WO2021214930A1 - Air-conditioning system and control method - Google Patents
Air-conditioning system and control method Download PDFInfo
- Publication number
- WO2021214930A1 WO2021214930A1 PCT/JP2020/017448 JP2020017448W WO2021214930A1 WO 2021214930 A1 WO2021214930 A1 WO 2021214930A1 JP 2020017448 W JP2020017448 W JP 2020017448W WO 2021214930 A1 WO2021214930 A1 WO 2021214930A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- temperature
- humidity
- indoor
- heat exchanger
- opening degree
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/70—Control systems characterised by their outputs; Constructional details thereof
- F24F11/80—Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
- F24F11/83—Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
- F24F11/84—Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/70—Control systems characterised by their outputs; Constructional details thereof
- F24F11/80—Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
- F24F11/86—Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B1/00—Compression machines, plants or systems with non-reversible cycle
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/70—Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating
Definitions
- the present invention relates to an air conditioning system and a method of controlling the operation of the air conditioning system.
- the air conditioning system includes a system equipped with a dehumidifying (dry) mode in addition to the cooling mode.
- dry mode operation generally, a method of reducing the amount of air blown to the heat exchanger (evaporator), setting the upper limit temperature of the evaporator low, and improving the latent heat capacity is widely adopted.
- Patent Document 1 describes a method of setting the upper limit temperature of the evaporator low according to the detected value of the relative humidity sensor.
- the surface temperature of the evaporator is the dew point of the sucked air while the humidity detected by the temperature / humidity sensor is higher than a predetermined value for the purpose of performing the cooling operation and enabling dehumidification.
- Described is a device that calculates the suction pressure so that the temperature becomes lower and adjusts the opening degree of the electronic expansion valve so that the suction pressure becomes the calculated suction pressure.
- the present invention is an air conditioning system including an indoor unit and an outdoor unit in view of the above problems.
- the indoor unit Indoor heat exchanger and A temperature detecting means for detecting the temperature in the room and Includes humidity detection means to detect indoor humidity
- the outdoor unit With an outdoor heat exchanger, Includes a compressor that circulates refrigerant to and from the indoor unit A valve provided between the outdoor heat exchanger and the indoor heat exchanger, A rotation speed control means that controls the rotation speed of the compressor according to the temperature detected by the temperature detection means, and
- An air conditioning system is provided that includes an opening degree controlling means that controls the opening degree of the valve according to the humidity detected by the humidity detecting means.
- the present invention it is possible to provide a system or method that can suppress a temperature drop during dehumidifying operation for each indoor unit and does not reduce the dehumidifying capacity even when the load is low.
- FIG. 3 is a control block diagram illustrating a first control of a compressor frequency and an opening degree of an indoor expansion valve.
- FIG. 3 is a control block diagram illustrating a second control of the frequency of the compressor and the opening degree of the indoor expansion valve.
- FIG. 1 is a diagram showing a first configuration example of an air conditioning system.
- the air conditioning system is a system that adjusts the temperature, humidity, etc. of the interior of a house or building, and includes an indoor unit 10 installed indoors and an outdoor unit 20 installed outdoors.
- the indoor unit 10 and the outdoor unit 20 are connected by refrigerant pipes 30 and 31 through which a refrigerant as a heat medium circulates.
- a refrigerant for example, hydrofluorocarbons such as R410a and R32 are used.
- the indoor unit 10 and the outdoor unit 20 are connected by a communication cable or the like in order to communicate with each other.
- the communication is not limited to wired communication using a communication cable, and may be wireless communication using WiFi (registered trademark) or the like.
- the indoor unit 10 receives an operation of the remote controller by the user, receives an instruction to start or end the operation, changes the operation mode or the set temperature, and the like.
- the indoor unit 10 commands the outdoor unit 20 to start the operation and starts the circulation of the refrigerant.
- the indoor unit 10 also notifies the outdoor unit 20 of the received operation mode, set temperature, and the like.
- the indoor unit 10 includes an indoor heat exchanger 11, a blower (fan) 12, a room temperature sensor 13 as a temperature detecting means for detecting an indoor temperature (room temperature), and a humidity as a humidity detecting means for detecting indoor humidity. Includes sensor 14. Further, the indoor unit 10 includes an indoor expansion valve 15 that expands the refrigerant flowing in the indoor heat exchanger 11 and adjusts the flow rate of the refrigerant.
- the indoor unit 10 includes a control device (not shown) for controlling the fan 12 so as to have a set air volume, and notifying the outdoor unit 20 of a command for starting or ending operation and a detection result such as a room temperature sensor 13.
- the indoor unit 10 receives a command to start operation, activates the fan 12, and takes in the indoor air by the fan 12.
- the indoor heat exchanger 11 exchanges heat between the air taken in by the fan 12 and the refrigerant supplied from the outdoor unit 20, and blows out cooled air or warmed air.
- the indoor unit 10 repeats this operation to cool or warm the room to a set temperature.
- the control device acquires the room temperature detected by the room temperature sensor 13 and the humidity detected by the humidity sensor 14 as detected values, and notifies the outdoor unit 20.
- the indoor expansion valve 15 changes the opening degree to expand the refrigerant flowing in the indoor heat exchanger 11 and adjust the flow rate of the refrigerant.
- the indoor expansion valve 15 is provided on the inlet side of the refrigerant of the indoor heat exchanger 11 when used in the cooling mode.
- the indoor expansion valve 15 may be provided at any position as long as it is on the inlet side of the refrigerant of the indoor heat exchanger 11 when used in the cooling mode and is inside the indoor unit 10.
- the outdoor unit 20 is activated in response to a command from the indoor unit 10 and starts operation in the set operation mode or the operation mode notified by the indoor unit 10.
- the operation mode is a cooling mode, a heating mode, a ventilation mode, or the like.
- the outdoor unit 20 includes a compressor 21, an outdoor heat exchanger 22, and a control device 23.
- the outdoor unit 20 further includes a fan (not shown), an outdoor expansion valve, and a four-way valve (not shown).
- the control device 23 starts the compressor 21 and the fan, switches the four-way valve according to the operation mode, and starts controlling the compressor 21, the fan, the outdoor expansion valve, and the indoor expansion valve 15.
- the compressor 21 circulates the refrigerant between the indoor unit 10 and the outdoor unit 20 via the refrigerant pipes 30 and 31.
- the outdoor heat exchanger 22 exchanges heat between the outside air taken in by the fan and the refrigerant discharged from the compressor 21 or returned from the indoor unit 10.
- the outdoor expansion valve expands the refrigerant condensed by the outdoor heat exchanger 22 or the indoor unit 10 and adjusts the flow rate of the refrigerant.
- the control device 23 stops the compressor 21 and the fan, and stops the operation.
- the high-temperature gaseous refrigerant discharged from the compressor 21 is supplied to the outdoor heat exchanger 22 that functions as a condenser via a four-way valve, condenses, and is condensed by the indoor expansion valve 15. It expands to form a two-phase flow in which gas and liquid are mixed, and after lowering the temperature, it is supplied to the indoor heat exchanger 11.
- the refrigerant exchanges heat with the indoor air in the indoor heat exchanger 11 and evaporates, and the gaseous refrigerant discharged from the indoor unit 10 is returned to the compressor 21 via the four-way valve.
- the indoor heat exchanger 11 that functions as a condenser exchanges heat between the refrigerant and the indoor air, condenses the refrigerant, and sends the refrigerant to the outdoor unit 20 via the indoor expansion valve 15.
- the refrigerant is expanded by the outdoor expansion valve 24, evaporated by the outdoor heat exchanger 22 that functions as an evaporator, becomes a gaseous refrigerant, and is returned to the compressor 21 via the four-way valve 25.
- the compressor 21, the outdoor expansion valve, and the indoor expansion valve 15 are controlled by the control device 23 included in the outdoor unit 20, but the present invention is not limited to this, and the control device included in the indoor unit 10 and the control device 10 are used. These controls may be performed by a centralized controller or the like provided separately.
- FIG. 2 is a diagram showing an example of the hardware configuration of the control device 23 included in the outdoor unit 20.
- the control device 23 includes a CPU 40, a flash memory 41, a RAM 42, a communication I / F 43, and a control I / F 44. Components such as the CPU 40 are connected to the bus 45, and information and the like are exchanged via the bus 45.
- the flash memory 41 stores a program executed by the CPU 40, various data, and the like.
- the RAM 42 provides a work area for the CPU 40.
- the CPU 40 realizes the above control by reading and executing the program stored in the flash memory 41 into the RAM 42.
- the communication I / F 43 is connected to the indoor unit 10 and receives information such as room temperature and humidity from the indoor unit 10.
- the control I / F44 is connected to the compressor 21, the fan, the outdoor expansion valve, the four-way valve, and the indoor expansion valve 15 to control each device.
- FIG. 3 is a control block diagram illustrating the first control of the frequency of the compressor 21 and the opening degree of the indoor expansion valve 15.
- the control device 23 includes a rotation speed control means 32 that calculates the frequency of the AC power supply input to the compressor 21 based on the temperature difference between the set temperature and the value detected by the room temperature sensor 13 of the indoor unit 10.
- the rotation speed control means 32 is realized by executing the program read from the flash memory 41 by the CPU 40 shown in FIG.
- the above-mentioned rotation speed control means is realized by the CPU 40 executing a program, but the present invention is not limited to this, and may be realized by using hardware such as a circuit. This also applies to the following opening degree control means and the like.
- the compressor 21 includes a motor, and an inverter is connected to the motor.
- An inverter is a device that converts the voltage and frequency of a commercial power supply into a desired voltage and frequency and outputs them.
- the rotation speed control means 32 inputs the calculated frequency to the inverter, and inputs the electric signal converted by the inverter to the frequency to the motor. As a result, the rotation speed control means 32 controls the rotation speed of the motor included in the compressor 21.
- the frequency may be calculated by using a correspondence table in which the temperature difference is associated with the frequency, or by using an arithmetic expression in which the temperature difference is a variable.
- the control device 23 holds the target humidity as well as the set temperature set by the user.
- the target humidity is a target humidity set by the user.
- the control device 23 includes an opening degree control means 33 that calculates the opening degree of the indoor expansion valve 15 based on the difference between the target humidity and the detection value of the humidity sensor 14 of the indoor unit 10.
- the opening degree control means 33 inputs the calculated opening degree information as an electric signal to the indoor expansion valve 15, and controls the opening degree of the indoor expansion valve 15. Similar to the frequency calculation, the opening degree calculation may use a correspondence table in which the humidity difference and the opening degree are associated with each other, or an arithmetic expression in which the humidity difference is used as a variable may be used.
- the motor and the indoor expansion valve 15 are actuators that convert the input electric signal into rotary motion or the like.
- the motor rotates at a predetermined rotation speed, and the indoor expansion valve 15 adjusts to a predetermined opening degree.
- the compressor 21 is a rotary compressor, a scroll compressor, or the like, and rotates the crankshaft by the rotation of the motor to compress the refrigerant taken into the cylinder.
- the control device 23 reduces the frequency of the compressor 21 to reduce the circulation amount of the refrigerant. Take control.
- the compressor 21 has a minimum operable rotation speed, and stops when the rotation speed falls below the minimum rotation speed (thermo-off).
- the circulation of the refrigerant is also stopped, and in the case of the cooling operation, the temperature in the room rises. Then, the temperature difference between the room temperature and the set temperature becomes large, and the control device 23 starts the operation of the compressor 21 (thermoon). In this way, when the room temperature approaches the set temperature, the compressor 21 is operated near the minimum rotation speed, and intermittent operation in which thermo-on and thermo-off are repeated is performed.
- the compressor 21 consumes a large amount of electric power at startup, when intermittent operation occurs, the power consumption increases as compared with continuous operation. Further, in the intermittent operation, the efficiency and reliability of the equipment are lowered as compared with the continuous operation, and the room temperature also fluctuates, so that the comfort is impaired. Therefore, if intermittent operation can be avoided, it is desirable to avoid intermittent operation.
- the humidity in the room can be reduced by reducing the amount of air blown by the fan 12 to the room heat exchanger 11 and setting the evaporation temperature of the refrigerant flowing in the room heat exchanger 11 low. Specifically, when the air volume of the fan 12 is reduced, the evaporation temperature is lowered and the cooling capacity is not changed, so that the air temperature is lowered. When the temperature of the air falls below the dew point due to the decrease in the temperature of the air, the water vapor in the air condenses, so that the humidity in the room decreases.
- the indoor expansion valve 15 is used to reduce the flow rate of the refrigerant flowing in the indoor heat exchanger 11. That is, the opening degree of the indoor expansion valve 15 is reduced to reduce the flow rate of the refrigerant.
- the cooling capacity is reduced, so that the decrease in room temperature can be suppressed. Further, since the decrease in room temperature is suppressed, it is not necessary for the compressor 21 to reduce the circulation amount of the refrigerant, and even when the load is low, it is not necessary to reduce the rotation speed to a speed lower than the minimum rotation speed. It becomes possible to avoid it.
- the mass flow rate decreases as the pressure on the outlet side of the expansion valve decreases, and the evaporation temperature of the refrigerant decreases.
- the indoor heat exchanger 11 functions as an evaporator, and mainly cools the air by the heat of vaporization when the liquid component in the refrigerant evaporates.
- the indoor heat exchanger 11 has a plurality of heat transfer tubes, and the effective area is defined by the ratio of the liquid component occupying the inside of the heat transfer tubes.
- the opening degree of the indoor expansion valve 15 is reduced, the temperature of the refrigerant is lowered, so that the temperature of the air in contact with the heat transfer tube can be lowered. Therefore, more water vapor contained in the air in contact with the heat transfer tube is condensed, and as a result, the amount of water vapor contained in the air as a whole can be reduced and dehumidification can be performed.
- FIG. 4 is a diagram showing the state of room temperature after the start of operation of the air conditioning system.
- the solid line shows the result of this control
- the broken line shows the result of the cooling operation
- the alternate long and short dash line shows the operation result of the dry mode.
- the target temperature which is the set temperature, is also shown.
- the cooling operation quickly drops from the room temperature at the start of operation to the set temperature, but it takes a certain amount of time for the temperature to stabilize.
- the room temperature has dropped beyond the set temperature.
- the rate of decrease to the set temperature is slower than in the cooling operation, but the temperature stabilizes faster than in the cooling operation, and the temperature fluctuation after stabilization is small. Therefore, by adopting this control, the temperature can be stably adjusted.
- FIG. 5 is a diagram showing the state of humidity in the room after the start of operation of the air conditioning system.
- the solid line shows the result of this control
- the broken line shows the result of the cooling operation
- the alternate long and short dash line shows the operation result of the dry mode.
- the target humidity is also shown in FIG.
- Humidity is a relative humidity and is represented by the ratio of the partial pressure of water vapor contained in air at room temperature to the maximum partial pressure of water vapor that can be contained in air at room temperature.
- the cooling operation is an operation that does not dehumidify
- the indoor humidity has not dropped to the target humidity.
- the humidity in the room reaches the target humidity quickly because the dehumidification is performed without reducing the flow rate of the refrigerant flowing in the indoor heat exchanger 11.
- the flow rate of the refrigerant flowing in the indoor heat exchanger 11 is reduced by the indoor expansion valve 15 to perform dehumidification, so that it takes longer than the dry mode operation, but the indoor humidity is reduced to the target humidity. Can be maintained at the target humidity. Therefore, by adopting this control, it is possible to stably adjust the humidity.
- FIG. 6 is a flowchart showing a first example of control of the indoor expansion valve 15.
- the control device 23 starts controlling the compressor 21, the indoor expansion valve 15, and the like in response to the start of operation of the outdoor unit 20.
- the control of the indoor expansion valve 15 is started from step 100, and in step 101, the detected value RH detected by the humidity sensor 14 is compared with the set target humidity RHo, and it is determined whether or not the RH is larger than the RHo. do.
- step 101 If it is determined in step 101 that RH is larger than RHo, the process proceeds to step 102, and the indoor expansion valve 15 is instructed to reduce the opening degree. This is to reduce the humidity while suppressing the decrease in room temperature.
- the indoor expansion valve 15 is provided with information on an opening degree smaller than the current opening degree, which is calculated based on the difference between the detected value of the humidity sensor 14 and the target humidity, as an electric signal. Then, the process returns to step 101 to continue the control.
- step 101 If it is determined in step 101 that the RH is RHo or less, the process proceeds to step 103, and it is determined whether or not the RH is smaller than the RHo. If it is determined that the RH is smaller than the RHo, the process proceeds to step 104, and the indoor expansion valve 15 is instructed to increase the opening degree in order to suppress the decrease in humidity. In this case, information on an opening degree larger than the current opening degree obtained by calculation is given to the indoor expansion valve 15. Then, the process returns to step 101 to continue the control.
- step 103 If it is determined in step 103 that RH is the same as RHo, the process proceeds to step 105, and since the indoor humidity is maintained at the target humidity, the indoor expansion valve 15 is instructed to maintain the opening degree. In this case, the information on the current opening degree may be given to the indoor expansion valve 15, or may not be given because the opening degree does not change. Then, the process returns to step 101 to continue the control. This control continues until the air conditioning system is shut down.
- FIG. 7 is a diagram showing a second configuration example of the air conditioning system.
- the indoor unit 10 is further provided with two pipe temperature sensors 16 and 17. Since the indoor heat exchanger 11 and fan 12 included in the indoor unit 10 and the compressor 21 and outdoor heat exchanger 22 included in the outdoor unit 20 have already been described, only the two piping temperature sensors 16 and 17 will be described here. do.
- the two pipe temperature sensors 16 and 17 are attached adjacent to the outer wall surface of each of the two pipes connecting the indoor heat exchanger 11 and detect the temperature of the pipe outer wall surface.
- the two pipe temperature sensors 16 and 17 are attached to the outer wall surface of each pipe near the two connecting portions connecting the indoor heat exchanger 11 and each of the two pipes.
- the pipe temperature sensor 16 serves as a liquid pipe temperature sensor that detects the temperature of the outer wall surface of the pipe through which the two-phase refrigerant flowing through the indoor expansion valve 15 flows.
- the pipe temperature sensor 17 functions as a gas pipe temperature sensor that detects the temperature of the outer wall surface of the pipe through which the gaseous refrigerant that evaporates by the indoor heat exchanger 11 flows and is discharged from the indoor heat exchanger 11.
- the temperature of the two-phase flow refrigerant (saturation temperature or evaporation temperature of the refrigerant) can be obtained.
- the pipe temperature sensor 17 that functions as the gas pipe temperature sensor From the detected value of the pipe temperature sensor 17 that functions as the gas pipe temperature sensor, the refrigerant evaporates, and the temperature of the further heated refrigerant gas can be obtained. The difference between the temperature of the obtained refrigerant gas and the saturation temperature of the obtained refrigerant is called the degree of superheat.
- the control device 23 calculates the degree of superheat from the detected values of the pipe temperature sensors 16 and 17, orders the degree of superheat to increase or decrease, or orders the degree of superheat to be maintained, and opens the indoor expansion valve 15. To control. Specific control will be described with reference to FIG.
- FIG. 8 is a flowchart showing a second example of control of the indoor expansion valve 15.
- the control device 23 starts controlling the compressor 21, the indoor expansion valve 15, and the like in response to the start of operation of the outdoor unit 20.
- the control of the indoor expansion valve 15 is started from step 200, and in step 201, the detected value RH detected by the humidity sensor 14 is compared with the target humidity RHo, and it is determined whether or not the RH is larger than the RHo.
- step 201 If it is determined in step 201 that RH is larger than RHo, the process proceeds to step 202, and the indoor expansion valve 15 is instructed to increase the degree of superheat.
- the degree of superheat can be increased by raising the temperature of the refrigerant gas exiting the indoor heat exchanger 11, lowering the saturation temperature (evaporation temperature) of the refrigerant, or both. In order to raise the temperature of the refrigerant gas, it is necessary to reduce the liquid component in the refrigerant, and in order to lower the evaporation temperature, it is necessary to lower the pressure of the refrigerant. These can be realized by reducing the opening degree of the indoor expansion valve 15. When RH is larger than RHo, it is necessary to reduce the opening degree of the indoor expansion valve 15 as explained with reference to FIG. 6, and instruct to increase the degree of superheat in order to control the opening degree to be small. do.
- the control device 23 gives the indoor expansion valve 15 information on the degree of superheat that is larger than the current degree of superheat, which is calculated based on the detected values of the pipe temperature sensors 16 and 17, as an electric signal.
- the indoor expansion valve 15 holds, for example, a table or the like in which the degree of superheat and the opening degree are associated with each other, obtains the opening degree using the table or the like, and adjusts to the opening degree. Then, the process returns to step 201 to continue the control.
- step 201 If it is determined in step 201 that the RH is RHo or less, the process proceeds to step 203, and it is determined whether or not the RH is smaller than the RHo. If it is determined that the RH is smaller than the RHo, the process proceeds to step 204, and conversely, the indoor expansion valve 15 is instructed to reduce the degree of superheat in order to control the opening degree to be increased.
- the control device 23 gives information on the superheat degree smaller than the calculated current superheat degree to the indoor expansion valve 15 as an electric signal. Then, the process returns to step 201 to continue the control.
- step 203 If it is determined in step 203 that RH is the same as RHo, the process proceeds to step 205, and the indoor expansion valve 15 is instructed to maintain the current degree of superheat. This is because the current degree of superheat is maintained at the target humidity. In this case, the information on the current degree of superheat may or may not be given to the indoor expansion valve 15. Then, the process returns to step 201 to continue the control. This control also continues until the air conditioning system is shut down.
- FIG. 9 is a diagram showing a third configuration example of the air conditioning system.
- the configuration shown in FIG. 9 is a configuration in which the pipe temperature sensor 17 of the indoor unit 10 is eliminated from the configuration shown in FIG. That is, it is configured to include only the pipe temperature sensor 16 that functions as a liquid pipe temperature sensor when the indoor heat exchanger 11 is used as an evaporator.
- the pipe temperature sensor 16 detects the temperature of the outer wall surface of the pipe through which the two-phase flow refrigerant flowing through the indoor expansion valve 15 flows, that is, the temperature of the liquid pipe. From the liquid pipe temperature, the evaporation temperature of the refrigerant can be obtained.
- the control device 23 commands the liquid pipe temperature to increase or decrease, or to maintain the liquid pipe temperature, and controls the opening degree of the indoor expansion valve 15. Specific control will be described with reference to FIG.
- FIG. 10 is a flowchart showing a third example of control of the indoor expansion valve 15.
- the control shown in FIG. 10 is a control using the pipe temperature sensor 16 shown in FIG.
- the control device 23 starts controlling the compressor 21, the indoor expansion valve 15, and the like in response to the start of operation of the outdoor unit 20.
- the control of the indoor expansion valve 15 is started from step 300, and in step 301, the detected value RH detected by the humidity sensor 14 is compared with the target humidity RHo, and it is determined whether or not the RH is larger than the RHo.
- step 301 If it is determined in step 301 that RH is larger than RHo, the process proceeds to step 302 and an instruction is given to lower the liquid pipe temperature.
- the liquid pipe temperature is related to the evaporation temperature of the refrigerant and can be lowered by lowering the evaporation temperature.
- the evaporation temperature can be lowered by lowering the pressure of the refrigerant, and can be realized by reducing the opening degree of the indoor expansion valve 15.
- RH is larger than RHo, it is necessary to reduce the opening degree of the indoor expansion valve 15, and in order to control the opening degree to be small, the liquid pipe temperature is instructed to be lowered.
- the control device 23 gives the indoor expansion valve 15 information on the liquid pipe temperature lower than the current liquid pipe temperature, which is calculated based on the detection value of the pipe temperature sensor 16, as an electric signal.
- the indoor expansion valve 15 holds, for example, a table or the like in which the liquid pipe temperature and the opening degree are associated with each other, obtains the opening degree using the table or the like, and adjusts to the opening degree. Then, the process returns to step 301 to continue the control.
- step 301 If it is determined in step 301 that the RH is RHo or less, the process proceeds to step 303, and it is determined whether or not the RH is smaller than the RHo. If it is determined that RH is smaller than RHo, the process proceeds to step 304, and conversely, an instruction is given to raise the liquid pipe temperature in order to control the opening degree to be increased.
- the control device 23 gives information on the liquid pipe temperature higher than the calculated current liquid pipe temperature to the indoor expansion valve 15 as an electric signal. Then, the process returns to step 301 to continue the control.
- step 303 If it is determined in step 303 that RH is the same as RHo, the process proceeds to step 305 and the current liquid tube temperature is maintained. This is because the current liquid tube temperature is maintained at the target humidity. In this case, the information on the current liquid pipe temperature may or may not be given to the indoor expansion valve 15. In this case as well, the process returns to step 301 to continue the control.
- the indoor humidity can be adjusted to the target humidity by the control explained so far, but the target humidity is not limited to the one set by the user.
- the target humidity may be calculated from the set temperature set by the user.
- FIG. 11 is a control block diagram illustrating a second control of the frequency of the compressor 21 and the opening degree of the indoor expansion valve 15.
- the optimum humidity is calculated from the set temperature set by the user, and the opening degree of the indoor expansion valve 15 is controlled so as to be the humidity.
- the control of room temperature is the same as the example shown in FIG. That is, the frequency of the AC power source output by the inverter for driving the motor of the compressor 21 based on the temperature difference between the set temperature and the room temperature detected by the room temperature sensor 13 of the indoor unit 10 by the rotation speed control means 32. Is calculated. Then, the rotation speed control means 32 inputs the frequency obtained by calculation to the motor of the compressor 21.
- the humidity calculation means 34 calculates the target humidity based on the comfort index.
- the opening degree control means 33 calculates the opening degree of the indoor expansion valve 15 so as to reach the target humidity obtained by the calculation, and inputs the obtained opening degree information to the indoor expansion valve 15.
- the comfort index is an index showing how comfortable a person is, and as a method for measuring the comfort, for example, the average expected warm / cold feeling report (PMV) can be used.
- PMV is calculated from the six elements of temperature, humidity, radiation, airflow, activity amount, and clothing amount, and by setting the radiation, airflow, activity amount, and clothing amount to constant values, it becomes a function of temperature and humidity only. ..
- the target humidity can be calculated as the optimum humidity.
- PPD predicted discomfort rate
- each indoor unit 10a to 10n is provided with an indoor expansion valve 15a to 15n, and by controlling each indoor expansion valve 15a to 15n, the cooling capacity of each indoor unit 10a to 10n can be individually increased. This is because it can be controlled. As a result, each room in which each indoor unit 10a to 10n is installed can be individually dehumidified while suppressing the cooling capacity, and cooling during dehumidification can be prevented. Further, since the compressor 21 does not easily reach the minimum rotation speed, dehumidification can be effectively performed even when the load is low.
- the present invention is not limited to the above-described embodiments, and other embodiments, additions, modifications, and the like. It can be changed within the range that can be conceived by those skilled in the art, such as deletion, and is included in the scope of the present invention as long as the action and effect of the present invention are exhibited in any of the embodiments.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Air Conditioning Control Device (AREA)
Abstract
The purpose of the present invention is to provide a system and method with which it is possible to minimize a temperature decrease during a dehumidification operation by each indoor unit, and in which the dehumidification capability does not decrease during low load. In an air-conditioning system: an indoor unit includes an indoor heat exchanger, a temperature detection means for detecting the indoor temperature, and a humidity detection means for detecting the indoor humidity; and an outdoor unit includes an outdoor heat exchanger and a compressor for circulating a refrigerant between the outdoor unit and the indoor unit. The air-conditioning system is provided with: a valve provided between the outdoor heat exchanger and the indoor heat exchanger; a rotation speed control means 32 for controlling the rotation speed of the compressor according to the temperature detected by the temperature detection means; and an opening degree control means 33 for controlling the opening degree of the valve according to the humidity detected by the humidity detection means.
Description
本発明は、空気調和システムおよび該空気調和システムの運転を制御する方法に関する。
The present invention relates to an air conditioning system and a method of controlling the operation of the air conditioning system.
空気調和システムには、冷房モードのほか、除湿(ドライ)モードを備えたシステムがある。ドライモード運転では、一般に、熱交換器(蒸発器)に送風する風量を低下させ、蒸発器の上限温度を低く設定し、潜熱能力を向上させる方法が広く採用されている。
The air conditioning system includes a system equipped with a dehumidifying (dry) mode in addition to the cooling mode. In the dry mode operation, generally, a method of reducing the amount of air blown to the heat exchanger (evaporator), setting the upper limit temperature of the evaporator low, and improving the latent heat capacity is widely adopted.
このようなシステムでは、温度調節を重視する冷房モードか、湿度調節を重視するドライモードかを選択する必要があり、冷房モードを選択した場合、湿度が上昇しやすく、ドライモードを選択した場合、室温が低下しやすいという問題がある。
In such a system, it is necessary to select a cooling mode that emphasizes temperature control or a dry mode that emphasizes humidity control.If the cooling mode is selected, the humidity tends to rise, and if the dry mode is selected, There is a problem that the room temperature tends to drop.
特許文献1には、相対湿度センサの検出値に応じて蒸発器の上限温度を低く設定する方法が記載されている。これに対して、特許文献2には、冷房運転を行うとともに除湿も可能にすることを目的として、温湿度センサで検出した湿度が所定値より高い間、蒸発器の表面温度が吸込み空気の露点より低い所定温度になるように吸込圧力を算出し、算出した吸込圧力になるように電子膨張弁の開度を調整する装置が記載されている。
Patent Document 1 describes a method of setting the upper limit temperature of the evaporator low according to the detected value of the relative humidity sensor. On the other hand, in Patent Document 2, the surface temperature of the evaporator is the dew point of the sucked air while the humidity detected by the temperature / humidity sensor is higher than a predetermined value for the purpose of performing the cooling operation and enabling dehumidification. Described is a device that calculates the suction pressure so that the temperature becomes lower and adjusts the opening degree of the electronic expansion valve so that the suction pressure becomes the calculated suction pressure.
しかしながら、特許文献1に記載の方法では、ドライモードを選択した場合に室温が低下しやすいだけでなく、低負荷で圧縮機が最低回転数付近で運転されていると、熱交換器の蒸発温度を高く保つため、除湿能力が低下してしまうという問題がある。また、特許文献2のように圧縮機の吸込圧力から蒸発器の目標温度を計算する方法では、複数台の室内機が同時に接続される場合、配管長の異なる各室内ユニットの目標温度を圧縮機の吸込圧力から計算すれば、配管の長さによって除湿能力の不足等が発生する場合がある。
However, in the method described in Patent Document 1, not only the room temperature tends to decrease when the dry mode is selected, but also the evaporation temperature of the heat exchanger when the compressor is operated near the minimum rotation speed with a low load. There is a problem that the dehumidifying capacity is reduced in order to keep the temperature high. Further, in the method of calculating the target temperature of the evaporator from the suction pressure of the compressor as in Patent Document 2, when a plurality of indoor units are connected at the same time, the target temperature of each indoor unit having a different pipe length is set by the compressor. If calculated from the suction pressure of, the dehumidifying capacity may be insufficient depending on the length of the pipe.
そこで、室内機ごとに冷房能力を抑えながら除湿を促進するシステムや方法の提供が望まれていた。
Therefore, it has been desired to provide a system and a method for promoting dehumidification while suppressing the cooling capacity of each indoor unit.
本発明は、上記課題に鑑み、室内機と室外機とを含む空気調和システムであって、
室内機が、
室内熱交換器と、
室内の温度を検出する温度検出手段と、
室内の湿度を検出する湿度検出手段と
を含み、
室外機が、
室外熱交換器と、
室内機との間で冷媒を循環させる圧縮機と
を含み、
室外熱交換器と室内熱交換器との間に設けられる弁と、
温度検出手段により検出された温度に応じて、圧縮機の回転数を制御する回転数制御手段と、
湿度検出手段により検出された湿度に応じて、弁の開度を制御する開度制御手段と
を備える、空気調和システムが提供される。 The present invention is an air conditioning system including an indoor unit and an outdoor unit in view of the above problems.
The indoor unit
Indoor heat exchanger and
A temperature detecting means for detecting the temperature in the room and
Includes humidity detection means to detect indoor humidity
The outdoor unit
With an outdoor heat exchanger,
Includes a compressor that circulates refrigerant to and from the indoor unit
A valve provided between the outdoor heat exchanger and the indoor heat exchanger,
A rotation speed control means that controls the rotation speed of the compressor according to the temperature detected by the temperature detection means, and
An air conditioning system is provided that includes an opening degree controlling means that controls the opening degree of the valve according to the humidity detected by the humidity detecting means.
室内機が、
室内熱交換器と、
室内の温度を検出する温度検出手段と、
室内の湿度を検出する湿度検出手段と
を含み、
室外機が、
室外熱交換器と、
室内機との間で冷媒を循環させる圧縮機と
を含み、
室外熱交換器と室内熱交換器との間に設けられる弁と、
温度検出手段により検出された温度に応じて、圧縮機の回転数を制御する回転数制御手段と、
湿度検出手段により検出された湿度に応じて、弁の開度を制御する開度制御手段と
を備える、空気調和システムが提供される。 The present invention is an air conditioning system including an indoor unit and an outdoor unit in view of the above problems.
The indoor unit
Indoor heat exchanger and
A temperature detecting means for detecting the temperature in the room and
Includes humidity detection means to detect indoor humidity
The outdoor unit
With an outdoor heat exchanger,
Includes a compressor that circulates refrigerant to and from the indoor unit
A valve provided between the outdoor heat exchanger and the indoor heat exchanger,
A rotation speed control means that controls the rotation speed of the compressor according to the temperature detected by the temperature detection means, and
An air conditioning system is provided that includes an opening degree controlling means that controls the opening degree of the valve according to the humidity detected by the humidity detecting means.
本発明によれば、各室内機ごとに除湿運転時の温度低下を抑制でき、さらに低負荷時においても除湿能力が低下しないシステムや方法を提供することができる。
According to the present invention, it is possible to provide a system or method that can suppress a temperature drop during dehumidifying operation for each indoor unit and does not reduce the dehumidifying capacity even when the load is low.
図1は、空気調和システムの第1の構成例を示した図である。空気調和システムは、住宅やビル等の室内の温度や湿度等を調整するシステムであり、室内に設置される室内機10と、室外に設置される室外機20とを含んで構成される。
FIG. 1 is a diagram showing a first configuration example of an air conditioning system. The air conditioning system is a system that adjusts the temperature, humidity, etc. of the interior of a house or building, and includes an indoor unit 10 installed indoors and an outdoor unit 20 installed outdoors.
室内機10と室外機20とは、熱媒体としての冷媒が循環する冷媒配管30、31により接続される。冷媒としては、例えばR410aやR32等のハイドロフルオロカーボンが用いられる。また、室内機10と室外機20とは、互いに通信を行うために通信ケーブル等により接続される。なお、通信は、通信ケーブルによる有線通信に限らず、WiFi(登録商標)等を使用した無線通信であってもよい。
The indoor unit 10 and the outdoor unit 20 are connected by refrigerant pipes 30 and 31 through which a refrigerant as a heat medium circulates. As the refrigerant, for example, hydrofluorocarbons such as R410a and R32 are used. Further, the indoor unit 10 and the outdoor unit 20 are connected by a communication cable or the like in order to communicate with each other. The communication is not limited to wired communication using a communication cable, and may be wireless communication using WiFi (registered trademark) or the like.
室内には、ユーザが操作する操作装置(リモートコントローラ)が配置される。室内機10は、ユーザによるリモートコントローラの操作を受けて、運転開始や運転終了の指示、運転モードや設定温度の変更等を受け付ける。室内機10は、運転開始の指示を受け付けると、室外機20に対して起動を指令し、冷媒の循環を開始させる。室内機10は、受け付けた運転モードや設定温度等も室外機20に通知する。
An operating device (remote controller) operated by the user is placed in the room. The indoor unit 10 receives an operation of the remote controller by the user, receives an instruction to start or end the operation, changes the operation mode or the set temperature, and the like. When the indoor unit 10 receives the instruction to start the operation, the indoor unit 10 commands the outdoor unit 20 to start the operation and starts the circulation of the refrigerant. The indoor unit 10 also notifies the outdoor unit 20 of the received operation mode, set temperature, and the like.
室内機10は、室内熱交換器11と、送風機(ファン)12と、室内の温度(室温)を検出する温度検出手段としての室温センサ13と、室内の湿度を検出する湿度検出手段としての湿度センサ14とを含む。また、室内機10は、室内熱交換器11内を流れる冷媒を膨張させるとともに、冷媒の流量を調整する室内膨張弁15を含む。室内機10は、設定風量になるようにファン12を制御し、運転開始や運転終了の指令、室温センサ13等の検出結果を室外機20に通知するための図示しない制御装置を含む。
The indoor unit 10 includes an indoor heat exchanger 11, a blower (fan) 12, a room temperature sensor 13 as a temperature detecting means for detecting an indoor temperature (room temperature), and a humidity as a humidity detecting means for detecting indoor humidity. Includes sensor 14. Further, the indoor unit 10 includes an indoor expansion valve 15 that expands the refrigerant flowing in the indoor heat exchanger 11 and adjusts the flow rate of the refrigerant. The indoor unit 10 includes a control device (not shown) for controlling the fan 12 so as to have a set air volume, and notifying the outdoor unit 20 of a command for starting or ending operation and a detection result such as a room temperature sensor 13.
室内機10は、運転開始の指令を受けて、ファン12を起動させ、ファン12により室内の空気を取り込む。室内熱交換器11は、ファン12により取り込まれた空気と、室外機20から供給される冷媒との間で熱交換を行い、冷却された空気または暖められた空気を吹き出す。室内機10は、この動作を繰り返して、室内を設定温度になるように冷却または暖める。
The indoor unit 10 receives a command to start operation, activates the fan 12, and takes in the indoor air by the fan 12. The indoor heat exchanger 11 exchanges heat between the air taken in by the fan 12 and the refrigerant supplied from the outdoor unit 20, and blows out cooled air or warmed air. The indoor unit 10 repeats this operation to cool or warm the room to a set temperature.
制御装置は、室温センサ13により検出された室温と、湿度センサ14により検出された湿度とを検出値として取得し、室外機20に通知する。室内膨張弁15は、室外機20からの制御を受けて、開度を変更し、室内熱交換器11内を流れる冷媒を膨張させるとともに、冷媒の流量を調整する。室内膨張弁15は、冷房モードで使用する場合の室内熱交換器11の冷媒の入口側に設けられる。なお、室内膨張弁15は、冷房モードで使用する場合の室内熱交換器11の冷媒の入口側であって、室内機10内であれば、いかなる位置に設けられていてもよい。
The control device acquires the room temperature detected by the room temperature sensor 13 and the humidity detected by the humidity sensor 14 as detected values, and notifies the outdoor unit 20. Under the control of the outdoor unit 20, the indoor expansion valve 15 changes the opening degree to expand the refrigerant flowing in the indoor heat exchanger 11 and adjust the flow rate of the refrigerant. The indoor expansion valve 15 is provided on the inlet side of the refrigerant of the indoor heat exchanger 11 when used in the cooling mode. The indoor expansion valve 15 may be provided at any position as long as it is on the inlet side of the refrigerant of the indoor heat exchanger 11 when used in the cooling mode and is inside the indoor unit 10.
室外機20は、室内機10からの指令を受けて起動し、設定された、または室内機10から通知された運転モードで運転を開始する。運転モードは、冷房モード、暖房モード、送風モード等である。室外機20は、圧縮機21と、室外熱交換器22と、制御装置23とを含む。室外機20は、図示しないファン、室外膨張弁、四方弁をさらに含む。
The outdoor unit 20 is activated in response to a command from the indoor unit 10 and starts operation in the set operation mode or the operation mode notified by the indoor unit 10. The operation mode is a cooling mode, a heating mode, a ventilation mode, or the like. The outdoor unit 20 includes a compressor 21, an outdoor heat exchanger 22, and a control device 23. The outdoor unit 20 further includes a fan (not shown), an outdoor expansion valve, and a four-way valve (not shown).
制御装置23は、圧縮機21およびファンを起動し、運転モードに応じて四方弁を切り替え、圧縮機21、ファン、室外膨張弁、室内膨張弁15の制御を開始する。圧縮機21は、室内機10と室外機20との間を、冷媒配管30、31を介して冷媒を循環させる。室外熱交換器22は、ファンにより取り込まれた外気と、圧縮機21から吐出された、または室内機10から戻された冷媒との間で熱交換を行う。室外膨張弁は、室外熱交換器22または室内機10により凝縮した冷媒を膨張させるとともに、冷媒の流量を調整する。制御装置23は、室内機10からの指令を受けて、圧縮機21およびファンを停止し、運転を停止する。
The control device 23 starts the compressor 21 and the fan, switches the four-way valve according to the operation mode, and starts controlling the compressor 21, the fan, the outdoor expansion valve, and the indoor expansion valve 15. The compressor 21 circulates the refrigerant between the indoor unit 10 and the outdoor unit 20 via the refrigerant pipes 30 and 31. The outdoor heat exchanger 22 exchanges heat between the outside air taken in by the fan and the refrigerant discharged from the compressor 21 or returned from the indoor unit 10. The outdoor expansion valve expands the refrigerant condensed by the outdoor heat exchanger 22 or the indoor unit 10 and adjusts the flow rate of the refrigerant. Upon receiving a command from the indoor unit 10, the control device 23 stops the compressor 21 and the fan, and stops the operation.
冷房モードで運転を行う場合、圧縮機21から吐出された高温のガス状の冷媒は、四方弁を介して凝縮器として機能する室外熱交換器22へ供給され、凝縮し、室内膨張弁15により膨張してガスと液とが混合した二相流となり、温度を下げた後、室内熱交換器11へ供給される。冷媒は、室内熱交換器11において室内の空気と熱交換を行って蒸発し、室内機10から排出されたガス状の冷媒は、四方弁を介して圧縮機21へ戻される。
When operating in the cooling mode, the high-temperature gaseous refrigerant discharged from the compressor 21 is supplied to the outdoor heat exchanger 22 that functions as a condenser via a four-way valve, condenses, and is condensed by the indoor expansion valve 15. It expands to form a two-phase flow in which gas and liquid are mixed, and after lowering the temperature, it is supplied to the indoor heat exchanger 11. The refrigerant exchanges heat with the indoor air in the indoor heat exchanger 11 and evaporates, and the gaseous refrigerant discharged from the indoor unit 10 is returned to the compressor 21 via the four-way valve.
暖房モードで運転を行う場合、四方弁の切り替えにより、冷媒が流れる方向が反転し、圧縮機21から吐出されたガス状の冷媒は、室内機10へ供給される。室内機10では、凝縮器として機能する室内熱交換器11により冷媒と室内の空気とが熱交換を行い、凝縮し、室内膨張弁15を介して室外機20へ送られる。冷媒は、室外膨張弁24により膨張され、蒸発器として機能する室外熱交換器22により蒸発し、ガス状の冷媒となって、四方弁25を介して圧縮機21へ戻される。
When operating in the heating mode, the direction in which the refrigerant flows is reversed by switching the four-way valve, and the gaseous refrigerant discharged from the compressor 21 is supplied to the indoor unit 10. In the indoor unit 10, the indoor heat exchanger 11 that functions as a condenser exchanges heat between the refrigerant and the indoor air, condenses the refrigerant, and sends the refrigerant to the outdoor unit 20 via the indoor expansion valve 15. The refrigerant is expanded by the outdoor expansion valve 24, evaporated by the outdoor heat exchanger 22 that functions as an evaporator, becomes a gaseous refrigerant, and is returned to the compressor 21 via the four-way valve 25.
この例では、室外機20が備える制御装置23により圧縮機21、室外膨張弁、室内膨張弁15の制御を行っているが、これに限られるものではなく、室内機10が備える制御装置や、別途設けられる集中コントローラ等により、これらの制御を行ってもよい。
In this example, the compressor 21, the outdoor expansion valve, and the indoor expansion valve 15 are controlled by the control device 23 included in the outdoor unit 20, but the present invention is not limited to this, and the control device included in the indoor unit 10 and the control device 10 are used. These controls may be performed by a centralized controller or the like provided separately.
図2は、室外機20が備える制御装置23のハードウェア構成の一例を示した図である。制御装置23は、CPU40と、フラッシュメモリ41と、RAM42と、通信I/F43と、制御I/F44とを備える。CPU40等の構成要素は、バス45に接続され、バス45を介して情報等のやりとりを行う。
FIG. 2 is a diagram showing an example of the hardware configuration of the control device 23 included in the outdoor unit 20. The control device 23 includes a CPU 40, a flash memory 41, a RAM 42, a communication I / F 43, and a control I / F 44. Components such as the CPU 40 are connected to the bus 45, and information and the like are exchanged via the bus 45.
フラッシュメモリ41は、CPU40により実行されるプログラムや各種のデータ等を記憶する。RAM42は、CPU40に対して作業領域を提供する。CPU40は、フラッシュメモリ41に記憶されたプログラムをRAM42に読み出し実行することで、上記の制御を実現する。
The flash memory 41 stores a program executed by the CPU 40, various data, and the like. The RAM 42 provides a work area for the CPU 40. The CPU 40 realizes the above control by reading and executing the program stored in the flash memory 41 into the RAM 42.
通信I/F43は、室内機10と接続し、室内機10から室温や湿度等の情報を受信する。制御I/F44は、圧縮機21、ファン、室外膨張弁、四方弁、室内膨張弁15と接続し、それぞれの機器の制御を行う。
The communication I / F 43 is connected to the indoor unit 10 and receives information such as room temperature and humidity from the indoor unit 10. The control I / F44 is connected to the compressor 21, the fan, the outdoor expansion valve, the four-way valve, and the indoor expansion valve 15 to control each device.
図3は、圧縮機21の周波数および室内膨張弁15の開度の第1の制御について説明する制御ブロック図である。制御装置23は、設定温度と、室内機10の室温センサ13の検出値との温度差に基づき、圧縮機21に入力する交流電源の周波数を演算する回転数制御手段32を含む。回転数制御手段32は、図2に示したCPU40がフラッシュメモリ41から読み出したプログラムを実行することにより実現される。ここでは、CPU40がプログラムを実行することにより上記の回転数制御手段を実現しているが、これに限られるものではなく、回路等のハードウェアを使用して実現してもよい。これは、以下の開度制御手段等も同様である。
FIG. 3 is a control block diagram illustrating the first control of the frequency of the compressor 21 and the opening degree of the indoor expansion valve 15. The control device 23 includes a rotation speed control means 32 that calculates the frequency of the AC power supply input to the compressor 21 based on the temperature difference between the set temperature and the value detected by the room temperature sensor 13 of the indoor unit 10. The rotation speed control means 32 is realized by executing the program read from the flash memory 41 by the CPU 40 shown in FIG. Here, the above-mentioned rotation speed control means is realized by the CPU 40 executing a program, but the present invention is not limited to this, and may be realized by using hardware such as a circuit. This also applies to the following opening degree control means and the like.
圧縮機21は、モータを備え、モータにはインバータが接続される。インバータは、商用電源の電圧および周波数を所望の電圧および周波数に変換して出力する装置である。回転数制御手段32は、演算した周波数をインバータに入力し、インバータがその周波数に変換した電気信号をモータに入力する。これにより、回転数制御手段32は、圧縮機21が備えるモータの回転数を制御する。周波数の演算は、温度差と周波数とを対応付けた対応表を用いてもよいし、温度差を変数とする演算式を用いてもよい。
The compressor 21 includes a motor, and an inverter is connected to the motor. An inverter is a device that converts the voltage and frequency of a commercial power supply into a desired voltage and frequency and outputs them. The rotation speed control means 32 inputs the calculated frequency to the inverter, and inputs the electric signal converted by the inverter to the frequency to the motor. As a result, the rotation speed control means 32 controls the rotation speed of the motor included in the compressor 21. The frequency may be calculated by using a correspondence table in which the temperature difference is associated with the frequency, or by using an arithmetic expression in which the temperature difference is a variable.
制御装置23は、ユーザにより設定された設定温度のほか、目標湿度も保持する。目標湿度は、ユーザにより設定された目標とする湿度である。制御装置23は、目標湿度と、室内機10の湿度センサ14の検出値との差に基づき、室内膨張弁15の開度を演算する開度制御手段33を含む。開度制御手段33は、演算した開度の情報を電気信号として室内膨張弁15に入力し、室内膨張弁15の開度を制御する。開度の演算も、周波数の演算と同様、湿度の差と開度とを対応付けた対応表を用いてもよいし、湿度の差を変数とする演算式を用いてもよい。
The control device 23 holds the target humidity as well as the set temperature set by the user. The target humidity is a target humidity set by the user. The control device 23 includes an opening degree control means 33 that calculates the opening degree of the indoor expansion valve 15 based on the difference between the target humidity and the detection value of the humidity sensor 14 of the indoor unit 10. The opening degree control means 33 inputs the calculated opening degree information as an electric signal to the indoor expansion valve 15, and controls the opening degree of the indoor expansion valve 15. Similar to the frequency calculation, the opening degree calculation may use a correspondence table in which the humidity difference and the opening degree are associated with each other, or an arithmetic expression in which the humidity difference is used as a variable may be used.
モータおよび室内膨張弁15は、入力された電気信号を回転運動等に変換するアクチュエータであり、モータは、所定の回転数で回転し、室内膨張弁15は、所定の開度に調整する。圧縮機21は、ロータリ圧縮機やスクロール圧縮機等であり、モータの回転によりクランクシャフトを回転させ、シリンダ内に取り込んだ冷媒を圧縮する。
The motor and the indoor expansion valve 15 are actuators that convert the input electric signal into rotary motion or the like. The motor rotates at a predetermined rotation speed, and the indoor expansion valve 15 adjusts to a predetermined opening degree. The compressor 21 is a rotary compressor, a scroll compressor, or the like, and rotates the crankshaft by the rotation of the motor to compress the refrigerant taken into the cylinder.
ところで、制御装置23は、室温センサ13の検出値が設定温度に近づき、室温と設定温度との温度差が小さくなると、圧縮機21の周波数を小さくして、冷媒の循環量を減少させるように制御を行う。圧縮機21は、運転可能な最低回転数を有し、最低回転数を下回ると停止する(サーモオフ)。圧縮機21が停止すると、冷媒の循環も停止し、冷房運転の場合、室内の温度が上昇してくる。すると、室温と設定温度の温度差が大きくなり、制御装置23は、圧縮機21の運転を開始させる(サーモオン)。このように、室温が設定温度に近づくと、最低回転数付近で圧縮機21が運転されるようになり、サーモオンとサーモオフを繰り返す断続運転が行われるようになる。
By the way, when the detection value of the room temperature sensor 13 approaches the set temperature and the temperature difference between the room temperature and the set temperature becomes small, the control device 23 reduces the frequency of the compressor 21 to reduce the circulation amount of the refrigerant. Take control. The compressor 21 has a minimum operable rotation speed, and stops when the rotation speed falls below the minimum rotation speed (thermo-off). When the compressor 21 is stopped, the circulation of the refrigerant is also stopped, and in the case of the cooling operation, the temperature in the room rises. Then, the temperature difference between the room temperature and the set temperature becomes large, and the control device 23 starts the operation of the compressor 21 (thermoon). In this way, when the room temperature approaches the set temperature, the compressor 21 is operated near the minimum rotation speed, and intermittent operation in which thermo-on and thermo-off are repeated is performed.
圧縮機21は、起動時に多くの電力を消費することから、断続運転が発生すると、連続運転に比較して消費電力が増加する。また、断続運転は、連続運転に比較して機器の効率や信頼性が低下し、室内温度も変動するため、快適性を損なう。したがって、断続運転を回避することができるのであれば、断続運転を回避することが望ましい。
Since the compressor 21 consumes a large amount of electric power at startup, when intermittent operation occurs, the power consumption increases as compared with continuous operation. Further, in the intermittent operation, the efficiency and reliability of the equipment are lowered as compared with the continuous operation, and the room temperature also fluctuates, so that the comfort is impaired. Therefore, if intermittent operation can be avoided, it is desirable to avoid intermittent operation.
室内の湿度は、ファン12が室内熱交換器11に送風する風量を減少させ、室内熱交換器11内を流れる冷媒の蒸発温度を低く設定することにより低下させることができる。具体的に説明すると、ファン12の風量を減少させると蒸発温度が低下し、冷房能力が変わらないので、空気の温度が低下する。空気の温度の低下により、空気の温度が露点を下回ると、空気中の水蒸気が凝縮するため、室内の湿度が低下する。
The humidity in the room can be reduced by reducing the amount of air blown by the fan 12 to the room heat exchanger 11 and setting the evaporation temperature of the refrigerant flowing in the room heat exchanger 11 low. Specifically, when the air volume of the fan 12 is reduced, the evaporation temperature is lowered and the cooling capacity is not changed, so that the air temperature is lowered. When the temperature of the air falls below the dew point due to the decrease in the temperature of the air, the water vapor in the air condenses, so that the humidity in the room decreases.
しかしながら、この方法では、空気の温度も低下するため、室温が低下しやすい。室温の低下を抑制するためには、冷媒の循環量を減少させる必要があるが、圧縮機21が最低回転数で運転している場合、それ以上回転数を下げることができないため、冷媒の循環量を減少させることができない。
However, with this method, the temperature of the air also drops, so the room temperature tends to drop. In order to suppress the decrease in room temperature, it is necessary to reduce the circulation amount of the refrigerant, but when the compressor 21 is operating at the minimum rotation speed, the rotation speed cannot be further reduced, so that the circulation of the refrigerant The amount cannot be reduced.
そこで、圧縮機21の回転数を下げるのではなく、室内膨張弁15を使用して、室内熱交換器11内を流れる冷媒の流量を減少させる。すなわち、室内膨張弁15の開度を小さくして、冷媒の流量を減少させる。
Therefore, instead of lowering the rotation speed of the compressor 21, the indoor expansion valve 15 is used to reduce the flow rate of the refrigerant flowing in the indoor heat exchanger 11. That is, the opening degree of the indoor expansion valve 15 is reduced to reduce the flow rate of the refrigerant.
室内熱交換器11内を流れる冷媒の流量が減少させることで、冷房能力が低下するため、室温の低下を抑制することができる。また、室温の低下が抑制されることにより、圧縮機21が冷媒の循環量を減少させる必要がなくなり、低負荷時においても、最低回転数を下回る回転数に下げる必要がなくなるため、断続運転を回避することが可能となる。
By reducing the flow rate of the refrigerant flowing in the indoor heat exchanger 11, the cooling capacity is reduced, so that the decrease in room temperature can be suppressed. Further, since the decrease in room temperature is suppressed, it is not necessary for the compressor 21 to reduce the circulation amount of the refrigerant, and even when the load is low, it is not necessary to reduce the rotation speed to a speed lower than the minimum rotation speed. It becomes possible to avoid it.
ここで、冷房能力が低下する理由について説明しておく。室内膨張弁15の開度を小さくすると、膨張弁出口側圧力の低下に伴い質量流量が減少するとともに、冷媒の蒸発温度が低下する。このとき、空気温度と蒸発温度との温度差が広がり熱交換量が大きくなるため、熱交換器内で液冷媒が早く完全に気化してしまう。冷房運転では、室内熱交換器11は蒸発器として機能し、主に冷媒中の液成分が蒸発する際の気化熱により空気を冷却する。室内熱交換器11は、複数本の伝熱管を有し、伝熱管内を占める液成分の割合により有効面積が規定される。冷媒の流量が減少し、しかも膨張によって冷媒中の液成分が少なくなると、この有効面積が減少するため、冷房能力が低下する。
Here, I will explain the reason why the cooling capacity decreases. When the opening degree of the indoor expansion valve 15 is reduced, the mass flow rate decreases as the pressure on the outlet side of the expansion valve decreases, and the evaporation temperature of the refrigerant decreases. At this time, since the temperature difference between the air temperature and the evaporation temperature is widened and the amount of heat exchange is large, the liquid refrigerant is quickly and completely vaporized in the heat exchanger. In the cooling operation, the indoor heat exchanger 11 functions as an evaporator, and mainly cools the air by the heat of vaporization when the liquid component in the refrigerant evaporates. The indoor heat exchanger 11 has a plurality of heat transfer tubes, and the effective area is defined by the ratio of the liquid component occupying the inside of the heat transfer tubes. When the flow rate of the refrigerant decreases and the liquid component in the refrigerant decreases due to expansion, this effective area decreases, so that the cooling capacity decreases.
なお、室内膨張弁15の開度を小さくすると、冷媒の温度が低下するため、伝熱管に接触した空気の温度を下げることができる。このため、伝熱管に接触した空気に含まれる水蒸気がより多く凝縮し、その結果、全体として空気中に含まれる水蒸気の量を減少させ、除湿を行うことができる。
If the opening degree of the indoor expansion valve 15 is reduced, the temperature of the refrigerant is lowered, so that the temperature of the air in contact with the heat transfer tube can be lowered. Therefore, more water vapor contained in the air in contact with the heat transfer tube is condensed, and as a result, the amount of water vapor contained in the air as a whole can be reduced and dehumidification can be performed.
図4は、空気調和システムの運転開始以降の室温の状態を示した図である。図4中、実線は本制御の結果を示し、破線は冷房運転の結果を示し、一点鎖線はドライモードの運転結果を示す。図4中には、設定温度である目標温度も示されている。
FIG. 4 is a diagram showing the state of room temperature after the start of operation of the air conditioning system. In FIG. 4, the solid line shows the result of this control, the broken line shows the result of the cooling operation, and the alternate long and short dash line shows the operation result of the dry mode. In FIG. 4, the target temperature, which is the set temperature, is also shown.
冷房運転は、運転開始時の室温から設定温度へ早く低下するが、温度が安定するまで一定の時間がかかっている。ドライモード運転では、設定温度を超えて室温が低下している。本制御では、冷房運転より設定温度への低下速度は遅いが、冷房運転より早く温度が安定し、安定した後の温度変動も少なくなっている。したがって、本制御を採用することで、安定して温度調整を行うことができる。
The cooling operation quickly drops from the room temperature at the start of operation to the set temperature, but it takes a certain amount of time for the temperature to stabilize. In the dry mode operation, the room temperature has dropped beyond the set temperature. In this control, the rate of decrease to the set temperature is slower than in the cooling operation, but the temperature stabilizes faster than in the cooling operation, and the temperature fluctuation after stabilization is small. Therefore, by adopting this control, the temperature can be stably adjusted.
図5は、空気調和システムの運転開始以降の室内の湿度の状態を示した図である。図5中、実線は本制御の結果を示し、破線は冷房運転の結果を示し、一点鎖線はドライモードの運転結果を示す。図5中には、目標湿度も示されている。湿度は、相対湿度であり、室温の空気に含まれる水蒸気分圧と、その室温の空気に含むことができる最大の水蒸気分圧との比で表される。
FIG. 5 is a diagram showing the state of humidity in the room after the start of operation of the air conditioning system. In FIG. 5, the solid line shows the result of this control, the broken line shows the result of the cooling operation, and the alternate long and short dash line shows the operation result of the dry mode. The target humidity is also shown in FIG. Humidity is a relative humidity and is represented by the ratio of the partial pressure of water vapor contained in air at room temperature to the maximum partial pressure of water vapor that can be contained in air at room temperature.
冷房運転は、除湿しない運転であるため、室内の湿度が目標湿度まで低下していない。ドライモード運転では、室内熱交換器11内を流れる冷媒の流量を低下させずに除湿を行うため、室内の湿度が目標湿度に早く到達している。本制御では、室内熱交換器11内を流れる冷媒の流量を、室内膨張弁15により低下させて除湿を行うため、ドライモード運転よりは時間がかかるが、室内の湿度を目標湿度まで低下させることができ、目標湿度に維持することができる。したがって、本制御を採用することで、安定して湿度調整を行うこともできる。
Since the cooling operation is an operation that does not dehumidify, the indoor humidity has not dropped to the target humidity. In the dry mode operation, the humidity in the room reaches the target humidity quickly because the dehumidification is performed without reducing the flow rate of the refrigerant flowing in the indoor heat exchanger 11. In this control, the flow rate of the refrigerant flowing in the indoor heat exchanger 11 is reduced by the indoor expansion valve 15 to perform dehumidification, so that it takes longer than the dry mode operation, but the indoor humidity is reduced to the target humidity. Can be maintained at the target humidity. Therefore, by adopting this control, it is possible to stably adjust the humidity.
これらの結果から、本制御のように、圧縮機21の周波数と、室内膨張弁15の開度とをそれぞれ別個に制御することで、冷房時の湿度上昇を防止することができ、ドライモード時の室温低下を防止することができる。
From these results, it is possible to prevent the humidity from rising during cooling by separately controlling the frequency of the compressor 21 and the opening degree of the indoor expansion valve 15 as in this control, and in the dry mode. It is possible to prevent the room temperature from dropping.
図6を参照して、具体的な制御について説明する。図6は、室内膨張弁15の制御の第1の例を示したフローチャートである。制御装置23は、室外機20の運転が開始されたことを受けて、圧縮機21や室内膨張弁15等の制御を開始する。ステップ100から室内膨張弁15の制御を開始し、ステップ101では、湿度センサ14により検出された検出値RHと、設定された目標湿度RHoとを比較し、RHがRHoより大きいか否かを判断する。
Specific control will be described with reference to FIG. FIG. 6 is a flowchart showing a first example of control of the indoor expansion valve 15. The control device 23 starts controlling the compressor 21, the indoor expansion valve 15, and the like in response to the start of operation of the outdoor unit 20. The control of the indoor expansion valve 15 is started from step 100, and in step 101, the detected value RH detected by the humidity sensor 14 is compared with the set target humidity RHo, and it is determined whether or not the RH is larger than the RHo. do.
ステップ101でRHがRHoより大きいと判断した場合、ステップ102へ進み、室内膨張弁15に対し、開度を小さくするように命令する。これは、室温の低下を抑制しつつ、湿度を低下させるためである。なお、室内膨張弁15へは、湿度センサ14の検出値と、目標湿度との差に基づき演算された、現状の開度より小さい開度の情報を電気信号として与える。そして、ステップ101へ戻り、制御を継続する。
If it is determined in step 101 that RH is larger than RHo, the process proceeds to step 102, and the indoor expansion valve 15 is instructed to reduce the opening degree. This is to reduce the humidity while suppressing the decrease in room temperature. The indoor expansion valve 15 is provided with information on an opening degree smaller than the current opening degree, which is calculated based on the difference between the detected value of the humidity sensor 14 and the target humidity, as an electric signal. Then, the process returns to step 101 to continue the control.
ステップ101でRHがRHo以下と判断した場合、ステップ103へ進み、RHがRHoより小さいか否かを判断する。RHがRHoより小さいと判断した場合、ステップ104へ進み、湿度の低下を抑制するべく、室内膨張弁15に対し、開度を大きくするように命令する。この場合は、演算により得られた現状の開度より大きい開度の情報を室内膨張弁15に与える。そして、ステップ101へ戻り、制御を継続する。
If it is determined in step 101 that the RH is RHo or less, the process proceeds to step 103, and it is determined whether or not the RH is smaller than the RHo. If it is determined that the RH is smaller than the RHo, the process proceeds to step 104, and the indoor expansion valve 15 is instructed to increase the opening degree in order to suppress the decrease in humidity. In this case, information on an opening degree larger than the current opening degree obtained by calculation is given to the indoor expansion valve 15. Then, the process returns to step 101 to continue the control.
ステップ103でRHがRHoと同じと判断した場合、ステップ105へ進み、室内の湿度が目標湿度に維持されているため、室内膨張弁15に対し、開度を維持するように命令する。この場合は、現状の開度の情報を室内膨張弁15に与えてもよいし、開度に変更がないため、与えなくてもよい。そして、ステップ101へ戻り、制御を継続する。この制御は、空気調和システムの運転を停止するまで継続される。
If it is determined in step 103 that RH is the same as RHo, the process proceeds to step 105, and since the indoor humidity is maintained at the target humidity, the indoor expansion valve 15 is instructed to maintain the opening degree. In this case, the information on the current opening degree may be given to the indoor expansion valve 15, or may not be given because the opening degree does not change. Then, the process returns to step 101 to continue the control. This control continues until the air conditioning system is shut down.
これまでは、室内膨張弁15の開度を大きくするか、小さくするかを直接命令して目標湿度になるように制御する例を説明してきたが、目標湿度にするための制御は、これに限られるものではない。以下に、その他の方法による制御について説明する。
So far, an example has been described in which the opening degree of the indoor expansion valve 15 is directly instructed to be increased or decreased to control the humidity so as to reach the target humidity. It is not limited. The control by other methods will be described below.
図7は、空気調和システムの第2の構成例を示した図である。図7に示す構成は、図1に示した構成において、室内機10が、さらに2つの配管温度センサ16、17を備えたものとなっている。室内機10が備える室内熱交換器11やファン12等、室外機20が備える圧縮機21や室外熱交換器22等については既に説明したので、ここでは2つの配管温度センサ16、17についてのみ説明する。
FIG. 7 is a diagram showing a second configuration example of the air conditioning system. In the configuration shown in FIG. 7, in the configuration shown in FIG. 1, the indoor unit 10 is further provided with two pipe temperature sensors 16 and 17. Since the indoor heat exchanger 11 and fan 12 included in the indoor unit 10 and the compressor 21 and outdoor heat exchanger 22 included in the outdoor unit 20 have already been described, only the two piping temperature sensors 16 and 17 will be described here. do.
2つの配管温度センサ16、17は、室内熱交換器11を接続する2つの配管のそれぞれの外壁面に隣接して取り付けられ、配管外壁面の温度を検出する。2つの配管温度センサ16、17は、室内熱交換器11と2つの配管のそれぞれを接続する2つの接続部に近い、それぞれの配管の外壁面に取り付けられる。
The two pipe temperature sensors 16 and 17 are attached adjacent to the outer wall surface of each of the two pipes connecting the indoor heat exchanger 11 and detect the temperature of the pipe outer wall surface. The two pipe temperature sensors 16 and 17 are attached to the outer wall surface of each pipe near the two connecting portions connecting the indoor heat exchanger 11 and each of the two pipes.
冷房モードで室内熱交換器11を蒸発器として機能させる場合、配管温度センサ16は、室内膨張弁15を介して流れる二相流の冷媒が流れる配管外壁面の温度を検出する液管温度センサとして機能する。配管温度センサ17は、室内熱交換器11により蒸発し、室内熱交換器11から排出されるガス状の冷媒が流れる配管外壁面の温度を検出するガス管温度センサとして機能する。
When the indoor heat exchanger 11 functions as an evaporator in the cooling mode, the pipe temperature sensor 16 serves as a liquid pipe temperature sensor that detects the temperature of the outer wall surface of the pipe through which the two-phase refrigerant flowing through the indoor expansion valve 15 flows. Function. The pipe temperature sensor 17 functions as a gas pipe temperature sensor that detects the temperature of the outer wall surface of the pipe through which the gaseous refrigerant that evaporates by the indoor heat exchanger 11 flows and is discharged from the indoor heat exchanger 11.
液管温度センサとして機能する配管温度センサ16の検出値からは、二相流の冷媒の温度(冷媒の飽和温度もしくは蒸発温度)を得ることができる。ガス管温度センサとして機能する配管温度センサ17の検出値からは、冷媒が蒸発し、さらに加熱された冷媒ガスの温度を得ることができる。得られた冷媒ガスの温度と、得られた冷媒の飽和温度との差は、過熱度と呼ばれる。
From the detected value of the pipe temperature sensor 16 that functions as a liquid pipe temperature sensor, the temperature of the two-phase flow refrigerant (saturation temperature or evaporation temperature of the refrigerant) can be obtained. From the detected value of the pipe temperature sensor 17 that functions as the gas pipe temperature sensor, the refrigerant evaporates, and the temperature of the further heated refrigerant gas can be obtained. The difference between the temperature of the obtained refrigerant gas and the saturation temperature of the obtained refrigerant is called the degree of superheat.
制御装置23は、配管温度センサ16、17の検出値から過熱度を算出し、過熱度が増加もしくは減少するように、または過熱度が維持されるように命令し、室内膨張弁15の開度を制御する。具体的な制御を、図8を参照して説明する。
The control device 23 calculates the degree of superheat from the detected values of the pipe temperature sensors 16 and 17, orders the degree of superheat to increase or decrease, or orders the degree of superheat to be maintained, and opens the indoor expansion valve 15. To control. Specific control will be described with reference to FIG.
図8は、室内膨張弁15の制御の第2の例を示したフローチャートである。制御装置23は、室外機20の運転が開始されたことを受けて、圧縮機21や室内膨張弁15等の制御を開始する。ステップ200から室内膨張弁15の制御を開始し、ステップ201では、湿度センサ14により検出された検出値RHと、目標湿度RHoとを比較し、RHがRHoより大きいか否かを判断する。
FIG. 8 is a flowchart showing a second example of control of the indoor expansion valve 15. The control device 23 starts controlling the compressor 21, the indoor expansion valve 15, and the like in response to the start of operation of the outdoor unit 20. The control of the indoor expansion valve 15 is started from step 200, and in step 201, the detected value RH detected by the humidity sensor 14 is compared with the target humidity RHo, and it is determined whether or not the RH is larger than the RHo.
ステップ201でRHがRHoより大きいと判断した場合、ステップ202へ進み、室内膨張弁15に対し、過熱度を増加するように命令する。過熱度は、室内熱交換器11を出る冷媒ガスの温度を上昇させるか、もしくは冷媒の飽和温度(蒸発温度)を低下させるか、またはその両方を実施することにより、増加させることができる。冷媒ガスの温度を上昇させるためには、冷媒中の液成分を少なくする必要があり、蒸発温度を低下させるためには、冷媒の圧力を下げる必要がある。これらは、室内膨張弁15の開度を小さくすることで実現することができる。RHがRHoより大きい場合、図6を参照して説明したように室内膨張弁15の開度を小さくする必要があり、開度を小さくするように制御するべく、過熱度を増加するように命令する。
If it is determined in step 201 that RH is larger than RHo, the process proceeds to step 202, and the indoor expansion valve 15 is instructed to increase the degree of superheat. The degree of superheat can be increased by raising the temperature of the refrigerant gas exiting the indoor heat exchanger 11, lowering the saturation temperature (evaporation temperature) of the refrigerant, or both. In order to raise the temperature of the refrigerant gas, it is necessary to reduce the liquid component in the refrigerant, and in order to lower the evaporation temperature, it is necessary to lower the pressure of the refrigerant. These can be realized by reducing the opening degree of the indoor expansion valve 15. When RH is larger than RHo, it is necessary to reduce the opening degree of the indoor expansion valve 15 as explained with reference to FIG. 6, and instruct to increase the degree of superheat in order to control the opening degree to be small. do.
制御装置23は、室内膨張弁15に対し、配管温度センサ16、17の検出値に基づき演算された、現状の過熱度より大きい過熱度の情報を電気信号として与える。室内膨張弁15は、例えば過熱度と開度とを対応付けたテーブル等を保持し、そのテーブル等を用いて開度を求め、その開度に調整する。そして、ステップ201へ戻り、制御を継続する。
The control device 23 gives the indoor expansion valve 15 information on the degree of superheat that is larger than the current degree of superheat, which is calculated based on the detected values of the pipe temperature sensors 16 and 17, as an electric signal. The indoor expansion valve 15 holds, for example, a table or the like in which the degree of superheat and the opening degree are associated with each other, obtains the opening degree using the table or the like, and adjusts to the opening degree. Then, the process returns to step 201 to continue the control.
ステップ201でRHがRHo以下と判断した場合、ステップ203へ進み、RHがRHoより小さいか否かを判断する。RHがRHoより小さいと判断した場合、ステップ204へ進み、反対に開度を大きくするように制御するべく、室内膨張弁15に対し、過熱度を減少するように命令する。制御装置23は、室内膨張弁15に対し、演算された現状の過熱度より小さい過熱度の情報を電気信号として与える。そして、ステップ201へ戻り、制御を継続する。
If it is determined in step 201 that the RH is RHo or less, the process proceeds to step 203, and it is determined whether or not the RH is smaller than the RHo. If it is determined that the RH is smaller than the RHo, the process proceeds to step 204, and conversely, the indoor expansion valve 15 is instructed to reduce the degree of superheat in order to control the opening degree to be increased. The control device 23 gives information on the superheat degree smaller than the calculated current superheat degree to the indoor expansion valve 15 as an electric signal. Then, the process returns to step 201 to continue the control.
ステップ203でRHがRHoと同じと判断した場合、ステップ205へ進み、室内膨張弁15に対し、現状の過熱度に維持するように命令する。これは、現状の過熱度で、目標湿度に維持されているためである。この場合は、現状の過熱度の情報を室内膨張弁15に与えてもよいし、与えなくてもよい。そして、ステップ201へ戻り、制御を継続する。この制御も同様、空気調和システムの運転が停止されるまで継続する。
If it is determined in step 203 that RH is the same as RHo, the process proceeds to step 205, and the indoor expansion valve 15 is instructed to maintain the current degree of superheat. This is because the current degree of superheat is maintained at the target humidity. In this case, the information on the current degree of superheat may or may not be given to the indoor expansion valve 15. Then, the process returns to step 201 to continue the control. This control also continues until the air conditioning system is shut down.
図9は、空気調和システムの第3の構成例を示した図である。図9に示す構成は、図7に示した構成から、室内機10の配管温度センサ17をなくした構成となっている。すなわち、室内熱交換器11を蒸発器として用いる場合の液管温度センサとして機能する配管温度センサ16のみを備えた構成である。
FIG. 9 is a diagram showing a third configuration example of the air conditioning system. The configuration shown in FIG. 9 is a configuration in which the pipe temperature sensor 17 of the indoor unit 10 is eliminated from the configuration shown in FIG. That is, it is configured to include only the pipe temperature sensor 16 that functions as a liquid pipe temperature sensor when the indoor heat exchanger 11 is used as an evaporator.
配管温度センサ16は、室内膨張弁15を介して流れる二相流の冷媒が流れる配管外壁面の温度、すなわち液管温度を検出する。液管温度からは、冷媒の蒸発温度を求めることができる。
The pipe temperature sensor 16 detects the temperature of the outer wall surface of the pipe through which the two-phase flow refrigerant flowing through the indoor expansion valve 15 flows, that is, the temperature of the liquid pipe. From the liquid pipe temperature, the evaporation temperature of the refrigerant can be obtained.
制御装置23は、液管温度が増加もしくは減少するように、または液管温度が維持されるように命令し、室内膨張弁15の開度を制御する。具体的な制御を、図10を参照して説明する。
The control device 23 commands the liquid pipe temperature to increase or decrease, or to maintain the liquid pipe temperature, and controls the opening degree of the indoor expansion valve 15. Specific control will be described with reference to FIG.
図10は、室内膨張弁15の制御の第3の例を示したフローチャートである。図10に示した制御は、図9に示した配管温度センサ16を使用した制御である。制御装置23は、室外機20の運転が開始されたことを受けて、圧縮機21や室内膨張弁15等の制御を開始する。ステップ300から室内膨張弁15の制御を開始し、ステップ301では、湿度センサ14により検出された検出値RHと、目標湿度RHoとを比較し、RHがRHoより大きいか否かを判断する。
FIG. 10 is a flowchart showing a third example of control of the indoor expansion valve 15. The control shown in FIG. 10 is a control using the pipe temperature sensor 16 shown in FIG. The control device 23 starts controlling the compressor 21, the indoor expansion valve 15, and the like in response to the start of operation of the outdoor unit 20. The control of the indoor expansion valve 15 is started from step 300, and in step 301, the detected value RH detected by the humidity sensor 14 is compared with the target humidity RHo, and it is determined whether or not the RH is larger than the RHo.
ステップ301でRHがRHoより大きいと判断した場合、ステップ302へ進み、液管温度を低下させるように命令する。液管温度は、冷媒の蒸発温度と関係し、蒸発温度を低下させることにより低下させることができる。蒸発温度は、冷媒の圧力を低下させることにより低下させることができ、室内膨張弁15の開度を小さくすることで実現することができる。RHがRHoより大きい場合、室内膨張弁15の開度を小さくする必要があり、開度を小さくするように制御するべく、液管温度を低下させるように命令する。
If it is determined in step 301 that RH is larger than RHo, the process proceeds to step 302 and an instruction is given to lower the liquid pipe temperature. The liquid pipe temperature is related to the evaporation temperature of the refrigerant and can be lowered by lowering the evaporation temperature. The evaporation temperature can be lowered by lowering the pressure of the refrigerant, and can be realized by reducing the opening degree of the indoor expansion valve 15. When RH is larger than RHo, it is necessary to reduce the opening degree of the indoor expansion valve 15, and in order to control the opening degree to be small, the liquid pipe temperature is instructed to be lowered.
制御装置23は、室内膨張弁15に対し、配管温度センサ16の検出値に基づき演算された、現状の液管温度より低い液管温度の情報を電気信号として与える。室内膨張弁15は、例えば液管温度と開度とを対応付けたテーブル等を保持し、そのテーブル等を用いて開度を求め、その開度に調整する。そして、ステップ301へ戻り、制御を継続する。
The control device 23 gives the indoor expansion valve 15 information on the liquid pipe temperature lower than the current liquid pipe temperature, which is calculated based on the detection value of the pipe temperature sensor 16, as an electric signal. The indoor expansion valve 15 holds, for example, a table or the like in which the liquid pipe temperature and the opening degree are associated with each other, obtains the opening degree using the table or the like, and adjusts to the opening degree. Then, the process returns to step 301 to continue the control.
ステップ301でRHがRHo以下と判断した場合、ステップ303へ進み、RHがRHoより小さいか否かを判断する。RHがRHoより小さいと判断した場合、ステップ304へ進み、反対に開度を大きくするように制御するべく、液管温度を上昇させるように命令する。制御装置23は、室内膨張弁15に対し、演算された現状の液管温度より高い液管温度の情報を電気信号として与える。そして、ステップ301へ戻り、制御を継続する。
If it is determined in step 301 that the RH is RHo or less, the process proceeds to step 303, and it is determined whether or not the RH is smaller than the RHo. If it is determined that RH is smaller than RHo, the process proceeds to step 304, and conversely, an instruction is given to raise the liquid pipe temperature in order to control the opening degree to be increased. The control device 23 gives information on the liquid pipe temperature higher than the calculated current liquid pipe temperature to the indoor expansion valve 15 as an electric signal. Then, the process returns to step 301 to continue the control.
ステップ303でRHがRHoと同じと判断した場合、ステップ305へ進み、現状の液管温度に維持する。これは、現状の液管温度で、目標湿度に維持されているためである。この場合は、現状の液管温度の情報を室内膨張弁15に与えてもよいし、与えなくてもよい。この場合も、ステップ301へ戻り、制御を継続する。
If it is determined in step 303 that RH is the same as RHo, the process proceeds to step 305 and the current liquid tube temperature is maintained. This is because the current liquid tube temperature is maintained at the target humidity. In this case, the information on the current liquid pipe temperature may or may not be given to the indoor expansion valve 15. In this case as well, the process returns to step 301 to continue the control.
室内の湿度は、これまでに説明してきた制御により目標湿度に調整することができるが、目標湿度は、ユーザが設定するものに限られない。例えば、ユーザが設定した設定温度から目標湿度を算出してもよい。
The indoor humidity can be adjusted to the target humidity by the control explained so far, but the target humidity is not limited to the one set by the user. For example, the target humidity may be calculated from the set temperature set by the user.
図11は、圧縮機21の周波数および室内膨張弁15の開度の第2の制御について説明する制御ブロック図である。この制御は、ユーザが設定した設定温度から最適な湿度を演算により求め、その湿度になるように室内膨張弁15の開度を制御するものである。
FIG. 11 is a control block diagram illustrating a second control of the frequency of the compressor 21 and the opening degree of the indoor expansion valve 15. In this control, the optimum humidity is calculated from the set temperature set by the user, and the opening degree of the indoor expansion valve 15 is controlled so as to be the humidity.
室温の制御は、図3に示した例と同様である。すなわち、回転数制御手段32が、設定温度と、室内機10の室温センサ13により検出された室温との温度差に基づき、圧縮機21のモータを駆動するためにインバータが出力する交流電源の周波数を演算する。そして、回転数制御手段32が、演算により求めた周波数を圧縮機21のモータに入力する。
The control of room temperature is the same as the example shown in FIG. That is, the frequency of the AC power source output by the inverter for driving the motor of the compressor 21 based on the temperature difference between the set temperature and the room temperature detected by the room temperature sensor 13 of the indoor unit 10 by the rotation speed control means 32. Is calculated. Then, the rotation speed control means 32 inputs the frequency obtained by calculation to the motor of the compressor 21.
室内の湿度の制御は、湿度演算手段34が、快適性指標に基づき、目標湿度を演算する。開度制御手段33が、演算により得られた目標湿度になるように室内膨張弁15の開度を演算し、求めた開度の情報を室内膨張弁15に入力する。
For indoor humidity control, the humidity calculation means 34 calculates the target humidity based on the comfort index. The opening degree control means 33 calculates the opening degree of the indoor expansion valve 15 so as to reach the target humidity obtained by the calculation, and inputs the obtained opening degree information to the indoor expansion valve 15.
快適性指標は、人がどの程度快適かを表す指標で、その快適さを測る方法として、例えば平均予想温冷感申告(PMV)を用いることができる。PMVは、温度、湿度、放射、気流、活動量、着衣量の6つの要素から算出され、放射、気流、活動量、着衣量を一定の値とすることで、温度と湿度のみの関数となる。一定のPMVの値にするように、温度として設定温度を入力することで、最適な湿度として目標湿度を演算することができる。
The comfort index is an index showing how comfortable a person is, and as a method for measuring the comfort, for example, the average expected warm / cold feeling report (PMV) can be used. PMV is calculated from the six elements of temperature, humidity, radiation, airflow, activity amount, and clothing amount, and by setting the radiation, airflow, activity amount, and clothing amount to constant values, it becomes a function of temperature and humidity only. .. By inputting the set temperature as the temperature so as to make the value of PMV constant, the target humidity can be calculated as the optimum humidity.
なお、快適さを測る方法としては、PMVのほか、予測不快者率(PPD)を用いることができる。PPDは、何%の人がその環境に不満足であるかを表す指標である。
In addition to PMV, the predicted discomfort rate (PPD) can be used as a method for measuring comfort. PPD is an indicator of what percentage of people are dissatisfied with the environment.
これまで、1台の室外機20に、1台の室内機10が接続された例について説明してきたが、図12に示すように、1台の室外機20に対して、複数台の室内機10a、…、10nが接続されたシステムでも同様に、室温を設定温度に、室内の湿度を目標湿度にそれぞれ調整することが可能である。
Up to now, an example in which one indoor unit 10 is connected to one outdoor unit 20 has been described, but as shown in FIG. 12, a plurality of indoor units are connected to one outdoor unit 20. Similarly, in a system in which 10a, ..., 10n are connected, it is possible to adjust the room temperature to the set temperature and the humidity in the room to the target humidity.
これは、各室内機10a~10nに室内膨張弁15a~15nがそれぞれ設けられているためで、各室内膨張弁15a~15nを制御することで、各室内機10a~10nの冷房能力を個々に制御することができるからである。これにより、各室内機10a~10nが設置される各室内について、個々に冷房能力を抑えながら除湿を行うことができ、除湿時の冷え込みを防止することができる。また、圧縮機21が最低回転数に到達しにくいため、低負荷時においても効果的に除湿を行うことができる。
This is because each indoor unit 10a to 10n is provided with an indoor expansion valve 15a to 15n, and by controlling each indoor expansion valve 15a to 15n, the cooling capacity of each indoor unit 10a to 10n can be individually increased. This is because it can be controlled. As a result, each room in which each indoor unit 10a to 10n is installed can be individually dehumidified while suppressing the cooling capacity, and cooling during dehumidification can be prevented. Further, since the compressor 21 does not easily reach the minimum rotation speed, dehumidification can be effectively performed even when the load is low.
これまで本発明の空気調和システムおよび制御方法について上述した実施形態をもって詳細に説明してきたが、本発明は、上述した実施形態に限定されるものではなく、他の実施形態や、追加、変更、削除など、当業者が想到することができる範囲内で変更することができ、いずれの態様においても本発明の作用・効果を奏する限り、本発明の範囲に含まれるものである。
Although the air conditioning system and the control method of the present invention have been described in detail with the above-described embodiments, the present invention is not limited to the above-described embodiments, and other embodiments, additions, modifications, and the like. It can be changed within the range that can be conceived by those skilled in the art, such as deletion, and is included in the scope of the present invention as long as the action and effect of the present invention are exhibited in any of the embodiments.
10、10a~10n…室内機
11、11a~11n…室内熱交換器
12、12a~12n…ファン
13、13a~13n…室温センサ
14、14a~14n…湿度センサ
15、15a~15n…室内膨張弁
16、17…配管温度センサ
20…室外機
21…圧縮機
22…室外熱交換器
23…制御装置
30、31…冷媒配管
32…回転数制御手段
33…開度制御手段
34…湿度演算手段
40…CPU
41…フラッシュメモリ
42…RAM
43…通信I/F
44…制御I/F
45…バス
10, 10a to 10n ... Indoor unit 11, 11a to 11n ... Indoor heat exchanger 12, 12a to 12n ... Fan 13, 13a to 13n ... Room temperature sensor 14, 14a to 14n ... Humidity sensor 15, 15a to 15n ... Indoor expansion valve 16, 17 ... Pipe temperature sensor 20 ... Outdoor unit 21 ... Compressor 22 ... Outdoor heat exchanger 23 ... Control device 30, 31 ... Refrigerant pipe 32 ... Rotation speed control means 33 ... Opening control means 34 ... Humidity calculation means 40 ... CPU
41 ...Flash memory 42 ... RAM
43 ... Communication I / F
44 ... Control I / F
45 ... Bus
11、11a~11n…室内熱交換器
12、12a~12n…ファン
13、13a~13n…室温センサ
14、14a~14n…湿度センサ
15、15a~15n…室内膨張弁
16、17…配管温度センサ
20…室外機
21…圧縮機
22…室外熱交換器
23…制御装置
30、31…冷媒配管
32…回転数制御手段
33…開度制御手段
34…湿度演算手段
40…CPU
41…フラッシュメモリ
42…RAM
43…通信I/F
44…制御I/F
45…バス
10, 10a to 10n ...
41 ...
43 ... Communication I / F
44 ... Control I / F
45 ... Bus
Claims (8)
- 室内機と室外機とを含む空気調和システムであって、
前記室内機が、
室内熱交換器と、
室内の温度を検出する温度検出手段と、
前記室内の湿度を検出する湿度検出手段と
を含み、
前記室外機が、
室外熱交換器と、
前記室内機との間で前記冷媒を循環させる圧縮機と
を含み、
前記室外熱交換器と前記室内熱交換器との間に設けられる弁と、
前記温度検出手段により検出された温度に応じて、前記圧縮機の回転数を制御する回転数制御手段と、
前記湿度検出手段により検出された湿度に応じて、前記弁の開度を制御する開度制御手段と
を備える、空気調和システム。 An air conditioning system that includes an indoor unit and an outdoor unit.
The indoor unit
Indoor heat exchanger and
A temperature detecting means for detecting the temperature in the room and
Including the humidity detecting means for detecting the humidity in the room.
The outdoor unit
With an outdoor heat exchanger,
Includes a compressor that circulates the refrigerant with and from the indoor unit.
A valve provided between the outdoor heat exchanger and the indoor heat exchanger,
A rotation speed control means for controlling the rotation speed of the compressor according to the temperature detected by the temperature detection means, and a rotation speed control means.
An air conditioning system including an opening degree controlling means for controlling the opening degree of the valve according to the humidity detected by the humidity detecting means. - 前記開度制御手段は、前記湿度検出手段により検出された湿度と、目標湿度との差に基づき、前記弁の開度を小さくするか否かを判断する、請求項1に記載の空気調和システム。 The air conditioning system according to claim 1, wherein the opening degree controlling means determines whether or not to reduce the opening degree of the valve based on the difference between the humidity detected by the humidity detecting means and the target humidity. ..
- 前記室内機は、
前記熱交換器に接続される2本の配管のそれぞれの外壁面温度を検出する2つの配管温度検出手段
を含み、
前記開度制御手段は、前記2つの配管温度検出手段により検出された2つの配管温度から得られる前記冷媒の過熱度を増加させるか否かを判断する、請求項1に記載の空気調和システム。 The indoor unit is
Includes two pipe temperature detecting means for detecting the outer wall temperature of each of the two pipes connected to the heat exchanger.
The air conditioning system according to claim 1, wherein the opening degree controlling means determines whether or not to increase the degree of superheat of the refrigerant obtained from the two pipe temperatures detected by the two pipe temperature detecting means. - 前記室内機は、
前記熱交換器に接続される2本の配管のうちの1本の外壁面温度を検出する配管温度検出手段
を含み、
前記開度制御手段は、前記配管温度検出手段により検出された配管温度から得られる前記冷媒の温度を低下させるか否かを判断する、請求項1に記載の空気調和システム。 The indoor unit is
A pipe temperature detecting means for detecting the temperature of the outer wall surface of one of the two pipes connected to the heat exchanger is included.
The air conditioning system according to claim 1, wherein the opening degree controlling means determines whether or not to lower the temperature of the refrigerant obtained from the pipe temperature detected by the pipe temperature detecting means. - 目標温度と、快適性を示す指標とに基づき、目標湿度を演算する演算手段を含み、
前記開度制御手段は、前記湿度検出手段により検出された湿度と、前記演算手段により演算された前記目標湿度とに応じて、前記弁の開度を制御する、
請求項1~4のいずれか1項に記載の空気調和システム。 Including a calculation means for calculating the target humidity based on the target temperature and an index indicating comfort.
The opening degree control means controls the opening degree of the valve according to the humidity detected by the humidity detecting means and the target humidity calculated by the calculation means.
The air conditioning system according to any one of claims 1 to 4. - 複数の室内機と室外機とを含む空気調和システムであって、
前記各室内機が、
室内熱交換器と、
室内の温度を検出する温度検出手段と、
前記室内の湿度を検出する湿度検出手段と
を含み、
前記室外機が、
室外熱交換器と、
前記各室内機との間で前記冷媒を循環させる圧縮機と
を含み、
前記各室外熱交換器と前記各室内熱交換器との間にそれぞれ設けられる複数の弁と、
前記各温度検出手段により検出された各温度に応じて、前記圧縮機の回転数を制御する回転数制御手段と、
前記各湿度検出手段により検出された各湿度に応じて、前記各弁の開度を制御する開度制御手段と
を備える、空気調和システム。 An air conditioning system that includes multiple indoor units and outdoor units.
Each of the indoor units
Indoor heat exchanger and
A temperature detecting means for detecting the temperature in the room and
Including the humidity detecting means for detecting the humidity in the room.
The outdoor unit
With an outdoor heat exchanger,
Including a compressor that circulates the refrigerant with each of the indoor units.
A plurality of valves provided between each outdoor heat exchanger and each indoor heat exchanger, and
A rotation speed control means for controlling the rotation speed of the compressor according to each temperature detected by the temperature detection means, and a rotation speed control means.
An air conditioning system including opening degree control means for controlling the opening degree of each valve according to each humidity detected by each humidity detection means. - 室内熱交換器と室内の温度を検出する温度検出手段と前記室内の湿度を検出する湿度検出手段とを含む室内機と、室外熱交換器と前記室内機との間で前記冷媒を循環させる圧縮機を含む室外機と、前記室外熱交換器と前記室内熱交換器との間に設けられる弁とを備える空気調和システムの運転を制御する方法であって、
前記温度検出手段により検出された温度に応じて、前記圧縮機の回転数を制御するステップと、
前記湿度検出手段により検出された湿度に応じて、前記弁の開度を制御するステップと
を含む、制御方法。 Compression that circulates the refrigerant between an indoor unit including an indoor heat exchanger, a temperature detecting means for detecting the indoor temperature, and a humidity detecting means for detecting the indoor humidity, and between the outdoor heat exchanger and the indoor unit. A method of controlling the operation of an air conditioning system including an outdoor unit including a machine and a valve provided between the outdoor heat exchanger and the indoor heat exchanger.
A step of controlling the rotation speed of the compressor according to the temperature detected by the temperature detecting means, and
A control method including a step of controlling the opening degree of the valve according to the humidity detected by the humidity detecting means. - 各々が室内熱交換器と室内の温度を検出する温度検出手段と前記室内の湿度を検出する湿度検出手段とを含む複数の室内機と、室外熱交換器と前記各室内機との間で前記冷媒を循環させる圧縮機を含む室外機と、前記各室外熱交換器と前記各室内熱交換器との間にそれぞれ設けられる複数の弁とを備える空気調和システムの運転を制御する方法であって、
前記各温度検出手段により検出された各温度に応じて、前記圧縮機の回転数を制御するステップと、
前記各湿度検出手段により検出された各湿度に応じて、前記各弁の開度を制御するステップと
を含む、制御方法。 A plurality of indoor units each including an indoor heat exchanger, a temperature detecting means for detecting the indoor temperature, and a humidity detecting means for detecting the indoor humidity, and between the outdoor heat exchanger and each indoor unit. A method of controlling the operation of an air conditioning system including an outdoor unit including a compressor that circulates a refrigerant and a plurality of valves provided between the outdoor heat exchangers and the indoor heat exchangers. ,
A step of controlling the rotation speed of the compressor according to each temperature detected by each of the temperature detecting means, and
A control method including a step of controlling the opening degree of each valve according to each humidity detected by each humidity detecting means.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022516569A JPWO2021214930A1 (en) | 2020-04-23 | 2020-04-23 | |
CN202080099724.XA CN115398158A (en) | 2020-04-23 | 2020-04-23 | Air conditioning system and control method |
PCT/JP2020/017448 WO2021214930A1 (en) | 2020-04-23 | 2020-04-23 | Air-conditioning system and control method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/017448 WO2021214930A1 (en) | 2020-04-23 | 2020-04-23 | Air-conditioning system and control method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021214930A1 true WO2021214930A1 (en) | 2021-10-28 |
Family
ID=78270507
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/017448 WO2021214930A1 (en) | 2020-04-23 | 2020-04-23 | Air-conditioning system and control method |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPWO2021214930A1 (en) |
CN (1) | CN115398158A (en) |
WO (1) | WO2021214930A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220342466A1 (en) * | 2020-07-08 | 2022-10-27 | Nvidia Corporation | Intelligent repurposable cooling systems for mobile datacenter |
CN115900007A (en) * | 2023-03-09 | 2023-04-04 | 浙江德塔森特数据技术有限公司 | Temperature-adjusting and dehumidifying method and device for rack-mounted air conditioner |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0914727A (en) * | 1995-06-28 | 1997-01-17 | Toshiba Corp | Air conditioner |
JP2002107001A (en) * | 2000-09-29 | 2002-04-10 | Mitsubishi Electric Corp | Air conditioner |
JP2003254583A (en) * | 2002-02-28 | 2003-09-10 | Toshiba Kyaria Kk | Air conditioner |
JP2006242403A (en) * | 2005-02-28 | 2006-09-14 | Sanyo Electric Co Ltd | Refrigerant cycle device |
WO2015166576A1 (en) * | 2014-05-01 | 2015-11-05 | 三菱電機株式会社 | Air conditioning device |
JP2017089950A (en) * | 2015-11-06 | 2017-05-25 | 株式会社富士通ゼネラル | Air Conditioning System |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07294021A (en) * | 1994-04-28 | 1995-11-10 | Kubota Corp | Heat pump type cooling dehumidifying equipment |
JP2003172557A (en) * | 2001-12-06 | 2003-06-20 | Daikin Ind Ltd | Air-conditioner |
JP4187008B2 (en) * | 2006-05-22 | 2008-11-26 | 三菱電機株式会社 | Air conditioner |
JP5333365B2 (en) * | 2010-07-07 | 2013-11-06 | ダイキン工業株式会社 | Air conditioner |
JP2019168150A (en) * | 2018-03-23 | 2019-10-03 | 株式会社富士通ゼネラル | Air conditioning device |
-
2020
- 2020-04-23 CN CN202080099724.XA patent/CN115398158A/en active Pending
- 2020-04-23 JP JP2022516569A patent/JPWO2021214930A1/ja active Pending
- 2020-04-23 WO PCT/JP2020/017448 patent/WO2021214930A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0914727A (en) * | 1995-06-28 | 1997-01-17 | Toshiba Corp | Air conditioner |
JP2002107001A (en) * | 2000-09-29 | 2002-04-10 | Mitsubishi Electric Corp | Air conditioner |
JP2003254583A (en) * | 2002-02-28 | 2003-09-10 | Toshiba Kyaria Kk | Air conditioner |
JP2006242403A (en) * | 2005-02-28 | 2006-09-14 | Sanyo Electric Co Ltd | Refrigerant cycle device |
WO2015166576A1 (en) * | 2014-05-01 | 2015-11-05 | 三菱電機株式会社 | Air conditioning device |
JP2017089950A (en) * | 2015-11-06 | 2017-05-25 | 株式会社富士通ゼネラル | Air Conditioning System |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220342466A1 (en) * | 2020-07-08 | 2022-10-27 | Nvidia Corporation | Intelligent repurposable cooling systems for mobile datacenter |
US11681341B2 (en) * | 2020-07-08 | 2023-06-20 | Nvidia Corporation | Intelligent repurposable cooling systems for mobile datacenter |
CN115900007A (en) * | 2023-03-09 | 2023-04-04 | 浙江德塔森特数据技术有限公司 | Temperature-adjusting and dehumidifying method and device for rack-mounted air conditioner |
Also Published As
Publication number | Publication date |
---|---|
JPWO2021214930A1 (en) | 2021-10-28 |
CN115398158A (en) | 2022-11-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6300921B2 (en) | Air conditioning ventilator | |
JP6017068B2 (en) | Air conditioner | |
JP6906311B2 (en) | Air conditioner | |
JP5984964B2 (en) | Air conditioning system | |
JP7026781B2 (en) | Air conditioning system | |
JP2011075179A (en) | Air conditioning system | |
JP2017078556A (en) | Radiation type air conditioner | |
JP2019007710A (en) | Air conditioner | |
WO2019116599A1 (en) | Air-conditioning device and air-conditioning system | |
JP2011080758A (en) | Control method of air conditioner | |
JP2006275507A (en) | Air conditioner | |
WO2021214930A1 (en) | Air-conditioning system and control method | |
JP6897848B2 (en) | Air conditioning system | |
JP6019773B2 (en) | Air conditioner control device | |
KR102558826B1 (en) | Air conditioner system and control method | |
KR20140129403A (en) | air conditioning apparatus saving energy and method thereof | |
JP7316759B2 (en) | Air conditioner and air conditioning system | |
JP3379864B2 (en) | Air conditioner | |
JP7462830B2 (en) | Air Conditioning Equipment | |
WO2022024261A1 (en) | Air conditioning device | |
JP2013072600A (en) | Air conditioning apparatus | |
JP3410860B2 (en) | Air conditioner | |
JP3488763B2 (en) | Air conditioner | |
JP2008116136A (en) | Air conditioner | |
JP2002048382A (en) | Air conditioner |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20932683 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022516569 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20932683 Country of ref document: EP Kind code of ref document: A1 |