- the operating subject is the second user U2.
- the content CT recognized by the operation subject as the operation target is the glass content GC generated by using the glass coordinate system LCB.
- the positions of the glass coordinate system LCA and the PJ coordinate system LCC are corrected with reference to the glass coordinate system LCB. For example, the origin position and the position of the coordinate axis of the glass coordinate system LCA and the PJ coordinate system LCC move to a position where the error of the relative position with the glass coordinate system LCB becomes small.
- FIG. 5 shows, as a second case, a correction method when the second user U2 performs an operation of moving a piece with respect to the glass content GC.
- the operating subject is the second user U2.
- the content CT recognized by the operation subject as the operation target is the glass content GC generated by using the glass coordinate system LCB.
- the glass coordinate system LCA is corrected by rotating in the fourth direction D4 opposite to the first direction D1 by the rotation amount RT and translating in the second direction D2 by the distance PM.
- correction is performed to translate the PJ coordinate system LCC by the distance PM in the second direction D2.
- FIG. 6 shows, as a third case, a correction method when the PJ content PJC includes a design change menu for changing the design of the board and the first user U1 operates the design change menu.
- the operating subject is the first user U1.
- the content CT recognized by the operation subject as the operation target is the PJ content PJC generated by using the PJ coordinate system LCC.
- the first user U1 starts the operation of the design change menu, the positions of the glass coordinate system LCA and the glass coordinate system LCB are corrected with reference to the PJ coordinate system LCC.
- the origin position and the position of the coordinate axis of the glass coordinate system LCA and the glass coordinate system LCB move to a position where the error of the relative position with the PJ coordinate system LCC becomes small.
- the glass coordinate system LCA is corrected to rotate by the rotation amount RT in the fourth direction D4.
- correction is performed to translate the glass coordinate system LCB by the distance PM in the third direction D3.
- the correction unit 17 ends the correction based on the specific local coordinate system LC in response to the completion of the operation of the content CT. Then, the correction unit 17 switches the local coordinate system LC that is the reference of the correction from the specific local coordinate system LC to the reference local coordinate system (PJ coordinate system LCC). The correction unit 17 corrects the relative positions of all other local coordinate system LCs with respect to the reference local coordinate system based on the error information.
- the reference local coordinate system is a local coordinate system LC in which an error generated in a position relative to the world coordinate system WC is smaller than that of a specific local coordinate system LC.
- the origin position and the position of the coordinate axis are more likely to shift due to changes in the environment or long-term use as compared with the PJ coordinate system LCC. Therefore, the PJ coordinate system LCC is used as the reference local coordinate system.
- the origin position and the position of the coordinate axis of the local coordinate system LC other than the reference local coordinate system move to the position where the error of the relative position with the reference local coordinate system becomes small. It is preferable that the origin position and the position of the coordinate axis of the other local coordinate system LC are moved to a position where the error of the relative position generated with the reference local coordinate system is offset.
- the correction based on the glass coordinate system LCA is completed, and the local coordinate system LC as the reference of the correction is the PJ coordinate system.
- Switch to LCC reference local coordinate system
- the positions of the glass coordinate system LCA and the glass coordinate system LCB are corrected with reference to the PJ coordinate system LCC.
- the origin position and the position of the coordinate axis of the glass coordinate system LCA and the glass coordinate system LCB move to a position where the error of the relative position with the PJ coordinate system LCC becomes small.
- the position of the PJ coordinate system LCC has not changed from the initial state. Therefore, the glass coordinate system LCA and the glass coordinate system LCB are returned to the positions in the initial state shown by the dotted line by the correction based on the PJ coordinate system LCC.
- the second case described above the second case described above.
- the local coordinate system LC used as the reference for correction when the first user U1 starts the operation of the PJ content PJC is the PJ coordinate system LCC (reference local coordinate system). Therefore, even if the first user U1 finishes the operation of the PJ content PJC, the correction based on the PJ coordinate system LCC is maintained.
- the correction unit 17 generates, for example, a first coordinate conversion formula that performs coordinate conversion between the glass coordinate system LCA and the PJ coordinate system LCC.
- the correction unit 17 generates, for example, a second coordinate conversion formula that performs coordinate conversion between the glass coordinate system LCB and the PJ coordinate system LCC.
- the correction unit 17 outputs the first coordinate conversion formula and the second coordinate conversion formula to the content generation unit 18.
- the content generation unit 18 generates, for example, a content CT that each device 20 superimposes on the real space RS and displays it, and outputs the content CT to the display control unit 19.
- the content generation unit 18 generates, for example, a content CT corresponding to the gesture detected by the gesture detection unit 14.
- the content generation unit 18 sets the coordinates of the content CT using, for example, the PJ coordinate system LCC in which the origin position and the position of the coordinate axis are least likely to deviate.
- the content generation unit 18 calculates the coordinates of the content CT in the glass coordinate system LCA and the glass coordinate system LCB by using the first coordinate conversion formula and the second coordinate conversion formula.
- the display control unit 19 outputs, for example, the content CT generated by the content generation unit 18 to each device 20.
- the display control unit 19 adds a correction process to the content CT generated by the content generation unit 18 as necessary.
- the projector 20C projects the content CT onto the screen SCR. Therefore, the display control unit 19 outputs the content CT subjected to the geometric correction based on the screen model included in the registration data 32 to the projector 20C.
- the screen model is a three-dimensional model of the screen SCR.
- the screen model contains, for example, coordinate information on the surface of the screen SCR on which the content CT is projected.
- the display control unit 19 gradually changes the position of the content CT to the position calculated by the correction based on the reference local coordinate system in response to the completion of the operation of the content CT. This reduces the sense of discomfort caused by the sudden change in the position of the content CT after the operation is completed.
- the storage device 30 stores, for example, the program 31 executed by the processing device 10 and the registration data 32.
- the program 31 is a program that causes a computer to execute information processing according to the present embodiment.
- the processing device 10 performs various processes according to the program 31 stored in the storage device 30.
- the storage device 30 may be used as a work area for temporarily storing the processing result of the processing device 10.
- the storage device 30 includes any non-transient storage medium such as, for example, a semiconductor storage medium and a magnetic storage medium.
- the storage device 30 includes, for example, an optical disk, a magneto-optical disk, or a flash memory.
- the program 31 is stored, for example, in a non-transient storage medium that can be read by a computer.
- the processing device 10 is, for example, a computer composed of a processor and a memory.
- the memory of the processing device 10 includes a RAM (Random Access Memory) and a ROM (Read Only Memory).
- the processing device 10 executes the glass sensor data acquisition unit 11, the PJ sensor data acquisition unit 12, the space recognition unit 13, the gesture detection unit 14, the interaction detection unit 15, the error information detection unit 16, and the correction unit. 17.
- FIG. 7 is a diagram showing an example in which the information processing system 1 is applied to an exhibition of a city model.
- the stereoscopic image of the building is superimposed and displayed on the planar image of the city model projected on the screen SCR.
- the plane image of the city model projected on the screen SCR is the content CT (PJ content PJC) displayed by the projector 20C.
- the stereoscopic image of the building superimposed on the planar image of the city model is the content CT (glass content GC) displayed by the AR glass 20A and the AR glass 20B.
- FIG. 8 is a diagram showing an example of content CT (PJ content PJC and glass content GC) viewed from the viewpoint of the second user U2.
- content CT PJ content PJC and glass content GC
- the glass content GC is a three-dimensional display of a part of the building BLD displayed on the PJ content PJC based on the viewpoint of the second user U2.
- the glass content GC is superimposed on the area OVL in which the plan image of the building BLD is displayed in the PJ content PJC.
- FIG. 7 shows how the second user U2 reaches for the glass content GC and tries to operate the glass content GC with his / her finger.
- the processing device 10 generates the glass coordinate system LCB based on the sensor data acquired from the AR glass 20B. If the AR glass 20B is used for a long time, an error occurs in the sensor data of the AR glass 20B. Therefore, the region where the glass content GC and the PJ content PJC are superimposed is deviated from the region OVL which should be superimposed.
- the processing device 10 corrects the PJ coordinate system LCC in order to suppress the deviation. By this correction, the relative position between the glass content GC and the PJ content PJC is corrected.
- FIGS. 9 and 10 are diagrams showing a method of correcting the relative position between the glass content GC and the PJ content PJC.
- FIG. 9 is a diagram showing a method adopted in this embodiment.
- FIG. 10 is a diagram showing a comparative example.
- the gesture detection unit 14 recognizes the finger as the operation site OP.
- the gesture detection unit 14 determines that the operation has been started by the second user U2.
- the correction unit 17 corrects the glass coordinate system LCA and the PJ coordinate system LCC with reference to the glass coordinate system LCB.
- the position of the PJ content PJC displayed by the projector 20C moves.
- the position of the glass content GC recognized by the second user U2 as an operation target does not change. Therefore, the second user U2 can continue to operate the glass content GC without any discomfort.
- the position of the glass content GC displayed on the AR glass 20A also changes by correcting the relative position of the glass coordinate system LCA. Therefore, the position of the glass content GC recognized by the first user U1 via the AR glass 20A changes.
- the first user U1 is only looking at the operation of the second user U2, and does not perform an operation on the glass content GC. Therefore, even if the position of the glass content GC recognized by the first user U1 changes slightly, the first user U1 does not feel a great deal of discomfort.
- the glass coordinate system LCA and the glass coordinate system LCB are corrected with reference to the PJ coordinate system LCC.
- the reason why the PJ coordinate system LCC is used as the correction reference is that the PJ coordinate system LCC is less likely to cause misalignment than the glass coordinate system LCB generated by using SLAM.
- the position of the PJ content PJC displayed by the projector 20C does not change, but the position of the glass content GC recognized by the second user U2 as an operation target changes. Since the position of the glass content GC to be operated changes when the second user U2 starts the operation, the second user U2 feels a great sense of discomfort. When the movement amount of the glass content GC is large, the finger is deviated from the glass content GC, and the operation for the glass content GC cannot be performed.
- the relative position of the other local coordinate system LC is corrected with reference to the local coordinate system LC used for generating the content CT recognized as the operation target by the operation subject.
- the glass coordinate system LCA and the glass coordinate system LCB are corrected with reference to the PJ coordinate system LCC.
- 11 to 13 are diagrams showing other application examples of the information processing system 1.
- the processing device 10 combines the PJ content PJC and the glass content GC to form one slider.
- PJ Content PJC displays a slider track.
- the glass content GC displays a slider knob and a part of the track.
- the AR glass 20A and the AR glass 20B set the glass content area GCA at a position superimposing on the PJ content PJC, and display the glass content GC in the glass content area GCA.
- the PJ content PJC and the glass content GC are displayed without causing misalignment with each other.
- FIG. 12 there is a misalignment between the PJ content PJC and the glass content GC.
- the glass content GC is displayed at a position closer to the viewpoint of the user U than the PJ content PJC. Therefore, the area SHA of the PJ content PJC shielded by the glass content area GCA is widened. Further, a part of the tracks included in the glass content GC intersects with the tracks displayed by the PJ content PJC.
- FIG. 13 when the user U starts to operate the knob of the slider, the position of the PJ content PJC is corrected according to the position of the glass content GC.
- the relative position of the PJ content PJC is corrected so that a part of the track included in the glass content GC and the track displayed by the PJ content PJC are parallel to each other.
- the correction method is not limited to this. The following correction methods are also conceivable.
- the correction unit 17 corrects the local coordinate system LC by a coordinate transformation process for translating the local coordinate system LC.
- the correction unit 17 obtains the difference between the coordinates of the two local coordinate systems LC indicating the same operation point.
- the correction unit 17 translates one local coordinate system LC based on the difference.
- the correction unit 17 corrects the local coordinate system LC by translation processing that translates the local coordinate system LC and rotates the local coordinate system LC around one rotation axis. conduct.
- the correction unit 17 obtains a straight line passing through the two operation points in each of the two local coordinate system LCs.
- the correction unit 17 translates and rotates one local coordinate system LC so that the two straight lines obtained by the two local coordinate system LCs match.
- the correction unit 17 corrects the local coordinate system LC by translation processing that translates the local coordinate system LC and rotates the local coordinate system LC around the two rotation axes. conduct.
- the correction unit 17 performs the three operation points in each of the two local coordinate system LCs. Find the plane containing.
- the correction unit 17 translates and rotates one local coordinate system LC so that the two planes obtained by the two local coordinate system LCs match.
- FIG. 14 is a flowchart showing the information processing method of the present embodiment.
- step S1 the gesture detection unit 14 determines whether or not the content CT operation has been performed by the user U. If it is determined that the content CT operation has been performed in step S1 (step S1: Yes), the process proceeds to step S2. If it is determined in step S1 that the content CT operation has not been performed (step S1: No), step S1 is repeated until the content CT operation is detected.
- step S2 the error information detection unit 16 determines whether or not an error has occurred in the relative positions of the plurality of local coordinate system LCs. If it is determined that an error has occurred in step S2 (step S2: Yes), the process proceeds to step S3. If it is determined in step S2 that no error has occurred (step S2: No), the process ends.
- step S3 the gesture detection unit 14 determines whether or not the target of the operation by the user U is the PJ content PJC. If it is determined in step S3 that the operation target is PJ content PJC (step S3: Yes), the process proceeds to step S4. If it is determined in step S3 that the operation target is not the PJ content PJC (step S3: No), the process proceeds to step S8.
- step S4 the interaction detection unit 15 determines the accuracy of the sensor data output from the PJ sensor data acquisition unit 12. If the accuracy of the sensor data is larger than the threshold value in step S4 (step S4: No), the process proceeds to step S5. If the accuracy of the sensor data is equal to or less than the threshold value in step S4 (step S4: Yes), the process proceeds to step S16. In step S16, a correction error is output and correction is not performed.
- step S5 the correction unit 17 corrects the relative positions of the glass coordinate system LCA and the glass coordinate system LCB with reference to the PJ coordinate system LCC.
- step S6 the correction unit 17 recalculates the positions of the glass contents GC of the AR glasses 20A and the AR glasses 20B by using the first coordinate conversion formula and the second coordinate conversion formula.
- step S7 the display control unit 19 corrects the displayed position of the glass content GC based on the position calculated by the correction unit 17.
- step S8 the gesture detection unit 14 determines whether or not the target of the operation by the user U is the glass content GC. If it is determined in step S8 that the operation target is the glass content GC (step S8: Yes), the process proceeds to step S9. If it is determined in step S8 that the operation target is not the glass content GC (step S8: No), the process proceeds to step S16. In step S16, a correction error is output and correction is not performed.
- step S9 the correction unit 17 calculates the position where the position of the PJ content PJC is temporarily corrected.
- the correction unit 17 corrects the relative position of the PJ coordinate system LCC with reference to the glass coordinate system used to generate the glass content GC recognized as the operation target by the operation subject.
- the correction unit 17 calculates the position of the PJ content PJC by using a coordinate conversion formula that performs coordinate conversion between the glass coordinate system and the PJ coordinate system LCC.
- step S10 the display control unit 19 corrects the displayed position of the PJ content PJC based on the position calculated by the correction unit 17.
- step S11 the gesture detection unit 14 determines whether or not the operation of the glass content GC by the user U is completed. If it is determined in step S11 that the operation of the glass content GC is completed (step S11: Yes), the process proceeds to step S12. If it is not determined in step S11 that the operation of the glass content GC is completed (step S11: No), the process returns to step S9.
- step S12 the correction unit 17 corrects the relative positions of the glass coordinate system LCA and the glass coordinate system LCB with reference to the PJ coordinate system LCC.
- step S13 the correction unit 17 recalculates the positions of the AR glass 20A and the AR glass 20B glass content GC by using the first coordinate conversion formula and the second coordinate conversion formula.
- step S14 the display control unit 19 corrects the displayed position of the glass content GC based on the position calculated by the correction unit 17.
- step S15 the correction unit 17 ends the correction of the PJ coordinate system LCC with reference to the glass coordinate system.
- the display control unit 19 moves the position of the PJ content PJC to the position set by using the PJ coordinate system LCC.
- the information processing system 1 has an error information detection unit 16 and a correction unit 17.
- the error information detection unit 16 detects information on errors that occur at relative positions of a plurality of local coordinate systems LC.
- the correction unit 17 corrects the relative positions of all the other local coordinate system LCs with respect to the specific local coordinate system LC based on the error information.
- the specific local coordinate system LC is a local coordinate system LC used to generate a content CT recognized as an operation target by the operating subject of the content CT among a plurality of local coordinate system LCs.
- the information processing of the above-mentioned information processing system 1 is executed by a computer.
- the program 31 of the present embodiment makes the computer realize the information processing of the above-mentioned information processing system 1.
- the local coordinate system LC (origin position and coordinate axis position) other than the specific local coordinate system LC has an error in the relative position with the specific local coordinate system LC. Move to no position.
- the local coordinate system LC (specific local coordinate system LC) related to the generation of the content CT recognized by the operating subject does not move. Therefore, the position of the content CT recognized by the operating subject is not changed. Therefore, the operating subject can continue to operate the content CT without feeling uncomfortable.
- the error information detection unit 16 detects error information based on, for example, the coordinates of the part OP that interacts with the content CT of the operation subject, which is detected for each local coordinate system LC.
- the position of the operation site OP is detected using the coordinates of each local coordinate system LC.
- an error generated in the relative position between the local coordinate system LCs is detected.
- the above error is detected at the timing when the operation is performed. Therefore, the local coordinate system LC can be corrected at the timing when the operation is started.
- a member called a marker for correcting the position / orientation information of the device 20 is unnecessary.
- Markers are used in fields such as AR glasses and head-mounted displays.
- the marker is installed at a specific position in the real space RS.
- the user U equipped with the device 20 moves to the position of the marker when correcting the error generated in the position / attitude information, and takes a picture of the marker with the camera.
- an error in the position / orientation information (error generated in the relative position between the world coordinate system WC and the local coordinate system LC) can be obtained. It can be corrected.
- the user U In the correction method using the marker, the user U must move to the position of the marker.
- the coordinates of the operation site OP detected for each device 20 an error generated in the relative position between the local coordinate system LCs is detected. Therefore, the local coordinate system LC can be easily corrected without using a marker.
- the correction unit 17 ends the correction based on the specific local coordinate system LC in response to the completion of the operation of the content CT. After that, the correction unit 17 corrects, for example, the relative positions of all other local coordinate system LCs with respect to the reference local coordinate system based on the error information.
- the reference local coordinate system is, for example, a local coordinate system LC having a smaller error in a position relative to the world coordinate system than a specific local coordinate system LC.
- the local coordinate system LC that is the reference for correction is switched from the specific local coordinate system LC to the reference local coordinate system at the timing when the operation of the content CT is completed. Since the coordinates are corrected with reference to the reference local coordinate system, the positional deviation between the real object of the real space RS and the content CT of each device 20 is unlikely to occur.
- the information processing system 1 has, for example, a display control unit 19.
- the display control unit 19 gradually changes the position of the content CT to the position calculated by the correction based on the reference local coordinate system in response to the completion of the operation of the content CT.
- the position of the content CT does not change suddenly. Therefore, the operation subject is less likely to feel uncomfortable.
- the correction unit 17 corrects the local coordinate system LC by, for example, a coordinate conversion process for translating the local coordinate system LC.
- the correction of the local coordinate system LC is performed with a small amount of calculation.
- the correction unit 17 corrects the local coordinate system LC by, for example, a coordinate transformation process for translating the local coordinate system LC and rotating the local coordinate system LC around one or more rotation axes.
- the correction of the local coordinate system LC is performed with high accuracy.
- FIG. 15 is a schematic diagram of the information processing system 2 of the second embodiment.
- the difference from the first embodiment in this embodiment is that the content CT used is only the glass content GC, and the reference local coordinate system is determined based on the operation history of a plurality of devices.
- the differences from the first embodiment will be mainly described.
- FIG. 15 shows an example in which the information processing system 2 is applied to techno sports.
- a device 20 for displaying the content CT is attached to the heads of a plurality of users U who are players.
- AR glass 20A is used as the device 20, for example.
- the AR glass 20A displays a virtual object showing the ball as the glass content GC.
- the user U puts the ball displayed as the glass content GC into the opponent's goal and competes for the number of goals.
- the processing device 40 has, for example, a reference local coordinate system determination unit 41.
- the reference local coordinate system determination unit 41 determines, for example, the glass coordinate system having the smallest error in the relative position with the world coordinate system WC as the reference local coordinate system based on the operation history of the plurality of AR glasses 20A.
- the operation history of the AR glass 20A is determined based on, for example, the sensor data detected by the AR glass 20A.
- the space recognition unit 13 uses SLAM to create an environment map for each AR glass 20A and estimate the position of the AR glass 20A in the environment map.
- the reference local coordinate system determination unit 41 has been using the AR glass 20A since the last time the relative position of the glass coordinate system LCA was corrected with respect to the reference local coordinate system based on the movement history of the AR glass 20A in the environment map. Calculates the distance traveled by.
- the reference local coordinate system determination unit 41 compares the movement distances after the correction processing using the reference local coordinate system calculated for each AR glass 20A, and uses the glass coordinate system LCA of the AR glass 20A having the smallest movement distance as a reference. Judged as a local coordinate system.
- the reference local coordinate system determination unit 41 may determine the reference local coordinate system based on the history of acceleration for each AR glass 20A. For example, the reference local coordinate system determination unit 41 detects the acceleration history for each AR glass 20A based on the acceleration data included in the sensor data. Based on the acceleration history of the AR glass 20A, the reference local coordinate system determination unit 41 has AR that exceeds the threshold value since the last correction of the relative position of the glass coordinate system with respect to the reference local coordinate system. The time applied to the glass 20A is calculated. The reference local coordinate system determination unit 41 compares the above times calculated for each AR glass 20A, and determines that the glass coordinate system LCA of the AR glass 20A having the shortest time is the reference local coordinate system. The threshold value is included in the registration data 52, for example.
- the correction unit 17 corrects the relative positions of all other glass coordinate system LCA with respect to the specific glass coordinate system LCA based on the error information in response to the start of the operation of the glass content GC.
- the specific glass coordinate system LCA is the glass coordinate system LCA used to generate the glass content GC recognized as the operation target by the operating subject of the glass content GC.
- this correction for example, the origin position and the position of the coordinate axis of other glass coordinate system LCA other than the specific glass coordinate system LCA move to a position where the error of the relative position with the specific glass coordinate system LCA becomes small.
- the correction unit 17 ends the correction based on the specific glass coordinate system LCA in response to the completion of the operation of the glass content GC. Then, the correction unit 17 switches, for example, the glass coordinate system LCA that is the reference for correction from the specific glass coordinate system LCA to the reference local coordinate system determined by the reference local coordinate system determination unit 41.
- the correction unit 17 corrects, for example, the relative positions of all other glass coordinate system LCA with respect to the reference local coordinate system based on the error information. By this correction, for example, the origin position and the position of the coordinate axis of the glass coordinate system LCA other than the reference local coordinate system are moved to the position where the error of the relative position with the reference local coordinate system becomes small.
- the storage device 50 stores, for example, the program 51 executed by the processing device 40 and the registration data 52.
- the program 51 is a program for causing a computer to execute information processing according to the present embodiment.
- the processing device 40 performs various processes according to the program 51 stored in the storage device 50.
- the processing device 40 executes the glass sensor data acquisition unit 11, the space recognition unit 13, the gesture detection unit 14, the reference local coordinate system determination unit 41, the error information detection unit 16, the correction unit 17, and the content generation. It functions as a unit 18 and a display control unit 19.
- the reference local coordinate system is determined based on the operation history of the plurality of AR glasses 20A. Therefore, even when the local coordinate system LC is deviated due to the operation of the AR glass 20A, the reference local coordinate system as the reference for correction can be appropriately selected.
- Modification example 16 and 17 are diagrams showing an example in which the information processing system 2 is applied to the correction of the local coordinate system LC set in the robot RB.
- the plurality of devices 20 to be processed include the AR glass 20A and the robot RB.
- the robot RB is, for example, a robot that autonomously moves using SLAM.
- the robot coordinate system LCR is set as the local coordinate system LC in the robot RB.
- the processing device 40 uses the robot coordinate system LCR to generate a content CT (robot content RC) representing a ball.
- the robot RB recognizes that the ball exists in the real space RS.
- the AR glass 20A superimposes and displays the glass content GC representing the same ball on the real space RS.
- the position is corrected.
- the local coordinate system LC that is the reference of the correction is switched from the specific local coordinate system LC to the reference local coordinate system.
- the correction method of the local coordinate system LC is the same as that described in the second embodiment.
- the robot RB has a plurality of sensors including a depth sensor, an acceleration sensor, a microphone and a camera.
- the robot RB recognizes the real space RS around the robot RB, estimates the position of the robot RB in the real space RS, and the real object around the robot RB based on the sensor data detected by a plurality of sensors. Perform detection. Recognition of the real space RS and estimation of the position in the real space RS are performed using, for example, SLAM.
- the robot RB outputs, for example, the robot coordinate system LCR information (information regarding the origin position and the position of the coordinate axis) and the environment map information generated by using SLAM to the error information detection unit 16.
- the robot RB detects the coordinates of the operation part OP (the part where the robot RB interacts with the robot content RC) in the robot coordinate system LCR based on the sensor data.
- the robot RB outputs information on the coordinates of the operation site OP to the error information detection unit 16.
- the error information detection unit 16 is, for example, a relative position between the robot coordinate system LCR and the glass coordinate system LCA based on the coordinates of the operation site OP in the robot coordinate system LCR and the coordinates of the operation site OP in the glass coordinate system LCA. Detects the information of the error that occurred in.
- the correction unit 17 corrects the relative position of the glass coordinate system LCA with respect to the robot coordinate system LCR based on the error information in response to the start of the operation of the content CT.
- the position of the glass content GC recognized by the user U via the AR glass 20A is corrected according to the position of the robot content RC recognized by the robot RB as an operation target.
- the reference local coordinate system determination unit 41 determines the reference local coordinate system based on the operation history of the robot RB and the operation history of the AR glass 20A.
- the correction unit 17 sets the local coordinate system LC as the correction reference from the robot coordinate system LCR to the glass when the operation of the robot content RC by the robot RB is completed. Switch to the coordinate system LCA.
- An error information detector that detects information on errors that occur at relative positions in multiple local coordinate systems, All other local coordinate systems for the particular local coordinate system used to generate the content recognized by the content operator among the plurality of local coordinate systems in response to the initiation of the content operation.
- a correction unit that corrects the relative position of the Information processing system with.
- the information processing system according to (1) or (2) above which corrects the relative positions of all other local coordinate systems with respect to the reference local coordinate system having a small error based on the information of the error.
- the present invention has a display control unit having a display control unit that gradually changes the position of the content to a position calculated by a correction based on the reference local coordinate system in response to the completion of the operation of the content.
- Information processing system (5) Based on the operation history of a plurality of devices in which the plurality of local coordinate systems are set, the local coordinate system having the smallest error in the position relative to the world coordinate system is determined to be the reference local coordinate system.
- the information processing system according to (3) or (4) above which has a coordinate system determination unit.
- the information processing system according to any one of (1) to (5) above, wherein the correction unit corrects the local coordinate system by a coordinate transformation process for translating the local coordinate system. (7) The correction unit corrects the local coordinate system by translation processing for parallel movement of the local coordinate system and rotational movement of the local coordinate system around one or more rotation axes (1) to (5). The information processing system according to any one of the above. (8) Detects information on errors that occur in relative positions in multiple local coordinate systems, All other local coordinate systems for the particular local coordinate system used to generate the content recognized by the content operator among the plurality of local coordinate systems in response to the initiation of the content operation. The relative position of is corrected based on the above error information. A method of information processing performed by a computer that has.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Human Computer Interaction (AREA)
- Computer Graphics (AREA)
- Computer Hardware Design (AREA)
- Software Systems (AREA)
- User Interface Of Digital Computer (AREA)
Abstract
This information processing system (1, 2) comprises an error information detection unit (16) and a correction unit (17). The error information detection unit (16) detects information about an error that occurred in the relative positions of a plurality of local coordinate systems (LC). The correction unit (17), in response to the start of a content (CT) operation, corrects the relative positions of all other local coordinate systems (LC) in terms of a specified local coordinate system (LC) on the basis of the information about the error. The specified local coordinate system (LC) is the local coordinate system (LC), out of the plurality of local coordinate systems (LC), that is used to generate content (CT) which an operation subject of the content (CT) recognizes as an operation target.
Description
本発明は、情報処理システム、情報処理方法およびプログラムに関する。
The present invention relates to an information processing system, an information processing method and a program.
現実環境をコンピュータにより拡張するAR(Augmented Reality)技術が注目されている。AR技術は、実空間にコンテンツを重畳して表示するARグラス、ヘッドマウントディスプレイおよびプロジェクタなどの機器により実現される。
AR (Augmented Reality) technology that expands the real environment with a computer is attracting attention. AR technology is realized by devices such as AR glasses, head-mounted displays, and projectors that superimpose and display content in real space.
実空間に重畳されるコンテンツの位置は、機器の位置および姿勢によって変化する。機器の位置および姿勢を検出するセンサの検出結果に誤差が生じると、機器に設定された座標系(原点位置および座標軸の位置)にずれが生じる。複数の機器が1つのAR空間を共有する場合、機器ごとに設定された座標系どうしの相対位置に誤差が生じ、各機器に表示されるコンテンツの位置にずれが生じる。そのため、各機器の座標系を補正してコンテンツの位置を整合させることが望ましい。しかし、コンテンツの操作中にコンテンツの位置が補正されると、コンテンツの操作主体に違和感を与える可能性がある。
The position of the content superimposed on the real space changes depending on the position and posture of the device. If an error occurs in the detection result of the sensor that detects the position and orientation of the device, the coordinate system (origin position and coordinate axis position) set in the device will be deviated. When a plurality of devices share one AR space, an error occurs in the relative position between the coordinate systems set for each device, and the position of the content displayed on each device is deviated. Therefore, it is desirable to correct the coordinate system of each device to align the position of the content. However, if the position of the content is corrected during the operation of the content, the operation subject of the content may feel uncomfortable.
そこで、本開示では、座標系を補正する際に操作主体に違和感が生じにくい情報処理システム、情報処理方法およびプログラムを提案する。
Therefore, in this disclosure, we propose an information processing system, information processing method, and program that does not cause discomfort to the operating subject when correcting the coordinate system.
本開示によれば、複数のローカル座標系の相対位置に生じた誤差の情報を検出する誤差情報検出部と、コンテンツの操作が開始されたことに応答して、前記複数のローカル座標系のうち前記コンテンツの操作主体が操作対象として認識する前記コンテンツの生成に用いられた特定のローカル座標系に対する他の全てのローカル座標系の相対位置を前記誤差の情報に基づいて補正する補正部と、を有する情報処理システムが提供される。また、本開示によれば、前記情報処理システムの情報処理がコンピュータにより実行される情報処理方法、ならびに、前記情報処理システムの情報処理をコンピュータに実現させるプログラムが提供される。
According to the present disclosure, an error information detection unit that detects information on an error that has occurred in a relative position of a plurality of local coordinate systems, and a plurality of local coordinate systems in response to the start of operation of the content. A correction unit that corrects the relative positions of all other local coordinate systems with respect to the specific local coordinate system used to generate the content, which the operating subject of the content recognizes as an operation target, based on the error information. The information processing system to have is provided. Further, according to the present disclosure, an information processing method in which the information processing of the information processing system is executed by a computer, and a program for realizing the information processing of the information processing system in the computer are provided.
以下に、本開示の実施形態について図面に基づいて詳細に説明する。以下の各実施形態において、同一の部位には同一の符号を付することにより重複する説明を省略する。
Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. In each of the following embodiments, the same parts are designated by the same reference numerals, and duplicate description will be omitted.
なお、説明は以下の順序で行われる。
[1.第1実施形態]
[1-1.情報処理システムの構成]
[1-2.情報処理方法]
[1-3.効果]
[2.第2実施形態]
[2-1.情報処理システムの構成]
[2-2.効果]
[2-3.変形例] The explanations are given in the following order.
[1. First Embodiment]
[1-1. Information processing system configuration]
[1-2. Information processing method]
[1-3. effect]
[2. Second Embodiment]
[2-1. Information processing system configuration]
[2-2. effect]
[2-3. Modification example]
[1.第1実施形態]
[1-1.情報処理システムの構成]
[1-2.情報処理方法]
[1-3.効果]
[2.第2実施形態]
[2-1.情報処理システムの構成]
[2-2.効果]
[2-3.変形例] The explanations are given in the following order.
[1. First Embodiment]
[1-1. Information processing system configuration]
[1-2. Information processing method]
[1-3. effect]
[2. Second Embodiment]
[2-1. Information processing system configuration]
[2-2. effect]
[2-3. Modification example]
[1.第1実施形態]
[1-1.情報処理システムの構成]
図1は、第1実施形態の情報処理システム1の概略図である。 [1. First Embodiment]
[1-1. Information processing system configuration]
FIG. 1 is a schematic diagram of the information processing system 1 of the first embodiment.
[1-1.情報処理システムの構成]
図1は、第1実施形態の情報処理システム1の概略図である。 [1. First Embodiment]
[1-1. Information processing system configuration]
FIG. 1 is a schematic diagram of the information processing system 1 of the first embodiment.
情報処理システム1は、例えば、処理装置10と、複数の機器20と、記憶装置30と、を有する。処理装置10は、複数の機器20が表示するコンテンツCTを生成する。コンテンツCTは、機器20によって実空間RSに重畳して表示される。
The information processing system 1 includes, for example, a processing device 10, a plurality of devices 20, and a storage device 30. The processing device 10 generates the content CT displayed by the plurality of devices 20. The content CT is superimposed and displayed on the real space RS by the device 20.
複数の機器20は、例えば、ARグラス20Aと、ARグラス20Bと、プロジェクタ20Cと、を含む。ARグラス20AおよびARグラス20Bは、ユーザUの頭部に装着され、ユーザUの視界内の実空間RSにコンテンツCTを重畳して表示する。プロジェクタ20Cは、実空間RSの所定の位置に固定され、実空間RSに設けられたスクリーンSCRにコンテンツCTを投射する、スクリーンSCRは、例えば、テーブルである。
The plurality of devices 20 include, for example, an AR glass 20A, an AR glass 20B, and a projector 20C. The AR glasses 20A and the AR glasses 20B are attached to the head of the user U, and the content CT is superimposed and displayed on the real space RS in the field of view of the user U. The projector 20C is fixed at a predetermined position in the real space RS and projects the content CT onto the screen SCR provided in the real space RS. The screen SCR is, for example, a table.
図2は、実空間RSに設定される座標系の一例を示す図である。
FIG. 2 is a diagram showing an example of a coordinate system set in the real space RS.
複数の機器20には、それぞれローカル座標系LCが設定されている。ローカル座標系LCは、機器20ごとに定義された原点および座標軸を有する。ローカル座標系LCの原点位置および座標軸の位置は、例えば、登録データ32に含まれる機器20ごとの内部パラメータ、設置位置、および、設置位置における姿勢などの情報に基づいて演算される。処理装置10は、機器20に設定されたローカル座標系LCを用いて、機器20に表示されるコンテンツCTの座標を算出する。
A local coordinate system LC is set for each of the plurality of devices 20. The local coordinate system LC has an origin and coordinate axes defined for each device 20. The origin position and the position of the coordinate axis of the local coordinate system LC are calculated based on information such as the internal parameters for each device 20 included in the registration data 32, the installation position, and the posture at the installation position. The processing device 10 calculates the coordinates of the content CT displayed on the device 20 by using the local coordinate system LC set on the device 20.
以下、ARグラス20AおよびARグラス20Bによって表示されるコンテンツCTをグラスコンテンツGCと記載する。プロジェクタ20Cによって表示されるコンテンツCTをPJコンテンツと記載する。ARグラス20Aに設定されたローカル座標系LCをグラス座標系LCAと記載する。ARグラス20Bに設定されたローカル座標系LCをグラス座標系LCBと記載する。プロジェクタ20Cに設定されたローカル座標系LCをPJ座標系LCCと記載する。
Hereinafter, the content CT displayed by the AR glass 20A and the AR glass 20B will be referred to as a glass content GC. The content CT displayed by the projector 20C is referred to as PJ content. The local coordinate system LC set in the AR glass 20A is referred to as a glass coordinate system LCA. The local coordinate system LC set in the AR glass 20B is referred to as a glass coordinate system LCB. The local coordinate system LC set in the projector 20C is referred to as a PJ coordinate system LCC.
図2において、符号WCは、ワールド座標系を示す。ワールド座標系WCは、実空間RS全体を定義する座標系である。ワールド座標系WCは、例えば、事前に実施された実空間RSのスキャンの結果に基づいて定義される。PJ座標系LCCは、実空間RSの所定の位置に固定されたセンサの検出結果に基づいて定義される。グラス座標系LCAは、ARグラス20Aに搭載されたセンサの検出結果から推定される。グラス座標系LCBは、ARグラス20Bに搭載されたセンサの検出結果から推定される。
In FIG. 2, the reference numeral WC indicates a world coordinate system. The world coordinate system WC is a coordinate system that defines the entire real space RS. The world coordinate system WC is defined, for example, based on the results of a pre-performed real-space RS scan. The PJ coordinate system LCC is defined based on the detection result of a sensor fixed at a predetermined position in the real space RS. The glass coordinate system LCA is estimated from the detection result of the sensor mounted on the AR glass 20A. The glass coordinate system LCB is estimated from the detection result of the sensor mounted on the AR glass 20B.
ワールド座標系WCは、実世界に最も則した座標系である。そのため、各機器20のコンテンツCTに生じた位置ずれの補正は、ワールド座標系WCを基準として行われる場合がある。しかし、本実施形態では、演算量を減らすために、ワールド座標系WCを用いずに、PJ座標系LCCを基準ローカル座標系として用い、グラス座標系LCAおよびグラス座標系LCBを基準ローカル座標系に合わせるという相対的な位置補正の手法が用いられる。これは、固定された位置に設置されるプロジェクタ20Cのセンサは、ユーザUとともに移動するARグラス20AおよびARグラス20Bのセンサに比べて、長時間使用したときの検出誤差が小さいと考えられるためである。
The world coordinate system WC is the coordinate system most conforming to the real world. Therefore, the correction of the positional deviation generated in the content CT of each device 20 may be performed with reference to the world coordinate system WC. However, in this embodiment, in order to reduce the amount of calculation, the PJ coordinate system LCC is used as the reference local coordinate system, and the glass coordinate system LCA and the glass coordinate system LCB are used as the reference local coordinate system without using the world coordinate system WC. A relative position correction method of matching is used. This is because the sensor of the projector 20C installed at the fixed position is considered to have a smaller detection error when used for a long time than the sensors of the AR glasses 20A and the AR glasses 20B that move with the user U. be.
以下、具体的に則して、コンテンツCTの補正手法を詳細に説明する。
Hereinafter, the correction method of the content CT will be described in detail in accordance with the specific rules.
図1の例では、ARグラス20Aを装着した第1ユーザU1とARグラス20Bを装着した第2ユーザU2によってチェスが行われている。ARグラス20AおよびARグラス20Bは、チェスの駒を表す仮想オブジェクトをグラスコンテンツGCとして表示する。プロジェクタ20Cは、チェスの盤面を表す仮想オブジェクトをPJコンテンツPJCとして表示する。グラスコンテンツGCは、PJコンテンツPJCのマス目に合わせて表示される。
In the example of FIG. 1, chess is performed by the first user U1 wearing the AR glass 20A and the second user U2 wearing the AR glass 20B. The AR glass 20A and the AR glass 20B display a virtual object representing a chess piece as a glass content GC. The projector 20C displays a virtual object representing a chess board as PJ content PJC. The glass content GC is displayed according to the squares of the PJ content PJC.
各機器20は、1以上のセンサを有する。各機器20は、1以上のセンサによって検出されたセンサデータを処理装置10に出力する。例えば、ARグラス20AおよびARグラス20Bは、デプスセンサ、加速度センサ、マイクロフォンおよびカメラを含む複数のセンサを有する。ARグラス20AおよびARグラス20Bから出力されるセンサデータは、例えば、実空間RSの認識、実空間RS内の位置の推定およびユーザUのジェスチャの検出に用いられる。プロジェクタ20Cは、デプスセンサ、人感センサ、マイクロフォンおよびカメラを含む複数のセンサを有する。プロジェクタ20Cから出力されるセンサデータは、例えば、実空間RS内のユーザUの位置の検出に用いられる。
Each device 20 has one or more sensors. Each device 20 outputs the sensor data detected by one or more sensors to the processing device 10. For example, the AR glass 20A and the AR glass 20B have a plurality of sensors including a depth sensor, an accelerometer, a microphone and a camera. The sensor data output from the AR glasses 20A and the AR glasses 20B is used, for example, for recognizing the real space RS, estimating the position in the real space RS, and detecting the gesture of the user U. The projector 20C has a plurality of sensors including a depth sensor, a motion sensor, a microphone and a camera. The sensor data output from the projector 20C is used, for example, to detect the position of the user U in the real space RS.
処理装置10は、例えば、グラスセンサデータ取得部11、PJセンサデータ取得部12、空間認識部13、ジェスチャ検出部14、インタラクション検出部15、誤差情報検出部16、補正部17、コンテンツ生成部18および表示制御部19を有する。
The processing device 10 is, for example, a glass sensor data acquisition unit 11, a PJ sensor data acquisition unit 12, a space recognition unit 13, a gesture detection unit 14, an interaction detection unit 15, an error information detection unit 16, a correction unit 17, and a content generation unit 18. And has a display control unit 19.
グラスセンサデータ取得部11は、例えば、ARグラス20AおよびARグラス20Bから出力されたセンサデータを取得する。グラスセンサデータ取得部11は、例えば、取得したセンサデータを空間認識部13およびジェスチャ検出部14に出力する。PJセンサデータ取得部12は、例えば、プロジェクタ20Cから出力されたセンサデータを取得する。PJセンサデータ取得部12は、例えば、取得したセンサデータをインタラクション検出部15に出力する。
The glass sensor data acquisition unit 11 acquires, for example, the sensor data output from the AR glass 20A and the AR glass 20B. The glass sensor data acquisition unit 11 outputs, for example, the acquired sensor data to the space recognition unit 13 and the gesture detection unit 14. The PJ sensor data acquisition unit 12 acquires, for example, the sensor data output from the projector 20C. The PJ sensor data acquisition unit 12 outputs, for example, the acquired sensor data to the interaction detection unit 15.
空間認識部13は、例えば、グラスセンサデータ取得部11から取得したセンサデータに基づいて、ARグラス20AおよびARグラス20Bの周囲の実空間RSの認識、実空間RS内のARグラス20AおよびARグラス20Bの位置の推定、ならびに、ARグラス20AおよびARグラス20Bの周囲の実物体の検出を行う。実空間RSの認識および実空間RS内の位置の推定は、例えば、SLAM(Simultaneous Localization and Mapping)と呼ばれる技術を用いて行われる。空間認識部13は、例えば、SLAMを用いて生成されたグラス座標系の情報(原点位置および座標軸の位置に関する情報)および環境マップの情報を誤差情報検出部16に出力する。
The space recognition unit 13 recognizes the real space RS around the AR glass 20A and the AR glass 20B, and the AR glass 20A and the AR glass in the real space RS, for example, based on the sensor data acquired from the glass sensor data acquisition unit 11. The position of 20B is estimated, and the real objects around the AR glasses 20A and AR glasses 20B are detected. Recognition of the real space RS and estimation of the position in the real space RS are performed, for example, by using a technique called SLAM (Simultaneus Localization and Mapping). The space recognition unit 13 outputs, for example, information on the glass coordinate system (information on the position of the origin and the position of the coordinate axis) generated using SLAM and information on the environment map to the error information detection unit 16.
ジェスチャ検出部14は、例えば、グラスセンサデータ取得部11から取得したセンサデータに基づいて、第1ユーザU1および第2ユーザU2のジェスチャを検出する。例えば、ジェスチャ検出部14は、コンテンツCTの操作主体であるユーザUの操作部位OP(操作主体がコンテンツCTとインタラクションする部位)の動きに基づいてジェスチャを検出する。
The gesture detection unit 14 detects the gestures of the first user U1 and the second user U2 based on the sensor data acquired from the glass sensor data acquisition unit 11, for example. For example, the gesture detection unit 14 detects the gesture based on the movement of the operation part OP (the part where the operation subject interacts with the content CT) of the user U who is the operation subject of the content CT.
操作部位OPは、その動きによってコンテンツCTの位置または形態を変化させることができる部位である。例えば、コンテンツCTの操作がコンテンツCTと接触したユーザUの手または指の動きによって行われる場合、操作部位OPは、コンテンツCTと接触するユーザUの手または指である。コンテンツCTの操作がコンテンツCTと所定の距離だけ離れたユーザUの手または指の動きによって行われる場合(非接触でボールなどの仮想オブジェクトを移動、回転または変形させる場合など)、操作部位OPは、コンテンツCTと所定の距離だけ離れたユーザUの手または指である。
The operation site OP is a site where the position or form of the content CT can be changed by the movement. For example, when the operation of the content CT is performed by the movement of the hand or finger of the user U in contact with the content CT, the operation site OP is the hand or finger of the user U in contact with the content CT. When the operation of the content CT is performed by the movement of the hand or finger of the user U separated from the content CT by a predetermined distance (when moving, rotating, or deforming a virtual object such as a ball without contact), the operation site OP is , The hand or finger of the user U separated from the content CT by a predetermined distance.
ジェスチャ検出部14は、例えば、グラスセンサデータ取得部11から取得したセンサデータに基づいて、コンテンツCTを操作するユーザUを特定する。ジェスチャ検出部14は、例えば、コンテンツCTの操作主体、および、操作主体が行うコンテンツCTに対するジェスチャに関する情報をコンテンツ生成部18に出力する。
The gesture detection unit 14 identifies the user U who operates the content CT, for example, based on the sensor data acquired from the glass sensor data acquisition unit 11. The gesture detection unit 14 outputs, for example, information about the operation subject of the content CT and the gesture for the content CT performed by the operation subject to the content generation unit 18.
ジェスチャ検出部14は、例えば、グラスセンサデータ取得部11から取得したセンサデータに基づいて、グラス座標系LCAおよびグラス座標系LCBにおける操作部位OPの座標をそれぞれ検出する。ジェスチャ検出部14は、グラス座標系ごとに検出された、操作部位OPの座標の情報を誤差情報検出部16に出力する。ジェスチャ検出部14は、例えば、コンテンツCTの操作主体が検出できない場合、および、操作部位OPの座標が検出できない場合には、誤差情報検出部16に検出エラーの信号を出力する。
The gesture detection unit 14 detects, for example, the coordinates of the operation site OP in the glass coordinate system LCA and the glass coordinate system LCB, respectively, based on the sensor data acquired from the glass sensor data acquisition unit 11. The gesture detection unit 14 outputs the coordinate information of the operation site OP detected for each glass coordinate system to the error information detection unit 16. The gesture detection unit 14 outputs a detection error signal to the error information detection unit 16, for example, when the operation subject of the content CT cannot be detected or when the coordinates of the operation site OP cannot be detected.
インタラクション検出部15は、例えば、PJセンサデータ取得部12から取得したセンサデータに基づいて、PJ座標系LCCにおける操作部位OPの座標を検出する。インタラクション検出部15は、例えば、PJ座標系LCCにおける操作部位OPの座標の情報を誤差情報検出部16に出力する。
The interaction detection unit 15 detects the coordinates of the operation site OP in the PJ coordinate system LCC, for example, based on the sensor data acquired from the PJ sensor data acquisition unit 12. The interaction detection unit 15 outputs, for example, the coordinate information of the operation site OP in the PJ coordinate system LCC to the error information detection unit 16.
インタラクション検出部15は、例えば、PJセンサデータ取得部12から取得したセンサデータの精度を判定する。センサデータの精度は、例えば、センサとユーザUとの距離、および、コンテンツCTと重畳する操作部位OPの大きさなどに応じて数値化される。例えば、ユーザUがプロジェクタ20Cのセンサから大きく離れた位置に存在する場合、および、プロジェクタ20Cのセンサに対してオクルージョンが発生している場合などには、算出されるセンサデータの精度は低くなる。インタラクション検出部15は、例えば、センサデータの精度が閾値以下である場合には、誤差情報検出部16に検出エラーの信号を出力する。
The interaction detection unit 15 determines, for example, the accuracy of the sensor data acquired from the PJ sensor data acquisition unit 12. The accuracy of the sensor data is quantified according to, for example, the distance between the sensor and the user U, the size of the operation site OP superimposed on the content CT, and the like. For example, when the user U is located at a position far away from the sensor of the projector 20C, or when occlusion occurs with respect to the sensor of the projector 20C, the accuracy of the calculated sensor data is low. For example, when the accuracy of the sensor data is equal to or less than the threshold value, the interaction detection unit 15 outputs a detection error signal to the error information detection unit 16.
誤差情報検出部16は、複数のローカル座標系LCの相対位置に生じた誤差の情報を検出する。誤差情報検出部16は、例えば、複数のローカル座標系LCの原点および座標軸の相対的な位置に生じたずれを誤差の情報として検出する。
The error information detection unit 16 detects information on errors that occur at relative positions of a plurality of local coordinate systems LC. The error information detection unit 16 detects, for example, the deviation generated at the relative positions of the origin and the coordinate axes of the plurality of local coordinate systems LC as error information.
誤差情報検出部16は、例えば、ローカル座標系LCごとに検出された、操作部位OPの座標に基づいて誤差の情報を検出する。例えば、初期設定として、全てのローカル座標系LCの原点位置および座標軸の位置が全て一致するようにキャリブレーションされているとする。キャリブレーション直後の初期状態では、PJ座標系LCCにおける操作部位OPの座標とグラス座標系LCAにおける操作部位OPの座標は一致する。その後、長時間の使用により、PJ座標系LCCにおける操作部位OPの座標が(30,40,50)となり、グラス座標系LCAにおける操作部位OPの座標が(25,45,55)となったとする。この場合、PJ座標系LCCとグラス座標系LCAとの相対位置に生じた誤差は(-5,5,5)と算出される。
The error information detection unit 16 detects error information based on the coordinates of the operation site OP detected for each local coordinate system LC, for example. For example, as an initial setting, it is assumed that the origin positions and coordinate axis positions of all the local coordinate system LCs are calibrated so as to match. In the initial state immediately after calibration, the coordinates of the operation site OP in the PJ coordinate system LCC and the coordinates of the operation site OP in the glass coordinate system LCA match. After that, it is assumed that the coordinates of the operation site OP in the PJ coordinate system LCC become (30, 40, 50) and the coordinates of the operation site OP in the glass coordinate system LCA become (25, 45, 55) due to long-term use. .. In this case, the error generated in the relative position between the PJ coordinate system LCC and the glass coordinate system LCA is calculated as (-5, 5, 5).
誤差情報検出部16は、例えば、誤差の情報を補正部17に出力する。誤差情報検出部16は、例えば、ジェスチャ検出部14およびインタラクション検出部15から検出エラーの信号を取得した場合には、補正部17に補正エラーの信号を出力する。
The error information detection unit 16 outputs, for example, error information to the correction unit 17. For example, when the error information detection unit 16 acquires a detection error signal from the gesture detection unit 14 and the interaction detection unit 15, the error information detection unit 16 outputs the correction error signal to the correction unit 17.
補正部17は、例えば、コンテンツCTの操作が開始されたことに応答して、特定のローカル座標系LCに対する他の全てのローカル座標系LCの相対位置を誤差の情報に基づいて補正する。補正部17は、例えば、誤差情報検出部16から補正エラーの信号を取得した場合には、ローカル座標系LCの補正を行わない。
The correction unit 17 corrects, for example, the relative positions of all other local coordinate system LCs with respect to the specific local coordinate system LC based on the error information in response to the start of the operation of the content CT. For example, when the correction unit 17 acquires a correction error signal from the error information detection unit 16, the correction unit 17 does not correct the local coordinate system LC.
特定のローカル座標系LCは、コンテンツCTの操作主体が操作対象として認識するコンテンツCTの生成に用いられたローカル座標系LCである。上述の補正により、例えば、特定のローカル座標系LC以外の他のローカル座標系LCの原点位置および座標軸の位置は、特定のローカル座標系LCとの相対位置の誤差が小さくなる位置に移動する。他のローカル座標系LCの原点および座標軸は、特定のローカル座標系LCとの間に生じた相対位置の誤差が相殺される位置に移動することが好ましい。
The specific local coordinate system LC is the local coordinate system LC used to generate the content CT that the operating subject of the content CT recognizes as an operation target. By the above-mentioned correction, for example, the origin position and the position of the coordinate axis of the local coordinate system LC other than the specific local coordinate system LC are moved to the position where the error of the relative position with the specific local coordinate system LC becomes small. It is preferred that the origins and axes of the other local coordinate system LCs move to positions where the relative position errors that occur with the particular local coordinate system LC are offset.
以下、図3ないし図6に基づいて、ローカル座標系LCの補正方法の一例を説明する。
Hereinafter, an example of the correction method of the local coordinate system LC will be described with reference to FIGS. 3 to 6.
図3は、初期状態から所定時間経過後の各ローカル座標系LCの配置を示す図である。点線は初期状態のローカル座標系LCの配置を示す。実線は所定時間経過後のローカル座標系LCの配置を示す。グラス座標系LCAは、初期状態と比較して、第1方向D1へ回転量RTだけ回転した状態となっている。グラス座標系LCBは、初期状態と比較して、第2方向D2へ距離PMだけ平行移動した状態となっている。PJ座標系LCCの位置は変化していない。
FIG. 3 is a diagram showing the arrangement of each local coordinate system LC after a predetermined time has elapsed from the initial state. The dotted line shows the arrangement of the local coordinate system LC in the initial state. The solid line shows the arrangement of the local coordinate system LC after the lapse of a predetermined time. The glass coordinate system LCA is in a state of being rotated by the rotation amount RT in the first direction D1 as compared with the initial state. The glass coordinate system LCB is in a state of being translated by a distance PM in the second direction D2 as compared with the initial state. The position of the PJ coordinate system LCC has not changed.
図4は、第1ケースとして、第1ユーザU1がグラスコンテンツGCに対して駒を移動する操作を行った例を示す。このケースでは、操作主体は第1ユーザU1である。操作主体が操作対象として認識するコンテンツCTは、グラス座標系LCAを用いて生成されたグラスコンテンツGCである。第1ユーザU1がグラスコンテンツGCの移動操作を開始すると、グラス座標系LCBおよびPJ座標系LCCの位置が、グラス座標系LCAを基準として補正される。例えば、グラス座標系LCBおよびPJ座標系LCCの原点位置および座標軸の位置は、グラス座標系LCAとの相対位置の誤差が小さくなる位置に移動する。図4の例では、グラス座標系LCBに対して、第1方向D1に回転量RTだけ回転し、第2方向D2とは反対の第3方向D3に距離PMだけ平行移動する補正が行われる。PJ座標系LCCに対しては、第1方向D1に回転量RTだけ回転する補正が行われる。
FIG. 4 shows an example in which the first user U1 performs an operation of moving a piece to the glass content GC as the first case. In this case, the operating subject is the first user U1. The content CT recognized by the operation subject as the operation target is the glass content GC generated by using the glass coordinate system LCA. When the first user U1 starts the movement operation of the glass content GC, the positions of the glass coordinate system LCB and the PJ coordinate system LCC are corrected with reference to the glass coordinate system LCA. For example, the origin position and the position of the coordinate axis of the glass coordinate system LCB and the PJ coordinate system LCC move to a position where the error of the relative position with the glass coordinate system LCA becomes small. In the example of FIG. 4, the glass coordinate system LCB is corrected by rotating in the first direction D1 by the rotation amount RT and translating in the third direction D3 opposite to the second direction D2 by the distance PM. For the PJ coordinate system LCC, a correction is performed to rotate the PJ coordinate system LCC by the rotation amount RT in the first direction D1.
図5は、第2ケースとして、第2ユーザU2がグラスコンテンツGCに対して駒を移動する操作を行った場合の補正方法を示す。このケースでは、操作主体は第2ユーザU2である。操作主体が操作対象として認識するコンテンツCTは、グラス座標系LCBを用いて生成されたグラスコンテンツGCである。第2ユーザU2がグラスコンテンツGCの移動操作を開始すると、グラス座標系LCAおよびPJ座標系LCCの位置が、グラス座標系LCBを基準として補正される。例えば、グラス座標系LCAおよびPJ座標系LCCの原点位置および座標軸の位置は、グラス座標系LCBとの相対位置の誤差が小さくなる位置に移動する。図5の例では、グラス座標系LCAに対して、第1方向D1とは反対の第4方向D4に回転量RTだけ回転し、第2方向D2に距離PMだけ平行移動する補正が行われる。PJ座標系LCCに対しては、第2方向D2に距離PMだけ平行移動する補正が行われる。
FIG. 5 shows, as a second case, a correction method when the second user U2 performs an operation of moving a piece with respect to the glass content GC. In this case, the operating subject is the second user U2. The content CT recognized by the operation subject as the operation target is the glass content GC generated by using the glass coordinate system LCB. When the second user U2 starts the movement operation of the glass content GC, the positions of the glass coordinate system LCA and the PJ coordinate system LCC are corrected with reference to the glass coordinate system LCB. For example, the origin position and the position of the coordinate axis of the glass coordinate system LCA and the PJ coordinate system LCC move to a position where the error of the relative position with the glass coordinate system LCB becomes small. In the example of FIG. 5, the glass coordinate system LCA is corrected by rotating in the fourth direction D4 opposite to the first direction D1 by the rotation amount RT and translating in the second direction D2 by the distance PM. For the PJ coordinate system LCC, correction is performed to translate the PJ coordinate system LCC by the distance PM in the second direction D2.
ユーザUは、グラスコンテンツGCだけでなく、PJコンテンツPJCを操作することもできる。図6は、第3ケースとして、PJコンテンツPJCが、盤面のデザインを変更するデザイン変更メニューを含み、第1ユーザU1がデザイン変更メニューを操作した場合の補正方法を示す。このケースでは、操作主体は第1ユーザU1である。操作主体が操作対象として認識するコンテンツCTは、PJ座標系LCCを用いて生成されたPJコンテンツPJCである。第1ユーザU1がデザイン変更メニューの操作を開始すると、グラス座標系LCAおよびグラス座標系LCBの位置が、PJ座標系LCCを基準として補正される。例えば、グラス座標系LCAおよびグラス座標系LCBの原点位置および座標軸の位置は、PJ座標系LCCと相対位置の誤差が小さくなる位置に移動する。図6の例では、グラス座標系LCAに対して、第4方向D4に回転量RTだけ回転する補正が行われる。グラス座標系LCBに対しては、第3方向D3に距離PMだけ平行移動する補正が行われる。
User U can operate not only the glass content GC but also the PJ content PJC. FIG. 6 shows, as a third case, a correction method when the PJ content PJC includes a design change menu for changing the design of the board and the first user U1 operates the design change menu. In this case, the operating subject is the first user U1. The content CT recognized by the operation subject as the operation target is the PJ content PJC generated by using the PJ coordinate system LCC. When the first user U1 starts the operation of the design change menu, the positions of the glass coordinate system LCA and the glass coordinate system LCB are corrected with reference to the PJ coordinate system LCC. For example, the origin position and the position of the coordinate axis of the glass coordinate system LCA and the glass coordinate system LCB move to a position where the error of the relative position with the PJ coordinate system LCC becomes small. In the example of FIG. 6, the glass coordinate system LCA is corrected to rotate by the rotation amount RT in the fourth direction D4. For the glass coordinate system LCB, correction is performed to translate the glass coordinate system LCB by the distance PM in the third direction D3.
補正部17は、例えば、コンテンツCTの操作が終了したことに応答して、特定のローカル座標系LCを基準とした補正を終了する。そして、補正部17は、補正の基準となるローカル座標系LCを特定のローカル座標系LCから基準ローカル座標系(PJ座標系LCC)に切り替える。補正部17は、基準ローカル座標系に対する他の全てのローカル座標系LCの相対位置を誤差の情報に基づいて補正する。基準ローカル座標系は、特定のローカル座標系LCよりもワールド座標系WCとの相対位置に生じた誤差が小さいローカル座標系LCである。上述のように、グラス座標系では、PJ座標系LCCに比べて、環境の変化や長時間の使用により原点位置および座標軸の位置にずれが生じやすい。そのため、PJ座標系LCCが基準ローカル座標系として用いられる。
For example, the correction unit 17 ends the correction based on the specific local coordinate system LC in response to the completion of the operation of the content CT. Then, the correction unit 17 switches the local coordinate system LC that is the reference of the correction from the specific local coordinate system LC to the reference local coordinate system (PJ coordinate system LCC). The correction unit 17 corrects the relative positions of all other local coordinate system LCs with respect to the reference local coordinate system based on the error information. The reference local coordinate system is a local coordinate system LC in which an error generated in a position relative to the world coordinate system WC is smaller than that of a specific local coordinate system LC. As described above, in the glass coordinate system, the origin position and the position of the coordinate axis are more likely to shift due to changes in the environment or long-term use as compared with the PJ coordinate system LCC. Therefore, the PJ coordinate system LCC is used as the reference local coordinate system.
この補正により、例えば、基準ローカル座標系以外の他のローカル座標系LCの原点位置および座標軸の位置は、基準ローカル座標系との相対位置の誤差が小さくなる位置に移動する。他のローカル座標系LCの原点位置および座標軸の位置は、基準ローカル座標系との間に生じた相対位置の誤差が相殺される位置に移動することが好ましい。
By this correction, for example, the origin position and the position of the coordinate axis of the local coordinate system LC other than the reference local coordinate system move to the position where the error of the relative position with the reference local coordinate system becomes small. It is preferable that the origin position and the position of the coordinate axis of the other local coordinate system LC are moved to a position where the error of the relative position generated with the reference local coordinate system is offset.
例えば、上述した第1ケースでは、第1ユーザU1がグラスコンテンツGCの移動操作を終了すると、グラス座標系LCAを基準とした補正が終了され、補正の基準となるローカル座標系LCがPJ座標系LCC(基準ローカル座標系)に切り替えられる。そして、グラス座標系LCAおよびグラス座標系LCBの位置が、PJ座標系LCCを基準として補正される。例えば、グラス座標系LCAおよびグラス座標系LCBの原点位置および座標軸の位置は、PJ座標系LCCとの相対位置の誤差が小さくなる位置に移動する。図3の例では、PJ座標系LCCの位置は、初期状態から変化していない。そのため、PJ座標系LCCを基準とした補正により、グラス座標系LCAおよびグラス座標系LCBは、点線で示した初期状態の位置に戻される。上述した第2ケースについても同様である。
For example, in the first case described above, when the first user U1 finishes the movement operation of the glass content GC, the correction based on the glass coordinate system LCA is completed, and the local coordinate system LC as the reference of the correction is the PJ coordinate system. Switch to LCC (reference local coordinate system). Then, the positions of the glass coordinate system LCA and the glass coordinate system LCB are corrected with reference to the PJ coordinate system LCC. For example, the origin position and the position of the coordinate axis of the glass coordinate system LCA and the glass coordinate system LCB move to a position where the error of the relative position with the PJ coordinate system LCC becomes small. In the example of FIG. 3, the position of the PJ coordinate system LCC has not changed from the initial state. Therefore, the glass coordinate system LCA and the glass coordinate system LCB are returned to the positions in the initial state shown by the dotted line by the correction based on the PJ coordinate system LCC. The same applies to the second case described above.
上述した第3ケースでは、第1ユーザU1がPJコンテンツPJCの操作を開始したときに補正の基準として用いられたローカル座標系LCはPJ座標系LCC(基準ローカル座標系)である。よって、第1ユーザU1がPJコンテンツPJCの操作を終了しても、PJ座標系LCCを基準とした補正は維持される。
In the third case described above, the local coordinate system LC used as the reference for correction when the first user U1 starts the operation of the PJ content PJC is the PJ coordinate system LCC (reference local coordinate system). Therefore, even if the first user U1 finishes the operation of the PJ content PJC, the correction based on the PJ coordinate system LCC is maintained.
図1に戻って、補正部17は、例えば、グラス座標系LCAとPJ座標系LCCとの間で座標変換を行う第1座標変換式を生成する。補正部17は、例えば、グラス座標系LCBとPJ座標系LCCとの間で座標変換を行う第2座標変換式を生成する。補正部17は、第1座標変換式および第2座標変換式をコンテンツ生成部18に出力する。
Returning to FIG. 1, the correction unit 17 generates, for example, a first coordinate conversion formula that performs coordinate conversion between the glass coordinate system LCA and the PJ coordinate system LCC. The correction unit 17 generates, for example, a second coordinate conversion formula that performs coordinate conversion between the glass coordinate system LCB and the PJ coordinate system LCC. The correction unit 17 outputs the first coordinate conversion formula and the second coordinate conversion formula to the content generation unit 18.
コンテンツ生成部18は、例えば、各機器20が実空間RSに重畳して表示するコンテンツCTを生成し、表示制御部19に出力する。コンテンツ生成部18は、例えば、ジェスチャ検出部14で検出されたジェスチャに応じたコンテンツCTを生成する。コンテンツ生成部18は、例えば、原点位置および座標軸の位置に最もずれが生じにくいPJ座標系LCCを用いてコンテンツCTの座標を設定する。コンテンツ生成部18は、第1座標変換式および第2座標変換式を用いて、グラス座標系LCAおよびグラス座標系LCBにおけるコンテンツCTの座標を算出する。
The content generation unit 18 generates, for example, a content CT that each device 20 superimposes on the real space RS and displays it, and outputs the content CT to the display control unit 19. The content generation unit 18 generates, for example, a content CT corresponding to the gesture detected by the gesture detection unit 14. The content generation unit 18 sets the coordinates of the content CT using, for example, the PJ coordinate system LCC in which the origin position and the position of the coordinate axis are least likely to deviate. The content generation unit 18 calculates the coordinates of the content CT in the glass coordinate system LCA and the glass coordinate system LCB by using the first coordinate conversion formula and the second coordinate conversion formula.
表示制御部19は、例えば、コンテンツ生成部18で生成されたコンテンツCTを各機器20に出力する。表示制御部19は、必要に応じて、コンテンツ生成部18で生成されたコンテンツCTに対して補正処理を加える。例えば、プロジェクタ20Cは、コンテンツCTをスクリーンSCRに投射する。そのため、表示制御部19は、登録データ32に含まれるスクリーンモデルに基づいて幾何補正を施したコンテンツCTをプロジェクタ20Cに出力する。スクリーンモデルは、スクリーンSCRの3次元モデルである。スクリーンモデルは、例えば、コンテンツCTが投射されるスクリーンSCRの表面の座標情報を含む。
The display control unit 19 outputs, for example, the content CT generated by the content generation unit 18 to each device 20. The display control unit 19 adds a correction process to the content CT generated by the content generation unit 18 as necessary. For example, the projector 20C projects the content CT onto the screen SCR. Therefore, the display control unit 19 outputs the content CT subjected to the geometric correction based on the screen model included in the registration data 32 to the projector 20C. The screen model is a three-dimensional model of the screen SCR. The screen model contains, for example, coordinate information on the surface of the screen SCR on which the content CT is projected.
表示制御部19は、例えば、コンテンツCTの操作が終了したことに応答して、コンテンツCTの位置を、基準ローカル座標系を基準とした補正によって算出される位置まで徐々に変更する。これにより、操作終了後にコンテンツCTの位置が急峻に変化することによる違和感が低減される。
For example, the display control unit 19 gradually changes the position of the content CT to the position calculated by the correction based on the reference local coordinate system in response to the completion of the operation of the content CT. This reduces the sense of discomfort caused by the sudden change in the position of the content CT after the operation is completed.
記憶装置30は、例えば、処理装置10が実行するプログラム31と、登録データ32と、を記憶する。プログラム31は、本実施形態に係る情報処理をコンピュータに実行させるプログラムである。処理装置10は、記憶装置30に記憶されているプログラム31にしたがって各種の処理を行う。記憶装置30は、処理装置10の処理結果を一時的に記憶する作業領域として利用されてもよい。記憶装置30は、例えば、半導体記憶媒体および磁気記憶媒体などの任意の非一過的な記憶媒体を含む。記憶装置30は、例えば、光ディスク、光磁気ディスクまたはフラッシュメモリを含んで構成される。プログラム31は、例えば、コンピュータにより読み取り可能な非一過的な記憶媒体に記憶されている。
The storage device 30 stores, for example, the program 31 executed by the processing device 10 and the registration data 32. The program 31 is a program that causes a computer to execute information processing according to the present embodiment. The processing device 10 performs various processes according to the program 31 stored in the storage device 30. The storage device 30 may be used as a work area for temporarily storing the processing result of the processing device 10. The storage device 30 includes any non-transient storage medium such as, for example, a semiconductor storage medium and a magnetic storage medium. The storage device 30 includes, for example, an optical disk, a magneto-optical disk, or a flash memory. The program 31 is stored, for example, in a non-transient storage medium that can be read by a computer.
処理装置10は、例えば、プロセッサとメモリとで構成されるコンピュータである。処理装置10のメモリには、RAM(Random Access Memory)およびROM(Read Only Memory)が含まれる。処理装置10は、プログラム31を実行することにより、グラスセンサデータ取得部11、PJセンサデータ取得部12、空間認識部13、ジェスチャ検出部14、インタラクション検出部15、誤差情報検出部16、補正部17、コンテンツ生成部18および表示制御部19として機能する。
The processing device 10 is, for example, a computer composed of a processor and a memory. The memory of the processing device 10 includes a RAM (Random Access Memory) and a ROM (Read Only Memory). By executing the program 31, the processing device 10 executes the glass sensor data acquisition unit 11, the PJ sensor data acquisition unit 12, the space recognition unit 13, the gesture detection unit 14, the interaction detection unit 15, the error information detection unit 16, and the correction unit. 17. Functions as a content generation unit 18 and a display control unit 19.
図7は、情報処理システム1を都市模型の展示に適用した例を示す図である。
FIG. 7 is a diagram showing an example in which the information processing system 1 is applied to an exhibition of a city model.
図7の例では、スクリーンSCRに投射された都市模型の平面画像に建物の立体画像が重畳して表示される。スクリーンSCRに投射される都市模型の平面画像は、プロジェクタ20Cが表示するコンテンツCT(PJコンテンツPJC)である。都市模型の平面画像に重畳される建物の立体画像は、ARグラス20AおよびARグラス20Bが表示するコンテンツCT(グラスコンテンツGC)である。
In the example of FIG. 7, the stereoscopic image of the building is superimposed and displayed on the planar image of the city model projected on the screen SCR. The plane image of the city model projected on the screen SCR is the content CT (PJ content PJC) displayed by the projector 20C. The stereoscopic image of the building superimposed on the planar image of the city model is the content CT (glass content GC) displayed by the AR glass 20A and the AR glass 20B.
図8は、第2ユーザU2の視点から見たコンテンツCT(PJコンテンツPJCおよびグラスコンテンツGC)の一例を示す図である。
FIG. 8 is a diagram showing an example of content CT (PJ content PJC and glass content GC) viewed from the viewpoint of the second user U2.
グラスコンテンツGCは、PJコンテンツPJCに表示された一部の建物BLDを第2ユーザU2の視点に基づいて立体的に表示したものである。グラスコンテンツGCは、PJコンテンツPJCにおいて建物BLDの平面画像が表示されている領域OVLに重畳される。図7では、第2ユーザU2がグラスコンテンツGCに向けて手をのばし、指でグラスコンテンツGCを操作しようとする様子が示されている。
The glass content GC is a three-dimensional display of a part of the building BLD displayed on the PJ content PJC based on the viewpoint of the second user U2. The glass content GC is superimposed on the area OVL in which the plan image of the building BLD is displayed in the PJ content PJC. FIG. 7 shows how the second user U2 reaches for the glass content GC and tries to operate the glass content GC with his / her finger.
前述のように、処理装置10は、ARグラス20Bから取得したセンサデータに基づいてグラス座標系LCBを生成する。ARグラス20Bを長時間使用すると、ARグラス20Bのセンサデータに誤差が生じる。そのため、グラスコンテンツGCとPJコンテンツPJCとが重畳される領域が、本来重畳すべき領域OVLからずれる。処理装置10は、ずれを抑制するために、PJ座標系LCCを補正する。この補正により、グラスコンテンツGCとPJコンテンツPJCとの相対位置が補正される。
As described above, the processing device 10 generates the glass coordinate system LCB based on the sensor data acquired from the AR glass 20B. If the AR glass 20B is used for a long time, an error occurs in the sensor data of the AR glass 20B. Therefore, the region where the glass content GC and the PJ content PJC are superimposed is deviated from the region OVL which should be superimposed. The processing device 10 corrects the PJ coordinate system LCC in order to suppress the deviation. By this correction, the relative position between the glass content GC and the PJ content PJC is corrected.
図9および図10は、グラスコンテンツGCとPJコンテンツPJCとの相対位置の補正方法を示す図である。図9は、本実施形態で採用される方法を示す図である。図10は、比較例を示す図である。
9 and 10 are diagrams showing a method of correcting the relative position between the glass content GC and the PJ content PJC. FIG. 9 is a diagram showing a method adopted in this embodiment. FIG. 10 is a diagram showing a comparative example.
図9に示すように、第2ユーザU2の指がグラスコンテンツGCに重畳されると、ジェスチャ検出部14は、指を操作部位OPとして認識する。ジェスチャ検出部14は、第2ユーザU2によって操作が開始されたと判定する。補正部17は、グラス座標系LCBを基準として、グラス座標系LCAおよびPJ座標系LCCを補正する。その結果、プロジェクタ20Cによって表示されるPJコンテンツPJCの位置が移動する。第2ユーザU2が操作対象として認識するグラスコンテンツGCの位置は変わらない。そのため、第2ユーザU2は、違和感なくグラスコンテンツGCの操作を続けることができる。
As shown in FIG. 9, when the finger of the second user U2 is superimposed on the glass content GC, the gesture detection unit 14 recognizes the finger as the operation site OP. The gesture detection unit 14 determines that the operation has been started by the second user U2. The correction unit 17 corrects the glass coordinate system LCA and the PJ coordinate system LCC with reference to the glass coordinate system LCB. As a result, the position of the PJ content PJC displayed by the projector 20C moves. The position of the glass content GC recognized by the second user U2 as an operation target does not change. Therefore, the second user U2 can continue to operate the glass content GC without any discomfort.
図示はしないが、グラス座標系LCAの相対位置が補正されることで、ARグラス20Aに表示されるグラスコンテンツGCの位置も変化する。よって、第1ユーザU1がARグラス20Aを介して認識するグラスコンテンツGCの位置は変化する。しかし、第1ユーザU1は、第2ユーザU2の操作を眺めているだけであり、グラスコンテンツGCに対する操作は行わない。そのため、第1ユーザU1が認識するグラスコンテンツGCの位置に若干の変動が生じても、第1ユーザU1に大きな違和感は生じない。
Although not shown, the position of the glass content GC displayed on the AR glass 20A also changes by correcting the relative position of the glass coordinate system LCA. Therefore, the position of the glass content GC recognized by the first user U1 via the AR glass 20A changes. However, the first user U1 is only looking at the operation of the second user U2, and does not perform an operation on the glass content GC. Therefore, even if the position of the glass content GC recognized by the first user U1 changes slightly, the first user U1 does not feel a great deal of discomfort.
図10の比較例では、第2ユーザU2がグラスコンテンツGCの操作を開始すると、グラス座標系LCAおよびグラス座標系LCBがPJ座標系LCCを基準として補正される。補正の基準をPJ座標系LCCとするのは、PJ座標系LCCが、SLAMを用いて生成されるグラス座標系LCBに比べて位置ずれを生じにくいからである。
In the comparative example of FIG. 10, when the second user U2 starts the operation of the glass content GC, the glass coordinate system LCA and the glass coordinate system LCB are corrected with reference to the PJ coordinate system LCC. The reason why the PJ coordinate system LCC is used as the correction reference is that the PJ coordinate system LCC is less likely to cause misalignment than the glass coordinate system LCB generated by using SLAM.
しかし、図10の例では、プロジェクタ20Cによって表示されるPJコンテンツPJCの位置は変わらずに、第2ユーザU2が操作対象として認識するグラスコンテンツGCの位置が変化する。第2ユーザU2が操作を開始したときに操作対象であるグラスコンテンツGCの位置が変化するため、第2ユーザU2に大きな違和感が生じる。グラスコンテンツGCの移動量が大きい場合には、グラスコンテンツGCから指が逸れてしまい、グラスコンテンツGCに対する操作を行うことができない。
However, in the example of FIG. 10, the position of the PJ content PJC displayed by the projector 20C does not change, but the position of the glass content GC recognized by the second user U2 as an operation target changes. Since the position of the glass content GC to be operated changes when the second user U2 starts the operation, the second user U2 feels a great sense of discomfort. When the movement amount of the glass content GC is large, the finger is deviated from the glass content GC, and the operation for the glass content GC cannot be performed.
以上のように、操作開始時に操作対象となるコンテンツCTの位置が変動すると、操作主体に大きな違和感が生じる。そのため、操作開始時は、操作主体が操作対象として認識するコンテンツCTの生成に用いられたローカル座標系LCを基準として他のローカル座標系LCの相対位置が補正される。コンテンツCTの操作終了後であれば、操作対象であったコンテンツCTの位置が変動しても操作主体に大きな違和感は生じない。よって、コンテンツCTの操作終了後に、グラス座標系LCAおよびグラス座標系LCBがPJ座標系LCCを基準として補正される。PJ座標系LCCを基準とすることで、実空間RSの実物体とARグラス20AおよびARグラス20BのコンテンツCTとの間に位置ずれが生じにくくなる。
As described above, if the position of the content CT to be operated changes at the start of the operation, a great sense of discomfort occurs in the operating subject. Therefore, at the start of the operation, the relative position of the other local coordinate system LC is corrected with reference to the local coordinate system LC used for generating the content CT recognized as the operation target by the operation subject. After the operation of the content CT is completed, even if the position of the content CT to be operated changes, the operation subject does not feel a great discomfort. Therefore, after the operation of the content CT is completed, the glass coordinate system LCA and the glass coordinate system LCB are corrected with reference to the PJ coordinate system LCC. By using the PJ coordinate system LCC as a reference, the positional shift between the real object of the real space RS and the content CT of the AR glasses 20A and the AR glasses 20B is less likely to occur.
図11ないし図13は、情報処理システム1の他の適用例を示す図である。
11 to 13 are diagrams showing other application examples of the information processing system 1.
処理装置10は、PJコンテンツPJCとグラスコンテンツGCとを組み合わせて1つのスライダを形成する。PJコンテンツPJCは、スライダのトラックを表示する。グラスコンテンツGCは、スライダのつまみとトラックの一部を表示する。ARグラス20AおよびARグラス20Bは、PJコンテンツPJCと重畳する位置にグラスコンテンツ領域GCAを設定し、グラスコンテンツ領域GCAにグラスコンテンツGCを表示する。
The processing device 10 combines the PJ content PJC and the glass content GC to form one slider. PJ Content PJC displays a slider track. The glass content GC displays a slider knob and a part of the track. The AR glass 20A and the AR glass 20B set the glass content area GCA at a position superimposing on the PJ content PJC, and display the glass content GC in the glass content area GCA.
図11では、PJコンテンツPJCとグラスコンテンツGCとは、互いに位置ずれを生じることなく表示されている。図12では、PJコンテンツPJCとグラスコンテンツGCとの間に位置ずれが生じている。グラスコンテンツGCはPJコンテンツPJCよりもユーザUの視点に近い位置に表示されている。そのため、グラスコンテンツ領域GCAによって遮蔽されるPJコンテンツPJCの領域SHAが広くなっている。また、グラスコンテンツGCに含まれるトラックの一部は、PJコンテンツPJCが表示するトラックと交差している。図13に示すように、ユーザUがスライダのつまみを操作し始めると、PJコンテンツPJCの位置がグラスコンテンツGCの位置に合わせて補正される。
In FIG. 11, the PJ content PJC and the glass content GC are displayed without causing misalignment with each other. In FIG. 12, there is a misalignment between the PJ content PJC and the glass content GC. The glass content GC is displayed at a position closer to the viewpoint of the user U than the PJ content PJC. Therefore, the area SHA of the PJ content PJC shielded by the glass content area GCA is widened. Further, a part of the tracks included in the glass content GC intersects with the tracks displayed by the PJ content PJC. As shown in FIG. 13, when the user U starts to operate the knob of the slider, the position of the PJ content PJC is corrected according to the position of the glass content GC.
図13では、グラスコンテンツGCに含まれるトラックの一部と、PJコンテンツPJCが表示するトラックと、が平行となるようにPJコンテンツPJCの相対位置が補正される。しかし、補正方法はこれに限られない。以下のような補正方法も考えられる。
In FIG. 13, the relative position of the PJ content PJC is corrected so that a part of the track included in the glass content GC and the track displayed by the PJ content PJC are parallel to each other. However, the correction method is not limited to this. The following correction methods are also conceivable.
(A)1点で補正
補正部17は、ローカル座標系LCの平行移動を行う座標変換処理によってローカル座標系LCの補正を行う。タッチ操作などにより、操作部位OPの座標として1つの操作点の座標が検出された場合、補正部17は、同一の操作点を示す2つのローカル座標系LCの座標の差分を求める。補正部17は、差分に基づいて1つのローカル座標系LCを平行移動させる。 (A) Correction at one point The correction unit 17 corrects the local coordinate system LC by a coordinate transformation process for translating the local coordinate system LC. When the coordinates of one operation point are detected as the coordinates of the operation site OP by a touch operation or the like, the correction unit 17 obtains the difference between the coordinates of the two local coordinate systems LC indicating the same operation point. The correction unit 17 translates one local coordinate system LC based on the difference.
補正部17は、ローカル座標系LCの平行移動を行う座標変換処理によってローカル座標系LCの補正を行う。タッチ操作などにより、操作部位OPの座標として1つの操作点の座標が検出された場合、補正部17は、同一の操作点を示す2つのローカル座標系LCの座標の差分を求める。補正部17は、差分に基づいて1つのローカル座標系LCを平行移動させる。 (A) Correction at one point The correction unit 17 corrects the local coordinate system LC by a coordinate transformation process for translating the local coordinate system LC. When the coordinates of one operation point are detected as the coordinates of the operation site OP by a touch operation or the like, the correction unit 17 obtains the difference between the coordinates of the two local coordinate systems LC indicating the same operation point. The correction unit 17 translates one local coordinate system LC based on the difference.
(B)2点で補正
補正部17は、ローカル座標系LCの平行移動、および、1つの回転軸を中心としたローカル座標系LCの回転移動を行う座標変換処理によってローカル座標系LCの補正を行う。スライダの操作などにより、操作部位OPの座標として2つの操作点の座標が検出された場合、補正部17は、2つのローカル座標系LCのそれぞれにおいて、2つの操作点を通る直線を求める。補正部17は、2つのローカル座標系LCで求められた2つの直線が一致するように1つのローカル座標系LCを平行移動および回転移動させる。 (B) Correction at two points The correction unit 17 corrects the local coordinate system LC by translation processing that translates the local coordinate system LC and rotates the local coordinate system LC around one rotation axis. conduct. When the coordinates of the two operation points are detected as the coordinates of the operation site OP by the operation of the slider or the like, the correction unit 17 obtains a straight line passing through the two operation points in each of the two local coordinate system LCs. The correction unit 17 translates and rotates one local coordinate system LC so that the two straight lines obtained by the two local coordinate system LCs match.
補正部17は、ローカル座標系LCの平行移動、および、1つの回転軸を中心としたローカル座標系LCの回転移動を行う座標変換処理によってローカル座標系LCの補正を行う。スライダの操作などにより、操作部位OPの座標として2つの操作点の座標が検出された場合、補正部17は、2つのローカル座標系LCのそれぞれにおいて、2つの操作点を通る直線を求める。補正部17は、2つのローカル座標系LCで求められた2つの直線が一致するように1つのローカル座標系LCを平行移動および回転移動させる。 (B) Correction at two points The correction unit 17 corrects the local coordinate system LC by translation processing that translates the local coordinate system LC and rotates the local coordinate system LC around one rotation axis. conduct. When the coordinates of the two operation points are detected as the coordinates of the operation site OP by the operation of the slider or the like, the correction unit 17 obtains a straight line passing through the two operation points in each of the two local coordinate system LCs. The correction unit 17 translates and rotates one local coordinate system LC so that the two straight lines obtained by the two local coordinate system LCs match.
(C)3点で補正
補正部17は、ローカル座標系LCの平行移動、および、2つの回転軸を中心としたローカル座標系LCの回転移動を行う座標変換処理によってローカル座標系LCの補正を行う。コンテンツCTの移動などにより、操作部位OPの座標として、同一直線上にない3つの操作点の座標が検出された場合、補正部17は、2つのローカル座標系LCのそれぞれにおいて、3つの操作点を含む平面を求める。補正部17は、2つのローカル座標系LCで求められた2つの平面が一致するように1つのローカル座標系LCを平行移動および回転移動させる。 (C) Correction at 3 points The correction unit 17 corrects the local coordinate system LC by translation processing that translates the local coordinate system LC and rotates the local coordinate system LC around the two rotation axes. conduct. When the coordinates of three operation points that are not on the same straight line are detected as the coordinates of the operation site OP due to the movement of the content CT or the like, the correction unit 17 performs the three operation points in each of the two local coordinate system LCs. Find the plane containing. The correction unit 17 translates and rotates one local coordinate system LC so that the two planes obtained by the two local coordinate system LCs match.
補正部17は、ローカル座標系LCの平行移動、および、2つの回転軸を中心としたローカル座標系LCの回転移動を行う座標変換処理によってローカル座標系LCの補正を行う。コンテンツCTの移動などにより、操作部位OPの座標として、同一直線上にない3つの操作点の座標が検出された場合、補正部17は、2つのローカル座標系LCのそれぞれにおいて、3つの操作点を含む平面を求める。補正部17は、2つのローカル座標系LCで求められた2つの平面が一致するように1つのローカル座標系LCを平行移動および回転移動させる。 (C) Correction at 3 points The correction unit 17 corrects the local coordinate system LC by translation processing that translates the local coordinate system LC and rotates the local coordinate system LC around the two rotation axes. conduct. When the coordinates of three operation points that are not on the same straight line are detected as the coordinates of the operation site OP due to the movement of the content CT or the like, the correction unit 17 performs the three operation points in each of the two local coordinate system LCs. Find the plane containing. The correction unit 17 translates and rotates one local coordinate system LC so that the two planes obtained by the two local coordinate system LCs match.
[1-2.情報処理方法]
図14は、本実施形態の情報処理方法を示すフローチャートである。 [1-2. Information processing method]
FIG. 14 is a flowchart showing the information processing method of the present embodiment.
図14は、本実施形態の情報処理方法を示すフローチャートである。 [1-2. Information processing method]
FIG. 14 is a flowchart showing the information processing method of the present embodiment.
ステップS1において、ジェスチャ検出部14は、ユーザUによってコンテンツCTの操作が行われたか否かを判定する。ステップS1においてコンテンツCTの操作が行われたと判定された場合には(ステップS1:Yes)、ステップS2に進む。ステップS1においてコンテンツCTの操作が行われていないと判定された場合には(ステップS1:No)、コンテンツCTの操作が検出されるまでステップS1が繰り返される。
In step S1, the gesture detection unit 14 determines whether or not the content CT operation has been performed by the user U. If it is determined that the content CT operation has been performed in step S1 (step S1: Yes), the process proceeds to step S2. If it is determined in step S1 that the content CT operation has not been performed (step S1: No), step S1 is repeated until the content CT operation is detected.
ステップS2において、誤差情報検出部16は、複数のローカル座標系LCの相対位置に誤差が生じているか否かを判定する。ステップS2において誤差が生じていると判定された場合には(ステップS2:Yes)、ステップS3に進む。ステップS2において誤差が生じていないと判定された場合には(ステップS2:No)、処理を終了する。
In step S2, the error information detection unit 16 determines whether or not an error has occurred in the relative positions of the plurality of local coordinate system LCs. If it is determined that an error has occurred in step S2 (step S2: Yes), the process proceeds to step S3. If it is determined in step S2 that no error has occurred (step S2: No), the process ends.
ステップS3において、ジェスチャ検出部14は、ユーザUによる操作の対象がPJコンテンツPJCであるか否かを判定する。ステップS3において、操作対象がPJコンテンツPJCであると判定された場合には(ステップS3:Yes)、ステップS4に進む。ステップS3において、操作対象がPJコンテンツPJCではないと判定された場合には(ステップS3:No)、ステップS8に進む。
In step S3, the gesture detection unit 14 determines whether or not the target of the operation by the user U is the PJ content PJC. If it is determined in step S3 that the operation target is PJ content PJC (step S3: Yes), the process proceeds to step S4. If it is determined in step S3 that the operation target is not the PJ content PJC (step S3: No), the process proceeds to step S8.
ステップS4において、インタラクション検出部15は、PJセンサデータ取得部12から出力されたセンサデータの精度を判定する。ステップS4においてセンサデータの精度が閾値よりも大きい場合には(ステップS4:No)、ステップS5に進む。ステップS4においてセンサデータの精度が閾値以下である場合には(ステップS4:Yes)、ステップS16に進む。ステップS16では、補正エラーが出力され補正は行われない。
In step S4, the interaction detection unit 15 determines the accuracy of the sensor data output from the PJ sensor data acquisition unit 12. If the accuracy of the sensor data is larger than the threshold value in step S4 (step S4: No), the process proceeds to step S5. If the accuracy of the sensor data is equal to or less than the threshold value in step S4 (step S4: Yes), the process proceeds to step S16. In step S16, a correction error is output and correction is not performed.
ステップS5において、補正部17は、PJ座標系LCCを基準として、グラス座標系LCAおよびグラス座標系LCBの相対位置を補正する。ステップS6において、補正部17は、第1座標変換式および第2座標変換式を用いて、ARグラス20AおよびARグラス20BのグラスコンテンツGCの位置を再計算する。ステップS7において、表示制御部19は、補正部17によって計算された位置に基づいて、グラスコンテンツGCの表示される位置を補正する。
In step S5, the correction unit 17 corrects the relative positions of the glass coordinate system LCA and the glass coordinate system LCB with reference to the PJ coordinate system LCC. In step S6, the correction unit 17 recalculates the positions of the glass contents GC of the AR glasses 20A and the AR glasses 20B by using the first coordinate conversion formula and the second coordinate conversion formula. In step S7, the display control unit 19 corrects the displayed position of the glass content GC based on the position calculated by the correction unit 17.
ステップS8において、ジェスチャ検出部14は、ユーザUによる操作の対象がグラスコンテンツGCであるか否かを判定する。ステップS8において操作対象がグラスコンテンツGCであると判定された場合には(ステップS8:Yes)、ステップS9に進む。ステップS8において操作対象がグラスコンテンツGCではないと判定された場合には(ステップS8:No)、ステップS16に進む。ステップS16では、補正エラーが出力され補正は行われない。
In step S8, the gesture detection unit 14 determines whether or not the target of the operation by the user U is the glass content GC. If it is determined in step S8 that the operation target is the glass content GC (step S8: Yes), the process proceeds to step S9. If it is determined in step S8 that the operation target is not the glass content GC (step S8: No), the process proceeds to step S16. In step S16, a correction error is output and correction is not performed.
ステップS9において、補正部17は、PJコンテンツPJCの位置が一時的に補正される位置を計算する。ここでは、まず、補正部17は、操作主体が操作対象として認識するグラスコンテンツGCの生成に用いられたグラス座標系を基準として、PJ座標系LCCの相対位置を補正する。そして、補正部17は、グラス座標系とPJ座標系LCCとの間で座標変換を行う座標変換式を用いて、PJコンテンツPJCの位置を計算する。
In step S9, the correction unit 17 calculates the position where the position of the PJ content PJC is temporarily corrected. Here, first, the correction unit 17 corrects the relative position of the PJ coordinate system LCC with reference to the glass coordinate system used to generate the glass content GC recognized as the operation target by the operation subject. Then, the correction unit 17 calculates the position of the PJ content PJC by using a coordinate conversion formula that performs coordinate conversion between the glass coordinate system and the PJ coordinate system LCC.
ステップS10において、表示制御部19は、補正部17によって計算された位置に基づいて、PJコンテンツPJCの表示される位置を補正する。
In step S10, the display control unit 19 corrects the displayed position of the PJ content PJC based on the position calculated by the correction unit 17.
ステップS11において、ジェスチャ検出部14は、ユーザUによるグラスコンテンツGCの操作が終了したか否かを判定する。ステップS11においてグラスコンテンツGCの操作が終了したと判定された場合には(ステップS11:Yes)、ステップS12に進む。ステップS11においてグラスコンテンツGCの操作が終了したと判定されない場合には(ステップS11:No)、ステップS9に戻る。
In step S11, the gesture detection unit 14 determines whether or not the operation of the glass content GC by the user U is completed. If it is determined in step S11 that the operation of the glass content GC is completed (step S11: Yes), the process proceeds to step S12. If it is not determined in step S11 that the operation of the glass content GC is completed (step S11: No), the process returns to step S9.
ステップS12において、補正部17は、PJ座標系LCCを基準として、グラス座標系LCAおよびグラス座標系LCBの相対位置を補正する。ステップS13において、補正部17は、第1座標変換式および第2座標変換式を用いて、ARグラス20AおよびARグラス20BグラスコンテンツGCの位置を再計算する。ステップS14において、表示制御部19は、補正部17によって計算された位置に基づいて、グラスコンテンツGCの表示される位置を補正する。
In step S12, the correction unit 17 corrects the relative positions of the glass coordinate system LCA and the glass coordinate system LCB with reference to the PJ coordinate system LCC. In step S13, the correction unit 17 recalculates the positions of the AR glass 20A and the AR glass 20B glass content GC by using the first coordinate conversion formula and the second coordinate conversion formula. In step S14, the display control unit 19 corrects the displayed position of the glass content GC based on the position calculated by the correction unit 17.
ステップS15において、補正部17は、グラス座標系を基準としたPJ座標系LCCの補正を終了する。表示制御部19は、PJコンテンツPJCの位置を、PJ座標系LCCを用いて設定された位置に移動する。
In step S15, the correction unit 17 ends the correction of the PJ coordinate system LCC with reference to the glass coordinate system. The display control unit 19 moves the position of the PJ content PJC to the position set by using the PJ coordinate system LCC.
[1-3.効果]
情報処理システム1は、誤差情報検出部16と補正部17とを有する。誤差情報検出部16は、複数のローカル座標系LCの相対位置に生じた誤差の情報を検出する。補正部17は、コンテンツCTの操作が開始されたことに応答して、特定のローカル座標系LCに対する他の全てのローカル座標系LCの相対位置を誤差の情報に基づいて補正する。特定のローカル座標系LCは、複数のローカル座標系LCのうちコンテンツCTの操作主体が操作対象として認識するコンテンツCTの生成に用いられたローカル座標系LCである。本実施形態の情報処理方法は、上述した情報処理システム1の情報処理がコンピュータにより実行される。本実施形態のプログラム31は、上述した情報処理システム1の情報処理をコンピュータに実現させる。 [1-3. effect]
The information processing system 1 has an error information detection unit 16 and a correction unit 17. The error information detection unit 16 detects information on errors that occur at relative positions of a plurality of local coordinate systems LC. In response to the start of the operation of the content CT, the correction unit 17 corrects the relative positions of all the other local coordinate system LCs with respect to the specific local coordinate system LC based on the error information. The specific local coordinate system LC is a local coordinate system LC used to generate a content CT recognized as an operation target by the operating subject of the content CT among a plurality of local coordinate system LCs. In the information processing method of the present embodiment, the information processing of the above-mentioned information processing system 1 is executed by a computer. The program 31 of the present embodiment makes the computer realize the information processing of the above-mentioned information processing system 1.
情報処理システム1は、誤差情報検出部16と補正部17とを有する。誤差情報検出部16は、複数のローカル座標系LCの相対位置に生じた誤差の情報を検出する。補正部17は、コンテンツCTの操作が開始されたことに応答して、特定のローカル座標系LCに対する他の全てのローカル座標系LCの相対位置を誤差の情報に基づいて補正する。特定のローカル座標系LCは、複数のローカル座標系LCのうちコンテンツCTの操作主体が操作対象として認識するコンテンツCTの生成に用いられたローカル座標系LCである。本実施形態の情報処理方法は、上述した情報処理システム1の情報処理がコンピュータにより実行される。本実施形態のプログラム31は、上述した情報処理システム1の情報処理をコンピュータに実現させる。 [1-3. effect]
The information processing system 1 has an error information detection unit 16 and a correction unit 17. The error information detection unit 16 detects information on errors that occur at relative positions of a plurality of local coordinate systems LC. In response to the start of the operation of the content CT, the correction unit 17 corrects the relative positions of all the other local coordinate system LCs with respect to the specific local coordinate system LC based on the error information. The specific local coordinate system LC is a local coordinate system LC used to generate a content CT recognized as an operation target by the operating subject of the content CT among a plurality of local coordinate system LCs. In the information processing method of the present embodiment, the information processing of the above-mentioned information processing system 1 is executed by a computer. The program 31 of the present embodiment makes the computer realize the information processing of the above-mentioned information processing system 1.
この構成によれば、コンテンツCTの操作の開始時に、特定のローカル座標系LC以外のローカル座標系LC(原点位置および座標軸の位置)が、特定のローカル座標系LCとの相対位置に誤差が生じない位置に移動する。操作主体が認識するコンテンツCTの生成に関わるローカル座標系LC(特定のローカル座標系LC)は移動しない。そのため、操作主体が認識するコンテンツCTの位置は変更されない。よって、操作主体は違和感なくコンテンツCTの操作を続けることができる。
According to this configuration, at the start of the operation of the content CT, the local coordinate system LC (origin position and coordinate axis position) other than the specific local coordinate system LC has an error in the relative position with the specific local coordinate system LC. Move to no position. The local coordinate system LC (specific local coordinate system LC) related to the generation of the content CT recognized by the operating subject does not move. Therefore, the position of the content CT recognized by the operating subject is not changed. Therefore, the operating subject can continue to operate the content CT without feeling uncomfortable.
誤差情報検出部16は、例えば、ローカル座標系LCごとに検出された、操作主体のコンテンツCTとインタラクションする部位OPの座標に基づいて誤差の情報を検出する。
The error information detection unit 16 detects error information based on, for example, the coordinates of the part OP that interacts with the content CT of the operation subject, which is detected for each local coordinate system LC.
この構成によれば、操作部位OPの位置が各ローカル座標系LCの座標を用いて検出される。各ローカル座標系LCにおける操作部位OPの座標を比較することによって、ローカル座標系LCどうしの相対位置に生じた誤差が検出される。この構成では、操作が行われるタイミングで上述の誤差が検出される。そのため、操作が開始されるタイミングでローカル座標系LCの補正を行うことができる。
According to this configuration, the position of the operation site OP is detected using the coordinates of each local coordinate system LC. By comparing the coordinates of the operation site OP in each local coordinate system LC, an error generated in the relative position between the local coordinate system LCs is detected. In this configuration, the above error is detected at the timing when the operation is performed. Therefore, the local coordinate system LC can be corrected at the timing when the operation is started.
また、この構成では、マーカと呼ばれる機器20の位置姿勢情報を補正するための部材が不要である。マーカは、ARグラスやヘッドマウントディスプレイなどの分野で用いられる。マーカは、実空間RSの特定の位置に設置される。機器20を装着したユーザUは、位置姿勢情報に生じた誤差を補正する際にマーカの位置まで移動し、マーカをカメラで撮影する。機器20に記憶されているマーカの画像とカメラで撮影したマーカの画像とを比較することで、位置姿勢情報の誤差(ワールド座標系WCとローカル座標系LCとの相対位置に生じた誤差)を補正することができる。
Further, in this configuration, a member called a marker for correcting the position / orientation information of the device 20 is unnecessary. Markers are used in fields such as AR glasses and head-mounted displays. The marker is installed at a specific position in the real space RS. The user U equipped with the device 20 moves to the position of the marker when correcting the error generated in the position / attitude information, and takes a picture of the marker with the camera. By comparing the image of the marker stored in the device 20 with the image of the marker taken by the camera, an error in the position / orientation information (error generated in the relative position between the world coordinate system WC and the local coordinate system LC) can be obtained. It can be corrected.
マーカを用いた補正方法では、ユーザUがマーカの位置まで移動しなければならない。しかし、本実施形態では、機器20ごとに検出された操作部位OPの座標を比較することで、ローカル座標系LCどうしの相対位置に生じた誤差が検出される。よって、マーカを用いることなく簡便にローカル座標系LCの補正を行うことができる。
In the correction method using the marker, the user U must move to the position of the marker. However, in the present embodiment, by comparing the coordinates of the operation site OP detected for each device 20, an error generated in the relative position between the local coordinate system LCs is detected. Therefore, the local coordinate system LC can be easily corrected without using a marker.
補正部17は、例えば、コンテンツCTの操作が終了したことに応答して、特定のローカル座標系LCを基準とした補正を終了する。その後、補正部17は、例えば、基準ローカル座標系に対する他の全てのローカル座標系LCの相対位置を誤差の情報に基づいて補正する。基準ローカル座標系は、例えば、特定のローカル座標系LCよりもワールド座標系との相対位置に生じた誤差が小さいローカル座標系LCである。
For example, the correction unit 17 ends the correction based on the specific local coordinate system LC in response to the completion of the operation of the content CT. After that, the correction unit 17 corrects, for example, the relative positions of all other local coordinate system LCs with respect to the reference local coordinate system based on the error information. The reference local coordinate system is, for example, a local coordinate system LC having a smaller error in a position relative to the world coordinate system than a specific local coordinate system LC.
この構成によれば、コンテンツCTの操作が終了したタイミングで、補正の基準となるローカル座標系LCが、特定のローカル座標系LCから基準ローカル座標系に切り替えられる。基準ローカル座標系を基準とした座標の補正が行われるため、実空間RSの実物体と各機器20のコンテンツCTとの間に位置ずれが生じにくい。
According to this configuration, the local coordinate system LC that is the reference for correction is switched from the specific local coordinate system LC to the reference local coordinate system at the timing when the operation of the content CT is completed. Since the coordinates are corrected with reference to the reference local coordinate system, the positional deviation between the real object of the real space RS and the content CT of each device 20 is unlikely to occur.
情報処理システム1は、例えば、表示制御部19を有する。表示制御部19は、例えば、コンテンツCTの操作が終了したことに応答して、コンテンツCTの位置を、基準ローカル座標系を基準とした補正によって算出される位置まで徐々に変更する。
The information processing system 1 has, for example, a display control unit 19. For example, the display control unit 19 gradually changes the position of the content CT to the position calculated by the correction based on the reference local coordinate system in response to the completion of the operation of the content CT.
この構成によれば、コンテンツCTの位置が急峻に変化しない。そのため、操作主体に違和感が生じにくい。
According to this configuration, the position of the content CT does not change suddenly. Therefore, the operation subject is less likely to feel uncomfortable.
補正部17は、例えば、ローカル座標系LCの平行移動を行う座標変換処理によってローカル座標系LCの補正を行う。
The correction unit 17 corrects the local coordinate system LC by, for example, a coordinate conversion process for translating the local coordinate system LC.
この構成によれば、ローカル座標系LCの補正が少ない計算量で行われる。
According to this configuration, the correction of the local coordinate system LC is performed with a small amount of calculation.
補正部17は、例えば、ローカル座標系LCの平行移動、および、1以上の回転軸を中心としたローカル座標系LCの回転移動を行う座標変換処理によってローカル座標系LCの補正を行う。
The correction unit 17 corrects the local coordinate system LC by, for example, a coordinate transformation process for translating the local coordinate system LC and rotating the local coordinate system LC around one or more rotation axes.
この構成によれば、ローカル座標系LCの補正が精度よく行われる。
According to this configuration, the correction of the local coordinate system LC is performed with high accuracy.
[2.第2実施形態]
[2-1.情報処理システムの構成]
図15は、第2実施形態の情報処理システム2の概略図である。
本実施形態において第1実施形態と異なる点は、使用されるコンテンツCTがグラスコンテンツGCのみである点と、基準ローカル座標系が複数の機器の動作履歴に基づいて判定される点である。以下、第1実施形態との相違点を中心に説明を行う。 [2. Second Embodiment]
[2-1. Information processing system configuration]
FIG. 15 is a schematic diagram of theinformation processing system 2 of the second embodiment.
The difference from the first embodiment in this embodiment is that the content CT used is only the glass content GC, and the reference local coordinate system is determined based on the operation history of a plurality of devices. Hereinafter, the differences from the first embodiment will be mainly described.
[2-1.情報処理システムの構成]
図15は、第2実施形態の情報処理システム2の概略図である。
本実施形態において第1実施形態と異なる点は、使用されるコンテンツCTがグラスコンテンツGCのみである点と、基準ローカル座標系が複数の機器の動作履歴に基づいて判定される点である。以下、第1実施形態との相違点を中心に説明を行う。 [2. Second Embodiment]
[2-1. Information processing system configuration]
FIG. 15 is a schematic diagram of the
The difference from the first embodiment in this embodiment is that the content CT used is only the glass content GC, and the reference local coordinate system is determined based on the operation history of a plurality of devices. Hereinafter, the differences from the first embodiment will be mainly described.
図15は、情報処理システム2をテクノスポーツに適用した例を示す。プレイヤとなる複数のユーザUの頭部には、コンテンツCTを表示する機器20がそれぞれ装着されている。機器20としては、例えば、ARグラス20Aが用いられる。ARグラス20Aは、ボールを示す仮想オブジェクトをグラスコンテンツGCとして表示する。ユーザUは、グラスコンテンツGCとして表示されるボールを相手ゴールに入れてゴール数を競う。
FIG. 15 shows an example in which the information processing system 2 is applied to techno sports. A device 20 for displaying the content CT is attached to the heads of a plurality of users U who are players. As the device 20, for example, AR glass 20A is used. The AR glass 20A displays a virtual object showing the ball as the glass content GC. The user U puts the ball displayed as the glass content GC into the opponent's goal and competes for the number of goals.
処理装置40は、例えば、基準ローカル座標系判定部41を有する。基準ローカル座標系判定部41は、例えば、複数のARグラス20Aの動作履歴に基づいて、ワールド座標系WCとの相対位置に生じた誤差が最も小さいグラス座標系を基準ローカル座標系と判定する。
The processing device 40 has, for example, a reference local coordinate system determination unit 41. The reference local coordinate system determination unit 41 determines, for example, the glass coordinate system having the smallest error in the relative position with the world coordinate system WC as the reference local coordinate system based on the operation history of the plurality of AR glasses 20A.
ARグラス20Aの動作履歴は、例えば、ARグラス20Aで検出されたセンサデータに基づいて判定される。例えば、空間認識部13は、SLAMを用いて、ARグラス20Aごとに環境マップの作成および環境マップ内のARグラス20Aの位置の推定を行う。基準ローカル座標系判定部41は、環境マップ内のARグラス20Aの移動履歴に基づいて、最後に基準ローカル座標系に対してグラス座標系LCAの相対位置が補正されてから現在までにARグラス20Aが移動した距離を算出する。基準ローカル座標系判定部41は、ARグラス20Aごとに算出された、基準ローカル座標系を用いた補正処理後の移動距離を比較し、最も移動距離が小さいARグラス20Aのグラス座標系LCAを基準ローカル座標系と判定する。
The operation history of the AR glass 20A is determined based on, for example, the sensor data detected by the AR glass 20A. For example, the space recognition unit 13 uses SLAM to create an environment map for each AR glass 20A and estimate the position of the AR glass 20A in the environment map. The reference local coordinate system determination unit 41 has been using the AR glass 20A since the last time the relative position of the glass coordinate system LCA was corrected with respect to the reference local coordinate system based on the movement history of the AR glass 20A in the environment map. Calculates the distance traveled by. The reference local coordinate system determination unit 41 compares the movement distances after the correction processing using the reference local coordinate system calculated for each AR glass 20A, and uses the glass coordinate system LCA of the AR glass 20A having the smallest movement distance as a reference. Judged as a local coordinate system.
基準ローカル座標系判定部41は、ARグラス20Aごとの加速度の履歴に基づいて、基準ローカル座標系を判定してもよい。例えば、基準ローカル座標系判定部41は、センサデータに含まれる加速度データに基づいて、ARグラス20Aごとに、加速度の履歴を検出する。基準ローカル座標系判定部41は、ARグラス20Aの加速度の履歴に基づいて、最後に基準ローカル座標系に対してグラス座標系の相対位置が補正されてから現在までに、閾値を超える加速度がARグラス20Aに加えられた時間を算出する。基準ローカル座標系判定部41は、ARグラス20Aごとに算出された上記の時間を比較し、上記の時間が最も短いARグラス20Aのグラス座標系LCAを基準ローカル座標系と判定する。閾値は、例えば、登録データ52に含まれる。
The reference local coordinate system determination unit 41 may determine the reference local coordinate system based on the history of acceleration for each AR glass 20A. For example, the reference local coordinate system determination unit 41 detects the acceleration history for each AR glass 20A based on the acceleration data included in the sensor data. Based on the acceleration history of the AR glass 20A, the reference local coordinate system determination unit 41 has AR that exceeds the threshold value since the last correction of the relative position of the glass coordinate system with respect to the reference local coordinate system. The time applied to the glass 20A is calculated. The reference local coordinate system determination unit 41 compares the above times calculated for each AR glass 20A, and determines that the glass coordinate system LCA of the AR glass 20A having the shortest time is the reference local coordinate system. The threshold value is included in the registration data 52, for example.
補正部17は、グラスコンテンツGCの操作が開始されたことに応答して、特定のグラス座標系LCAに対する他の全てのグラス座標系LCAの相対位置を誤差の情報に基づいて補正する。特定のグラス座標系LCAは、グラスコンテンツGCの操作主体が操作対象として認識するグラスコンテンツGCの生成に用いられたグラス座標系LCAである。この補正により、例えば、特定のグラス座標系LCA以外の他のグラス座標系LCAの原点位置および座標軸の位置は、特定のグラス座標系LCAとの相対位置の誤差が小さくなる位置に移動する。
The correction unit 17 corrects the relative positions of all other glass coordinate system LCA with respect to the specific glass coordinate system LCA based on the error information in response to the start of the operation of the glass content GC. The specific glass coordinate system LCA is the glass coordinate system LCA used to generate the glass content GC recognized as the operation target by the operating subject of the glass content GC. By this correction, for example, the origin position and the position of the coordinate axis of other glass coordinate system LCA other than the specific glass coordinate system LCA move to a position where the error of the relative position with the specific glass coordinate system LCA becomes small.
補正部17は、グラスコンテンツGCの操作が終了したことに応答して、特定のグラス座標系LCAを基準とした補正を終了する。そして、補正部17は、例えば、補正の基準となるグラス座標系LCAを特定のグラス座標系LCAから、基準ローカル座標系判定部41によって判定された基準ローカル座標系に切り替える。補正部17は、例えば、基準ローカル座標系に対する他の全てのグラス座標系LCAの相対位置を誤差の情報に基づいて補正する。この補正により、例えば、基準ローカル座標系以外の他のグラス座標系LCAの原点位置および座標軸の位置は、基準ローカル座標系との相対位置の誤差が小さくなる位置に移動する。
The correction unit 17 ends the correction based on the specific glass coordinate system LCA in response to the completion of the operation of the glass content GC. Then, the correction unit 17 switches, for example, the glass coordinate system LCA that is the reference for correction from the specific glass coordinate system LCA to the reference local coordinate system determined by the reference local coordinate system determination unit 41. The correction unit 17 corrects, for example, the relative positions of all other glass coordinate system LCA with respect to the reference local coordinate system based on the error information. By this correction, for example, the origin position and the position of the coordinate axis of the glass coordinate system LCA other than the reference local coordinate system are moved to the position where the error of the relative position with the reference local coordinate system becomes small.
記憶装置50は、例えば、処理装置40が実行するプログラム51と、登録データ52と、を記憶する。プログラム51は、本実施形態に係る情報処理をコンピュータに実行させるプログラムである。処理装置40は、記憶装置50に記憶されているプログラム51にしたがって各種の処理を行う。処理装置40は、プログラム51を実行することにより、グラスセンサデータ取得部11、空間認識部13、ジェスチャ検出部14、基準ローカル座標系判定部41、誤差情報検出部16、補正部17、コンテンツ生成部18および表示制御部19として機能する。
The storage device 50 stores, for example, the program 51 executed by the processing device 40 and the registration data 52. The program 51 is a program for causing a computer to execute information processing according to the present embodiment. The processing device 40 performs various processes according to the program 51 stored in the storage device 50. By executing the program 51, the processing device 40 executes the glass sensor data acquisition unit 11, the space recognition unit 13, the gesture detection unit 14, the reference local coordinate system determination unit 41, the error information detection unit 16, the correction unit 17, and the content generation. It functions as a unit 18 and a display control unit 19.
[2-2.効果]
本実施形態では、基準ローカル座標系が複数のARグラス20Aの動作履歴に基づいて判定される。そのため、ARグラス20Aの動作に起因してローカル座標系LCにずれが生じる場合でも、補正の基準となる基準ローカル座標系を適切に選択することができる。 [2-2. effect]
In this embodiment, the reference local coordinate system is determined based on the operation history of the plurality ofAR glasses 20A. Therefore, even when the local coordinate system LC is deviated due to the operation of the AR glass 20A, the reference local coordinate system as the reference for correction can be appropriately selected.
本実施形態では、基準ローカル座標系が複数のARグラス20Aの動作履歴に基づいて判定される。そのため、ARグラス20Aの動作に起因してローカル座標系LCにずれが生じる場合でも、補正の基準となる基準ローカル座標系を適切に選択することができる。 [2-2. effect]
In this embodiment, the reference local coordinate system is determined based on the operation history of the plurality of
[2-3.変形例]
図16および図17は、情報処理システム2を、ロボットRBに設定されたローカル座標系LCの補正に適用した例を示す図である。 [2-3. Modification example]
16 and 17 are diagrams showing an example in which theinformation processing system 2 is applied to the correction of the local coordinate system LC set in the robot RB.
図16および図17は、情報処理システム2を、ロボットRBに設定されたローカル座標系LCの補正に適用した例を示す図である。 [2-3. Modification example]
16 and 17 are diagrams showing an example in which the
図16に示すように、処理の対象となる複数の機器20には、ARグラス20AおよびロボットRBが含まれる。ロボットRBは、例えば、SLAMを用いて自律移動するロボットである。ロボットRBには、ローカル座標系LCとして、ロボット座標系LCRが設定されている。
As shown in FIG. 16, the plurality of devices 20 to be processed include the AR glass 20A and the robot RB. The robot RB is, for example, a robot that autonomously moves using SLAM. The robot coordinate system LCR is set as the local coordinate system LC in the robot RB.
例えば、処理装置40は、ロボット座標系LCRを用いてボールを表すコンテンツCT(ロボットコンテンツRC)を生成する。ロボットRBは、ボールが実空間RSに存在すると認識する。ARグラス20Aは、同じボールを表すグラスコンテンツGCを実空間RSに重畳して表示する。
For example, the processing device 40 uses the robot coordinate system LCR to generate a content CT (robot content RC) representing a ball. The robot RB recognizes that the ball exists in the real space RS. The AR glass 20A superimposes and displays the glass content GC representing the same ball on the real space RS.
本変形例でも、ロボットRBまたはユーザUがコンテンツCTに対して操作を開始した際に、操作主体が認識するコンテンツCTの生成に用いられた特定のローカル座標系LC以外のローカル座標系LCの相対位置が補正される。そして、コンテンツCTへの操作が終了した後に、補正の基準となるローカル座標系LCが、特定のローカル座標系LCから基準ローカル座標系に切り替えられる。ローカル座標系LCの補正方法は、第2実施形態で説明したものと同様である。
Also in this modification, the relative of the local coordinate system LC other than the specific local coordinate system LC used to generate the content CT recognized by the operating subject when the robot RB or the user U starts the operation on the content CT. The position is corrected. Then, after the operation to the content CT is completed, the local coordinate system LC that is the reference of the correction is switched from the specific local coordinate system LC to the reference local coordinate system. The correction method of the local coordinate system LC is the same as that described in the second embodiment.
例えば、ロボットRBは、デプスセンサ、加速度センサ、マイクロフォンおよびカメラを含む複数のセンサを有する。ロボットRBは、複数のセンサによって検出されたセンサデータに基づいて、ロボットRBの周囲の実空間RSの認識、実空間RS内のロボットRBの位置の推定、および、ロボットRBの周囲の実物体の検出を行う。実空間RSの認識および実空間RS内の位置の推定は、例えば、SLAMを用いて行われる。ロボットRBは、例えば、SLAMを用いて生成されたロボット座標系LCRの情報(原点位置および座標軸の位置に関する情報)および環境マップの情報を誤差情報検出部16に出力する。
For example, the robot RB has a plurality of sensors including a depth sensor, an acceleration sensor, a microphone and a camera. The robot RB recognizes the real space RS around the robot RB, estimates the position of the robot RB in the real space RS, and the real object around the robot RB based on the sensor data detected by a plurality of sensors. Perform detection. Recognition of the real space RS and estimation of the position in the real space RS are performed using, for example, SLAM. The robot RB outputs, for example, the robot coordinate system LCR information (information regarding the origin position and the position of the coordinate axis) and the environment map information generated by using SLAM to the error information detection unit 16.
図17に示すように、ロボットRBは、センサデータに基づいて、ロボット座標系LCRにおける操作部位OP(ロボットRBがロボットコンテンツRCとインタラクションする部位)の座標を検出する。ロボットRBは、操作部位OPの座標の情報を誤差情報検出部16に出力する。誤差情報検出部16は、例えば、ロボット座標系LCRにおける操作部位OPの座標とグラス座標系LCAにおける操作部位OPの座標とに基づいて、ロボット座標系LCRとグラス座標系LCAとの間の相対位置に生じた誤差の情報を検出する。
As shown in FIG. 17, the robot RB detects the coordinates of the operation part OP (the part where the robot RB interacts with the robot content RC) in the robot coordinate system LCR based on the sensor data. The robot RB outputs information on the coordinates of the operation site OP to the error information detection unit 16. The error information detection unit 16 is, for example, a relative position between the robot coordinate system LCR and the glass coordinate system LCA based on the coordinates of the operation site OP in the robot coordinate system LCR and the coordinates of the operation site OP in the glass coordinate system LCA. Detects the information of the error that occurred in.
補正部17は、例えば、コンテンツCTの操作が開始されたことに応答して、ロボット座標系LCRに対するグラス座標系LCAの相対位置を誤差の情報に基づいて補正する。この補正により、ユーザUがARグラス20Aを介して認識するグラスコンテンツGCの位置が、ロボットRBが操作対象として認識するロボットコンテンツRCの位置に合わせて補正される。
For example, the correction unit 17 corrects the relative position of the glass coordinate system LCA with respect to the robot coordinate system LCR based on the error information in response to the start of the operation of the content CT. By this correction, the position of the glass content GC recognized by the user U via the AR glass 20A is corrected according to the position of the robot content RC recognized by the robot RB as an operation target.
基準ローカル座標系判定部41は、ロボットRBの動作履歴およびARグラス20Aの動作履歴に基づいて、基準ローカル座標系を判定する。基準ローカル座標系がグラス座標系LCAである場合には、補正部17は、ロボットRBによるロボットコンテンツRCの操作が終了した際に、補正の基準となるローカル座標系LCをロボット座標系LCRからグラス座標系LCAに切り替える。
The reference local coordinate system determination unit 41 determines the reference local coordinate system based on the operation history of the robot RB and the operation history of the AR glass 20A. When the reference local coordinate system is the glass coordinate system LCA, the correction unit 17 sets the local coordinate system LC as the correction reference from the robot coordinate system LCR to the glass when the operation of the robot content RC by the robot RB is completed. Switch to the coordinate system LCA.
この変形例では、ロボットRBがロボットコンテンツRCを操作する際に、操作対象となるロボットコンテンツRCの位置が変化しない。そのため、ロボットRBの操作に混乱が生じにくい。
In this modification, when the robot RB operates the robot content RC, the position of the robot content RC to be operated does not change. Therefore, the operation of the robot RB is less likely to be confused.
なお、本明細書に記載された効果はあくまで例示であって限定されるものでは無く、また他の効果があってもよい。
It should be noted that the effects described in the present specification are merely examples and are not limited, and other effects may be obtained.
なお、本技術は以下のような構成も取ることができる。
Note that this technology can also take the following configurations.
(1)
複数のローカル座標系の相対位置に生じた誤差の情報を検出する誤差情報検出部と、
コンテンツの操作が開始されたことに応答して、前記複数のローカル座標系のうち前記コンテンツの操作主体が認識する前記コンテンツの生成に用いられた特定のローカル座標系に対する他の全てのローカル座標系の相対位置を前記誤差の情報に基づいて補正する補正部と、
を有する情報処理システム。
(2)
前記誤差情報検出部は、ローカル座標系ごとに検出された、前記操作主体の前記コンテンツとインタラクションする部位の座標に基づいて前記誤差の情報を検出する
上記(1)に記載の情報処理システム。
(3)
前記補正部は、前記コンテンツの操作が終了したことに応答して、前記特定のローカル座標系を基準とした補正を終了し、前記特定のローカル座標系よりもワールド座標系との相対位置に生じた誤差が小さい基準ローカル座標系に対する他の全てのローカル座標系の相対位置を前記誤差の情報に基づいて補正する
上記(1)または(2)に記載の情報処理システム。
(4)
前記コンテンツの操作が終了したことに応答して、前記コンテンツの位置を、前記基準ローカル座標系を基準とした補正によって算出される位置まで徐々に変更する表示制御部を有する
上記(3)に記載の情報処理システム。
(5)
前記複数のローカル座標系がそれぞれ設定された複数の機器の動作履歴に基づいて、前記ワールド座標系との相対位置に生じた誤差が最も小さいローカル座標系を前記基準ローカル座標系と判定する基準ローカル座標系判定部を有する
上記(3)または(4)に記載の情報処理システム。
(6)
前記補正部は、ローカル座標系の平行移動を行う座標変換処理によってローカル座標系の補正を行う
上記(1)ないし(5)のいずれか1つに記載の情報処理システム。
(7)
前記補正部は、ローカル座標系の平行移動、および、1以上の回転軸を中心としたローカル座標系の回転移動を行う座標変換処理によってローカル座標系の補正を行う
上記(1)ないし(5)のいずれか1つに記載の情報処理システム。
(8)
複数のローカル座標系の相対位置に生じた誤差の情報を検出し、
コンテンツの操作が開始されたことに応答して、前記複数のローカル座標系のうち前記コンテンツの操作主体が認識する前記コンテンツの生成に用いられた特定のローカル座標系に対する他の全てのローカル座標系の相対位置を前記誤差の情報に基づいて補正する、
ことを有する、コンピュータにより実行される情報処理方法。
(9)
複数のローカル座標系の相対位置に生じた誤差の情報を検出し、
コンテンツの操作が開始されたことに応答して、前記複数のローカル座標系のうち前記コンテンツの操作主体が認識する前記コンテンツの生成に用いられた特定のローカル座標系に対する他の全てのローカル座標系の相対位置を前記誤差の情報に基づいて補正する、
ことをコンピュータに実現させるプログラム。 (1)
An error information detector that detects information on errors that occur at relative positions in multiple local coordinate systems,
All other local coordinate systems for the particular local coordinate system used to generate the content recognized by the content operator among the plurality of local coordinate systems in response to the initiation of the content operation. A correction unit that corrects the relative position of the
Information processing system with.
(2)
The information processing system according to (1) above, wherein the error information detection unit detects information on the error based on the coordinates of a portion that interacts with the content of the operating subject, which is detected for each local coordinate system.
(3)
In response to the completion of the operation of the content, the correction unit ends the correction based on the specific local coordinate system, and occurs at a position relative to the world coordinate system rather than the specific local coordinate system. The information processing system according to (1) or (2) above, which corrects the relative positions of all other local coordinate systems with respect to the reference local coordinate system having a small error based on the information of the error.
(4)
Described in (3) above, the present invention has a display control unit having a display control unit that gradually changes the position of the content to a position calculated by a correction based on the reference local coordinate system in response to the completion of the operation of the content. Information processing system.
(5)
Based on the operation history of a plurality of devices in which the plurality of local coordinate systems are set, the local coordinate system having the smallest error in the position relative to the world coordinate system is determined to be the reference local coordinate system. The information processing system according to (3) or (4) above, which has a coordinate system determination unit.
(6)
The information processing system according to any one of (1) to (5) above, wherein the correction unit corrects the local coordinate system by a coordinate transformation process for translating the local coordinate system.
(7)
The correction unit corrects the local coordinate system by translation processing for parallel movement of the local coordinate system and rotational movement of the local coordinate system around one or more rotation axes (1) to (5). The information processing system according to any one of the above.
(8)
Detects information on errors that occur in relative positions in multiple local coordinate systems,
All other local coordinate systems for the particular local coordinate system used to generate the content recognized by the content operator among the plurality of local coordinate systems in response to the initiation of the content operation. The relative position of is corrected based on the above error information.
A method of information processing performed by a computer that has.
(9)
Detects information on errors that occur in relative positions in multiple local coordinate systems,
All other local coordinate systems for the particular local coordinate system used to generate the content recognized by the content operator among the plurality of local coordinate systems in response to the initiation of the content operation. The relative position of is corrected based on the above error information.
A program that makes a computer realize that.
複数のローカル座標系の相対位置に生じた誤差の情報を検出する誤差情報検出部と、
コンテンツの操作が開始されたことに応答して、前記複数のローカル座標系のうち前記コンテンツの操作主体が認識する前記コンテンツの生成に用いられた特定のローカル座標系に対する他の全てのローカル座標系の相対位置を前記誤差の情報に基づいて補正する補正部と、
を有する情報処理システム。
(2)
前記誤差情報検出部は、ローカル座標系ごとに検出された、前記操作主体の前記コンテンツとインタラクションする部位の座標に基づいて前記誤差の情報を検出する
上記(1)に記載の情報処理システム。
(3)
前記補正部は、前記コンテンツの操作が終了したことに応答して、前記特定のローカル座標系を基準とした補正を終了し、前記特定のローカル座標系よりもワールド座標系との相対位置に生じた誤差が小さい基準ローカル座標系に対する他の全てのローカル座標系の相対位置を前記誤差の情報に基づいて補正する
上記(1)または(2)に記載の情報処理システム。
(4)
前記コンテンツの操作が終了したことに応答して、前記コンテンツの位置を、前記基準ローカル座標系を基準とした補正によって算出される位置まで徐々に変更する表示制御部を有する
上記(3)に記載の情報処理システム。
(5)
前記複数のローカル座標系がそれぞれ設定された複数の機器の動作履歴に基づいて、前記ワールド座標系との相対位置に生じた誤差が最も小さいローカル座標系を前記基準ローカル座標系と判定する基準ローカル座標系判定部を有する
上記(3)または(4)に記載の情報処理システム。
(6)
前記補正部は、ローカル座標系の平行移動を行う座標変換処理によってローカル座標系の補正を行う
上記(1)ないし(5)のいずれか1つに記載の情報処理システム。
(7)
前記補正部は、ローカル座標系の平行移動、および、1以上の回転軸を中心としたローカル座標系の回転移動を行う座標変換処理によってローカル座標系の補正を行う
上記(1)ないし(5)のいずれか1つに記載の情報処理システム。
(8)
複数のローカル座標系の相対位置に生じた誤差の情報を検出し、
コンテンツの操作が開始されたことに応答して、前記複数のローカル座標系のうち前記コンテンツの操作主体が認識する前記コンテンツの生成に用いられた特定のローカル座標系に対する他の全てのローカル座標系の相対位置を前記誤差の情報に基づいて補正する、
ことを有する、コンピュータにより実行される情報処理方法。
(9)
複数のローカル座標系の相対位置に生じた誤差の情報を検出し、
コンテンツの操作が開始されたことに応答して、前記複数のローカル座標系のうち前記コンテンツの操作主体が認識する前記コンテンツの生成に用いられた特定のローカル座標系に対する他の全てのローカル座標系の相対位置を前記誤差の情報に基づいて補正する、
ことをコンピュータに実現させるプログラム。 (1)
An error information detector that detects information on errors that occur at relative positions in multiple local coordinate systems,
All other local coordinate systems for the particular local coordinate system used to generate the content recognized by the content operator among the plurality of local coordinate systems in response to the initiation of the content operation. A correction unit that corrects the relative position of the
Information processing system with.
(2)
The information processing system according to (1) above, wherein the error information detection unit detects information on the error based on the coordinates of a portion that interacts with the content of the operating subject, which is detected for each local coordinate system.
(3)
In response to the completion of the operation of the content, the correction unit ends the correction based on the specific local coordinate system, and occurs at a position relative to the world coordinate system rather than the specific local coordinate system. The information processing system according to (1) or (2) above, which corrects the relative positions of all other local coordinate systems with respect to the reference local coordinate system having a small error based on the information of the error.
(4)
Described in (3) above, the present invention has a display control unit having a display control unit that gradually changes the position of the content to a position calculated by a correction based on the reference local coordinate system in response to the completion of the operation of the content. Information processing system.
(5)
Based on the operation history of a plurality of devices in which the plurality of local coordinate systems are set, the local coordinate system having the smallest error in the position relative to the world coordinate system is determined to be the reference local coordinate system. The information processing system according to (3) or (4) above, which has a coordinate system determination unit.
(6)
The information processing system according to any one of (1) to (5) above, wherein the correction unit corrects the local coordinate system by a coordinate transformation process for translating the local coordinate system.
(7)
The correction unit corrects the local coordinate system by translation processing for parallel movement of the local coordinate system and rotational movement of the local coordinate system around one or more rotation axes (1) to (5). The information processing system according to any one of the above.
(8)
Detects information on errors that occur in relative positions in multiple local coordinate systems,
All other local coordinate systems for the particular local coordinate system used to generate the content recognized by the content operator among the plurality of local coordinate systems in response to the initiation of the content operation. The relative position of is corrected based on the above error information.
A method of information processing performed by a computer that has.
(9)
Detects information on errors that occur in relative positions in multiple local coordinate systems,
All other local coordinate systems for the particular local coordinate system used to generate the content recognized by the content operator among the plurality of local coordinate systems in response to the initiation of the content operation. The relative position of is corrected based on the above error information.
A program that makes a computer realize that.
1,2 情報処理システム
16 誤差情報検出部
17 補正部
19 表示制御部
41 基準ローカル座標系判定部
CT コンテンツ
LC ローカル座標系
LCC PJ座標系(基準ローカル座標系)
OP 操作部位 1, 2, Information processing system 16 Error information detection unit 17 Correction unit 19 Display control unit 41 Reference local coordinate system judgment unit CT Content LC Local coordinate system LCC PJ coordinate system (reference local coordinate system)
OP operation site
16 誤差情報検出部
17 補正部
19 表示制御部
41 基準ローカル座標系判定部
CT コンテンツ
LC ローカル座標系
LCC PJ座標系(基準ローカル座標系)
OP 操作部位 1, 2, Information processing system 16 Error information detection unit 17 Correction unit 19 Display control unit 41 Reference local coordinate system judgment unit CT Content LC Local coordinate system LCC PJ coordinate system (reference local coordinate system)
OP operation site
Claims (9)
- 複数のローカル座標系の相対位置に生じた誤差の情報を検出する誤差情報検出部と、
コンテンツの操作が開始されたことに応答して、前記複数のローカル座標系のうち前記コンテンツの操作主体が操作対象として認識する前記コンテンツの生成に用いられた特定のローカル座標系に対する他の全てのローカル座標系の相対位置を前記誤差の情報に基づいて補正する補正部と、
を有する情報処理システム。 An error information detector that detects information on errors that occur at relative positions in multiple local coordinate systems,
All other local coordinate systems used to generate the content that the operator of the content recognizes as an operation target in response to the initiation of the operation of the content. A correction unit that corrects the relative position of the local coordinate system based on the error information,
Information processing system with. - 前記誤差情報検出部は、ローカル座標系ごとに検出された、前記操作主体の前記コンテンツとインタラクションする部位の座標に基づいて前記誤差の情報を検出する
請求項1に記載の情報処理システム。 The information processing system according to claim 1, wherein the error information detection unit detects the error information based on the coordinates of the portion that interacts with the content of the operating subject, which is detected for each local coordinate system. - 前記補正部は、前記コンテンツの操作が終了したことに応答して、前記特定のローカル座標系を基準とした補正を終了し、前記特定のローカル座標系よりもワールド座標系との相対位置に生じた誤差が小さい基準ローカル座標系に対する他の全てのローカル座標系の相対位置を前記誤差の情報に基づいて補正する
請求項1に記載の情報処理システム。 In response to the completion of the operation of the content, the correction unit ends the correction based on the specific local coordinate system, and occurs at a position relative to the world coordinate system rather than the specific local coordinate system. The information processing system according to claim 1, wherein the relative positions of all other local coordinate systems with respect to the reference local coordinate system having a small error are corrected based on the information of the error. - 前記コンテンツの操作が終了したことに応答して、前記コンテンツの位置を、前記基準ローカル座標系を基準とした補正によって算出される位置まで徐々に変更する表示制御部を有する
請求項3に記載の情報処理システム。 The third aspect of claim 3 has a display control unit having a display control unit that gradually changes the position of the content to a position calculated by a correction based on the reference local coordinate system in response to the completion of the operation of the content. Information processing system. - 前記複数のローカル座標系がそれぞれ設定された複数の機器の動作履歴に基づいて、前記ワールド座標系との相対位置に生じた誤差が最も小さいローカル座標系を前記基準ローカル座標系と判定する基準ローカル座標系判定部を有する
請求項3に記載の情報処理システム。 Based on the operation history of a plurality of devices in which the plurality of local coordinate systems are set, the local coordinate system having the smallest error in the position relative to the world coordinate system is determined to be the reference local coordinate system. The information processing system according to claim 3, which has a coordinate system determination unit. - 前記補正部は、ローカル座標系の平行移動を行う座標変換処理によってローカル座標系の補正を行う
請求項1に記載の情報処理システム。 The information processing system according to claim 1, wherein the correction unit corrects the local coordinate system by a coordinate transformation process for translating the local coordinate system. - 前記補正部は、ローカル座標系の平行移動、および、1以上の回転軸を中心としたローカル座標系の回転移動を行う座標変換処理によってローカル座標系の補正を行う
請求項1に記載の情報処理システム。 The information processing according to claim 1, wherein the correction unit corrects the local coordinate system by translation processing for parallel movement of the local coordinate system and rotational movement of the local coordinate system around one or more rotation axes. system. - 複数のローカル座標系の相対位置に生じた誤差の情報を検出し、
コンテンツの操作が開始されたことに応答して、前記複数のローカル座標系のうち前記コンテンツの操作主体が操作対象として認識する前記コンテンツの生成に用いられた特定のローカル座標系に対する他の全てのローカル座標系の相対位置を前記誤差の情報に基づいて補正する、
ことを有する、コンピュータにより実行される情報処理方法。 Detects information on errors that occur in relative positions in multiple local coordinate systems,
All other local coordinate systems used to generate the content that the operator of the content recognizes as an operation target in response to the initiation of the operation of the content. Correct the relative position of the local coordinate system based on the error information,
A method of information processing performed by a computer that has. - 複数のローカル座標系の相対位置に生じた誤差の情報を検出し、
コンテンツの操作が開始されたことに応答して、前記複数のローカル座標系のうち前記コンテンツの操作主体が操作対象として認識する前記コンテンツの生成に用いられた特定のローカル座標系に対する他の全てのローカル座標系の相対位置を前記誤差の情報に基づいて補正する、
ことをコンピュータに実現させるプログラム。 Detects information on errors that occur in relative positions in multiple local coordinate systems,
In response to the initiation of the operation of the content, all the other local coordinate systems used to generate the content that the operating subject of the content recognizes as the operation target among the plurality of local coordinate systems. Correct the relative position of the local coordinate system based on the error information,
A program that makes a computer realize that.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022524352A JPWO2021235193A1 (en) | 2020-05-21 | 2021-04-27 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-088674 | 2020-05-21 | ||
JP2020088674 | 2020-05-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021235193A1 true WO2021235193A1 (en) | 2021-11-25 |
Family
ID=78708559
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/016735 WO2021235193A1 (en) | 2020-05-21 | 2021-04-27 | Information processing system, information processing method and program |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2021235193A1 (en) |
WO (1) | WO2021235193A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003308514A (en) * | 1997-09-01 | 2003-10-31 | Canon Inc | Information processing method and information processing device |
JP2014514653A (en) * | 2011-03-29 | 2014-06-19 | クアルコム,インコーポレイテッド | A system for rendering a shared digital interface for each user's perspective |
WO2017013986A1 (en) * | 2015-07-17 | 2017-01-26 | シャープ株式会社 | Information processing device, terminal, and remote communication system |
WO2019044003A1 (en) * | 2017-09-04 | 2019-03-07 | 株式会社ワコム | Spatial position indication system |
-
2021
- 2021-04-27 WO PCT/JP2021/016735 patent/WO2021235193A1/en active Application Filing
- 2021-04-27 JP JP2022524352A patent/JPWO2021235193A1/ja active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003308514A (en) * | 1997-09-01 | 2003-10-31 | Canon Inc | Information processing method and information processing device |
JP2014514653A (en) * | 2011-03-29 | 2014-06-19 | クアルコム,インコーポレイテッド | A system for rendering a shared digital interface for each user's perspective |
WO2017013986A1 (en) * | 2015-07-17 | 2017-01-26 | シャープ株式会社 | Information processing device, terminal, and remote communication system |
WO2019044003A1 (en) * | 2017-09-04 | 2019-03-07 | 株式会社ワコム | Spatial position indication system |
Also Published As
Publication number | Publication date |
---|---|
JPWO2021235193A1 (en) | 2021-11-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11478308B2 (en) | Methods and system for performing 3-D tool tracking by fusion of sensor and/or camera derived data during minimally invasive robotic surgery | |
CN102596085B (en) | System for hand control of a teleoperated minimally invasive slave surgical instrument | |
US10852847B2 (en) | Controller tracking for multiple degrees of freedom | |
CN102596086B (en) | Main finger tracking device in minimally invasive surgery system | |
US8879787B2 (en) | Information processing device and information processing method | |
US8593402B2 (en) | Spatial-input-based cursor projection systems and methods | |
CN102665588B (en) | Method and system for hand presence detection in a minimally invasive surgical system | |
Schmidt et al. | Depth-based tracking with physical constraints for robot manipulation | |
US20090058850A1 (en) | System and method for intuitive interactive navigational control in virtual environments | |
US20090079745A1 (en) | System and method for intuitive interactive navigational control in virtual environments | |
US20230316677A1 (en) | Methods, devices, apparatuses, and storage media for virtualization of input devices | |
JP3793158B2 (en) | Information processing method and information processing apparatus | |
WO2021235193A1 (en) | Information processing system, information processing method and program | |
Guerrero et al. | Visual map‐less navigation based on homographies | |
Mohareri et al. | A vision-based location positioning system via augmented reality: An application in humanoid robot navigation | |
Montijano et al. | Position-based navigation using multiple homographies | |
Pfanne | Grasp State Estimation | |
Nogueira et al. | Pose estimation of a humanoid robot using images from a mobile external camera | |
US20230005098A1 (en) | Information processing device, method, and program | |
Adán et al. | Landmark real-time recognition and positioning for pedestrian navigation | |
JP2024106855A (en) | Information processing device and device position acquisition method | |
CN114967943A (en) | Method and equipment for determining 6DOF (degree of freedom) pose based on 3D (three-dimensional) gesture recognition | |
Ma et al. | Kinect based character navigation in VR Game | |
Lowalekar | Control of a single ground vehicle using aerial and onboard camera views |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21809026 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022524352 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21809026 Country of ref document: EP Kind code of ref document: A1 |