WO2021220323A1 - 状態判定装置 - Google Patents
状態判定装置 Download PDFInfo
- Publication number
- WO2021220323A1 WO2021220323A1 PCT/JP2020/017892 JP2020017892W WO2021220323A1 WO 2021220323 A1 WO2021220323 A1 WO 2021220323A1 JP 2020017892 W JP2020017892 W JP 2020017892W WO 2021220323 A1 WO2021220323 A1 WO 2021220323A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- processing
- processing system
- determination
- information
- state
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B23/00—Testing or monitoring of control systems or parts thereof
- G05B23/02—Electric testing or monitoring
Definitions
- the present application relates to a state determination device.
- Treatment facilities for water and sewage, chemicals, steelmaking, etc. are composed of a series of multiple treatment systems that perform predetermined treatment.
- the processing in each processing system affects the processing before and after each other, so a central monitoring control device is introduced to monitor and collectively control the processing status in the entire processing facility.
- a state determination device exists to support the operation of such a central monitoring and control device.
- the state determination device for example, data in which the state information of the processing system in which the equipment failure has occurred and the information indicating the behavior of the measured values of the processing system before and after the failure is registered is registered in advance. Then, when the measured value shows the behavior corresponding to the data, it is determined that an abnormality has occurred in the processing system, and the operator is notified.
- the information on the operation of the device is scarce, such as a newly introduced device, it is not possible to register in advance the data showing the behavior of the measured value when an abnormality occurs in the central monitoring control device, and it is related to sufficient operation. There is a problem that it is not possible to determine an abnormality in the processing system until the information is accumulated.
- a device abnormality monitoring system as such a state determination device is disclosed. That is, the conventional device abnormality monitoring system creates an individual determination model for each of a plurality of existing similar devices. Next, a meta-prediction model is created in which the coefficients and intercepts of these individual prediction models are predicted from the feature item values of each device. Then, from this meta prediction model, a prediction model dedicated to the target device is generated. Using this determination model, the determination module monitors the state of the device and detects an abnormality (see, for example, Patent Document 1).
- the state determination device described in Patent Document 1 uses a prediction model dedicated to each processing system. Therefore, it is effective when only the judgment value of a single treatment system is judged, while in a treatment facility composed of a plurality of treatment systems such as a water and sewage treatment facility, the measured values of each of these treatment systems are combined. When it is necessary to determine the state, the following difficulties arise. That is, in Patent Document 1, it is determined whether or not an abnormality has occurred in a specific processing system among a plurality of processing systems based only on the measured values of the specific processing system regardless of the behavior of the measured values of the other processing systems. I do.
- the measured value of a specific processing system shows an unusual behavior, for example, if this behavior is a fluctuation within the normal range, it may be that this different behavior is caused by the normal processing, or the sensor fails. There was a problem that it was not possible to determine whether the cause was due to or another cause.
- the present application discloses a technique for solving the above-mentioned problems, and in a processing network composed of a plurality of processing systems, it is possible to determine the state of the processing system with high accuracy and design it. It is an object of the present invention to provide a state determination device capable of reducing such a load.
- the state determination device disclosed in the present application is In a processing network composed of a plurality of processing systems for processing an object to be processed A detection unit that detects the state of each of the processing systems as measured value information, A determination unit that performs determination control for determining the state of the processing system based on the detected measured value information is provided. In the determination control, the determination unit A reference determination formula for determining the state of the processing system based on the correlation between the measured value information of each processing system is used. It is a thing.
- a state determination device capable of performing the state determination of the processing system with high accuracy and reducing the load on the design can be obtained.
- FIG. FIG. 5 is a schematic diagram of a processing network in which a state determination device according to the first embodiment determines a state. It is a figure which schematically represented the recording method at the time of recording the configuration information of the processing network by Embodiment 1 in a network model information database. It is a block diagram which shows the schematic structure of the state determination apparatus according to Embodiment 3. It is a block diagram which shows the schematic structure of the state determination apparatus according to Embodiment 4. It is a block diagram which shows the schematic structure of the state determination apparatus according to Embodiment 5.
- FIG. 1 is a block diagram showing a schematic configuration of the state determination device 100 according to the first embodiment.
- FIG. 2 is a schematic view of a processing network 60 in which the state determination device 100 according to the first embodiment determines a state.
- the processing network 60 in which the state determination device 100 of the present embodiment determines the state will be described with reference to FIG.
- a treatment system such as a water tank (first treatment system 10, second treatment system) that performs a set treatment such as purification treatment on an object to be treated such as raw water. 21 to 24, a third processing system 30, and a plurality of fourth processing systems 41 to 44) are provided to form a processing network 60.
- the object to be processed sent from the upstream processing system (not shown) is sent to the parallel processing system 20 in the subsequent stage after performing the first processing set in the first processing system 10.
- the parallel processing system 20 is configured by connecting four second processing systems 21, 22, 23, and 24 in parallel by a water channel or the like. Then, these second processing systems 21, 22, 23, 24 perform the set second processing in parallel with respect to the object to be processed that has been sent from the first processing system 10 in the previous stage and has been diverted. ..
- the second processing systems 21, 22, 23, and 24 are used or not used properly depending on the operating conditions.
- the object to be processed is sent to the third processing system 30 in the subsequent stage after the second processing set in the parallel processing system 20 is performed.
- the objects to be processed that have been processed in parallel in the second processing systems 21, 22, 23, and 24 are collected.
- the object to be processed is sent to the parallel processing system 40 in the subsequent stage after the third processing set in the third processing system 30 is performed.
- the parallel processing system 40 is configured by connecting four fourth processing systems 41, 42, 43, 44 in parallel by a water channel or the like. Then, these fourth processing systems 41, 42, 43, 44 carry out the set fourth processing in parallel with respect to the object to be processed that has been sent from the third processing system 30 in the previous stage and has been diverted. .. As with the parallel processing system 20, the fourth processing systems 41, 42, 43, and 44 are used or not used properly depending on the operating conditions.
- the object to be processed is sent to the fifth processing system 50 in the subsequent stage after the fourth processing set in the parallel processing system 40 is performed. In this way, the treatment of the object to be treated is performed stepwise by the first, second, third, fourth, and fifth treatment systems 10, 21 to 24, 30, 41 to 44, and 50.
- each processing system is equipped with a sensor as a detection unit for confirming the state of the processing system.
- the second processing system 21 of the parallel processing system 20 has a sensor 21S
- the second processing system 22 has a sensor 22S
- the second processing system 23 has a sensor 23S
- the second processing system 24 has a sensor 24S.
- a sensor 41S is installed in the fourth processing system 41 of the parallel processing system 40
- a sensor 42S is installed in the fourth processing system 42
- a sensor 43S is installed in the fourth processing system 43
- a sensor 44S is installed in the fourth processing system 44.
- the sensors 21S, 22S, 23S, 24S, 41S, 42S, 43S, and 44S are collectively referred to, they are referred to as the sensor S.
- the installation position where the sensor S is installed in the processing process may be determined according to the information that the sensor S wants to measure.
- sensors 21S to 24S and 41S to 44S are installed on the input side of the object to be processed in the parallel processing systems 20 and 40.
- the sensor S is installed on the output side of the object to be processed.
- the type of the sensor S is not one type, and a plurality of types may be installed.
- the state determination device 100 is a treatment system 10, 21 to 24, 30, 41 to 44, 50 based on the measured values of the sensors S attached to each device and equipment of each treatment system constituting the water and sewage treatment facility and the like. It determines the state of.
- the state determination device 100 includes a determination unit 70, an input / output device 1, a sensor S, and a collection device 2.
- the sensor S detects the states of the processing systems 10, 21 to 24, 30, 41 to 44, and 50 as the measured value information J1.
- the measured value information J1 may be, for example, the water quality of the raw water as the object to be measured, or the voltage in the equipment and facilities of the treatment system.
- the detected measured value information J1 is collected by the collecting device 2 and transmitted to the determination unit 70.
- the determination unit 70 performs determination control for determining the state of each of the processing systems 10, 21 to 24, 30, 41 to 44, and 50 described below based on the measured value information J1, and determines the determination result in the state information J2. Output as.
- the state information J2 is transmitted to the operator through the input / output device 1.
- the determination unit 70 includes a measurement information database 71 (hereinafter referred to as a measurement information DB), a reference determination type information database 72 (hereinafter referred to as a judgment type information DB), and processing process information. It includes a network model information database 73 (hereinafter referred to as N model information DB), a determination formula creation unit 74, and a state determination unit 75.
- a measurement information database 71 hereinafter referred to as a measurement information DB
- a reference determination type information database 72 hereinafter referred to as a judgment type information DB
- processing process information It includes a network model information database 73 (hereinafter referred to as N model information DB), a determination formula creation unit 74, and a state determination unit 75.
- the type of the sensor S and the measurement value information J1 detected by the sensor S are recorded for each measurement time.
- the N model information DB 73 electronically records configuration information such as connection relationships of the processing systems 10, 21 to 24, 30, 41 to 44, and 50 of the processing network 60.
- FIG. 3 is a diagram schematically showing a recording method when recording the configuration information of the processing network 60 shown in FIG. 2 in the N model information DB 73.
- the processing process name 73A, the parallel processing process name 73B, the pre-stage processing process name 73C, the post-stage processing process name 73D, and the incidental measurement value name 73E are registered in the N model information DB 73.
- the processing process name 73A indicates a processing system of each stage in the processing network 60, the first processing system 10 is processing 1, the second processing systems 21 to 24 in the subsequent stage are processing 2, and the third processing system in the subsequent stage.
- the processing system 30 is shown as processing 3, .... When a plurality of second processing systems 21 to 24 exist in one stage as in the parallel processing system 20, they are collectively shown as processing 2.
- the parallel processing process name 73B is used in the respective processing systems 21, 22, 34, and 24 when a plurality of processing systems 21, 22, 23, and 24 exist in parallel as in the parallel processing system 20 of FIG.
- a name unique to the second process to be performed (processes 2-1, 2-2, 2-3, 2-4 in FIG. 3) is recorded.
- the pre-stage processing process name 73C indicates the name of the processing system on the front stage side which is the transmission source to the processing system recorded in the parallel processing process name 73B
- the post-stage processing process name 73D is the name of the processing system on the rear stage side which is the destination. It indicates the processing process name.
- the pre-stage processing system that is the source of the second processing (processing 2-1, 2-2, 2-3, 2-4) of the parallel processing system 20 is the first processing system 10
- the pre-stage processing step Process 1 indicating the first process is recorded under the name 73C.
- the subsequent processing system that is the destination of the second processing (processing 2-1, 2-2, 2-3, 2-4) of the parallel processing system 20 is the third processing system 30, the name of the subsequent processing process.
- the process 3 indicating the third process is recorded.
- the processing network 60 as shown in FIG. 2 can be described in the form of a network graph.
- the N model information DB 73 indicates the processing order of each processing system that is performed stepwise.
- incidental measurement value name 73E records the name of the sensor S attached to the processing systems 21 to 24, 41 to 44, and 50 recorded in the parallel processing process name 73B, and the second processing system 21, Sensors 21S, 22S, 23S, and 24S correspond to 22, 23, and 24, respectively.
- the reference determination formula f used in the determination control is recorded in the determination expression information DB 72.
- This reference determination formula f is based on the correlation between the measured value information J1 detected in each of the processing systems 21 to 24, 41 to 44, and 50, respectively, in each of the processing systems 10, 21 to 24, 30, 41 to 44, It determines the state of 50.
- the measured value information J1 detected in the second processing system 21 and the measured value information J1 detected in the second processing system 22 are used as input values of the reference determination formula f.
- the reference determination formula f determines the state of the second processing system 21 or the second processing system 22 based on the correlation between these two measured value information J1, and outputs the determination result as a calculated value.
- the reference determination formula f is configured to be common to each combination of parallel processing systems in the parallel processing systems 20 and 40.
- the combination of the processing systems based on the second processing system 21 is "the first. 2 processing system 21-2nd processing system 22 "," 2nd processing system 21-2nd processing system 23 “,” 2nd processing system 21-2nd processing system 23 “,” 2nd processing system 21-2nd processing System 24 ".
- the reference determination formula f is configured to be one determination formula commonly used for these four combinations. Further, the reference determination formula f is created by the determination formula creation unit 74 as described below.
- the determination formula creation unit 74 of each processing system 21 to 24, 41 to 44, 50 based on the connection relationship of each processing system 10, 21 to 24, 30, 41 to 44, 50 shown in the N model information DB 73. Some combinations or all combinations are arbitrarily selected and set. Then, the determination expression creating unit 74 creates one reference determination expression f commonly used for each set combination and records it in the determination expression information DB 72.
- the state determination unit 75 calls the corresponding reference determination expression f from the determination expression information DB 72 through the determination expression creation unit 74. For example, when the state determination is performed on the second processing system 21 of the parallel processing system 20, the reference determination formula f common to each combination with the second processing system 21 as a reference is called. With respect to the called reference determination expression f, the state determination unit 75 determines the state of the processing system by using the measurement value information J1 corresponding to each combination as the input value of the reference determination expression f. For example, the reference determination formula f is based on the second processing system 21, "second processing system 21-2nd processing system 22", “second processing system 21-2nd processing system 23", and "second processing".
- the measured value information J1 is used as an input value.
- the reference determination formula f is configured corresponding to the combination of "second processing system 21-2nd processing system 22"
- the measured value information J1 of the sensors 21S and 22S is used as an input value.
- the state determination unit 75 uses the reference determination formula f in this way to perform determination control for determining the state of the processing system by comparing the correlation between the measurement value information J1 of each sensor S. For example, it is assumed that the measured value information J1 of one sensor S fluctuates within the fluctuation range of the steady state of the processing system. In this case, when the comparison value indicating the correlation between the measured value information J1 of one sensor S and the measured value information J1 of the other sensor S is remarkably large, the state determination unit 75 detects the sensor S in the sensor S in which the fluctuation occurs. Determine that a failure has occurred.
- this method by comparing the correlation of the behavior between the measured value information J1 of the sensor S, the measured value within the steady processing range by the behavior pattern of the unknown measured value information J1 or the operation by the operator or the like. Even when the information J1 changes, it is possible to accurately determine the state of the processing system such as steady state or abnormality with high accuracy. In this way, the sensor S that behaves differently from the other sensors S can be identified, and the operator can be accurately notified, for example, that a failure has occurred.
- the determination result by the state determination unit 75 is registered in the determination expression information DB 72 through the determination expression creation unit 74.
- the determination formula information DB 72 records the determination result, which is information on whether the state of the processing system is steady or abnormal.
- the determination formula information DB 72 may record not only the determination result by the determination formula creation unit 74 but also the state of the processing system that can be grasped in advance. For example, information such as classification of the operation mode of the processing system and whether the processing system is under inspection is registered.
- the registration method includes a success / failure judgment based on a threshold value, a judgment based on a difference evaluation from a definition formula, and the like, and is recorded in the judgment formula information DB 72 in the form of a threshold value or a definition formula.
- the determination formula creation unit 74 creates the reference determination formula f common to each combination of the processing systems based on the connection relationship of the processing systems shown in the N model information DB 73.
- the determination formula creation unit 74 may create the reference determination formula f based on the determination result of the processing system registered in the determination formula information DB 72 as described above. For example, when it is determined that the sensor S of the second processing system 22 is out of order, a reference determination formula f of a combination that does not use the measurement value information J1 of the sensor 22S is created. In this way, the determination formula creation unit 74 can dynamically create an appropriate reference determination formula f according to the actual operating state of each processing system.
- the reference determination formula f is configured to be common to each combination of the parallel processing systems in the parallel processing systems 20 and 40, but the present invention is not limited to this.
- the reference determination formula f is common to the fourth processing system and the fifth processing system 50 in the parallel processing system 40.
- the parallel processing system 40 has four measured value information J1 in the four fourth processing systems 41 to 44
- the fifth processing system 50 has one measured value information J1.
- the measured value information J1 in the parallel processing system 40 the maximum value, the minimum value, the average value, and the like of the four measured value information J1 in the parallel processing system 40 are used.
- the type (for example, maximum value) of the measured value information J1 used as the measured value information J1 in the parallel processing system 40 and the selection method thereof are recorded in the determination formula information DB 72.
- the state determination device of the present embodiment configured as described above is In a processing network having a plurality of processing systems for processing an object to be processed A detection unit that detects the state of each of the processing systems as measured value information, A determination unit that performs determination control for determining the state of the processing system based on the detected measured value information is provided. In the determination control, the determination unit A reference determination formula for determining the state of the processing system based on the correlation between the measured value information of each processing system is used. It is a thing.
- the state determination device of the present embodiment includes a detection unit that detects the state of each processing system as measured value information. Then, the determination unit uses a reference determination formula for determining the state of the processing system based on the correlation between the measurement value information of each processing system in the determination control. In this way, the detection unit detects the state of the processing system, which changes according to the operating state of the processing system, as detection value information at any time. Then, by determining the state of the processing system based on the correlation between the detected value information that changes according to the operating state, it is based on the behavior of each measured value information regardless of the behavior of each measured value information. The state can be determined. In this way, the state determination can be performed with high accuracy.
- a method of preparing multiple same treatment systems and using them properly depending on the situation is adopted from the viewpoint of increase / decrease in the amount of purified water, equipment maintenance, and the like.
- the state determination device of the present embodiment By applying the state determination device of the present embodiment to such a processing facility, when the sensor outputs a value different from the normal value due to a sensor failure in one processing system, the same type of sensor measurement value in each processing system By comparing these with each other, it is possible to determine whether a sensor failure has occurred or an abnormality related to the entire processing facility has occurred.
- the state determination device of the present embodiment configured as described above is The determination unit It has processing process information indicating the connection relationship of a plurality of the processing systems in the processing network, and has processing process information.
- a combination of a plurality of the processing systems is set based on the connection relationship of the processing systems shown in the processing process information, and the reference commonly used for each of the set combinations. Create a judgment formula, It is a thing.
- the reference judgment formula used in the judgment control is configured to be commonly used for the mutual combination of the set processing systems. Therefore, it is not necessary to create and record a determination formula for each processing system or for all combinations, and it is only necessary to record one reference determination formula common to each combination. As a result, the load on the design can be reduced, the cost can be reduced, and the processing load on the determination unit can be reduced.
- the determination unit has processing process information indicating the connection relationship of a plurality of processing systems in the processing network. Then, the mutual combination of the processing systems is set based on this connection relationship, and the reference determination formula is created. In this way, the determination unit sets the combination in the determination control based on the connection relationship shown in the processing process information, thereby determining the combination according to the actual system network state and the reference based on this combination. Judgment formula can be created. Therefore, for example, when there is a processing system that is in the process of being inspected and is not in operation, a reference judgment formula excluding this processing system can be dynamically created and judgment control can be performed, so that the processing load in the judgment unit can be performed. Can be reduced and the state can be determined more accurately.
- the processing network is configured to have a parallel processing system that processes the object to be processed in parallel by the plurality of processing systems.
- the determination unit Based on the connection relationship shown in the processing process information, the reference determination formula commonly used for each combination of the processing systems having a parallel relationship in the parallel processing system is created. It is a thing.
- the judgment unit creates a reference judgment formula that is commonly used for each combination of each processing system in the parallel processing system.
- the state of the processing system is likely to be reflected in the correlation between the measured value information. Therefore, by performing the determination control using the above-mentioned reference determination formula in the parallel processing system, it is possible to accurately determine the state of the processing system.
- Embodiment 2 the second embodiment of the present application will be described with reference to the parts different from the first embodiment.
- the same parts as those in the first embodiment are designated by the same reference numerals, and the description thereof will be omitted.
- an abnormality of a complicated factor such as an abnormality that occurs in the processing system infrequently and it is difficult to grasp the cause of the abnormality occurs in the processing system, or an abnormality finally occurs due to a combination of a plurality of events. Will be described when the above occurs in the processing system.
- the operator needs to identify the location causing the abnormality in the processing network 60 in order to accurately grasp the state.
- the change in the behavior of the measured value information J1 in the processing system in the first stage or the second stage of the abnormality processing system is investigated.
- the processing system that is the cause of the first stage and the second stage of the abnormality processing system is specified, and the behavior of the measured value information J1 in the processing system is extracted and the analysis is advanced. The details will be described below.
- the state determination unit 75 obtains the measured value information J1 of the processing system in the first stage or the second stage of the fifth processing system 50 based on the processing order information of each processing system that is performed stepwise, which is registered in the N model information DB 73. Extract.
- the fifth processing system 50 does not have a processing system on the rear stage side, and the fourth processing systems 41 to 44 in the parallel processing system 40 correspond to the processing system in the front stage.
- the state determination unit 75 extracts the measurement value information J1 of the sensors 41S to 44S of the fourth processing systems 41 to 44. Further, the state determination unit 75 extracts the measurement value information J1 of the processing system in the previous stage of the parallel processing system 40. Since the first and third processing systems 10 and 30 do not have the measured value information J1, the state determination unit 75 extracts the measured value information J1 of the sensors 21S to 24S of the parallel processing system 20.
- the state determination unit 75 is registered in the reference determination formula information database 72 for the measured value information J1 of the parallel processing systems 20 and 40 on the front stage side of the fifth processing system, which is the abnormality processing system, extracted in this way.
- determination control is performed from the parallel processing system 40 to the parallel processing system 20.
- the state determination unit 75 determines that the location (processing system) that caused the abnormality in the fifth processing system 50 is the parallel processing system 20 or the third processing system 30.
- the state determination device of the present embodiment configured as described above is
- the processing on the object to be processed is carried out stepwise by the plurality of the processing systems.
- the processing process information further indicates the processing order of the processing system to be performed stepwise.
- the determination unit When an abnormal processing system, which is the processing system determined to be in an abnormal state, is detected, the processing belonging to the front stage side or the rear stage side of the abnormal processing system is based on the processing order shown in the processing process information. Judging the system status, It is a thing.
- the processing process information indicates the processing order of the processing system that is performed step by step.
- the determination unit determines the state of the processing system belonging to the stage on the front stage side or the rear stage side of the abnormality processing system based on the processing order shown in the processing process information.
- Embodiment 3 the third embodiment of the present application will be described with reference to the parts different from those of the first and second embodiments.
- the second embodiment it has been described that a portion causing an abnormality is specified in the processing network 60.
- the determination formula information DB 72 is newly added. Add a statistical processing formula. As a result, even when the same abnormality occurs next time, it is possible to easily identify the cause. The details will be described below.
- FIG. 4 is a block diagram showing a schematic configuration of the state determination device 300 according to the third embodiment.
- the state determination device 300 in the present embodiment is obtained by adding the determination formula creation unit 374 to the determination unit 70 of the state determination device 100 shown in the first embodiment. Further, in the present embodiment, a plurality of statistical processing formulas ft for deriving the evaluation value of the measured value information J1 are recorded in the determination formula information DB 72.
- the evaluation value of the measured value information J1 is the maximum value, the minimum value, the average value, the gain range, the regression equation, and the maximum value, the minimum value, the average value, the gain range, and the regression equation of the measured value information J1 when a plurality of the measured value information J1 is detected within the set period.
- the correlation between the measured value information J1 and the like are the evaluation values.
- the formula for deriving each of these evaluation values is the statistical processing formula ft.
- the state determination unit 75 detects an abnormality in a certain processing system in the determination control as shown in the first embodiment.
- the period including the period in which this processing system is in an abnormal state is defined as the first period.
- the period in which the processing system before the first period is in the normal state will be described as the second period.
- the state determination unit 75 calls a desired statistical processing expression ft from among a plurality of statistical processing expression ft recorded in the determination expression information DB 72.
- the state determination unit 75 uses a statistical processing formula ft for deriving the minimum value of the measured value information J1, a statistical processing formula ft for deriving the maximum value, and a statistical processing formula ft for deriving the average value. call.
- the state determination unit 75 sets the minimum value, maximum value, and average value (hereinafter, referred to as minimum value Min1, maximum value Max1, and average value Ave1) of the measured value information J1 within the first period into each statistical processing formula ft. Derived from.
- the state determination unit 75 sets the minimum value, maximum value, and average value (hereinafter, referred to as minimum value Min2, maximum value Max2, and average value Ave2) of the measured value information J1 within the second period into each statistical processing formula ft. Derived from.
- the state determination unit 75 compares these evaluation values between the first period and the second period. That is, the state determination unit 75 compares the minimum value Min1 in the first period with the minimum value Min2 in the second period, compares the maximum value Max1 with the maximum value Max2, and compares the average value Ave1 with the average value Ave2. conduct. Then, the state determination unit 75 performs determination control for determining the state of the processing system based on the evaluation value having the largest difference among the evaluation values of the evaluation values of the first period and the second period. For example, when the difference between the maximum value Max1 and the maximum value Max2 is the largest among the differences between the maximum value, the minimum value, and the average value, the maximum value Max1 and the maximum value Max2 in which the difference appears most are used. Judgment control is performed.
- the determination formula creation unit 374 uses the statistical processing formula ft for deriving the maximum value with respect to the evaluation value (maximum value) of the measurement value information J1 that the state determination unit 75 has determined to be related to the occurrence of an abnormality. It is automatically recorded as a new reference judgment formula f in the judgment formula information DB 72. Then, the state determination unit 75 uses the automatically updated new reference determination formula f as the new reference determination formula f used for the state determination of the processing system. As a result, the evaluation value (maximum value) at which the most abnormal sign appears in the processing system to be monitored can be used for the determination control, and the state determination of the processing system can be performed with higher accuracy.
- the operator can grasp the signs of abnormality in the processing system to be monitored and perform detailed analysis by checking and correcting the contents of the newly updated standard judgment formula f that has been automatically updated. Further, even if the operator does not have specialized knowledge about data analysis work and statistical processing, the appropriate standard judgment formula f is automatically created and updated in this way easily, so that the processing facility can be used. Stable operation becomes possible.
- the state determination unit 75 may perform a state determination as described below.
- the state determination unit 75 sets the first distribution information D1 of the measured value information J1 as the evaluation value within the first period, which is the abnormal period, and the evaluation value within the second period, which is the normal period, in the abnormality handling system in which the abnormality has occurred.
- the second distribution information D2 of the measured value information J1 is derived.
- the state determination unit 75 derives the third distribution information D3 of the measured value information J1 as an evaluation value within a set period in another processing system in which no abnormality has occurred in the processing network 60.
- the state determination unit 75 compares the third distribution information D3 in the processing system in which the abnormality has not occurred with at least one of the first distribution information D1 in the abnormal period or the second distribution information D2 in the normal period in the abnormal processing system.
- the processing system in a state similar to these behaviors is in a state where no abnormality has occurred.
- the state determination device of the present embodiment configured as described above is In the determination control, the notation determination unit The first distribution information of a plurality of the measured value information detected in the first period including the period of the abnormal state in the abnormality handling system, and the detection in the second period prior to the first period. At least one of the second distribution information of the measured value information of the plurality of the abnormal processing systems, and In each of the processing systems other than the abnormality processing system, the third distribution information of the plurality of the measured value information detected within the set period is derived. Using at least one of the first distribution information and the second distribution information and the third distribution information, the state of each of the processing systems other than the abnormal processing system is determined. It is a thing.
- the state determination device of the present embodiment configured as described above is The determination unit It has a plurality of statistical processing formulas for deriving an evaluation value based on a plurality of the measured value information detected within a set period.
- the evaluation values corresponding to the statistical processing formulas are derived for each of the first period and the second period.
- the statistical processing formula having the largest difference in the evaluation value between the first period and the second period is selected from a plurality of the statistical processing formulas, and the selected statistical processing formula is used as a new reference determination formula. Used as It is a thing.
- the judgment unit uses the statistical processing formula with the largest difference in evaluation values as a new standard judgment formula in judgment control.
- the evaluation value at which the most abnormal sign appears in the processing system to be monitored can be used for the determination control, and the state determination of the processing system can be performed with higher accuracy.
- Embodiment 4 the fourth embodiment of the present application will be described with reference to the parts different from the first embodiment.
- a plurality of second processing systems 21 to 22 exist in parallel as in the parallel processing system 20, measurement between the second processing systems 21 to 22 in parallel due to the adjustment of the sensor S and the difference in civil engineering structure.
- the behavior of the value information J1 is different.
- the water channel from the first treatment system 10 to the second treatment system 21 to 24 is branched due to physical characteristics such as an open channel, the flow rate flowing into the second treatment system 21 to 24 is completely divided into four equal parts. Instead, there are variations in each channel.
- the distribution and tendency of the measured value information J1 of each of the second processing systems 21 to 24 varies with respect to the common reference judgment formula f registered in the judgment formula information DB 72, so that the determination of the occurrence of an abnormality is the first. 2 It may be different for each processing system 21 to 24.
- the state determination device 400 of the fourth embodiment is proposed as a solution to such a problem, and will be described below with reference to FIG.
- FIG. 5 is a block diagram showing a schematic configuration of the state determination device 400 according to the fourth embodiment.
- the state determination device 400 of the present embodiment adds a feature amount extraction unit 476 and a correction coefficient information database 477 (hereinafter referred to as a correction coefficient information DB) to the state determination device 100 shown in the first embodiment. It was done.
- the feature amount extraction unit 476 is the processing system in the parallel processing systems 20 and 40 based on the connection relationship of the processing systems 10, 21 to 24, 30, 41 to 44, and 50 shown in the N model information DB 73. 21 to 24 and 41 to 44 are extracted. Then, the distribution and correlation between the measured value information J1 in parallel are compared, and the difference thereof is registered in the correction coefficient information DB 73 as the correction coefficient information. The details will be described below.
- the feature amount extraction unit 476 uses the third of the input values of the reference determination formula f for the reference determination formula f registered in the judgment formula information DB 72, which uses the measurement value information J1 of the parallel processing systems 20 and 40, respectively.
- the distribution information D3 and the fourth distribution information D4 of the output value, which is the calculation result of the reference determination formula f, are calculated respectively. Further, when the distribution tendency of the third distribution information D3 and the distribution tendency of the fourth distribution information D4 are different from each other, it is a judgment result of the judgment control between the parallel processing systems 21 to 24 and 41 to 44.
- a correction coefficient is created so that the detection frequency of abnormality occurrence is the same, and is recorded in the correction coefficient information DB 73.
- the judgment formula creation unit 74 corrects the reference judgment formula f from the correction coefficient recorded in the correction coefficient information DB477.
- the state determination device of the present embodiment configured as described above is
- the processing network is configured to have a parallel processing system that processes the object to be processed in parallel by the plurality of processing systems.
- the determination unit The processing of the third distribution information of the measured value information as the input value of the reference determination formula in the determination control and the fourth distribution information of the calculation result as the calculation value of the reference determination formula in the parallel processing system. Derived for each combination of systems, Correction to correct the reference discriminant so that the determination result in the determination control is the same in each processing system in the parallel processing system based on the derived third distribution information and the fourth distribution information. Create a coefficient, It is a thing.
- the determination unit derives the distribution information of the input value of the reference determination expression and the distribution information of the calculation result for each combination of the parallel processing systems. Then, based on each of the derived input values and the distribution information of the calculation result, the reference determination formula is corrected so that the determination result in the determination control is the same in each of the processing systems in the parallel processing system.
- the frequency of abnormal occurrences can be leveled, and over-detection and oversight of abnormal conditions can be suppressed, which is appropriate. It is possible to judge the state.
- Embodiment 5 the fifth embodiment of the present application will be described with reference to the parts different from the first embodiment.
- the state determination device 500 of the fifth embodiment is proposed as a solution to such a problem, and will be described below with reference to FIG.
- FIG. 6 is a block diagram showing a schematic configuration of the state determination device 500 according to the fifth embodiment.
- the state determination device 500 of the present embodiment adds a corresponding operation extraction unit 578 and a corresponding operation information database 579 (hereinafter, referred to as a corresponding operation information DB) to the state determination device 100 shown in the first embodiment.
- a corresponding operation information database 579 hereinafter, referred to as a corresponding operation information DB
- the corresponding operation extraction unit 578 records the operation performed by the operator on the water and sewage treatment facility within the set period after the state determination unit 75 determines that the condition is abnormal, and then extracts the operation. And present it to the operator. The details will be described below.
- the response operation extraction unit 578 records the control operation by the operator within a certain period of time after the state determination unit 75 detects that an abnormality has occurred in the processing system in the determination control in the response operation information DB 579 as operation pattern information. Then, the corresponding operation extraction unit 578 excludes operation patterns of operations having a significantly different type of processing system in which an abnormality has occurred and operation patterns of different control types from the operation patterns recorded in the past in the corresponding operation information DB 579. Above, a similar operation pattern is extracted. Then, the frequency of this similar operation pattern is calculated and registered in the corresponding operation information DB 579.
- the above-mentioned operations having different control types include, for example, an operation for water quality control of water treatment and an operation for electrical equipment control.
- the operation pattern information refers to a control setting value set by an operator, an operation order such as an input order of setting values when a plurality of controls are executed, and an operation amount. Further, when the operation related to the same abnormality is registered in the corresponding operation information DB 579 in advance, the corresponding operation extraction unit 578 performs statistical processing and standardizes the operation pattern.
- the corresponding operation extraction unit 578 sets this operation pattern when the operation pattern information related to the abnormality determined by the state determination unit 75 to be abnormal is recorded in the corresponding operation information DB 579.
- the information is extracted and displayed to the operator as reference information.
- the state determination device of the present embodiment configured as described above is In the determination control, the determination unit When an abnormal processing system, which is the processing system determined to be in an abnormal state, is detected, the operation by the operator for the processing system during the set period from the time when the abnormality is detected is recorded as operation pattern information. When the abnormal processing system is newly detected after the lapse of the set period, the recorded operation pattern information related to the type of the processing system of the detected abnormal processing system is extracted and output. It is a thing.
- the determination unit records the operation by the operator within the set period as the operation pattern information from the time when the abnormal state is determined. Then, when the abnormal processing system is newly detected, the operation pattern information related to the type of the processing system of the newly detected abnormal processing system is extracted and presented to the operator. In this way, by automatically extracting the response operation at the time of abnormality from the past operator operation history, it is possible to reduce the design load and quickly respond to the abnormal state.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Testing And Monitoring For Control Systems (AREA)
Abstract
状態推定装置(100、300、400、500)は、被処理対象物に対して処理を行う処理系統(10、21~24、30、41~44、50)を複数備える処理網(60)において、各処理系統(10、21~24、30、41~44、50)の状態を計測値情報(J1)としてそれぞれ検出するセンサ(S)と、検出された計測値情報(J1)に基づいて、処理系統(10、21~24、30、41~44、50)の状態を判定する判定制御を行う判定部(70)とを備え、判定部(70)は、判定制御において、各処理系統(10、21~24、30、41~44、50)の計測値情報J1間の相関性に基づいて処理系統(10、21~24、30、41~44、50)の状態を判定する基準判定式fを用いるものである。
Description
本願は、状態判定装置に関するものである。
上下水道、化学、製鉄等の処理施設は、所定の処理を行う複数の処理系統が連なって構成される。一般に、各処理系統における処理は、前後の処理に互いに影響を及ぼすため、中央監視制御装置を導入して、処理施設全体での処理状態を監視して一括して制御する。
このような中央監視制御装置の運用を支援するものとして、状態判定装置が存在する。
状態判定装置とは、例えば、機器故障が生じた処理系統の状態情報と、故障が生じた前後の処理系統の計測値の挙動を示す情報とを組み合わせたデータを予め登録しておく。そして、計測値がそのデータに該当する挙動を示した際、処理系統において異常が発生したと判定して、操作員に通報するものである。
しかしながら、新規に導入された機器など、機器の動作に関する情報が乏しい場合では、異常が生じる場合の計測値の挙動を示すデータを予め中央監視制御装置に登録することができず、十分な動作に関する情報が蓄積されるまでは処理系統の異常を判定できないという問題点があった。
状態判定装置とは、例えば、機器故障が生じた処理系統の状態情報と、故障が生じた前後の処理系統の計測値の挙動を示す情報とを組み合わせたデータを予め登録しておく。そして、計測値がそのデータに該当する挙動を示した際、処理系統において異常が発生したと判定して、操作員に通報するものである。
しかしながら、新規に導入された機器など、機器の動作に関する情報が乏しい場合では、異常が生じる場合の計測値の挙動を示すデータを予め中央監視制御装置に登録することができず、十分な動作に関する情報が蓄積されるまでは処理系統の異常を判定できないという問題点があった。
このような問題点に対し、新規に導入された機器に類似し、運転実績のある機器のデータを用いて動作に関する情報が乏しい機器を有する処理系統の状態を監視することの可能な、以下のような状態判定装置としての装置異常監視システムが開示されている。
即ち、従来の装置異常監視システムは、既存の複数の類似装置毎に個別の判定モデルを作成する。次に、これら個別の予測モデルの係数及び切片を、各装置の特徴項目値等から予測するメタ予測モデルを作成する。そして、このメタ予測モデルから、対象の装置専用の予測モデルを生成する。この判定モデルを用いて、判定モジュールは、装置の状態を監視して異常検知を行う(例えば、特許文献1参照)。
即ち、従来の装置異常監視システムは、既存の複数の類似装置毎に個別の判定モデルを作成する。次に、これら個別の予測モデルの係数及び切片を、各装置の特徴項目値等から予測するメタ予測モデルを作成する。そして、このメタ予測モデルから、対象の装置専用の予測モデルを生成する。この判定モデルを用いて、判定モジュールは、装置の状態を監視して異常検知を行う(例えば、特許文献1参照)。
上記特許文献1に記載の状態判定装置では、それぞれの処理系統専用の予測モデルを用いている。そのため、処理系統単体の判定値のみを判定を行う場合に有効である一方、上下水道処理施設等の複数の処理系統から構成される処理施設において、それら各処理系統のそれぞれの計測値を組み合わせて状態判定を行う必要がある場合に、以下のように困難が生じる。
即ち上記特許文献1では、複数ある処理系統の内の特定の処理系統に対して、他の処理系統の計測値の挙動によらず、特定の処理系統の計測値にのみ基づき異常発生有無の判定を行う。そのため、特定の処理系統の計測値が通常と異なる挙動を示す場合で、例えばこの挙動が正常範囲内の変動である場合は、この異なる挙動が正常な処理により生じているものなのか、センサ故障によるものなのか、あるいは、別の原因によるものなのかの判別ができないという課題があった。
即ち上記特許文献1では、複数ある処理系統の内の特定の処理系統に対して、他の処理系統の計測値の挙動によらず、特定の処理系統の計測値にのみ基づき異常発生有無の判定を行う。そのため、特定の処理系統の計測値が通常と異なる挙動を示す場合で、例えばこの挙動が正常範囲内の変動である場合は、この異なる挙動が正常な処理により生じているものなのか、センサ故障によるものなのか、あるいは、別の原因によるものなのかの判別ができないという課題があった。
また、複数ある処理系統全体を判定する場合、各処理系統におけるセンサ故障を含む、すべての計測値の挙動を示す予測モデルを、処理系統毎に予め登録しておかなければならず、設計にかかる負荷が増加するという課題が残る。
本願は、上記のような課題を解決するための技術を開示するものであり、複数の処理系統から構成される処理網において、処理系統の状態判定を高精度に行うことができると共に、設計にかかる負荷を低減できる状態判定装置を提供することを目標とする。
本願に開示される状態判定装置は、
被処理対象物に対して処理を行う処理系統を複数備えて構成される処理網において、
各前記処理系統の状態を計測値情報としてそれぞれ検出する検出部と、
検出された前記計測値情報に基づいて、前記処理系統の状態を判定する判定制御を行う判定部とを備え、
前記判定部は、前記判定制御において、
各前記処理系統の前記計測値情報間の相関性に基づいて前記処理系統の状態を判定する基準判定式を用いる、
ものである。
被処理対象物に対して処理を行う処理系統を複数備えて構成される処理網において、
各前記処理系統の状態を計測値情報としてそれぞれ検出する検出部と、
検出された前記計測値情報に基づいて、前記処理系統の状態を判定する判定制御を行う判定部とを備え、
前記判定部は、前記判定制御において、
各前記処理系統の前記計測値情報間の相関性に基づいて前記処理系統の状態を判定する基準判定式を用いる、
ものである。
本願に開示される状態判定装置によれば、処理系統の状態判定を高精度に行うことができると共に、設計にかかる負荷を低減できる状態判定装置が得られる。
実施の形態1.
図1は、実施の形態1による状態判定装置100の概略構成を示すブロック図である。
図2は、実施の形態1による状態判定装置100が状態判定を行う処理網60の模式図である。
先ず、図2を用いて本実施の形態の状態判定装置100が状態判定を行う処理網60について説明する。
図2に示すように、例えば上下水道処理施設では、原水等の被処理対象物に対して浄化処理等の設定された処理を行う水槽等の処理系統(第1処理系統10、第2処理系統21~24、第3処理系統30、第4処理系統41~44)を複数備えて処理網60が構成される。
図1は、実施の形態1による状態判定装置100の概略構成を示すブロック図である。
図2は、実施の形態1による状態判定装置100が状態判定を行う処理網60の模式図である。
先ず、図2を用いて本実施の形態の状態判定装置100が状態判定を行う処理網60について説明する。
図2に示すように、例えば上下水道処理施設では、原水等の被処理対象物に対して浄化処理等の設定された処理を行う水槽等の処理系統(第1処理系統10、第2処理系統21~24、第3処理系統30、第4処理系統41~44)を複数備えて処理網60が構成される。
先ず、図示しない上流の処理系統から送られてきた被処理対象物は、第1処理系統10において設定された第1処理を実施された後、後段の並列処理系統20に送られる。
並列処理系統20は、4つの第2処理系統21、22、23、24を水路等により並列的に接続して構成される。そして、これら第2処理系統21、22、23、24は、前段の第1処理系統10から送られてきて分流した被処理対象物に対して、設定された第2処理を並列的に実施する。なお、第2処理系統21、22、23、24は、運用状況においてそれぞれの使用、不使用を使い分けられている。
被処理対象物は、並列処理系統20において設定された第2処理を実施された後、後段の第3処理系統30に送られる。
被処理対象物は、並列処理系統20において設定された第2処理を実施された後、後段の第3処理系統30に送られる。
第3処理系統30では、第2処理系統21、22、23、24において並列的にそれぞれ処理された被処理対象物が集められている。
被処理対象物は、第3処理系統30において設定された第3処理を実施された後、後段の並列処理系統40に送られる。
被処理対象物は、第3処理系統30において設定された第3処理を実施された後、後段の並列処理系統40に送られる。
並列処理系統40は、並列処理系統20と同様に、4つの第4処理系統41、42、43、44を水路等により並列的に接続して構成される。そして、これら第4処理系統41、42、43、44は、前段の第3処理系統30から送られてきて分流した被処理対象物に対して、設定された第4処理を並列的に実施する。なお、並列処理系統20と同様に、第4処理系統41、42、43、44は、運用状況においてそれぞれの使用、不使用を使い分けられている。
被処理対象物は、並列処理系統40において設定された第4処理を実施された後、後段の第5処理系統50に送られる。
このように、被処理対象物に対する処理は、第1、2、3、4、5処理系統10、21~24、30、41~44、50により、段階的に行われる。
被処理対象物は、並列処理系統40において設定された第4処理を実施された後、後段の第5処理系統50に送られる。
このように、被処理対象物に対する処理は、第1、2、3、4、5処理系統10、21~24、30、41~44、50により、段階的に行われる。
また、各処理系統には、処理系統の状態を確認するための、検出部としてのセンサが設置されている。
本実施の形態では、並列処理系統20の第2処理系統21に対しセンサ21S、第2処理系統22に対しセンサ22S、第2処理系統23に対しセンサ23S、第2処理系統24に対しセンサ24Sが設置されている。
また、並列処理系統40の第4処理系統41に対しセンサ41S、第4処理系統42に対しセンサ42S、第4処理系統43に対しセンサ43S、第4処理系統44に対しセンサ44Sが設置されている。
以降、センサ21S、22S、23S、24S、41S、42S、43S、44Sを総称する場合は、センサSと称して用いる。
本実施の形態では、並列処理系統20の第2処理系統21に対しセンサ21S、第2処理系統22に対しセンサ22S、第2処理系統23に対しセンサ23S、第2処理系統24に対しセンサ24Sが設置されている。
また、並列処理系統40の第4処理系統41に対しセンサ41S、第4処理系統42に対しセンサ42S、第4処理系統43に対しセンサ43S、第4処理系統44に対しセンサ44Sが設置されている。
以降、センサ21S、22S、23S、24S、41S、42S、43S、44Sを総称する場合は、センサSと称して用いる。
なお、処理工程においてセンサSが設置される設置位置は、センサSが測定したい情報に応じて決定すればよい。図2に示す並列処理系統20、40では、並列処理系統20、40の被処理対象物の入力側にセンサ21S~24S、41S~44Sが設置される。また、第5処理系統50では、被処理対象物の出力側にセンサSが設置される。
また、センサSの種類は一種類ではなく、複数種類設置される場合もある。
また、センサSの種類は一種類ではなく、複数種類設置される場合もある。
以下、本実施の形態の状態判定装置100の構成について図1を用いて説明する。
状態判定装置100は、上下水道処理施設等を構成する各処理系統の各機器及び設備に付帯するセンサSの計測値に基づいて、各処理系統10、21~24、30、41~44、50の状態を判定するものである。
状態判定装置100は、上下水道処理施設等を構成する各処理系統の各機器及び設備に付帯するセンサSの計測値に基づいて、各処理系統10、21~24、30、41~44、50の状態を判定するものである。
図1に示すように、状態判定装置100は、判定部70と、入出力装置1と、センサSと、収集装置2とを備える。
センサSは、各処理系統10、21~24、30、41~44、50の状態を計測値情報J1として検出する。この計測値情報J1としては、例えば、被測定対象物である原水の水質でもよいし、あるいは、処理系統が有する機器および設備における電圧等でもよい。
センサSは、各処理系統10、21~24、30、41~44、50の状態を計測値情報J1として検出する。この計測値情報J1としては、例えば、被測定対象物である原水の水質でもよいし、あるいは、処理系統が有する機器および設備における電圧等でもよい。
検出された計測値情報J1は、収集装置2によって収集され、判定部70に送信される。
判定部70は、計測値情報J1に基づいて、以下に説明する各処理系統10、21~24、30、41~44、50の状態の判定を行う判定制御を行い、判定結果を状態情報J2として出力する。状態情報J2は、入出力装置1を通じて操作員に伝達される。
判定部70は、計測値情報J1に基づいて、以下に説明する各処理系統10、21~24、30、41~44、50の状態の判定を行う判定制御を行い、判定結果を状態情報J2として出力する。状態情報J2は、入出力装置1を通じて操作員に伝達される。
以下、判定部70の構成と、この判定部70により行われる判定制御とについて説明する。
図1に示すように、判定部70は、計測情報データベース71(以下、計測情報DBと称す)と、基準判定式情報データベース72(以下、判定式情報DBと称す)と、処理工程情報としてのネットワークモデル情報データベース73(以下、Nモデル情報DBと称す)と、判定式作成部74と、状態判定部75と、を備える。
図1に示すように、判定部70は、計測情報データベース71(以下、計測情報DBと称す)と、基準判定式情報データベース72(以下、判定式情報DBと称す)と、処理工程情報としてのネットワークモデル情報データベース73(以下、Nモデル情報DBと称す)と、判定式作成部74と、状態判定部75と、を備える。
計測情報DB71には、センサSの種別、およびセンサSによって検出された計測値情報J1が計測時間毎に記録される。
Nモデル情報DB73は、処理網60の各処理系統10、21~24、30、41~44、50の接続関係等の構成情報が電子的に記録されたものである。
図3は、図2に示した処理網60の構成情報を、Nモデル情報DB73に記録する際の記録方式を模式的に表した図である。
図3は、図2に示した処理網60の構成情報を、Nモデル情報DB73に記録する際の記録方式を模式的に表した図である。
図3に示すように、Nモデル情報DB73には、処理工程名称73A、並列処理工程名称73B、前段処理工程名称73C、後段処理工程名称73D、付帯計測値名称73Eが登録されている。
処理工程名称73Aとは、処理網60における各段階の処理系統を示すものであり、第1処理系統10は処理1、その後段の第2処理系統21~24は処理2、その後段の第3処理系統30は処理3、・・・として示される。
なお、並列処理系統20のように一つの段階において複数の第2処理系統21~24が存在する場合には、それらを纏めて処理2として示される。
処理工程名称73Aとは、処理網60における各段階の処理系統を示すものであり、第1処理系統10は処理1、その後段の第2処理系統21~24は処理2、その後段の第3処理系統30は処理3、・・・として示される。
なお、並列処理系統20のように一つの段階において複数の第2処理系統21~24が存在する場合には、それらを纏めて処理2として示される。
並列処理工程名称73Bとは、図2の並列処理系統20のように、複数の処理系統21、22、23、24が並列的に存在する場合に、各処理系統21、22、34、24において行われる第2処理に対して固有の名称(図3では処理2-1、2-2、2-3、2-4)を記録するものである。
前段処理工程名称73Cは、並列処理工程名称73Bに記録された処理系統への送り元となる前段側の処理系統の名称を示すものであり、後段処理工程名称73Dは、送り先となる後段側の処理工程名称を示すものである。
例えば、並列処理系統20の第2処理(処理2-1、2-2、2-3、2-4)の送り元となる前段の処理系統は第1処理系統10であるため、前段処理工程名称73Cは第1処理を示す処理1が記録される。また、並列処理系統20の第2処理(処理2-1、2-2、2-3、2-4)の送り先となる後段の処理系統は第3処理系統30であるため、後段処理工程名称73Dは第3処理を示す処理3が記録される。このように、処理工程名称73Aに、前段処理工程名称73Cおよび後段処理工程名称73Dを組み合わせることで、図2に示すような処理網60をネットワークグラフの形式で記載できる。
こうして、被処理対象物に対する処理が、複数の処理系統により段階的に行われる場合、Nモデル情報DB73は、段階的に行われる各処理系統の処理順序が示される。
例えば、並列処理系統20の第2処理(処理2-1、2-2、2-3、2-4)の送り元となる前段の処理系統は第1処理系統10であるため、前段処理工程名称73Cは第1処理を示す処理1が記録される。また、並列処理系統20の第2処理(処理2-1、2-2、2-3、2-4)の送り先となる後段の処理系統は第3処理系統30であるため、後段処理工程名称73Dは第3処理を示す処理3が記録される。このように、処理工程名称73Aに、前段処理工程名称73Cおよび後段処理工程名称73Dを組み合わせることで、図2に示すような処理網60をネットワークグラフの形式で記載できる。
こうして、被処理対象物に対する処理が、複数の処理系統により段階的に行われる場合、Nモデル情報DB73は、段階的に行われる各処理系統の処理順序が示される。
また、付帯計測値名称73Eとは、並列処理工程名称73Bに記録された処理系統21~24、41~44、50に付帯するセンサSの名称を記録するものであり、第2処理系統21、22、23、24に対しては、センサ21S、22S、23S、24Sがそれぞれ該当する。
判定式情報DB72には、判定制御において用いられる基準判定式fが記録される。
この基準判定式fは、各処理系統21~24、41~44、50においてそれぞれ検出された計測値情報J1間の相関性に基づき、各処理系統10、21~24、30、41~44、50の状態を判定するものである。
例えば、第2処理系統21において検出された計測値情報J1と、第2処理系統22において検出された計測値情報J1と、を基準判定式fの入力値として用いる。そして、基準判定式fは、これらの2つの計測値情報J1間の相関性に基づいて、第2処理系統21あるいは第2処理系統22の状態を判定し、判定結果を演算値として出力する。
この基準判定式fは、各処理系統21~24、41~44、50においてそれぞれ検出された計測値情報J1間の相関性に基づき、各処理系統10、21~24、30、41~44、50の状態を判定するものである。
例えば、第2処理系統21において検出された計測値情報J1と、第2処理系統22において検出された計測値情報J1と、を基準判定式fの入力値として用いる。そして、基準判定式fは、これらの2つの計測値情報J1間の相関性に基づいて、第2処理系統21あるいは第2処理系統22の状態を判定し、判定結果を演算値として出力する。
更に、この基準判定式fは、並列処理系統20、40における並列関係の処理系統の相互の各組み合わせに共通するように構成される。
例えば、並列処理系統20のように、第2処理系統21、22、23、24の4つが並列的に存在する場合において、例えば第2処理系統21を基準とした処理系統の組み合わせは、「第2処理系統21-第2処理系統22」、「第2処理系統21-第2処理系統23」、「第2処理系統21-第2処理系統23」、「第2処理系統21-第2処理系統24」となる。基準判定式fは、これら4つの組み合わせに共通して用いられる一つの判定式となるように構成される。
また、基準判定式fは、以下に説明するように判定式作成部74により作成される。
例えば、並列処理系統20のように、第2処理系統21、22、23、24の4つが並列的に存在する場合において、例えば第2処理系統21を基準とした処理系統の組み合わせは、「第2処理系統21-第2処理系統22」、「第2処理系統21-第2処理系統23」、「第2処理系統21-第2処理系統23」、「第2処理系統21-第2処理系統24」となる。基準判定式fは、これら4つの組み合わせに共通して用いられる一つの判定式となるように構成される。
また、基準判定式fは、以下に説明するように判定式作成部74により作成される。
判定式作成部74は、Nモデル情報DB73に示される各処理系統10、21~24、30、41~44、50の接続関係に基づいて、各処理系統21~24、41~44、50の一部の組み合わせ、あるいは全ての組み合わせを任意に選択して設定する。そして判定式作成部74は、設定した各組み合わせに共通して用いる基準判定式fを一つ作成して、判定式情報DB72内に記録する。
状態判定部75は、判定式作成部74を通じ、判定式情報DB72から対応する基準判定式fを呼び出す。例えば、並列処理系統20の第2処理系統21に対して状態判定を行う場合、第2処理系統21を基準とした各組み合わせに共通する基準判定式fを呼び出す。
呼び出された基準判定式fに対し、状態判定部75は、各組み合わせに対応する計測値情報J1を基準判定式fの入力値として用いて、処理系統の状態の判定を行う。例えば、基準判定式fが、第2処理系統21を基準とした、「第2処理系統21-第2処理系統22」、「第2処理系統21-第2処理系統23」、「第2処理系統21-第2処理系統23」、「第2処理系統21-第2処理系統24」の全ての組み合わせに共通して構成される場合、センサ21S、22S、23S、24Sにおいて検出された全ての計測値情報J1を入力値として用いる。また例えば、基準判定式fが、「第2処理系統21-第2処理系統22」の組み合わせに対応して構成される場合は、センサ21S、22Sの計測値情報J1を入力値として用いる。
呼び出された基準判定式fに対し、状態判定部75は、各組み合わせに対応する計測値情報J1を基準判定式fの入力値として用いて、処理系統の状態の判定を行う。例えば、基準判定式fが、第2処理系統21を基準とした、「第2処理系統21-第2処理系統22」、「第2処理系統21-第2処理系統23」、「第2処理系統21-第2処理系統23」、「第2処理系統21-第2処理系統24」の全ての組み合わせに共通して構成される場合、センサ21S、22S、23S、24Sにおいて検出された全ての計測値情報J1を入力値として用いる。また例えば、基準判定式fが、「第2処理系統21-第2処理系統22」の組み合わせに対応して構成される場合は、センサ21S、22Sの計測値情報J1を入力値として用いる。
状態判定部75は、このように基準判定式fを用いて、各センサSの計測値情報J1間の相関性を比較して処理系統の状態を判定する判定制御を行う。
例えば、一つのセンサSの計測値情報J1が、処理系統の定常状態の変動範囲内で変動したとする。
この場合、状態判定部75は、一つのセンサSの計測値情報J1と、他のセンサSの計測値情報J1との相関性を示す比較値が著しく大きい場合、変動が生じたセンサSにおいてセンサ故障が発生したと判定する。
例えば、一つのセンサSの計測値情報J1が、処理系統の定常状態の変動範囲内で変動したとする。
この場合、状態判定部75は、一つのセンサSの計測値情報J1と、他のセンサSの計測値情報J1との相関性を示す比較値が著しく大きい場合、変動が生じたセンサSにおいてセンサ故障が発生したと判定する。
本手法によれば、センサSの計測値情報J1間の挙動の相関性を比較することで、未知の計測値情報J1の挙動パターン、あるいは、操作員による運転等によって定常処理範囲内で計測値情報J1が変化する場合においても、的確に定常、異常、等の処理系統の状態判定を高精度に行える。こうして他のセンサSと異なる挙動を示すセンサSを特定し、例えば故障発生として操作員に的確に通知できる。
更に、状態判定部75による判定結果は、判定式作成部74を通じて、判定式情報DB72に登録される。こうして判定式情報DB72には、処理系統の状態が定常、異常、であるかの情報である判定結果が記録される。
更に、判定式情報DB72には、この判定式作成部74による判定結果だけでなく、予め把握可能な処理系統の状態を記録しておいてもよい。例えば、処理系統の運用形態等の分類、処理系統が点検中であるか、等の情報が登録される。
登録方法については、閾値による成否判定、定義式との差異評価による判定などがあり、判定式情報DB72には、閾値あるいは定義式の形式で記録される。
更に、判定式情報DB72には、この判定式作成部74による判定結果だけでなく、予め把握可能な処理系統の状態を記録しておいてもよい。例えば、処理系統の運用形態等の分類、処理系統が点検中であるか、等の情報が登録される。
登録方法については、閾値による成否判定、定義式との差異評価による判定などがあり、判定式情報DB72には、閾値あるいは定義式の形式で記録される。
なお、前述のように、判定式作成部74は、Nモデル情報DB73に示される処理系統の接続関係に基づいて、処理系統の各組み合わせに共通する基準判定式fを作成する。ここで、判定式作成部74は、上記のように判定式情報DB72に登録された処理系統の判定結果に基づいて、基準判定式fを作成してもよい。例えば、第2処理系統22のセンサSが故障中であると判定されている場合は、センサ22Sの計測値情報J1を用いない組み合わせの基準判定式fを作成する。このように、判定式作成部74は、各処理系統の実際の稼働状態に応じて、適切な基準判定式fを動的に作成可能である。
また、上記では、基準判定式fは、並列処理系統20、40における並列関係の処理系統の相互の各組み合わせに共通するように構成されたものを示したが、これに限定するものではない。例えば、例えば、並列処理系統40と、第5処理系統50とにまたがる判定制御を行う場合、並列処理系統40における第4処理系統と、第5処理系統50とに共通するように基準判定式fを構成すればよい。ここで、並列処理系統40では、4つの第4処理系統41~44における4つの計測値情報J1があり、第5処理系統50には1つの計測値情報J1がある。この場合、並列処理系統40における計測値情報J1として、並列処理系統40における4つの計測値情報J1の最大値、最小値、平均値、等を用いられる。この場合、判定式情報DB72には並列処理系統40における計測値情報J1として用いた計測値情報J1の種類(例えば最大値)と、その選定方法が記録される。
上記のように構成された本実施の形態の状態判定装置は、
被処理対象物に対して処理を行う処理系統を複数備える処理網において、
各前記処理系統の状態を計測値情報としてそれぞれ検出する検出部と、
検出された前記計測値情報に基づいて、前記処理系統の状態を判定する判定制御を行う判定部とを備え、
前記判定部は、前記判定制御において、
各前記処理系統の前記計測値情報間の相関性に基づいて前記処理系統の状態を判定する基準判定式を用いる、
ものである。
被処理対象物に対して処理を行う処理系統を複数備える処理網において、
各前記処理系統の状態を計測値情報としてそれぞれ検出する検出部と、
検出された前記計測値情報に基づいて、前記処理系統の状態を判定する判定制御を行う判定部とを備え、
前記判定部は、前記判定制御において、
各前記処理系統の前記計測値情報間の相関性に基づいて前記処理系統の状態を判定する基準判定式を用いる、
ものである。
一般に、処理系統の異常として例えばセンサ故障を検出する際は、センサ毎にあらかじめ「正常」と判定される範囲を決めておき、その範囲を逸脱した場合に故障と判定する手法が用いられている。しかしながら、このような処理系統毎に個別に判定を行う手法は、事前に登録されていない新たな異常状態の検出が困難であり、また、操作員の運転手法によって「正常」の範囲が変化する場合において、処理系統の状態を定義することが困難となる。更に、複数の処理系統から構成される処理施設においては各処理系統の処理は互いに影響を及ぼすため、この場合も処理系統個別に判定を行う手法では、状態判定を精度良く行うことが困難となる。
これに対して本実施の形態の状態判定装置は、各処理系統の状態を計測値情報としてそれぞれ検出する検出部を備える。そして、判定部は、判定制御において各処理系統の計測値情報間の相関性に基づいて処理系統の状態を判定する基準判定式を用いる。
このように、処理系統の運転状態に応じて変化する処理系統の状態を検出部により随時検出値情報として検出する。そして、この運転状態に応じて変化する検出値情報間の相関性に基づいて処理系統の状態を判定することで、個々の計測値情報の挙動に依らず、各計測値情報の挙動に基づいた状態判定が可能となる。こうして、状態判定を精度良く行うことができる。
このように、処理系統の運転状態に応じて変化する処理系統の状態を検出部により随時検出値情報として検出する。そして、この運転状態に応じて変化する検出値情報間の相関性に基づいて処理系統の状態を判定することで、個々の計測値情報の挙動に依らず、各計測値情報の挙動に基づいた状態判定が可能となる。こうして、状態判定を精度良く行うことができる。
例えば、上下水道処理施設においては、浄水量の増減、設備メンテナンスの観点等から、同じ処理系統を複数用意し、状況によって使い分ける方法が採用されている。このような処理施設に本実施の形態の状態判定装置を適用することで、一つの処理系統でセンサ故障によりセンサが通常と異なる値を出力した場合に、各処理系統における同じ種類のセンサ計測値を互いに比較することで、センサ故障が発生したのか、処理施設全体に関わる異常が生じているのかの判定が可能となる。
また、上記のように構成された本実施の形態の状態判定装置は、
前記判定部は、
前記処理網における複数の前記処理系統の接続関係を示す処理工程情報を有し、
前記判定制御において、該処理工程情報に示される前記処理系統の前記接続関係に基づいて、複数の前記処理系統の相互の組み合わせを設定し、該設定された各組み合わせに共通して用いられる前記基準判定式を作成する、
ものである。
前記判定部は、
前記処理網における複数の前記処理系統の接続関係を示す処理工程情報を有し、
前記判定制御において、該処理工程情報に示される前記処理系統の前記接続関係に基づいて、複数の前記処理系統の相互の組み合わせを設定し、該設定された各組み合わせに共通して用いられる前記基準判定式を作成する、
ものである。
このように、判定制御において用いられる基準判定式は、設定された処理系統の相互の組み合わせに共通して用いられるように構成される。そのため、処理系統毎あるいはすべての組み合わせ毎に判定式を作成して記録する必要がなく、各組み合わせに共通する一つの基準判定式を記録するだけで良い。これにより、設計にかかる負荷を軽減してコスト削減が可能になると共に、判定部における処理負荷を低減できる。
更に判定部は、処理網における複数の処理系統の接続関係を示す処理工程情報を有している。そして、この接続関係に基づいて処理系統の相互の組み合わせを設定し、基準判定式を作成する。このように、判定部は、処理工程情報に示される接続関係に基づいた、判定制御における組み合わせを設定することで、実際の系統網の状態に応じた組み合わせの決定と、この組み合わせに基づいた基準判定式の作成が可能なる。そのため、例えば、点検中であって稼働していない状態の処理系統が存在する場合に、この処理系統を除いた基準判定式を動的に作成して判定制御を行えるため、判定部における処理負荷を低減できると共に状態判定を更に精度良く行うことができる。
また、上記のように構成された本実施の形態の状態判定装置は、
前記処理網は、複数の前記処理系統により前記被処理対象物を並列的に処理する並列処理系統を有して構成され、
前記判定部は、前記判定制御において、
前記処理工程情報に示される前記接続関係に基づいて、前記並列処理系統における並列関係の前記処理系統の相互の各組み合わせに共通して用いられる前記基準判定式を作成する、
ものである。
前記処理網は、複数の前記処理系統により前記被処理対象物を並列的に処理する並列処理系統を有して構成され、
前記判定部は、前記判定制御において、
前記処理工程情報に示される前記接続関係に基づいて、前記並列処理系統における並列関係の前記処理系統の相互の各組み合わせに共通して用いられる前記基準判定式を作成する、
ものである。
このように、判定部は、並列処理系統内の各処理系統の相互の各組み合わせに共通して用いられる基準判定式を作成する。特に、被処理対象物に対して並列的に処理を行う並列処理系統では、計測値情報間における相関性に処理系統の状態が反映されやすい。よって、並列処理系統において上記のような基準判定式を用いた判定制御を行うことで、精度良い処理系統の状態判定を行える。
実施の形態2.
以下、本願の実施の形態2を、上記実施の形態1と異なる箇所を中心に図を用いて説明する。上記実施の形態1と同様の部分は同一符号を付して説明を省略する。
本実施の形態では、処理系統における発生頻度が低く、異常要因の把握が困難な異常が処理系統に生じた場合、あるいは、複数事象の組み合わせによって最終的に異常に至る等の複雑な要因の異常が処理系統に生じた場合について説明する。
以下、本願の実施の形態2を、上記実施の形態1と異なる箇所を中心に図を用いて説明する。上記実施の形態1と同様の部分は同一符号を付して説明を省略する。
本実施の形態では、処理系統における発生頻度が低く、異常要因の把握が困難な異常が処理系統に生じた場合、あるいは、複数事象の組み合わせによって最終的に異常に至る等の複雑な要因の異常が処理系統に生じた場合について説明する。
上記のような異常がある処理系統において発生した場合、操作員は正確な状態把握のため、その異常発生の要因となった箇所を処理網60において特定する必要がある。要因箇所の特定においては、異常処理系統の前段あるいは後段の処理系統における計測値情報J1の挙動の変化を調査する。
そして、異常処理系統の前段および後段の要因箇所となる処理系統を特定し、その処理系統における計測値情報J1の挙動を抽出して分析を進める。以下、その詳細について説明する。
そして、異常処理系統の前段および後段の要因箇所となる処理系統を特定し、その処理系統における計測値情報J1の挙動を抽出して分析を進める。以下、その詳細について説明する。
図2に示す第5処理系統50のセンサ50Sの計測値情報J1値が異常を示す状態となり、第5処理系統50が異常処理系統であると仮定して説明する。
状態判定部75は、Nモデル情報DB73に登録されている、段階的に行われる各処理系統の処理順序情報に基づいて、第5処理系統50の前段あるいは後段の処理系統の計測値情報J1を抽出する。第5処理系統50は、後段側の処理系統は存在せず、前段の処理系統として並列処理系統40における第4処理系統41~44が該当する。
状態判定部75は、Nモデル情報DB73に登録されている、段階的に行われる各処理系統の処理順序情報に基づいて、第5処理系統50の前段あるいは後段の処理系統の計測値情報J1を抽出する。第5処理系統50は、後段側の処理系統は存在せず、前段の処理系統として並列処理系統40における第4処理系統41~44が該当する。
よって、状態判定部75は、第4処理系統41~44のセンサ41S~44Sの計測値情報J1を抽出する。さらに、状態判定部75は、この並列処理系統40の前段の処理系統の計測値情報J1を抽出する。第1、3処理系統10、30には計測値情報J1が無いため、状態判定部75は、並列処理系統20のセンサ21S~24Sの計測値情報J1を抽出する。
状態判定部75は、このように抽出された、異常処理系統である第5処理系統の前段側の並列処理系統20、40の計測値情報J1に対し、基準判定式情報データベース72に登録された基準判定式fを用いて、並列処理系統40から並列処理系統20にまたがる判定制御を行う。
この判定制御により、例えば、並列処理系統40におけるセンサ41S~44Sの計測値情報J1の値の変動が通常とは異なり、並列処理系統20におけるセンサ21S~24Sの計測値情報J1の値は通常の範囲内であると判定されるとする。この場合、状態判定部75は、第5処理系統50における異常発生の要因となった箇所(処理系統)は、並列処理系統20または第3処理系統30であると判定する。
この判定制御により、例えば、並列処理系統40におけるセンサ41S~44Sの計測値情報J1の値の変動が通常とは異なり、並列処理系統20におけるセンサ21S~24Sの計測値情報J1の値は通常の範囲内であると判定されるとする。この場合、状態判定部75は、第5処理系統50における異常発生の要因となった箇所(処理系統)は、並列処理系統20または第3処理系統30であると判定する。
上記のように構成された本実施の形態の状態判定装置は、
前記被処理対象物に対する処理は、複数の前記処理系統により段階的に行われ、
前記処理工程情報は、段階的に行われる前記処理系統の処理順序を更に示し、
前記判定部は、前記判定制御において、
異常状態と判定された前記処理系統である異常処理系統が検出された場合、前記処理工程情報に示される前記処理順序に基づいて、前記異常処理系統の前段側あるいは後段側の段階に属する前記処理系統の状態を判定する、
ものである。
前記被処理対象物に対する処理は、複数の前記処理系統により段階的に行われ、
前記処理工程情報は、段階的に行われる前記処理系統の処理順序を更に示し、
前記判定部は、前記判定制御において、
異常状態と判定された前記処理系統である異常処理系統が検出された場合、前記処理工程情報に示される前記処理順序に基づいて、前記異常処理系統の前段側あるいは後段側の段階に属する前記処理系統の状態を判定する、
ものである。
このように、処理工程情報には、段階的に行われる前記処理系統の処理順序が示される。そして判定部は、この処理工程情報に示される処理順序に基づいて、異常処理系統の前段側あるいは後段側の段階に属する処理系統の状態を判定する。これにより、被処理対象物に対して段階的に処理を行う複雑な処理網において、発生の頻度が低く、複雑な要因の異常が生じた場合でも、処理工程情報に示される処理順序に従い、段階的に異常の有無を調査していくことで、異常が発生する要因となった要因箇所を処理網において特定できる。これにより、処理施設の安定した操業を確保できる。
実施の形態3.
以下、本願の実施の形態3を、上記実施の形態1、2と異なる箇所を中心に図を用いて説明する。
実施の形態2では、異常発生の要因となる箇所を処理網60において特定することについて述べた。本実施の形態では、要因箇所の特定の結果、異常発生の過程と、その特定された箇所の処理系統における計測値情報J1の挙動パターンが定義可能となった場合、新たに判定式情報DB72に統計処理式を追加する。これにより、次回同様の異常が発生した場合においても、容易に要因となる箇所の特定が可能となる。以下、その詳細について説明する。
以下、本願の実施の形態3を、上記実施の形態1、2と異なる箇所を中心に図を用いて説明する。
実施の形態2では、異常発生の要因となる箇所を処理網60において特定することについて述べた。本実施の形態では、要因箇所の特定の結果、異常発生の過程と、その特定された箇所の処理系統における計測値情報J1の挙動パターンが定義可能となった場合、新たに判定式情報DB72に統計処理式を追加する。これにより、次回同様の異常が発生した場合においても、容易に要因となる箇所の特定が可能となる。以下、その詳細について説明する。
図4は、実施の形態3による状態判定装置300の概略構成を示すブロック図である。
本実施の形態における状態判定装置300は、実施の形態1に示した状態判定装置100の判定部70に対し、判定式作成部374を追加したものである。
また、本実施の形態において、判定式情報DB72には、計測値情報J1の評価値を導出するための統計処理式ftが複数記録される。この計測値情報J1の評価値とは、設定された期間内において複数の計測値情報J1を検出した場合、これら計測値情報J1の最大値、最小値、平均値、分得範囲、回帰式、計測値情報J1間の相関性、等が評価値となる。そして、この各評価値をそれぞれ導出する式が統計処理式ftである。
本実施の形態における状態判定装置300は、実施の形態1に示した状態判定装置100の判定部70に対し、判定式作成部374を追加したものである。
また、本実施の形態において、判定式情報DB72には、計測値情報J1の評価値を導出するための統計処理式ftが複数記録される。この計測値情報J1の評価値とは、設定された期間内において複数の計測値情報J1を検出した場合、これら計測値情報J1の最大値、最小値、平均値、分得範囲、回帰式、計測値情報J1間の相関性、等が評価値となる。そして、この各評価値をそれぞれ導出する式が統計処理式ftである。
先ず、状態判定部75が、実施の形態1に示したように、判定制御において、ある処理系統における異常を検知したとする。ここで、この処理系統が異常状態である期間を含む期間を第1期間とする。そして、この第1期間より前の処理系統が正常状態である期間を第2期間として説明する。
状態判定部75は、この判定制御において、判定式情報DB72内に記録された複数の統計処理式ftの内から、所望の統計処理式ftを呼び出す。
本実施の形態では、状態判定部75は、計測値情報J1の最小値を導出する統計処理式ftと、最大値を導出する統計処理式ftと、平均値を導出する統計処理式ftとを呼び出す。
そして、状態判定部75は、第1期間内における計測値情報J1の最小値、最大値、平均値(以下、最小値Min1、最大値Max1、平均値Ave1と称す)を、各統計処理式ftから導出する。
さらに、状態判定部75は、第2期間内における計測値情報J1の最小値、最大値、平均値(以下、最小値Min2、最大値Max2、平均値Ave2と称す)を、各統計処理式ftから導出する。
本実施の形態では、状態判定部75は、計測値情報J1の最小値を導出する統計処理式ftと、最大値を導出する統計処理式ftと、平均値を導出する統計処理式ftとを呼び出す。
そして、状態判定部75は、第1期間内における計測値情報J1の最小値、最大値、平均値(以下、最小値Min1、最大値Max1、平均値Ave1と称す)を、各統計処理式ftから導出する。
さらに、状態判定部75は、第2期間内における計測値情報J1の最小値、最大値、平均値(以下、最小値Min2、最大値Max2、平均値Ave2と称す)を、各統計処理式ftから導出する。
そして、状態判定部75は、第1期間と第2期間との間でこれら評価値の比較を行う。
即ち、状態判定部75は、第1期間における最小値Min1と、第2期間における最小値Min2との比較、最大値Max1と最大値Max2との比較、平均値Ave1と平均値Ave2との比較を行う。
そして、状態判定部75は、第1期間と第2期間との評価値の比較結果の中で最も差異の大きかった評価値に基づいて、処理系統の状態を判定する判定制御を行う。例えば、最大値Max1と最大値Max2との差異が、これら最大値、最小値、平均値の差異の内で最も大きい場合、この最も差異が大きく現れた最大値Max1と最大値Max2とを用いて判定制御を行う。
即ち、状態判定部75は、第1期間における最小値Min1と、第2期間における最小値Min2との比較、最大値Max1と最大値Max2との比較、平均値Ave1と平均値Ave2との比較を行う。
そして、状態判定部75は、第1期間と第2期間との評価値の比較結果の中で最も差異の大きかった評価値に基づいて、処理系統の状態を判定する判定制御を行う。例えば、最大値Max1と最大値Max2との差異が、これら最大値、最小値、平均値の差異の内で最も大きい場合、この最も差異が大きく現れた最大値Max1と最大値Max2とを用いて判定制御を行う。
判定式作成部374は、このように状態判定部75が異常発生に関連していると判定した計測値情報J1の評価値(最大値)に対し、最大値を導出した統計処理式ftを、判定式情報DB72内に新たな基準判定式fとして自動的に記録する。
そして、状態判定部75は、この自動的に更新された新たな基準判定式fを、処理系統の状態判定に用いる新たな基準判定式fとして用いる。これにより、監視対象の処理系統において最も異常の兆候が現れる評価値(最大値)を判定制御に用いることができ、処理系統の状態判定を更に高精度に行える。
そして、状態判定部75は、この自動的に更新された新たな基準判定式fを、処理系統の状態判定に用いる新たな基準判定式fとして用いる。これにより、監視対象の処理系統において最も異常の兆候が現れる評価値(最大値)を判定制御に用いることができ、処理系統の状態判定を更に高精度に行える。
また、操作員は自動的に更新された新たな基準判定式fの内容を確認および修正することで、監視対象の処理系統における異常に関する兆候を把握して、詳細な分析を行える。また、操作員が、データ分析作業、統計処理に関する専門的な知識を有しない場合においても、このように容易に適切な基準判定式fが自動的に作成され、更新されるため、処理施設の安定した操業が可能になる。
また、状態判定部75は、以下に説明するような状態判定を行うものでもよい。
状態判定部75は、異常が生じた異常処理系統において、異常期間である第1期間内の評価値として計測値情報J1の第1分布情報D1、正常期間である第2期間内の評価値として計測値情報J1の第2分布情報D2をそれぞれ導出する。
また、状態判定部75は、処理網60において異常が生じていない他の処理系統において、設定された期間内の評価値として計測値情報J1の第3分布情報D3を導出する。
状態判定部75は、異常が生じた異常処理系統において、異常期間である第1期間内の評価値として計測値情報J1の第1分布情報D1、正常期間である第2期間内の評価値として計測値情報J1の第2分布情報D2をそれぞれ導出する。
また、状態判定部75は、処理網60において異常が生じていない他の処理系統において、設定された期間内の評価値として計測値情報J1の第3分布情報D3を導出する。
そして状態判定部75は、異常が生じていない処理系統における第3分布情報D3を、異常処理系統の異常期間の第1分布情報D1あるいは正常期間の第2分布情報D2の少なくとも一方と比較する。
これにより、異常処理系統における計測値情報J1の異常期間における挙動、あるいは、異常に至る直前の挙動の少なくとも一方に基づいて、これらの挙動に類似する状態にある異常が生じていない状態の処理系統を特定できる。このように正常状態であっても異常が発生し得る処理系統を特定して把握することで、上下水道処理施設の各処理系統において異常が生じる前に対処を行って、適切な保全処理が可能となる。
これにより、異常処理系統における計測値情報J1の異常期間における挙動、あるいは、異常に至る直前の挙動の少なくとも一方に基づいて、これらの挙動に類似する状態にある異常が生じていない状態の処理系統を特定できる。このように正常状態であっても異常が発生し得る処理系統を特定して把握することで、上下水道処理施設の各処理系統において異常が生じる前に対処を行って、適切な保全処理が可能となる。
上記のように構成された本実施の形態の状態判定装置は、
記判定部は、前記判定制御において、
前記異常処理系統において異常状態の期間を含む第1期間内にて検出された複数の前記計測値情報の第1分布情報、および、前記第1期間よりも前の第2期間内にて検出された前記異常処理系統の複数の前記計測値情報の第2分布情報の少なくとも一方と、
前記異常処理系統以外の各前記処理系統において、設定された期間内に検出された複数の前記計測値情報の第3分布情報と、を導出し、
前記第1分布情報および前記第2分布情報の少なくとも一方と、前記第3分布情報と、を用いて前記異常処理系統以外の各前記処理系統の状態を判定する、
ものである。
記判定部は、前記判定制御において、
前記異常処理系統において異常状態の期間を含む第1期間内にて検出された複数の前記計測値情報の第1分布情報、および、前記第1期間よりも前の第2期間内にて検出された前記異常処理系統の複数の前記計測値情報の第2分布情報の少なくとも一方と、
前記異常処理系統以外の各前記処理系統において、設定された期間内に検出された複数の前記計測値情報の第3分布情報と、を導出し、
前記第1分布情報および前記第2分布情報の少なくとも一方と、前記第3分布情報と、を用いて前記異常処理系統以外の各前記処理系統の状態を判定する、
ものである。
このように、異常処理系統における異常が生じた前後の計測値情報の挙動に類似する他の処理系統を検出することができるため、例えば、上下水道処理施設の適切な保全処理が可能となり、処理施設の安定した操業を確保できる。
また、上記のように構成された本実施の形態の状態判定装置は、
前記判定部は、
設定された期間内に検出された複数の前記計測値情報に基づいて評価値を導出する統計処理式を複数有し、
前記判定制御において、前記第1期間と前記第2期間のそれぞれについて、各前記統計処理式に対応する前記評価値をそれぞれ導出し、
前記第1期間と前記第2期間との前記評価値の差異が最も大きい前記統計処理式を、複数の前記統計処理式から選出して、選出された前記統計処理式を新たな前記基準判定式として用いる、
ものである。
前記判定部は、
設定された期間内に検出された複数の前記計測値情報に基づいて評価値を導出する統計処理式を複数有し、
前記判定制御において、前記第1期間と前記第2期間のそれぞれについて、各前記統計処理式に対応する前記評価値をそれぞれ導出し、
前記第1期間と前記第2期間との前記評価値の差異が最も大きい前記統計処理式を、複数の前記統計処理式から選出して、選出された前記統計処理式を新たな前記基準判定式として用いる、
ものである。
このように判定部は、評価値の差異が最も大きい統計処理式を、新たな基準判定式として判定制御において用いる。これにより、監視対象の処理系統において最も異常の兆候が現れる評価値を判定制御に用いることができ、処理系統の状態判定を更に高精度に行える。
実施の形態4.
以下、本願の実施の形態4を、上記実施の形態1と異なる箇所を中心に図を用いて説明する。
並列処理系統20のように、並列的に複数の第2処理系統21~22が存在する場合、センサSの調整、土木構造的な違いにより、並列する第2処理系統21~22間での計測値情報J1の挙動が異なる場合が存在する。例えば、第1処理系統10から第2処理系統21~24に至る水路の分岐が、開水路などの物理特性によってなされる場合、第2処理系統21~24に流入する流量は完全に4等分となるのではなく、各水路にばらつきが発生する。
以下、本願の実施の形態4を、上記実施の形態1と異なる箇所を中心に図を用いて説明する。
並列処理系統20のように、並列的に複数の第2処理系統21~22が存在する場合、センサSの調整、土木構造的な違いにより、並列する第2処理系統21~22間での計測値情報J1の挙動が異なる場合が存在する。例えば、第1処理系統10から第2処理系統21~24に至る水路の分岐が、開水路などの物理特性によってなされる場合、第2処理系統21~24に流入する流量は完全に4等分となるのではなく、各水路にばらつきが発生する。
これらの場合、判定式情報DB72に登録される共通の基準判定式fに対し、各第2処理系統21~24の計測値情報J1の分布、傾向にばらつきが生じるため、異常発生の判定が第2処理系統21~24ごとに異なる可能性がある。
本実施の形態4の状態判定装置400はこのような課題を解決するものとして提案されるものであり、以下、図5に基づいて説明する。
本実施の形態4の状態判定装置400はこのような課題を解決するものとして提案されるものであり、以下、図5に基づいて説明する。
図5は、実施の形態4による状態判定装置400の概略構成を示すブロック図である。
本実施の形態の状態判定装置400は、実施の形態1に示した状態判定装置100に対し、特徴量抽出部476と、補正係数情報データベース477(以下、補正係数情報DBと称す)とを追加したものである。
ここで、特徴量抽出部476は、Nモデル情報DB73に示される各処理系統10、21~24、30、41~44、50の接続関係に基づいて、並列処理系統20、40における各処理系統21~24、41~44を抽出する。そして、並列する計測値情報J1間での分布、相関性を比較し、それらの差異を補正係数情報として補正係数情報DB73に登録するものである。以下、その詳細について説明する。
本実施の形態の状態判定装置400は、実施の形態1に示した状態判定装置100に対し、特徴量抽出部476と、補正係数情報データベース477(以下、補正係数情報DBと称す)とを追加したものである。
ここで、特徴量抽出部476は、Nモデル情報DB73に示される各処理系統10、21~24、30、41~44、50の接続関係に基づいて、並列処理系統20、40における各処理系統21~24、41~44を抽出する。そして、並列する計測値情報J1間での分布、相関性を比較し、それらの差異を補正係数情報として補正係数情報DB73に登録するものである。以下、その詳細について説明する。
特徴量抽出部476は、判定式情報DB72に登録されている基準判定式fのうち、並列処理系統20、40の計測値情報J1を用いるものについて、それぞれ基準判定式fの入力値の第3分布情報D3、基準判定式fの演算結果である出力値の第4分布情報D4をそれぞれ算出する。
さらに、これら第3分布情報D3の分布傾向と、第4分布情報D4の分布傾向においてそれぞればらつきが生じる場合は、並列する処理系統21~24、41~44間での判定制御の判定結果である異常発生の検出頻度が同一となるように補正係数を作成し、補正係数情報DB73に記録する。
さらに、これら第3分布情報D3の分布傾向と、第4分布情報D4の分布傾向においてそれぞればらつきが生じる場合は、並列する処理系統21~24、41~44間での判定制御の判定結果である異常発生の検出頻度が同一となるように補正係数を作成し、補正係数情報DB73に記録する。
判定式作成部74は、判定対象となる計測値情報J1が並列処理系統20、40に属する場合、補正係数情報DB477に記録された補正係数から、基準判定式fを補正する。
上記のように構成された本実施の形態の状態判定装置は、
前記処理網は、複数の前記処理系統により前記被処理対象物を並列的に処理する並列処理系統を有して構成され、
前記判定部は、
前記判定制御における前記基準判定式の入力値としての前記計測値情報の第3分布情報と、前記基準判定式の演算値としての演算結果の第4分布情報とを、前記並列処理系統における前記処理系統の相互の各組み合わせ毎に導出し、
導出された前記第3分布情報と前記第4分布情報に基づいて、前記判定制御における判定結果が、前記並列処理系統における各前記処理系統において同一となるように、前記基準判定式を補正する補正係数を作成する、
ものである。
前記処理網は、複数の前記処理系統により前記被処理対象物を並列的に処理する並列処理系統を有して構成され、
前記判定部は、
前記判定制御における前記基準判定式の入力値としての前記計測値情報の第3分布情報と、前記基準判定式の演算値としての演算結果の第4分布情報とを、前記並列処理系統における前記処理系統の相互の各組み合わせ毎に導出し、
導出された前記第3分布情報と前記第4分布情報に基づいて、前記判定制御における判定結果が、前記並列処理系統における各前記処理系統において同一となるように、前記基準判定式を補正する補正係数を作成する、
ものである。
このように、判定部は、基準判定式の入力値の分布情報と、演算結果の分布情報とを、並列処理系統の相互の各組み合わせ毎に導出する。そして、導出されたそれぞれの入力値と演算結果の分布情報とに基づいて、判定制御における判定結果が、並列処理系統における各前記処理系統において同一となるように、基準判定式を補正する。
これにより、並列する系統間で分布、あるいは傾向のばらつきがある場合、これを自動的に補正することで、異常発生の頻度を平準化するとともに、異常状態の過検出、見落としを抑制でき、適切な状態判定が可能となる。
これにより、並列する系統間で分布、あるいは傾向のばらつきがある場合、これを自動的に補正することで、異常発生の頻度を平準化するとともに、異常状態の過検出、見落としを抑制でき、適切な状態判定が可能となる。
実施の形態5.
以下、本願の実施の形態5を、上記実施の形態1と異なる箇所を中心に図を用いて説明する。
上下水道処理施設の処理系統に異常が発生した場合、その要因を特定するとともに、処理施設を正常な状態に戻すための操作を行わなければならない。
本実施の形態5の状態判定装置500はこのような課題を解決するものとして提案されるものであり、以下、図6に基づいて説明する。
以下、本願の実施の形態5を、上記実施の形態1と異なる箇所を中心に図を用いて説明する。
上下水道処理施設の処理系統に異常が発生した場合、その要因を特定するとともに、処理施設を正常な状態に戻すための操作を行わなければならない。
本実施の形態5の状態判定装置500はこのような課題を解決するものとして提案されるものであり、以下、図6に基づいて説明する。
図6は、実施の形態5による状態判定装置500の概略構成を示すブロック図である。
本実施の形態の状態判定装置500は、実施の形態1に示した状態判定装置100に対し、対応操作抽出部578と、対応操作情報データベース579(以下、対応操作情報DBと称す)を追加したものである。
ここで、対応操作抽出部578は、状態判定部75が異常と判定したのちに、操作員が上下水道処理施設に対して実施した操作を設定期間内記録しておき、その後にその操作を抽出して操作員に提示するものである。以下、その詳細について説明する。
本実施の形態の状態判定装置500は、実施の形態1に示した状態判定装置100に対し、対応操作抽出部578と、対応操作情報データベース579(以下、対応操作情報DBと称す)を追加したものである。
ここで、対応操作抽出部578は、状態判定部75が異常と判定したのちに、操作員が上下水道処理施設に対して実施した操作を設定期間内記録しておき、その後にその操作を抽出して操作員に提示するものである。以下、その詳細について説明する。
対応操作抽出部578は、状態判定部75が判定制御において処理系統に異常が発生したことを検出してから一定期間内の操作員による制御操作を操作パターン情報として対応操作情報DB579に記録する。
そして、対応操作抽出部578は、対応操作情報DB579に過去に記録されている操作パターンから、異常が発生した処理系統の種別が大きく異なるもの、および、制御種別が異なる操作の操作パターンを除外した上で、類似する操作パターンを抽出する。そしてこの類似する操作パターンの頻度を算出し、対応操作情報DB579に登録する。ここで、上記の制御種別が異なる操作とは、例えば、水処理の水質制御に対する操作と、電気設備制御に対する操作などである。
そして、対応操作抽出部578は、対応操作情報DB579に過去に記録されている操作パターンから、異常が発生した処理系統の種別が大きく異なるもの、および、制御種別が異なる操作の操作パターンを除外した上で、類似する操作パターンを抽出する。そしてこの類似する操作パターンの頻度を算出し、対応操作情報DB579に登録する。ここで、上記の制御種別が異なる操作とは、例えば、水処理の水質制御に対する操作と、電気設備制御に対する操作などである。
ここで、操作パターン情報とは、操作員が設定する制御設定値、制御が複数実施される場合における設定値の入力順序などの操作順序、操作量のことを指す。
また、対応操作抽出部578は、あらかじめ、対応操作情報DB579内に、同一の異常に関連する操作が登録されている場合は、統計処理を施し、操作パターンを定型化していく。
また、対応操作抽出部578は、あらかじめ、対応操作情報DB579内に、同一の異常に関連する操作が登録されている場合は、統計処理を施し、操作パターンを定型化していく。
そして、新たな異常が処理系統において発生すると、対応操作抽出部578は、状態判定部75が異常と判定した異常に関連する操作パターン情報が対応操作情報DB579に記録されている場合、この操作パターン情報を抽出して、参照情報として操作員に表示する。
上記のように構成された本実施の形態の状態判定装置は、
前記判定部は、前記判定制御において、
異常状態と判定された前記処理系統である異常処理系統が検出された場合、異常が検出された時点から設定期間の前記処理系統に対する操作員による操作を操作パターン情報として記録し、
前記設定期間経過後に異常処理系統が新たに検出されると、検出された前記異常処理系統の前記処理系統の種別に関連する記録された前記操作パターン情報を抽出して出力する、
ものである。
前記判定部は、前記判定制御において、
異常状態と判定された前記処理系統である異常処理系統が検出された場合、異常が検出された時点から設定期間の前記処理系統に対する操作員による操作を操作パターン情報として記録し、
前記設定期間経過後に異常処理系統が新たに検出されると、検出された前記異常処理系統の前記処理系統の種別に関連する記録された前記操作パターン情報を抽出して出力する、
ものである。
このように、判定部は、異常状態と判定された時点から設定期間内の操作員による操作を操作パターン情報として記録する。そして、異常処理系統が新たに検出されると、新たに検出された異常処理系統の処理系統の種別に関連する操作パターン情報を抽出して、操作員に提示する。こうして、過去の操作員操作履歴より、異常時の対応操作を自動抽出することで、設計の負荷を減らすとともに、異常状態に対する迅速な対応が可能となる。
本願は、様々な例示的な実施の形態及び実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。
従って、例示されていない無数の変形例が、本願に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
従って、例示されていない無数の変形例が、本願に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
10,21,22,23,24,30,41,42,43,44,50 処理系統、60 処理網、70 判定部、S センサ(検出部)、20,40 並列処理系統、100,300,400,500 状態判定装置。
Claims (9)
- 被処理対象物に対して処理を行う処理系統を複数備える処理網において、
各前記処理系統の状態を計測値情報としてそれぞれ検出する検出部と、
検出された前記計測値情報に基づいて、前記処理系統の状態を判定する判定制御を行う判定部とを備え、
前記判定部は、前記判定制御において、
各前記処理系統の前記計測値情報間の相関性に基づいて前記処理系統の状態を判定する基準判定式を用いる、
状態判定装置。 - 前記判定部は、
前記処理網における複数の前記処理系統の接続関係を示す処理工程情報を有し、
前記判定制御において、該処理工程情報に示される前記処理系統の前記接続関係に基づいて、複数の前記処理系統の相互の組み合わせを設定し、該設定された各組み合わせに共通して用いられる前記基準判定式を作成する、
請求項1に記載の状態判定装置。 - 前記処理網は、複数の前記処理系統により前記被処理対象物を並列的に処理する並列処理系統を有して構成され、
前記判定部は、前記判定制御において、
前記処理工程情報に示される前記接続関係に基づいて、前記並列処理系統における並列関係の前記処理系統の相互の各組み合わせに共通して用いられる前記基準判定式を作成する、
請求項2に記載の状態判定装置。 - 前記被処理対象物に対する処理は、複数の前記処理系統により段階的に行われ、
前記処理工程情報は、段階的に行われる前記処理系統の処理順序を更に示し、
前記判定部は、前記判定制御において、
異常状態と判定された前記処理系統である異常処理系統が検出された場合、前記処理工程情報に示される前記処理順序に基づいて、前記異常処理系統の前段側あるいは後段側の段階に属する前記処理系統の状態を判定する、
請求項2または請求項3に記載の状態判定装置。 - 前記判定部は、前記判定制御において、
前記異常処理系統において異常状態の期間を含む第1期間内にて検出された複数の前記計測値情報の第1分布情報、および、前記第1期間よりも前の第2期間内にて検出された前記異常処理系統の複数の前記計測値情報の第2分布情報の少なくとも一方と、
前記異常処理系統以外の各前記処理系統において、設定された期間内に検出された複数の前記計測値情報の第3分布情報と、を導出し、
前記第1分布情報および前記第2分布情報の少なくとも一方と、前記第3分布情報と、を用いて前記異常処理系統以外の各前記処理系統の状態を判定する、
請求項4に記載の状態判定装置。 - 前記判定部は、
設定された期間内に検出された複数の前記計測値情報に基づいて評価値を導出する統計処理式を複数有し、
前記判定制御において、前記第1期間と前記第2期間のそれぞれについて、各前記統計処理式に対応する前記評価値をそれぞれ導出し、
前記第1期間と前記第2期間との前記評価値の差異が最も大きい前記統計処理式を、複数の前記統計処理式から選出して、選出された前記統計処理式を新たな前記基準判定式として用いる、
請求項5に記載の状態判定装置。 - 前記統計処理式は、
前記評価値が、設定された期間内に検出された複数の前記計測値情報の最大値、最小値、平均値、および、変化率、の少なくとも一つを示すように構成される、
請求項6に記載の状態判定装置。 - 前記処理網は、複数の前記処理系統により前記被処理対象物を並列的に処理する並列処理系統を有して構成され、
前記判定部は、
前記判定制御における前記基準判定式の入力値としての前記計測値情報の第3分布情報と、前記基準判定式の演算値としての演算結果の第4分布情報とを、前記並列処理系統における前記処理系統の相互の各組み合わせ毎に導出し、
導出された前記第3分布情報と前記第4分布情報に基づいて、前記判定制御における判定結果が、前記並列処理系統における各前記処理系統において同一となるように、前記基準判定式を補正する補正係数を作成する、
請求項2から請求項7のいずれか1項に記載の状態判定装置。 - 前記判定部は、前記判定制御において、
異常状態と判定された前記処理系統である異常処理系統が検出された場合、異常が検出された時点から設定期間の前記処理系統に対する操作員による操作を操作パターン情報として記録し、
前記設定期間経過後に異常処理系統が新たに検出されると、検出された前記異常処理系統の前記処理系統の種別に関連する記録された前記操作パターン情報を抽出して出力する、
請求項2から請求項8のいずれか1項に記載の状態判定装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/017892 WO2021220323A1 (ja) | 2020-04-27 | 2020-04-27 | 状態判定装置 |
JP2022518426A JP7118313B2 (ja) | 2020-04-27 | 2020-04-27 | 状態判定装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/017892 WO2021220323A1 (ja) | 2020-04-27 | 2020-04-27 | 状態判定装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021220323A1 true WO2021220323A1 (ja) | 2021-11-04 |
Family
ID=78331845
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/017892 WO2021220323A1 (ja) | 2020-04-27 | 2020-04-27 | 状態判定装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7118313B2 (ja) |
WO (1) | WO2021220323A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003296851A (ja) * | 2002-02-01 | 2003-10-17 | Shimadzu System Solutions Co Ltd | 遠隔異常監視システム |
JP2010190582A (ja) * | 2009-02-16 | 2010-09-02 | Hitachi-Ge Nuclear Energy Ltd | 機器診断方法および機器診断装置 |
JP2011137393A (ja) * | 2009-12-28 | 2011-07-14 | Hitachi Ltd | 風力発電システム |
WO2017134772A1 (ja) * | 2016-02-03 | 2017-08-10 | 東芝三菱電機産業システム株式会社 | 製造設備診断支援装置及び製造設備診断支援方法 |
-
2020
- 2020-04-27 WO PCT/JP2020/017892 patent/WO2021220323A1/ja active Application Filing
- 2020-04-27 JP JP2022518426A patent/JP7118313B2/ja active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003296851A (ja) * | 2002-02-01 | 2003-10-17 | Shimadzu System Solutions Co Ltd | 遠隔異常監視システム |
JP2010190582A (ja) * | 2009-02-16 | 2010-09-02 | Hitachi-Ge Nuclear Energy Ltd | 機器診断方法および機器診断装置 |
JP2011137393A (ja) * | 2009-12-28 | 2011-07-14 | Hitachi Ltd | 風力発電システム |
WO2017134772A1 (ja) * | 2016-02-03 | 2017-08-10 | 東芝三菱電機産業システム株式会社 | 製造設備診断支援装置及び製造設備診断支援方法 |
Also Published As
Publication number | Publication date |
---|---|
JP7118313B2 (ja) | 2022-08-15 |
JPWO2021220323A1 (ja) | 2021-11-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020052147A1 (zh) | 监测设备故障检测方法及装置 | |
US7275018B2 (en) | Method of condition monitoring | |
US6970804B2 (en) | Automated self-learning diagnostic system | |
JP4071449B2 (ja) | センサ異常検出方法及びセンサ異常検出装置 | |
JP3651693B2 (ja) | プラント監視診断装置および方法 | |
JP2018190245A (ja) | 設備機器の異常診断システム | |
WO2017138238A1 (ja) | 監視装置及び監視装置の制御方法 | |
KR102351538B1 (ko) | 패턴 학습 및 진단 알고리즘을 이용한 자동화 설비의 고장 예측 시스템 및 그 방법 | |
CN116292367A (zh) | 基于一维卷积的电厂风机系统异常工况检测方法 | |
WO2020166236A1 (ja) | 作業効率評価方法、作業効率評価装置、及びプログラム | |
CN103732863A (zh) | 自动化的根本原因分析 | |
JP2001067109A (ja) | 品質管理方法及びその装置、並びに品質管理プログラムを記録した記録媒体 | |
KR102041683B1 (ko) | 결함 예측 방법 | |
WO2021220323A1 (ja) | 状態判定装置 | |
JP2011107760A (ja) | プラント異常検出装置 | |
KR102303406B1 (ko) | 산업설비의 이상유무 진단장치 및 방법 | |
CN117950947A (zh) | 一种基于互联网的计算机故障监测系统及方法 | |
JP2000214924A (ja) | プラント異常監視装置および異常発生箇所同定方法 | |
JP3379304B2 (ja) | プラントの異常監視方法及び異常監視装置 | |
JP6825753B1 (ja) | 高炉の異常判定装置、高炉の異常判定方法、及び高炉の操業方法 | |
CN113551764B (zh) | 振动分析设备及其方法 | |
JP7453049B2 (ja) | 異常予兆監視システム、異常予兆監視方法、及びプログラム | |
CN115081798A (zh) | 基于pls算法的板带热精轧过程分机架联合监控与诊断方法 | |
JP2005033090A (ja) | 製造プロセスにおける装置状態判別システム及び製造プロセス安定化システム | |
WO2021176576A1 (ja) | 非定常検出システム、非定常検出方法および非定常検出プログラム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20933119 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022518426 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20933119 Country of ref document: EP Kind code of ref document: A1 |