WO2021220628A1 - Carbon-fiber-reinforced plastic structure and method for producing same - Google Patents
Carbon-fiber-reinforced plastic structure and method for producing same Download PDFInfo
- Publication number
- WO2021220628A1 WO2021220628A1 PCT/JP2021/009329 JP2021009329W WO2021220628A1 WO 2021220628 A1 WO2021220628 A1 WO 2021220628A1 JP 2021009329 W JP2021009329 W JP 2021009329W WO 2021220628 A1 WO2021220628 A1 WO 2021220628A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- reinforced plastic
- carbon fiber
- resin
- fiber reinforced
- plastic structure
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/04—Reinforcing macromolecular compounds with loose or coherent fibrous material
- C08J5/10—Reinforcing macromolecular compounds with loose or coherent fibrous material characterised by the additives used in the polymer mixture
Definitions
- the present invention relates to a carbon fiber reinforced plastic structure containing carbon fiber reinforced plastic and a method for manufacturing the structure.
- CFRP carbon fiber reinforced plastic
- CFRP is known as a material having characteristics such as high specific rigidity and low density and thermal expansion coefficient.
- Applied research is progressing on CFRP as an alternative material to metals.
- CFRP is made, for example, as follows. First, carbon fibers are impregnated with resin to prepare a plate-shaped (sheet-shaped) material called a prepreg. Next, a plurality of prepregs are stacked in a mold while considering the direction of the fibers, and then heated, crimped, and cured to form the prepreg. Then, after cooling, the molded product is removed from the mold.
- CFRP carbon fiber reinforced plastic structures containing CFRP
- metals are not anisotropy in the direction of heat transfer.
- the CFRP structure has good thermal conductivity only in the direction in which the carbon fibers extend (X direction), and the direction orthogonal to the direction in which the carbon fibers extend (Y direction) and the direction in which the prepregs are stacked (Z direction). ), The thermal conductivity is poor.
- the thermal conductivity in the Y direction and the Z direction basically depends on the thermal conductivity of the resin impregnated in the carbon fibers. Resins generally have poorer thermal conductivity than metals and carbon fibers. Therefore, there is a desire to improve the thermal conductivity of the CFRP structure in all directions. If the CFRP structure can transfer heat without anisotropy like metal, it is expected that the range of application will be further expanded as a substitute for metal.
- An object of the present invention is to provide a carbon fiber reinforced plastic structure having no anisotropy in thermal properties, and a method for producing the structure.
- one aspect of the carbon fiber reinforced plastic structure according to the present invention is a carbon fiber reinforced plastic structure including carbon fibers impregnated with a resin, and the resin is the carbon fiber. It contains thermally conductive particles having a diameter smaller than the diameter, and the particles are present in an amount of 4% by weight or more based on the total weight of the carbon fiber reinforced plastic structure.
- a carbon fiber reinforced plastic structure CFRP structure
- CFRP structure has the characteristics of carbon fiber reinforced plastic such as high specific rigidity and low density and thermal expansion coefficient.
- the resin contains a large number of thermally conductive particles, good thermal conductivity can be obtained in a direction other than the direction in which the carbon fibers are stretched. That is, it is possible to realize a carbon fiber reinforced plastic structure having no anisotropy in thermal properties.
- the granules may be made of diamond.
- the thermal conductivity can be improved without deteriorating the original characteristics of the carbon fiber reinforced plastic such as high specific rigidity and low density and coefficient of thermal expansion.
- the granules may be made of copper. In this case, the thermal conductivity can be effectively improved.
- one aspect of the carbon fiber reinforced plastic structure according to the present invention is a carbon fiber reinforced plastic structure including carbon fibers impregnated with a resin, and the resin has a diameter smaller than the diameter of the carbon fibers.
- the heat conductive particles having the above are injected.
- Such a carbon fiber reinforced plastic structure (CFRP structure) has the characteristics of carbon fiber reinforced plastic such as high specific rigidity and low density and thermal expansion coefficient. Further, since the heat conductive particles are injected into the resin, good heat conductivity can be obtained in a direction other than the direction in which the carbon fibers are stretched. That is, it is possible to realize a carbon fiber reinforced plastic structure having no anisotropy in thermal properties.
- one aspect of the method for producing a carbon fiber reinforced plastic structure is a method for producing a carbon fiber reinforced plastic structure including carbon fibers impregnated with a resin, wherein the carbon fibers are impregnated with the resin.
- the first step of preparing the prepreg the second step of adhering the thermally conductive particles having a diameter smaller than the diameter of the carbon fiber to the prepreg, and the second step.
- a third step of injecting the granules into the resin by stacking a plurality of the prepregs to which the granules are attached and applying pressure while heating is included.
- one aspect of the method for producing a carbon fiber reinforced plastic structure is a method for producing a carbon fiber reinforced plastic structure including carbon fibers impregnated with a resin, wherein the carbon fibers and the resin are combined.
- the third step of impregnating the resin and the fourth step of stacking a plurality of the carbon fibers impregnated with the resin in the third step and applying pressure while heating are included.
- the amount of the granules may be 4% by weight or more with respect to the total weight of the carbon fiber reinforced plastic structure. In this case, the thermal conductivity can be appropriately improved.
- the present invention it is possible to improve thermal conductivity in a direction orthogonal to the extending direction of carbon fibers, and to realize a carbon fiber reinforced plastic structure having no anisotropy in thermal properties. Can be done.
- the above-mentioned purpose, aspect and effect of the present invention and the above-mentioned purpose, aspect and effect of the present invention not described above will be used by those skilled in the art to carry out the following invention by referring to the accompanying drawings and the description of the scope of claims. Can be understood from the form of (detailed description of the invention).
- FIG. 1 is a diagram schematically showing a carbon fiber reinforced plastic structure of the present embodiment.
- FIG. 2 is a diagram schematically showing a prepreg.
- FIG. 3 is a diagram schematically showing a prepreg to which granules are attached.
- FIG. 4 is a diagram showing one step of a method for manufacturing a carbon fiber reinforced plastic structure.
- FIG. 5 is an image diagram of a process of injecting granules into the resin.
- FIG. 1 is a perspective view schematically showing a carbon fiber reinforced plastic structure (CFRP structure) 10 of the present embodiment.
- CFRP structure 10 is configured by laminating a plurality of prepregs 11.
- the prepreg 11 is a sheet-like member in which carbon fibers 11a are impregnated with resin 11b while maintaining the directionality of the fibers.
- the resin 11b constituting the prepreg 11 is, for example, a thermosetting epoxy resin.
- a thermosetting resin such as unsaturated polyester, vinyl ester, phenol, cyanate ester, or polyimide can be used.
- FIG. 1 shows a CFRP structure 10 in which five prepregs 11 are laminated in the same direction in which the carbon fibers 11a extend, in order to simplify the explanation.
- the cross section of the carbon fiber 11a is indicated by a white circle.
- the X direction is the direction in which the carbon fibers 11a are stretched
- the Y direction is the direction orthogonal to the direction in which the carbon fibers 11a are stretched
- the Z direction is the stacking direction of the prepreg 11.
- the CFRP structure 10 may be formed by alternately stacking the prepregs 11 one by one so that the directions in which the carbon fibers 11a extend are orthogonal to each other.
- the crossing angle and the ratio of the orientation directions of the carbon fibers 11a when laminating the prepreg 11 can be arbitrarily set.
- the grain 12 is, for example, diamond powder.
- Diamond powder is a powder of diamond. Since diamond has high thermal conductivity, it can be said that diamond powder is a granular material having thermal conductivity.
- a prepreg 11'in which carbon fibers are impregnated with a resin is prepared.
- the prepreg 11' may be, for example, a commercially available prepreg.
- a UD (UNI-DIRECTION) material can be used as the prepreg 11'.
- the UD material is a material in which the direction of the fiber extends in only one direction.
- prepare diamond powder prepare diamond powder.
- the diameter of the diamond powder is smaller than the diameter of the carbon fibers used in the prepreg 11'. Considering the influence on the living body, carbon fibers having a diameter of 5 ⁇ m or less are not used.
- the diameter of the diamond powder is, for example, 5 ⁇ m or less.
- the diameter of the carbon fiber is, for example, 7 ⁇ m to 10 ⁇ m
- the diameter of the diamond powder can be, for example, 2 ⁇ m to 4 ⁇ m.
- the prepreg 11' is heated, and as shown in FIG. 3, the diamond powder 12 is attached to the surface of the prepreg 11'.
- the resin constituting the preprig 11'softens and the diamond powder 12 easily adheres to the preprig 11'.
- the diamond powder 12 shown in FIG. 3 is shown extremely large so that it can be easily seen as a figure.
- a plurality of prepregs 11'with the diamond powder 12 attached are laminated in the mold 20.
- the number of laminated sheets can be, for example, 10 to 50 sheets.
- the number of laminated prepregs 11' is extremely small so that it can be easily seen as a figure.
- high pressure is applied in the stacking direction of the prepreg 11'and crimping is performed.
- the CFRP structure 10 in which a plurality of prepregs 11 made of carbon fibers 11a impregnated with the resin 11b in which the diamond powder 12 is injected is laminated is manufactured.
- the CFRP structure 10 has the original characteristics of CFRP such as high specific rigidity, low density and low coefficient of thermal expansion.
- the CFRP structure 10 in the present embodiment contains a large number of thermally conductive particles 12 in which the resin 11b constituting the prepreg 11 has a diameter smaller than the diameter of the carbon fibers 11a.
- the percolation effect is, for example, when small particles having conductivity are filled in a non-conductive substance (for example, resin), and when the filling amount reaches a certain amount, the conductivity suddenly becomes conductive. It is the effect of improving. Similar to this phenomenon, if the CFRP structure contains particles of a substance with good thermal conductivity, it is thought that good thermal conductivity can be obtained in directions other than the direction in which the carbon fibers are stretched. rice field. In order to verify this, the present inventor investigated the thermal conductivity of each of the CFRP structure containing no particles having thermal conductivity and the CFRP structure containing particles having thermal conductivity. ..
- Example 2 The thermal conductivity of a conventional CFRP structure containing no particles having thermal conductivity and a CFRP structure in which diamond powder was injected as particles having thermal conductivity were evaluated. The results are shown in Table 1. Here, the numerical value of the thermal conductivity was calculated from the thermal diffusivity, the specific heat, and the density of each sample. A xenon flash analyzer was used to measure the thermal diffusivity.
- the comparative example in Table 1 is a conventional CFRP structure and does not contain diamond powder.
- E8025C-25N resin content (RC): 32 wt%, fiber volume content (Vf): 54 vol%) manufactured by Nippon Graphite Fiber Corporation was used.
- diamond powder is injected into a CFRP structure having the same structure as that of Comparative Example.
- 0.456 g (about 4.02% by weight) of diamond powder is injected into 11.333 g of the CFRP structure.
- Example 2 diamond powder is injected into a CFRP structure having the same structure as that of Comparative Example.
- 0.588 g (about 5.20% by weight) of diamond powder is injected into 11.312 g of the CFRP structure.
- the CFRP structure is a stack of 40 prepregs.
- the thermal conductivity of the comparative example without diamond powder is 1.23 W / (mK)
- the thermal conductivity of Example 1 containing about 4.02 wt% diamond powder is 1.23 W / (mK).
- the thermal conductivity of Example 1 was about 1.7 times that of the CFRP structure of Comparative Example.
- the thermal conductivity was 2.22 W / (mK). That is, the thermal conductivity of the CFRP structure of Example 2 was about 1.8 times the thermal conductivity of the CFRP structure of Comparative Example.
- the CFRP structure infused with diamond powder can increase the thermal conductivity as compared with the CFRP structure in which diamond powder is not injected. It was also confirmed that the thermal conductivity can be appropriately improved by injecting the granules 12 in an amount of 4% by weight or more based on the total weight of the CFRP structure. Furthermore, it was also confirmed that the thermal conductivity can be further improved by increasing the amount of the granules 12 injected.
- the direction in which the thermal conductivity is good is only in the direction in which the carbon fibers are elongated, and in the direction in which the carbon fibers are elongated.
- the thermal conductivity is poor in the direction orthogonal to the prepreg and the stacking direction of the prepreg.
- the resin 11b constituting the prepreg 11 is injected with diamond powder 12, which is a thermally conductive particle having a diameter smaller than the diameter of the carbon fiber 11a. Has a configuration.
- the diamond powder 12 having a diameter smaller than the diameter of the carbon fibers 11a enters the gap between the carbon fibers 11a and the carbon fibers 11a and causes a percoration effect. Therefore, heat in a direction other than the direction in which the carbon fibers are stretched (X direction in FIG. 1), for example, a direction (Y direction, Z direction in FIG. 1) orthogonal to the direction in which the carbon fibers are stretched (X direction in FIG. 1). Conductivity can be improved.
- the CFRP structure 10 in the present embodiment has the original characteristics of CFRP such as high specific rigidity and low density and coefficient of thermal expansion, and also has good heat conduction in directions other than the direction in which carbon fibers are stretched. A structure having properties and having no anisotropy in thermal properties can be obtained.
- the CFRP structure 10 in which the diamond powder 12 is injected is produced by the following procedure has been described.
- the method for producing the CFRP structure 10 is not limited to the above.
- the CFRP structure 10 can be manufactured by the following procedure.
- the case where diamond is used as the granular material having thermal conductivity has been described, but for example, a metal such as copper can also be used. Copper is suitable because it has high thermal conductivity.
- a metal such as copper
- the diamond powder used in the above embodiment is preferable because it not only has good thermal conductivity but also has high rigidity, and even if it is injected into a prepreg, it has little effect on the characteristics of CFRP.
- CFRP structure Carbon fiber reinforced plastic structure
- Prepreg Carbon fiber reinforced plastic structure
- 11a Carbon fiber
- 11b Carbon fiber
- Resin 12
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Reinforced Plastic Materials (AREA)
- Laminated Bodies (AREA)
Abstract
Provided are a carbon-fiber-reinforced plastic structure having no anisotropy in thermal properties, and a method for producing said structure. The carbon-fiber-reinforced plastic structure (CFRP structure) (10) comprises a prepreg (11) in which carbon fibers (11a) are impregnated with a resin (11b). The resin (11b) includes thermally conductive granules (12) having a diameter smaller than the diameter of the carbon fibers (11a), and the granules (12) are present at 4 wt% or higher relative to the total weight of the carbon-fiber-reinforced plastic structure (10).
Description
本発明は、炭素繊維強化プラスチックを含む炭素繊維強化プラスチック構造体、および当該構造体の製造方法に関する。
The present invention relates to a carbon fiber reinforced plastic structure containing carbon fiber reinforced plastic and a method for manufacturing the structure.
従来、比剛性が高く、かつ密度および熱膨張係数が小さいといった特性を有する材料として、炭素繊維強化プラスチック(Carbon Fiber Reinforced Plastic:CFRP)が知られている。CFRPは、金属に代わる材料として応用研究が進んでいる。
CFRPは、例えば以下のようにして作られる。
まず、炭素繊維に樹脂を含浸させ、プリプレグと呼ばれる板状(シート状)の材料を作成する。次に、このプリプレグを、繊維の方向を考慮しつつ、型の中に複数枚積み重ね、その後、加熱し圧着し硬化させることにより成形する。そして、冷却後、成形品を型から取り外す。 Conventionally, carbon fiber reinforced plastic (CFRP) is known as a material having characteristics such as high specific rigidity and low density and thermal expansion coefficient. Applied research is progressing on CFRP as an alternative material to metals.
CFRP is made, for example, as follows.
First, carbon fibers are impregnated with resin to prepare a plate-shaped (sheet-shaped) material called a prepreg. Next, a plurality of prepregs are stacked in a mold while considering the direction of the fibers, and then heated, crimped, and cured to form the prepreg. Then, after cooling, the molded product is removed from the mold.
CFRPは、例えば以下のようにして作られる。
まず、炭素繊維に樹脂を含浸させ、プリプレグと呼ばれる板状(シート状)の材料を作成する。次に、このプリプレグを、繊維の方向を考慮しつつ、型の中に複数枚積み重ね、その後、加熱し圧着し硬化させることにより成形する。そして、冷却後、成形品を型から取り外す。 Conventionally, carbon fiber reinforced plastic (CFRP) is known as a material having characteristics such as high specific rigidity and low density and thermal expansion coefficient. Applied research is progressing on CFRP as an alternative material to metals.
CFRP is made, for example, as follows.
First, carbon fibers are impregnated with resin to prepare a plate-shaped (sheet-shaped) material called a prepreg. Next, a plurality of prepregs are stacked in a mold while considering the direction of the fibers, and then heated, crimped, and cured to form the prepreg. Then, after cooling, the molded product is removed from the mold.
このようにして作成されたCFRPは、例えば精密な加工を行う加工装置のステージの材料として使用することが提案されている(例えば、特許文献1(特開2019-51653号公報)参照)。
It has been proposed that the CFRP produced in this manner be used as a material for a stage of a processing apparatus that performs precision processing, for example (see, for example, Patent Document 1 (Japanese Patent Laid-Open No. 2019-51653)).
CFRPを含む炭素繊維強化プラスチック構造体(CFRP構造体)が、金属と大きく異なる点の一つに、熱伝導性がある。
金属は、熱の伝わる方向に異方性はない。これに対してCFRP構造体は、炭素繊維の伸びる方向(X方向)のみ熱伝導性が良く、炭素繊維の伸びる方向に対して直交する方向(Y方向)や、プレプリグを重ねた方向(Z方向)については、熱伝導性は悪い。Y方向やZ方向の熱伝導性は、基本的には、炭素繊維に含浸される樹脂の熱伝導率に依存する。樹脂は、一般的に金属や炭素繊維に比べて熱伝導性は悪い。
そこで、CFRP構造体の熱伝導性を、どの方向についても良くしたいという要望がある。CFRP構造体が、金属と同じように熱を異方性なく伝えられるようになれば、金属の代替品として、適用範囲がより広がると期待される。 One of the major differences between carbon fiber reinforced plastic structures containing CFRP (CFRP structures) and metals is thermal conductivity.
Metals are not anisotropy in the direction of heat transfer. On the other hand, the CFRP structure has good thermal conductivity only in the direction in which the carbon fibers extend (X direction), and the direction orthogonal to the direction in which the carbon fibers extend (Y direction) and the direction in which the prepregs are stacked (Z direction). ), The thermal conductivity is poor. The thermal conductivity in the Y direction and the Z direction basically depends on the thermal conductivity of the resin impregnated in the carbon fibers. Resins generally have poorer thermal conductivity than metals and carbon fibers.
Therefore, there is a desire to improve the thermal conductivity of the CFRP structure in all directions. If the CFRP structure can transfer heat without anisotropy like metal, it is expected that the range of application will be further expanded as a substitute for metal.
金属は、熱の伝わる方向に異方性はない。これに対してCFRP構造体は、炭素繊維の伸びる方向(X方向)のみ熱伝導性が良く、炭素繊維の伸びる方向に対して直交する方向(Y方向)や、プレプリグを重ねた方向(Z方向)については、熱伝導性は悪い。Y方向やZ方向の熱伝導性は、基本的には、炭素繊維に含浸される樹脂の熱伝導率に依存する。樹脂は、一般的に金属や炭素繊維に比べて熱伝導性は悪い。
そこで、CFRP構造体の熱伝導性を、どの方向についても良くしたいという要望がある。CFRP構造体が、金属と同じように熱を異方性なく伝えられるようになれば、金属の代替品として、適用範囲がより広がると期待される。 One of the major differences between carbon fiber reinforced plastic structures containing CFRP (CFRP structures) and metals is thermal conductivity.
Metals are not anisotropy in the direction of heat transfer. On the other hand, the CFRP structure has good thermal conductivity only in the direction in which the carbon fibers extend (X direction), and the direction orthogonal to the direction in which the carbon fibers extend (Y direction) and the direction in which the prepregs are stacked (Z direction). ), The thermal conductivity is poor. The thermal conductivity in the Y direction and the Z direction basically depends on the thermal conductivity of the resin impregnated in the carbon fibers. Resins generally have poorer thermal conductivity than metals and carbon fibers.
Therefore, there is a desire to improve the thermal conductivity of the CFRP structure in all directions. If the CFRP structure can transfer heat without anisotropy like metal, it is expected that the range of application will be further expanded as a substitute for metal.
本発明は、熱的特性において異方性を有さない炭素繊維強化プラスチック構造体、および当該構造体の製造方法を提供することを目的とする。
An object of the present invention is to provide a carbon fiber reinforced plastic structure having no anisotropy in thermal properties, and a method for producing the structure.
上記課題を解決するために、本発明に係る炭素繊維強化プラスチック構造体の一態様は、樹脂を含浸させた炭素繊維を備える炭素繊維強化プラスチック構造体であって、前記樹脂は、前記炭素繊維の径よりも小さい径を有する熱伝導性の粒体を含み、前記粒体が、前記炭素繊維強化プラスチック構造体の総重量に対して4重量パーセント以上存在する。
このような炭素繊維強化プラスチック構造体(CFRP構造体)は、比剛性が高く、密度および熱膨張係数が小さいといった炭素繊維強化プラスチックの特性を有する。また、樹脂が熱伝導性の多数の粒体を含むため、炭素繊維が伸びる方向以外の方向にも、良好な熱伝導性が得られる。つまり、熱的特性において異方性を有さない炭素繊維強化プラスチック構造体を実現することができる。 In order to solve the above problems, one aspect of the carbon fiber reinforced plastic structure according to the present invention is a carbon fiber reinforced plastic structure including carbon fibers impregnated with a resin, and the resin is the carbon fiber. It contains thermally conductive particles having a diameter smaller than the diameter, and the particles are present in an amount of 4% by weight or more based on the total weight of the carbon fiber reinforced plastic structure.
Such a carbon fiber reinforced plastic structure (CFRP structure) has the characteristics of carbon fiber reinforced plastic such as high specific rigidity and low density and thermal expansion coefficient. Further, since the resin contains a large number of thermally conductive particles, good thermal conductivity can be obtained in a direction other than the direction in which the carbon fibers are stretched. That is, it is possible to realize a carbon fiber reinforced plastic structure having no anisotropy in thermal properties.
このような炭素繊維強化プラスチック構造体(CFRP構造体)は、比剛性が高く、密度および熱膨張係数が小さいといった炭素繊維強化プラスチックの特性を有する。また、樹脂が熱伝導性の多数の粒体を含むため、炭素繊維が伸びる方向以外の方向にも、良好な熱伝導性が得られる。つまり、熱的特性において異方性を有さない炭素繊維強化プラスチック構造体を実現することができる。 In order to solve the above problems, one aspect of the carbon fiber reinforced plastic structure according to the present invention is a carbon fiber reinforced plastic structure including carbon fibers impregnated with a resin, and the resin is the carbon fiber. It contains thermally conductive particles having a diameter smaller than the diameter, and the particles are present in an amount of 4% by weight or more based on the total weight of the carbon fiber reinforced plastic structure.
Such a carbon fiber reinforced plastic structure (CFRP structure) has the characteristics of carbon fiber reinforced plastic such as high specific rigidity and low density and thermal expansion coefficient. Further, since the resin contains a large number of thermally conductive particles, good thermal conductivity can be obtained in a direction other than the direction in which the carbon fibers are stretched. That is, it is possible to realize a carbon fiber reinforced plastic structure having no anisotropy in thermal properties.
また、上記の炭素繊維強化プラスチック構造体において、前記粒体は、ダイヤモンドにより構成されていてもよい。この場合、比剛性が高く、密度および熱膨張係数が小さいといった炭素繊維強化プラスチックの本来の特性を悪化させることなく、熱伝導性を向上させることができる。
さらに、上記の炭素繊維強化プラスチック構造体において、前記粒体は、銅により構成されていてもよい。この場合、効果的に熱伝導性を向上させることができる。 Further, in the carbon fiber reinforced plastic structure, the granules may be made of diamond. In this case, the thermal conductivity can be improved without deteriorating the original characteristics of the carbon fiber reinforced plastic such as high specific rigidity and low density and coefficient of thermal expansion.
Further, in the carbon fiber reinforced plastic structure, the granules may be made of copper. In this case, the thermal conductivity can be effectively improved.
さらに、上記の炭素繊維強化プラスチック構造体において、前記粒体は、銅により構成されていてもよい。この場合、効果的に熱伝導性を向上させることができる。 Further, in the carbon fiber reinforced plastic structure, the granules may be made of diamond. In this case, the thermal conductivity can be improved without deteriorating the original characteristics of the carbon fiber reinforced plastic such as high specific rigidity and low density and coefficient of thermal expansion.
Further, in the carbon fiber reinforced plastic structure, the granules may be made of copper. In this case, the thermal conductivity can be effectively improved.
また、本発明に係る炭素繊維強化プラスチック構造体の一態様は、樹脂を含浸させた炭素繊維を備える炭素繊維強化プラスチック構造体であって、前記樹脂には、前記炭素繊維の径よりも小さい径を有する熱伝導性の粒体が注入されている。
このような炭素繊維強化プラスチック構造体(CFRP構造体)は、比剛性が高く、密度および熱膨張係数が小さいといった炭素繊維強化プラスチックの特性を有する。また、樹脂に熱伝導性の粒体が注入されているため、炭素繊維が伸びる方向以外の方向にも、良好な熱伝導性が得られる。つまり、熱的特性において異方性を有さない炭素繊維強化プラスチック構造体を実現することができる。 Further, one aspect of the carbon fiber reinforced plastic structure according to the present invention is a carbon fiber reinforced plastic structure including carbon fibers impregnated with a resin, and the resin has a diameter smaller than the diameter of the carbon fibers. The heat conductive particles having the above are injected.
Such a carbon fiber reinforced plastic structure (CFRP structure) has the characteristics of carbon fiber reinforced plastic such as high specific rigidity and low density and thermal expansion coefficient. Further, since the heat conductive particles are injected into the resin, good heat conductivity can be obtained in a direction other than the direction in which the carbon fibers are stretched. That is, it is possible to realize a carbon fiber reinforced plastic structure having no anisotropy in thermal properties.
このような炭素繊維強化プラスチック構造体(CFRP構造体)は、比剛性が高く、密度および熱膨張係数が小さいといった炭素繊維強化プラスチックの特性を有する。また、樹脂に熱伝導性の粒体が注入されているため、炭素繊維が伸びる方向以外の方向にも、良好な熱伝導性が得られる。つまり、熱的特性において異方性を有さない炭素繊維強化プラスチック構造体を実現することができる。 Further, one aspect of the carbon fiber reinforced plastic structure according to the present invention is a carbon fiber reinforced plastic structure including carbon fibers impregnated with a resin, and the resin has a diameter smaller than the diameter of the carbon fibers. The heat conductive particles having the above are injected.
Such a carbon fiber reinforced plastic structure (CFRP structure) has the characteristics of carbon fiber reinforced plastic such as high specific rigidity and low density and thermal expansion coefficient. Further, since the heat conductive particles are injected into the resin, good heat conductivity can be obtained in a direction other than the direction in which the carbon fibers are stretched. That is, it is possible to realize a carbon fiber reinforced plastic structure having no anisotropy in thermal properties.
さらに、本発明に係る炭素繊維強化プラスチック構造体の製造方法の一態様は、樹脂を含浸させた炭素繊維を備える炭素繊維強化プラスチック構造体の製造方法であって、前記炭素繊維に前記樹脂を含浸してなるプリプレグを準備する第一の工程と、前記プリプレグに、前記炭素繊維の径よりも小さい径を有する、熱伝導性の粒体を付着させる第二の工程と、前記第二の工程で前記粒体を付着させた前記プリプレグを複数枚重ね、加熱しながら圧力を加えることで、前記粒体を前記樹脂に注入させる第三の工程と、を含む。
これにより、比剛性が高く、密度および熱膨張係数が小さいといった炭素繊維強化プラスチックの特性を有し、かつ、いずれの方向にも良好な熱伝導性を有する構造体を製造することができる。 Further, one aspect of the method for producing a carbon fiber reinforced plastic structure according to the present invention is a method for producing a carbon fiber reinforced plastic structure including carbon fibers impregnated with a resin, wherein the carbon fibers are impregnated with the resin. In the first step of preparing the prepreg, the second step of adhering the thermally conductive particles having a diameter smaller than the diameter of the carbon fiber to the prepreg, and the second step. A third step of injecting the granules into the resin by stacking a plurality of the prepregs to which the granules are attached and applying pressure while heating is included.
As a result, it is possible to manufacture a structure having characteristics of carbon fiber reinforced plastic such as high specific rigidity, low density and low coefficient of thermal expansion, and having good thermal conductivity in any direction.
これにより、比剛性が高く、密度および熱膨張係数が小さいといった炭素繊維強化プラスチックの特性を有し、かつ、いずれの方向にも良好な熱伝導性を有する構造体を製造することができる。 Further, one aspect of the method for producing a carbon fiber reinforced plastic structure according to the present invention is a method for producing a carbon fiber reinforced plastic structure including carbon fibers impregnated with a resin, wherein the carbon fibers are impregnated with the resin. In the first step of preparing the prepreg, the second step of adhering the thermally conductive particles having a diameter smaller than the diameter of the carbon fiber to the prepreg, and the second step. A third step of injecting the granules into the resin by stacking a plurality of the prepregs to which the granules are attached and applying pressure while heating is included.
As a result, it is possible to manufacture a structure having characteristics of carbon fiber reinforced plastic such as high specific rigidity, low density and low coefficient of thermal expansion, and having good thermal conductivity in any direction.
また、本発明に係る炭素繊維強化プラスチック構造体の製造方法の一態様は、樹脂を含浸させた炭素繊維を備える炭素繊維強化プラスチック構造体の製造方法であって、前記炭素繊維と前記樹脂とを準備する第一の工程と、前記樹脂に、前記炭素繊維の径よりも小さい径を有する、熱伝導性の粒体を注入する第二の工程と、前記炭素繊維に、前記粒体を注入させた前記樹脂を含浸させる第三の工程と、前記第三の工程で前記樹脂を含浸させた前記炭素繊維を複数枚重ね、加熱ながら圧力を加える第四の工程と、を含む。
これにより、比剛性が高く、密度および熱膨張係数が小さいといった炭素繊維強化プラスチックの特性を有し、かつ、いずれの方向にも良好な熱伝導性を有する構造体を製造することができる。 Further, one aspect of the method for producing a carbon fiber reinforced plastic structure according to the present invention is a method for producing a carbon fiber reinforced plastic structure including carbon fibers impregnated with a resin, wherein the carbon fibers and the resin are combined. The first step of preparing, the second step of injecting the heat conductive particles having a diameter smaller than the diameter of the carbon fibers into the resin, and the second step of injecting the particles into the carbon fibers. The third step of impregnating the resin and the fourth step of stacking a plurality of the carbon fibers impregnated with the resin in the third step and applying pressure while heating are included.
As a result, it is possible to manufacture a structure having characteristics of carbon fiber reinforced plastic such as high specific rigidity, low density and low coefficient of thermal expansion, and having good thermal conductivity in any direction.
これにより、比剛性が高く、密度および熱膨張係数が小さいといった炭素繊維強化プラスチックの特性を有し、かつ、いずれの方向にも良好な熱伝導性を有する構造体を製造することができる。 Further, one aspect of the method for producing a carbon fiber reinforced plastic structure according to the present invention is a method for producing a carbon fiber reinforced plastic structure including carbon fibers impregnated with a resin, wherein the carbon fibers and the resin are combined. The first step of preparing, the second step of injecting the heat conductive particles having a diameter smaller than the diameter of the carbon fibers into the resin, and the second step of injecting the particles into the carbon fibers. The third step of impregnating the resin and the fourth step of stacking a plurality of the carbon fibers impregnated with the resin in the third step and applying pressure while heating are included.
As a result, it is possible to manufacture a structure having characteristics of carbon fiber reinforced plastic such as high specific rigidity, low density and low coefficient of thermal expansion, and having good thermal conductivity in any direction.
また、上記の炭素繊維強化プラスチック構造体の製造方法において、前記粒体の量は、前記炭素繊維強化プラスチック構造体の総重量に対して4重量パーセント以上であってよい。
この場合、熱伝導性を適切に向上させることができる。 Further, in the above method for producing a carbon fiber reinforced plastic structure, the amount of the granules may be 4% by weight or more with respect to the total weight of the carbon fiber reinforced plastic structure.
In this case, the thermal conductivity can be appropriately improved.
この場合、熱伝導性を適切に向上させることができる。 Further, in the above method for producing a carbon fiber reinforced plastic structure, the amount of the granules may be 4% by weight or more with respect to the total weight of the carbon fiber reinforced plastic structure.
In this case, the thermal conductivity can be appropriately improved.
本発明によれば、炭素繊維の伸びる方向に対して直交する方向についても熱伝導性を良くすることができ、熱的特性において異方性を有さない炭素繊維強化プラスチック構造体を実現することができる。
上記した本発明の目的、態様及び効果並びに上記されなかった本発明の目的、態様及び効果は、当業者であれば添付図面及び請求の範囲の記載を参照することにより下記の発明を実施するための形態(発明の詳細な説明)から理解できるであろう。 According to the present invention, it is possible to improve thermal conductivity in a direction orthogonal to the extending direction of carbon fibers, and to realize a carbon fiber reinforced plastic structure having no anisotropy in thermal properties. Can be done.
The above-mentioned purpose, aspect and effect of the present invention and the above-mentioned purpose, aspect and effect of the present invention not described above will be used by those skilled in the art to carry out the following invention by referring to the accompanying drawings and the description of the scope of claims. Can be understood from the form of (detailed description of the invention).
上記した本発明の目的、態様及び効果並びに上記されなかった本発明の目的、態様及び効果は、当業者であれば添付図面及び請求の範囲の記載を参照することにより下記の発明を実施するための形態(発明の詳細な説明)から理解できるであろう。 According to the present invention, it is possible to improve thermal conductivity in a direction orthogonal to the extending direction of carbon fibers, and to realize a carbon fiber reinforced plastic structure having no anisotropy in thermal properties. Can be done.
The above-mentioned purpose, aspect and effect of the present invention and the above-mentioned purpose, aspect and effect of the present invention not described above will be used by those skilled in the art to carry out the following invention by referring to the accompanying drawings and the description of the scope of claims. Can be understood from the form of (detailed description of the invention).
以下、本発明の実施の形態を図面に基づいて説明する。
図1は、本実施形態の炭素繊維強化プラスチック構造体(CFRP構造体)10を模式的に示す斜視図である。
CFRP構造体10は、図1に示すように、複数のプリプレグ11が積層されて構成されている。プリプレグ11は、炭素繊維11aに、繊維の方向性を持たせたまま樹脂11bを含浸させたシート状の部材である。プリプレグ11を構成する樹脂11bは、例えば熱硬化性のエポキシ樹脂である。なお、プリプレグ11を構成する樹脂11bとしては、例えば、不飽和ポリエステル、ビニルエステル、フェノール、シアネートエステル、ポリイミド等の熱硬化性樹脂を用いることもできる。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a perspective view schematically showing a carbon fiber reinforced plastic structure (CFRP structure) 10 of the present embodiment.
As shown in FIG. 1, theCFRP structure 10 is configured by laminating a plurality of prepregs 11. The prepreg 11 is a sheet-like member in which carbon fibers 11a are impregnated with resin 11b while maintaining the directionality of the fibers. The resin 11b constituting the prepreg 11 is, for example, a thermosetting epoxy resin. As the resin 11b constituting the prepreg 11, for example, a thermosetting resin such as unsaturated polyester, vinyl ester, phenol, cyanate ester, or polyimide can be used.
図1は、本実施形態の炭素繊維強化プラスチック構造体(CFRP構造体)10を模式的に示す斜視図である。
CFRP構造体10は、図1に示すように、複数のプリプレグ11が積層されて構成されている。プリプレグ11は、炭素繊維11aに、繊維の方向性を持たせたまま樹脂11bを含浸させたシート状の部材である。プリプレグ11を構成する樹脂11bは、例えば熱硬化性のエポキシ樹脂である。なお、プリプレグ11を構成する樹脂11bとしては、例えば、不飽和ポリエステル、ビニルエステル、フェノール、シアネートエステル、ポリイミド等の熱硬化性樹脂を用いることもできる。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a perspective view schematically showing a carbon fiber reinforced plastic structure (CFRP structure) 10 of the present embodiment.
As shown in FIG. 1, the
図1では、説明を簡略化するために、5枚のプリプレグ11を、炭素繊維11aが伸びる方向を揃えて積層したCFRP構造体10を示している。この図1においては、炭素繊維11aの断面を白丸印で示している。図1において、X方向は、炭素繊維11aが伸びる方向、Y方向は、炭素繊維11aが伸びる方向に対して直交する方向、Z方向は、プリプレグ11の積層方向である。
なお、プリプレグ11を、炭素繊維11aが伸びる方向が直交するように1枚ずつ交互に積層してCFRP構造体10を構成してもよい。プリプレグ11を積層する際の炭素繊維11aの交差角度や配向方向の割合は、任意に設定することができる。 FIG. 1 shows aCFRP structure 10 in which five prepregs 11 are laminated in the same direction in which the carbon fibers 11a extend, in order to simplify the explanation. In FIG. 1, the cross section of the carbon fiber 11a is indicated by a white circle. In FIG. 1, the X direction is the direction in which the carbon fibers 11a are stretched, the Y direction is the direction orthogonal to the direction in which the carbon fibers 11a are stretched, and the Z direction is the stacking direction of the prepreg 11.
TheCFRP structure 10 may be formed by alternately stacking the prepregs 11 one by one so that the directions in which the carbon fibers 11a extend are orthogonal to each other. The crossing angle and the ratio of the orientation directions of the carbon fibers 11a when laminating the prepreg 11 can be arbitrarily set.
なお、プリプレグ11を、炭素繊維11aが伸びる方向が直交するように1枚ずつ交互に積層してCFRP構造体10を構成してもよい。プリプレグ11を積層する際の炭素繊維11aの交差角度や配向方向の割合は、任意に設定することができる。 FIG. 1 shows a
The
本実施形態におけるCFRP構造体10において、プリプレグ11を構成する樹脂11bには、炭素繊維11aの径よりも小さい径を有する、熱伝導性の多数の粒体12が注入されている。
ここで、粒体12は、例えばダイヤモンドパウダーである。ダイヤモンドパウダーは、ダイヤモンドを粉状にしたものである。ダイヤモンドは高い熱伝導率を有するため、ダイヤモンドパウダーは、熱伝導性を有する粒体であるといえる。 In theCFRP structure 10 of the present embodiment, a large number of thermally conductive particles 12 having a diameter smaller than the diameter of the carbon fibers 11a are injected into the resin 11b constituting the prepreg 11.
Here, thegrain 12 is, for example, diamond powder. Diamond powder is a powder of diamond. Since diamond has high thermal conductivity, it can be said that diamond powder is a granular material having thermal conductivity.
ここで、粒体12は、例えばダイヤモンドパウダーである。ダイヤモンドパウダーは、ダイヤモンドを粉状にしたものである。ダイヤモンドは高い熱伝導率を有するため、ダイヤモンドパウダーは、熱伝導性を有する粒体であるといえる。 In the
Here, the
以下、本実施形態におけるCFRP構造体10の製造方法の一例について説明する。
まず、図2に示すように、炭素繊維に樹脂を含浸させたプリプレグ11´を準備する。ここで、プリプレグ11´は、例えば市販のプリプレグであってよい。プリプレグ11´としては、例えば、UD(UNI-DIRECTION)材を使用することができる。ここで、UD材とは繊維の方向が一方向にのみ延びている材料のことである。
次に、ダイヤモンドパウダーを準備する。ここで、ダイヤモンドパウダーの径は、プリプレグ11´に使用されている炭素繊維の径よりも小さい。炭素繊維は、生体に与える影響を考慮し、径が5μm以下のものは使用されない。したがって、ダイヤモンドパウダーの径は、例えば5μm以下とする。炭素繊維の径が、例えば7μm~10μmである場合、ダイヤモンドパウダーの径は、例えば2μm~4μmとすることができる。 Hereinafter, an example of the method for producing theCFRP structure 10 in the present embodiment will be described.
First, as shown in FIG. 2, a prepreg 11'in which carbon fibers are impregnated with a resin is prepared. Here, the prepreg 11'may be, for example, a commercially available prepreg. As the prepreg 11', for example, a UD (UNI-DIRECTION) material can be used. Here, the UD material is a material in which the direction of the fiber extends in only one direction.
Next, prepare diamond powder. Here, the diameter of the diamond powder is smaller than the diameter of the carbon fibers used in the prepreg 11'. Considering the influence on the living body, carbon fibers having a diameter of 5 μm or less are not used. Therefore, the diameter of the diamond powder is, for example, 5 μm or less. When the diameter of the carbon fiber is, for example, 7 μm to 10 μm, the diameter of the diamond powder can be, for example, 2 μm to 4 μm.
まず、図2に示すように、炭素繊維に樹脂を含浸させたプリプレグ11´を準備する。ここで、プリプレグ11´は、例えば市販のプリプレグであってよい。プリプレグ11´としては、例えば、UD(UNI-DIRECTION)材を使用することができる。ここで、UD材とは繊維の方向が一方向にのみ延びている材料のことである。
次に、ダイヤモンドパウダーを準備する。ここで、ダイヤモンドパウダーの径は、プリプレグ11´に使用されている炭素繊維の径よりも小さい。炭素繊維は、生体に与える影響を考慮し、径が5μm以下のものは使用されない。したがって、ダイヤモンドパウダーの径は、例えば5μm以下とする。炭素繊維の径が、例えば7μm~10μmである場合、ダイヤモンドパウダーの径は、例えば2μm~4μmとすることができる。 Hereinafter, an example of the method for producing the
First, as shown in FIG. 2, a prepreg 11'in which carbon fibers are impregnated with a resin is prepared. Here, the prepreg 11'may be, for example, a commercially available prepreg. As the prepreg 11', for example, a UD (UNI-DIRECTION) material can be used. Here, the UD material is a material in which the direction of the fiber extends in only one direction.
Next, prepare diamond powder. Here, the diameter of the diamond powder is smaller than the diameter of the carbon fibers used in the prepreg 11'. Considering the influence on the living body, carbon fibers having a diameter of 5 μm or less are not used. Therefore, the diameter of the diamond powder is, for example, 5 μm or less. When the diameter of the carbon fiber is, for example, 7 μm to 10 μm, the diameter of the diamond powder can be, for example, 2 μm to 4 μm.
次に、プレプリグ11´を加温し、図3に示すように、プリプレグ11´の表面にダイヤモンドパウダー12を付着させる。プレプリグ11´を加温すると、プレプリグ11´を構成する樹脂が軟化してダイヤモンドパウダー12が付着しやすくなる。なお、図3に示すダイヤモンドパウダー12は、図として見やすいように極端に大きく示している。
次に、図4に示すように、型20の中に、ダイヤモンドパウダー12を付着させた複数枚のプリプレグ11´を積層する。積層枚数は、例えば10枚~50枚とすることができる。なお、図4では、図として見やすいように、プリプレグ11´の積層数を極端に少なくしている。そして、加熱を行いつつ、プリプレグ11´の積層方向に高い圧力をかけて圧着する。 Next, the prepreg 11'is heated, and as shown in FIG. 3, thediamond powder 12 is attached to the surface of the prepreg 11'. When the preprig 11'is heated, the resin constituting the preprig 11'softens and the diamond powder 12 easily adheres to the preprig 11'. The diamond powder 12 shown in FIG. 3 is shown extremely large so that it can be easily seen as a figure.
Next, as shown in FIG. 4, a plurality of prepregs 11'with thediamond powder 12 attached are laminated in the mold 20. The number of laminated sheets can be, for example, 10 to 50 sheets. In FIG. 4, the number of laminated prepregs 11'is extremely small so that it can be easily seen as a figure. Then, while heating, high pressure is applied in the stacking direction of the prepreg 11'and crimping is performed.
次に、図4に示すように、型20の中に、ダイヤモンドパウダー12を付着させた複数枚のプリプレグ11´を積層する。積層枚数は、例えば10枚~50枚とすることができる。なお、図4では、図として見やすいように、プリプレグ11´の積層数を極端に少なくしている。そして、加熱を行いつつ、プリプレグ11´の積層方向に高い圧力をかけて圧着する。 Next, the prepreg 11'is heated, and as shown in FIG. 3, the
Next, as shown in FIG. 4, a plurality of prepregs 11'with the
これにより、プリプレグ11´を構成する炭素繊維11aと炭素繊維11aとの間の樹脂11bの一部が押し出され、そこにダイヤモンドパウダー12が注入される。つまり、図5に示すように、プリプレグ11´の表面に付着したダイヤモンドパウダー12が、プリプレグ11´の積層方向に入っていく。
その結果、ダイヤモンドパウダー12が注入された樹脂11bを含浸させた炭素繊維11aよりなるプリプレグ11が複数枚積層されたCFRP構造体10が製造される。 As a result, a part of theresin 11b between the carbon fibers 11a and the carbon fibers 11a constituting the prepreg 11'is extruded, and the diamond powder 12 is injected therein. That is, as shown in FIG. 5, the diamond powder 12 adhering to the surface of the prepreg 11'enters the stacking direction of the prepreg 11'.
As a result, theCFRP structure 10 in which a plurality of prepregs 11 made of carbon fibers 11a impregnated with the resin 11b in which the diamond powder 12 is injected is laminated is manufactured.
その結果、ダイヤモンドパウダー12が注入された樹脂11bを含浸させた炭素繊維11aよりなるプリプレグ11が複数枚積層されたCFRP構造体10が製造される。 As a result, a part of the
As a result, the
このCFRP構造体10は、比剛性が高く、密度および熱膨張係数が低いといったCFRP本来の特性を有する。
とりわけ、本実施形態におけるCFRP構造体10は、プリプレグ11を構成する樹脂11bが、炭素繊維11aの径よりも小さい径を有する、熱伝導性の多数の粒体12を含む。このような構成により、炭素繊維11aが伸びる方向(X方向)のみならず、炭素繊維11aが伸びる方向に対して直交する方向(Y方向)や、プリプレグ11の積層方向(Z方向)についても、熱伝導性を良くすることができ、熱を等方的に伝えられるようになる。 TheCFRP structure 10 has the original characteristics of CFRP such as high specific rigidity, low density and low coefficient of thermal expansion.
In particular, theCFRP structure 10 in the present embodiment contains a large number of thermally conductive particles 12 in which the resin 11b constituting the prepreg 11 has a diameter smaller than the diameter of the carbon fibers 11a. With such a configuration, not only the direction in which the carbon fiber 11a extends (X direction), but also the direction orthogonal to the direction in which the carbon fiber 11a extends (Y direction) and the stacking direction of the prepreg 11 (Z direction). Thermal conductivity can be improved and heat can be transferred isotropically.
とりわけ、本実施形態におけるCFRP構造体10は、プリプレグ11を構成する樹脂11bが、炭素繊維11aの径よりも小さい径を有する、熱伝導性の多数の粒体12を含む。このような構成により、炭素繊維11aが伸びる方向(X方向)のみならず、炭素繊維11aが伸びる方向に対して直交する方向(Y方向)や、プリプレグ11の積層方向(Z方向)についても、熱伝導性を良くすることができ、熱を等方的に伝えられるようになる。 The
In particular, the
本発明者は、鋭意検討を重ねた結果、CFRP構造体にパーコレーション効果を適用することを考えた。パーコレーション効果とは、例えば、非導電性の物質(例えば樹脂)の中に、導電性を有する小さい粒子を充填させていくと、その充填量が一定量に達した時点で、急激に導電性が向上する効果のことである。
この現象と同様に、CFRP構造体の中に、熱伝導性の良い物質の粒子を含ませれば、炭素繊維が伸びる方向以外の方向にも、良好な熱伝導性が得られるのではないかと考えた。
このことを検証するために、本発明者は、熱伝導性を有する粒体を含まないCFRP構造体と、熱伝導性を有する粒体を含むCFRP構造体とについて、それぞれ熱伝導率を調査した。 As a result of diligent studies, the present inventor considered applying the percolation effect to the CFRP structure. The percolation effect is, for example, when small particles having conductivity are filled in a non-conductive substance (for example, resin), and when the filling amount reaches a certain amount, the conductivity suddenly becomes conductive. It is the effect of improving.
Similar to this phenomenon, if the CFRP structure contains particles of a substance with good thermal conductivity, it is thought that good thermal conductivity can be obtained in directions other than the direction in which the carbon fibers are stretched. rice field.
In order to verify this, the present inventor investigated the thermal conductivity of each of the CFRP structure containing no particles having thermal conductivity and the CFRP structure containing particles having thermal conductivity. ..
この現象と同様に、CFRP構造体の中に、熱伝導性の良い物質の粒子を含ませれば、炭素繊維が伸びる方向以外の方向にも、良好な熱伝導性が得られるのではないかと考えた。
このことを検証するために、本発明者は、熱伝導性を有する粒体を含まないCFRP構造体と、熱伝導性を有する粒体を含むCFRP構造体とについて、それぞれ熱伝導率を調査した。 As a result of diligent studies, the present inventor considered applying the percolation effect to the CFRP structure. The percolation effect is, for example, when small particles having conductivity are filled in a non-conductive substance (for example, resin), and when the filling amount reaches a certain amount, the conductivity suddenly becomes conductive. It is the effect of improving.
Similar to this phenomenon, if the CFRP structure contains particles of a substance with good thermal conductivity, it is thought that good thermal conductivity can be obtained in directions other than the direction in which the carbon fibers are stretched. rice field.
In order to verify this, the present inventor investigated the thermal conductivity of each of the CFRP structure containing no particles having thermal conductivity and the CFRP structure containing particles having thermal conductivity. ..
(実施例)
熱伝導性を有する粒体を含まない従来のCFRP構造体と、熱伝導性を有する粒体としてダイヤモンドパウダーを注入させたCFRP構造体とについて、熱伝導率を評価した。その結果を表1に示す。ここで、熱伝導率の数値は、各サンプルの熱拡散率と比熱と密度とから計算した。なお、熱拡散率の測定には、キセノンフラッシュアナライザーを用いた。 (Example)
The thermal conductivity of a conventional CFRP structure containing no particles having thermal conductivity and a CFRP structure in which diamond powder was injected as particles having thermal conductivity were evaluated. The results are shown in Table 1. Here, the numerical value of the thermal conductivity was calculated from the thermal diffusivity, the specific heat, and the density of each sample. A xenon flash analyzer was used to measure the thermal diffusivity.
熱伝導性を有する粒体を含まない従来のCFRP構造体と、熱伝導性を有する粒体としてダイヤモンドパウダーを注入させたCFRP構造体とについて、熱伝導率を評価した。その結果を表1に示す。ここで、熱伝導率の数値は、各サンプルの熱拡散率と比熱と密度とから計算した。なお、熱拡散率の測定には、キセノンフラッシュアナライザーを用いた。 (Example)
The thermal conductivity of a conventional CFRP structure containing no particles having thermal conductivity and a CFRP structure in which diamond powder was injected as particles having thermal conductivity were evaluated. The results are shown in Table 1. Here, the numerical value of the thermal conductivity was calculated from the thermal diffusivity, the specific heat, and the density of each sample. A xenon flash analyzer was used to measure the thermal diffusivity.
表1の比較例は、従来のCFRP構造体であり、ダイヤモンドパウダーを含んでいない。CFRP構造体を構成するプリプレグとしては、日本グラファイトファイバー株式会社製のE8025C-25N(樹脂含有量(RC):32wt%、繊維体積含有率(Vf):54vol%)を使用した。
実施例1は、比較例と同一構成を有するCFRP構造体に、ダイヤモンドパウダーを注入させたものである。この実験例1では、11.333gのCFRP構造体に対して、0.456g(重量パーセントで約4.02%)のダイヤモンドパウダーを注入させている。
実施例2は、比較例と同一構成を有するCFRP構造体に、ダイヤモンドパウダーを注入させたものである。この実験例2では、11.312gのCFRP構造体に対して、0.588g(重量パーセントで約5.20%)のダイヤモンドパウダーを注入させている。
なお、いずれのサンプルにおいても、CFRP構造体は、40枚のプリプレグを重ねたものである。 The comparative example in Table 1 is a conventional CFRP structure and does not contain diamond powder. As the prepreg constituting the CFRP structure, E8025C-25N (resin content (RC): 32 wt%, fiber volume content (Vf): 54 vol%) manufactured by Nippon Graphite Fiber Corporation was used.
In Example 1, diamond powder is injected into a CFRP structure having the same structure as that of Comparative Example. In this Experimental Example 1, 0.456 g (about 4.02% by weight) of diamond powder is injected into 11.333 g of the CFRP structure.
In Example 2, diamond powder is injected into a CFRP structure having the same structure as that of Comparative Example. In this Experimental Example 2, 0.588 g (about 5.20% by weight) of diamond powder is injected into 11.312 g of the CFRP structure.
In each sample, the CFRP structure is a stack of 40 prepregs.
実施例1は、比較例と同一構成を有するCFRP構造体に、ダイヤモンドパウダーを注入させたものである。この実験例1では、11.333gのCFRP構造体に対して、0.456g(重量パーセントで約4.02%)のダイヤモンドパウダーを注入させている。
実施例2は、比較例と同一構成を有するCFRP構造体に、ダイヤモンドパウダーを注入させたものである。この実験例2では、11.312gのCFRP構造体に対して、0.588g(重量パーセントで約5.20%)のダイヤモンドパウダーを注入させている。
なお、いずれのサンプルにおいても、CFRP構造体は、40枚のプリプレグを重ねたものである。 The comparative example in Table 1 is a conventional CFRP structure and does not contain diamond powder. As the prepreg constituting the CFRP structure, E8025C-25N (resin content (RC): 32 wt%, fiber volume content (Vf): 54 vol%) manufactured by Nippon Graphite Fiber Corporation was used.
In Example 1, diamond powder is injected into a CFRP structure having the same structure as that of Comparative Example. In this Experimental Example 1, 0.456 g (about 4.02% by weight) of diamond powder is injected into 11.333 g of the CFRP structure.
In Example 2, diamond powder is injected into a CFRP structure having the same structure as that of Comparative Example. In this Experimental Example 2, 0.588 g (about 5.20% by weight) of diamond powder is injected into 11.312 g of the CFRP structure.
In each sample, the CFRP structure is a stack of 40 prepregs.
表1に示されるとおり、ダイヤモンドパウダーを含まない比較例の熱伝導率が1.23W/(mK)であるのに対し、約4.02wt%のダイヤモンドパウダーを含む実施例1では、熱伝導率が2.07W/(mK)となった。つまり、実施例1のCFRP構造体の熱伝導率は、比較例のCFRP構造体の熱伝導率の約1.7倍になった。
さらに、ダイヤモンドパウダーの量を増やし、ダイヤモンドパウダーの量を約5.20wt%とした実施例2は、熱伝導率が2.22W/(mK)であった。つまり、実施例2のCFRP構造体の熱伝導率は、比較例のCFRP構造体の熱伝導率の約1.8倍であった。 As shown in Table 1, the thermal conductivity of the comparative example without diamond powder is 1.23 W / (mK), whereas the thermal conductivity of Example 1 containing about 4.02 wt% diamond powder is 1.23 W / (mK). Was 2.07 W / (mK). That is, the thermal conductivity of the CFRP structure of Example 1 was about 1.7 times that of the CFRP structure of Comparative Example.
Further, in Example 2 in which the amount of diamond powder was increased and the amount of diamond powder was about 5.20 wt%, the thermal conductivity was 2.22 W / (mK). That is, the thermal conductivity of the CFRP structure of Example 2 was about 1.8 times the thermal conductivity of the CFRP structure of Comparative Example.
さらに、ダイヤモンドパウダーの量を増やし、ダイヤモンドパウダーの量を約5.20wt%とした実施例2は、熱伝導率が2.22W/(mK)であった。つまり、実施例2のCFRP構造体の熱伝導率は、比較例のCFRP構造体の熱伝導率の約1.8倍であった。 As shown in Table 1, the thermal conductivity of the comparative example without diamond powder is 1.23 W / (mK), whereas the thermal conductivity of Example 1 containing about 4.02 wt% diamond powder is 1.23 W / (mK). Was 2.07 W / (mK). That is, the thermal conductivity of the CFRP structure of Example 1 was about 1.7 times that of the CFRP structure of Comparative Example.
Further, in Example 2 in which the amount of diamond powder was increased and the amount of diamond powder was about 5.20 wt%, the thermal conductivity was 2.22 W / (mK). That is, the thermal conductivity of the CFRP structure of Example 2 was about 1.8 times the thermal conductivity of the CFRP structure of Comparative Example.
上記の実験結果により、ダイヤモンドパウダーを注入させたCFRP構造体は、ダイヤモンドパウダーを注入していないCFRP構造体と比較して、熱伝導率を上げることができるということが確認できた。
また、粒体12を、CFRP構造体の総重量に対して4重量パーセント以上注入することで、熱伝導率を適切に向上させることができるということも確認できた。さらに、粒体12を注入する量を増やすことで、熱伝導率をより向上させることができるということも確認できた。 From the above experimental results, it was confirmed that the CFRP structure infused with diamond powder can increase the thermal conductivity as compared with the CFRP structure in which diamond powder is not injected.
It was also confirmed that the thermal conductivity can be appropriately improved by injecting thegranules 12 in an amount of 4% by weight or more based on the total weight of the CFRP structure. Furthermore, it was also confirmed that the thermal conductivity can be further improved by increasing the amount of the granules 12 injected.
また、粒体12を、CFRP構造体の総重量に対して4重量パーセント以上注入することで、熱伝導率を適切に向上させることができるということも確認できた。さらに、粒体12を注入する量を増やすことで、熱伝導率をより向上させることができるということも確認できた。 From the above experimental results, it was confirmed that the CFRP structure infused with diamond powder can increase the thermal conductivity as compared with the CFRP structure in which diamond powder is not injected.
It was also confirmed that the thermal conductivity can be appropriately improved by injecting the
上記比較例のCFRP構造体のように、熱伝導性を有する粒体が注入されていないCFRP構造体では、熱伝導性の良い方向は炭素繊維が伸びる方向のみであり、炭素繊維が伸びる方向に対して直交する方向や、プリプレグの積層方向については、熱伝導性が悪い。
これに対して、本実施形態におけるCFRP構造体10において、プリプレグ11を構成する樹脂11bは、炭素繊維11aの径よりも小さい径を有する熱伝導性の粒体であるダイヤモンドパウダー12が注入された構成を有する。炭素繊維11aの径よりも小さい径を有するダイヤモンドパウダー12は、炭素繊維11aと炭素繊維11aとの隙間に入り込み、パーコレーション効果を生じさせる。そのため、炭素繊維が伸びる方向(図1のX方向)以外の方向、例えば、炭素繊維が伸びる方向(図1のX方向)に対して直交する方向(図1のY方向、Z方向)の熱伝導性を良好にすることができる。 In the CFRP structure in which the particles having thermal conductivity are not injected, such as the CFRP structure of the above comparative example, the direction in which the thermal conductivity is good is only in the direction in which the carbon fibers are elongated, and in the direction in which the carbon fibers are elongated. On the other hand, the thermal conductivity is poor in the direction orthogonal to the prepreg and the stacking direction of the prepreg.
On the other hand, in theCFRP structure 10 of the present embodiment, the resin 11b constituting the prepreg 11 is injected with diamond powder 12, which is a thermally conductive particle having a diameter smaller than the diameter of the carbon fiber 11a. Has a configuration. The diamond powder 12 having a diameter smaller than the diameter of the carbon fibers 11a enters the gap between the carbon fibers 11a and the carbon fibers 11a and causes a percoration effect. Therefore, heat in a direction other than the direction in which the carbon fibers are stretched (X direction in FIG. 1), for example, a direction (Y direction, Z direction in FIG. 1) orthogonal to the direction in which the carbon fibers are stretched (X direction in FIG. 1). Conductivity can be improved.
これに対して、本実施形態におけるCFRP構造体10において、プリプレグ11を構成する樹脂11bは、炭素繊維11aの径よりも小さい径を有する熱伝導性の粒体であるダイヤモンドパウダー12が注入された構成を有する。炭素繊維11aの径よりも小さい径を有するダイヤモンドパウダー12は、炭素繊維11aと炭素繊維11aとの隙間に入り込み、パーコレーション効果を生じさせる。そのため、炭素繊維が伸びる方向(図1のX方向)以外の方向、例えば、炭素繊維が伸びる方向(図1のX方向)に対して直交する方向(図1のY方向、Z方向)の熱伝導性を良好にすることができる。 In the CFRP structure in which the particles having thermal conductivity are not injected, such as the CFRP structure of the above comparative example, the direction in which the thermal conductivity is good is only in the direction in which the carbon fibers are elongated, and in the direction in which the carbon fibers are elongated. On the other hand, the thermal conductivity is poor in the direction orthogonal to the prepreg and the stacking direction of the prepreg.
On the other hand, in the
以上のように、本実施形態におけるCFRP構造体10は、比剛性が高く、密度および熱膨張係数が小さいといったCFRP本来の特性を有するとともに、炭素繊維が伸びる方向以外の方向にも良好な熱伝導性を有し、熱的特性において異方性を有さない構造体とすることができる。
As described above, the CFRP structure 10 in the present embodiment has the original characteristics of CFRP such as high specific rigidity and low density and coefficient of thermal expansion, and also has good heat conduction in directions other than the direction in which carbon fibers are stretched. A structure having properties and having no anisotropy in thermal properties can be obtained.
(変形例)
上記実施形態においては、以下の手順でダイヤモンドパウダー12が注入されたCFRP構造体10を製造する場合について説明した。
第一の工程:プリプレグ11´を準備する。
第二の工程:プリプレグ11´の表面にダイヤモンドパウダー12を付着させる。
第三の工程:ダイヤモンドパウダー12を付着させたプリプレグ11´を複数枚重ね、加熱しながら圧力を加え、ダイヤモンドパウダー12をプリプレグ11´の樹脂に注入させる。
しかしながら、CFRP構造体10の製造方法は、上記に限定されるものではない。例えば、以下の手順でCFRP構造体10を製造することもできる。
第一の工程:炭素繊維11aと樹脂11bとを準備する。
第二の工程:樹脂11bにダイヤモンドパウダー12を注入する。
第三の工程:炭素繊維11aに、ダイヤモンドパウダー12を注入させた樹脂11bを含浸させ、プリプレグ11を作成する。
第四の工程:プリプレグ11を複数枚重ね、加熱ながら圧力を加える。 (Modification example)
In the above embodiment, the case where theCFRP structure 10 in which the diamond powder 12 is injected is produced by the following procedure has been described.
First step: Prepare the prepreg 11'.
Second step: Thediamond powder 12 is attached to the surface of the prepreg 11'.
Third step: A plurality of prepregs 11'to which thediamond powder 12 is attached are stacked and pressure is applied while heating to inject the diamond powder 12 into the resin of the prepreg 11'.
However, the method for producing theCFRP structure 10 is not limited to the above. For example, the CFRP structure 10 can be manufactured by the following procedure.
First step: Thecarbon fiber 11a and the resin 11b are prepared.
Second step:Diamond powder 12 is injected into the resin 11b.
Third step: Thecarbon fiber 11a is impregnated with the resin 11b in which the diamond powder 12 is injected to prepare the prepreg 11.
Fourth step: A plurality ofprepregs 11 are stacked and pressure is applied while heating.
上記実施形態においては、以下の手順でダイヤモンドパウダー12が注入されたCFRP構造体10を製造する場合について説明した。
第一の工程:プリプレグ11´を準備する。
第二の工程:プリプレグ11´の表面にダイヤモンドパウダー12を付着させる。
第三の工程:ダイヤモンドパウダー12を付着させたプリプレグ11´を複数枚重ね、加熱しながら圧力を加え、ダイヤモンドパウダー12をプリプレグ11´の樹脂に注入させる。
しかしながら、CFRP構造体10の製造方法は、上記に限定されるものではない。例えば、以下の手順でCFRP構造体10を製造することもできる。
第一の工程:炭素繊維11aと樹脂11bとを準備する。
第二の工程:樹脂11bにダイヤモンドパウダー12を注入する。
第三の工程:炭素繊維11aに、ダイヤモンドパウダー12を注入させた樹脂11bを含浸させ、プリプレグ11を作成する。
第四の工程:プリプレグ11を複数枚重ね、加熱ながら圧力を加える。 (Modification example)
In the above embodiment, the case where the
First step: Prepare the prepreg 11'.
Second step: The
Third step: A plurality of prepregs 11'to which the
However, the method for producing the
First step: The
Second step:
Third step: The
Fourth step: A plurality of
また、上記実施形態においては、熱伝導性を有する粒体として、ダイヤモンドを用いる場合について説明したが、例えば銅などの金属を用いることもできる。銅は、高い熱伝導性を有するため、好適である。
ただし、プリプレグに炭素繊維以外の物質を混ぜると、混入させる物質の特性や量によっては、CFRPの特徴である、高い剛性、低密度、低い熱膨張率といった特性を悪化させる可能性がある。したがって、その材質には慎重な検討が必要である。
上記実施形態で用いたダイヤモンドパウダーは、熱伝導性が良いだけでなく高い剛性を有するものであり、プリプレグに注入してもCFRPの特徴に与える影響は少ないため、好ましい。 Further, in the above embodiment, the case where diamond is used as the granular material having thermal conductivity has been described, but for example, a metal such as copper can also be used. Copper is suitable because it has high thermal conductivity.
However, when a substance other than carbon fiber is mixed with the prepreg, the characteristics such as high rigidity, low density, and low coefficient of thermal expansion, which are the characteristics of CFRP, may be deteriorated depending on the characteristics and amount of the substance to be mixed. Therefore, careful consideration is required for the material.
The diamond powder used in the above embodiment is preferable because it not only has good thermal conductivity but also has high rigidity, and even if it is injected into a prepreg, it has little effect on the characteristics of CFRP.
ただし、プリプレグに炭素繊維以外の物質を混ぜると、混入させる物質の特性や量によっては、CFRPの特徴である、高い剛性、低密度、低い熱膨張率といった特性を悪化させる可能性がある。したがって、その材質には慎重な検討が必要である。
上記実施形態で用いたダイヤモンドパウダーは、熱伝導性が良いだけでなく高い剛性を有するものであり、プリプレグに注入してもCFRPの特徴に与える影響は少ないため、好ましい。 Further, in the above embodiment, the case where diamond is used as the granular material having thermal conductivity has been described, but for example, a metal such as copper can also be used. Copper is suitable because it has high thermal conductivity.
However, when a substance other than carbon fiber is mixed with the prepreg, the characteristics such as high rigidity, low density, and low coefficient of thermal expansion, which are the characteristics of CFRP, may be deteriorated depending on the characteristics and amount of the substance to be mixed. Therefore, careful consideration is required for the material.
The diamond powder used in the above embodiment is preferable because it not only has good thermal conductivity but also has high rigidity, and even if it is injected into a prepreg, it has little effect on the characteristics of CFRP.
なお、上記において特定の実施形態が説明されているが、当該実施形態は単なる例示であり、本発明の範囲を限定する意図はない。本明細書に記載された装置及び方法は上記した以外の形態において具現化することができる。また、本発明の範囲から離れることなく、上記した実施形態に対して適宜、省略、置換及び変更をなすこともできる。かかる省略、置換及び変更をなした形態は、請求の範囲に記載されたもの及びこれらの均等物の範疇に含まれ、本発明の技術的範囲に属する。
Although a specific embodiment is described above, the embodiment is merely an example, and there is no intention of limiting the scope of the present invention. The devices and methods described herein can be embodied in forms other than those described above. Further, without departing from the scope of the present invention, omissions, substitutions and changes can be made as appropriate with respect to the above-described embodiments. Such abbreviations, substitutions and modifications are included in the claims and equivalents thereof and fall within the technical scope of the invention.
10…炭素繊維強化プラスチック構造体(CFRP構造体)、11…プリプレグ、11a…炭素繊維、11b…樹脂、12…粒体
10 ... Carbon fiber reinforced plastic structure (CFRP structure), 11 ... Prepreg, 11a ... Carbon fiber, 11b ... Resin, 12 ... Granules
10 ... Carbon fiber reinforced plastic structure (CFRP structure), 11 ... Prepreg, 11a ... Carbon fiber, 11b ... Resin, 12 ... Granules
Claims (7)
- 樹脂を含浸させた炭素繊維を備える炭素繊維強化プラスチック構造体であって、
前記樹脂は、前記炭素繊維の径よりも小さい径を有する熱伝導性の粒体を含み、
前記粒体が、前記炭素繊維強化プラスチック構造体の総重量に対して4重量パーセント以上存在することを特徴とする炭素繊維強化プラスチック構造体。 A carbon fiber reinforced plastic structure having carbon fibers impregnated with resin.
The resin contains thermally conductive granules having a diameter smaller than the diameter of the carbon fibers.
A carbon fiber reinforced plastic structure characterized in that the granules are present in an amount of 4% by weight or more based on the total weight of the carbon fiber reinforced plastic structure. - 前記粒体は、ダイヤモンドにより構成されていることを特徴とする請求項1に記載の炭素繊維強化プラスチック構造体。 The carbon fiber reinforced plastic structure according to claim 1, wherein the granules are made of diamond.
- 前記粒体は、銅により構成されていることを特徴とする請求項1に記載の炭素繊維強化プラスチック構造体。 The carbon fiber reinforced plastic structure according to claim 1, wherein the granules are made of copper.
- 樹脂を含浸させた炭素繊維を備える炭素繊維強化プラスチック構造体であって、
前記樹脂には、前記炭素繊維の径よりも小さい径を有する熱伝導性の粒体が注入されていることを特徴とする炭素繊維強化プラスチック構造体。 A carbon fiber reinforced plastic structure having carbon fibers impregnated with resin.
A carbon fiber reinforced plastic structure characterized in that heat conductive particles having a diameter smaller than the diameter of the carbon fibers are injected into the resin. - 樹脂を含浸させた炭素繊維を備える炭素繊維強化プラスチック構造体の製造方法であって、
前記炭素繊維に前記樹脂を含浸してなるプリプレグを準備する第一の工程と、
前記プリプレグに、前記炭素繊維の径よりも小さい径を有する、熱伝導性の粒体を付着させる第二の工程と、
前記第二の工程で前記粒体を付着させた前記プリプレグを複数枚重ね、加熱しながら圧力を加えることで、前記粒体を前記樹脂に注入させる第三の工程と、を含むことを特徴とする炭素繊維強化プラスチック構造体の製造方法。 A method for manufacturing a carbon fiber reinforced plastic structure including carbon fibers impregnated with resin.
The first step of preparing a prepreg obtained by impregnating the carbon fiber with the resin, and
A second step of attaching thermally conductive particles having a diameter smaller than the diameter of the carbon fibers to the prepreg,
It is characterized by including a third step of injecting the granules into the resin by stacking a plurality of the prepregs to which the granules are attached in the second step and applying pressure while heating. A method for manufacturing a carbon fiber reinforced plastic structure. - 樹脂を含浸させた炭素繊維を備える炭素繊維強化プラスチック構造体の製造方法であって、
前記炭素繊維と前記樹脂とを準備する第一の工程と、
前記樹脂に、前記炭素繊維の径よりも小さい径を有する、熱伝導性の粒体を注入する第二の工程と、
前記炭素繊維に、前記粒体を注入させた前記樹脂を含浸させる第三の工程と、
前記第三の工程で前記樹脂を含浸させた前記炭素繊維を複数枚重ね、加熱ながら圧力を加える第四の工程と、を含むことを特徴とする炭素繊維強化プラスチック構造体の製造方法。 A method for manufacturing a carbon fiber reinforced plastic structure including carbon fibers impregnated with resin.
The first step of preparing the carbon fiber and the resin, and
A second step of injecting thermally conductive particles having a diameter smaller than the diameter of the carbon fibers into the resin,
The third step of impregnating the carbon fiber with the resin in which the granules are injected, and
A method for producing a carbon fiber reinforced plastic structure, which comprises a fourth step of stacking a plurality of the carbon fibers impregnated with the resin in the third step and applying pressure while heating. - 前記粒体の量は、前記炭素繊維強化プラスチック構造体の総重量に対して4重量パーセント以上であることを特徴とする請求項5または6に記載の炭素繊維強化プラスチック構造体の製造方法。 The method for producing a carbon fiber reinforced plastic structure according to claim 5 or 6, wherein the amount of the granules is 4% by weight or more with respect to the total weight of the carbon fiber reinforced plastic structure.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-079219 | 2020-04-28 | ||
JP2020079219A JP2021172763A (en) | 2020-04-28 | 2020-04-28 | Carbon fiber-reinforced plastic structure and method for manufacturing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021220628A1 true WO2021220628A1 (en) | 2021-11-04 |
Family
ID=78278914
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/009329 WO2021220628A1 (en) | 2020-04-28 | 2021-03-09 | Carbon-fiber-reinforced plastic structure and method for producing same |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2021172763A (en) |
WO (1) | WO2021220628A1 (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007504663A (en) * | 2003-09-03 | 2007-03-01 | ゼネラル・エレクトリック・カンパニイ | Thermally conductive materials using conductive nanoparticles |
JP2011012094A (en) * | 2009-06-30 | 2011-01-20 | Mitsubishi Plastics Inc | Composite resin material and beam structure member using the same |
JP2015018829A (en) * | 2011-11-11 | 2015-01-29 | パナソニック株式会社 | Polymer structure material |
JP2016130279A (en) * | 2015-01-13 | 2016-07-21 | 住友ベークライト株式会社 | Resin sheet, molding, and method for producing resin sheet |
JP2017190379A (en) * | 2016-04-12 | 2017-10-19 | 東邦テナックス株式会社 | Prepreg, reinforced fiber, fiber-reinforced composite material, and method for producing prepreg |
JP2019081818A (en) * | 2017-10-27 | 2019-05-30 | キヤノン株式会社 | Resin composition and electronic apparatus |
JP2020012228A (en) * | 2017-09-29 | 2020-01-23 | 積水化学工業株式会社 | Reinforced fiber bundle, reinforced fiber open fabric, and fiber-reinforced complex, and method for producing the same |
-
2020
- 2020-04-28 JP JP2020079219A patent/JP2021172763A/en active Pending
-
2021
- 2021-03-09 WO PCT/JP2021/009329 patent/WO2021220628A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007504663A (en) * | 2003-09-03 | 2007-03-01 | ゼネラル・エレクトリック・カンパニイ | Thermally conductive materials using conductive nanoparticles |
JP2011012094A (en) * | 2009-06-30 | 2011-01-20 | Mitsubishi Plastics Inc | Composite resin material and beam structure member using the same |
JP2015018829A (en) * | 2011-11-11 | 2015-01-29 | パナソニック株式会社 | Polymer structure material |
JP2016130279A (en) * | 2015-01-13 | 2016-07-21 | 住友ベークライト株式会社 | Resin sheet, molding, and method for producing resin sheet |
JP2017190379A (en) * | 2016-04-12 | 2017-10-19 | 東邦テナックス株式会社 | Prepreg, reinforced fiber, fiber-reinforced composite material, and method for producing prepreg |
JP2020012228A (en) * | 2017-09-29 | 2020-01-23 | 積水化学工業株式会社 | Reinforced fiber bundle, reinforced fiber open fabric, and fiber-reinforced complex, and method for producing the same |
JP2019081818A (en) * | 2017-10-27 | 2019-05-30 | キヤノン株式会社 | Resin composition and electronic apparatus |
Also Published As
Publication number | Publication date |
---|---|
JP2021172763A (en) | 2021-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wu et al. | Epoxy composites with high cross-plane thermal conductivity by constructing all-carbon multidimensional carbon fiber/graphite networks | |
US10919191B2 (en) | Narrow flake composite fiber material compression molding | |
Chen et al. | High‐performance epoxy nanocomposites reinforced with three‐dimensional carbon nanotube sponge for electromagnetic interference shielding | |
EP1558442B1 (en) | Porous polymeric membrane toughened composites | |
JP5541400B2 (en) | Manufacturing method of heat conductive sheet | |
US20180179056A1 (en) | Composite material containing graphene | |
KR101735819B1 (en) | Material for carbon-based heat dissipating structurem, method for producing carbon-based heat dissipating structure using material and carbon-based heat dissipating structure produced by the same | |
JP2013503930A (en) | Improvement of composite materials | |
WO2015119064A1 (en) | Thermally conductive composite material, and manufacturing method therefor | |
DE202013003732U1 (en) | Heat management for aircraft composites | |
KR102189113B1 (en) | A fiber reinforced composite structure comprising stitch-member and the method for producing the same | |
JP7046689B2 (en) | Thermally conductive composite particles and resin composition containing them | |
DE112015003461T5 (en) | insulation | |
KR20110101855A (en) | High heat conductivity plastic using aligned carbon nanotube and polymer composite and manufacturing method thereof | |
WO2021220628A1 (en) | Carbon-fiber-reinforced plastic structure and method for producing same | |
JP2017034219A (en) | Heat radiating material comprising mixed graphite | |
CN109265919B (en) | 3D heat-conducting composite material and preparation method thereof | |
KR20180020541A (en) | Manufacturing method of continuous carbon fiber-reinforced composite materials and manufacturing method of composite formed article | |
USH1332H (en) | Thermal conductive material | |
JP7034534B2 (en) | Composite material | |
JP2017061714A (en) | High-thermal conductivity composite material | |
JP6821479B2 (en) | Materials for plastic working, plastic working bodies and thermal conductors | |
US20160090522A1 (en) | Flexible heat-dissipating composite sheet including filler and low-viscosity polymerizable thermoplastic resin and cost effective mass producible method for preparing the same | |
KR20200137794A (en) | Thermal conductive adhesive composition using metal materials and carbon fillers | |
JP7107530B2 (en) | thermal conductive sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21797882 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21797882 Country of ref document: EP Kind code of ref document: A1 |