WO2021226741A1 - 一种表面耦合诱导电离技术及其对应的等离子体与等离子体器件 - Google Patents
一种表面耦合诱导电离技术及其对应的等离子体与等离子体器件 Download PDFInfo
- Publication number
- WO2021226741A1 WO2021226741A1 PCT/CN2020/089346 CN2020089346W WO2021226741A1 WO 2021226741 A1 WO2021226741 A1 WO 2021226741A1 CN 2020089346 W CN2020089346 W CN 2020089346W WO 2021226741 A1 WO2021226741 A1 WO 2021226741A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- modulation
- technology according
- distribution
- target molecule
- polarization
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/46—Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/46—Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
- H05H1/461—Microwave discharges
- H05H1/4615—Microwave discharges using surface waves
Definitions
- the present invention relates to the field of materials science and electronic devices, in particular to plasma and ionization.
- the present invention also relates to a series of plasma devices involving the above-mentioned plasma.
- Plasma is the state of matter formed by further ionization of gaseous molecules under the action of an external field or heat.
- the technology that converts gaseous molecules into plasma, that is, ionization technology (Ionization) is widely used in various fields such as waste treatment, rubber recycling, material synthesis and material surface modification, detection and analysis.
- glow discharge is to draw a certain negative pressure (generally less than 10mbar) in various gas pipelines, and then discharge into the vacuum tube through two flat electrodes to ionize the gas and form glow plasma. If a high-frequency jet is used instead of direct current, a radio frequency plasma based on capacitive coupling between plate electrodes can be further obtained.
- the traditional plasma under negative pressure or vacuum also includes corona discharge, arc breakdown discharge, dielectric barrier discharge and so on. But most of them need negative pressure environment to operate.
- Vacuum or negative pressure environment often limits the application of plasma, so a lot of research has been started to realize ionization under normal pressure environment.
- Common atmospheric pressure ionization techniques include electron bombardment ionization, radio frequency ionization, arc ionization, inductive coupling ionization, electrospray ionization, and laser induced ionization.
- the mainstream methods that are sufficient to form atmospheric plasma are mainly arc ionization and inductive coupling ionization.
- the atmospheric pressure plasma realized by these two methods has been widely used in various fields, including garbage disposal, material smelting, surface coating and instrument analysis, etc., and has achieved fruitful results in some specific applications.
- the arc plasma torch has been used as the most effective tool for the treatment of complex composition waste, and the inductively coupled plasma torch (ICP) combined with the ICP-OES of the spectroscopic analysis or the ICP-MS followed by the mass spectrometry system is even more effective.
- ICP inductively coupled plasma torch
- the most common key instrument used to detect the content of various elements has a detection limit of ppb or even ppt level.
- the possible applications depend on the adjustable range of plasma electron temperature and ion temperature, more directly, it depends on the adjustable range of plasma energy density; its applications include: The value depends on the efficiency of energy feeding when forming the plasma.
- the biggest problem is that the energy feed efficiency is too low.
- the voltage across the electrode will drop rapidly, causing the energy density in the plasma to drop immediately.
- spark ignition is always required to form the initial gas ionization part, and then energy can be fed into the ionized gas through the alternating magnetic field coupling established in the AC coil to further form a torch, which makes the plasma's own impedance characteristics Become an object that directly affects the coupling efficiency.
- the field has always required a new ionization technology that can achieve higher energy feed efficiency, a wider adjustable temperature range of electron temperature and ion temperature, and higher energy density atmospheric plasma, thereby Deepen the excavation of existing application areas and further expand other applications of plasma.
- the present invention proposes a surface coupling induced ionization technology with superior performance, its corresponding plasma, and a plasma device.
- the present invention provides a technical method for surface coupling induced ionization, including:
- the first electromagnetic wave is fed into the material through the free space or the waveguide, so that the first electromagnetic wave resonates with the surface plasmon of the material, and the surface plasmon wave is excited.
- the target molecules to be ionized are introduced to the surface of the material, and by controlling the interaction between the surface of the material and the target molecules, the electrons of the target molecules are coupled with the surface plasmons on the material, and the target molecules are induced to ionize.
- the second and subsequent electromagnetic waves are fed into the ionization area of the target molecule on the surface of the material through the free space or waveguide, so that the ionized target molecule is absorbed and the ionization degree of the target molecule is improved.
- the target molecules are released in the form of bulk plasma to achieve surface coupling induced ionization.
- the material form includes solid and liquid.
- the solid form includes one or more of films, particles, powders, aerosols, photonic crystals, and gas-solid two-phase flow;
- the liquid form includes droplets, dispersions, and gas-liquid two-phase flows. One or more of the streams.
- the size of the material is 0.3nm-1000mm.
- the materials include one or more of metal and alloy materials, carbon materials, ceramic materials, organic conductor materials, and semiconductor materials.
- the metal and alloy materials include materials containing lithium, beryllium, boron, carbon, sodium, magnesium, aluminum, silicon, phosphorus, sulfur, scandium, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, and copper , Zinc, gallium, germanium, arsenic, rubidium, strontium, yttrium, zirconium, niobium, molybdenum, technetium, ruthenium, rhodium, palladium, silver, cadmium, indium, tin, antimony, tellurium, cesium, barium, hafnium, tantalum, tungsten
- the carbon material includes graphene, aminated graphene, carboxylated graphene, hydroxylated graphene, thiolated graphene, graphene oxide, methylated graphene, and trifluoromethylated graphene , Octadecyl graphene, graphene fluoride and graphene iodide, artificial graphite, natural graphite, graphitized carbon microspheres, graphitized carbon nanotubes, carbon nanotubes, glassy carbon, amorphous carbon, carbon nano One or more of horns, carbon fibers, carbon quantum dots, and carbon molecular sieves.
- the ceramic materials include oxide ceramics, silicate ceramics, nitride ceramics, borate ceramics, phosphate ceramics, carbide ceramics, aluminate ceramics, germanate ceramics, titanate ceramics One or more of them.
- the organic conductor material includes polyacetylene, polyarylacetylene, polypyrrole, polyaniline, polythiophene, polyphenylene sulfide, TTF-TCNQ, PEDOT-PSS, tetrathiafulvalene, polyfluorene, poly One or more of p-phenylene, polyarene, and other compounds having a continuous conjugated skeleton.
- the semiconductor material includes one or more of III-V semiconductors, II-VI semiconductors, IV semiconductors, quantum dot semiconductors, and perovskite semiconductor particles.
- the first electromagnetic waves are gamma rays, hard X-rays, soft X-rays, extreme ultraviolet, near ultraviolet, visible light, near infrared, mid-infrared, far infrared, terahertz, extremely high frequency microwave, ultra One or more of high-frequency microwaves, ultra-high-frequency microwaves, very high-frequency radio waves, high-frequency radio waves, intermediate-frequency radio waves, low-frequency radio waves, very low-frequency radio waves, very low-frequency radio waves, and extremely low-frequency radio waves.
- the wavelength and distribution of the first electromagnetic wave are 0.01 nm to 100 km.
- the spatial distribution of the first electromagnetic wave includes a Gaussian beam, a Bessel beam, an Avery beam, a Laguerre-Gaussian beam, a cosine-Gaussian beam, a Mathieu beam, a flat-top beam, and a vortex beam.
- a Gaussian beam a Bessel beam, an Avery beam, a Laguerre-Gaussian beam, a cosine-Gaussian beam, a Mathieu beam, a flat-top beam, and a vortex beam.
- the degree of polarization of the first electromagnetic wave is 0.01%-99%.
- the polarization mode of the first electromagnetic wave includes one or more of natural light, partial polarization, linear polarization, circular polarization, elliptical polarization, azimuth polarization, and radial polarization.
- the polarization of the first electromagnetic wave includes S wave polarization and P wave polarization.
- the orbital angular momentum and distribution of the first electromagnetic wave are -10 ⁇ +10.
- phase and distribution of the first electromagnetic wave are 0-2 ⁇ .
- the second and subsequent electromagnetic waves are gamma rays, hard X-rays, soft X-rays, extreme ultraviolet rays, near ultraviolet rays, visible light, near infrared rays, mid-infrared rays, far infrared rays, terahertz, and extremely high frequency microwaves.
- UHF microwave, UHF microwave, VHF radio wave High frequency radio wave, Intermediate frequency radio wave, Low frequency radio wave, Very low frequency radio wave, Very low frequency radio wave, Very low frequency radio wave, Very low frequency radio wave kind.
- the wavelength and distribution of the second beam and subsequent electromagnetic waves are 0.01 nm to 100 km.
- the spatial distribution of the second beam and subsequent electromagnetic waves includes Gaussian beam, Bessel beam, Avery beam, Laguerre-Gaussian beam, cosine-Gaussian beam, Mathieu beam, flat-top beam, One or more of the vortex beams.
- the degree of polarization of the second beam and subsequent electromagnetic waves is 0.01%-99%.
- the polarization modes of the second beam and subsequent electromagnetic waves include one or more of natural light, partial polarization, linear polarization, circular polarization, elliptical polarization, azimuth polarization, and radial polarization.
- the polarization of the second beam and subsequent electromagnetic waves includes S wave polarization and P wave polarization.
- the orbital angular momentum and distribution of the second beam and subsequent electromagnetic waves are -10 ⁇ +10.
- phase and distribution of the second beam and subsequent electromagnetic waves are 0-2 ⁇ .
- the molecular weight of the target molecule ranges from 1.0 ⁇ 10 0 Da to 1.0 ⁇ 10 20 Da.
- the feeding of the first electromagnetic wave into the material through free space specifically includes the following steps: 1S1, the wavelength and distribution, spatial distribution, polarization and orbital angular momentum and distribution of the first electromagnetic wave , Phase and its distribution and other factors are modulated to obtain the first modulated electromagnetic wave; 1S2a, guide the first modulated electromagnetic wave to match the surface plasma frequency wave vector of the material to obtain the wave vector matching modulated electromagnetic wave; 1S3a, The wave vector matching modulated electromagnetic wave is incident on the surface of the material through the free space, so that a surface plasma wave is formed on the surface of the material.
- the wavelength and its distribution modulation method in step 1S1 includes one of dispersion device modulation, filter device modulation, refraction device modulation, interference modulation, absorption modulation, nonlinear optical modulation, resonant cavity enhancement modulation, or Many kinds.
- the spatial distribution modulation method in step 1S1 includes one or more of refraction device modulation, transmission antenna modulation, matrix reflection device modulation, spatial light modulator modulation, variable curvature reflection device modulation, and absorption device modulation. kind.
- the polarization and orbital angular momentum and their distribution modulation methods in step 1S1 include single-mode cavity modulation, photoelastic modulation, spatial light modulator modulation, mode converter modulation, birefringent device modulation, and polarizer modulation One or more of.
- phase and its distribution modulation method in step 1S1 includes one or more of phase-shift modulation, birefringent device modulation, and spatial light modulator modulation.
- the wave vector matching method in step 1S2a includes total internal reflection through gratings, photonic crystals, free light coupling prisms, metamaterial devices with a dielectric constant less than 1, multiple attenuation total internal reflection devices, and free light coupling waveguides
- the feeding of the first electromagnetic wave to the material by means of a waveguide specifically includes the following steps: 1S1, the wavelength of the first electromagnetic wave and its distribution, spatial distribution, polarization and orbital angular momentum and its distribution, The phase and its distribution are modulated to obtain the first modulated electromagnetic wave; 1S2b, the first modulated electromagnetic wave is fed into the isolator through a waveguide to obtain the unidirectional first modulated electromagnetic wave; 1S3b, the unidirectional modulated electromagnetic wave is guided The first modulated electromagnetic wave is matched with the wave vector of the surface plasma frequency of the material to obtain a wave vector matching unidirectional modulated electromagnetic wave; 1S4b, the wave vector matching unidirectional modulated electromagnetic wave is injected into the surface of the material through the waveguide, so that the surface of the material forms a surface Plasma wave.
- the isolator in step 1S2b includes a waveguide circulator, an optical fiber waveguide circulator, an optical fiber optical isolator, a Faraday rotator, a coaxial isolator, a strip line isolator, a broadband isolator, and a double-section isolator, One or more of microstrip isolators, attenuators, and loads.
- the wave vector matching method in step 1S3b includes total internal reflection through grating, photonic crystal waveguide, waveguide coupling prism, metamaterial waveguide with dielectric constant less than 1, multiple attenuation total internal reflection device, and waveguide total internal reflection Device, total internal reflection device, near-field waveguide probe illumination of less than wavelength, one or more methods of direct matching.
- the introduction of the target molecules to be ionized to the surface of the material specifically includes the following steps: 2S1, introducing the target molecules into the gas phase environment to obtain the target molecules in the gas phase; 2S2, moving the target molecules in the aforementioned gas phase to the surface of the material .
- the method of introducing the target molecule into the gas phase environment in the step 2S1 includes one or more methods of ultrasonic atomization, heating evaporation, vacuum gasification, direct gasification, and air-carrying.
- the moving to the material surface in the step 2S2 includes one or more of optical tweezers displacement, ultrasonic acoustic tweezers displacement, mechanical force displacement, airflow loading, vacuum suction displacement, probe pulling displacement, and magnetic displacement method.
- control of the interaction between the surface of the material and the target molecule specifically includes the following steps: 3S1, control the microstructure of the material and the surface electromagnetic field distribution to obtain the adjusted material; 3S2, control the state of the target molecule to obtain the adjusted target molecule 3S3, combining the modulated material with the modulated target molecule to achieve control of the interaction between the surface of the material and the target molecule, and cause ionization of the target molecule.
- control of the material microstructure and surface electromagnetic field distribution in step 3S1 includes forming nanoscale periodic microstructures on the material surface, nanoscale non-periodic microstructures on the material surface, and microscale periodic microstructures on the material surface.
- the material surface forms a micron-scale aperiodic microstructure, the material surface functional group structure modulation, the material surface defect state density structure modulation, the material surface doping structure modulation, the material crystal domain size modulation, the material superlattice structure modulation, the material surface voltage Modulation, one or more methods of modulation of the electric field distribution on the surface of the material, modulation of the magnetic domain structure of the material, and modulation of the magnetic field of the material.
- the step 3S2 controls the state of the target molecule, including exciting the target molecule by electromagnetic waves to select different excited states, controlling the chemical potential of the target molecule on the material by the concentration difference, charging the target molecule through the introduction of static electricity, and introducing it through the magnetic field.
- One or more methods of magnetizing the target molecule including exciting the target molecule by electromagnetic waves to select different excited states, controlling the chemical potential of the target molecule on the material by the concentration difference, charging the target molecule through the introduction of static electricity, and introducing it through the magnetic field.
- the feeding of the second beam and subsequent electromagnetic waves into the ionization region of the target molecule on the surface of the material through the free space specifically includes the following steps: 4S1, the wavelength and distribution of the second beam and subsequent electromagnetic waves, The spatial distribution, polarization and orbital angular momentum and its distribution, phase and its distribution and other factors are modulated to obtain the second and subsequent modulated electromagnetic waves.
- 4S2 guide the second and subsequent modulated electromagnetic waves to match the plasma frequency of the ionized target molecules to obtain frequency-coordinated modulated electromagnetic waves; 4S3a, inject the frequency-coordinated modulated electromagnetic waves into the target on the surface of the material through free space
- the ionization area of the molecule allows the ionized target molecule to absorb and improves the ionization degree of the target molecule.
- the wavelength and its distribution modulation method in step 4S1 includes one of dispersion device modulation, filter device modulation, refraction device modulation, interference modulation, absorption modulation, nonlinear optical modulation, resonant cavity enhancement modulation, or Many kinds.
- the spatial distribution modulation method in step 4S1 includes one or more of refraction device modulation, transmission antenna modulation, matrix reflection device modulation, spatial light modulator modulation, variable curvature reflection device modulation, and absorption device modulation. kind.
- the polarization and orbital angular momentum and their distribution modulation methods in step 4S1 include single-mode cavity modulation, photoelastic modulation, spatial light modulator modulation, mode converter modulation, birefringent device modulation, and polarizer modulation One or more of.
- phase and its distribution modulation method in step 4S1 includes one or more of phase-shift modulation, birefringent device modulation, and spatial light modulator modulation.
- the frequency coordination method in step 4S2 includes one of dispersion device modulation coordination, filter device modulation coordination, refraction device modulation coordination, interference modulation coordination, absorption modulation coordination, nonlinear optical modulation coordination, and direct injection. Or multiple.
- the method of entering the ionization region in step 4S3a includes refraction device modulation, transmission antenna modulation, matrix reflection device modulation, spatial light modulator modulation, variable curvature reflection device modulation, absorption device modulation, and direct injection One or more of.
- the feeding of the second beam and subsequent electromagnetic waves into the ionization region of the target molecule on the surface of the material through the waveguide specifically includes the following steps: 4S1, the wavelength and distribution of the second beam and subsequent electromagnetic waves, and space The distribution, polarization and its distribution, orbital angular momentum and its distribution, phase and its distribution and other factors are modulated to obtain the second and subsequent modulated electromagnetic waves; 4S2, guide the second and subsequent modulated electromagnetic waves and the ionized target
- the plasma frequency of the molecules is matched to obtain a frequency-matched modulation electromagnetic wave; 4S3b, the frequency-matched modulation electromagnetic wave is fed into the isolator through a waveguide to obtain a unidirectional frequency-matched modulation electromagnetic wave; 4S4b, the unidirectional frequency is matched to modulate the electromagnetic wave It is injected into the ionization area of the target molecule on the surface of the material through the waveguide, so that the ionized target molecule is absorbed, and the ionization degree of the target molecule is improved
- the isolator in step 4S3b includes a waveguide circulator, an optical fiber waveguide circulator, an optical fiber optical isolator, a Faraday rotator, a coaxial isolator, a strip line isolator, a broadband isolator, and a double section isolator, One or more of microstrip isolators, attenuators, and loads.
- the method of entering the ionized region in step 4S4b includes refraction device modulation, transmission antenna modulation, matrix reflection device modulation, spatial light modulator modulation, variable curvature reflection device modulation, absorption device modulation, photonic crystal modulation, and waveguide Regulate one or more of injections and direct injections.
- the release of the target molecule in the form of bulk plasma specifically includes the following steps: 5S1, the plasma of the target molecule is drawn out of the surface area of the material to obtain a delocalized plasma; 5S2, the delocalized plasma is confined In a specific space, a higher energy density is obtained.
- the extraction material surface area in the step 5S1 includes one or more methods of vacuum suction, air transport, negative pressure extraction, external ground suction, external electromagnetic wave source guidance, and external current guidance.
- the plasma confinement in step 5S2 includes one or more of the following methods: confinement by an external magnetic field, ground current forming magnetic field self-binding confinement, airflow confinement, and collision confinement.
- the present invention also provides a type of plasma device
- the plasma in the plasma device includes any one or more of the above-mentioned plasmas.
- the plasma devices involved include but are not limited to sensors, plasma sources, reactors, antennas, motors, etc.
- the present invention provides a surface coupling induced ionization technology and its corresponding plasma.
- the induced ionization technology excites the surface plasma wave of the material by applying electromagnetic waves, and makes the target molecule's bond energy through the adsorption of the target molecule on the surface of the material. Weakened and easy to ionize. Further, after the target molecules are ionized, electromagnetic waves are fed into the ionized molecules to maintain and increase the degree of ionization to form a stable plasma and be drawn out of the surface of the material, thereby forming an atmospheric plasma source.
- Various types of plasma can be formed by adjusting different electromagnetic waves, material types and target molecule types to meet various needs. This greatly reduces the difficulty of traditional electromagnetic waves directly ionizing target molecules to form plasma.
- the invention also provides a plasma device related to the surface coupling induced ionization technology and its corresponding plasma formation.
- the present invention proposes a new atmospheric pressure plasma formation method, and its application value is very intuitive.
- Typical applications include exciting and observing suitable advanced excited states by plasma torch, improving the accuracy of traditional OES spectroscopy, and reaching the detection limit of ppt or higher; or realizing diamond coating under normal pressure, or other nano-powder materials Or for the treatment of exhaust gas and exhaust gas, to achieve the goal of harmless treatment of organic waste gas; even for the formation of high-energy proton beam targeting, to achieve a miniaturized neutron beam source, etc., there are various application possibilities.
- the present invention has the advantages of a wide range of ionized molecules, high energy feeding efficiency, high energy density, and a wide range of electron temperature and ion temperature, and provides a reliable prerequisite for broadening the application of plasma.
- Fig. 1 is an atmospheric pressure nitrogen plasma torch formed based on the present invention.
- Figure 2 is a flow chart of the implementation of the present invention.
- the present invention provides a technical method for surface coupling induced ionization, a corresponding plasma, and a plasma device.
- the technical method of surface coupling inducing ionization of the present invention refers to the surface interaction between the material and the target molecule, and the coupling with the surface plasma on the material, thereby inducing the ionization of the target molecule and forming a plasma.
- the inventor of the present application innovatively couples the surface plasma of the material and the interaction between the target molecule and the material caused by adsorption, and further enhances the ionization of the target molecule through electromagnetic waves to form a stable plasma.
- This method greatly reduces the difficulty of target molecules forming plasma. Even if the target molecules involved do not have the ability to absorb electromagnetic waves of specific wavelengths, the target molecules can be adsorbed on the material to induce the target molecules through the surface plasma. ionization.
- the present invention selects a series of materials of different shapes, sizes and types as the adsorption medium of the target molecule and the carrier of the surface plasma.
- the material form includes solid and liquid.
- the solid form includes but not limited to one or more of film, particle, powder, aerosol, photonic crystal, and gas-solid two-phase flow
- the liquid form includes but is not limited to droplets, dispersed One or more of liquid and gas-liquid two-phase flow.
- the material size is 0.3nm -1000mm, preferably 1nm-100um.
- the choice to use this size material is mainly because in this size range, the surface plasmon is confined to the nanometer to submicron particle boundary, which has a great wave vector uncertainty, and therefore the coupling of the surface plasmon The angle of incidence angle is required to be reduced, and it is easy to achieve wave vector matching.
- the materials include one or more of metal and alloy materials, carbon materials, ceramic materials, organic conductor materials, and semiconductor materials.
- the carbon materials include defect-free graphene, high-defect graphene, aminated graphene, carboxylated graphene, hydroxylated graphene, thiolated graphene, graphene oxide, methylated graphene, Trifluoromethylated graphene, octadecylated graphene, fluorinated graphene and iodized graphene, artificial graphite, natural graphite, graphitized carbon microspheres, graphitized carbon nanotubes, carbon nanotubes, glassy carbon , Amorphous carbon, carbon nanohorn, carbon fiber, carbon quantum dot, carbon molecular sieve one or more.
- this type of material is mainly to consider that it has a variety of different band gaps, which allows different excitation conditions to be excited, and this type of material often has a good surface plasmon quality factor, and the formed surface plasmon can travel far. This makes the ionization probability of the target molecule higher.
- the technical method of surface coupling induced ionization of the present invention is to feed the first electromagnetic wave into the material through free space or waveguide, so that the first electromagnetic wave resonates with the surface plasmon of the material and excites the surface plasmon Body wave.
- the target molecules to be ionized are introduced to the surface of the material, and by controlling the interaction between the surface of the material and the target molecules, the electrons of the target molecules are coupled with the surface plasmons on the material, and the target molecules are induced to ionize.
- the second and subsequent electromagnetic waves are fed into the ionization area of the target molecule on the surface of the material through the free space or waveguide, so that the ionized target molecule is absorbed and the ionization degree of the target molecule is improved.
- the target molecules are released in the form of bulk plasma to achieve surface coupling induced ionization.
- the present invention preferably adopts the waveguide to incident the first electromagnetic wave, the second beam and the subsequent electromagnetic waves. Specifically, it includes the following steps:
- 1S1 modulate the wavelength and distribution, spatial distribution, polarization and orbital angular momentum and distribution, phase and distribution of the first electromagnetic wave to obtain the first modulated electromagnetic wave;
- 1S2b Feed the first modulated electromagnetic wave into the isolator through a waveguide to obtain a unidirectional first modulated electromagnetic wave;
- the wave vector matching unidirectional modulated electromagnetic wave is injected into the surface of the material through the waveguide, so that a surface plasma wave is formed on the surface of the material.
- 3S1 control the microstructure of the material and the electromagnetic field distribution on the surface, and obtain the adjusted material
- 3S3 combining the modulated material with the modulated target molecule to achieve control of the interaction between the surface of the material and the target molecule, and cause ionization of the target molecule.
- 4S1 modulate the wavelength and distribution, spatial distribution, polarization and distribution, orbital angular momentum and its distribution, phase and distribution of the second and subsequent electromagnetic waves to obtain the second and subsequent modulated electromagnetic waves;
- 4S3b Feed the frequency-coordinated and modulated electromagnetic wave into the isolator through a waveguide to obtain a unidirectional frequency-coordinated and modulated electromagnetic wave;
- 5S2 confine the delocalized plasma in a specific space to obtain a higher energy density.
- the first electromagnetic wave mentioned above is gamma ray, hard X-ray, soft X-ray, extreme ultraviolet, near ultraviolet, visible light, near infrared, mid infrared, far infrared, terahertz, ultra high frequency microwave, ultra high frequency microwave, special One or more of high-frequency microwaves, very high-frequency radio waves, high-frequency radio waves, intermediate-frequency radio waves, low-frequency radio waves, very low-frequency radio waves, very low-frequency radio waves, and extremely low-frequency radio waves, preferably soft X-rays , Extreme ultraviolet, near ultraviolet, visible light, near infrared, mid-infrared, terahertz, extremely high frequency microwave, ultra high frequency microwave, ultra high frequency microwave.
- the wavelength and distribution of the first electromagnetic wave mentioned above is 0.01 nm ⁇ 100 km, preferably 10 nm ⁇ 1m.
- the spatial distribution of the above-mentioned first electromagnetic wave includes one of Gaussian beam, Bessel beam, Avery beam, Laguerre-Gaussian beam, cosine-Gaussian beam, Mathieu beam, flat-top beam, vortex beam, or There are multiple types, preferably Gaussian beams, Bessel beams, Laguerre-Gaussian beams, and flat-top beams.
- the polarization degree of the first electromagnetic wave mentioned above is 0.01 %-99%, preferably 90%-99%.
- the polarization mode of the first electromagnetic wave includes one or more of natural light, partial polarization, linear polarization, circular polarization, elliptical polarization, azimuth polarization, and radial polarization, preferably linear polarization.
- the polarization of the first electromagnetic wave includes S wave polarization and P wave polarization, preferably P wave polarization.
- the orbital angular momentum and distribution of the first electromagnetic wave mentioned above are -10 ⁇ +10. Preferably it is ⁇ 1.
- phase and distribution of the first electromagnetic wave mentioned above are 0 – 2 ⁇ .
- the second and subsequent electromagnetic waves mentioned above are gamma rays, hard X-rays, soft X-rays, extreme ultraviolet rays, near ultraviolet rays, visible light, near infrared rays, mid-infrared rays, far infrared rays, terahertz, extremely high frequency microwaves, and ultra high frequency microwaves.
- UHF microwave, VHF radio wave high frequency radio wave, intermediate frequency radio wave, low frequency radio wave, very low frequency radio wave, very low frequency radio wave, very low frequency radio wave, one or more, preferably near Infrared, mid-infrared, far-infrared, terahertz, very high frequency microwave, ultra high frequency microwave, ultra high frequency microwave, very high frequency radio wave, high frequency radio wave, intermediate frequency radio wave.
- the wavelength and distribution of the second and subsequent electromagnetic waves are 0.01 nm to 100 km, preferably 1um-1Km.
- the spatial distribution of the second and subsequent electromagnetic waves includes Gaussian beams, Bessel beams, Avery beams, Laguerre-Gaussian beams, cosine-Gaussian beams, Mathieu beams, flat-top beams, and vortex beams.
- Gaussian beams preferably Gaussian beams, flat-top beams.
- the second and subsequent electromagnetic waves have a degree of polarization of 0.01 %-99%, preferably 0.01%-0.1%.
- the polarization modes of the second and subsequent electromagnetic waves include one or more of natural light, partial polarization, linear polarization, circular polarization, elliptical polarization, azimuth polarization, and radial polarization, preferably natural light, partial polarization.
- the polarization of the second and subsequent electromagnetic waves includes S wave polarization and P wave polarization.
- the orbital angular momentum and distribution of the second and subsequent electromagnetic waves are -10 ⁇ +10, preferably 0.
- phase and distribution of the second and subsequent electromagnetic waves are 0-2 ⁇ .
- the inventor of the present application found that the absorption level of electromagnetic waves before and after ionization of the target molecule is greatly different, so the electromagnetic waves required before and after ionization are distinguished to ensure that the electromagnetic waves are fed in. Maximize utilization.
- the characteristic requirement of the beam used before ionization is a specific wavelength and mode at a certain power, and the energy is required to be concentrated as much as possible, while the characteristic requirement of the beam used after ionization is the highest possible power to ensure ionization Afterwards, the process of forming bulk plasma is completed as quickly as possible and has a higher excited state.
- the wavelength and its distribution modulation method in the above step 1S1 includes one or more of dispersive device modulation, filter device modulation, refraction device modulation, interference modulation, absorption modulation, nonlinear optical modulation, and cavity enhancement modulation, preferably interference Modulation, absorption modulation, filter device modulation, resonant cavity enhancement modulation.
- the above step 1S1 spatial distribution modulation method includes one or more of refraction device modulation, transmission antenna modulation, matrix reflection device modulation, spatial light modulator modulation, variable curvature reflection device modulation, and absorption device modulation, preferably a transmission antenna Modulation, refractive device modulation, spatial light modulator modulation.
- step 1S1 polarization and orbital angular momentum and its distribution modulation method, including one or more of single-mode cavity modulation, photoelastic modulation, spatial light modulator modulation, mode converter modulation, birefringent device modulation, and polarizer modulation
- One is preferably single-mode cavity modulation, photoelastic modulation, spatial light modulator modulation, and mode converter modulation.
- the above step 1S1 phase and its distribution modulation method include one or more of phase shift modulation, birefringent device modulation, and spatial light modulator modulation, preferably spatial light modulator modulation.
- the isolator in the above step 1S2b includes waveguide circulator, optical fiber waveguide circulator, optical fiber optical isolator, Faraday rotator, coaxial isolator, strip line isolator, broadband isolator, double section isolator, and microstrip isolator , Attenuator, one or more of the load, preferably waveguide circulator, fiber waveguide circulator, fiber optic isolator.
- the wave vector matching method in the above step 1S3b includes total internal reflection through grating, photonic crystal waveguide, waveguide coupling prism, metamaterial waveguide with dielectric constant less than 1, multiple attenuation total internal reflection device, waveguide total internal reflection device, total internal reflection Reflective device, one or more methods of direct matching of near-field waveguide probe irradiation with less than wavelength, preferably waveguide coupling prism total internal reflection, multiple attenuation total internal reflection device, waveguide total internal reflection device, total internal reflection device, The near-field waveguide probe that is smaller than the wavelength is irradiated and matched directly.
- the wavelength and its distribution modulation method in step 4S1 above includes one or more of dispersion device modulation, filter device modulation, refraction device modulation, interference modulation, absorption modulation, nonlinear optical modulation, and cavity enhancement modulation, preferably Dispersion modulation, filter device modulation.
- the spatial distribution modulation method in step 4S1 above includes one or more of refraction device modulation, transmission antenna modulation, matrix reflection device modulation, spatial light modulator modulation, variable curvature reflection device modulation, and absorption device modulation, preferably Transmission antenna modulation, variable curvature reflector modulation, matrix reflector modulation.
- the polarization and orbital angular momentum and its distribution modulation method in the above step 4S1 include one of single-mode cavity modulation, photoelastic modulation, spatial light modulator modulation, mode converter modulation, birefringent device modulation, and polarizer modulation Or more, preferably spatial light modulator modulation, mode converter modulation.
- the phase and its distribution modulation method in the above step 4S1 includes one or more of phase-shift modulation, birefringent device modulation, and spatial light modulator modulation, preferably phase-shift modulation and spatial light modulator modulation.
- the frequency coordination method in step 4S2 above includes one or more of dispersion device modulation coordination, filter device modulation coordination, refraction device modulation coordination, interference modulation coordination, absorption modulation coordination, nonlinear optical modulation coordination, and direct injection. It is preferably non-linear optical modulation coordination or direct injection.
- Steps 2S1-2S2 are to vaporize the target molecules to introduce into the surface of the material to ionize the target molecules.
- the target molecule itself is a gas at room temperature and pressure, the ionization efficiency is the highest.
- the unionized gas itself can also be used as a carrier gas to carry plasma, so gas molecules are preferentially selected as target molecules.
- the method of introducing the target molecule into the gas phase environment in the above step 2S1 includes one or more methods of ultrasonic atomization, heating evaporation, vacuum gasification, direct gasification, and air-carrying, preferably direct gasification or air-carrying.
- the moving to the material surface in step 2S2 above includes one or more methods of optical tweezers displacement, ultrasonic acoustic tweezers displacement, mechanical force displacement, airflow loading, vacuum suction displacement, probe pulling displacement, and magnetic displacement, preferably Air loading or vacuum suction displacement.
- steps 3S1-3S3 involve regulating the interaction between the target molecule and the material, so that the target molecule can be ionized by using the surface plasma on the surface of the material as much as possible.
- This process has a greater impact on the coupling efficiency.
- the stronger the interaction the more likely the surface plasma on the material surface will cause the ionization of target molecules.
- the simpler the requirements for the processing of the material surface and the regulation of target molecules the easier it is to implement.
- the control of the material microstructure and surface electromagnetic field distribution in the above step 3S1 includes the formation of nanoscale periodic microstructures on the surface of the material, the formation of nanoscale non-periodic microstructures on the surface of the material, the formation of microscale periodic microstructures on the surface of the material, and the formation of micrometers on the surface of the material.
- Scale non-periodic microstructure structure modulation of material surface functional groups, surface defect state density structure modulation, material surface doping structure modulation, material crystal domain size modulation, material superlattice structure modulation, material surface voltage modulation, material surface One or more methods of electric field distribution modulation, material magnetic domain structure modulation, and material magnetic field modulation.
- a nanoscale periodic microstructure is formed on the surface of the material
- a microscale periodic microstructure is formed on the surface of the material
- a defect state density structure on the material surface is formed. Modulation, the surface doping structure of the material is modulated.
- the above step 3S2 controls the state of the target molecule, including exciting the target molecule by electromagnetic waves to select different excited states, controlling the chemical potential of the target molecule on the material through the concentration difference, charging the target molecule through the introduction of static electricity, and magnetizing the target molecule through the introduction of a magnetic field
- One or more of the methods is preferably to control the chemical potential of the target molecule on the material by the concentration difference, and select a different excited state by exciting the target molecule by electromagnetic waves.
- the plasma when the target molecule itself is a gas or a carrier gas is used to draw out the plasma, it is not difficult to find that the most natural way of drawing out and constraining is air flow transportation and air flow restriction.
- the plasma can also be drawn into the vacuum chamber by means of vacuum suction.
- a self-hooping magnetic field will be generated due to the magnetic effect of the current, which will confine the plasma. It can also be guided by an external electromagnetic wave source to further enhance the drawn plasma.
- the extraction material surface area in step 5S1 includes one or more methods of vacuum suction, air transport, negative pressure extraction, external grounding, external electromagnetic wave source guidance, and external current guidance, preferably vacuum suction, air transport , The external ground is attracted, and the external electromagnetic wave source is guided.
- the plasma confinement in the above step 5S2 includes one or more of the magnetic field confinement, airflow confinement, and collision confinement formed by the ground current through the external magnetic field confinement. , Collision constraints.
- the efficiency of feeding energy to the ionized target molecules through electromagnetic waves is much higher. This is mainly because after ionization When the frequency of the target molecule matches the electromagnetic wave fed in, the maximum absorption efficiency can be achieved through resonance.
- the target molecules to be ionized often have no special absorption capacity for the fed electromagnetic waves.
- the material involved can be close to the fed electromagnetic waves. Fully absorbed. This makes the initial formation of the plasma provided by the present invention much easier than the initial formation of the traditional plasma.
- the present invention has the advantages of a wide range of ionized molecules, high energy feeding efficiency, high energy density, and a wide range of electron temperature and ion temperature.
- the present invention also provides a plasma device, which includes the above-mentioned plasma. Because the above-mentioned plasma has the above-mentioned advantages, the plasma device provided with the plasma also correspondingly has the advantages of a wide range of ionized molecules, high energy feeding efficiency, high energy density, and a wide range of electron temperature and ion temperature.
- the first electromagnetic wave uses a 1550nm near-infrared Gaussian beam, and the material used is a 30nm gold film, which is plated on the end of the 1550nm optical fiber.
- the target molecule ionized is carbon monoxide.
- the second electromagnetic wave uses a 6um mid-infrared Gaussian beam.
- the 1550nm near-infrared laser is emitted by the laser as a Gaussian beam with a degree of polarization of 98% and an orbital angular momentum of 0.
- the wavelength distribution is controlled by interference modulation
- the spatial distribution is modulated by the refraction device
- the polarization distribution is modulated by the photoelastic modulation
- the phase is modulated by the spatial light modulator.
- the polarization-maintaining fiber is used as a waveguide to feed the fiber optical isolator, and then through the total internal reflection of the fiber waveguide, surface plasmon is formed on the surface of the gold film at the end of the fiber.
- Carbon monoxide is transported through a steel bottle and directly vaporized to obtain a carbon monoxide gas flow.
- Nitrogen is used as a carrier gas to be sent to the surface of the gold film.
- the chemical potential is controlled by the concentration difference and the crystal domain is modulated to obtain stronger interaction.
- carbon monoxide adsorbs on the surface of the gold film, and is further induced by the surface plasma on the surface of the gold film, causing the ionization of carbon monoxide.
- the 6um mid-infrared laser is emitted by the laser as a Gaussian beam with a polarization degree of 90% and an orbital angular momentum of 0.
- the wavelength distribution is controlled by the filter device modulation
- the spatial and phase distribution is controlled by the spatial light modulator
- the polarization is modulated by the mode converter.
- the high-power fiber is used as a waveguide to feed the fiber optical isolator, and then the fiber is injected into the carbon monoxide ionization zone to form a carbon monoxide plasma.
- the first electromagnetic wave uses a 405nm Bessel beam, and the material used is 1um carbon nanotubes, which is placed under the prism surface.
- the target molecules ionized are iodine molecules.
- the second electromagnetic wave uses a 32.75 cm microwave Gaussian beam.
- the 405nm blue-violet light is emitted by the LED as a Bessel beam with a polarization degree of 18% and an orbital angular momentum of 0.
- the wavelength distribution is controlled by the modulation of the dispersive device, the spatial distribution is modulated by the matrix reflector, the polarization distribution is modulated by the polarizer, and the phase is modulated by the birefringent device.
- the quartz fiber is used as a waveguide to feed the fiber waveguide circulator, and then through the total internal reflection of the coupling prism at the end of the fiber, it is injected into the surface of the carbon nanotube to form a surface plasma.
- the iodine molecules are vaporized by heat, and argon is used as a carrier gas to be sent to the surface of the carbon nanotubes.
- the iodine molecules on the surface of the carbon nanotubes are excited by electromagnetic waves, and the surface of the carbon nanotubes is doped and modulated to obtain a stronger interaction.
- the iodine molecules are adsorbed on the surface of the carbon nanotube powder, and are further induced by the surface plasma on the surface of the carbon nanotube powder, causing the ionization of iodine.
- the 32.75 cm microwave is guided by a 915Mhz microwave source and is a Gaussian beam with a degree of polarization of 0.01% and an orbital angular momentum of 0.
- the wavelength distribution is controlled by the cavity enhancement modulation system
- the spatial distribution is controlled by the transmission antenna modulation
- the phase distribution is modulated by the phase shift modulation
- the polarization is modulated by the single-mode cavity modulation.
- the modulation is completed, it is fed into the system through the waveguide, and then directly injected into the ionization zone of iodine molecules through the waveguide to form iodine plasma.
- the first electromagnetic wave uses a 12.24cm microwave Gaussian beam, and the material used is 1mm iron particles, which is placed on a flat surface.
- the target molecule ionized is oxygen.
- the second electromagnetic wave uses a 12.24cm microwave Gaussian beam.
- the 12.24cm microwave is guided by a 2450Mhz microwave source and is a Gaussian beam with a degree of polarization of 0.04% and an orbital angular momentum of 0.
- the wavelength distribution is controlled by absorption modulation
- the spatial distribution is controlled by the variable curvature reflector
- the polarization distribution is modulated by the single-mode cavity
- the phase is modulated by phase shifting.
- the free space is fed into the iron particles on the plate, and then after direct matching, it is injected into the surface of the iron particles to form a surface plasma.
- Oxygen is transported through steel cylinders, directly vaporized and sent to the surface of iron particles, using air as a carrier gas, controlling the chemical potential through the concentration difference, and modulating the surface voltage of the material to obtain a stronger interaction. After completion, the oxygen is adsorbed on the surface and is further induced by the surface plasma on the surface of the iron particles, causing the oxygen to ionize.
- the 12.24cm microwave is guided by a 2450Mhz microwave source and is a Gaussian beam with a degree of polarization of 0.04% and an orbital angular momentum of 0.
- the wavelength distribution is controlled by the filter device modulation
- the spatial distribution is controlled by the transmission antenna modulation
- the phase distribution is modulated by the refraction device
- the polarization is modulated by the mode converter.
- the free space is fed into the system, and then injected into the oxygen ionization zone through interference modulation to form an oxygen plasma.
- the first electromagnetic wave uses a 365nm near-ultraviolet Gaussian beam, and the material used is 0.2um fluorinated graphene, which is placed on a flat surface.
- the target molecule ionized is nitrogen trifluoride.
- the second electromagnetic wave uses a 12.24cm microwave flat-top beam.
- the 365nm near-ultraviolet laser is emitted by the laser as a Gaussian beam with a polarization degree of 92% and an orbital angular momentum of 0.
- the wavelength distribution is controlled by interference modulation
- the spatial distribution is controlled by the spatial light modulator
- the polarization distribution is controlled by the mode conversion modulator
- the phase is modulated by the birefringent device.
- the modulation is completed, it is fed into the plane through the free space and injected into the surface of the fluorinated graphene to form a surface plasma.
- Nitrogen trifluoride is transported through a steel cylinder and directly vaporized to obtain a nitrogen trifluoride stream.
- the nitrogen is used as a carrier gas and sent to the surface of the fluorinated graphene.
- the nitrogen trifluoride is charged by electrostatic introduction, and the surface of the fluorinated graphene is charged.
- the electric field distribution is modulated to obtain a stronger interaction.
- the nitrogen trifluoride is adsorbed on the surface and is further induced by the surface plasma on the surface of the fluorinated graphene, causing the nitrogen trifluoride to ionize.
- the 12.24cm microwave is guided by a 2450Mhz microwave source and is a flat-top beam with a degree of polarization of 0.1% and an orbital angular momentum of 0.
- the wavelength distribution is controlled by the enhanced modulation of the resonant cavity
- the spatial distribution is controlled by the matrix emission device modulation
- the phase distribution is modulated by the refraction device
- the polarization is modulated by the mode converter.
- the modulation is completed, it is fed into the system through the waveguide, and then directly injected into the nitrogen trifluoride ionization zone through the waveguide to form nitrogen trifluoride plasma.
- the first electromagnetic wave uses a 980nm near-infrared Gaussian beam, and the material used is 10um glassy carbon, which is placed on the grating.
- the target molecule ionized is ammonia gas.
- the second electromagnetic wave uses a 1.064um near-infrared vortex beam.
- the 980nm near-infrared light is emitted by the laser as a Gaussian beam with a polarization degree of 85% and an orbital angular momentum of 0.
- the wavelength distribution is controlled by the filter device modulation
- the spatial distribution is controlled by the refraction device
- the polarization distribution is modulated by the birefringence device
- the phase is modulated by the spatial light modulator.
- the free space is fed into the grating and injected into the glassy carbon surface to form surface plasma.
- the ammonia gas is vaporized by heating, and the ammonia gas is used as a carrier gas to be sent to the surface of the glassy carbon, and the target molecules are charged by electrostatic introduction, and a micro-scale periodic microstructure is formed on the surface of the glassy carbon to obtain stronger interaction.
- the ammonia gas is adsorbed on the surface and is further induced by the surface plasma on the glassy carbon surface, causing the ammonia gas to ionize.
- the 1.064um near-infrared light is emitted by the laser as a vortex beam with a polarization degree of 91% and an orbital angular momentum of ⁇ 1.
- the wavelength distribution is controlled by nonlinear optical modulation
- the spatial distribution is controlled by the modulation of the variable curvature reflector
- the phase distribution is modulated by the birefringent device
- the polarization is modulated by the spatial light modulator.
- the free space is fed into the system, and then modulated by the transmission antenna into the ammonia ionization zone to form an ammonia plasma.
- the grounding current forms a magnetic field and is constrained and constrained to form a stable atmospheric ammonia plasma.
- the first electromagnetic wave uses a 265nm near-ultraviolet Mathieu beam, and the material used is 10um ⁇ -alumina powder, which is placed on the surface of the micro-scale waveguide.
- the target molecules ionized are water molecules.
- the second electromagnetic wave uses a 1.54um near-infrared Gaussian beam.
- the 265 extreme ultraviolet light is emitted by the LED as a Mathieu beam with a polarization degree of 76% and an orbital angular momentum of 0.07%.
- the wavelength distribution is controlled by interference modulation
- the spatial distribution is controlled by the spatial light modulator
- the polarization distribution is modulated by the polarizer
- the phase is modulated by phase shifting.
- the free space is fed into the double-section isolator, and then through the multiple attenuation total internal reflection device, it is injected into the ⁇ -alumina surface to form a surface plasma.
- the water molecules are displaced by optical tweezers and sent to the surface of ⁇ -alumina, the target molecules are excited by electromagnetic waves to select different excited states, and the surface voltage of ⁇ -alumina is modulated to obtain a stronger interaction. After completion, water molecules adsorb on the surface and are further induced by the surface plasma on the surface of ⁇ -alumina, causing the water molecules to ionize.
- the 1.54um laser is emitted by an acetylene frequency-stabilized laser, which is a Gaussian beam with a polarization degree of 2% and an orbital angular momentum of ⁇ 1.
- the wavelength distribution is controlled by the dispersive device modulation
- the spatial distribution is controlled by the variable curvature emitting device
- the phase distribution is modulated by the photoelastic modulation
- the polarization is modulated by the spatial light modulator.
- the high-power optical fiber is used as a waveguide to feed into the broadband isolator system, and then the water molecule ionization zone is adjusted by the optical fiber waveguide to form a water molecule plasma.
- the first electromagnetic wave uses a 10nm soft X-ray Gaussian beam, and the material used is a 30nm perovskite quantum dot, which is placed on a micro-scale surface.
- the target molecule ionized is copper phthalocyanine.
- the second electromagnetic wave uses a 32.75 cm microwave Avery beam.
- the 10nm soft X-ray is emitted from the X-ray tube as a Gaussian beam with a polarization degree of 0.09% and an orbital angular momentum of 0.
- its wavelength distribution is controlled by absorption modulation
- its spatial distribution is controlled by absorption device modulation
- its polarization distribution is modulated by a birefringent device
- its phase is modulated by a birefringence device.
- the soft X-ray fiber waveguide is fed into the fiber waveguide circulator, and then irradiated by a near-field waveguide probe smaller than the wavelength, and injected into the surface of the perovskite quantum dot to form a surface plasma.
- the copper phthalocyanine is drawn and displaced by the probe and sent to the surface of the perovskite quantum dot.
- the target molecule is excited by electromagnetic waves to select different excited states, and the material crystal domain size is modulated to obtain a stronger interaction.
- the copper phthalocyanine adsorbs on the surface of the perovskite quantum dots, and is further induced by the surface plasma on the surface of the perovskite, causing the copper phthalocyanine to ionize.
- the 32.75 cm microwave is emitted from the 915Mhz microwave traveling wave tube as an Avery beam with a polarization degree of 0.5% and an orbital angular momentum of 0.
- the wavelength distribution is controlled by the enhanced modulation of the resonant cavity
- the spatial distribution is controlled by the transmission antenna modulation
- the phase distribution is modulated by the phase shift modulation
- the polarization is modulated by the single-mode cavity.
- the modulation is completed, it is fed into the system through the waveguide, and then modulated by the transmission antenna into the copper phthalocyanine ionization zone to form copper phthalocyanine plasma.
- the transportation is guided by an external electromagnetic wave source, and a magnetic field is confined to form a stable atmospheric copper phthalocyanine plasma.
- the first electromagnetic wave uses a 0.11mm terahertz Gaussian beam, and the material used is a 1um thick PEDOT-PSS film, which is placed inside the cavity.
- the target molecule ionized is acetaminophen.
- the second electromagnetic wave uses a 5.1cm microwave Gaussian beam.
- the 0.11mm terahertz wave is emitted from a 2.7THz terahertz antenna. It is a Gaussian beam with a degree of polarization of 0.09% and an orbital angular momentum of 0.
- the wavelength distribution is controlled by the filter element modulation
- the spatial distribution is controlled by the transmission antenna modulation
- the polarization distribution is modulated by the single-mode cavity
- the phase is modulated by the phase shift.
- the modulation is completed, it is fed into a single-mode cavity through a waveguide, and then injected into the surface of the PEDOT-PSS through a metamaterial device with a dielectric constant less than 1 to form a surface plasmon.
- Acetaminophen is atomized by ultrasonic and sent to the surface of PEDOT-PSS by ultrasonic sound tweezers.
- the target molecule is charged by electrostatic introduction, and the structure of functional groups on the surface of the material is modulated to obtain stronger interaction.
- acetaminophen is adsorbed on the surface of PEDOT-PSS and is further induced by the surface plasma on the surface of PEDOT-PSS, causing the ionization of acetaminophen.
- the 5.1cm microwave is emitted by a 5.8GHz microwave magnetron as a Gaussian beam with a polarization degree of 1.1% and an orbital angular momentum of 0.
- the resonant cavity is enhanced and modulated to control its wavelength distribution
- the transmission antenna is modulated to control its spatial distribution
- the phase distribution is modulated by phase shift modulation
- its polarization is modulated by the single-mode cavity.
- the modulation is completed, it is fed into the system through the waveguide circulator, and then modulated by the absorption device into the paracetamol ionization zone to form paracetamol plasma.
- the first electromagnetic wave uses 13.4nm extreme ultraviolet rays, and the material used is 20um carbon fiber, which is placed inside the cavity.
- the target molecule ionized is nitrogen.
- the second electromagnetic wave uses 100m intermediate frequency radio waves.
- the 13.4nm extreme ultraviolet is emitted by the plasma light source as a Gaussian beam with a degree of polarization of 0.01% and an orbital angular momentum of 0.
- the wavelength distribution is controlled by nonlinear optical modulation
- the spatial distribution is controlled by the modulation of the variable curvature reflector
- the polarization distribution is modulated by the single-mode cavity
- the phase is modulated by phase shifting.
- the free space is fed into the cavity, and then after direct matching, it is injected into the surface of the carbon fiber to form a surface plasma.
- Nitrogen is transported through a steel cylinder and directly vaporized to obtain a nitrogen gas flow.
- the nitrogen gas flow is loaded into the carbon fiber surface through the gas flow.
- the chemical potential of the target molecule on the material is controlled by the concentration difference, and a micron-scale periodic microstructure is formed on the material surface to obtain a better Strong interaction.
- nitrogen is adsorbed on the surface and is further induced by the surface plasma on the surface of the carbon fiber, causing the nitrogen to ionize.
- the 100m intermediate frequency radio wave is emitted from the antenna as a Gaussian beam with a polarization degree of 3.5% ,
- the orbital angular momentum is 0.
- the wavelength distribution is controlled by interference modulation
- the spatial distribution is controlled by the transmission antenna modulation
- the phase distribution is modulated by phase shifting
- the polarization is modulated by the mode converter.
- the modulation is completed, it is fed into the system through the waveguide, and then modulated by the filter device to be injected into the nitrogen ionization zone to form a nitrogen plasma.
- the first electromagnetic wave uses a 12.24cm microwave Gaussian beam, and the material used is 50nm cerium oxide aerogel, which is placed on a flat plate.
- the target molecule ionized is nitrogen dioxide.
- the second electromagnetic wave uses 100m intermediate frequency radio waves.
- the 12.24cm microwave is guided by a 2450Mhz microwave source and is a Gaussian beam with a degree of polarization of 0.04% and an orbital angular momentum of 0.
- the wavelength distribution is controlled by absorption modulation
- the spatial distribution is controlled by the variable curvature reflector
- the polarization distribution is modulated by the single-mode cavity
- the phase is modulated by phase shifting.
- the modulation is completed, it is fed through the free space, and then through the multiple attenuation total internal reflection device, and injected into the surface of the cerium oxide aerogel to form a surface plasma.
- Nitrogen dioxide is transported through steel cylinders and directly vaporized to obtain a nitrogen dioxide stream, which is delivered to the surface of the cerium oxide aerogel by a nitrogen carrier gas.
- the chemical potential of the target molecule on the material is controlled by the concentration difference, and the surface of the material is formed into a nano-scale non- Periodic microstructure for stronger interaction.
- the nitrogen dioxide adsorbs on the surface of the cerium oxide aerogel, and is further induced by the surface plasma on the surface of the cerium oxide, causing the nitrogen dioxide to ionize.
- the 100m intermediate frequency radio wave is emitted from the antenna as a Gaussian beam with a polarization degree of 3.5% ,
- the orbital angular momentum is 0.
- the wavelength distribution is controlled by interference modulation
- the spatial distribution is controlled by the transmission antenna modulation
- the phase distribution is modulated by phase shifting
- the polarization is modulated by the mode converter.
- the modulation is completed, it is fed through the free space through the antenna, and then modulated by the filter device to be injected into the nitrogen dioxide ionization zone to form a nitrogen dioxide plasma.
- the stable atmospheric pressure nitrogen dioxide plasma is formed through air flow transportation and air flow restriction.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Electromagnetism (AREA)
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
- Particle Accelerators (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Plasma Technology (AREA)
Abstract
一种表面耦合诱导电离方法以及一类等离子体器件,方法包含以下步骤:(1)通过自由空间或波导将第一束电磁波馈入至材料上,励激起表面等离子体波;材料表面引入待电离的目标分子,通过控制相互作用,使目标分子的电子与材料上的表面等离子体激元发生耦合,诱导目标分子电离;(2)同步通过自由空间或波导,再将第二束及后续的电磁波馈入至材料表面上目标分子的电离区域,使电离后的目标分子吸收,提高目标分子的电离程度;(3)目标分子以体相等离子体的形式释放,实现表面耦合诱导电离。
Description
本发明涉及材料科学与电子器件领域,特别是涉及等离子体与电离。此外,本发明还涉及一系列涉及上述等离子体的等离子体器件。
等离子体(Plasma),即气态的分子在外场或热作用下,进一步电离后形成的物态。在生活有许多常见的等离子体,包括在燃烧环境下的高温火焰、高压放电击穿空气时形成的电弧与街头巷尾五颜六色的霓虹灯。使气态分子转化为等离子体的技术,即电离技术(Ionization),在三废处理,橡胶回收,材料合成与材料表面修饰,检测分析等各个领域被广泛应用。
不同形式的等离子体的电离条件各有不同,但最为常见的还是负压或真空下形成的等离子体。真空或负压下的典型电离方式之一,即为辉光放电。辉光放电正是在各类气体的管道中抽到一定的负压(一般低于10mbar),再通过两个平板电极向真空管中放电,使气体发生电离,形成辉光等离子体。如通过高频的射流代替直流,则可以进一步获得基于平板电极间电容耦合的射频等离子体。传统负压或真空下的等离子体还包括电晕放电、电弧击穿放电、介质阻挡放电等。但大多数都需要负压环境运行。
真空或负压环境往往限制了等离子体的应用,因此大量的研究着手于实现常压环境下的电离。常见的常压电离技术包括电子轰击电离,射频电离,电弧电离,电感耦合电离,电喷雾电离,激光诱导电离等。其中,足够形成常压等离子体的主流方法,主要是电弧电离与电感耦合电离这两种方法。这两种方法实现的常压等离子体被广泛的在各个领域中开展了应用,包括垃圾处理、材料冶炼、表面镀膜与仪器分析等,并且在一些具体的应用上硕果颇丰。比如说,电弧等离子体炬已经被用作复杂成分垃圾处理最有效的一把利器,而电感耦合等离子体炬(ICP)结合光谱分析的ICP-OES或后接质谱系统的ICP-MS,更是目前用于检测各类元素含量的最为常见的关键仪器,其检出限可下达ppb乃至ppt级。对于常压等离子体而言,其应用有哪些可能,取决于等离子体的电子温度与离子温度的可调范围,更直接的说,取决于等离子体中的能量密度的可调范围;其应用有多大价值,则取决于形成等离子体时的馈能效率。
对于常压等离子体的商业应用而言,最大的问题就是馈能效率过低。比如说,对于电弧等离子体而言,一旦电弧形成,电极两端的电压就会快速下降,从而导致等离子体中的能量密度随即下降。而对于电感耦合等离子体而言,始终需要火花点火形成初始的气体电离部分,才能通过交流线圈中建立的交变磁场耦合将能量馈入至电离气体进一步形成火炬,这使得等离子体自身的阻抗特性变成了对耦合效率直接影响的对象。
综上所述,本领域一直需求一种新的电离技术,能够实现更高馈能效率,更宽的电子温度与离子温度的可调温度范围,更高的能量密度的常压等离子体,从而加深对既有应用领域的挖掘,并进一步拓广等离子体的其他应用。
有鉴于此,本发明提出一种性能优越的表面耦合诱导电离技术,及其对应的等离子体,以及等离子体器件。
一方面,本发明提供了一种表面耦合诱导电离的技术方法,包括:
通过自由空间或波导将第一束电磁波馈入至材料上,使第一束电磁波与材料的表面等离子体发生共振,并励激起表面等离子体波。同时,向材料表面引入待电离的目标分子,并通过控制材料表面与目标分子间的相互作用,使目标分子的电子与材料上的表面等离子体激元发生耦合,诱导目标分子电离。同步的,通过自由空间或波导,再将第二束及后续的电磁波馈入至材料表面上目标分子的电离区域,使电离后的目标分子吸收,提高目标分子的电离程度。最终,目标分子以体相等离子体的形式释放,实现表面耦合诱导电离。
进一步地,所述的材料形态包括固体与液体。其中,所述的固体形态包括薄膜,颗粒,粉体,气溶胶,光子晶体,气固两相流中的一种或多种;所述的液体形态包括液滴,分散液,气液两相流中的一种或多种。
进一步地,所述的材料尺寸为0.3nm-1000mm。
进一步地,所述的材料包括金属及合金材料,碳材料,陶瓷材料,有机导体材料,半导体材料中的一种或多种。
进一步地,所述的金属及合金材料,包括含有锂、铍、硼、碳、钠、镁、铝、硅、磷、硫、钪、钛、钒、铬、锰、铁、钴、镍、铜、锌、镓、锗、砷、铷、锶、钇、锆、铌、钼、锝、钌、铑、钯、银、镉、铟、锡、锑、碲、铯、钡、铪、钽、钨、铼、锇、铱、铂、金、汞、铊、铅、铋、钋、钫、镭,镧系元素,锕系元素的金属或合金中的一种或多种。
进一步地,所述的碳材料,包括石墨烯、氨基化石墨烯、羧基化石墨烯、羟基化石墨烯、巯基化石墨烯、氧化石墨烯、甲基化石墨烯、三氟甲基化石墨烯、十八烷基化石墨烯、氟化石墨烯及碘化石墨烯、人造石墨、天然石墨、石墨化碳微球、石墨化碳纳米管、碳纳米管、玻璃碳、无定形碳、碳纳米角、碳纤维、碳量子点、碳分子筛中的一种或几种。
进一步地,所述的陶瓷材料,包括氧化物陶瓷,硅酸盐陶瓷,氮化物陶瓷,硼酸盐陶瓷,磷酸盐陶瓷,碳化物陶瓷,铝酸盐陶瓷,锗酸盐陶瓷,钛酸盐陶瓷中的一种或几种。
进一步地,所述有机导体材料,包括聚乙炔,聚芳基乙炔,聚吡咯,聚苯胺,聚噻吩,聚苯硫醚,TTF-TCNQ,PEDOT-PSS,四硫富瓦烯,聚芴,聚对苯撑,聚芳烃,等具有连续共轭骨架的化合物中的一种或多种。
进一步地,所述的半导体材料包括III-V族半导体、II-VI族半导体,IV族半导体,量子点半导体,钙钛矿半导体颗粒中的一种或几种。
进一步地,所述的第一束电磁波及为伽马射线、硬X射线、软X射线、极紫外线、近紫外线、可见光、近红外线、中红外线、远红外线、太赫兹、极高频微波、超高频微波、特高频微波、甚高频无线电波、高频无线电波、中频无线电波、低频无线电波、甚低频无线电波、特低频无线电波、极低频无线电波中的一种或多种。
进一步地,所述的第一束电磁波波长及其分布为0.01 nm ~ 100 km。
进一步地,所述的第一束电磁波其空间分布包括高斯光束、贝塞尔光束、艾利光束、拉盖尔-高斯光束、余弦-高斯光束、马蒂厄光束、平顶光束、涡旋光束中的一种或多种。
进一步地,所述的第一束电磁波其偏振度为0.01 % - 99 %。
进一步地,所述的第一束电磁波其偏振模式包括自然光,部分偏振,线偏振,圆偏振,椭圆偏振,方位角偏振,径向偏振,中的一种或多种。
进一步地,所述的第一束电磁波其偏振包括S波偏振与P波偏振。
进一步的,所述的第一束电磁波其轨道角动量及其分布为 -10 ~ +10。
进一步地,所述的第一束电磁波其相位及其分布为0 – 2π。
进一步地,所述的第二束及后续的电磁波为伽马射线、硬X射线、软X射线、极紫外线、近紫外线、可见光、近红外线、中红外线、远红外线、太赫兹、极高频微波、超高频微波、特高频微波、甚高频无线电波、高频无线电波、中频无线电波、低频无线电波、甚低频无线电波、特低频无线电波、极低频无线电波中的一种或多种。
进一步地,所述的第二束及后续的电磁波波长及其分布为0.01 nm ~ 100 km。
进一步地,所述的第二束及后续的电磁波其空间分布包括高斯光束、贝塞尔光束、艾利光束、拉盖尔-高斯光束、余弦-高斯光束、马蒂厄光束、平顶光束、涡旋光束中的一种或多种。
进一步地,所述的第二束及后续的电磁波其偏振度为0.01 % - 99 %。
进一步地,所述的第二束及后续的电磁波其偏振模式包括自然光,部分偏振,线偏振,圆偏振,椭圆偏振,方位角偏振,径向偏振,中的一种或多种。
进一步地,所述的第二束及后续的电磁波其偏振包括S波偏振与P波偏振。
进一步的,所述的第二束及后续的电磁波其轨道角动量及其分布为 -10 ~ +10。
进一步地,所述的第二束及后续的电磁波其相位及其分布为0 – 2π。
进一步地,所述的目标分子,其分子量从1.0×10
0Da- 1.0×10
20 Da。
进一步地,所述通过自由空间的方式将第一束电磁波馈入至材料上,具体包括如下步骤:1S1、将第一束电磁波的波长及其分布、空间分布、偏振与轨道角动量及其分布、相位及其分布等因素进行调制,得到第一束调制电磁波;1S2a、引导所述的第一束调制电磁波与材料的表面等离子体频率波矢匹配,获得波矢匹配调制电磁波;1S3a、将所述的波矢匹配调制电磁波经自由空间射入材料表面,使材料表面形成表面等离子体波。
进一步地,所述的步骤1S1中的波长及其分布调制方法,包括色散器件调制,滤波器件调制,折射器件调制,干涉调制,吸收调制,非线性光学调制,谐振腔增强调制中的一种或多种。
进一步地,所述步骤1S1中的空间分布调制方法,包括折射器件调制,传输天线调制,矩阵反射器件调制,空间光调制器调制,可变曲率反射器件调制,吸收器件调制中的一种或多种。
进一步地,所述步骤1S1中的偏振与轨道角动量及其分布调制方法,包括单模式腔体调制,光弹调制,空间光调制器调制,模式转换器调制,双折射器件调制,偏振片调制中的一种或多种。
进一步地,所述步骤1S1中的相位及其分布调制方法,包括移相调制,双折射器件调制,空间光调制器调制中的一种或多种。
进一步地,所述步骤1S2a中的波矢匹配方法,包括通过光栅,光子晶体,自由光耦合棱镜全内反射,介电常数小于1的超材料器件,多重衰减全内反射器件,自由光耦合波导全内反射器件,全内反射器件,聚焦器件,直接匹配中的一种或多种方法。
进一步地,所述通过波导的方式将第一束电磁波馈入至材料上,具体包括如下步骤:1S1、将第一束电磁波的波长及其分布、空间分布、偏振与轨道角动量及其分布、相位及其分布等因素进行调制,得到第一束调制电磁波;1S2b、将所述第一束调制电磁波通过波导馈入隔离器,得到单向第一束调制电磁波;1S3b、引导所述的单向第一束调制电磁波与材料的表面等离子体频率波矢匹配,获得波矢匹配单向调制电磁波;1S4b、将所述的波矢匹配单向调制电磁波经波导射入材料表面,使材料表面形成表面等离子体波。
进一步地,所述步骤1S2b中的隔离器,包括波导环形器,光纤波导环形器,光纤光隔离器,法拉第旋转器,同轴隔离器,带线隔离器,宽带隔离器,双节隔离器,微带隔离器,衰减器,负载中的一种或多种。
进一步地,所述步骤1S3b中的波矢匹配方法,包括通过光栅,光子晶体波导,波导耦合棱镜全内反射,介电常数小于1的超材料波导,多重衰减全内反射器件,波导全内反射器件,全内反射器件,小于波长的近场波导探头照射,直接匹配中的一种或多种方法。
进一步地,所述向材料表面引入待电离的目标分子,具体包括如下步骤:2S1、将目标分子引入气相环境,得到气相中目标分子;2S2、将前述的气相中的目标分子,移至材料表面。
进一步地,所述步骤2S1中的目标分子引入气相环境方法,包括超声雾化,加热蒸发,真空气化,直接气化,气流携带中的一种或多种方法。
进一步地,所述步骤2S2中的移至材料表面,包括光镊位移,超声声镊位移,机械力位移,气流载入,真空吸入位移,探针牵引位移,磁力位移中的一种或多种方法。
进一步地,所述控制材料表面与目标分子间的相互作用,具体包括如下步骤:3S1、控制材料微结构与表面电磁场分布,得到调节后材料;3S2、控制目标分子的状态,得到调节后目标分子;3S3,将所述的调制后材料与所述的调节后目标分子结合,实现对材料表面与目标分子间的相互作用控制,并引起目标分子的电离。
进一步地,所述步骤3S1中的控制材料微结构与表面电磁场分布,包括材料表面形成纳米尺度周期性微结构,材料表面形成纳米尺度非周期性微结构,材料表面形成微米尺度周期性微结构,材料表面形成微米尺度非周期性微结构,材料表面功能基团结构调制,材料表面缺陷态密度结构调制,材料表面掺杂结构调制,材料晶畴尺寸调制,材料超晶格结构调制,材料表面电压调制,材料表面电场分布调制,材料磁畴结构调制,材料磁场调制中的一种或多种方法。
进一步地,所述步骤3S2控制目标分子的状态,包括通过电磁波对目标分子进行激发选择不同激发态,通过浓度差控制目标分子在材料上的化学势,通过静电引入使目标分子带电,通过磁场引入使目标分子磁化中的一种或多种方法。
进一步地,所述通过自由空间,将第二束及后续的电磁波馈入至材料表面上目标分子的电离区域,具体包括如下步骤:4S1、将第二束及后续的电磁波的波长及其分布、空间分布、偏振与轨道角动量及其分布、相位及其分布等因素进行调制,得到第二束及后续调制电磁波。4S2、引导所述的第二束及后续调制电磁波与电离后的目标分子的等离子体频率配合,得到频率配合调制电磁波;4S3a、将所述的频率配合调制电磁波经自由空间射入材料表面上目标分子的电离区域,使电离后的目标分子吸收,提高目标分子的电离程度。
进一步地,所述的步骤4S1中的波长及其分布调制方法,包括色散器件调制,滤波器件调制,折射器件调制,干涉调制,吸收调制,非线性光学调制,谐振腔增强调制中的一种或多种。
进一步地,所述步骤4S1中的空间分布调制方法,包括折射器件调制,传输天线调制,矩阵反射器件调制,空间光调制器调制,可变曲率反射器件调制,吸收器件调制中的一种或多种。
进一步地,所述步骤4S1中的偏振与轨道角动量及其分布调制方法,包括单模式腔体调制,光弹调制,空间光调制器调制,模式转换器调制,双折射器件调制,偏振片调制中的一种或多种。
进一步地,所述步骤4S1中的相位及其分布调制方法,包括移相调制,双折射器件调制,空间光调制器调制中的一种或多种。
进一步地,所述步骤4S2中的频率配合方法,包括色散器件调制配合,滤波器件调制配合,折射器件调制配合,干涉调制配合,吸收调制配合,非线性光学调制配合,直接射入中的一种或多种。
进一步地,所述步骤4S3a中的射入电离区域方法,包括折射器件调制,传输天线调制,矩阵反射器件调制,空间光调制器调制,可变曲率反射器件调制,吸收器件调制,直接射入中的一种或多种。
进一步地,所述通过波导,将第二束及后续的电磁波馈入至材料表面上目标分子的电离区域,具体包括如下步骤:4S1、将第二束及后续的电磁波的波长及其分布、空间分布、偏振及其分布、轨道角动量及其分布、相位及其分布等因素进行调制,得到第二束及后续调制电磁波;4S2、引导所述的第二束及后续调制电磁波与电离后的目标分子的等离子体频率配合,得到频率配合调制电磁波;4S3b、将所述的频率配合调制电磁波通过波导馈入隔离器,得到单向频率配合调制电磁波;4S4b、将所述的单向频率配合调制电磁波经波导射入材料表面上目标分子的电离区域,使电离后的目标分子吸收,提高目标分子的电离程度。
进一步地,所述步骤4S3b中的隔离器,包括波导环形器,光纤波导环形器,光纤光隔离器,法拉第旋转器,同轴隔离器,带线隔离器,宽带隔离器,双节隔离器,微带隔离器,衰减器,负载中的一种或多种。
进一步地,所属步骤4S4b中的射入电离区域方法,包括折射器件调制,传输天线调制,矩阵反射器件调制,空间光调制器调制,可变曲率反射器件调制,吸收器件调制,光子晶体调制,波导调节射入,直接射入中的一种或多种。
进一步地,所述目标分子以体相等离子体的形式释放,具体包括如下步骤:5S1、将所述目标分子的等离子体引出材料表面区域,得到离域等离子体;5S2、将离域等离子体约束在特定空间内,获得更高的能量密度。
进一步地,所述步骤5S1中的引出材料表面区域,包括通过真空吸引,气流输送,负压抽出,外部接地吸引,外部电磁波源引导,外部电流引导中的一种或多种方法。
进一步地,所述步骤5S2中的等离子体约束,包括通过外加磁场约束,接地电流形成磁场自箍约束,气流约束,对撞约束中的一种或多种方法。
另一方面,本发明还提供一类等离子体器件,其等离子体器件内的等离子体,包括上述任意一项或多项所述的等离子体。所涉及的等离子体器件包括但不限于传感器、等离子源、反应器、天线、电动机等。
本发明提供一种表面耦合诱导电离技术及其对应的等离子体,该诱导电离技术通过外加电磁波励激起材料的表面等离子体波,并通过目标分子在材料表面的吸附,使目标分子的键能减弱,易于电离。进一步的,当目标分子电离后,再馈入电磁波使电离后的分子维持并增强电离度,形成稳定的等离子体并被引出材料表面,从而形成常压等离子体源。调整不同的电磁波,材料类型与目标分子的类型,可形成各类不同的等离子体,满足各种需求。这使传统的电磁波直接电离目标分子形成等离子体的难度大大下降,即使涉及的目标分子不具备对特定波长的电磁波的吸收能力,也能通过目标分子在材料上的吸附,使材料通过表面等离子体诱导目标分子电离。通过两束电磁波间的功率比例调节,可以最大化等离子体内的馈能效率,从而形成电子温度与离子温度范围极宽,能量密度极高的新型等离子体。本发明同时提供涉及该项表面耦合诱导电离技术及其对应的等离子体形成的等离子体器件。
与现有技术相比,本发明提出了一种新的常压等离子体的形成方式,其应用的价值非常直观。典型的应用包括通过等离子体炬激发与观测适合的高级激发态,提高传统OES的光谱分析精度,达到ppt甚至更高的检出限;或实现常压下的金刚石镀膜,或其他纳米粉体材料的制备;或用于废气尾气的处理,实现有机废气无害化的处理目标;甚至于用于形成高能质子束打靶,实现小型化的中子束源等,存在着各种应用的可能。
综上所述,本发明具有电离的分子范围广,馈能效率高,能量密度高,电子温度与离子温度范围宽的优点,为拓宽等离子体的应用提供了可靠的前提。
图1为基于本发明形成的常压氮等离子体炬。
图2为本发明的实施流程图。
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。
本发明提供一种提供了一种表面耦合诱导电离的技术方法,及其对应的等离子体,以及等离子体器件。
本发明所述的表面耦合诱导电离的技术方法,是指通过材料与目标分子间的表面相互作用,与材料上的表面等离子体相耦合,从而诱导目标分子电离并形成等离子体。
相对于已有的技术而言,本申请发明人首次创新的将材料的表面等离子体与吸附引起的目标分子与材料的相互作用耦合,并进一步通过电磁波增强目标分子的电离,形成稳定等离子体。此种方式使目标分子形成等离子体的难度大大下降,即使涉及的目标分子不具备对特定波长的电磁波的吸收能力,也能通过目标分子在材料上的吸附,使材料通过表面等离子体诱导目标分子电离。
基于此发明构思,本发明选用了一系列不同形态、尺寸和类型的材料作为目标分子的吸附介质与表面等离子体的载体。
所述的材料形态包括固体与液体。其中,所述的固体形态包括但不限于薄膜,颗粒,粉体,气溶胶,光子晶体,气固两相流中的一种或多种;所述的液体形态包括但不限于液滴,分散液,气液两相流中的一种或多种。不同形态的材料的选取主要是通过不同形态提供不同的比表面积、微观结构,并进一步可以通过形态来控制材料上的附加波矢,从而更易于激发表面等离子体波。
所述的材料尺寸为0.3nm
- 1000mm,优选为1nm – 100um。选择使用这个尺寸的材料,主要是由于在这个尺寸范围内,表面等离子体被约束在纳米至亚微米尺度的颗粒边界上,具有极大的波矢不确定性,也因此对表面等离子体耦合的入射角角度要求下降,易于实现波矢匹配。
所述的材料包括金属及合金材料,碳材料,陶瓷材料,有机导体材料,半导体材料中的一种或多种。进一步地,所述的碳材料,包括无缺陷石墨烯、高缺陷石墨烯、氨基化石墨烯、羧基化石墨烯、羟基化石墨烯、巯基化石墨烯、氧化石墨烯、甲基化石墨烯、三氟甲基化石墨烯、十八烷基化石墨烯、氟化石墨烯及碘化石墨烯、人造石墨、天然石墨、石墨化碳微球、石墨化碳纳米管、碳纳米管、玻璃碳、无定形碳、碳纳米角、碳纤维、碳量子点、碳分子筛中的一种或几种。选择这类材料主要是考虑其具有各种不同的带隙,从而允许不同的激发条件激发,且这类材料往往具有良好的表面等离子体激元品质因数,形成的表面等离子体能够传播较远,这会使目标分子的电离概率更高。
本发明所述的表面耦合诱导电离的技术方法,即通过自由空间或波导将第一束电磁波馈入至材料上,使第一束电磁波与材料的表面等离子体发生共振,并励激起表面等离子体波。同时,向材料表面引入待电离的目标分子,并通过控制材料表面与目标分子间的相互作用,使目标分子的电子与材料上的表面等离子体激元发生耦合,诱导目标分子电离。同步的,通过自由空间或波导,再将第二束及后续的电磁波馈入至材料表面上目标分子的电离区域,使电离后的目标分子吸收,提高目标分子的电离程度。最终,目标分子以体相等离子体的形式释放,实现表面耦合诱导电离。
由于通过波导易于实现入射电磁波的隔离,避免在工作过程中对电磁波源的损伤,故本发明优选采用通过波导入射第一束电磁波、第二束及后续电磁波。具体而言,包括如下步骤:
1S1、将第一束电磁波的波长及其分布、空间分布、偏振与轨道角动量及其分布、相位及其分布等因素进行调制,得到第一束调制电磁波;
1S2b、将所述第一束调制电磁波通过波导馈入隔离器,得到单向第一束调制电磁波;
1S3b、引导所述的单向第一束调制电磁波与材料的表面等离子体频率波矢匹配,获得波矢匹配单向调制电磁波;
1S4b、将所述的波矢匹配单向调制电磁波经波导射入材料表面,使材料表面形成表面等离子体波。
2S1、将目标分子引入气相环境,得到气相中目标分子;
2S2、将前述的气相中的目标分子,移至材料表面;
3S1、控制材料微结构与表面电磁场分布,得到调节后材料;
3S2、控制目标分子的状态,得到调节后目标分子;
3S3,将所述的调制后材料与所述的调节后目标分子结合,实现对材料表面与目标分子间的相互作用控制,并引起目标分子的电离。
4S1、将第二束及后续的电磁波的波长及其分布、空间分布、偏振及其分布、轨道角动量及其分布、相位及其分布等因素进行调制,得到第二束及后续调制电磁波;
4S2、引导所述的第二束及后续调制电磁波与电离后的目标分子的等离子体频率配合,得到频率配合调制电磁波;
4S3b、将所述的频率配合调制电磁波通过波导馈入隔离器,得到单向频率配合调制电磁波;
4S4b、将所述的单向频率配合调制电磁波经波导射入材料表面上目标分子的电离区域,使电离后的目标分子吸收,提高目标分子的电离程度。
5S1、将所述目标分子的等离子体引出材料表面区域,得到离域等离子体;
5S2、将离域等离子体约束在特定空间内,获得更高的能量密度。
对于入射电磁波源的特性,在理想的情况下应当是无需调制即达到最大功率的输入,因为无论是何种类型的调制,都会使入射电磁波的功率损耗。
因此,通过对波束的需求分析,可知:
上述第一束电磁波及为伽马射线、硬X射线、软X射线、极紫外线、近紫外线、可见光、近红外线、中红外线、远红外线、太赫兹、极高频微波、超高频微波、特高频微波、甚高频无线电波、高频无线电波、中频无线电波、低频无线电波、甚低频无线电波、特低频无线电波、极低频无线电波中的一种或多种,优选为软X射线,极紫外线,近紫外线,可见光,近红外线,中红外线,太赫兹,极高频微波,超高频微波,特高频微波。
上述第一束电磁波波长及其分布为0.01
nm ~ 100 km,优选为10nm~1m。
上述第一束电磁波其空间分布包括高斯光束、贝塞尔光束、艾利光束、拉盖尔-高斯光束、余弦-高斯光束、马蒂厄光束、平顶光束、涡旋光束中的一种或多种,优选为高斯光束,贝塞尔光束,拉盖尔-高斯光束,平顶光束。
上述第一束电磁波其偏振度为0.01
% - 99 %,优选为90% - 99%。
上述第一束电磁波其偏振模式包括自然光,部分偏振,线偏振,圆偏振,椭圆偏振,方位角偏振,径向偏振中的一种或多种,优选为线偏振。
上述第一束电磁波其偏振包括S波偏振与P波偏振,优选为P波偏振。
上述第一束电磁波其轨道角动量及其分布为 -10 ~ +10。优选为±1。
上述第一束电磁波其相位及其分布为0
– 2π。
上述第二束及后续的电磁波为伽马射线、硬X射线、软X射线、极紫外线、近紫外线、可见光、近红外线、中红外线、远红外线、太赫兹、极高频微波、超高频微波、特高频微波、甚高频无线电波、高频无线电波、中频无线电波、低频无线电波、甚低频无线电波、特低频无线电波、极低频无线电波中的一种或多种,优选为近红外线、中红外线、远红外线、太赫兹、极高频微波、超高频微波、特高频微波、甚高频无线电波、高频无线电波、中频无线电波。
上述第二束及后续的电磁波波长及其分布为0.01 nm ~ 100 km,优选为1um-1Km。
上述第二束及后续的电磁波其空间分布包括高斯光束、贝塞尔光束、艾利光束、拉盖尔-高斯光束、余弦-高斯光束、马蒂厄光束、平顶光束、涡旋光束中的一种或多种,优选为高斯光束,平顶光束。
上述第二束及后续的电磁波其偏振度为0.01
% - 99 %,优选为0.01% - 0.1%。
上述第二束及后续的电磁波其偏振模式包括自然光,部分偏振,线偏振,圆偏振,椭圆偏振,方位角偏振,径向偏振中的一种或多种,优选为自然光,部分偏振。
上述第二束及后续的电磁波其偏振包括S波偏振与P波偏振。
上述第二束及后续的电磁波其轨道角动量及其分布为 -10 ~ +10,优选为0。
上述第二束及后续的电磁波其相位及其分布为0 – 2π。
此外,本申请发明人发现,目标分子的离化前与离化后对电磁波的吸收水平具有极大的差异,故将离化前与离化后所需要的电磁波区分开,保证馈入的电磁波利用率最大化。离化前使用的波束其特征要求是在一定功率下的特定的波长与模式,并且要求能量尽可能集中分布,而离化后使用的波束其特征要求是尽可能高的功率,以确保离化后到形成体相等离子体的过程尽可能的快速完成,并具有较高的激发态。
因此,通过对波束的需求分析,可知:
上述步骤1S1中波长及其分布调制方法,包括色散器件调制,滤波器件调制,折射器件调制,干涉调制,吸收调制,非线性光学调制,谐振腔增强调制中的一种或多种,优选为干涉调制,吸收调制,滤波器件调制,谐振腔增强调制。
上述步骤1S1空间分布调制方法,包括折射器件调制,传输天线调制,矩阵反射器件调制,空间光调制器调制,可变曲率反射器件调制,吸收器件调制中的一种或多种,优选为传输天线调制,折射器件调制,空间光调制器调制。
上述步骤1S1偏振与轨道角动量及其分布调制方法,包括单模式腔体调制,光弹调制,空间光调制器调制,模式转换器调制,双折射器件调制,偏振片调制中的一种或多种,优选为单模式腔体调制,光弹调制,空间光调制器调制,模式转换器调制。
上述步骤1S1相位及其分布调制方法,包括移相调制,双折射器件调制,空间光调制器调制中的一种或多种,优选为空间光调制器调制。
上述步骤1S2b中的隔离器,包括波导环形器,光纤波导环形器,光纤光隔离器,法拉第旋转器,同轴隔离器,带线隔离器,宽带隔离器,双节隔离器,微带隔离器,衰减器,负载中的一种或多种,优选为波导环形器,光纤波导环形器,光纤光隔离器。
上述步骤1S3b中的波矢匹配方法,包括通过光栅,光子晶体波导,波导耦合棱镜全内反射,介电常数小于1的超材料波导,多重衰减全内反射器件,波导全内反射器件,全内反射器件,小于波长的近场波导探头照射,直接匹配中的一种或多种方法,优选为波导耦合棱镜全内反射,多重衰减全内反射器件,波导全内反射器件,全内反射器件,小于波长的近场波导探头照射,直接匹配。
上述步骤4S1中的波长及其分布调制方法,包括色散器件调制,滤波器件调制,折射器件调制,干涉调制,吸收调制,非线性光学调制,谐振腔增强调制中的一种或多种,优选为色散调制,滤波器件调制。
上述步骤4S1中的空间分布调制方法,包括折射器件调制,传输天线调制,矩阵反射器件调制,空间光调制器调制,可变曲率反射器件调制,吸收器件调制中的一种或多种,优选为传输天线调制,可变曲率反射器件调制,矩阵反射器件调制。
上述步骤4S1中的偏振与轨道角动量及其分布调制方法,包括单模式腔体调制,光弹调制,空间光调制器调制,模式转换器调制,双折射器件调制,偏振片调制中的一种或多种,优选为空间光调制器调制,模式转换器调制。
上述步骤4S1中的相位及其分布调制方法,包括移相调制,双折射器件调制,空间光调制器调制中的一种或多种,优选为移相调制,空间光调制器调制。
上述步骤4S2中的频率配合方法,包括色散器件调制配合,滤波器件调制配合,折射器件调制配合,干涉调制配合,吸收调制配合,非线性光学调制配合,直接射入中的一种或多种,优选为非线性光学调制配合或直接射入。
步骤2S1 - 2S2是气化目标分子以引入材料表面,使目标分子离化。当目标分子本身在常温常压为气体时,离化效率最高。此外,对于气体分子而言,未能离化的气体本身亦可作为载气携带等离子体,故优先选择气体分子作为目标分子。
相应的,通过对目标分子的特性分析,可知:
上述步骤2S1中的目标分子引入气相环境方法,包括超声雾化,加热蒸发,真空气化,直接气化,气流携带中的一种或多种方法,优选为直接气化或气流携带。
上述步骤2S2中的移至材料表面,包括光镊位移,超声声镊位移,机械力位移,气流载入,真空吸入位移,探针牵引位移,磁力位移中的一种或多种方法,优选为气流载入或真空吸入位移。
进一步的,本发明申请人发现,步骤3S1-3S3涉及到调控目标分子与材料间的相互作用,使目标分子尽可能的利用材料表面的表面等离子体获得离化。该过程对耦合效率的影响较大,相互作用越强,材料表面的表面等离子体就越容易引起目标分子的电离。另一方面,对于材料表面的加工与对目标分子的调控条件要求越简单,越容易实施。
综上所述,对于调控相互作用的过程中所使用的条件,应当为:
上述步骤3S1中的控制材料微结构与表面电磁场分布,包括材料表面形成纳米尺度周期性微结构,材料表面形成纳米尺度非周期性微结构,材料表面形成微米尺度周期性微结构,材料表面形成微米尺度非周期性微结构,材料表面功能基团结构调制,材料表面缺陷态密度结构调制,材料表面掺杂结构调制,材料晶畴尺寸调制,材料超晶格结构调制,材料表面电压调制,材料表面电场分布调制,材料磁畴结构调制,材料磁场调制中的一种或多种方法,优选为材料表面形成纳米尺度周期性微结构,材料表面形成微米尺度周期性微结构,材料表面缺陷态密度结构调制,材料表面掺杂结构调制。
上述步骤3S2控制目标分子的状态,包括通过电磁波对目标分子进行激发选择不同激发态,通过浓度差控制目标分子在材料上的化学势,通过静电引入使目标分子带电,通过磁场引入使目标分子磁化中的一种或多种方法,优选为通过浓度差控制目标分子在材料上的化学势,与通过电磁波对目标分子进行激发选择不同激发态。
最后,在引出等离子体的过程中,当目标分子本身为气体,或使用载气引出等离子体时,不难发现,最自然的引出方式与约束方式,即为气流输送与气流约束。在一些希望将等离子体引入真空室的环境下,也可以通过真空吸引的方式将等离子体抽入真空腔体。此外,对于等离子体而言,其内部一旦形成电流,亦会因电流的磁效应产生自箍磁场,使等离子体受到约束,也可以通过外部的电磁波源引导,进一步增强引出的等离子体。
因此,对于引出与约束形成的等离子体,应当为:
上述步骤5S1中的引出材料表面区域,包括通过真空吸引,气流输送,负压抽出,外部接地吸引,外部电磁波源引导,外部电流引导中的一种或多种方法,优选为真空吸引,气流输送,外部接地吸引,外部电磁波源引导。
上述步骤5S2中的等离子体约束,包括通过外加磁场约束,接地电流形成磁场自箍约束,气流约束,对撞约束中的一种或多种方法,优选为接地电流形成磁场自箍约束,气流约束,对撞约束。
相较于传统等离子体形成过程是直接通过电磁波或其他方式向待电离的目标分子馈能而言,向电离后的目标分子通过电磁波馈能的效率要高得多,这主要是因为当电离后的目标分子其频率与馈入的电磁波匹配时,通过共振可以达到最大的吸收效率。另一方面,传统的等离子体形成过程中,待电离的目标分子往往对馈入的电磁波没有特别的吸收能力,但在材料上通过控制材料状态,可以使涉及的材料对馈入的电磁波接近于全吸收。这就使得本发明提供的等离子体初期的形成要比传统等离子体初期的形成要容易的多。综上所述,本发明具有电离的分子范围广,馈能效率高,能量密度高,电子温度与离子温度范围宽的优点。
相应的,本发明还提供一种等离子体器件,该等离子体器件中包括有上述等离子体。由于上述等离子体具有上述优点,因此设置有等离子体的等离子体器件也相应的具有电离的分子范围广,馈能效率高,能量密度高,电子温度与离子温度范围宽的优点,
下面结合具体的实施例对本发明的方案进一步描述。
实施例
1
第一束电磁波使用1550nm近红外线高斯光束,所使用的材料为30nm的金薄膜,该材料被镀于1550nm光纤的末端。所电离的目标分子为一氧化碳。第二束电磁波使用6um中红外线高斯光束。
1550nm的近红外激光由激光器出射,为一个高斯光束,偏振度为98%,轨道角动量为0。出射后通过干涉调制控制其波长分布,通过折射器件调制其空间分布,通过光弹调制调制其偏振分布,通过空间光调制器调制其相位。调制完成后,通过保偏光纤作为波导馈入光纤光隔离器中,再经过光纤波导全内反射使光纤末端的金薄膜表面形成表面等离子体。
一氧化碳通过钢瓶输送,直接气化得到一氧化碳气流,通过氮气作为载气送至金薄膜表面,通过浓度差控制化学势,并晶畴调制以获得更强的相互作用。完成后,一氧化碳在金薄膜表面上发生吸附,并进一步受到金薄膜表面的表面等离子体诱导,引起一氧化碳的离化。
6um的中红外线激光由激光器出射,为一个高斯光束,偏振度为90%,轨道角动量为0。出射后通过滤波器件调制控制其波长分布,通过空间光调制器调制控制其空间与相位分布,通过模式转换器调制其偏振。调制完成后,通过大功率光纤作为波导馈入光纤光隔离器中,再经光纤射入一氧化碳离化区,形成一氧化碳等离子体。
最后,通过氮气载气气流输送,气流约束形成稳定的常压一氧化碳等离子体。
实施例
2
第一束电磁波使用405nm贝塞尔光束,所使用的材料为1um碳纳米管,该材料被放置于棱镜面下方。所电离的目标分子为碘分子。第二束电磁波使用32.75 cm微波高斯光束。
405nm的蓝紫光由LED出射,为一个贝塞尔光束,偏振度为18%,轨道角动量为0。出射后通过色散器件调制控制其波长分布,通过矩阵反射器件调制调制其空间分布,通过偏振片调制其偏振分布,通过双折射器件调制其相位。调制完成后,通过石英光纤作为波导馈入光纤波导环形器中,再经过使光纤末端耦合棱镜全内反射,射入碳纳米管表面形成表面等离子体。
碘分子通过热蒸发,以氩气作为载气送至碳纳米管表面,通过电磁波激发碳纳米管表面的碘分子,并对碳纳米管表面掺杂调制以获得更强的相互作用。完成后,碘分子在碳纳米管粉体表面上发生吸附,并进一步受到碳纳米管粉体表面的表面等离子体诱导,引起碘的离化。
32.75 cm的微波由915Mhz的微波源经波导出射,为一个高斯光束,偏振度为0.01%,轨道角动量为0。出射后通过谐振腔增强调制制控制其波长分布,通过传输天线调制控制其空间分布,通过移相调制调制其相位分布,通过单模式腔体调制调制其偏振。调制完成后,通过波导馈入系统中,再经波导直接射入碘分子离化区,形成碘等离子体。
最后,通过氩气载气气流输送,对撞约束,形成稳定的常压一氧化碳等离子体。
实施例
3
第一束电磁波使用12.24cm微波高斯光束,所使用的材料为1mm的铁颗粒,该材料被放置于平面上。所电离的目标分子为氧气。第二束电磁波使用12.24cm微波高斯光束。
12.24cm的微波由2450Mhz的微波源经波导出射,为一个高斯光束,偏振度为0.04%,轨道角动量为0。出射后通过吸收调制控制其波长分布,通过可变曲率反射器件控制其空间分布,通过单模式腔体调制其偏振分布,通过移相调制其相位。调制完成后,自由空间馈入平板上的铁颗粒,再经过直接匹配,射入铁颗粒表面形成表面等离子体。
氧气通过钢瓶输送,直接气化送至铁颗粒表面,通过空气作为载气,通过浓度差控制化学势,并材料表面电压调制以获得更强的相互作用。完成后,氧气在表面上发生吸附,并进一步受到铁颗粒表面的表面等离子体诱导,引起氧气离化。
12.24cm的微波由2450Mhz的微波源经波导出射,为一个高斯光束,偏振度为0.04%,轨道角动量为0。出射后通过滤波器件调制控制其波长分布,通过传输天线调制控制其空间分布,通过折射器件调制调制其相位分布,通过模式转换器调制调制其偏振。调制完成后,自由空间馈入系统中,再经干涉调制配合射入氧气离化区,形成氧气等离子体。
最后,通过负压抽出输送对撞约束约束,形成稳定的常压氧气等离子体。
实施例
4
第一束电磁波使用365nm近紫外高斯光束,所使用的材料为0.2um的氟化石墨烯,该材料被放置于平面上。所电离的目标分子为三氟化氮。第二束电磁波使用12.24cm的微波平顶光束。
365nm的近紫外激光由激光器出射,为一个高斯光束,偏振度为92%,轨道角动量为0。出射后通过干涉调制控制其波长分布,通过空间光调制器控制其空间分布,通过模式转换调制器其偏振分布,通过双折射器件调制其相位。调制完成后,经自由空间馈入平面上,射入氟化石墨烯表面形成表面等离子体。
三氟化氮通过钢瓶输送,直接气化得到三氟化氮气流,通过氮气作为载气,送至氟化石墨烯表面表面,通过静电引入使三氟化氮带电,并对氟化石墨烯表面电场分布调制以获得更强的相互作用。完成后,三氟化氮在表面上发生吸附,并进一步受到氟化石墨烯表面的表面等离子体诱导,引起三氟化氮离化。
12.24cm的微波由2450Mhz的微波源经波导出射,为一个平顶光束,偏振度为0.1%,轨道角动量为0。出射后通过谐振腔增强调制控制其波长分布,通过矩阵发射器件调制控制其空间分布,通过折射器件调制调制其相位分布,通过模式转换器调制调制其偏振。调制完成后,通过波导馈入系统中,再经波导直接射入三氟化氮离化区,形成三氟化氮等离子体。
最后,通过负压抽出输送,气流约束,形成稳定的常压三氟化氮等离子体。
实施例
5
第一束电磁波使用980nm近红外的高斯光束,所使用的材料为10um的玻璃碳,该材料被放置于光栅上。所电离的目标分子为氨气。第二束电磁波使用1.064um的近红外涡旋光束。
980nm的近红外光由激光器出射,为一个高斯光束,偏振度为85%,轨道角动量为0。出射后通过滤波器件调制控制其波长分布,通过折射器件调制控制其空间分布,通过双折射器件调制其偏振分布,通过空间光调制器调制其相位。调制完成后,自由空间馈入光栅上,射入玻璃碳表面形成表面等离子体。
氨气通过加热蒸发,以氨气作为载气送至玻璃碳表面,通过通过静电引入使目标分子带电,并对玻璃碳表面形成微米尺度周期性微结构以获得更强的相互作用。完成后,氨气在表面上发生吸附,并进一步受到玻璃碳表面的表面等离子体诱导,引起氨气离化。
1.064um的近红外光由激光器出射,为一个涡旋光束,偏振度为91%,轨道角动量为±1。出射后通过非线性光学调制控制其波长分布,通过可变曲率反射器件调制控制其空间分布,通过双折射器件调制其相位分布,通过空间光调制器调制其偏振。调制完成后,自由空间馈入系统中,再通过传输天线调制射入氨气离化区,形成氨气等离子体。
最后,通过外部接地吸引输送,接地电流形成磁场自箍约束约束,形成稳定的常压氨气等离子体。
实施例
6
第一束电磁波使用265nm近紫外的马蒂厄光束,所使用的材料为10um的β-氧化铝粉末,该材料被放置于微尺度波导表面。所电离的目标分子为水分子。第二束电磁波使用 1.54um近红外的高斯光束。
265极紫外光由LED出射,为一个马蒂厄光束,偏振度为76% ,轨道角动量为0.07% 。出射后通过干涉调制控制其波长分布,通过空间光调制器控制其空间分布,通过偏振片调制其偏振分布,通过移相调制其相位。调制完成后,自由空间馈入双节隔离器中,再经过多重衰减全内反射器件,射入β-氧化铝表面形成表面等离子体。
水分子通过光镊位移,送至β-氧化铝表面,通过电磁波对目标分子进行激发选择不同激发态,并对β-氧化铝表面电压调制以获得更强的相互作用。完成后,水分子在表面上发生吸附,并进一步受到β-氧化铝表面的表面等离子体诱导,引起水分子离化。
1.54um的激光由乙炔稳频激光器出射,为一个高斯光束,偏振度为2% ,轨道角动量为±1 。出射后通过色散器件调制控制其波长分布,通过可变曲率发射器件控制其空间分布,通过光弹调制调制其相位分布,通过空间光调制器调制其偏振。调制完成后,通过大功率光纤作为波导馈入宽带隔离器系统中,再经光纤波导调节射入水分子离化区,形成水分子等离子体。
最后,通过外部电流引导输送,外加磁场约束约束,形成稳定的常压水分子等离子体。
实施例
7
第一束电磁波使用10nm 软X射线高斯光束,所使用的材料为30nm的钙钛矿量子点,该材料被放置于微尺度表面上。所电离的目标分子为酞菁铜。第二束电磁波使用32.75 cm微波艾利光束。
10nm软X射线由X射线管出射,为一个高斯光束,偏振度为0.09%,轨道角动量为0。出射后通过吸收调制控制其波长分布,通过吸收器件调制控制其空间分布,通过双折射器件调制其偏振分布,通过双折射器件调制其相位。调制完成后,经软X射线光纤波导馈入光纤波导环形器中,再经过小于波长的近场波导探头照射,射入钙钛矿量子点表面形成表面等离子体。
通过探针牵引位移酞菁铜,送至钙钛矿量子点表面,通过通过电磁波对目标分子进行激发选择不同激发态,并对材料晶畴尺寸调制,以获得更强的相互作用。完成后,酞菁铜在钙钛矿量子点表面上发生吸附,并进一步受到钙钛矿表面的表面等离子体诱导,引起酞菁铜离化。
32.75 cm微波由915Mhz微波行波管出射,为一个艾利光束,偏振度为 0.5%,轨道角动量为0。出射后通过谐振腔增强调制控制其波长分布,通过传输天线调制控制其空间分布,通过移相调制调制其相位分布,通过单模式腔体调制其偏振。调制完成后,通过波导馈入系统中,再经传输天线调制射入酞菁铜离化区,形成酞菁铜等离子体。
最后,通过外部电磁波源引导输送,外加磁场约束约束,形成稳定的常压酞菁铜等离子体。
实施例
8
第一束电磁波使用0.11mm的太赫兹波高斯光束,所使用的材料为1um厚度的PEDOT-PSS薄膜,该材料被放置于腔体内部。所电离的目标分子为对乙酰氨基酚。第二束电磁波使用5.1cm的微波高斯光束。
0.11mm的太赫兹波由2.7THz太赫兹天线出射,为一个高斯光束,偏振度为0.09%,轨道角动量为0。出射后通过滤波器件调制控制其波长分布,通过传输天线调制控制其空间分布,通过单模式腔体调制其偏振分布,通过移相调制其相位。调制完成后,经过波导馈入单模式腔体中,再经过介电常数小于1的超材料器件射入PEDOT-PSS表面形成表面等离子体。
通过超声雾化对乙酰氨基酚,经超声声镊位移送至PEDOT-PSS表面,通过通过静电引入使目标分子带电,并对材料表面功能基团结构调制以获得更强的相互作用。完成后,对乙酰氨基酚在PEDOT-PSS表面上发生吸附,并进一步受到PEDOT-PSS表面的表面等离子体诱导,引起对乙酰氨基酚离化。
5.1cm的微波由5.8GHz的微波磁控管出射,为一个高斯光束,偏振度为1.1%,轨道角动量为0。出射后谐振腔增强调制控制其波长分布,通过传输天线调制控制其空间分布,通过移相调制调制其相位分布,通过单模式腔体调制其偏振。调制完成后,通过波导环形器馈入系统中,再经吸收器件调制射入对乙酰氨基酚离化区,形成对乙酰氨基酚等离子体。
最后,通过真空吸引输送,对撞约束,形成稳定的常压对乙酰氨基酚等离子体。
实施例
9
第一束电磁波使用13.4nm的极紫外线,所使用的材料为20um的碳纤维,该材料被放置于腔体内部。所电离的目标分子为氮气。第二束电磁波使用100m的中频无线电波。
13.4nm的极紫外线由等离子体光源出射,为一个高斯光束,偏振度为0.01%,轨道角动量为0。出射后通过非线性光学调制控制其波长分布,通过可变曲率反射器件调制控制其空间分布,通过单模式腔体调制其偏振分布,通过移相调制其相位。调制完成后,自由空间馈入腔体中,再经过直接匹配,射入碳纤维表面形成表面等离子体。
氮气通过钢瓶输送,直接气化得到氮气气流,氮气气流通过气流载入送至碳纤维表面,通过浓度差控制目标分子在材料上的化学势,并对材料表面形成微米尺度周期性微结构以获得更强的相互作用。完成后,氮气在表面上发生吸附,并进一步受到碳纤维表面的表面等离子体诱导,引起氮气离化。
100m的中频无线电波由天线出射,为一个高斯光束,偏振度为3.5%
,轨道角动量为0。出射后通过干涉调制控制其波长分布,通过传输天线调制控制其空间分布,通过移相调制其相位分布,通过模式转换器调制其偏振。调制完成后,通过波导馈入系统中,再经滤波器件调制配合射入氮气离化区,形成氮气等离子体。
最后,通过真空吸引输送,气流约束约束,形成稳定的常压氮气等离子体。
实施例
10
第一束电磁波使用12.24cm微波高斯光束,所使用的材料为50nm的氧化铈气凝胶,该材料被放置于平板上。所电离的目标分子为二氧化氮。第二束电磁波使用100m的中频无线电波。
12.24cm的微波由2450Mhz的微波源经波导出射,为一个高斯光束,偏振度为0.04%,轨道角动量为0。出射后通过吸收调制控制其波长分布,通过可变曲率反射器件控制其空间分布,通过单模式腔体调制其偏振分布,通过移相调制其相位。调制完成后,经自由空间馈入,再经过多重衰减全内反射器件,射入氧化铈气凝胶表面表面形成表面等离子体。
二氧化氮通过钢瓶输送,直接气化得到二氧化氮气流,通过氮气载气送至氧化铈气凝胶表面,通过浓度差控制目标分子在材料上的化学势,并对材料表面形成纳米尺度非周期性微结构以获得更强的相互作用。完成后,二氧化氮在氧化铈气凝胶表面上发生吸附,并进一步受到氧化铈表面的表面等离子体诱导,引起二氧化氮离化。
100m的中频无线电波由天线出射,为一个高斯光束,偏振度为3.5%
,轨道角动量为0。出射后通过干涉调制控制其波长分布,通过传输天线调制控制其空间分布,通过移相调制其相位分布,通过模式转换器调制其偏振。调制完成后,通过天线经自由空间馈入,再经滤波器件调制配合射入二氧化氮离化区,形成二氧化氮等离子体。
最后,通过气流输送,气流约束,形成稳定的常压二氧化氮等离子体。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
Claims (60)
- 一种表面耦合诱导电离技术,包含以下任意一个步骤:(1)通过自由空间或波导将第一束电磁波馈入至材料上,使第一束电磁波与材料的表面等离子体发生共振,并励激起表面等离子体波;向材料表面引入待电离的目标分子,通过控制材料表面与目标分子间的相互作用,使目标分子的电子与材料上的表面等离子体激元发生耦合,诱导目标分子电离;(2)同步通过自由空间或波导,再将第二束及后续的电磁波馈入至材料表面上目标分子的电离区域,使电离后的目标分子吸收,提高目标分子的电离程度;(3)目标分子以体相等离子体的形式释放,实现表面耦合诱导电离。
- 根据权利要求1所述的一种表面耦合诱导电离技术,其特征在于:所述步骤1中的材料的形态包括固体与液体;其中,所述的固体形态包括薄膜,颗粒,粉体,气溶胶,光子晶体,气固两相流中的一种或多种;所述的液体形态包括液滴,分散液,气液两相流中的一种或多种。
- 根据权利要求1所述的一种表面耦合诱导电离技术,其特征在于:所述步骤1中的材料尺寸为0.3nm-1000mm。
- 根据权利要求1所述的一种表面耦合诱导电离技术,其特征在于:所述步骤1中的材料包括金属及合金材料,碳材料,陶瓷材料,有机导体材料,半导体材料中的一种或一种以上的混合物。
- 根据权利要求4所述的一种表面耦合诱导电离技术,其特征在于:所述步骤1中的金属及合金材料,包括含有锂、铍、硼、碳、钠、镁、铝、硅、磷、硫、钪、钛、钒、铬、锰、铁、钴、镍、铜、锌、镓、锗、砷、铷、锶、钇、锆、铌、钼、锝、钌、铑、钯、银、镉、铟、锡、锑、碲、铯、钡、铪、钽、钨、铼、锇、铱、铂、金、汞、铊、铅、铋、钋、钫、镭,镧系元素,锕系元素的金属或合金中的一种或多种。
- 根据权利要求4所述的一种表面耦合诱导电离技术,其特征在于:所述步骤1中的所述的陶瓷材料,包括氧化物陶瓷,硅酸盐陶瓷,氮化物陶瓷,硼酸盐陶瓷,磷酸盐陶瓷,碳化物陶瓷,铝酸盐陶瓷,锗酸盐陶瓷,钛酸盐陶瓷中的一种或几种。
- 根据权利要求4所述的一种表面耦合诱导电离技术,其特征在于:所述步骤1中的所述有机导体材料,包括聚乙炔,聚芳基乙炔,聚吡咯,聚苯胺,聚噻吩,聚苯硫醚,TTF-TCNQ,PEDOT-PSS,四硫富瓦烯,聚芴,聚对苯撑,聚芳烃,等具有连续共轭骨架的化合物中的一种或多种。
- 根据权利要求4所述的一种表面耦合诱导电离技术,其特征在于:所述步骤1中的半导体材料包括III-V族半导体、II-VI族半导体,IV族半导体,量子点半导体,钙钛矿半导体颗粒中的一种或几种。
- 根据权利要求4所述的一种表面耦合诱导电离技术,其特征在于:所述步骤1中的材料中的碳材料包括包括石墨烯、氨基化石墨烯、羧基化石墨烯、羟基化石墨烯、巯基化石墨烯、氧化石墨烯、甲基化石墨烯、三氟甲基化石墨烯、十八烷基化石墨烯、氟化石墨烯及碘化石墨烯、人造石墨、天然石墨、石墨化碳微球、石墨化碳纳米管、碳纳米管、玻璃碳、无定形碳、碳纳米角、碳纤维、碳量子点、碳分子筛中的一种或一种以上的混合物。
- 根据权利要求1所述的一种表面耦合诱导电离技术,其特征在于:所述步骤1中的第一束电磁波包括伽马射线、硬X射线、软X射线、极紫外线、近紫外线、可见光、近红外线、中红外线、远红外线、太赫兹、极高频微波、超高频微波、特高频微波、甚高频无线电波、高频无线电波、中频无线电波、低频无线电波、甚低频无线电波、特低频无线电波、极低频无线电波中的一种或多种。
- 根据权利要求1所述的一种表面耦合诱导电离技术,其特征在于:所述步骤1中的第一束电磁波波长或其分布为0.01 nm ~ 100 km。
- 根据权利要求1所述的一种表面耦合诱导电离技术,其特征在于:所述步骤1中的第一束电磁波其空间分布包括高斯光束、贝塞尔光束、艾利光束、拉盖尔-高斯光束、余弦-高斯光束、马蒂厄光束、平顶光束、涡旋光束中的一种或多种。
- 根据权利要求1所述的一种表面耦合诱导电离技术,其特征在于:所述步骤1中的第一束电磁波其偏振度为0.01 % - 99 %。
- 根据权利要求1所述的一种表面耦合诱导电离技术,其特征在于:所述步骤1中的第一束电磁波其偏振模式包括自然光,部分偏振,线偏振,圆偏振,椭圆偏振,方位角偏振,径向偏振,中的一种或多种。
- 根据权利要求1所述的一种表面耦合诱导电离技术,其特征在于:所述步骤1中的第一束电磁波其偏振包括S波偏振与P波偏振。
- 根据权利要求1所述的一种表面耦合诱导电离技术,其特征在于:所述步骤1中的第一束电磁波其轨道角动量及其分布为 -10 ~ +10。
- 根据权利要求1所述的一种表面耦合诱导电离技术,其特征在于:所述步骤1中的第一束电磁波其相位及其分布为0 – 2π。
- 根据权利要求1所述的一种表面耦合诱导电离技术,其特征在于:所述步骤2中的第二束及后续的电磁波包括伽马射线、硬X射线、软X射线、极紫外线、近紫外线、可见光、近红外线、中红外线、远红外线、太赫兹、极高频微波、超高频微波、特高频微波、甚高频无线电波、高频无线电波、中频无线电波、低频无线电波、甚低频无线电波、特低频无线电波、极低频无线电波中的一种或多种。
- 根据权利要求1所述的一种表面耦合诱导电离技术,其特征在于:所述步骤2中的第二束及后续的电磁波波长或其分布为0.01 nm ~ 100 km。
- 根据权利要求1所述的一种表面耦合诱导电离技术,其特征在于:所述步骤2中的第二束及后续的电磁波其空间分布包括高斯光束、贝塞尔光束、艾利光束、拉盖尔-高斯光束、余弦-高斯光束、马蒂厄光束、平顶光束、涡旋光束中的一种或多种。
- 根据权利要求1所述的一种表面耦合诱导电离技术,其特征在于:所述步骤2中的第二束及后续的电磁波其偏振度为0.01 % - 99 %。
- 根据权利要求1所述的一种表面耦合诱导电离技术,其特征在于:所述步骤2中的第二束及后续的电磁波其偏振模式包括自然光,部分偏振,线偏振,圆偏振,椭圆偏振,方位角偏振,径向偏振,中的一种或多种。
- 根据权利要求1所述的一种表面耦合诱导电离技术,其特征在于:所述步骤2中的第二束及后续的电磁波其偏振包括S波偏振与P波偏振。
- 根据权利要求1所述的一种表面耦合诱导电离技术,其特征在于:所述步骤2中的第二束及后续的电磁波其轨道角动量及其分布为 -10 ~ +10。
- 根据权利要求1所述的一种表面耦合诱导电离技术,其特征在于:所述步骤2中的第二束及后续的电磁波其相位及其分布为0 – 2π。
- 根据权利要求1所述的一种表面耦合诱导电离技术,其特征在于:所述步骤1、2、3中所述的任意一种目标分子,其分子量从1.0×10 0Da- 1.0×10 20 Da。
- 根据权利要求1所述的一种表面耦合诱导电离技术,其特征在于:所述步骤1中通过自由空间的方式将第一束电磁波馈入至材料上,具体包括如下步骤:1S1、将第一束电磁波的波长及其分布、空间分布、偏振与轨道角动量及其分布、相位及其分布等因素进行调制,得到第一束调制电磁波;1S2a、引导所述的第一束调制电磁波与材料的表面等离子体频率波矢匹配,获得波矢匹配调制电磁波;1S3a、将所述的波矢匹配调制电磁波经自由空间射入材料表面,使材料表面形成表面等离子体波。
- 根据权利要求27所述的一种表面耦合诱导电离技术,其特征在于:所述步骤1中1S1中的波长及其分布的调制方法包括色散器件调制,滤波器件调制,折射器件调制,干涉调制,吸收调制,非线性光学调制,谐振腔增强调制中的一种或多种。
- 根据权利要求27所述的一种表面耦合诱导电离技术,其特征在于:所述步骤1中1S1中的空间分布调制方法包括折射器件调制,传输天线调制,矩阵反射器件调制,空间光调制器调制,可变曲率反射器件调制,吸收器件调制中的一种或多种。
- 根据权利要求27所述的一种表面耦合诱导电离技术,其特征在于:所述步骤1中1S1中的偏振与轨道角动量及其分布调制方法,包括单模式腔体调制,光弹调制,空间光调制器调制,模式转换器调制,双折射器件调制,偏振片调制中的一种或多种。
- 根据权利要求27所述的一种表面耦合诱导电离技术,其特征在于:所述步骤1中1S1中的相位及其分布调制方法,包括移相调制,双折射器件调制,空间光调制器调制中的一种或多种。
- 根据权利要求27所述的一种表面耦合诱导电离技术,其特征在于:所述步骤1中1S1相位及其分布调制方法,包括移相调制,双折射器件调制,空间光调制器调制中的一种或多种。
- 根据权利要求27所述的一种表面耦合诱导电离技术,其特征在于:所述步骤1中1S2a中的波矢匹配方法,包括通过光栅,光子晶体,自由光耦合棱镜全内反射,介电常数小于1的超材料器件,多重衰减全内反射器件,自由光耦合波导全内反射器件,全内反射器件,聚焦器件,直接匹配中的一种或多种方法。
- 根据权利要求1所述的一种表面耦合诱导电离技术,其特征在于:所述步骤1中通过所述通过波导的方式将第一束电磁波馈入至材料上,具体包括如下步骤:1S1、将第一束电磁波的波长及其分布、空间分布、偏振与轨道角动量及其分布、相位及其分布等因素进行调制,得到第一束调制电磁波;1S2b、将所述第一束调制电磁波通过波导馈入隔离器,得到单向第一束调制电磁波;1S3b、引导所述的单向第一束调制电磁波与材料的表面等离子体频率波矢匹配,获得波矢匹配单向调制电磁波;1S4b、将所述的波矢匹配单向调制电磁波经波导射入材料表面,使材料表面形成表面等离子体波。
- 根据权利要求34所述的一种表面耦合诱导电离技术,其特征在于:所述步骤1中通过所述通过波导的方式将第一束电磁波馈入至材料上中步骤1S2b所述的隔离器包括方波导环形器,光纤波导环形器,光纤光隔离器,法拉第旋转器,同轴隔离器,带线隔离器,宽带隔离器,双节隔离器,微带隔离器,衰减器,负载中的一种或多种。
- 根据权利要求34所述的一种表面耦合诱导电离技术,其特征在于:所述步骤1中通过所述通过波导的方式将第一束电磁波馈入至材料上中的1S3b步骤中的波矢匹配方法包括通过光栅,光子晶体波导,波导耦合棱镜全内反射,介电常数小于1的超材料波导,多重衰减全内反射器件,波导全内反射器件,全内反射器件,小于波长的近场波导探头照射,直接匹配中的一种或多种方法。
- 根据权利要求1所述的一种表面耦合诱导电离技术,其特征在于:所述步骤1中的所述的向材料表面引入待电离的目标分子,具体包括如下步骤:2S1、将目标分子引入气相环境,得到气相中目标分子;2S2、将前述的气相中的目标分子,移至材料表面。
- 根据权利要求34所述的一种表面耦合诱导电离技术,其特征在于:所述步骤1中的所述的向材料表面引入待电离的目标分子中,所述步骤2S1中的目标分子引入气相环境方法,包括超声雾化,加热蒸发,真空气化,直接气化,气流携带中的一种或多种方法。
- 根据权利要求34所述的一种表面耦合诱导电离技术,其特征在于:所述步骤1中的所述的向材料表面引入待电离的目标分子中,所述步骤2S2的移至材料表面,包括光镊位移,超声声镊位移,机械力位移,气流载入,真空吸入位移,探针牵引位移,磁力位移中的一种或多种方法。
- 根据权利要求1所述的一种表面耦合诱导电离技术,其特征在于:所述步骤1中的所述的控制材料表面与目标分子间的相互作用,具体包括如下步骤:3S1、控制材料微结构与表面电磁场分布,得到调节后材料;3S2、控制目标分子的状态,得到调节后目标分子;3S3,将所述的调制后材料与所述的调节后目标分子结合,实现对材料表面与目标分子间的相互作用控制,并引起目标分子的电离。
- 根据权利要求40所述的一种表面耦合诱导电离技术,其特征在于:所述步骤一中步骤3S1中的控制材料微结构与表面电磁场分布,包括材料表面形成纳米尺度周期性微结构,材料表面形成纳米尺度非周期性微结构,材料表面形成微米尺度周期性微结构,材料表面形成微米尺度非周期性微结构,材料表面功能基团结构调制,材料表面缺陷态密度结构调制,材料表面掺杂结构调制,材料晶畴尺寸调制,材料超晶格结构调制,材料表面电压调制,材料表面电场分布调制,材料磁畴结构调制,材料磁场调制中的一种或多种方法。
- 根据权利要求40所述的一种表面耦合诱导电离技术,其特征在于:所述步骤一中步骤3S2控制目标分子的状态,包括通过电磁波对目标分子进行激发选择不同激发态,通过浓度差控制目标分子在材料上的化学势,通过静电引入使目标分子带电,通过磁场引入使目标分子磁化中的一种或多种方法。
- 根据权利要求40所述的一种表面耦合诱导电离技术,其特征在于:所述步骤2中的所述通过自由空间,将第二束及后续的电磁波馈入至材料表面上目标分子的电离区域,具体包括如下步骤:4S1、将第二束及后续的电磁波的波长及其分布、空间分布、偏振与轨道角动量及其分布、相位及其分布等因素进行调制,得到第二束及后续调制电磁波。4S2、引导所述的第二束及后续调制电磁波与电离后的目标分子的等离子体频率配合,得到频率配合调制电磁波;4S3a、将所述的频率配合调制电磁波经自由空间射入材料表面上目标分子的电离区域,使电离后的目标分子吸收,提高目标分子的电离程度。
- 根据权利要求40所述的一种表面耦合诱导电离技术,其特征在于:所述步骤2中的所述通过自由空间,将第二束及后续的电磁波馈入至材料表面上目标分子的电离区域,中所述的步骤4S1中的波长及其分布调制方法,包括色散器件调制,滤波器件调制,折射器件调制,干涉调制,吸收调制,非线性光学调制,谐振腔增强调制中的一种或多种。
- 根据权利要求40所述的一种表面耦合诱导电离技术,其特征在于:所述步骤2中的所述通过自由空间,将第二束及后续的电磁波馈入至材料表面上目标分子的电离区域,中所述的步骤4S1中的空间分布调制方法,包括折射器件调制,传输天线调制,矩阵反射器件调制,空间光调制器调制,可变曲率反射器件调制,吸收器件调制中的一种或多种。
- 根据权利要求40所述的一种表面耦合诱导电离技术,其特征在于:所述步骤2中的所述通过自由空间,将第二束及后续的电磁波馈入至材料表面上目标分子的电离区域,中所述的步骤4S1中的偏振与轨道角动量及其分布调制方法,包括单模式腔体调制,光弹调制,空间光调制器调制,模式转换器调制,双折射器件调制,偏振片调制中的一种或多种。
- 根据权利要求40所述的一种表面耦合诱导电离技术,其特征在于:所述步骤2中的所述通过自由空间,将第二束及后续的电磁波馈入至材料表面上目标分子的电离区域,中所述的步骤4S1中的相位及其分布调制方法,包括移相调制,双折射器件调制,空间光调制器调制中的一种或多种。
- 根据权利要求40所述的一种表面耦合诱导电离技术,其特征在于:所述步骤2中的所述通过自由空间,将第二束及后续的电磁波馈入至材料表面上目标分子的电离区域,中所述的步骤4S2中的频率配合方法,包括色散器件调制配合,滤波器件调制配合,折射器件调制配合,干涉调制配合,吸收调制配合,非线性光学调制配合,直接射入中的一种或多种。
- 根据权利要求40所述的一种表面耦合诱导电离技术,其特征在于:所述步骤2中的所述通过自由空间,将第二束及后续的电磁波馈入至材料表面上目标分子的电离区域,中所述的步骤4S3a中的射入电离区域方法,包括折射器件调制,传输天线调制,矩阵反射器件调制,空间光调制器调制,可变曲率反射器件调制,吸收器件调制,直接射入中的一种或多种。
- 根据权利要求1所述的一种表面耦合诱导电离技术,其特征在于:所述步骤2中的通过波导将第二束及后续的电磁波馈入至材料表面上目标分子的电离区域,具体包括如下步骤:4S1、将第二束及后续的电磁波的波长及其分布、空间分布、偏振及其分布、轨道角动量及其分布、相位及其分布等因素进行调制,得到第二束及后续调制电磁波;4S2、引导所述的第二束及后续调制电磁波与电离后的目标分子的等离子体频率配合,得到频率配合调制电磁波;4S3b、将所述的频率配合调制电磁波通过波导馈入隔离器,得到单向频率配合调制电磁波;4S4b、将所述的单向频率配合调制电磁波经波导射入材料表面上目标分子的电离区域,使电离后的目标分子吸收,提高目标分子的电离程度。
- 根据权利要求50所述的一种表面耦合诱导电离技术,其特征在于:所述步骤2中的所述通过自由空间,将第二束及后续的电磁波馈入至材料表面上目标分子的电离区域,中所述的步骤4S1中的波长及其分布调制方法,包括色散器件调制,滤波器件调制,折射器件调制,干涉调制,吸收调制,非线性光学调制,谐振腔增强调制中的一种或多种。
- 根据权利要求50所述的一种表面耦合诱导电离技术,其特征在于:所述步骤2中的所述通过自由空间,将第二束及后续的电磁波馈入至材料表面上目标分子的电离区域,中所述的步骤4S1中的空间分布调制方法,包括折射器件调制,传输天线调制,矩阵反射器件调制,空间光调制器调制,可变曲率反射器件调制,吸收器件调制中的一种或多种。
- 根据权利要求50所述的一种表面耦合诱导电离技术,其特征在于:所述步骤2中的所述通过自由空间,将第二束及后续的电磁波馈入至材料表面上目标分子的电离区域,中所述的步骤4S1中的偏振与轨道角动量及其分布调制方法,包括单模式腔体调制,光弹调制,空间光调制器调制,模式转换器调制,双折射器件调制,偏振片调制中的一种或多种。
- 根据权利要求50所述的一种表面耦合诱导电离技术,其特征在于:所述步骤2中的所述通过自由空间,将第二束及后续的电磁波馈入至材料表面上目标分子的电离区域,中所述的步骤4S1中的相位及其分布调制方法,包括移相调制,双折射器件调制,空间光调制器调制中的一种或多种。
- 根据权利要求50所述的一种表面耦合诱导电离技术,其特征在于:所述步骤2中的所述通过自由空间,将第二束及后续的电磁波馈入至材料表面上目标分子的电离区域,中所述步骤4S3b中的隔离器,包括方波导环形器,光纤波导环形器,光纤光隔离器,法拉第旋转器,同轴隔离器,带线隔离器,宽带隔离器,双节隔离器,微带隔离器,衰减器,负载中的一种或多种。
- 根据权利要求50所述的一种表面耦合诱导电离技术,其特征在于:所述步骤2中的所述通过自由空间,将第二束及后续的电磁波馈入至材料表面上目标分子的电离区域,中所述的步骤4S4b中的射入电离区域方法,包括折射器件调制,传输天线调制,矩阵反射器件调制,空间光调制器调制,可变曲率反射器件调制,吸收器件调制,光子晶体调制,波导调节射入,直接射入中的一种或多种。
- 根据权利要求1所述的一种表面耦合诱导电离技术,其特征在于:所述步骤3中所述目标分子以体相等离子体的形式释放,具体包括如下步骤:5S1、将所述目标分子的等离子体引出材料表面区域,得到离域等离子体;5S2、将离域等离子体约束在特定空间内,获得更高的能量密度。
- 根据权利要求1所述的一种表面耦合诱导电离技术,其特征在于:所述步骤3中所述目标分子以体相等离子体的形式释放中,所述步骤5S1中的引出所述的材料表面区域,包括通过真空吸引,气流输送,负压抽出,外部接地吸引,外部电磁波源引导,外部电流引导中的一种或多种方法。
- 根据权利要求1所述的一种表面耦合诱导电离技术,其特征在于:所述步骤3中所述目标分子以体相等离子体的形式释放中,进一步地,所述步骤5S2中所述的等离子体约束,包括通过外加磁场约束,接地电流形成磁场自箍约束,气流约束,对撞约束中的一种或多种方法。
- 一类等离子体器件,其等离子源包括上述1-59任意一项或多项所述的等离子体源。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/921,723 US20230171870A1 (en) | 2020-05-09 | 2020-05-09 | Surface coupling induced ionization technique and its corresponding plasma and plasma devices |
EP20935349.9A EP4149214A4 (en) | 2020-05-09 | 2020-05-09 | SURFACE COUPLING INDUCED IONIZATION TECHNOLOGY, AND PLASMA AND PLASMA DEVICE THEREFOR |
JP2023512256A JP7421838B2 (ja) | 2020-05-09 | 2020-05-09 | 表面結合による電離誘起技術及びそれに対応するプラズマ、ならびにプラズマデバイス |
PCT/CN2020/089346 WO2021226741A1 (zh) | 2020-05-09 | 2020-05-09 | 一种表面耦合诱导电离技术及其对应的等离子体与等离子体器件 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2020/089346 WO2021226741A1 (zh) | 2020-05-09 | 2020-05-09 | 一种表面耦合诱导电离技术及其对应的等离子体与等离子体器件 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021226741A1 true WO2021226741A1 (zh) | 2021-11-18 |
Family
ID=78526053
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/089346 WO2021226741A1 (zh) | 2020-05-09 | 2020-05-09 | 一种表面耦合诱导电离技术及其对应的等离子体与等离子体器件 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20230171870A1 (zh) |
EP (1) | EP4149214A4 (zh) |
JP (1) | JP7421838B2 (zh) |
WO (1) | WO2021226741A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115064858A (zh) * | 2022-08-18 | 2022-09-16 | 东南大学 | 相移双分激励的耦合型局域人工表面等离激元谐振结构 |
CN115401963A (zh) * | 2022-08-23 | 2022-11-29 | 江苏理工学院 | 一种非金属量子点增强镁锂合金基复合材料的制备方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6362449B1 (en) * | 1998-08-12 | 2002-03-26 | Massachusetts Institute Of Technology | Very high power microwave-induced plasma |
CN1653866A (zh) * | 2002-05-08 | 2005-08-10 | 达纳公司 | 多个辐射源的等离子体产生和处理 |
CN1663326A (zh) * | 2002-05-13 | 2005-08-31 | 杰特克公司 | 用于产生辐射的方法和装置 |
CN101022912A (zh) * | 2004-03-19 | 2007-08-22 | 斯潘塞·P·郭 | 便携式弧种子微波等离子体炬 |
CN105072793A (zh) * | 2015-07-24 | 2015-11-18 | 浙江中控研究院有限公司 | 一种微波等离子体炬装置 |
CN111479375A (zh) * | 2020-05-08 | 2020-07-31 | 高维等离子体源科技(孝感)有限公司 | 一种表面耦合诱导电离技术及其对应的等离子体与等离子体器件 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7432470B2 (en) * | 2002-05-08 | 2008-10-07 | Btu International, Inc. | Surface cleaning and sterilization |
US7498066B2 (en) * | 2002-05-08 | 2009-03-03 | Btu International Inc. | Plasma-assisted enhanced coating |
JP4939213B2 (ja) * | 2004-03-23 | 2012-05-23 | 金子 博之 | 材料膜の製造方法及び製造装置 |
-
2020
- 2020-05-09 JP JP2023512256A patent/JP7421838B2/ja active Active
- 2020-05-09 US US17/921,723 patent/US20230171870A1/en active Pending
- 2020-05-09 WO PCT/CN2020/089346 patent/WO2021226741A1/zh unknown
- 2020-05-09 EP EP20935349.9A patent/EP4149214A4/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6362449B1 (en) * | 1998-08-12 | 2002-03-26 | Massachusetts Institute Of Technology | Very high power microwave-induced plasma |
CN1653866A (zh) * | 2002-05-08 | 2005-08-10 | 达纳公司 | 多个辐射源的等离子体产生和处理 |
CN1663326A (zh) * | 2002-05-13 | 2005-08-31 | 杰特克公司 | 用于产生辐射的方法和装置 |
CN101022912A (zh) * | 2004-03-19 | 2007-08-22 | 斯潘塞·P·郭 | 便携式弧种子微波等离子体炬 |
CN105072793A (zh) * | 2015-07-24 | 2015-11-18 | 浙江中控研究院有限公司 | 一种微波等离子体炬装置 |
CN111479375A (zh) * | 2020-05-08 | 2020-07-31 | 高维等离子体源科技(孝感)有限公司 | 一种表面耦合诱导电离技术及其对应的等离子体与等离子体器件 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4149214A4 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115064858A (zh) * | 2022-08-18 | 2022-09-16 | 东南大学 | 相移双分激励的耦合型局域人工表面等离激元谐振结构 |
CN115064858B (zh) * | 2022-08-18 | 2022-10-25 | 东南大学 | 相移双分激励的耦合型局域人工表面等离激元谐振结构 |
CN115401963A (zh) * | 2022-08-23 | 2022-11-29 | 江苏理工学院 | 一种非金属量子点增强镁锂合金基复合材料的制备方法 |
Also Published As
Publication number | Publication date |
---|---|
EP4149214A1 (en) | 2023-03-15 |
US20230171870A1 (en) | 2023-06-01 |
EP4149214A4 (en) | 2023-07-19 |
JP7421838B2 (ja) | 2024-01-25 |
JP2023524179A (ja) | 2023-06-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111479375B (zh) | 一种表面耦合诱导电离技术及其对应的等离子体与等离子体器件 | |
Hofmann et al. | Design parameters for a nano-optical Yagi–Uda antenna | |
US3911318A (en) | Method and apparatus for generating electromagnetic radiation | |
Chang et al. | Review of recent theories and experiments for improving high-power microwave window breakdown thresholds | |
US20070085039A1 (en) | Structures and methods for coupling energy from an electromagnetic wave | |
US20130189446A1 (en) | Low pressure high frequency pulsed plasma reactor for producing nanoparticles | |
KR20050026387A (ko) | 플라즈마-보조된 기체 제조 | |
US20110180385A1 (en) | Control of Catalytic Chemical Processes | |
WO2021226741A1 (zh) | 一种表面耦合诱导电离技术及其对应的等离子体与等离子体器件 | |
Murakami et al. | Generation of high-quality mega-electron volt proton beams with intense-laser-driven nanotube accelerator | |
Saharian et al. | Cherenkov radiation and emission of surface polaritons from charges moving paraxially outside a dielectric cylindrical waveguide | |
Glyavin et al. | Terahertz gyrotrons with unique parameters | |
Ganeev et al. | Influence of C60 morphology on high-order harmonic generation enhancement in fullerene-containing plasma | |
Li et al. | Cold atmospheric pressure plasma jet prepares TiO2 coating on carbon fibre for field emission and explosive electron emission | |
Bilik et al. | Atmospheric-pressure glow plasma synthesis of plasmonic and photoluminescent zinc oxide nanocrystals | |
CN112952532B (zh) | 基于多电子束与等离子体相互作用的太赫兹辐射产生方法 | |
Adiv et al. | Observation of 2D Cherenkov radiation and its quantized photonic nature using free-electrons | |
KR20050120627A (ko) | 탄소 나노튜브로부터 원소 또는 종을 마이크로파 탈착하기위한 방법 및 장치 | |
CN114552332A (zh) | 基于天然双曲材料的切伦科夫红外辐射源及自由电子光源 | |
Yagi et al. | Generation of microwave plasma under high pressure and fabrication of ultrafine carbon particles | |
Shimabukuro et al. | Microwave excitation of a low-energy atomic hydrogen | |
Choi et al. | Toward high-power terahertz radiation sources based on ultrafast lasers | |
Sato et al. | Production and application of reactive plasmas using helicon-wave discharge in very low magnetic fields | |
Kostrov et al. | Interaction of a modulated electron beam with a magnetoactive plasma | |
Girka et al. | Applications of Surface Wave Propagation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20935349 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2023512256 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2020935349 Country of ref document: EP Effective date: 20221209 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |