WO2021217733A1 - 电压转换电路、电压转换方法及显示装置 - Google Patents
电压转换电路、电压转换方法及显示装置 Download PDFInfo
- Publication number
- WO2021217733A1 WO2021217733A1 PCT/CN2020/090418 CN2020090418W WO2021217733A1 WO 2021217733 A1 WO2021217733 A1 WO 2021217733A1 CN 2020090418 W CN2020090418 W CN 2020090418W WO 2021217733 A1 WO2021217733 A1 WO 2021217733A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- voltage
- diode
- switch module
- resistor
- module
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/34—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
- G09G3/36—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
- G09G3/3611—Control of matrices with row and column drivers
- G09G3/3696—Generation of voltages supplied to electrode drivers
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/006—Electronic inspection or testing of displays and display drivers, e.g. of LED or LCD displays
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/02—Conversion of dc power input into dc power output without intermediate conversion into ac
- H02M3/04—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
- H02M3/06—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
- H02M3/07—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0003—Details of control, feedback or regulation circuits
- H02M1/0009—Devices or circuits for detecting current in a converter
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0048—Circuits or arrangements for reducing losses
- H02M1/0054—Transistor switching losses
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
Definitions
- the invention relates to the field of display technology, in particular to a voltage conversion circuit, a voltage conversion method and a display device.
- TFT-LCD thin film transistor liquid crystal display
- VAA analog power supply voltage
- VDD digital power supply voltage
- VGH gate turn-on voltage
- VGL gate A variety of voltages including the extremely closed voltage VGL.
- the currents of VAA and VDD are relatively large, which are usually generated by a boost (Boost) circuit or a buck (Buck) circuit, while the corresponding currents of VGH and VGL are relatively small.
- Boost boost
- VGH buck
- Charge Pump Charge Pump
- the VGH current is not always in a heavy load state. At different stages, the VGH current will increase or decrease. Usually use one-level or two-level capacitor charge Pump is then stepped down by a switch tube to generate VGH, and the main power consumption lies in the switch tube. For large-size panels, the current is relatively large, especially in the case of heavy load, the temperature of the switch tube will exceed the specified range, and the loss needs to be reduced at this time.
- the current voltage conversion circuit has the technical problems that the switch tube in the charge pump circuit has excessive loss and high temperature when the working current is large.
- Embodiments of the present invention provide a voltage conversion circuit, a voltage conversion method, and a display device, which are used to solve the problem of excessive loss and high temperature of the switch tube in the charge pump circuit in the current voltage conversion circuit. problem.
- the present invention provides a voltage conversion circuit, including: the boost circuit includes an inductor IL, a first capacitor C IN , a second capacitor C OUT and a first diode D1.
- the charge pump circuit includes a second diode D2, a third diode D3, and a third capacitor C CP
- the control circuit includes a first switch module, a second switch module, an electrical detection module, and a pulse module PM;
- a first end of the inductance IL of the access input voltage V IN and is connected to a first terminal of the first capacitor C IN, and a second terminal connected to the inductance IL of the first diode D1 and the
- the first terminal of the second switch module, the second terminal of the second switch module outputs the analog power supply voltage VAA, and are respectively connected to the first terminal of the second capacitor C OUT and the second diode D2, so
- the second switch module is used to adjust the analog power supply voltage VAA, the second end of the second diode D2 is connected to the first end of the third diode D3, and the second end of the third diode D3 is
- the second terminal is respectively connected to the third capacitor C CP and the first terminal of the first switch module, the second terminal of the first switch module outputs the gate-on voltage VGH, and the first switch module is used to reduce Generating a gate turn-on voltage VGH, and the second ends of the first capacitor C IN , the first diode D1, the second capacitor C OUT
- the pulse module PM is connected to the second end of the second diode D2, the pulse module is used to provide a pulse voltage, the first end of the electrical detection module is connected to the first switch module, and the electrical The second end of the sexual detection module is connected to the second end of the second switch module or the pulse module PM;
- the electrical detection module detects the first switch module, and releases an adjustment signal according to the detection result, so that the second switch module or the pulse module is adjusted so that the analog power supply voltage VAA or When the pulse voltage is reduced, the voltage drop in the first switch module is reduced accordingly to keep the gate turn-on voltage VGH unchanged.
- the first switch module includes: a third resistor R3, a fourth resistor R4, a first comparator U1, and a transistor Q1, and the second end of the transistor Q1 is connected to the fourth resistor
- the first end of R4, the second end of the fourth resistor R4 is connected to the first end of the third resistor R3, the second end of the third resistor R3 is grounded, and the control end of the transistor Q1 is connected to the
- the output terminal of the first comparator U1 the non-inverting input terminal of the first comparator U1 is connected to the first reference voltage CP_Ref
- the inverting input terminal of the first comparator U1 is connected to the second reference voltage CP_Ref of the fourth resistor R4. end.
- the electrical detection module includes an electrical detector P1 and a voltage regulator VM.
- the first end of the electrical detector P1 is connected to the control end of the transistor Q1, and the second end of the electrical detector P1 is connected to the voltage regulator VM. At the first end, the second end of the voltage regulator VM is connected to the pulse module PM.
- the second switch module includes: a first resistor R1, a second resistor R2, a second comparator U2, a driver DV, and a MOS transistor Q2.
- the second end of the MOS transistor Q2 is directly Or indirectly connected to the first end of the first resistor R1, the second end of the first resistor R1 is connected to the first end of the second resistor R2, and the second end of the second resistor R2 is grounded.
- the inverting input terminal of the second comparator U2 is connected to the second terminal of the first resistor R1, the non-inverting input terminal of the second comparator U2 is connected to the second reference voltage Boost_Ref, and the second comparator U2
- the output terminal of is connected to the first terminal of the driver DV, and the second terminal of the driver DV is connected to the control terminal of the MOS transistor Q2.
- the electrical property detection module includes an electrical property detector P1, a voltage regulator VM, and a register Rg; the first switch module includes a transistor Q1.
- the first terminal of the electrical detector P1 is connected to the control terminal of the transistor Q1, and the second terminal of the electrical detector P1 is connected to the first terminal of the voltage regulator VM.
- Terminal, the second terminal of the voltage regulator VM is connected to the first terminal of the register Rg, the second terminal of the register Rg is connected to the second terminal of the MOS transistor Q2, and the third terminal of the register Rg is connected to The first end of the first resistor R1.
- the second end of the first diode D1, the first end of the second diode D2, and the first end of the third diode D3 are conductive
- the first end of the first diode D1, the second end of the second diode D2, and the second end of the third diode D3 are cut-off ends.
- the present invention provides a voltage conversion method, which is applied to the above-mentioned voltage conversion circuit, and includes the following steps:
- the analog power supply voltage VAA passes through the charge pump circuit, and then is stepped down by the first switch module to generate the gate turn-on voltage VGH;
- the electrical detection module detects the current of the control terminal of the transistor Q1 in the first switch module and compares it with a preset current. When the detection current is greater than the preset current, the electrical detection module The register Rg or the pulse module PM is adjusted to reduce the voltage drop across the first and second ends of the transistor Q1 in the first switch module.
- the present invention also provides a display device including the voltage conversion circuit as described above.
- the display device includes: the boost circuit includes an inductor IL, a first capacitor C IN , a second capacitor C OUT, and a second capacitor C OUT.
- a diode D1 the charge pump circuit includes a second diode D2, a third diode D3, and a third capacitor C CP
- the control circuit includes a first switch module, a second switch module, an electrical detection module, Pulse module PM;
- a first end of the inductance IL of the access input voltage V IN and is connected to a first terminal of the first capacitor C IN, and a second terminal connected to the inductance IL of the first diode D1 and the The first end of the second switch module, the second end of the second switch module outputs the analog power supply voltage VAA, and are respectively connected to the first end of the second capacitor C OUT and the second diode D2, so
- the second switch module is used to adjust the analog power supply voltage VAA, the second end of the second diode D2 is connected to the first end of the third diode D3, and the second end of the third diode D3 is
- the second terminal is respectively connected to the third capacitor C CP and the first terminal of the first switch module, the second terminal of the first switch module outputs the gate-on voltage VGH, and the first switch module is used to reduce Generating a gate turn-on voltage VGH, and the second ends of the first capacitor C IN , the first diode D1, the second capacitor C OUT and the
- the pulse module PM is connected to the second end of the second diode D2, the pulse module is used to provide a pulse voltage, the first end of the electrical detection module is connected to the first switch module, and the electrical The second end of the sexual detection module is connected to the second end of the second switch module or the pulse module PM;
- the electrical detection module detects the first switch module, and releases an adjustment signal according to the detection result, so that the second switch module or the pulse module is adjusted so that the analog power supply voltage VAA or When the pulse voltage is reduced, the voltage drop in the first switch module is reduced accordingly to keep the gate turn-on voltage VGH unchanged.
- the first switch module includes: a third resistor R3, a fourth resistor R4, a first comparator U1, and a transistor Q1, and the second end of the transistor Q1 is connected to the fourth resistor
- the first end of R4, the second end of the fourth resistor R4 is connected to the first end of the third resistor R3, the second end of the third resistor R3 is grounded, and the control end of the transistor Q1 is connected to the
- the output terminal of the first comparator U1 the non-inverting input terminal of the first comparator U1 is connected to the first reference voltage CP_Ref
- the inverting input terminal of the first comparator U1 is connected to the second reference voltage CP_Ref of the fourth resistor R4. end.
- the electrical detection module includes an electrical detector P1 and a voltage regulator VM.
- the first end of the electrical detector P1 is connected to the control end of the transistor Q1, and the second end of the electrical detector P1 is connected to the voltage regulator VM. At the first end, the second end of the voltage regulator VM is connected to the pulse module PM.
- the second switch module includes: a first resistor R1, a second resistor R2, a second comparator U2, a driver DV, and a MOS transistor Q2.
- the second end of the MOS transistor Q2 is directly Or indirectly connected to the first end of the first resistor R1, the second end of the first resistor R1 is connected to the first end of the second resistor R2, and the second end of the second resistor R2 is grounded.
- the inverting input terminal of the second comparator U2 is connected to the second terminal of the first resistor R1, the non-inverting input terminal of the second comparator U2 is connected to the second reference voltage Boost_Ref, and the second comparator U2
- the output terminal of is connected to the first terminal of the driver DV, and the second terminal of the driver DV is connected to the control terminal of the MOS transistor Q2.
- the electrical property detection module includes an electrical property detector P1, a voltage regulator VM, and a register Rg; the first switch module includes a transistor Q1.
- the first terminal of the electrical detector P1 is connected to the control terminal of the transistor Q1, and the second terminal of the electrical detector P1 is connected to the first terminal of the voltage regulator VM.
- Terminal, the second terminal of the voltage regulator VM is connected to the first terminal of the register Rg, the second terminal of the register Rg is connected to the second terminal of the MOS transistor Q2, and the third terminal of the register Rg is connected to The first end of the first resistor R1.
- the second end of the first diode D1, the first end of the second diode D2, and the first end of the third diode D3 are conductive
- the first end of the first diode D1, the second end of the second diode D2, and the second end of the third diode D3 are cut-off ends.
- the present invention adds an electrical detection module which is arranged between the first switch module and the second switch module or is arranged between the first switch module and the pulse module Between PM, the current of the control terminal of the transistor Q1 in the first switch module is detected, the register Rg in the second switch module or the pulse module PM is adjusted, and when the register Rg is adjusted, the second The duty cycle of the switch module is thus realized to reduce the analog power supply voltage VAA, the voltage drop between the first and second terminals of the transistor Q1 in the first switch module, the output gate turn-on voltage does not change;
- the pulse module PM keep the pulse frequency constant and reduce the pulse voltage amplitude, so as to reduce the voltage drop of the first and second terminals of the transistor Q1 in the first switch module, and the output gate turn-on voltage VGH is not Therefore, both methods realize the reduction of the voltage drop of the first and second terminals of the triode in the first switch module, that is, the technical problems of excessive loss and excessive temperature in the first switch module are improved.
- Fig. 1 is a circuit diagram of a voltage conversion circuit in an embodiment of the present invention
- Figure 2 is a circuit diagram of a voltage conversion circuit in an embodiment of the present invention.
- Fig. 3 is a flowchart of a voltage conversion method in an embodiment of the present invention.
- first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, the features defined with “first” and “second” may explicitly or implicitly include one or more of the features. In the description of the present invention, “plurality” means two or more than two, unless otherwise specifically defined.
- the current voltage conversion circuit has the technical problems that the switch tube in the charge pump circuit has excessive loss and high temperature when the working current is large.
- embodiments of the present invention provide a voltage conversion circuit, a voltage conversion method, and a display device. Detailed descriptions are given below.
- an embodiment of the present invention provides a voltage conversion circuit
- the voltage conversion circuit includes a boost circuit, a charge pump circuit, and a control circuit
- the boost circuit includes an inductor IL, a first capacitor C IN , and a second capacitor C OUT And a first diode D1
- the charge pump circuit includes a second diode D2, a third diode D3, and a third capacitor C CP
- the control circuit includes a first switch module, a second switch module, and electrical detection Module, pulse module PM
- the first end of the inductor IL is connected to the input voltage V IN and connected to the first end of the first capacitor C IN
- the second end of the inductor IL is connected to the first and second terminals
- the pole tube D1 and the first terminal of the second switch module, the second terminal of the second switch module outputs the analog power supply voltage VAA, and are respectively connected to the second capacitor C OUT and the second diode D2
- the second switch module is used to adjust the analog power supply voltage VAA
- the pulse module PM is connected to the second end of the second diode D2, the pulse module is used to provide a pulse voltage, the first end of the electrical detection module is connected to the first switch module, and the electrical The second end of the electrical property detection module is connected to the second end of the second switch module or the pulse module PM; wherein, the electrical property detection module detects the first switch module and releases it according to the detection result Adjust the signal so that the second switch module or the pulse module is adjusted to reduce the analog power supply voltage VAA or the pulse voltage, and the voltage drop in the first switch module is reduced accordingly to maintain all The gate turn-on voltage VGH remains unchanged.
- the present invention adds an electrical detection module which is arranged between the first switch module and the second switch module or is arranged between the first switch module and the pulse module Between PM, the current at the control terminal of the transistor Q1 of the first switch module is detected, converted into a corresponding voltage value, and the register Rg in the second switch module or the pulse module PM is adjusted to reduce the first switch module.
- the voltage drop between the first and second terminals of the transistor Q1 in a switch module, the output gate turn-on voltage VGH remains unchanged, that is, the technical problem of excessive loss and excessive temperature in the first switch module is improved.
- the first capacitor C IN is used to stabilize the input voltage
- the first diode D1 is used to avoid sudden voltage changes
- the second capacitor C OUT is used to stabilize the output voltage
- the third capacitor C CP is used to stabilize the output voltage.
- the second diode D2 and the third diode D3 are used for unidirectional conduction.
- the first switch module includes: a third resistor R3, a fourth resistor R4, a first comparator U1, and a transistor Q1.
- the first end of the transistor Q1 is connected to the second end of the third diode D3, the second end of the transistor Q1 outputs the gate-on voltage VGH, and is connected to the first end of the fourth resistor R4 ,
- the second end of the fourth resistor R4 is connected to the first end of the third resistor R3, the second end of the third resistor R3 is grounded, and the control end of the transistor Q1 is connected to the first comparator U1
- the non-inverting input terminal of the first comparator U1 is connected to the first reference voltage CP_Ref, and the inverting input terminal of the first comparator U1 is connected to the second end of the fourth resistor R4.
- the second switch module includes: a first resistor R1, a second resistor R2, a second comparator U2, a driver, and a MOS transistor Q2.
- the first end of the MOS transistor Q2 is connected to the second end of the inductor IL, the second end of the MOS transistor Q2 outputs the analog power supply voltage VAA, and is directly or indirectly connected to the first end of the first resistor R1,
- the second end of the first resistor R1 is connected to the first end of the second resistor R2, the second end of the second resistor R2 is grounded, and the inverting input end of the second comparator U2 is connected to the first end of the second resistor R2.
- a second end of a resistor R1 the non-inverting input end of the second comparator U2 is connected to the second reference voltage Boost-Ref, and the output end of the second comparator U2 is connected to the first end of the driver,
- the second terminal of the driver is connected to the control terminal of the MOS transistor Q2.
- FIG. 1 it is a circuit diagram of a voltage conversion circuit in an embodiment of the present invention.
- the electrical detection module includes an electrical detector P1 and a voltage regulator VM.
- the first end of the electrical detector P1 is connected to the control end of the transistor Q1, and the second end of the electrical detector P1 is connected to The first end of the voltage regulator VM, the voltage regulator VM is connected to the pulse module PM.
- the electrical detector P1 is used to reflect the current of the control terminal of the transistor Q1 and generate a signal to the voltage regulator VM, and the voltage regulator VM provides an appropriate voltage signal to the pulse module PM.
- the electrical property detector P1 detects the current at the first terminal of the first switch module.
- the first terminal of the first switch module is the control terminal of the transistor Q1.
- the current is actually The upper is the first current Ib, and the current in the path from the second end of the third diode D3 to the first end of the transistor Q1 is the second current Ic.
- the corresponding second current Ic increases, and when the switch of the transistor Q1 is in the working state and is located in the linear region, the first current located at the control terminal of the transistor Q1 Ib is positively correlated with the second current Ic at the first end of the transistor Q1, and the first current Ib increases accordingly, and the current magnitude of the first current Ib is detected by the electrical property detector P1 Then, a signal is generated to the voltage regulator VM, and then the voltage regulator VM provides an appropriate voltage signal to trigger the pulse voltage amplitude Vpulse of the pulse module PM to change, so that the pulse voltage amplitude Vpulse decreases and the pulse frequency remains unchanged.
- VGH VAA+Vpulse-VQ1
- FIG. 2 it is a circuit diagram of a voltage conversion circuit in an embodiment of the present invention.
- the electrical property detection module includes an electrical property detector P1, a voltage regulator VM, and a register Rg.
- the electrical property detector P1 has a first end connected to the control end of the transistor Q1, and the electrical property detector P1 has a first end connected to the control end of the transistor Q1. The two ends are connected to the second end of the electrical detector P1 and the first end of the voltage regulator VM is connected.
- the voltage regulator VM is connected to the first end of the register Rg, and the second end of the register Rg The first end of the MOS transistor Q2 is connected, and the third end of the register Rg is connected to the first end of the first resistor R1.
- the electrical detector P1 is used to reflect the current magnitude of the control terminal of the transistor Q1 and generate a signal to the voltage regulator VM, and the voltage regulator VM provides an appropriate voltage signal to the second The register Rg in the switch module.
- the electrical property detector P1 detects the current at the first terminal of the first switch module.
- the first terminal of the first switch module is the control terminal of the transistor Q1.
- the current is actually The upper is the first current Ib, and the current in the path from the second end of the third diode D3 to the first end of the transistor Q1 is the second current Ic.
- the corresponding second current Ic increases, and when the switch of the transistor Q1 is in the working state and is located in the linear region, the first current located at the control terminal of the transistor Q1 Ib is positively correlated with the second current Ic at the first end of the transistor Q1, and the first current Ib increases accordingly, and the current magnitude of the first current Ib is detected by the electrical property detector P1 Then, a signal is generated to the voltage regulator VM, and the voltage regulator VM provides an appropriate voltage signal to trigger a power management integrated circuit (Power Management IC, PMIC) to detect and adjust the Rg potential of the register, and reduce accordingly
- Power Management IC, PMIC Power Management integrated circuit
- VGH VAA+Vpulse-VQ1
- the second end of the first diode D1, the first end of the second diode D2, and the first end of the third diode D3 are The conducting end, the first end of the first diode D1, the second end of the second diode D2, and the second end of the third diode D3 are cut-off ends.
- the first end of the transistor Q1 is the emitter, the second end of the transistor Q1 is the collector, the control end of the transistor Q1 is the base; the first end of the MOS transistor Q2 is the source The second end of the MOS transistor Q2 is a drain, and the third end of the MOS transistor Q2 is a gate.
- the pulse module PM is connected to a fourth capacitor C
- the transistor Q1 is an NPN type transistor
- the MOS transistor Q2 is a P-channel silicon MOS field effect transistor.
- the embodiment of the present invention also provides a voltage conversion method, as shown in FIG. 3, which is an embodiment of the present invention.
- a flowchart of the medium voltage conversion method, the voltage conversion method includes the following steps:
- the analog power supply voltage passes through the charge pump circuit, and then is stepped down by the first switch module to generate the gate-on voltage VGH;
- the electrical detection module detects the current of the control terminal of the transistor Q1 in the first switch module and compares it with a preset current. When the detection current is greater than the preset current, the electrical detection module The register Rg or the pulse module PM is adjusted to reduce the voltage drop across the first and second ends of the transistor Q1 in the first switch module.
- a display device which includes the voltage conversion circuit as described in the foregoing embodiment.
- the performance of the display device is further improved.
- each embodiment has its own focus.
- each of the above units or structures can be implemented as independent entities, or can be combined arbitrarily, and implemented as the same or several entities.
- For the specific implementation of each of the above units or structures please refer to the previous method embodiments. No longer.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Dc-Dc Converters (AREA)
Abstract
一种电压转换电路、电压转化方法及显示装置。电压转换电路包括:升压电路、电荷泵电路以及控制电路;控制电路包括第一开关模块、第二开关模块、电性检测模块、脉冲模块(PM),电性检测模块的第一端连接第一开关模块,第二端连接第二开关模块的第二端或脉冲模块(PM)。
Description
本发明涉及显示技术领域,具体涉及一种电压转换电路、电压转化方法及显示装置。
现有技术中对薄膜晶体管液晶显示器(Thin film transistor liquid crystal display,TFT-LCD)进行驱动时,均会向TFT-LCD输入包括模拟电源电压VAA、数字电源电压VDD、栅极开启电压VGH、栅极关闭电压VGL在内的多种电压。其中,VAA和VDD的电流较大,通常是通过升压(Boost)电路或降压(Buck)电路来产生的,而VGH及VGL对应的电流较小,一般利用成本较低的电荷泵(Charge Pump)电路来产生。
VGH电流并非一直处于重载状态,在不同阶段,VGH电流会增加或者减小。通常采用一级或者二级电容charge
Pump后再经过一个开关管降压生成VGH,而主要功耗在于开关管上。对于大尺寸面板其电流较大,尤其在其重载情况下,开关管温度会超过规定范围,此时需要降低损耗。
目前的电压转换电路存在电荷泵电路中的开关管在工作电流较大时,损耗过大、温度过高的技术问题。
本发明实施例提供一种电压转换电路、电压转化方法及显示装置,用于解决目前的电压转换电路存在电荷泵电路中的开关管在工作电流较大时,损耗过大、温度过高的技术问题。
为解决上述问题,第一方面,本发明提供一种电压转换电路,包括:所述升压电路包括电感IL、第一电容C
IN、第二电容C
OUT和第一二极管D1,所述电荷泵电路包括第二二极管D2、第三二极管D3、第三电容C
CP,控制电路包括第一开关模块、第二开关模块、电性检测模块、脉冲模块PM;
所述电感IL的第一端接入输入电压V
IN,并与所述第一电容C
IN的第一端连接,所述电感IL的第二端连接所述第一二极管D1和所述第二开关模块的第一端,所述第二开关模块的第二端输出模拟电源电压VAA,并分别连接所述第二电容C
OUT和所述第二二极管D2的第一端,所述第二开关模块用以调节所述模拟电源电压VAA,所述第二二极管D2的第二端连接所述第三二极管D3的第一端,所述第三二极管D3的第二端分别连接所述第三电容C
CP和所述第一开关模块的第一端,所述第一开关模块的第二端输出栅极导通电压VGH,所述第一开关模块用以降压生成栅极导通电压VGH,所述第一电容C
IN、所述第一二极管D1、所述第二电容C
OUT和所述第三电容C
CP的第二端接地;
所述脉冲模块PM连接所述第二二极管D2的第二端,所述脉冲模块用以提供脉冲电压,所述电性检测模块的第一端连接所述第一开关模块,所述电性检测模块的第二端连接所述第二开关模块的所述第二端或所述脉冲模块PM;
其中,所述电性检测模块对所述第一开关模块进行检测,并根据检测结果释放调节信号,以使所述第二开关模块或所述脉冲模块进行调节,使所述模拟电源电压VAA或所述脉冲电压降低,所述第一开关模块中的电压降随之降低,以保持所述栅极导通电压VGH不变。
在本发明的一些实施例中,所述第一开关模块包括:第三电阻R3、第四电阻R4、第一比较器U1和三极管Q1,所述三极管Q1的第二端连接所述第四电阻R4的第一端,所述第四电阻R4的第二端连接所述第三电阻R3的第一端,所述第三电阻R3的第二端接地,所述三极管Q1的控制端连接所述第一比较器U1的输出端,所述第一比较器U1的非反向输入端接入第一参考电压CP_Ref,所述第一比较器U1的反向输入端连接第四电阻R4的第二端。
在本发明的一些实施例中,所述电性检测模块包括电性检测器P1及电压调整器VM。
在本发明的一些实施例中,所述电性检测器P1的第一端连接所述三极管Q1的所述控制端,所述电性检测器P1的第二端连接所述电压调整器VM的第一端,所述电压调整器VM的第二端连接所述脉冲模块PM。
在本发明的一些实施例中,所述第二开关模块包括:第一电阻R1、第二电阻R2、第二比较器U2、驱动器DV和MOS管Q2,所述MOS管Q2的第二端直接或间接连接所述第一电阻R1的第一端,所述第一电阻R1的第二端连接所述第二电阻R2的第一端,所述第二电阻R2的第二端接地,所述第二比较器U2的反向输入端连接所述第一电阻R1的第二端,所述第二比较器U2的非反向输入端接入第二参考电压Boost_Ref,所述第二比较器U2的输出端连接所述驱动器DV的第一端,所述驱动器DV的第二端连接所述MOS管Q2的控制端。
在本发明的一些实施例中,所述电性检测模块包括电性检测器P1、电压调整器VM和寄存器Rg;所述第一开关模块包括三极管Q1。
在本发明的一些实施例中,所述电性检测器P1的第一端连接所述三极管Q1的控制端,所述电性检测器P1的第二端连接所述电压调整器VM的第一端,所述电压调整器VM的第二端连接所述寄存器Rg的第一端,所述寄存器Rg的第二端连接所述MOS管Q2的第二端,所述寄存器Rg的第三端连接所述第一电阻R1的第一端。
在本发明的一些实施例中,所述第一二极管D1的第二端、所述第二二极管D2的第一端、所述第三二极管D3的第一端为导通端,所述第一二极管D1的第一端、所述第二二极管D2的第二端、所述第三二极管D3的第二端为截止端。
第二方面,本发明提供一种电压转换方法,应用于上述电压转换电路,包括如下步骤:
S1、对所述升压电路接入输入电压V
IN,经过升压后输出所述模拟电源电压VAA;
S2、所述模拟电源电压VAA经过所述电荷泵电路,再经过所述第一开关模块降压生成所述栅极导通电压VGH;
S3、所述电性检测模块检测所述第一开关模块中三极管Q1的控制端的电流,并与预设电流进行比较,当所述检测电流大于所述预设电流时,所述电性检测模块调节所述寄存器Rg或所述脉冲模块PM,以降低所述第一开关模块中三极管Q1的第一、二端的两端压降。
第三方面,本发明还提供一种显示装置,包括如上所述的电压转换电路,所述显示装置包括:所述升压电路包括电感IL、第一电容C
IN、第二电容C
OUT和第一二极管D1,所述电荷泵电路包括第二二极管D2、第三二极管D3、第三电容C
CP,控制电路包括第一开关模块、第二开关模块、电性检测模块、脉冲模块PM;
所述电感IL的第一端接入输入电压V
IN,并与所述第一电容C
IN的第一端连接,所述电感IL的第二端连接所述第一二极管D1和所述第二开关模块的第一端,所述第二开关模块的第二端输出模拟电源电压VAA,并分别连接所述第二电容C
OUT和所述第二二极管D2的第一端,所述第二开关模块用以调节所述模拟电源电压VAA,所述第二二极管D2的第二端连接所述第三二极管D3的第一端,所述第三二极管D3的第二端分别连接所述第三电容C
CP和所述第一开关模块的第一端,所述第一开关模块的第二端输出栅极导通电压VGH,所述第一开关模块用以降压生成栅极导通电压VGH,所述第一电容C
IN、所述第一二极管D1、所述第二电容C
OUT和所述第三电容C
CP的第二端接地;
所述脉冲模块PM连接所述第二二极管D2的第二端,所述脉冲模块用以提供脉冲电压,所述电性检测模块的第一端连接所述第一开关模块,所述电性检测模块的第二端连接所述第二开关模块的所述第二端或所述脉冲模块PM;
其中,所述电性检测模块对所述第一开关模块进行检测,并根据检测结果释放调节信号,以使所述第二开关模块或所述脉冲模块进行调节,使所述模拟电源电压VAA或所述脉冲电压降低,所述第一开关模块中的电压降随之降低,以保持所述栅极导通电压VGH不变。
在本发明的一些实施例中,所述第一开关模块包括:第三电阻R3、第四电阻R4、第一比较器U1和三极管Q1,所述三极管Q1的第二端连接所述第四电阻R4的第一端,所述第四电阻R4的第二端连接所述第三电阻R3的第一端,所述第三电阻R3的第二端接地,所述三极管Q1的控制端连接所述第一比较器U1的输出端,所述第一比较器U1的非反向输入端接入第一参考电压CP_Ref,所述第一比较器U1的反向输入端连接第四电阻R4的第二端。
在本发明的一些实施例中,所述电性检测模块包括电性检测器P1及电压调整器VM。
在本发明的一些实施例中,所述电性检测器P1的第一端连接所述三极管Q1的所述控制端,所述电性检测器P1的第二端连接所述电压调整器VM的第一端,所述电压调整器VM的第二端连接所述脉冲模块PM。
在本发明的一些实施例中,所述第二开关模块包括:第一电阻R1、第二电阻R2、第二比较器U2、驱动器DV和MOS管Q2,所述MOS管Q2的第二端直接或间接连接所述第一电阻R1的第一端,所述第一电阻R1的第二端连接所述第二电阻R2的第一端,所述第二电阻R2的第二端接地,所述第二比较器U2的反向输入端连接所述第一电阻R1的第二端,所述第二比较器U2的非反向输入端接入第二参考电压Boost_Ref,所述第二比较器U2的输出端连接所述驱动器DV的第一端,所述驱动器DV的第二端连接所述MOS管Q2的控制端。
在本发明的一些实施例中,所述电性检测模块包括电性检测器P1、电压调整器VM和寄存器Rg;所述第一开关模块包括三极管Q1。
在本发明的一些实施例中,所述电性检测器P1的第一端连接所述三极管Q1的控制端,所述电性检测器P1的第二端连接所述电压调整器VM的第一端,所述电压调整器VM的第二端连接所述寄存器Rg的第一端,所述寄存器Rg的第二端连接所述MOS管Q2的第二端,所述寄存器Rg的第三端连接所述第一电阻R1的第一端。
在本发明的一些实施例中,所述第一二极管D1的第二端、所述第二二极管D2的第一端、所述第三二极管D3的第一端为导通端,所述第一二极管D1的第一端、所述第二二极管D2的第二端、所述第三二极管D3的第二端为截止端。
相较于现有的电压转换电路,本发明通过新增电性检测模块,所述电性检测模块设置在第一开关模块与第二开关模块之间或设置在所述第一开关模块与脉冲模块PM之间,检测所述第一开关模块中三极管Q1的控制端的电流,调节所述第二开关模块内的寄存器Rg或所述脉冲模块PM,当调节所述寄存器Rg时,降低所述第二开关模块的占空比,从而实现降低所述模拟电源电压VAA,所述第一开关模块中三极管Q1的第一、二端的压降,输出的所述栅极导通电压不变;当调节所述脉冲模块PM时,保持脉冲频率不变,降低脉冲电压幅值,从而实现降低所述第一开关模块中三极管Q1的第一、二端的压降,输出的所述栅极导通电压VGH不变,进而两种方法均实现了降低所述第一开关模块中三极管的第一、二端的压降,即改善了所述第一开关模块内损耗过大、温度过大的技术问题。
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明一个实施例中电压转换电路的电路图;
图2为本发明一个实施例中电压转换电路的电路图;及
图3为本发明一个实施例中电压转换方法的流程图。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
目前的电压转换电路存在电荷泵电路中的开关管在工作电流较大时,损耗过大、温度过高的技术问题。
基于此,本发明实施例提供一种电压转换电路、电压转化方法及显示装置。以下分别进行详细说明。
首先,本发明实施例提供一种电压转换电路,所述电压转换电路包括升压电路、电荷泵电路以及控制电路;所述升压电路包括电感IL、第一电容C
IN、第二电容C
OUT和第一二极管D1,所述电荷泵电路包括第二二极管D2、第三二极管D3、第三电容C
CP,控制电路包括第一开关模块、第二开关模块、电性检测模块、脉冲模块PM;所述电感IL的第一端接入输入电压V
IN,并与所述第一电容C
IN的第一端连接,所述电感IL的第二端连接所述第一二极管D1和所述第二开关模块的第一端,所述第二开关模块的第二端输出模拟电源电压VAA,并分别连接所述第二电容C
OUT、所述第二二极管D2的第一端,所述第二开关模块用以调节所述模拟电源电压VAA,所述第二二极管D2的第二端连接所述第三二极管D3的第一端,所述第三二极管D3的第二端分别连接所述第三电容C
CP和所述第一开关模块的第一端,所述第一开关模块的第二端输出栅极导通电压VGH,所述第一开关模块用以降压生成栅极导通电压VGH,所述第一电容C
IN、所述第一二极管D1、所述第二电容C
OUT和所述第三电容C
CP的第二端接地;
所述脉冲模块PM连接所述第二二极管D2的第二端,所述脉冲模块用以提供脉冲电压,所述电性检测模块的第一端连接所述第一开关模块,所述电性检测模块的第二端连接所述第二开关模块的所述第二端或所述脉冲模块PM;其中,所述电性检测模块对所述第一开关模块进行检测,并根据检测结果释放调节信号,以使所述第二开关模块或所述脉冲模块进行调节,使所述模拟电源电压VAA或所述脉冲电压降低,所述第一开关模块中的电压降随之降低,以保持所述栅极导通电压VGH不变。
相较于现有的电压转换电路,本发明通过新增电性检测模块,所述电性检测模块设置在第一开关模块与第二开关模块之间或设置在所述第一开关模块与脉冲模块PM之间,检测所述第一开关模块的中三极管Q1的控制端的电流,转化为相应电压值,调节所述第二开关模块内的寄存器Rg或所述脉冲模块PM,从而实现降低所述第一开关模块中三极管Q1的第一、二端的压降,输出的所述栅极导通电压VGH不变,即改善了所述第一开关模块内损耗过大、温度过大的技术问题。
所述第一电容C
IN用以稳定输入电压,所述第一二极管D1用以避免产生突变电压,所述第二电容C
OUT用以稳定输出电压,所述第三电容C
CP用以稳定输出电压,所述第二二极管D2、所述第三二极管D3用以单向导通。
在上述实施例的基础上,所述第一开关模块包括:第三电阻R3、第四电阻R4、第一比较器U1和三极管Q1。所述三极管Q1的第一端连接所述第三二极管D3的第二端,所述三极管Q1的第二端输出栅极导通电压VGH,并连接所述第四电阻R4的第一端,所述第四电阻R4的第二端连接所述第三电阻R3的第一端,所述第三电阻R3的第二端接地,所述三极管Q1的控制端连接所述第一比较器U1的输出端,所述第一比较器U1的非反向输入端接入第一参考电压CP_Ref,所述第一比较器U1的反向输入端连接第四电阻R4的第二端。
在本发明实施例中,所述第二开关模块包括:第一电阻R1、第二电阻R2、第二比较器U2、驱动器和MOS管Q2。所述MOS管Q2的第一端连接所述电感IL的第二端,所述MOS管Q2的第二端输出模拟电源电压VAA,并直接或间接连接所述第一电阻R1的第一端,所述第一电阻R1的第二端连接所述第二电阻R2的第一端,所述第二电阻R2的第二端接地,所述第二比较器U2的反向输入端连接所述第一电阻R1的第二端,所述第二比较器U2的非反向输入端接入第二参考电压Boost-Ref,所述第二比较器U2的输出端连接所述驱动器的第一端,所述驱动器的第二端连接所述MOS管Q2的控制端。
在上述实施例的基础上,在本发明的另一个实施例中,如图1所示,为本发明一个实施例中电压转换电路的电路图。所述电性检测模块包括电性检测器P1及电压调整器VM,所述电性检测器P1的第一端连接所述三极管Q1的控制端,所述电性检测器P1的第二端连接所述电压调整器VM的第一端,所述电压调整器VM连接所述脉冲模块PM。具体的,所述电性检测器P1用以反应所述三极管Q1的控制端的电流大小,并产生讯号至所述电压调整器VM,所述电压调整器VM提供适当的电压讯号至脉冲模块PM。
在本实施例中,所述电性检测器P1检测所述第一开关模块的第一端的电流,所述第一开关模块的第一端即是所述三极管Q1的控制端,该电流实际上为第一电流Ib,所述第三二极管D3的第二端至所述三极管Q1的第一端的通路上电流为第二电流Ic。当升压电路中出现较大电流时,相应的所述第二电流Ic增大,而当所述三极管Q1的开关在工作状态且位于线性区时,位于所述三极管Q1的控制端的第一电流Ib与位于所述三极管Q1的第一端的所述第二电流Ic正相关,所述第一电流Ib也相应增大,通过所述电性检测器P1检测所述第一电流Ib的电流大小后,产生讯号至所述电压调整器VM,进而所述电压调整器VM提供适当的电压讯号触发脉冲模块PM的脉冲电压幅值Vpulse变化,使得脉冲电压幅值Vpulse降低脉冲频率不变。根据公式VGH=VAA+Vpulse-VQ1,若脉冲电压幅值Vpulse降低,而要保持闭环栅极导通电压VGH输出不变,则三极管第一、二端的两端压降VQ1必然降低,从而使得所述三极管Q1的损耗降低,相应其温度也会降低。
在上述实施例的基础上,在本发明的另一个实施例中,如图2所示,为本发明一个实施例中电压转换电路的电路图。所述电性检测模块包括电性检测器P1、电压调整器VM和寄存器Rg,所述电性检测器P1的第一端连接所述三极管Q1的控制端,所述电性检测器P1的第二端连接所述电性检测器P1的第二端连接所述电压调整器VM的第一端,所述电压调整器VM连接所述寄存器Rg的第一端,所述寄存器Rg的第二端连接所述MOS管Q2的第一端,所述寄存器Rg的第三端连接所述第一电阻R1的第一端。具体的,所述电性检测器P1用以反应所述三极管Q1的控制端的电流大小,并产生讯号至所述电压调整器VM,所述电压调整器VM提供适当的电压讯号至所述第二开关模块中的所述寄存器Rg。
在本实施例中,所述电性检测器P1检测所述第一开关模块的第一端的电流,所述第一开关模块的第一端即是所述三极管Q1的控制端,该电流实际上为第一电流Ib,所述第三二极管D3的第二端至所述三极管Q1的第一端的通路上电流为第二电流Ic。当升压电路中出现较大电流时,相应的所述第二电流Ic增大,而当所述三极管Q1的开关在工作状态且位于线性区时,位于所述三极管Q1的控制端的第一电流Ib与位于所述三极管Q1的第一端的所述第二电流Ic正相关,所述第一电流Ib也相应增大,通过所述电性检测器P1检测所述第一电流Ib的电流大小后,产生讯号至所述电压调整器VM,进而所述电压调整器VM提供适当的电压讯号触发电源管理集成电路(Power Management IC,PMIC)侦测并调节所述寄存器Rg电位,相应地减小所述MOS管Q2的占空比,从而使得模拟电源电压VAA降低。根据VGH=VAA+Vpulse-VQ1,由于模拟电源电压VAA降低,而要保持闭环栅极导通电压VGH输出不变,那么三极管第一、二端的两端压降VQ1必然降低,从而使得所述三极管Q1的损耗降低,相应其温度也会降低。
在上述实施例的基础上,优选的,所述第一二极管D1的第二端、所述第二二极管D2的第一端、所述第三二极管D3的第一端为导通端,所述第一二极管D1的第一端、所述第二二极管D2的第二端、所述第三二极管D3的第二端为截止端。
优选的,所述三极管Q1的第一端为发射极,所述三极管Q1的第二端为集电极,所述三极管Q1的控制端为基极;所述MOS管Q2的第一端为源极,所述MOS管Q2的第二端为漏极,所述MOS管Q2的第三端为栅极。
优选的,所述脉冲模块PM连接第四电容C,所述三极管Q1为NPN型三极管,所述MOS管Q2为P沟道硅MOS场效应晶体管。
为了更好实施本发明实施例中的电压转换电路,在所述电压转换电路的基础之上,本发明实施例中还提供一种电压转换方法,如图3所示,为本发明一个实施例中电压转换方法的流程图,所述电压转换方法包括如下步骤:
S1、对所述升压电路接入输入电压VIN,经过升压后输出所述模拟电源电压VAA;
S2、所述模拟电源电压经过所述电荷泵电路,再经过所述第一开关模块降压生成所述栅极导通电压VGH;
S3、所述电性检测模块检测所述第一开关模块中三极管Q1的控制端的电流,并与预设电流进行比较,当所述检测电流大于所述预设电流时,所述电性检测模块调节所述寄存器Rg或所述脉冲模块PM,以降低所述第一开关模块中三极管Q1的第一、二端的两端压降。
在本发明实施例中,还提供一种显示装置,包括如上述实施例中所述的电压转换电路。通过采用如上实施例中描述的电压转换电路,进一步提升了该显示装置的性能。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见上文针对其他实施例的详细描述,此处不再赘述。具体实施时,以上各个单元或结构可以作为独立的实体来实现,也可以进行任意组合,作为同一或若干个实体来实现,以上各个单元或结构的具体实施可参见前面的方法实施例,在此不再赘述。以上各个操作的具体实施可参见前面的实施例,在此不再赘述。
以上对本发明实施例进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。
Claims (17)
- 一种电压转换电路,包括:升压电路、电荷泵电路以及控制电路;所述升压电路包括电感(IL)、第一电容(C IN)、第二电容(C OUT)和第一二极管(D1),所述电荷泵电路包括第二二极管(D2)、第三二极管(D3)、第三电容(C CP),控制电路包括第一开关模块、第二开关模块、电性检测模块、脉冲模块(PM);所述电感(IL)的第一端接入输入电压(V IN),并与所述第一电容(C IN)的第一端连接,所述电感(IL)的第二端连接所述第一二极管(D1)和所述第二开关模块的第一端,所述第二开关模块的第二端输出模拟电源电压(VAA),并分别连接所述第二电容(C OUT)和所述第二二极管(D2)的第一端,所述第二开关模块用以调节所述模拟电源电压(VAA),所述第二二极管(D2)的第二端连接所述第三二极管(D3)的第一端,所述第三二极管(D3)的第二端分别连接所述第三电容(C CP)和所述第一开关模块的第一端,所述第一开关模块的第二端输出栅极导通电压(VGH),所述第一开关模块用以降压生成栅极导通电压(VGH),所述第一电容(C IN)、所述第一二极管(D1)、所述第二电容(C OUT)和所述第三电容(C CP)的第二端接地;所述脉冲模块(PM)连接所述第二二极管(D2)的第二端,所述脉冲模块用以提供脉冲电压,所述电性检测模块的第一端连接所述第一开关模块,所述电性检测模块的第二端连接所述第二开关模块的所述第二端或所述脉冲模块(PM);其中,所述电性检测模块对所述第一开关模块进行检测,并根据检测结果释放调节信号,以使所述第二开关模块或所述脉冲模块进行调节,使所述模拟电源电压(VAA)或所述脉冲电压降低,所述第一开关模块中的电压降随之降低,以保持所述栅极导通电压(VGH)不变。
- 根据权利要求1所述的电压转换电路,其中,所述第一开关模块包括:第三电阻(R3)、第四电阻(R4)、第一比较器(U1)和三极管(Q1),所述三极管(Q1)的第二端连接所述第四电阻(R4)的第一端,所述第四电阻(R4)的第二端连接所述第三电阻(R3)的第一端,所述第三电阻(R3)的第二端接地,所述三极管(Q1)的控制端连接所述第一比较器(U1)的输出端,所述第一比较器(U1)的非反向输入端接入第一参考电压(CP_Ref),所述第一比较器(U1)的反向输入端连接第四电阻(R4)的第二端。
- 根据权利要求2所述的电压转换电路,其中,所述电性检测模块包括电性检测器(P1)及电压调整器(VM)。
- 根据权利要求3所述的电压转换电路,其中,所述电性检测器(P1)的第一端连接所述三极管(Q1)的所述控制端,所述电性检测器(P1)的第二端连接所述电压调整器(VM)的第一端,所述电压调整器(VM)的第二端连接所述脉冲模块(PM)。
- 根据权利要求1所述的电压转换电路,其中,所述第二开关模块包括:第一电阻(R1)、第二电阻(R2)、第二比较器(U2)、驱动器(DV)和MOS管(Q2),所述MOS管(Q2)的第二端直接或间接连接所述第一电阻(R1)的第一端,所述第一电阻(R1)的第二端连接所述第二电阻(R2)的第一端,所述第二电阻(R2)的第二端接地,所述第二比较器(U2)的反向输入端连接所述第一电阻(R1)的第二端,所述第二比较器(U2)的非反向输入端接入第二参考电压(Boost_Ref),所述第二比较器(U2)的输出端连接所述驱动器(DV)的第一端,所述驱动器(DV)的第二端连接所述MOS管(Q2)的控制端。
- 根据权利要求5所述的电压转换电路,其中,所述电性检测模块包括电性检测器(P1)、电压调整器(VM)和寄存器(Rg);所述第一开关模块包括三极管(Q1)。
- 根据权利要求6所述的电压转换电路,其中,所述电性检测器(P1)的第一端连接所述三极管(Q1)的控制端,所述电性检测器(P1)的第二端连接所述电压调整器(VM)的第一端,所述电压调整器(VM)的第二端连接所述寄存器(Rg)的第一端,所述寄存器(Rg)的第二端连接所述MOS管(Q2)的第二端,所述寄存器(Rg)的第三端连接所述第一电阻(R1)的第一端。
- 根据权利要求1所述的电压转换电路,其中,所述第一二极管(D1)的第二端、所述第二二极管(D2)的第一端、所述第三二极管(D3)的第一端为导通端,所述第一二极管(D1)的第一端、所述第二二极管(D2)的第二端、所述第三二极管(D3)的第二端为截止端。
- 一种电压转换方法,应用于如权利要求1所述的电压转换电路,包括如下步骤:S1、对所述升压电路接入输入电压(V IN),经过升压后输出所述模拟电源电压(VAA);S2、所述模拟电源电压(VAA)经过所述电荷泵电路,再经过所述第一开关模块降压生成所述栅极导通电压(VGH);S3、所述电性检测模块检测所述第一开关模块中三极管(Q1)的控制端的电流,并与预设电流进行比较,当所述检测电流大于所述预设电流时,所述电性检测模块调节所述寄存器(Rg)或所述脉冲模块(PM),以降低所述第一开关模块中三极管(Q1)的第一、二端的两端压降。
- 一种显示装置,包括电压转换电路,所述显示装置包括:升压电路、电荷泵电路以及控制电路;所述升压电路包括电感(IL)、第一电容(C IN)、第二电容(C OUT)和第一二极管(D1),所述电荷泵电路包括第二二极管(D2)、第三二极管(D3)、第三电容(C CP),控制电路包括第一开关模块、第二开关模块、电性检测模块、脉冲模块(PM);所述电感(IL)的第一端接入输入电压(V IN),并与所述第一电容(C IN)的第一端连接,所述电感(IL)的第二端连接所述第一二极管(D1)和所述第二开关模块的第一端,所述第二开关模块的第二端输出模拟电源电压(VAA),并分别连接所述第二电容(C OUT)和所述第二二极管(D2)的第一端,所述第二开关模块用以调节所述模拟电源电压(VAA),所述第二二极管(D2)的第二端连接所述第三二极管(D3)的第一端,所述第三二极管(D3)的第二端分别连接所述第三电容(C CP)和所述第一开关模块的第一端,所述第一开关模块的第二端输出栅极导通电压(VGH),所述第一开关模块用以降压生成栅极导通电压(VGH),所述第一电容(C IN)、所述第一二极管(D1)、所述第二电容(C OUT)和所述第三电容(C CP)的第二端接地;所述脉冲模块(PM)连接所述第二二极管(D2)的第二端,所述脉冲模块用以提供脉冲电压,所述电性检测模块的第一端连接所述第一开关模块,所述电性检测模块的第二端连接所述第二开关模块的所述第二端或所述脉冲模块(PM);其中,所述电性检测模块对所述第一开关模块进行检测,并根据检测结果释放调节信号,以使所述第二开关模块或所述脉冲模块进行调节,使所述模拟电源电压(VAA)或所述脉冲电压降低,所述第一开关模块中的电压降随之降低,以保持所述栅极导通电压(VGH)不变。
- 根据权利要求10所述的显示装置,其中,所述第一开关模块包括:第三电阻(R3)、第四电阻(R4)、第一比较器(U1)和三极管(Q1),所述三极管(Q1)的第二端连接所述第四电阻(R4)的第一端,所述第四电阻(R4)的第二端连接所述第三电阻(R3)的第一端,所述第三电阻(R3)的第二端接地,所述三极管(Q1)的控制端连接所述第一比较器(U1)的输出端,所述第一比较器(U1)的非反向输入端接入第一参考电压(CP_Ref),所述第一比较器(U1)的反向输入端连接第四电阻(R4)的第二端。
- 根据权利要求11所述的显示装置,其中,所述电性检测模块包括电性检测器(P1)及电压调整器(VM)。
- 根据权利要求12所述的显示装置,其中,所述电性检测器(P1)的第一端连接所述三极管(Q1)的所述控制端,所述电性检测器(P1)的第二端连接所述电压调整器(VM)的第一端,所述电压调整器(VM)的第二端连接所述脉冲模块(PM)。
- 根据权利要求10所述的显示装置,其中,所述第二开关模块包括:第一电阻(R1)、第二电阻(R2)、第二比较器(U2)、驱动器(DV)和MOS管(Q2),所述MOS管(Q2)的第二端直接或间接连接所述第一电阻(R1)的第一端,所述第一电阻(R1)的第二端连接所述第二电阻(R2)的第一端,所述第二电阻(R2)的第二端接地,所述第二比较器(U2)的反向输入端连接所述第一电阻(R1)的第二端,所述第二比较器(U2)的非反向输入端接入第二参考电压(Boost_Ref),所述第二比较器(U2)的输出端连接所述驱动器(DV)的第一端,所述驱动器(DV)的第二端连接所述MOS管(Q2)的控制端。
- 根据权利要求14所述的显示装置,其中,所述电性检测模块包括电性检测器(P1)、电压调整器(VM)和寄存器(Rg);所述第一开关模块包括三极管(Q1)。
- 根据权利要求15所述的显示装置,其中,所述电性检测器(P1)的第一端连接所述三极管(Q1)的控制端,所述电性检测器(P1)的第二端连接所述电压调整器(VM)的第一端,所述电压调整器(VM)的第二端连接所述寄存器(Rg)的第一端,所述寄存器(Rg)的第二端连接所述MOS管(Q2)的第二端,所述寄存器(Rg)的第三端连接所述第一电阻(R1)的第一端。
- 根据权利要求10所述的显示装置,其中,所述第一二极管(D1)的第二端、所述第二二极管(D2)的第一端、所述第三二极管(D3)的第一端为导通端,所述第一二极管(D1)的第一端、所述第二二极管(D2)的第二端、所述第三二极管(D3)的第二端为截止端。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010357269.0A CN111462708B (zh) | 2020-04-29 | 2020-04-29 | 电压转换电路、电压转换方法及显示装置 |
CN202010357269.0 | 2020-04-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021217733A1 true WO2021217733A1 (zh) | 2021-11-04 |
Family
ID=71678643
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/090418 WO2021217733A1 (zh) | 2020-04-29 | 2020-05-15 | 电压转换电路、电压转换方法及显示装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111462708B (zh) |
WO (1) | WO2021217733A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113824197A (zh) * | 2021-11-19 | 2021-12-21 | 广东希荻微电子股份有限公司 | 一种电压转换电路与充电器 |
CN114117986A (zh) * | 2022-01-29 | 2022-03-01 | 深圳市芯茂微电子有限公司 | 一种运算器 |
CN116470596A (zh) * | 2022-01-11 | 2023-07-21 | 荣耀终端有限公司 | 电源适配器、充电系统及充电方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117691863B (zh) * | 2024-02-01 | 2024-05-24 | 荣耀终端有限公司 | 电源管理系统及电子设备 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101707438A (zh) * | 2009-11-25 | 2010-05-12 | 天津南大强芯半导体芯片设计有限公司 | 一种电荷泵升压电路 |
CN103647449A (zh) * | 2013-12-18 | 2014-03-19 | 嘉兴中润微电子有限公司 | 一种升压型电荷泵电路 |
US20160260409A1 (en) * | 2015-03-02 | 2016-09-08 | Samsung Electronics Co., Ltd. | Display driving integrated circuit and display device including the same |
CN107316618A (zh) * | 2017-07-19 | 2017-11-03 | 深圳市华星光电半导体显示技术有限公司 | 直流电压变换电路及直流电压变换方法和液晶显示装置 |
CN206932170U (zh) * | 2017-04-12 | 2018-01-26 | 深圳市峰泳科技有限公司 | 电源电路及其液晶显示装置 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100986043B1 (ko) * | 2008-11-06 | 2010-10-07 | 주식회사 실리콘웍스 | 전압조정기를 구비한 전원관리칩 |
JP2010187463A (ja) * | 2009-02-12 | 2010-08-26 | Mitsumi Electric Co Ltd | チャージポンプ回路および電源切換え装置 |
CN201418176Y (zh) * | 2009-04-17 | 2010-03-03 | 黄顺康 | 一种升压电路及led驱动器 |
US9225199B2 (en) * | 2011-03-22 | 2015-12-29 | Triune Ip, Llc | Variable power energy harvesting system |
CN105375762B (zh) * | 2015-12-15 | 2018-03-13 | 深圳市华星光电技术有限公司 | 一种升降压变换电路、电源管理模块及液晶驱动装置 |
CN106961214A (zh) * | 2017-04-17 | 2017-07-18 | 京东方科技集团股份有限公司 | 一种升压控制电路、其驱动方法及显示装置 |
CN107834845A (zh) * | 2017-11-15 | 2018-03-23 | 珠海市魅族科技有限公司 | 一种升压电路、升压方法及电子设备 |
CN108233701B (zh) * | 2017-12-20 | 2020-04-28 | 普冉半导体(上海)有限公司 | 一种升降压电压转换电路 |
CN207977892U (zh) * | 2018-02-01 | 2018-10-16 | 深圳市峰泳科技有限公司 | 一种用分立元件动态调整vgh与vgl电压的稳压电路 |
-
2020
- 2020-04-29 CN CN202010357269.0A patent/CN111462708B/zh active Active
- 2020-05-15 WO PCT/CN2020/090418 patent/WO2021217733A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101707438A (zh) * | 2009-11-25 | 2010-05-12 | 天津南大强芯半导体芯片设计有限公司 | 一种电荷泵升压电路 |
CN103647449A (zh) * | 2013-12-18 | 2014-03-19 | 嘉兴中润微电子有限公司 | 一种升压型电荷泵电路 |
US20160260409A1 (en) * | 2015-03-02 | 2016-09-08 | Samsung Electronics Co., Ltd. | Display driving integrated circuit and display device including the same |
CN206932170U (zh) * | 2017-04-12 | 2018-01-26 | 深圳市峰泳科技有限公司 | 电源电路及其液晶显示装置 |
CN107316618A (zh) * | 2017-07-19 | 2017-11-03 | 深圳市华星光电半导体显示技术有限公司 | 直流电压变换电路及直流电压变换方法和液晶显示装置 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113824197A (zh) * | 2021-11-19 | 2021-12-21 | 广东希荻微电子股份有限公司 | 一种电压转换电路与充电器 |
CN116470596A (zh) * | 2022-01-11 | 2023-07-21 | 荣耀终端有限公司 | 电源适配器、充电系统及充电方法 |
CN116470596B (zh) * | 2022-01-11 | 2024-04-05 | 荣耀终端有限公司 | 电源适配器、充电系统及充电方法 |
CN114117986A (zh) * | 2022-01-29 | 2022-03-01 | 深圳市芯茂微电子有限公司 | 一种运算器 |
CN114117986B (zh) * | 2022-01-29 | 2022-07-19 | 深圳市芯茂微电子有限公司 | 一种运算器 |
Also Published As
Publication number | Publication date |
---|---|
CN111462708A (zh) | 2020-07-28 |
CN111462708B (zh) | 2021-07-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021217733A1 (zh) | 电压转换电路、电压转换方法及显示装置 | |
JP6889326B2 (ja) | 直流電圧変換回路及び直流電圧変換方法並びに液晶表示装置 | |
TWI479780B (zh) | 降壓轉換器 | |
WO2016149973A1 (zh) | 一种升降压变换电路、电源管理模块及液晶驱动装置 | |
JP2012182968A (ja) | 力率改善回路およびその制御回路、それらを用いた電子機器 | |
CN109410880B (zh) | 显示面板驱动电路 | |
WO2023097751A1 (zh) | 背光驱动电路及显示装置 | |
WO2020083040A1 (zh) | 升压电路及其驱动方法、背光模组和显示装置 | |
TW202222019A (zh) | 低損耗之電源供應器 | |
TW202119745A (zh) | 升壓轉換器 | |
WO2022166467A1 (zh) | 栅极开启电压产生电路、显示面板驱动装置及显示装置 | |
US11205957B2 (en) | Boost converter | |
WO2019136783A1 (zh) | 用于液晶显示器的放大电路及液晶显示器 | |
US8704504B2 (en) | Power supply circuit comprising detection circuit including reference voltage circuits as reference voltage generation circuits | |
TW201815040A (zh) | 切換式電容直流對直流電源轉換器電路及使用其輸出電壓之方法 | |
TW591367B (en) | Regulator and related method capable of performing pre-charging | |
TWI757667B (zh) | 升壓轉換器 | |
US11362510B2 (en) | Power supply device for eliminating malfunction of overcurrent protection | |
TWI704757B (zh) | 升壓轉換器 | |
CN113508429B (zh) | 驱动控制电路及其驱动方法和显示面板 | |
WO2017041331A1 (zh) | 驱动电路以及液晶显示装置 | |
TWI751658B (zh) | 低損耗之升壓轉換器 | |
TWI844373B (zh) | 低切換損耗之電源供應器 | |
CN220107573U (zh) | 防反接电路及电子装置 | |
TWI844324B (zh) | 高轉換效率之升壓轉換器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20933390 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20933390 Country of ref document: EP Kind code of ref document: A1 |