[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2021219498A1 - Umformvorrichtung zum herstellen einer gerändelten rotorwelle, verfahren zur herstellung einer rotorwelle für eine elektrische maschine, rotorwelle, rotor und verfahren zur vibrationsanalyse eines rotors - Google Patents

Umformvorrichtung zum herstellen einer gerändelten rotorwelle, verfahren zur herstellung einer rotorwelle für eine elektrische maschine, rotorwelle, rotor und verfahren zur vibrationsanalyse eines rotors Download PDF

Info

Publication number
WO2021219498A1
WO2021219498A1 PCT/EP2021/060618 EP2021060618W WO2021219498A1 WO 2021219498 A1 WO2021219498 A1 WO 2021219498A1 EP 2021060618 W EP2021060618 W EP 2021060618W WO 2021219498 A1 WO2021219498 A1 WO 2021219498A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
rotor shaft
forming device
knurled
shaft
Prior art date
Application number
PCT/EP2021/060618
Other languages
English (en)
French (fr)
Inventor
Marius REUBELT
Mert Ciftcioglu
Original Assignee
Valeo Siemens Eautomotive Germany Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Siemens Eautomotive Germany Gmbh filed Critical Valeo Siemens Eautomotive Germany Gmbh
Publication of WO2021219498A1 publication Critical patent/WO2021219498A1/de

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/28Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P9/00Treating or finishing surfaces mechanically, with or without calibrating, primarily to resist wear or impact, e.g. smoothing or roughening turbine blades or bearings; Features of such surfaces not otherwise provided for, their treatment being unspecified
    • B23P9/02Treating or finishing by applying pressure, e.g. knurling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/03Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies having permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/003Couplings; Details of shafts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21HMAKING PARTICULAR METAL OBJECTS BY ROLLING, e.g. SCREWS, WHEELS, RINGS, BARRELS, BALLS
    • B21H7/00Making articles not provided for in the preceding groups, e.g. agricultural tools, dinner forks, knives, spoons
    • B21H7/14Making articles not provided for in the preceding groups, e.g. agricultural tools, dinner forks, knives, spoons knurled articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21HMAKING PARTICULAR METAL OBJECTS BY ROLLING, e.g. SCREWS, WHEELS, RINGS, BARRELS, BALLS
    • B21H7/00Making articles not provided for in the preceding groups, e.g. agricultural tools, dinner forks, knives, spoons
    • B21H7/18Making articles not provided for in the preceding groups, e.g. agricultural tools, dinner forks, knives, spoons grooved pins; Rolling grooves, e.g. oil grooves, in articles
    • B21H7/187Rolling helical or rectilinear grooves
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/16Centering rotors within the stator; Balancing rotors
    • H02K15/165Balancing the rotor

Definitions

  • Forming device for manufacturing a knurled rotor shaft method for manufacturing a rotor shaft for an electrical machine, rotor shaft, rotor and method for vibration analysis of a rotor
  • the invention relates to a forming device for producing a rotor shaft for an electrical machine.
  • the invention relates to a method for producing a rotor shaft for an electrical machine, a rotor shaft, a rotor for an electrical machine and a method for vibration analysis of a rotor.
  • Knurled shafts are, for example, from the article by M. Lersoner et al. "Investigations into the transfer behavior of knurled press connections made of steel-aluminum", Research in Engineering 79, pages 41 to 65 (2015) known.
  • the article discloses a knurled shaft with axially parallel knurls which are produced by forming using a knurled wheel or by means of recursive axial forming. With such a shaft, a form-fitting shaft-hub connection can be realized by a cutting and / or reshaping joining process.
  • the document US 2014/0035419 A1 discloses a shaft with four spaced apart knurled sections which are spaced apart from each other by smooth sections of the shaft.
  • a two-part knurling tool into which the shaft is inserted is used for this purpose.
  • the two parts of the knurling tool are linearly pressed together perpendicular to the axial extension of the shaft, so that the outer surface of the shaft is shaped accordingly.
  • a disadvantage of such a shaping device which presses in the knurled sections is that the shaft is deformed by the pressing force exerted perpendicular to the axial direction. This has a negative effect on the rotational behavior of the shaft, for example due to imbalances.
  • the invention is based on the object of specifying a rotor shaft that is improved in comparison, in particular with little deformation and / or can be realized with little effort, including a possibility for its manufacture and vibration analysis.
  • a forming device for producing a knurled rotor shaft for an electrical machine comprising a base element with a through opening having a central axis for the rotor shaft and at least three knurling tools, each of which is rotatably mounted with respect to the base element about an axis of rotation tangential to the central axis and have a knurled profile reaching into the through opening.
  • the invention is based on the idea of arranging at least three knurling tools corresponding to the cylindrical symmetry of the rotor shaft to be produced, so that the rotor shaft can be formed by a relative movement of a shaft body to be knurled through the through opening of the forming device.
  • the knurling tools are each mounted rotatably about the axis of rotation running tangentially to the central axis, in order to introduce the knurls into the shaft body by a rotary movement.
  • deformations of the shaft can advantageously be avoided by pressing in the knurls in a conventional manner, so that the rotational behavior of the shaft is improved.
  • a shaping device which can be set up simply and inexpensively and which enables inexpensive manufacture is provided.
  • knurling tools are preferably provided. Typically, a maximum of twelve, preferably a maximum of eight, particularly preferably a maximum of six knurling tools are provided.
  • the base element is typically designed in the manner of a plate, for example in the form of a mounting plate.
  • the knurling tools are preferably designed as knurling rollers. It is particularly preferred in the forming device according to the invention if the knurling tools are arranged equidistant from one another in the circumferential direction around the central axis.
  • the knurling tools are preferably arranged offset from one another by 360 N in the circumferential direction, where N is the number of knurling tools. In the particularly preferred embodiment with three knurling tools, the knurling tools are therefore arranged offset from one another by 120 ° in the circumferential direction.
  • the knurled profile comprises several teeth.
  • the teeth are typically designed to run around the axis of rotation of the knurling tool in the circumferential direction. At least two, particularly preferably at least three, teeth are preferably provided per knurled profile. Alternatively or additionally, it can be provided that a maximum of ten teeth, preferably a maximum of eight teeth, particularly preferably a maximum of six teeth, are provided per knurled profile.
  • radial indentations between a pair of adjacent teeth run along a radius that is larger than a radius of the through opening and / or radial elevations of the teeth run along a radius that is smaller than a radius of the through opening.
  • shaft material is then displaced into the indentations. It is thereby achieved that the knurls formed on the rotor shaft extend radially further outwards than sections of the surface of the rotor shaft on which no knurling tools act.
  • a respective knurled section to be formed then also runs in an arc shape.
  • a mechanically particularly robust embodiment is obtained when a respective knurling tool is arranged in a tool holder in the shaping device according to the invention.
  • the tool holder is expediently attached to the base element.
  • the tool holder is fastened to the base element by means of a fastening element extending parallel to the central axis, for example a screw.
  • the tool holder preferably has a stationary axle element which rotatably supports the knurling tool.
  • This can, for example, be a bolt running along the axis of rotation.
  • the tool holder preferably has two leg sections, between which the knurling tool is arranged, and a connecting section connecting the leg sections.
  • the tool holder is therefore essentially U-shaped.
  • the connecting section expediently extends radially further outwards than the knurling tool.
  • the axle element is preferably fastened in or on the leg sections.
  • the base element for each tool holder has a recess in which the tool holder is arranged on an end face which runs perpendicular to the central axis.
  • the recess can therefore serve as a mechanical guide in order to define the position of the tool holder - and thus indirectly also of the knurling tool. It is useful if the tool holder is supported against a wall of the recess for receiving radial deformation forces. The wall typically extends tangentially to the central axis. Alternatively or additionally, it can be provided that a transverse movement of the tool holder is inhibited by two walls of the recess that run parallel to the radial direction.
  • the knurling tools are preferably formed by turning. This enables a low-cost production of the knurling tools and increases the Fatigue resistance due to low notch stresses. This increases the torque that can be transmitted, as it were.
  • the object on which the invention is based is also achieved by a method for producing a rotor shaft for an electrical machine, comprising the following steps: providing a forming device according to the invention, providing a shaft body, performing a relative movement of the shaft body and the forming device along the central axis, so that the Knurling tools form axially parallel knurled sections which are spaced apart from one another and which each comprise several axially parallel knurls on the surface of the shaft body.
  • the forming device is preferably stationary during the relative movement.
  • the shaft body can also be stationary during the relative movement. It is also conceivable to move both the shaping device and the shaft body during the relative movement.
  • the relative movement is expediently a linear movement.
  • a shaft body is preferably used, the radius of which is smaller than the radius of the radial indentations between a pair of adjacent teeth and / or is larger than the radius of the radial elevations of the teeth.
  • the radius of the shaft body and the radius of the radial elevations of the teeth can overlap.
  • the object on which the invention is based is further achieved by a rotor shaft for an electrical machine, the rotor shaft being obtained by the method according to the invention or having at least three knurled sections spaced apart from one another, each comprising a plurality of axially parallel knurls; wherein the knurls extend radially further outwards than sections of the surface of the rotor shaft that are located between the knurled sections.
  • the knurled sections preferably extend along a joining section of the rotor shaft which has a larger diameter than one or more further sections of the rotor shaft axially adjoining the joining section.
  • the rotor shaft is preferably a hollow shaft.
  • the further sections adjoining the joining section are typically stepped radially inward.
  • a rotor for an electrical machine comprising a rotor shaft according to the invention and a rotor core arranged in a rotationally fixed manner on the rotor shaft.
  • the rotor core is expediently a laminated core.
  • the rotor core preferably has a multiplicity of magnet pockets in which permanent magnets are preferably arranged.
  • the rotor core is preferably connected to the rotor shaft in a form-fitting and / or force-fitting manner by means of the knurled sections.
  • the rotor has a plurality of rotor poles and the parity of the number of rotor poles and the number of knurled sections is different. In this way, by means of a vibration analysis by means of a spectral analysis, it can be recognized whether vibrations can be traced back to imbalances in the rotor core or to imbalances in the rotor shaft. Because due to the different parity imbalances of the rotor poles or the knurled sections generate spectral components of different orders.
  • a method for vibration analysis of a rotor comprising the following steps: providing a rotor according to the invention, rotating the rotor around its rotor shaft, detecting mechanical vibrations due to the rotation, performing a spectral analysis of the recorded mechanical vibrations Inferring from spectral components of even, in particular second, order the rotor poles as the vibration source and from spectral components of odd, in particular third, order the rotor shaft as the vibration source.
  • FIG. 1 shows a perspective view of an embodiment of the forming device according to the invention
  • Fig. 2 is a plan view of the forming device shown in Fig. 1;
  • FIG. 3 shows a sectional illustration of a knurling tool and a tool holder of the forming device shown in FIG. 1;
  • FIG. 4 shows a perspective detailed view of a knurled profile of the knurling tool
  • FIG. 5 shows a perspective view of an exemplary embodiment of the rotor shaft according to the invention
  • FIG. 6 shows a sectional illustration of the rotor shaft shown in FIG. 5;
  • FIG. 7 shows a detailed view of a knurled section shown in FIG. 5.
  • FIG. 8 shows a sectional view of an exemplary embodiment of the rotor according to the invention.
  • FIG. 1 and 2 show an exemplary embodiment of a forming device 1 for producing a knurled rotor shaft for an electrical machine, FIG. 1 being a perspective view and FIG. 2 being a plan view.
  • the forming device comprises a base element 2 in the form of a mounting plate.
  • the base element has a through opening 3 with a central axis 4 for the Rotor shaft and three knurling tools 5 designed as turned parts.
  • the knurling tools 5 are each mounted rotatably with respect to the base element 1 about an axis of rotation 6 running tangentially to the central axis 4 and have a knurled profile 7 reaching into the through opening 3.
  • the knurling tools 5 are arranged equidistant from one another in the circumferential direction about the central axis 4, and therefore offset from one another by an angle of 120 °.
  • FIG. 3 is a sectional illustration of one of the knurling tools 5 and a tool holder 8 along a sectional plane A-A in FIG. 2.
  • FIG. 4 is a perspective detailed view of the knurled profile 7.
  • the knurled profile 7 has several teeth 10, five teeth 10 being provided here by way of example. Between a respective pair of adjacent teeth 10 there are radial indentations 11 which run along a radius TR which is greater than a radius of the through opening 3. Corresponding radially outer elevations 12 of the teeth run along a radius Gk which is smaller than a radius of the through opening 3. This ensures that the knurls on the rotor shaft to be manufactured extend further outwards than areas of the rotor shaft not covered by the knurling tools 5, in that shaft material into which teeth 10 act is displaced radially outwards as far as the indentations 11 .
  • a respective knurling tool 5 is arranged in one of the three tool holders 8.
  • the tool holder 8 is fastened to the base element by means of a fastening means 13, here a screw as an example.
  • the tool holder 8 has a stationary axle element 14 (see also FIG. 3) which rotatably supports the knurling tool 5.
  • the axle element 14 is exemplarily formed by a bolt.
  • the tool holder 8 itself has two leg sections 15, 16, between which the knurling tool 5 is arranged, and a connecting section 17 connecting the leg sections 15, 16 Fastening means 13 the connecting section 17.
  • the tool holder 8 therefore has a U-shape, with the axle element 14 on the leg sections 15,
  • a recess 18, in which the tool holder 8 is arranged, is also provided for each tool holder 8 on an end face 19 which runs perpendicular to the central axis 4.
  • the recess 18 serves as a mechanical guide in order to define the position of the tool holder 8 and thus indirectly also the position of the knurling tool 5.
  • the tool holder 8 is supported against a wall 20 of the recess 18 which runs tangentially to the central axis 4 in order to absorb radial deformation forces.
  • the transverse movement of the tool holder 8 is inhibited by two walls 21, 22 running parallel to the radial direction.
  • FIG 5 is a perspective view of an embodiment of a rotor shaft 50.
  • the rotor shaft 50 has three knurled sections 51 spaced apart from one another, two of which are covered in FIG. 5.
  • the knurled sections 51 are produced as part of a method for producing the rotor shaft 50 by providing a forming device corresponding to the forming device 1 (here, however, with nine teeth 10) and an unknurled shaft body. A relative movement of the shaft body and the shaping device 1 is carried out along the central axis 4, so that the knurling tools 5 generate the axially parallel knurled sections 51 spaced apart from one another by shaping. Unknurled sections 52 are located between the knurled sections 51.
  • the knurled sections 51 are only formed on a joining section 53 of the shaft 50 provided for forming a shaft-hub connection. Further sections 54, 55 of the rotor shaft 50 axially adjoin both ends of the joining section 53. The sections 54, 55 are stepped radially inward. In FIG. 5 it can also be seen that the rotor shaft 50 is a hollow shaft. FIG. 6 is a cross-sectional view of the rotor shaft 50 shown in FIG. 5.
  • the rotor shaft 50 has a radius rs in the joining section 53.
  • This radius rs is smaller than the radius TR shown in FIG. 3 and larger than the radius r ′ shown in FIG. 3. In other words, the radii rs and GK overlap.
  • each knurled section 51 has a multiplicity of knurls 53, a knurling angle being 90 ° in the present example.
  • the above-described selection of the radius and GK ensures that the knurls 53 reach further outward and extend further inward than the radius rs through simple reshaping.
  • FIG. 8 is a cross-sectional view of one embodiment of a rotor 100.
  • the rotor 100 comprises the rotor shaft 50 and a rotor core 101 formed by a laminated core.
  • the rotor shaft 50 and the rotor core 101 are positively and non-positively connected to one another by a shaft-hub connection formed in the joining section 53.
  • the rotor shaft 50 is inserted in the axial direction into the rotor core 101, so that the knurled sections 53 displace the material of the rotor core 101 by forming and / or cutting.
  • a multiplicity of permanent magnets (not shown), which form an even number, for example four or eight, rotor poles of the rotor 100 are arranged within the rotor core 101. It can be seen that the parity of the number of rotor poles is not equal to the number of knurled sections 51, which in the present case is three.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

Umformvorrichtung (1) zum Herstellen einer gerändelten Rotorwelle (50) für eine elektrische Maschine, umfassend ein Basiselement (2) mit einer eine Mittelachse (4) aufweisenden Durchgangsöffnung (3) für die Rotorwelle (50) und wenigstens drei Rändelwerkzeuge (5), die jeweils um eine tangential zur Mittelachse (4) verlaufende Drehachse (6) drehbar bezüglich des Basiselements (2) gelagert sind und ein in die Durchgangsöffnung (3) reichendes Rändelprofil (7) aufweisen.

Description

Umformvorrichtung zum Herstellen einer gerändelten Rotorwelle, Verfahren zur Herstellung einer Rotorwelle für eine elektrische Maschine, Rotorwelle, Rotor und Verfahren zur Vibrationsanalyse eines Rotors
Die Erfindung betrifft eine Umformvorrichtung zum Herstellen einer Rotorwelle für eine elektrische Maschine. Daneben betrifft die Erfindung ein Verfahren zur Herstellung einer Rotorwelle für eine elektrische Maschine, eine Rotorwelle, einen Rotor für eine elektrische Maschine und ein Verfahren zur Vibrationsanalyse eines Rotors.
Gerändelte Wellen sind beispielsweise aus dem Artikel von M. Lätzer et al. „Untersuchungen zum Übertragungsverhalten von Rändel Pressverbänden aus Stahl- Aluminium“, Forschung im Ingenieurwesen 79, Seiten 41 bis 65 (2015) bekannt. Der Artikel offenbart eine gerändelte Welle mit achsparallelen Rändelungen, die durch Umformen mittels eines Rändelrads oder mittels rekursiven Axialformens hergestellt sind. Mit einer solchen Welle kann durch einen schneidenden und/oder umformenden Fügevorgang eine formschlüssige Welle-Nabe-Verbindung realisiert werden.
Ferner offenbart das Dokument US 2014/0035419 A1 eine Welle mit vier voneinander beabstandeten Rändelabschnitten, die durch glatte Abschnitte der Welle voneinander beabstandet sind. Dazu wird ein zweiteiliges Rändelwerkzeug verwendet, in welches die Welle eingeführt wird. Die beiden Teile des Rändelwerkzeugs werden senkrecht zur axialen Erstreckung der Welle linear zusammengepresst, sodass die äußere Oberfläche der Welle entsprechend geformt wird.
Nachteilig an einer solchen Umformvorrichtung, welche die Rändelabschnitte einpresst, ist, dass eine Deformierung der Welle durch die senkrecht zur Axialrichtung ausgeübte Pressenkraft auftritt. Dies beeinflusst das Rotationsverhalten der Welle negativ, beispielsweise durch Unwuchten. Der Erfindung liegt die Aufgabe zugrunde, eine demgegenüber verbesserte, insbesondere deformationsarme und/oder aufwandsarm zu realisierende, Rotorwelle samt einer Möglichkeit zu ihrer Fertigung und Vibrationsanalyse anzugeben.
Diese Aufgabe wird erfindungsgemäß gelöst durch eine Umformvorrichtung zum Herstellen einer gerändelten Rotorwelle für eine elektrische Maschine, umfassend ein Basiselement mit einer eine Mittelachse aufweisenden Durchgangsöffnung für die Rotorwelle und wenigstens drei Rändelwerkzeuge, die jeweils um eine tangential zur Mittelachse verlaufende Drehachse drehbar bezüglich des Basiselements gelagert sind und ein in die Durchgangsöffnung reichendes Rändelprofil aufweisen.
Die Erfindung beruht auf der Überlegung, eine der Zylindersymmetrie der herzustellenden Rotorwelle entsprechende Anordnung von wenigstens drei Rändelwerkzeugen vorzunehmen, sodass die Rotorwelle durch eine Relativbewegung eines zu rändelnden Wellenkörpers durch die Durchgangsöffnung der Umformvorrichtung ausgebildet werden kann. Dazu sind die Rändelwerkzeuge jeweils um die tangential zur Mittelachse verlaufende Drehachse drehbar gelagert, um die Rändel durch eine Drehbewegung in den Wellenkörper einzubringen. Vorteilhafterweise können so Deformationen der Welle durch ein herkömmlicherweise durchgeführtes Einpressen der Rändel vermieden werden, sodass sich das Rotationsverhalten der Welle verbessert. Gleichsam wird eine einfach und kostengünstig aufbaubare Umformvorrichtung bereitgestellt, die eine kostengünstige Fertigung ermöglicht.
Bevorzugt sind bei der erfindungsgemäßen Umformvorrichtung genau drei Rändelwerkzeuge vorgesehen. Typischerweise sind höchstens zwölf, bevorzugt höchstens acht, besonders bevorzugt höchstens sechs Rändelwerkzeuge vorgesehen. Das Basiselement ist typischerweise plattenartig ausgebildet, beispielweise in Form einer Montageplatte. Die Rändelwerkzeuge sind bevorzugt als Rändelrollen ausgebildet. Es wird bei der erfindungsgemäßen Umformvorrichtung besonders bevorzugt, wenn die Rändelwerkzeuge in Umfangsrichtung um die Mittelachse äquidistant zueinander angeordnet sind. Durch eine solche symmetrische Anordnung der Rändelwerkzeuge neutralisieren sich die hohen Umformkräfte auf die Rotorwelle ge- genseitig, sodass eine Deformation der Rotorwelle praktisch vollständig vermieden wird. Bevorzugt sind die Rändelwerkzeuge um jeweils 360 N in Umfangsrichtung versetzt zueinander angeordnet, wobei N die Anzahl der Rändelwerkzeuge ist. Bei der besonders bevorzugten Ausgestaltung mit drei Rändelwerkzeugen sind die Rändelwerkzeuge mithin um jeweils 120° in Umfangsrichtung zueinander versetzt angeordnet.
In vorteilhafter Ausgestaltung der erfindungsgemäßen Umformvorrichtung kann ferner vorgesehen sein, dass das Rändelprofil mehrere Zähne umfasst. Die Zähne sind typischerweise in Umfangsrichtung um die Drehachse des Rändelwerkzeugs umlaufend ausgebildet. Bevorzugt sind wenigstens zwei, besonders bevorzugt wenigstens drei Zähne je Rändelprofil vorgesehen. Alternativ oder zusätzlich kann vorgesehen sein, dass höchstens zehn Zähne, bevorzugt höchstens acht Zähne, besonders bevorzugt höchstens sechs Zähne je Rändelprofil vorgesehen sind. In bevorzugter Weiterbildung ist vorgesehen, dass radiale Einbuchtungen zwischen einem Paar benachbarter Zähne entlang eines Radius, der größer als ein Radius der Durchgangsöffnung ist, und/oder radiale Erhebungen der Zähne entlang eines Radius, der kleiner als ein Radius der Durchgangsöffnung ist, verlaufen. Während des Umformens mittels der Umformvorrichtung wird dann Wellen- material in die Einbuchtungen hinein verdrängt. Dadurch wird erreicht, dass die auf der Rotorwelle ausgebildeten Rändel sich radial weiter nach außen erstrecken als Abschnitte der Oberfläche der Rotorwelle, auf die keine Rändelwerkzeuge einwirken. Zusätzlich verläuft ein jeweiliger zu formender Rändelabschnitt dann ebenfalls bogenförmig. Dies erleichtert das schneidende und/oder umformende Ausbil- den einer Welle-Nabe-Verbindung an der Rotorwelle. Eine mechanisch besonders robuste Ausgestaltung ergibt sich, wenn bei der erfindungsgemäßen Umformvorrichtung ein jeweiliges Rändelwerkzeug in einem Werkzeughalter angeordnet ist. Zweckmäßigerweise ist der Werkzeughalter am Basiselement befestigt. Insbesondere ist der Werkzeughalter mittels eines sich pa- rallel zur Mittelachse erstreckenden Befestigungselements, beispielsweise einer Schraube, am Basiselement befestigt.
Bevorzugt weist der Werkzeughalter ein feststehendes Achselement auf, welches das Rändelwerkzeug drehbar lagert. Dabei kann es sich beispielsweise um einen entlang der Drehachse verlaufenden Bolzen handeln.
Vorzugsweise weist der Werkzeughalter zwei Schenkelabschnitte auf, zwischen denen das Rändelwerkzeug angeordnet ist, und einen die Schenkelabschnitte verbindenden Verbindungsabschnitt. Der Werkzeughalter hat also im Wesentlichen eine U-Form. Zweckmäßigerweise erstreckt sich der Verbindungsabschnitt radial weiter außen als das Rändelwerkzeug. Vorzugsweise ist das Achselement in oder an den Schenkelabschnitten befestigt.
Es wird außerdem bevorzugt, wenn das Basiselement für jeden Werkzeughalter an einer Stirnseite, die senkrecht zur Mittelachse verläuft, eine Ausnehmung aufweist, in welcher der Werkzeughalter angeordnet ist. Die Ausnehmung kann mithin als mechanische Führung dienen, um die Position des Werkzeughalters - und damit mittelbar auch des Rändelwerkzeugs - zu definieren. Dabei ist es zweckmäßig, wenn der Werkzeughalter gegen eine Wand der Ausnehmung zur Aufnahme von radialen Umform kräften abgestützt ist. Die Wand erstreckt sich dabei typischerweise tangential zur Mittelachse. Alternativ oder zusätzlich kann vorgesehen sein, dass eine Querbewegung des Werkzeughalters durch zwei parallel zur Radialrichtung verlaufende Wände der Ausnehmung gehemmt ist. Vorzugsweise sind die Rändelwerkzeuge durch Drehen ausgebildet. Dies ermöglicht eine aufwandsarme Fertigung der Rändelwerkzeuge und erhört die Ermüdungswiderständigkeit aufgrund von geringen Kerbspannungen. Dadurch wird gleichsam das übertragbare Drehmoment erhöht.
Die der Erfindung zugrunde liegende Aufgabe wird ferner gelöst durch ein Verfah- ren zur Herstellung einer Rotorwelle für eine elektrische Maschine, umfassend folgende Schritte: Bereitstellen einer erfindungsgemäßen Umformvorrichtung, Bereitstellen eines Wellenkörpers, Durchführen einer Relativbewegung des Wellenkörpers und der Umformvorrichtung entlang der Mittelachse, sodass die Rändelwerkzeuge durch Umformen voneinander beabstandete achsparallele Rändelab- schnitte, die jeweils mehrere achsparallele Rändel umfassen, an der Oberfläche des Wellenkörpers ausbilden.
Vorzugsweise ist die Umformvorrichtung bei der Relativbewegung feststehend. Es kann aber auch der Wellenkörper bei der Relativbewegung feststehend sein. Es ist auch denkbar, bei der Relativbewegung sowohl die Umformvorrichtung als auch den Wellenkörper zu bewegen. Die Relativbewegung ist zweckmäßigerweise eine Linearbewegung.
Bevorzugt wird ein Wellenkörper verwendet, dessen Radius kleiner als der Radius der radialen Einbuchtungen zwischen einer Paar benachbarter Zähne ist und/oder größer als der Radius der radialen Erhebungen der Zähne ist. Mit anderen Worten können der Radius des Wellenkörpers und der Radius der radialen Erhebungen der Zähne überlappen. Die der Erfindung zugrunde liegende Aufgabe wird ferner gelöst durch eine Rotorwelle für eine elektrische Maschine, wobei die Rotorwelle durch das erfindungsgemäße Verfahren erhalten ist oder wenigstens drei voneinander beabstandete Rändelabschnitte aufweist, die jeweils mehrere achsparallele Rändel umfassen; wobei sich die Rändel radial weiter nach außen erstrecken als zwischen den Rändelab- schnitten liegende Abschnitte der Oberfläche der Rotorwelle. Die Rändelabschnitte erstrecken sich bevorzugt entlang eines Fügeabschnitts der Rotorwelle, der einen größeren Durchmesser als ein oder mehrere axial an den Fügeabschnitt anschließende weitere Abschnitte der Rotorwelle aufweist. Die Rotorwelle ist bevorzugt eine Hohlwelle. Die sich an den Fügeabschnitt anschließen- den weiteren Abschnitte sind typischerweise radial nach innen abgestuft.
Die der Erfindung zugrunde liegende Aufgabe wird ferner gelöst durch einen Rotor für eine elektrische Maschine, umfassend eine erfindungsgemäße Rotorwelle und einen auf der Rotorwelle drehfest angeordneten Rotorkern.
Der Rotorkern ist zweckmäßigerweise ein Blechpaket. Vorzugsweise weist der Rotorkern eine Vielzahl von Magnettaschen auf, in denen vorzugsweise Permanentmagnete angeordnet sind. Der Rotorkern ist bevorzugt durch die Rändelabschnitte form- und/oder kraftschlüssig mit der Rotorwelle verbunden.
Es ist bei dem erfindungsgemäßen Rotor ferner vorteilhaft, wenn der Rotor mehrere Rotorpole aufweist und die Parität der Anzahl der Rotorpole und der Anzahl der Rändelabschnitte unterschiedlich ist. Dadurch kann im Wege der Vibrationsanalyse mittels einer Spektralanalyse erkannt werden, ob sich Vibrationen auf Un- wuchten des Rotorkerns oder auf Unwuchten der Rotorwelle zurückführen lassen. Denn aufgrund der unterschiedlichen Parität erzeugen Unwuchten der Rotorpole bzw. der Rändelabschnitte spektrale Anteile unterschiedlicher Ordnung.
Die der Erfindung zugrunde liegende Aufgabe wird schließlich auch durch ein Ver- fahren zu Vibrationsanalyse eines Rotors gelöst, umfassend folgende Schritte: Bereitstellen eines erfindungsgemäßen Rotors, Rotieren des Rotors um seine Rotorwelle, Erfassen mechanischer Schwingungen wegen des Rotierens, Durchführen einer Spektralanalyse der erfassten mechanischen Schwingungen, wobei aus Spektralkomponenten gerader, insbesondere zweiter, Ordnung auf die Rotorpole als Vibrationsquelle und aus Spektralkomponenten ungerader, insbesondere dritter, Ordnung auf die Rotorwelle als Vibrationsquelle geschlossen wird. Weitere Vorteile und Einzelheiten der vorliegenden Erfindung ergeben sich aus den im folgenden beschriebenen Ausführungsbeispielen sowie anhand der Zeichnungen. Diese sind schematische Darstellungen und zeigen:
Fig. 1 eine perspektivische Ansicht eines Ausführungsbeispiels der erfindungsgemäßen Umformvorrichtung;
Fig. 2 eine Draufsicht der in Fig. 1 gezeigten Umformvorrichtung;
Fig. 3 eine geschnittene Darstellung eines Rändelwerkzeugs und eines Werkzeughalters der in Fig. 1 gezeigten Umformvorrichtung;
Fig. 4 eine perspektivische Detailansicht eines Rändelprofils des Rändelwerkzeug;
Fig. 5 eine perspektivische Ansicht eines Ausführungsbeispiels der erfindungsgemäßen Rotorwelle;
Fig. 6 eine geschnittene Darstellung der in Fig. 5 gezeigten Rotorwelle;
Fig. 7 eine Detailansicht eines Rändelabschnitts in Fig. 5 gezeigten Rotorwelle; und
Fig. 8 eine geschnittene Ansicht eines Ausführungsbeispiels des erfindungsgemäßen Rotors.
Fig. 1 und Fig. 2 zeigen ein Ausführungsbeispiel einer Umformvorrichtung 1 zum Herstellen einer gerändelten Rotorwelle für eine elektrische Maschine, wobei Fig. 1 eine perspektivische Ansicht und Fig. 2 eine Draufsicht ist.
Die Umformvorrichtung umfasst ein Basiselement 2 in Form einer Montageplatte. Das Basiselement weist eine Durchgangsöffnung 3 mit einer Mittelachse 4 für die Rotorwelle und drei als Drehteile ausgebildete Rändelwerkzeuge 5 auf. Die Rändelwerkzeuge 5 sind jeweils um eine tangential zur Mittelachse 4 verlaufende Drehachse 6 drehbar bezüglich des Basiselements 1 gelagert und weisen ein in die Durchgangsöffnung 3 reichendes Rändelprofil 7 auf. Die Rändelwerkzeuge 5 sind in Umfangsrichtung um die Mittelachse 4 äquidistant zueinander angeordnet, mithin um einen Winkel von 120° zueinander versetzt.
Fig. 3 ist eine geschnittene Darstellung eines der Rändelwerkzeuge 5 und eines Werkzeughalters 8 entlang einer Schnittebene A-A in Fig. 2. Fig. 4 ist eine per- spektivische Detailansicht des Rändelprofils 7.
Ersichtlich weist das Rändelprofil 7 mehrere Zähne 10 auf, wobei vorliegend exemplarisch fünf Zähne 10 vorgesehen sind. Zwischen einem jeweiligen Paar benachbarter Zähne 10 befinden sich radiale Einbuchtungen 11, die entlang eines Radius TR verlaufen, der größer als ein Radius der Durchgangsöffnung 3 ist. Entsprechende radial äußere Erhebungen 12 der Zähne verlaufen entlang eines Radius Gk, der kleiner als ein Radius der Durchgangsöffnung 3 ist. Dadurch wird sichergestellt, dass sich die Rändel bei der zu fertigenden Rotorwelle weiter nach außen erstrecken als nicht von den Rändelwerkzeuge 5 erfasste Bereiche der Ro- torwelle, indem Wellenmaterial, in das Zähne 10 einwirken, radial nach außen bis zu den Einbuchtungen 11 hin verdrängt wird.
Wieder mit Bezug zu Fig. 1 und Fig. 2 ist ein jeweiliges Rändelwerkzeug 5 in einem der insgesamt drei Werkzeughalter 8 angeordnet. Der Werkzeughalter 8 ist mittels eines Befestigungsmittels 13, hier exemplarisch einer Schraube, am Basiselement befestigt. Der Werkzeughalter 8 weist ein feststehendes Achselement 14 (siehe auch Fig. 3) auf, welches das Rändelwerkzeug 5 drehbar lagert. Vorliegend ist das Achselement 14 exemplarisch durch ein Bolzen ausgebildet. Der Werkzeughalter 8 selbst weist zwei Schenkelabschnitte 15, 16 auf, zwischen denen das Rändelwerkzeug 5 angeordnet ist, und einen die Schenkelabschnitte 15, 16 verbindenden Verbindungsabschnitt 17. Dabei durchdringt das Befestigungsmittel 13 den Verbindungsabschnitt 17. Der Werkzeughalter 8 hat mithin eine U-Form, wobei das Achselement 14 an den Schenkelabschnitten 15,
16 befestigt ist. Im Basiselement 2 ist daneben für jeden Werkzeughalter 8 an einer Stirnseite 19, die senkrecht zur Mittelachse 4 verläuft, eine Ausnehmung 18 vorgesehen, in welcher der Werkzeughalter 8 angeordnet ist. Die Ausnehmung 18 dient dabei als mechanische Führung, um die Position des Werkzeughalters 8 und damit mittelbarauch die Position des Rändelwerkzeugs 5 zu definieren. Der Werkzeughalter 8 wird dabei gegen eine Wand 20 der Ausnehmung 18 abgestützt, die tangential zu Mittelachse 4 verläuft, um radiale Umformkräfte aufzunehmen. Au- ßerdem werden Querbewegung des Werkzeughalters 8 durch zwei parallel zur Radialrichtung verlaufende Wände 21, 22 gehemmt.
Fig. 5 ist eine perspektivische Ansicht eines Ausführungsbeispiels einer Rotorwelle 50.
Die Rotorwelle 50 weist drei voneinander beabstandete Rändelabschnitte 51 auf, von denen in Fig. 5 zwei verdeckt sind. Die Rändelabschnitte 51 werden im Rahmen eines Verfahren zur Herstellung der Rotorwelle 50 durch Bereitstellung einer der Umformvorrichtung 1 entsprechenden Umformvorrichtung (hier jedoch mit neun Zähnen 10) und eines ungerändelten Wellenkörpers erzeugt. Dabei wird eine Relativbewegung des Wellenkörpers und der Umformvorrichtung 1 entlang der Mittelachse 4 durchgeführt wird, sodass die Rändelwerkzeuge 5 durch Umformen die voneinander beabstandeten achsparallelen Rändelabschnitte 51 erzeugen. Zwischen den Rändelabschnitten 51 befinden sich ungerändelte Abschnitte 52.
Die Rändelabschnitte 51 sind dabei lediglich auf einem zur Ausbildung einer Welle-Nabe-Verbindung vorgesehenen Fügeabschnitt 53 der Welle 50 ausgebildet. An beide Enden des Fügeabschnitts 53 schließen sich axial weitere Ab- schnitte 54, 55 der Rotorwelle 50 an. Die Abschnitte 54, 55 sind radial nach innen gestuft. In Fig. 5 ist ferner zu erkennen, dass die Rotorwelle 50 eine Hohlwelle ist. Fig. 6 ist eine geschnittene Darstellung der in Fig. 5 gezeigten Rotorwelle 50.
In ihren ungerändelten Abschnitten 52 weist die Rotorwelle 50 im Fügeabschnitt 53 ein Radius rs auf. Dieser Radius rs ist kleiner als der in Fig. 3 gezeigte Radius TR und größer als der in Fig. 3 gezeigt Radius r«. Mit anderen Worten überlappen sich die Radii rs und GK.
Fig. 7 ist eine Detailansicht eines Rändelabschnitts 51. Ersichtlich weist jeder Rändelabschnitt 51 eine Vielzahl von Rändeln 53 auf, wobei ein Rändelwinkel im vorliegenden Beispiel 90° beträgt. Durch die zuvor beschriebene Wahl der Radii und GK wird erreicht, dass durch bloßes Umformen die Rän- del 53 weiter nach außen reichen und sich weiter nach innen erstrecken als der Radius rs.
Fig. 8 ist eine geschnittene Ansicht eines Ausführungsbeispiels eines Rotors 100.
Der Rotor 100 umfasst die Rotorwelle 50 und einen durch ein Blechpaket ausgebildeten Rotorkern 101. Die Rotorwelle 50 und der Rotorkern 101 sind durch eine im Fügeabschnitt 53 ausgebildete Welle-Nabe-Verbindung form- und kraftschlüssig miteinander verbunden. Zum Herstellen der Welle-Nabe-Verbindungen wird die Rotorwelle 50 in Axialrichtung in den Rotorkern 101 eingeführt, sodass die Rändelabschnitte 53 durch Umformen und/oder Schneiden Material des Rotorkerns 101 verdrängen.
Innerhalb des Rotorkerns 101 sind eine Vielzahl von Permanentmagneten (nicht gezeigt) angeordnet, die eine gerade Anzahl, beispielsweise vier oder acht, Rotorpole des Rotors 100 ausbilden. Ersichtlich ist die Parität der Anzahl der Rotorpole ungleich der Anzahl der Rändelabschnitte 51 , welche vorliegend drei beträgt.
Beim rotierenden Betrieb des Rotors 100 können so im Rahmen eines Verfahrens zur Vibrationsanalyse mechanische Schwingungen während des Rotierens erfasst werden, welche einer Spektralanalyse unterzogen werden. Aufgrund der unterschiedlichen Parität kann anhand von Spektralkomponenten zweiter Ordnung auf die Rotorpole als Vibrationsquelle und aus Spektralkomponenten dritter Ordnung auf die Rotorwelle 50 als Vibrationsquelle geschlossen werden.

Claims

Patentansprüche
1. Umformvorrichtung (1) zum Herstellen einer gerändelten Rotorwelle (50) für eine elektrische Maschine, umfassend ein Basiselement (2) mit einer eine Mittel- achse (4) aufweisenden Durchgangsöffnung (3) für die Rotorwelle (50) und wenigstens drei Rändelwerkzeuge (5), die jeweils um eine tangential zur Mittelachse (4) verlaufende Drehachse (6) drehbar bezüglich des Basiselements (2) gelagert sind und ein in die Durchgangsöffnung (3) reichendes Rändelprofil (7) aufweisen.
2. Umformvorrichtung nach Anspruch 1, wobei die Rändelwerkzeuge (5) in
Umfangsrichtung um die Mittelachse (4) äquidistant zueinander angeordnet sind.
3. Umformvorrichtung nach Anspruch 1 oder 2, wobei das Rändelprofil (7) mehrere Zähne (10) aufweist.
4. Umformvorrichtung nach Anspruch 3, wobei radiale Einbuchtungen (11) zwischen einem Paar benachbarter Zähne (11) entlang eines Radius (m), der größer als ein Radius der Durchgangsöffnung (3) ist, und/oder radiale Erhebungen (12) der Zähne (10) entlang eines Radius (GK), der kleiner als ein Radius der Durchgangsöffnung (3) ist, verlaufen.
5. Umformvorrichtung nach einem der vorhergehenden Ansprüche, wobei ein jeweiliges Rändelwerkzeug (5) in einem Werkzeughalter (8) angeordnet ist.
6. Umformvorrichtung nach Anspruch 5, wobei der Werkzeughalter (8) ein feststehendes Achselement (14) aufweist, welches das Rändelwerkzeug (5) drehbar lagert.
7. Umformvorrichtung nach Anspruch 5 oder 6, wobei der Werkzeughalter (8) zwei Schenkelabschnitte (15, 16), zwischen denen das Rändelwerkzeug (5) angeordnet ist, und einen die Schenkelabschnitte (15, 16) verbindenden Verbindungsabschnitt (17) aufweist.
8. Umformvorrichtung nach einem der Ansprüche 5 bis 7, wobei das Basiselement (2) für jeden Werkzeughalter (8) an einer Stirnseite (19), die senkrecht zur Mittelachse (4) verläuft, eine Ausnehmung (18) aufweist, in welcher der Werk- zeughalter (8) angeordnet ist.
9. Umformvorrichtung nach Anspruch 7 und 8, wobei der Werkzeughalter (8) gegen eine Wand (20) der Ausnehmung (18) zur Aufnahme von radialen Umformkräften abgestützt ist und/oder eine Querbewegung des Werkezughalters (8) durch zwei parallel zur Radialrichtung verlaufende Wände (21 , 22) der Ausnehmung (18) gehemmt ist.
10. Verfahren zur Herstellung einer Rotorwelle (50) für eine elektrische Maschine, umfassend folgende Schritte: - Bereitstellen einer Umformvorrichtung (1 ) nach einem der vorhergehenden Ansprüche,
- Bereitstellen eines Wellenkörpers,
- Durchführen einer Relativbewegung des Wellenkörpers und der Umformvorrichtung (1) entlang der Mittelachse (4), sodass die Rändelwerkzeuge (5) durch Um- formen voneinander beabstandete achsparallele Rändelabschnitte (51 ), die jeweils mehrere achsparallele Rändel (53) umfassen, an der Oberfläche des Wellenkörpers ausbilden.
11. Rotorwelle (50) für eine elektrische Maschine, wobei die Rotorwelle (50) - durch ein Verfahren nach Anspruch 10 erhalten ist oder
- wenigstens drei voneinander beabstandete Rändelabschnitte (51) aufweist, die jeweils mehrere achsparallele Rändel (53) umfassen; wobei sich die Rändel (53) radial weiter nach außen erstrecken als zwischen den Rändelabschnitten (53) liegende Abschnitte (52) der Oberfläche der Rotorwelle (50).
12. Rotor (100) für eine elektrische Maschine, umfassend eine Rotorwelle (50) nach Anspruch 11 und einen auf der Rotorwelle (50) drehfest angeordneten Rotorkern (101).
13. Rotor nach Anspruch 12, wobei der Rotor (100) mehrere Rotorpole aufweist und die Parität der Anzahl der Rotorpole und der Anzahl der Rändelabschnitte (51) unterschiedlich ist.
14. Verfahren zur Vibrationsanalyse eines Rotors (100), umfassend folgende Schritte:
- Bereitstellen eines Rotors (100) nach Anspruch 13,
- Rotieren des Rotors (100) um seine Rotorwelle (50),
- Erfassen mechanischer Schwingungen während des Rotierens,
- Durchführen einer Spektralanalyse der erfassten mechanischen Schwingungen, wobei aus Spektralkomponenten gerader Ordnung auf die Rotorpole als Vibrationsquelle und aus Spektralkomponenten ungerader Ordnung auf die Rotorwelle (50) als Vibrationsquelle geschlossen wird.
PCT/EP2021/060618 2020-04-29 2021-04-23 Umformvorrichtung zum herstellen einer gerändelten rotorwelle, verfahren zur herstellung einer rotorwelle für eine elektrische maschine, rotorwelle, rotor und verfahren zur vibrationsanalyse eines rotors WO2021219498A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102020111680.2A DE102020111680A1 (de) 2020-04-29 2020-04-29 Umformvorrichtung zum Herstellen einer gerändelten Rotorwelle, Verfahren zur Herstellung einer Rotorwelle für eine elektrische Maschine, Rotorwelle, Rotor und Verfahren zur Vibrationsanalyse eines Rotors
DE102020111680.2 2020-04-29

Publications (1)

Publication Number Publication Date
WO2021219498A1 true WO2021219498A1 (de) 2021-11-04

Family

ID=75674832

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/060618 WO2021219498A1 (de) 2020-04-29 2021-04-23 Umformvorrichtung zum herstellen einer gerändelten rotorwelle, verfahren zur herstellung einer rotorwelle für eine elektrische maschine, rotorwelle, rotor und verfahren zur vibrationsanalyse eines rotors

Country Status (2)

Country Link
DE (1) DE102020111680A1 (de)
WO (1) WO2021219498A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021205713A1 (de) 2021-05-31 2022-12-01 Valeo Eautomotive Germany Gmbh Rotor für eine elektrische Maschine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1580975A (en) * 1924-01-03 1926-04-13 Retterath Valentin Device for making corrugated cylinders
DE2213453A1 (de) * 1972-03-20 1973-10-11 Vni I Proektro K I Metall Mash Verfahren zum fertigen von metallerzeugnissen mit laengsrippen
JPS55145847U (de) * 1979-04-09 1980-10-20
JPS62230341A (ja) * 1986-03-28 1987-10-09 Toshiba Corp 永久磁石付回転子の製造方法
US20140035419A1 (en) 2012-08-03 2014-02-06 Kabushiki Kaisha Yaskawa Denki Rotor, rotating electrical machine, and manufacturing method of the rotor
JP2020018036A (ja) * 2018-07-23 2020-01-30 ミネベアミツミ株式会社 モータ

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD117304A1 (de) 1975-01-17 1976-01-05
DE29901518U1 (de) 1999-01-29 1999-05-12 Kuhnke GmbH, 23714 Malente Rändelwerkzeug
DE19954066C1 (de) 1999-10-19 2001-10-11 Rotec Gmbh Pruefsysteme Fuer D Verfahren zur Ordnungs-Analyse von Schwingungen eines rotierenden Teiles, insbesondere einer Maschine
KR100695311B1 (ko) 2000-09-25 2007-03-14 나카야마 고교 가부시키가이샤 금속관의 냉간축경 롤 성형방법 및 이것에 의하여 성형된금속관
JP4423085B2 (ja) 2004-03-31 2010-03-03 株式会社ミツバ 被嵌着物が嵌着される軸線方向の条痕が形成された軸及び条痕形成方法
MX2012003886A (es) 2009-09-29 2012-04-20 Sumitomo Metal Ind Laminador de mandril de rodillos multiples y metodo para producir tubos sin costuras.
DE102010039008A1 (de) 2010-08-06 2012-02-09 Hirschvogel Umformtechnik Gmbh Rotor und Herstellungsverfahren hierzu
DE102014017407A1 (de) 2014-11-26 2016-06-02 Thyssenkrupp Ag Verfahren zur Herstellung einer profilierten Hohlwelle für eine teleskopierbare Lenkwelle und teleskopierbare Lenkwelle
DE102016215023B4 (de) 2016-08-11 2023-02-02 Thyssenkrupp Ag Verfahren zur Herstellung einer längenveränderbaren Lenkwelle und längenveränderbare Lenkwelle
DE102017115229B4 (de) 2017-07-07 2019-11-28 Thyssenkrupp Ag Verfahren zur Herstellung eines Rotors für einen Elektromotor und mit diesem Verfahren hergestellter Rotor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1580975A (en) * 1924-01-03 1926-04-13 Retterath Valentin Device for making corrugated cylinders
DE2213453A1 (de) * 1972-03-20 1973-10-11 Vni I Proektro K I Metall Mash Verfahren zum fertigen von metallerzeugnissen mit laengsrippen
JPS55145847U (de) * 1979-04-09 1980-10-20
JPS62230341A (ja) * 1986-03-28 1987-10-09 Toshiba Corp 永久磁石付回転子の製造方法
US20140035419A1 (en) 2012-08-03 2014-02-06 Kabushiki Kaisha Yaskawa Denki Rotor, rotating electrical machine, and manufacturing method of the rotor
JP2020018036A (ja) * 2018-07-23 2020-01-30 ミネベアミツミ株式会社 モータ

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
M. LÄTZER ET AL.: "Untersuchungen zum Übertragungsverhalten von Rändel Pressverbänden aus Stahl-Aluminium", FORSCHUNG IM INGENIEURWESEN, vol. 79, 2015, pages 41 - 65
MOHAMMED A HASSAN ET AL: "Quadratic-nonlinearity power-index spectrum and its application in condition based maintenance (CBM) of helicopter drive trains", 2013 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC), IEEE, 13 May 2012 (2012-05-13), pages 1456 - 1460, XP032196996, ISSN: 1091-5281, ISBN: 978-1-4673-4621-4, DOI: 10.1109/I2MTC.2012.6229264 *

Also Published As

Publication number Publication date
DE102020111680A1 (de) 2021-11-04

Similar Documents

Publication Publication Date Title
EP3533134B1 (de) Verfahren und vorrichtung zum positionieren und spannen von drahtenden für elektrische maschinen
EP2214862B1 (de) Welle-nabe-bauteil sowie verfahren zur herstellung eines derartigen bauteils
DE60211805T2 (de) Statorkern für ein Magnetlager und Verfahren zu seiner Herstellung
DE112007000201T5 (de) Geschlitzte Kerne für einen Motorstator, Motorstator, Synchronmotor des Permanentmagnetentyps, und Stanzverfahren durch Stanzstempel für geschlitzte Kerne
DE10016002A1 (de) Rotierender Magnetfeldmotor
EP3189582B1 (de) Rotor einer elektrischen maschine, elektrische maschine und verfahren zum herstellen eines rotors einer elektrischen maschine
DE112014007129T5 (de) Statorkern für eine elektrische Rotationsmaschine, elektrische Rotationsmaschine und Verfahren zur Herstellung einer elektrischen Rotationsmaschine
WO2017032536A1 (de) Rotor für eine permanenterregte elektrische maschine
EP2525448B1 (de) Schleifringeinheit
DE2845665A1 (de) Elektrische maschine
EP2790295A1 (de) Rotor für einen Reluktanzmotor, Verfahren zum Herstellen eines Rotors für einen Reluktanzmotor sowie elektrische Maschine, insbesondere ein Reluktanzmotor
DE102019204960B4 (de) Rotor für eine elektrische Maschine
DE102007032138A1 (de) Rotor für eine elektrische Maschine sowie Verfahren zur Befestigung von Lamellen- oder Rotorblechpaketen auf einer Rotorwelle oder einem Rotorträger eines Rotors
WO2021219498A1 (de) Umformvorrichtung zum herstellen einer gerändelten rotorwelle, verfahren zur herstellung einer rotorwelle für eine elektrische maschine, rotorwelle, rotor und verfahren zur vibrationsanalyse eines rotors
DE102018108615A1 (de) Fingerelement, Positioniereinheit, Positioniervorrichtung und Positionierverfahren zum Positionieren wenigstens eines Leiterendes
DE102007013738B4 (de) Elektrische Maschine mit Klauenpolstator
DE20009380U1 (de) Planetengetriebeanordnung
DE102010063086A1 (de) Rotor für eine elektrische Maschine
EP2144350A2 (de) Rotor für einen Elektromotor sowie Verfahren zu seiner Herstellung
DE102011121531A1 (de) Ringförmiges Rotorblech mit Innenkontur für einen Elektromotor
EP1850463B1 (de) Verfahren und Vorrichtung zur Herstellung von Schweißverbindungen an Leitern einer elektrischen Maschine
EP1784897A1 (de) Schleifkörperhalter
DE2418242B2 (de) Elektrische Antriebseinheit, beispielsweise zum Antrieb von Trommelwaschmaschinen, bestehend aus zwei baulich zusammengefaßten Antriebsmotoren
DE102021209227A1 (de) Modulator einer Magnetgetriebe-Vorrichtung
DE10203890A1 (de) Dauermagnet-Gleichstrommotor mit Bürsten

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21721484

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21721484

Country of ref document: EP

Kind code of ref document: A1