[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2021209718A1 - Structure multicouche pour le transport ou le stockage de l'hydrogene - Google Patents

Structure multicouche pour le transport ou le stockage de l'hydrogene Download PDF

Info

Publication number
WO2021209718A1
WO2021209718A1 PCT/FR2021/050657 FR2021050657W WO2021209718A1 WO 2021209718 A1 WO2021209718 A1 WO 2021209718A1 FR 2021050657 W FR2021050657 W FR 2021050657W WO 2021209718 A1 WO2021209718 A1 WO 2021209718A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyamide
hydrogen
multilayer structure
composition
weight
Prior art date
Application number
PCT/FR2021/050657
Other languages
English (en)
Inventor
Nicolas Dufaure
Antoine GOUPIL
Olivier Merle
Original Assignee
Arkema France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkema France filed Critical Arkema France
Priority to EP21725566.0A priority Critical patent/EP4136180A1/fr
Priority to CN202180028433.6A priority patent/CN115413292A/zh
Priority to US17/917,052 priority patent/US20230151255A1/en
Priority to CA3172593A priority patent/CA3172593A1/fr
Priority to KR1020227039796A priority patent/KR20230007381A/ko
Priority to MX2022012608A priority patent/MX2022012608A/es
Priority to JP2022562802A priority patent/JP2023521463A/ja
Publication of WO2021209718A1 publication Critical patent/WO2021209718A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a non-planar shape
    • B32B1/08Tubular products
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K3/1025Materials in mouldable or extrudable form for sealing or packing joints or covers characterised by non-chemical features of one or more of its constituents
    • C09K3/1028Fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a non-planar shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/02Layered products essentially comprising sheet glass, or glass, slag, or like fibres in the form of fibres or filaments
    • B32B17/04Layered products essentially comprising sheet glass, or glass, slag, or like fibres in the form of fibres or filaments bonded with or embedded in a plastic substance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/22Layered products comprising a layer of synthetic resin characterised by the use of special additives using plasticisers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/08Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from amino-carboxylic acids
    • C08G69/10Alpha-amino-carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/36Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from amino acids, polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/243Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/02Polyamides derived from omega-amino carboxylic acids or from lactams thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D177/00Coating compositions based on polyamides obtained by reactions forming a carboxylic amide link in the main chain; Coating compositions based on derivatives of such polymers
    • C09D177/02Polyamides derived from omega-amino carboxylic acids or from lactams thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D177/00Coating compositions based on polyamides obtained by reactions forming a carboxylic amide link in the main chain; Coating compositions based on derivatives of such polymers
    • C09D177/06Polyamides derived from polyamines and polycarboxylic acids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • F17C1/16Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge constructed of plastics materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D1/00Pipe-line systems
    • F17D1/02Pipe-line systems for gases or vapours
    • F17D1/04Pipe-line systems for gases or vapours for distribution of gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/022 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • B32B2260/023Two or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0253Polyolefin fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0261Polyamide fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0261Polyamide fibres
    • B32B2262/0269Aromatic polyamide fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/04Cellulosic plastic fibres, e.g. rayon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/06Vegetal fibres
    • B32B2262/062Cellulose fibres, e.g. cotton
    • B32B2262/065Lignocellulosic fibres, e.g. jute, sisal, hemp, flax, bamboo
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/105Ceramic fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/108Rockwool fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/14Mixture of at least two fibres made of different materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2270/00Resin or rubber layer containing a blend of at least two different polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/40Closed containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/08Cars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2377/04Polyamides derived from alpha-amino carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2377/06Polyamides derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K2003/1084Laminates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2200/00Chemical nature of materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K2200/02Inorganic compounds
    • C09K2200/0278Fibres
    • C09K2200/0282Carbon fibres
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2200/00Chemical nature of materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K2200/06Macromolecular organic compounds, e.g. prepolymers
    • C09K2200/0645Macromolecular organic compounds, e.g. prepolymers obtained otherwise than by reactions involving carbon-to-carbon unsaturated bonds
    • C09K2200/0647Polyepoxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2200/00Chemical nature of materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K2200/06Macromolecular organic compounds, e.g. prepolymers
    • C09K2200/0645Macromolecular organic compounds, e.g. prepolymers obtained otherwise than by reactions involving carbon-to-carbon unsaturated bonds
    • C09K2200/0667Polyamides, polyimides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/01Reinforcing or suspension means
    • F17C2203/011Reinforcing means
    • F17C2203/012Reinforcing means on or in the wall, e.g. ribs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0604Liners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0658Synthetics
    • F17C2203/066Plastics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0658Synthetics
    • F17C2203/0663Synthetics in form of fibers or filaments
    • F17C2203/0673Polymers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/21Shaping processes
    • F17C2209/2109Moulding
    • F17C2209/2118Moulding by injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/21Shaping processes
    • F17C2209/2109Moulding
    • F17C2209/2127Moulding by blowing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/23Manufacturing of particular parts or at special locations
    • F17C2209/232Manufacturing of particular parts or at special locations of walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/012Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0165Applications for fluid transport or storage on the road
    • F17C2270/0168Applications for fluid transport or storage on the road by vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0165Applications for fluid transport or storage on the road
    • F17C2270/0184Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Definitions

  • TITLE MULTI-LAYER STRUCTURE FOR THE TRANSPORT OR STORAGE OF
  • the present patent application relates to multilayer structures intended for the transport, distribution or storage of hydrogen, in particular for the distribution or storage of hydrogen, in particular for the storage of hydrogen, comprising a layer of hydrogen.
  • sealant consisting of a polyamide composition and the use of said sealant layer satisfy a test for contaminants present in hydrogen and extracted from said sealant layer by hydrogen, and their manufacturing process.
  • Hydrogen tanks are a subject that is currently attracting a lot of interest from many manufacturers, especially in the automotive sector.
  • One of the goals is to offer vehicles that pollute less and less.
  • electric or hybrid vehicles comprising a battery aim to gradually replace thermal vehicles, such as gasoline or diesel vehicles.
  • thermal vehicles such as gasoline or diesel vehicles.
  • the battery is a relatively complex component of the vehicle.
  • the electric vehicle still suffers today from several problems, namely the autonomy of the battery, the use in these rare earth batteries whose resources are not inexhaustible, recharging times much longer than the durations. tank filling, as well as a problem of electricity production in the different countries to be able to recharge the batteries.
  • Hydrogen therefore represents an alternative to the electric battery since hydrogen can be transformed into electricity by means of a fuel cell and thus power electric vehicles.
  • Supplying the fuel cell with hydrogen therefore requires the presence of both a hydrogen storage tank in the vehicle and a pipe for transporting the hydrogen from the tank to the fuel cell.
  • Hydrogen tanks or hydrogen transport pipes generally consist of a metallic or thermoplastic liner (liner or sealing layer) which must prevent the permeation of hydrogen.
  • a metallic or thermoplastic liner liner or sealing layer
  • thermoplastic resin liner or sealing sheath
  • a reinforcing structure made up of fibers (glass, aramid, carbon) also called sheath or reinforcing layer which allow working at much higher pressures. while reducing the mass and avoiding the risk of explosive rupture in the event of severe external attacks.
  • the fuel cell is very sensitive to various contaminants which degrade its performance and durability.
  • a tank or a hydrogen transport pipe used with a fuel cell must not only have the basic characteristics listed above but also the hydrogen after contact with the sealing layer of said tank and / or pipe. must contain only a minimum of contaminants extracted from said sealing layer.
  • This double problem is solved by providing a multilayer structure of the present invention intended for the transport, distribution or storage of hydrogen.
  • the terms “liner” and “sealing sheath” have the meaning same meaning.
  • the present invention therefore relates to the use of a sealing layer (1) consisting of a composition comprising at least one polyamide for the preparation of a multilayer structure intended for the transport, distribution or storage of hydrogen. , in particular for the distribution or storage of hydrogen, in particular for the storage of hydrogen, said sealing layer satisfying a test for contaminants present in the hydrogen and extracted from said sealing layer after contact with the hydrogen therewith, said test being carried out as defined in the CSA / ANSI CHMC 2: 19 standard, the total proportion of said contaminants extracted in hydrogen, being less than or equal to 3% by weight, in particular less than 2 % by weight of the sum of the constituents of said composition.
  • a sealing layer (1) consisting of a composition comprising at least one polyamide made it possible to prepare a multilayer structure intended for the transport, distribution or storage of hydrogen, exhibiting the basic characteristics listed above but that it also made it possible to limit the proportion of contaminants present in the hydrogen and extracted after contact of the hydrogen with said sealing layer.
  • multilayer structure is meant a tank comprising or consisting of several layers, namely several sealing layers and several reinforcing layers, or one sealing layer and several reinforcing layers, or several sealing layers and a backing layer or a waterproofing layer and a backing layer.
  • the multilayer structure in the present invention also denotes a pipe or a tube intended for transporting hydrogen from the tank to the fuel cell and which comprises or consists of several layers, namely several sealing layers and several outer layers, or a sealing layer and a plurality of outer layers, or a plurality of sealing layers and an outer layer or a sealing layer and an outer layer.
  • sealing layer satisfying a test for contaminants present in hydrogen and extracted from said sealing layer by hydrogen means that the proportion of contaminants present in hydrogen and originating from the layer of leaktightness after contact with hydrogen, whether it is a tank or a pipe, does not exceed the limit values preventing the correct functioning of the fuel cell.
  • the CSA / ANSI CHMC 2 19 standard details the procedure used to determine the volatile components in the headspace of a polymer upon exposure to hydrogen in service.
  • the expression "after contact of hydrogen therewith” means as above an exposure to hydrogen during service.
  • the test equipment should include the following: a) cryofocus to preconcentrate gas samples; b) a gas chromatograph using a suitable column, connected in series with a suitable mass selective detector; c) Headspace vials (40 ml), septa, ring closures and vial sealer; d) an analytical balance capable of weighing up to 60,0001 g; and e) a convection oven capable of maintaining a temperature of 70 ⁇ 5 ° C.
  • the conditioning hydrogen gas should be of known composition and purity, as described below.
  • the purity of the hydrogen gas used to fill the test chamber should, as a minimum, conform to ISO 14687: 2019, parts 1 to 3, or SAE J2719 (2015).
  • ISO 14687-2 defines the strictest hydrogen quality specification, with the lowest threshold values for each impurity among these ISO standards (see tables 1).
  • SAE J2719 also applies to Proton Exchange Membrane (PEM) fuel cell vehicles and is harmonized with ISO 14687-2.
  • the temperature at which measurements of the hydrogen transmission rate are made should be checked to within ⁇ 1 ° C.
  • the test pressure should remain constant within 1% of the test value.
  • test procedure is described in ISO 14687: 2019 in section 5.6.
  • contaminant is understood in the broad sense of the term from the moment when said contaminant is extracted from said sealing layer by hydrogen and is not already present in the hydrogen which is introduced into said multilayer structure to make operate the fuel cell of the vehicle, for example due to the process for obtaining hydrogen.
  • the term contaminant covers metal cations such as K + , Cu 2+ , Ni 2+ and Fe 3+ which can be produced by stabilizers used in polyamides, organic or metal stabilizers as such, plasticizers , oligomers, in particular caprolactam and its cyclic dimer 1, 8-diazacyclotetradecane-2,7-dione (DCDD), volatile organic compounds such as NH3, NOx, SOx, N2, benzoic compounds, 03, l ' water absorbed by the polyamide after manufacture of the waterproofing layer, fatty substances such as oil.
  • metal cations such as K + , Cu 2+ , Ni 2+ and Fe 3+ which can be produced by stabilizers used in polyamides, organic or metal stabilizers as such, plasticizers , oligomers, in particular caprolactam and its cyclic dimer 1, 8-diazacyclotetradecane-2,7-dione (DCDD), volatile organic compounds such as NH3, NOx, SOx
  • Volatile organic compounds therefore exclude all the other materials mentioned in the above list.
  • the total proportion of said contaminants extracted in hydrogen is less than or equal to 3% by weight, in particular less than 2% by weight of the sum of the constituents of said composition. Consequently, this total proportion of said extracted contaminants does not take take into account the proportion of contaminants that would come from the hydrogen preparation process or from any other source.
  • the total proportion of said contaminants extracted in hydrogen is from 0.01% to 3%, in particular from 0.01% to 2%, more particularly from 0.01% to 1%, in particular from 0, 01% to 0.5% by weight.
  • the contaminants extracted are chosen from plasticizers, stabilizers, oligomers, water, a fatty substance, volatile organic compounds and a mixture of these.
  • the proportion by weight of each individual contaminant extracted is less than or equal to 1%.
  • the constitution of the contaminants extracted is as follows: up to 1% plasticizers, up to 0.5% stabilizers, up to 0.5% oligomers, up to 0.5% water, up to 0.5% fatty substance, and up to 0.5% volatile organic compounds, the sum of the contaminants extracted being less than or equal to 3%, in particular less than 2% by weight of the sum of the constituents of said composition.
  • the total proportion of said contaminants extracted in hydrogen is from 0.01% to 3%, in particular from 0.01% to 2%, more particularly from 0, 01% to 1%, especially from 0.01% to 0.5% by weight.
  • the proportion by weight of each individual contaminant extracted is less than or equal to 1%.
  • the extracted contaminants are chosen from stabilizers, water, oil, volatile organic compounds and a mixture thereof.
  • the proportion by weight of each individual contaminant extracted is less than or equal to 0.5%.
  • the constitution of the contaminants extracted is as follows: up to 0.5% stabilizers, up to 0.5% water, up to 0.5% fatty substance , and up to 0.5% of volatile organic compounds, the sum of the contaminants being less than or equal to 2% by weight of the sum of the constituents of said composition.
  • the total proportion of said contaminants extracted in hydrogen is from 0.01% to 2%, more particularly from 0.01% to 1%, in particular from 0.01 % to 0.5% by weight.
  • the proportion by weight of each individual contaminant extracted is less than or equal to 0.5%.
  • the composition which constitutes said sealing layer (1) comprises by weight: at least 63.5% of polyamide, from 0 to 30% of modifier impact, in particular from 0 to less than 15% of impact modifier, in particular from 0 to 12% of impact modifier, from 0 to 1.5% of plasticizer, and from 0 to 5% by weight of additives, the sum of constituents of the composition being equal to 100%.
  • said composition of this first embodiment comprises from 1 to 30% of impact modifier, in particular from 1 to less than 15% of impact modifier, in particular from 1 to 12% of impact modifier.
  • said composition of this first embodiment comprises from 0.1 to 1.5% of plasticizer.
  • composition of this first embodiment comprises from 0.1 to 5% by weight of additives
  • said composition of this first embodiment comprises from 1 to 30% of impact modifier, in particular from 1 to less than 15% of impact modifier, in particular from 1 to 12% of impact modifier and from 0.1 to 1, 5% plasticizer.
  • said composition of this first embodiment comprises from 1 to 30% of impact modifier, in particular from 1 to less than 15% of impact modifier, in particular from 1 to 12% of impact modifier and from 0.1 to 5% by weight of additives.
  • said composition of this first embodiment comprises from 0.1 to 1.5% of plasticizer and from 0.1 to 5% by weight of additives
  • said composition of this first embodiment comprises from 1 to 30% of impact modifier, in particular from 1 to less than 15% of impact modifier, in particular from 1 to 12% of impact modifier, from 0.1 to 1, 5% plasticizer and 0.1 to 5% by weight additives.
  • the composition which constitutes said sealing layer (1) in particular in the first variant defined above, consists by weight: of at least 63.5% of polyamide, from 0 to 30 % of impact modifier, in particular from 0 to less than 15% of impact modifier, in particular from 0 to 12% of impact modifier, from 0 to 1.5% of plasticizer, and from 0 to 5% by weight of additives, the sum of the constituents of the composition being equal to 100%.
  • said composition of this second embodiment comprises from 1 to 30% of impact modifier, in particular from 1 to less than 15% of impact modifier, in particular from 1 to 12% of impact modifier.
  • said composition of this second embodiment comprises from 0.1 to 1.5% of plasticizer.
  • said composition of this second embodiment comprises from 0.1 to 5% by weight of additives.
  • said composition of this second embodiment comprises from 1 to less than 15% of impact modifier, in particular from 1 to 12% of impact modifier and from 0.1 to 1.5% of plasticizer.
  • said composition of this second embodiment comprises from 1 to less than 15% of impact modifier, in particular from 1 to 12% of impact modifier and from 0.1 to 5% by weight of additives.
  • said composition of this second embodiment comprises from 0.1 to 1.5% of plasticizer and from 0.1 to 5% by weight of additives.
  • said composition of this second embodiment comprises from 1 to 30% of impact modifier, in particular from 1 to less than 15% of impact modifier, in particular from 1 to 12% of impact modifier, from 0.1 to 1, 5% plasticizer and 0.1 to 5% by weight additives.
  • the composition which constitutes said sealing layer (1) comprises by weight: at least 63.5% of polyamide, from 0 to 30% of modifier impact, in particular from 0 to less than 15% of impact modifier, in particular from 0 to 12% of impact modifier, and from 0 to 5% by weight of additives, the sum of the constituents of the composition being equal to 100%.
  • said composition of this third embodiment comprises from 1 to 30% of impact modifier, in particular from 1 to less than 15% of impact modifier, in particular from 1 to 12% of impact modifier.
  • said composition of this third embodiment comprises from 0.1 to 5% by weight of additives.
  • said composition of this third embodiment comprises from 1 to 30% of impact modifier, in particular from 1 to less than 15% of impact modifier, in particular from 1 to 12% of impact modifier and from 0.1 to 5% by weight of additives.
  • the composition which constitutes said sealing layer (1) in particular in the second variant defined above, consists by weight: of at least 63.5% of polyamide, from 0 to 30 % of impact modifier, in particular from 0 to less than 15% of impact modifier, in particular from 0 to 12% of impact modifier, and from 0 to 5% by weight of additives, the sum of the constituents of the composition being equal to 100%.
  • said composition of this fourth embodiment comprises from 1 to 30% of impact modifier, in particular from 1 to less than 15% of impact modifier, in particular from 1 to 12% of impact modifier.
  • said composition of this fourth embodiment comprises from 0.1 to 5% by weight of additives.
  • said composition of this fourth embodiment comprises from 1 to 30% of impact modifier, in particular from 1 to less than 15% of impact modifier, in particular from 1 to 12% of impact modifier and from 0.1 to 5% by weight of additives.
  • the polyamide can be a homopolyamide or a copolyamide or a mixture thereof.
  • Polyamide is a semi-crystalline polyamide, that is to say a material generally solid at room temperature, and which softens during an increase in temperature, in particular after passing its glass transition temperature (Tg), and which may present a clear melting on passing of its so-called melting temperature (Tm), and which becomes solid again when the temperature drops below its crystallization temperature.
  • Tg glass transition temperature
  • Tm melting temperature
  • Tg, Te and Tf are determined by differential scanning calorimetry (DSC) according to standard 11357-2: 2013 and 11357-3: 2013 respectively.
  • the number-average molecular mass Mn of said semi-crystalline polyamide is preferably in a range from 10,000 to 85,000, in particular from 10,000 to 60,000, preferably from 10,000 to 50,000, even more preferably from 12,000 to 50,000. These Mn values may correspond. at inherent viscosities greater than or equal to 0.8 as determined in m-cresol according to standard ISO 307: 2007 but by changing the solvent (use of m-cresol instead of sulfuric acid and the temperature being 20 ° C).
  • the polyamide is chosen from an aliphatic polyamide, a semi-aromatic polyamide and a mixture of the two, advantageously an aliphatic polyamide.
  • Said aliphatic polyamide can be obtained from the polycondensation: at least one C 6 to C 18 amino acid, preferably C 8 to C 18, more preferably C 10 to C 18, even more preferably C 10 to C 12, in particular Cn; or at least one C6 to Cie lactam, preferably C8 to C 18 , more preferably C 10 to Cie, even more preferably C10 to C12, in particular C12; or at least one C4-C36 aliphatic diamine Ca, in particular C6-C36, preferably O Q - Ci 8 , preferably C6-C12, more preferably C10-C12 with at least one Cb C4-C36 aliphatic diacid, in particular in C6-C36, preferentially C6-C18, preferentially C10-C18, more preferentially C10-C12.
  • a C to C 12 amino acid is in particular 6-aminohexanoic acid, 9-aminononanoic acid, 10-aminodecanoic acid, 10-aminoundecanoic acid, 12-aminododecanoic acid and 11-aminoundecanoic acid as well as its derivatives, in particular N-heptyl-11-aminoundecanoic acid.
  • said at least one semi-crystalline aliphatic polyamide is obtained from the polycondensation of at least one amino acid, it can therefore comprise a single amino acid or several amino acids.
  • said semi-crystalline aliphatic polyamide is obtained from the polycondensation of a single amino acid and said amino acid is chosen from 11-aminoundecanoic acid and 12-aminododecanoic acid, advantageously 11-aminoundecanoic acid.
  • the lactam in O Q to C12 is in particular caprolactam, decanolactam, undecanolactam, and lauryllactam.
  • said at least one semi-crystalline aliphatic polyamide is obtained from the polycondensation of at least one lactam, it can therefore comprise a single lactam or several lactams.
  • said at least one semi-crystalline aliphatic polyamide is obtained from the polycondensation of a single lactam and said lactam is chosen from lauryllactam and unecanolactam, advantageously lauryllactam.
  • the Ca diamine can be linear or branched. Advantageously, it is linear.
  • Said at least one C4-C36 diamine Ca can in particular be chosen from butanemethylenediamine, 1,5-pentamethylenediamine, 1,6-hexamethylenediamine, 1,7-heptamethylenediamine, 1,8-octamethylenediamine, 1,9 -nonamethylenediamine, 1,10- decamethylenediamine, 1,11-undecamethylenediamine, 1,12-dodecamethylenediamine, 1, 13-tridecamethylenediamine, 1,14-tetradecamethylenediamine, 1,16-hexadecamethylenediamine and 1,16-hexadecamethylenediamine and 1,18-hexadecamethylenediamine and 1,18-hexadecamethylenediamine , octadecenediamine, eicosanediamine, docosanediamine and diamines obtained from fatty acids.
  • said at least one Ca diamine is C6-C36 and chosen from 1,6-hexamethylenediamine, 1,7-heptamethylenediamine, 1,8-octamethylenediamine, 1,9- nonamethylenediamine, 1, 10-decamethylenediamine, 1, 11-undecamethylenediamine, 1, 12-dodecamethylenediamine, 1, 13-tridecamethylenediamine, 1, 14-tetradecamethylenediamine, 1, 16-hexadecamethylenediamine, 1, 16-hexadecamethylenediamine, 18ediamine and 1 roctadecenediamine, reicosanediamine, docosanediamine and diamines obtained from fatty acids.
  • Said at least one Cb C4 to C36 dicarboxylic acid can be chosen from butanedioic acid, pentanedioic acid, adipic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecanedioic acid, brassylic acid, tetradecanedioic acid, pentadecanedioic acid, hexadecanedioic acid, octadecanedioic acid, and diacids obtained from fatty acids.
  • the diacid can be linear or branched. Advantageously, it is linear.
  • the aliphatic polyamide is chosen from PA6, PA66, PA11, PA12, PA610, PA612, PA1010, PA1012 and PA1212.
  • Said semi-aromatic polyamide can be, in particular, a semi-aromatic polyamide of formula X / YAr, as described in EP1505099, in particular a semi-aromatic polyamide of formula A / XT in which A is chosen from a unit obtained from an amino acid as defined above, a unit obtained from a lactam as defined above and a unit corresponding to the formula (Ce diamine).
  • (Cd diacid) with c representing the number of carbon atoms of the diamine and d representing the number of carbon atoms of the diacid, c and d each being between 4 and 36, advantageously between 9 and 18, the unit (diamine in Ce) being chosen from aliphatic diamines, linear or branched, as defined above, cycloaliphatic diamines and alkylaromatic diamines and the unit (diacid in Cd) being chosen from aliphatic, linear or branched diacids, as defined above, cycloaliphatic diacids and aromatic diacids;
  • XT denotes a unit obtained from the polycondensation of a Cx diamine and terephthalic acid, with x representing the number of carbon atoms of the Cx diamine, x being between 5 and 36, advantageously between 9 and 18, in particular a polyamide of formula A / 5T, A / 6T, A / 9T, A / 10T or A / 11 T, A being as defined above, in particular a polyamide chosen from a PA MPMDT / 6T, one PA11 / 10T, one PA 5T / 10T, one PA 11 / BACT, one PA 11 / 6T / 10T, one PA MXDT / 10T, one PA MPMDT / 10T, one PA BACT / 10T, one PA BACT / 6T, PA BACT / 10T / 6T, one PA 11 / BACT / 6T, PA 11 / MPMDT / 10T, PA 11 / B
  • T is terephthalic acid
  • MXD is m-xylylenediamine
  • MPMD is methylpentamethylene diamine
  • BAC is bis (aminomethyl) cyclohexane.
  • Said semi-aromatic polyamide can also be a polyamide of formula ZAr in which Z is a unit resulting from the polycondensation of at least one aliphatic diamine in Ca as defined above and Ar is an aromatic dicarboxylic acid, in particular the terepthalic acid, isophthalic acid and naphthalenic acid.
  • the polyamide is aliphatic and selected from PA6, PA66, PA11, PA12, PA610, PA612, PA1010, PA1012 and PA1212.
  • the polyamide is semi-aromatic and chosen from polyamide 11 / 5T, 11 / 6T, 11/1 OT, MXDT / 10T, MPMDT / 10T and BACT / 10T.
  • said polyamide of said composition is washed beforehand at least once with a system chosen from a polar solvent, in particular methanol, water or water vapor, or a mixture of these. this.
  • the impact modifier can be any impact modifier from the moment when a polymer of lower modulus than that of the resin, exhibiting good adhesion with the matrix, so as to dissipate the cracking energy.
  • the impact modifier is advantageously constituted by a polymer having a flexural modulus of less than 100 MPa measured according to the ISO 178 standard and of Tg less than 0 ° C (measured according to the 11357-2 standard at the inflection point of the DSC thermogram ), in particular a polyolefin.
  • PEBAs are excluded from the definition of impact modifiers.
  • the polyolefin of the impact modifier can be functionalized or non-functionalized or be a mixture of at least one functionalized and / or at least one non-functionalized.
  • the polyolefin has been designated by (B) and functionalized polyolefins (B1) and unfunctionalized polyolefins (B2) have been described below.
  • An unfunctionalized polyolefin (B2) is conventionally a homopolymer or copolymer of alpha olefins or diolefins, such as, for example, ethylene, propylene, butene-1, octene-1, butadiene.
  • alpha olefins or diolefins such as, for example, ethylene, propylene, butene-1, octene-1, butadiene.
  • LDPE low density polyethylene
  • HDPE high density polyethylene
  • LLDPE linear low density polyethylene, or linear low density polyethylene
  • VLDPE very low density polyethylene, or very low density polyethylene
  • metallocene polyethylene metallocene polyethylene
  • ethylene / alpha-olefin copolymers such as ethylene / propylene, EPR (abbreviation of ethylene-propylene-rubber) and ethylene / propylene / diene (EPDM).
  • EPR abbreviation of ethylene-propylene-rubber
  • EPDM ethylene / propylene / diene
  • SEBS ethylene-butene / styrene
  • SBS styrene / butadiene / styrene
  • SIS styrene / isoprene / styrene
  • SEPS styrene / ethylene-propylene / styrene
  • the functionalized polyolefin (B1) can be a polymer of alpha olefins having reactive units (the functionalities); such reactive units are the acid, anhydride, or epoxy.
  • reactive units are the acid, anhydride, or epoxy.
  • a functionalized polyolefin is for example a PE / EPR mixture, the weight ratio of which can vary widely, for example between 40/60 and 90/10, said mixture being co-grafted with an anhydride, in particular maleic anhydride, according to a degree of grafting, for example from 0.01 to 5% by weight.
  • the functionalized polyolefin (B1) can be chosen from the following (co) polymers, grafted with maleic anhydride or glycidyl methacrylate, in which the degree of grafting is for example from 0.01 to 5% by weight:
  • ethylene / alpha-olefin copolymers such as ethylene / propylene, EPR (abbreviation of ethylene-propylene-rubber) and ethylene / propylene / diene (EPDM).
  • EPR abbreviation of ethylene-propylene-rubber
  • EPDM ethylene / propylene / diene
  • SEBS ethylene-butene / styrene
  • SBS styrene / butadiene / styrene
  • SIS styrene / isoprene / styrene
  • SEPS styrene / ethylene-propylene / styrene
  • alkyl (meth) acrylate copolymers containing up to 40% by weight of alkyl (meth) acrylate;
  • the functionalized polyolefin (B1) can also be chosen from ethylene / propylene copolymers predominantly in propylene grafted with maleic anhydride and then condensed with mono-amine polyamide (or a polyamide oligomer) (products described in EP-A-0342066) .
  • the functionalized polyolefin (B1) can also be a co- or ter polymer of at least the following units: (1) ethylene, (2) alkyl (meth) acrylate or vinyl ester of saturated carboxylic acid and (3) anhydride such as maleic anhydride or (meth) acrylic acid or epoxy such as glycidyl (meth) acrylate.
  • (meth) acrylic acid can be salified with Zn or Li.
  • alkyl (meth) acrylate in (B1) or (B2) denotes methacrylates and acrylates of C1 to C8 alkyl, and may be chosen from methyl acrylate, ethyl acrylate , n-butyl acrylate, isobutyl acrylate, ethyl-2-hexyl acrylate, cyclohexyl acrylate, methyl methacrylate and ethyl methacrylate.
  • the aforementioned polyolefins (B1) can also be crosslinked by any suitable process or agent (diepoxy, diacid, peroxide, etc.); the term functionalized polyolefin also includes mixtures of the abovementioned polyolefins with a difunctional reagent such as diacid, dianhydride, diepoxy, and the like. capable of reacting with these or mixtures of at least two functionalized polyolefins capable of reacting with each other.
  • a difunctional reagent such as diacid, dianhydride, diepoxy, and the like.
  • copolymers mentioned above, (B1) and (B2) can be copolymerized in a random or block fashion and have a linear or branched structure.
  • MFI melt flow index
  • the unfunctionalized polyolefins (B2) are chosen from homopolymers or copolymers of polypropylene and any homopolymer of ethylene or copolymer of ethylene and of a comonomer of higher alpha olefinic type such as butene, hexene, octene or 4-methyl 1-Pentene. Mention may be made, for example, of PPs, high density PE, medium density PE, linear low density PE, low density PE, very low density PE. These polyethylenes are known to those skilled in the art as being produced according to a "radical” process, according to a “Ziegler” type catalysis or, more recently, according to a so-called "metallocene” catalysis.
  • the functionalized polyolefins (B1) are chosen from any polymer comprising alpha olefinic units and units bearing polar reactive functions such as epoxy, carboxylic acid or carboxylic acid anhydride functions.
  • polymers mention may be made of the ter polymers of ethylene, of alkyl acrylate and of maleic anhydride or of glycidyl methacrylate, such as Lotader® from the Applicant or polyolefins grafted with l.
  • maleic anhydride such as Orevac® from the Applicant as well as ter polymers of ethylene, of alkyl acrylate and of (meth) acrylic acid.
  • said constituent composition of said sealant layer or layers is devoid of polyether block amide (PEBA).
  • PEBA polyether block amide
  • said transparent composition is devoid of core-shell particles or “core-shell” core-shell polymers.
  • core-shell particle it is necessary to understand a particle of which the first layer forms the core and the second or all of the following layers form the respective shell.
  • the core-shell particle can be obtained by a multi-step process comprising at least two steps. Such a method is described for example in documents US2009 / 0149600 or EP0722961.
  • the proportion of impact modifier is then from 0 to less than 10% by weight, in particular from 0 to 8% by weight, in particular from 1 to less than 10% by weight, especially 1 to 8% by weight.
  • said composition also comprises from 0.1 to 5% by weight of additives.
  • the plasticizer can be a plasticizer commonly used in compositions based on polyamide (s).
  • a plasticizer which has good thermal stability so that no fumes are formed during the stages of mixing the various polymers and of processing the composition obtained.
  • this plasticizer can be chosen from: benzene sulfonamide derivatives such as n-butyl benzene sulfonamide (BBSA), ortho and para isomers of ethyl toluene sulfonamide (ETSA), N-cyclohexyl toluene sulfonamide and N- (2-hydroxypropyl) benzenesulfonamide (HP-BSA), esters of hydroxybenzoic acids such as 2-ethylhexyl para-hydroxybenzoate (EHPB) and 2-decylhexyl para-hydroxybenzoate (HDPB), esters or ethers of tetrahydrofurfuryl alcohol, such as oligoethyleneoxytetrahydrofurfurylalcohol, and esters of citric acid or of hydroxymalonic acid, such as oligoethyleneoxymalonate.
  • BBSA n-butyl benzene sulfonamide
  • ESA
  • a preferred plasticizer is n-butyl benzene sulfonamide (BBSA).
  • Another more particularly preferred plasticizer is N- (2-hydroxy-propyl) benzene sulfonamide (HP-BSA).
  • HP-BSA N- (2-hydroxy-propyl) benzene sulfonamide
  • the additives can be selected from an antioxidant, a heat stabilizer, a UV absorber, a light stabilizer, a lubricant, an inorganic filler, a flame retardant, a nucleating agent and a colorant.
  • the present invention relates to a multilayer structure comprising at least one sealing layer (1) as defined above.
  • the total proportion of said contaminants extracted and present in the hydrogen is less than or equal to 3% by weight, in particular less than 2% by weight of the sum of the constituents of the composition constituting said waterproofing layer, determined according to the test defined in the CSA / ANSI CHMC 2: 19 standard.
  • said multilayer structure corresponds to a reservoir and further comprises at least one composite reinforcing layer (2), said sealing layer being in contact with hydrogen.
  • Said multilayer structure can therefore comprise at least one waterproofing layer and at least one composite reinforcing layer which is wrapped around the waterproofing layer and which may or may not adhere to each other.
  • said sealing and reinforcing layers do not adhere to each other and consist of compositions which respectively comprise different polymers.
  • said different polymers can be of the same type.
  • one of the two composite sealing and reinforcing layers consists of a composition comprising an aliphatic polyamide
  • the other layer consists of a composition comprising a polyamide which is not aliphatic and which is for example a semi-aromatic polyamide so as to have a high tg polymer as the matrix of the composite reinforcement.
  • Said multilayer structure can comprise up to 10 waterproofing layers and up to 10 composite reinforcement layers of different types. It is obvious that said multilayer structure is not necessarily symmetrical and that it can therefore comprise more sealing layers than composite layers or vice versa, but there cannot be alternation of layers and of reinforcing layer.
  • said multilayer structure comprises one, two, three, four, five, six, seven, eight, nine or ten sealing layers and one, two, three, four, five, six, seven, eight, nine or ten layers composite reinforcement.
  • said multilayer structure comprises one, two, three, four or five waterproofing layers and one, two, three, four or five composite reinforcement layers.
  • said multilayer structure comprises one, two or three waterproofing layers and one two or three composite reinforcement layers.
  • said multilayer structure comprises a single waterproofing layer and several reinforcing layers, said adjacent reinforcing layer being wrapped around said waterproofing layer and the other reinforcing layers being wrapped around the reinforcing layer. directly adjacent.
  • said multilayer structure comprises a single reinforcing layer and several sealing layers, said reinforcing layer being wrapped around said adjacent sealing layer.
  • said multilayer structure comprises a single sealing layer and a single composite reinforcing layer, said reinforcing layer being wrapped around said sealing layer.
  • each sealing layer consists of a composition comprising the same type of polyamide.
  • polystyrene resin By the same type of polymer is meant, for example, a polyamide which can be an identical or different polyamide depending on the layers.
  • each reinforcing layer consists of a composition comprising the same type of polymer P2j, in particular an epoxy or epoxy-based resin.
  • each sealing layer comprises the same type of polyamide and each reinforcing layer comprises the same type of polymer P2j, in particular an epoxy or epoxy-based resin.
  • the P2j polyamide is identical for all the reinforcing layers.
  • said polymer P2j is an epoxy resin or an epoxy-based resin.
  • the polyamide is identical for all the sealing layers.
  • said polyamide of the waterproofing layer is an aliphatic polyamide, in particular PA6, PA66, PA610, PA612, PA1010, PA 1012, PA 1212, PA11, PA12, in particular PA 11 or PA12 and said polymer P2j is a semi polyamide.
  • -aromatic in particular chosen from a PA MPMDT / 6T, a PA11 / 10T, a PA 11 / BACT, a PA 5T / 10T, a PA 11 / 6T / 10T, a PA MXDT / 10T, a PA MPMDT / 10T, one PA BACT / 10T, one PA BACT / 6T, PA BACT / 10T / 6T, one PA 11 / BACT / 6T, PA 11 / MPMDT / 6T, PA 11 / MPMDT / 10T, PA 11 / BACT / 10T, one PA and 11 / MXDT / 10T.
  • said multilayer structure consists of a single reinforcing layer and a single sealing layer in which said polyamide of the sealing layer is a long chain aliphatic polyamide, in particular PA1010, PA 1012, PA 1212, PA11, PA12, in particular PA 11 or PA12 and said polymer P2j is a semi-aromatic polyamide, in particular chosen from a PA MPMDT / 6T, a PA11 / 10T, a PA 11 / BACT, a PA 5T / 10T, one PA 11 / 6T / 10T, one PA MXDT / 10T, one PA MPMDT / 10T, one PA BACT / 10T, one PA BACT / 6T, PA BACT / 10T / 6T, one PA 11 / BACT / 6T, PA 11 / MPMDT / 6T, PA 11 / MPMDT / 10T, PA 11 / BACT / 10T and a PA 11 / MXDT / 10
  • a long chain polyamide is a polyamide with an average number of carbon atoms per nitrogen atom greater than 8.
  • said multilayer structure consists of a single reinforcing layer and a single sealing layer in which said polyamide of the sealing layer (1) is a long chain aliphatic polyamide, in in particular PA1010, PA 1012, PA 1212, PA12, in particular PA12 and said polymer P2j is a semi-aromatic polyamide, in particular chosen from a PA MPMDT / 6T, a PA PA11 / 10T, a PA 11 / BACT, a PA 5T / 10T one PA 11 / 6T / 10T, one PA MXDT / 10T, one PA MPMDT / 10T, one PA BACT / 10T, one PA BACT / 6T, PA BACT / 10T / 6T, one PA 11 / BACT / 6T, PA 11 / MPMDT / 6T, PA 11 / MPMDT / 10T, PA 11 / BACT / 10T and a PA 11 / MXDT / 10T.
  • the multilayer structure consists of a single reinforcing layer and a single sealing layer in which said polyamide of the sealing layer (1) is a long chain aliphatic polyamide, in particular PA1010, PA 1012, PA 1212, PA11, PA12, or semi-aromatic, in particular chosen from polyamide 11 / 5T or 11 / 6T or 11 / 10T, MXDT / 10T, MPMDT / 10T and BACT / 10T, in particular PA 11 or PA12 and said polymer P2j is an epoxy resin or an epoxy-based resin.
  • said polyamide of the sealing layer (1) is a long chain aliphatic polyamide, in particular PA1010, PA 1012, PA 1212, PA11, PA12, or semi-aromatic, in particular chosen from polyamide 11 / 5T or 11 / 6T or 11 / 10T, MXDT / 10T, MPMDT / 10T and BACT / 10T, in particular PA 11 or PA12 and said polymer P2j is an
  • the multilayer structure consists of a single reinforcing layer and a single sealing layer in which said polyamide of the sealing layer (1) is a long chain aliphatic polyamide, in particular PA1010, PA 1012, PA 1212, PA12, or semi-aromatic, in particular chosen from polyamide 11 / 5T or 11 / 6T or 11 / 10T, MXDT / 10T, MPMDT / 10T and BACT / 10T , in particular PA12 and said polymer P2j is an epoxy resin or an epoxy-based resin.
  • said multilayer structure further comprises at least one outer layer made of a continuous fiberglass fibrous material impregnated with a transparent amorphous polymer, said layer being the outermost layer of said multilayer structure.
  • Said outer layer is a second but transparent reinforcing layer which makes it possible to put an inscription on the structure.
  • said multilayer structure corresponds to a pipe and further comprises at least one outer metal braid (2 ’), said sealing layer being in contact with hydrogen.
  • This pipe is intended in particular to connect the reservoir defined above to the fuel cell.
  • the characteristics of the waterproofing layer are the same as above.
  • constituent fibers of said fibrous material they are in particular fibers of mineral, organic or plant origin.
  • said fibrous material can be sized or not sized.
  • Said fibrous material can therefore comprise up to 3.5% by weight of an organic material (thermosetting or thermoplastic resin type) called sizing.
  • fibers of mineral origin mention may be made of carbon fibers, glass fibers, basalt or basalt-based fibers, silica fibers, or silicon carbide fibers, for example.
  • fibers of organic origin mention may be made of fibers based on a thermoplastic or thermosetting polymer, such as semi-aromatic polyamide fibers, aramid fibers or polyolefin fibers, for example.
  • they are based on an amorphous thermoplastic polymer and have a glass transition temperature Tg greater than the Tg of the polymer or mixture of thermoplastic polymer constituting the pre-impregnation matrix when the latter is amorphous, or greater than the Tm of the polymer or mixture of thermoplastic polymer constituting the prepreg matrix when the latter is semi-crystalline.
  • they are based on semi-crystalline thermoplastic polymer and have a melting temperature Tm greater than the Tg of the polymer or mixture of thermoplastic polymer constituting the prepreg matrix when the latter is amorphous, or greater than the Tm of the thermoplastic polymer. polymer or mixture of thermoplastic polymer constituting the prepreg matrix when the latter is semi-crystalline.
  • fibers of plant origin mention may be made of natural fibers based on flax, hemp, lignin, bamboo, silk, in particular spider silk, sisal, and other cellulose fibers, in particular viscose. These fibers of plant origin can be used pure, processed or else coated with a coating layer, in order to facilitate the adhesion and impregnation of the thermoplastic polymer matrix.
  • the fibrous material can also be fabric, braided or woven with fibers.
  • organic fibers can be mixed with mineral fibers to be pre-impregnated with thermoplastic polymer powder and to form the pre-impregnated fibrous material.
  • the rovings of organic fibers can have several grammages. They can also have several geometries.
  • the fibers constituting the fibrous material can also be in the form of a mixture of these reinforcing fibers of different geometries. Fibers are continuous fibers.
  • the fibrous material is chosen from glass fibers, carbon fibers, basalt or basalt-based fibers, or a mixture of these, in particular carbon fibers.
  • It is used as a wick or several wicks.
  • the present invention relates to a method of manufacturing a multilayer structure as defined above, characterized in that it comprises a step of manufacturing a sealing layer (1) as defined in one of claims 1 to 12, by injection, extrusion, extrusion blow molding or rotational molding.
  • said method comprises a preliminary step of washing the polyamide of the composition at least once with a system chosen from a polar solvent, in particular methanol, water or water vapor, or a mixture of these.
  • a polar solvent in particular methanol, water or water vapor, or a mixture of these.
  • said method of manufacturing a multilayer structure which corresponds to a reservoir and as defined above is characterized in that it comprises a step of filament winding of a reinforcing layer (2), such as defined above, around the waterproofing layer (1).
  • said multilayer structure can be washed after manufacture at least once with a system chosen from a polar solvent, in particular methanol, water or water vapor, or a mixture thereof.
  • a polar solvent in particular methanol, water or water vapor, or a mixture thereof.
  • the structure is dried for 2 days under a stream of dry air, in particular at a temperature of 40 ° C to 80 ° C, in particular from 50 ° C to 70 ° C, in particular at 60 ° C after manufacture or after manufacturing and washing.
  • PA11 is a polyamide 11 of Mn (number molecular mass) 45,000. The melting point is 190 ° C, its enthalpy of fusion is 56 J / g.
  • PA11 / 10T Rilsan HT (Arkema)
  • Plasticizer BBSA (n-butyl benzene sulfonamide)
  • the sealing layers (liner) of the invention comprising a sealing layer (1) are obtained by rotational molding of the sealing layer (liner) with the various compositions above at a temperature suited to the nature of the material. thermoplastic resin used.
  • the multilayer structures comprising a composite reinforcement of epoxy resin or epoxy-based resin are obtained by a wet filament winding process which consists in winding carbon fibers around the liner, which fibers being pre-impregnated in a bath of liquid epoxy or a liquid epoxy based bath.
  • the reservoir is then polymerized in an oven for 2 hours.
  • Multilayer structure with waterproofing layer based on composition-11 ⁇ 0.5%
  • Multilayer structure with waterproofing layer based on composition-12 ⁇ 0.5%
  • Multilayer structure with waterproofing layer based on composition-13 ⁇ 0.5%
  • Multilayer structure with waterproofing layer based on composition-14 ⁇ 0.5%
  • Multilayer structure with waterproofing layer based on composition-15 ⁇ 0.5%
  • Multilayer structure with a waterproofing layer based on CI composition > 3%

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)
  • Sealing Material Composition (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

La présente invention concerne l'utilisation d'une couche d'étanchéité (1) constituée d'une composition comprenant au moins un polyamide pour la préparation d'une structure multicouche destinée au transport, à la distribution ou au stockage de l'hydrogène, en particulier à la distribution ou au stockage de l'hydrogène, notamment au stockage de 5 l'hydrogène, ladite couche d'étanchéité satisfaisant un test de contaminants présents dans l'hydrogène et extraits de ladite couche d'étanchéité après contact de l'hydrogène avec celle-ci, ledit test étant effectué tel que défini dans la norme CSA/ANSI CHMC 2 :19, la proportion totale desdits contaminants extraits dans l'hydrogène, étant inférieure ou égale à 3% en poids, en particulier inférieure à 2% en poids de la somme des constituants de 10 ladite composition.

Description

DESCRIPTION
TITRE : STRUCTURE MULTICOUCHE POUR LE TRANSPORT OU LE STOCKAGE DE
L’HYDROGENE
[Domaine technique]
La présente demande de brevet concerne des structures multicouches destinées au transport, à la distribution ou au stockage de l’hydrogène, en particulier à la distribution ou au stockage de l’hydrogène, notamment au stockage de l’hydrogène, comprenant une couche d’étanchéité constituée d’une composition de polyamide et l’utilisation de ladite couche d’étanchéité satisfaire un test de contaminants présents dans l’hydrogène et extraits de ladite couche d’étanchéité par l’hydrogène, et leur procédé de fabrication.
[Technique antérieure]
Les réservoirs d’hydrogène représentent un sujet qui attire actuellement beaucoup d’intérêt de la part de nombreux industriels, notamment dans le domaine automobile. L’un des buts recherché est de proposer des véhicules de moins en moins polluants. Ainsi, les véhicules électriques ou hybrides comportant une batterie visent à remplacer progressivement les véhicules thermiques, tels que les véhicules à essence ou bien à gasoil. Or, il s’avère que la batterie est un constituant du véhicule relativement complexe. Selon l’emplacement de la batterie dans le véhicule, il peut être nécessaire de la protéger des chocs et de l’environnement extérieur, qui peut être à des températures extrêmes et à une humidité variable. Il est également nécessaire d’éviter tout risque de flammes.
De plus, il est important que sa température de fonctionnement n’excède pas 55°C pour ne pas détériorer les cellules de la batterie et préserver sa durée de vie. A l’inverse, par exemple en hiver, il peut être nécessaire d’élever la température de la batterie de manière à optimiser son fonctionnement.
Par ailleurs, le véhicule électrique souffre encore aujourd’hui de plusieurs problèmes à savoir l’autonomie de la batterie, l’utilisation dans ces batteries de terre rares dont les ressources ne sont pas inépuisables, des temps de recharge beaucoup plus long que les durées de remplissage de réservoir, ainsi qu’un problème de production d’électricité dans les différents pays pour pouvoir recharger les batteries.
L’hydrogène représente donc une alternative à la batterie électrique puisque l’hydrogène peut être transformé en électricité au moyen d’une pile à combustible et alimenter ainsi les véhicules électriques.
L’alimentation en hydrogène de la pile à combustible nécessite donc la présence aussi bien d’un réservoir de stockage de l’hydrogène dans le véhicule qu’un tuyau de transport de l’hydrogène du réservoir vers le pile à combustible.
Les réservoirs à hydrogène ou tuyaux de transport de l’hydrogène sont généralement constitués d'une enveloppe (liner ou couche d’étanchéité) métallique ou thermoplastique qui doit empêcher la perméation de l'hydrogène. L’un des types de réservoirs envisagés, appelé Type IV, est basé sur un liner thermoplastique autour duquel est enroulé un composite.
Leur principe de base est de séparer les deux fonctions essentielles que sont l'étanchéité et la tenue mécanique pour les gérer l'une indépendamment de l'autre. Dans ce type de réservoir on associe liner (ou gaine d’étanchéité) en résine thermoplastique à une structure de renforcement constituée de fibres (verre, aramide, carbone) encore dénommée gaine ou couche de renfort qui permettent de travailler à des pressions beaucoup plus élevées tout en réduisant la masse et en évitant les risques de rupture explosive en cas d’agressions externes sévères.
La problématique est identique pour le tuyau de transport.
Les liners doivent présenter certaines caractéristiques de base :
La possibilité d’être transformé par extrusion soufflage, rotomoulage, injection, ou extrusion Une faible perméabilité à l’hydrogène, la perméabilité du liner est en effet un facteur clé pour limiter les pertes d’hydrogène du réservoir ;
De bonnes propriétés mécaniques (fatigue) à basses températures (-40 à -70°C) ;
Une tenue thermique à 120°C.
Néanmoins, la pile à combustible est très sensible à différents contaminants qui dégradent sa performance et sa durabilité.
Ces contaminants peuvent provenir de plusieurs sources : de l’hydrogène lui-même en raison de son procédé de fabrication, de la fabrication du réservoir et/ou du tuyau de transport d’hydrogène où différents constituants naturels tels que des composés organiques volatils ou de l’eau se retrouvent piégés notamment dans le polymère thermoplastique de la couche d’étanchéité, et qui seront par la suite extraits par l’hydrogène au contact de la dite couche d’étanchéité, de la présence dans le polymère thermoplastique de constituants qui sont susceptible d’être extraits par la suite par l’hydrogène au contact de la dite couche d’étanchéité.
Selon Chen et al. (A review of PEM hydrogen fuel cell contamination: impact, mechanisms and mitigation, Journal of Power Sources, 165 (2007), 739-756), l’hydrogène utilisé comme combustible dans les piles à combustible en recherche, développement et démonstrateur provient principalement de sources commercialement disponibles. Les procédés de production de l’hydrogène se font principalement par reformage à partir d’hydrocarbures ou d’hydrocarbures oxygénés, incluant le méthane du gaz naturel et le méthanol de la biomasse, mais aussi par électrolyse, oxydation partielle de petites molécules organiques et hydrolyse du borohydrure de sodium.
Par conséquent, un réservoir ou un tuyau de transport d’hydrogène utilisé avec une pile à combustible doit non seulement présenter les caractéristiques de base énumérées ci-dessus mais encore l’hydrogène après contact avec la couche d’étanchéité dudit réservoir et/ou tuyau ne doit contenir qu’un minimum de contaminants extraits de ladite couche d’étanchéité. Cette double problématique est résolue par la fourniture d’une structure multicouche de la présente invention destinée au transport, à la distribution ou au stockage de l’hydrogène Dans toute cette description, les termes « liner » et « gaine d’étanchéité » ont la même signification.
La présente invention concerne donc l’utilisation d’une couche d’étanchéité (1) constituée d’une composition comprenant au moins un polyamide pour la préparation d’une structure multicouche destinée au transport, à la distribution ou au stockage de l’hydrogène, en particulier à la distribution ou au stockage de l’hydrogène, notamment au stockage de l’hydrogène, ladite couche d’étanchéité satisfaisant un test de contaminants présents dans l’hydrogène et extraits de ladite couche d’étanchéité après contact de l’hydrogène avec celle-ci, ledit test étant effectué tel que défini dans la norme CSA/ANSI CHMC 2 :19, la proportion totale desdits contaminants extraits dans l’hydrogène, étant inférieure ou égale à 3% en poids, en particulier inférieure à 2% en poids de la somme des constituants de ladite composition.
Les Inventeurs ont donc trouvé qu’une couche d’étanchéité (1 ) constituée d’une composition comprenant au moins un polyamide permettait la préparation d’une structure multicouche destinée au transport, à la distribution ou au stockage de l’hydrogène, présentant les caractéristiques de base énumérées ci-dessus mais qu’elle permettait également de limiter la proportion de contaminants présents dans l’hydrogène et extraits après contact de l’hydrogène avec ladite couche d’étanchéité.
Par « structure multicouche » il faut entendre un réservoir comprenant ou constitué de plusieurs couches, à savoir plusieurs couches d’étanchéité et plusieurs couches de renfort, ou une couche d’étanchéité et plusieurs couches de renfort, ou plusieurs couches d’étanchéité et une couche de renfort ou une couche d’étanchéité et une couche de renfort.
La structure multicouche dans la présente invention désigne également un tuyau ou un tube destiné au transport de l’hydrogène du réservoir vers la pile à combustible et qui comprend ou est constitué de plusieurs couches, à savoir plusieurs couches d’étanchéité et plusieurs couches extérieures, ou une couche d’étanchéité et plusieurs couches extérieures, ou plusieurs couches d’étanchéité et une couche extérieure ou une couche d’étanchéité et une couche extérieure. L’expression « ladite couche d’étanchéité satisfaisant un test de contaminants présents dans l’hydrogène et extraits de ladite couche d’étanchéité par l’hydrogène » signifie que la proportion de contaminants présent dans l’hydrogène et issus de la couche d’étanchéité après contact avec l’hydrogène, qu’il s’agisse d’un réservoir ou d’un tuyau ne dépasse pas les valeurs limites empêchant le bon fonctionnement de la pile à combustible.
La norme CSA/ANSI CHMC 2 :19 donne des détails sur la procédure utilisée pour déterminer les composants volatils dans l'espace de tête d'un polymère lors d'une exposition à l'hydrogène pendant le service. L’expression « après contact de l’hydrogène avec celle-ci » signifie tout comme ci-dessus une exposition à l’hydrogène pendant le service.
Appareillage
L'équipement d'essai doit comprendre les éléments suivants: a) un cryofocus pour pré-concentrer les échantillons de gaz; b) un chromatographe en phase gazeuse utilisant une colonne appropriée, connectée en série avec un détecteur sélectif de masse approprié; c) flacons d'espace de tête (40 ml), septums, fermetures d'anneaux et scellant pour flacon; d) une balance analytique pouvant peser jusqu'à 60,0001 g; et e) un four à convection capable de maintenir une température de 70 ± 5 ° C.
Environnement de test Pureté de l'hydrogène gazeux
L'hydrogène gazeux de conditionnement doit être de composition et de pureté connues, comme décrit ci-dessous. La pureté de l'hydrogène gazeux utilisé pour remplir la chambre d'essai doit être, au minimum, conforme à la norme ISO 14687 :2019, parties 1 à 3, ou SAE J2719 (2015). ISO 14687-2 définit la spécification de qualité de l'hydrogène la plus stricte, avec les valeurs de seuil les plus basses pour chaque impureté parmi ces normes ISO (voir tableaux 1). SAE J2719 s'applique également aux véhicules à pile à combustible à membrane échangeuse de protons (PEM) et est harmonisée avec ISO 14687-2.
[Tableaux 1]
Figure imgf000005_0001
Figure imgf000006_0001
* toutes les valeurs sont données en ppm (v/v) sauf précision contraire
quand les valeurs données dans ce tableau 1 diffèrent de l’édition actuelle de la norme ISO 14687-2 :2019, les valeurs actuelles s’appliquent.
Mesure et instrumentation La température à laquelle les mesures de la vitesse de transmission de l'hydrogène sont effectuées doit être contrôlée à ± 1 ° C près. La pression d'essai doit rester constante à 1% près de la valeur d'essai.
Procédure d'essai
La procédure d'essai est décrite dans la norme ISO 14687 :2019 au paragraphe 5.6.
S’agissant des contaminants
Le terme contaminant s’entend au sens large du terme à partir du moment où ledit contaminant est extrait de ladite couche d’étanchéité par l’hydrogène et n’est pas déjà présent dans l’hydrogène qui est introduit dans ladite structure multicouche pour faire fonctionner la pile à combustible du véhicule, par exemple en raison du procédé d’obtention de l’hydrogène.
Par exemple, le terme contaminant recouvre les cations métalliques tels que K+, Cu2+, Ni2+ et Fe3+ qui peuvent être produits par les stabilisants utilisés dans les polyamides, les stabilisants organiques ou métalliques en tant que tels, les plastifiants, les oligomères, en particulier le caprolactame et son dimère cyclique le 1 ,8-diazacyclotetradecane-2,7-dione (DCDD), les composés organiques volatils tels que NH3, NOx, SOx, N2, les composés benzoiques, 03, l’eau absorbée par le polyamide après fabrication de la couche d’étanchéité, les corps gras tels que de l’huile.
Les composés organiques volatils excluent donc tous les autres matériaux cités dans la liste ci- dessus. La proportion totale desdits contaminants extraits dans l’hydrogène, est inférieure ou égale à 3% en poids, en particulier inférieure à 2% en poids de la somme des constituants de ladite composition. Par conséquent, cette proportion totale desdits contaminants extraits ne prend pas en compte la proportion de contaminants qui proviendrait du procédé de préparation de l’hydrogène ou de tout autre source.
Avantageusement, la proportion totale desdits contaminants extraits dans l’hydrogène, est comprise de 0,01% à 3%, en particulier de 0,01% à 2%, plus particulièrement de 0,01% à 1%, notamment de 0,01% à 0,5% en poids.
Dans une première variante, les contaminants extraits sont choisis parmi les plastifiants, les stabilisants, les oligomères, de l’eau, un corps gras, des composés organiques volatils et un mélange de ceux-ci.
Avantageusement, dans cette première variante, la proportion en poids de chaque contaminant individuel extrait est inférieure ou égale à 1%.
Dans un mode de réalisation de cette première variante, la constitution des contaminants extraits est la suivante : jusqu’à 1% de plastifiants, jusqu’à 0,5% de stabilisants, jusqu’à 0,5% d’oligomères, jusqu’à 0,5% d’eau, jusqu’à 0,5% de corps gras, et jusqu’à 0,5% de composés organiques volatils, la somme des contaminants extraits étant inférieure ou égale à 3%, en particulier inférieure à 2% en poids de la somme des constituants de ladite composition.
Avantageusement, dans ce mode de réalisation de cette première variante, la proportion totale desdits contaminants extraits dans l’hydrogène, est comprise de 0,01% à 3%, en particulier de 0,01% à 2%, plus particulièrement de 0,01% à 1%, notamment de 0,01% à 0,5% en poids.
Plus avantageusement, dans ce mode de réalisation de cette première variante, la proportion en poids de chaque contaminant individuel extrait est inférieure ou égale à 1%.
Dans une seconde variante, les contaminants extraits sont choisis parmi les stabilisants, de l’eau, de l’huile, des composés organiques volatils et un mélange de ceux-ci.
Avantageusement, dans cette seconde variante, la proportion en poids de chaque contaminant individuel extrait est inférieure ou égale à 0,5%.
Dans un mode de réalisation de cette seconde variante, la constitution des contaminants extraits est la suivante : jusqu’à 0,5% de stabilisants, jusqu’à 0,5% d’eau, jusqu’à 0,5% de corps gras, et jusqu’à 0,5% de composés organiques volatils, la somme des contaminants étant inférieure ou égale à 2% en poids de la somme des constituants de ladite composition. Avantageusement, dans ce mode de réalisation de cette seconde variante, la proportion totale desdits contaminants extraits dans l’hydrogène, est comprise de 0,01% à 2%, plus particulièrement de 0,01% à 1%, notamment de 0,01% à 0,5% en poids.
Plus avantageusement, dans ce mode de réalisation de cette seconde variante, la proportion en poids de chaque contaminant individuel extrait est inférieure ou égale à 0,5%.
S’agissant de la composition
Dans un premier mode de réalisation, la composition qui constitue ladite couche d’étanchéité (1), notamment dans la première variante définie ci-dessus, comprend en poids : au moins 63,5% de polyamide, de 0 à 30% de modifiant choc, notamment de 0 à moins de 15% de modifiant choc, en particulier de 0 à 12% de modifiant choc, de 0 à 1 ,5% de plastifiant, et de 0 à 5% en poids d’additifs, la somme des constituants de la composition étant égale à 100%.
Avantageusement, ladite composition de ce premier mode de réalisation comprend de 1 à 30% de modifiant choc, notamment de 1 à moins de 15% de modifiant choc, en particulier de 1 à 12% de modifiant choc.
Avantageusement, ladite composition de ce premier mode de réalisation comprend de 0,1 à 1 ,5% de plastifiant.
Avantageusement, ladite composition de ce premier mode de réalisation comprend de 0,1 à 5% en poids d’additifs
Avantageusement, ladite composition de ce premier mode de réalisation comprend de 1 à 30% de modifiant choc, notamment de 1 à moins de 15% de modifiant choc, en particulier de 1 à 12% de modifiant choc et de 0,1 à 1,5% de plastifiant.
Avantageusement, ladite composition de ce premier mode de réalisation comprend de 1 à 30% de modifiant choc, notamment de 1 à moins de 15% de modifiant choc, en particulier de 1 à 12% de modifiant choc et de 0,1 à 5% en poids d’additifs.
Avantageusement, ladite composition de ce premier mode de réalisation comprend de 0,1 à 1 ,5% de plastifiant et de 0,1 à 5% en poids d’additifs
Avantageusement, ladite composition de ce premier mode de réalisation comprend de 1 à 30% de modifiant choc, notamment de 1 à moins de 15% de modifiant choc, en particulier de 1 à 12% de modifiant choc, de 0,1 à 1 ,5% de plastifiant et de 0,1 à 5% en poids d’additifs.
Dans un second mode de réalisation, la composition qui constitue ladite couche d’étanchéité (1), notamment dans la première variante définie ci-dessus, est constituée en poids : d'au moins 63,5% de polyamide, de 0 à 30% de modifiant choc, notamment de 0 à moins de 15% de modifiant choc, en particulier de 0 à 12% de modifiant choc, de 0 à 1 ,5% de plastifiant, et de 0 à 5% en poids d’additifs, la somme des constituants de la composition étant égale à 100%.
Avantageusement, ladite composition de ce second mode de réalisation comprend de 1 à 30% de modifiant choc, notamment de 1 à moins de 15% de modifiant choc, en particulier de 1 à 12% de modifiant choc.
Avantageusement, ladite composition de ce second mode de réalisation comprend de 0,1 à 1 ,5% de plastifiant.
Avantageusement, ladite composition de ce second mode de réalisation comprend de 0,1 à 5% en poids d’additifs.
Avantageusement, ladite composition de ce second mode de réalisation comprend de 1 à moins de 15% de modifiant choc, en particulier de 1 à 12% de modifiant choc et de 0,1 à 1 ,5% de plastifiant.
Avantageusement, ladite composition de ce second mode de réalisation comprend de 1 à moins de 15% de modifiant choc, en particulier de 1 à 12% de modifiant choc et de 0,1 à 5% en poids d’additifs.
Avantageusement, ladite composition de ce second mode de réalisation comprend de 0,1 à 1 ,5% de plastifiant et de 0,1 à 5% en poids d’additifs.
Avantageusement, ladite composition de ce second mode de réalisation comprend de 1 à 30% de modifiant choc, notamment de 1 à moins de 15% de modifiant choc, en particulier de 1 à 12% de modifiant choc, de 0,1 à 1 ,5% de plastifiant et de 0,1 à 5% en poids d’additifs.
Dans un troisième mode de réalisation, la composition qui constitue ladite couche d’étanchéité (1), notamment dans la seconde variante définie ci-dessus, comprend en poids : au moins 63,5% de polyamide, de 0 à 30% de modifiant choc, notamment de 0 à moins de 15% de modifiant choc, en particulier de 0 à 12% de modifiant choc, et de 0 à 5% en poids d’additifs, la somme des constituants de la composition étant égale à 100%.
Avantageusement, ladite composition de ce troisième mode de réalisation comprend de 1 à 30% de modifiant choc, notamment de 1 à moins de 15% de modifiant choc, en particulier de 1 à 12% de modifiant choc.
Avantageusement, ladite composition de ce troisième mode de réalisation comprend de 0,1 à 5% en poids d’additifs.
Avantageusement, ladite composition de ce troisième mode de réalisation comprend de 1 à 30% de modifiant choc, notamment de 1 à moins de 15% de modifiant choc, en particulier de 1 à 12% de modifiant choc et de 0,1 à 5% en poids d’additifs. Dans un quatrième mode de réalisation, la composition qui constitue ladite couche d’étanchéité (1 ), notamment dans la seconde variante définie ci-dessus, est constituée en poids : d’au moins 63,5% de polyamide, de 0 à 30% de modifiant choc, notamment de 0 à moins de 15% de modifiant choc, en particulier de 0 à 12% de modifiant choc, et de 0 à 5% en poids d’additifs, la somme des constituants de la composition étant égale à 100%.
Avantageusement, ladite composition de ce quatrième mode de réalisation comprend de 1 à 30% de modifiant choc, notamment de 1 à moins de 15% de modifiant choc, en particulier de 1 à 12% de modifiant choc.
Avantageusement, ladite composition de ce quatrième mode de réalisation comprend de 0,1 à 5% en poids d’additifs.
Avantageusement, ladite composition de ce quatrième mode de réalisation comprend de 1 à 30% de modifiant choc, notamment de 1 à moins de 15% de modifiant choc, en particulier de 1 à 12% de modifiant choc et de 0,1 à 5% en poids d’additifs.
S’agissant du polyamide
La nomenclature utilisée pour définir les polyamides est décrite dans la norme ISO 1874-1 :2011 "Plastiques - Matériaux polyamides (PA) pour moulage et extrusion - Partie 1 : Désignation", notamment en page 3 (tableaux 1 et 2) et est bien connue de l’homme du métier.
Le polyamide peut être un homopolyamide ou un copolyamide ou un mélange de ceux-ci.
Le polyamide est un polyamide semi-cristallin, c’est-à-dire un matériau généralement solide à température ambiante, et qui se ramollit lors d’une augmentation de température, en particulier après passage de sa température de transition vitreuse (Tg), et pouvant présenter une fusion franche au passage de sa température dite de fusion (Tf), et qui redevient solide lors d’une diminution de température en dessous de sa température de cristallisation.
La Tg, la Te et la Tf sont déterminées par analyse calorimétrique différentielle (DSC) selon la norme 11357-2 :2013 et 11357-3 :2013 respectivement.
La masse moléculaire moyenne en nombre Mn dudit polyamide semi-cristallin est de préférence dans une plage allant de de 10000 à 85000, notamment de 10000 à 60000, préférentiellement de 10000 à 50000, encore plus préférentiellement de 12000 à 50000. Ces valeurs Mn peuvent correspondre à des viscosités inhérentes supérieures ou égales à 0,8 telle que déterminées dans le m-crésol selon la norme ISO 307:2007 mais en changeant le solvant (utilisation du m-crésol à la place de l’acide sulfurique et la température étant de 20°C).
Dans un mode de réalisation, le polyamide est choisi parmi un polyamide aliphatique, un polyamide semi-aromatique et un mélange des deux, avantageusement un polyamide aliphatique.
Ledit polyamide aliphatique peut être issu de la polycondensation : d’au moins un aminoacide en C6 à Cie, préférentiellement en Cg à Cie, plus préférentiellement en Cio à Cie, encore plus préférentiellement en Cio à C12, notamment en Cn ; ou d’au moins un lactame en Ce à Cie, préférentiellement en Cg à C18, plus préférentiellement en C10 à Cie, encore plus préférentiellement en C10 à C12, notamment en C12; ou d’au moins une diamine aliphatique Ca en C4-C36, notamment en C6-C36, préférentiellement OQ- Ci8, préférentiellement C6-C12, plus préférentiellement C10-C12 avec au moins un diacide aliphatique Cb en C4-C36, notamment en C6-C36, préférentiellement C6-C18, préférentiellement C10-C18, plus préférentiellement C10-C12.
Un aminoacide en Ceà C12 est notamment l'acide 6-aminohexanoïque, l'acide 9-aminononanoïque, l'acide 10-aminodécanoïque, l'acide 10-aminoundécanoïque, l'acide 12-aminododécanoïque et l'acide 11-aminoundécanoïque ainsi que ses dérivés, notamment l'acide N-heptyl-11- aminoundécanoïque.
Lorsque ledit au moins un polyamide semi-cristallin aliphatique est obtenu à partir de la polycondensation d’au moins un aminoacide il peut donc comprendre un seul aminoacide ou plusieurs aminoacides.
Avantageusement, ledit polyamide semi-cristallin aliphatique est obtenu à partir de la polycondensation d’un seul aminoacide et ledit aminoacide est choisi parmi l'acide 11- aminoundécanoïque et l'acide 12- aminododécanoïque, avantageusement l'acide 11- aminoundécanoïque.
Le lactame en OQ à C12 est notamment le caprolactame, le décanolactame, l’undécanolactame, et le lauryllactame.
Lorsque ledit au moins un polyamide semi-cristallin aliphatique est obtenu à partir de la polycondensation d’au moins un lactame, il peut donc comprendre un seul lactame ou plusieurs lactames.
Avantageusement, ledit au moins un polyamide semi-cristallin aliphatique est obtenu à partir de la polycondensation d’un seul lactame et ledit lactame est choisi parmi le lauryllactame et l’undécanolactame, avantageusement le lauryllactame.
La diamine en Ca peut être linéaire ou ramifiée. Avantageusement, elle est linéaire.
Ladite au moins une diamine Ca en C4-C36 peut être en particulier choisi parmi la butaneméthylènediamine, la 1,5-pentaméthylènedimaine, la 1,6-hexaméthylènediamine la 1,7- heptaméthylènediamine, la 1,8-octaméthylènediamine, la 1,9-nonaméthylènediamine, la 1 ,10- décaméthylènediamine, 1,11-undécaméthylènediamine, la 1,12-dodécaméthylènediamine, la 1 ,13-tridécaméthylènediamine, la 1,14-tétradécaméthylènediamine, la 1,16- hexadécaméthylènediamine et la 1 ,18-octadécaméthylènediamine, l'octadécènediamine, l'eicosanediamine, la docosanediamine et les diamines obtenues à partir d'acides gras. Avantageusement, ladite au moins une diamine Ca est en C6-C36 et choisi parmi la 1,6- hexaméthylènediamine la 1,7-heptaméthylènediamine, la 1,8-octaméthylènediamine, la 1,9- nonaméthylènediamine, la 1 ,10-décaméthylènediamine, 1 ,11-undécaméthylènediamine, la 1 ,12- dodécaméthylènediamine, la 1 ,13-tridécaméthylènediamine, la 1 ,14-tétradécaméthylènediamine, la 1 ,16-hexadécaméthylènediamine et la 1 ,18-octadécaméthylènediamine, roctadécènediamine, reicosanediamine, la docosanediamine et les diamines obtenues à partir d'acides gras.
Ledit au moins un acide dicarboxylique Cb en C4 à C36 peut être choisi parmi l’acide butanedioïque, l’acide pentanedioïque, l’acide l’acide adipique, l’acide subérique, l’acide azélaïque, l’acide sébacique, l’acide undécanedioïque, l’acide dodécanedioïque, l’acide brassylique, l’acide tétradécanedioïque, l’acide pentadécanedioïque, l’acide hexadécanedioïque, l’acide octadécanedioïque, et les diacides obtenus à partir d'acides gras.
Le diacide peut être linéaire ou ramifié. Avantageusement, il est linéaire.
Avantageusement, le polyamide aliphatique est choisi parmi le PA6, le PA66, le PA11 , le PA12, le PA610, le PA612, le PA1010, le PA1012 et le PA1212.
Ledit polyamide semi-aromatique peut être, notamment, un polyamide semi-aromatique de formule X/YAr, tel que décrits dans EP1505099, notamment un polyamide semi-aromatique de formule A/XT dans laquelle A est choisi parmi un motif obtenu à partir d'un aminoacide tel que défini ci- dessus, un motif obtenu à partir d’un lactame tel que défini ci-dessus et un motif répondant à la formule (diamine en Ce). (diacide en Cd), avec c représentant le nombre d’atomes de carbone de la diamine et d représentant le nombre d’atome de carbone du diacide, c et d étant chacun compris entre 4 et 36, avantageusement entre 9 et 18, le motif (diamine en Ce) étant choisi parmi les diamines aliphatiques, linéaires ou ramifiés, telle que définies ci-dessus, les diamines cycloaliphatiques et les diamines alkylaromatiques et le motif (diacide en Cd) étant choisi parmi les diacides aliphatiques, linéaires ou ramifiés, tels que définis ci-dessus, les diacides cycloaliphatiques et les diacides aromatiques;
X.T désigne un motif obtenu à partir de la polycondensation d'une diamine en Cx et de l’acide téréphtalique, avec x représentant le nombre d’atomes de carbone de la diamine en Cx, x étant compris entre 5 et 36, avantageusement entre 9 et 18, notamment un polyamide de formule A/5T, A/6T, A/9T, A/10T ou A/11 T, A étant tel que défini ci-dessus, en particulier un polyamide choisi parmi un PA MPMDT/6T, un PA11/10T, un PA 5T/10T, un PA 11/BACT, un PA 11/6T/10T, un PA MXDT/10T, un PA MPMDT/10T, un PA BACT/10T, un PA BACT/6T, PA BACT/10T/6T, un PA 11/BACT/6T, PA 11/MPMDT/6T, PA 11/MPMDT/10T, PA 11/BACT/10T, un PA 11/MXDT/10T, un 11/5T/10T.
T correspond à l’acide téréphtalique, MXD correspond à la m-xylylène diamine, MPMD correspond à la méthylpentaméthylène diamine et BAC correspond au bis(aminométhyl)cyclohexane.
Ledit polyamide semi-aromatique peut être également un polyamide de formule ZAr dans laquelle Z est un motif issu de la polycondensation d’au moins une diamine aliphatique en Ca telle que définie ci-dessus et Ar est un acide dicarboxylique aromatique, en particulier l’acide térépthalique, l’acide isophtalique et l’acide naphtalénique. Dans un mode de réalisation, le polyamide est aliphatique et choisi parmi le PA6, le PA66, le PA11 , le PA12, le PA610, le PA612, le PA1010, le PA1012 et le PA1212.
Dans un autre mode de réalisation, le polyamide est semi-aromatique et choisi parmi le polyamide 11/5T, 11/6T, le 11/1 OT, la MXDT/10T, la MPMDT/10T et la BACT/10T.
Dans un mode de réalisation, ledit polyamide de ladite composition est préalablement lavé au moins une fois avec un système choisi parmi un solvant polaire, en particulier le méthanol, de l’eau ou de la vapeur d’eau, ou un mélange de ceux-ci.
S’agissant du modifiant choc
Le modifiant choc peut être tout modifiant choc à partir du moment où un polymère de module inférieur à celui de la résine, présentant une bonne adhésion avec la matrice, de manière à dissiper l’énergie de fissuration.
Le modifiant choc est avantageusement constitué par un polymère présentant un module de flexion inférieur à 100 MPa mesuré selon la norme ISO 178 et de Tg inférieure à 0°C (mesurée selon la norme 11357-2 au niveau du point d’inflexion du thermogramme DSC), en particulier une polyoléfine.
Dans un mode de réalisation, les PEBA sont exclus de la définition des modifiants choc.
La polyoléfine du modifiant choc peut être fonctionnalisée ou non fonctionnalisée ou être un mélange d'au moins une fonctionnalisée et/ou d'au moins une non fonctionnalisée. Pour simplifier on a désigné la polyoléfine par (B) et on a décrit ci- dessous des polyoléfines fonctionnalisées (B1) et des polyoléfines non fonctionnalisées (B2).
Une polyoléfine non fonctionnalisée (B2) est classiquement un homo polymère ou copolymère d'alpha oléfines ou de dioléfines, telles que par exemple, éthylène, propylène, butène-1 , octène- 1 , butadiène. A titre d'exemple, on peut citer :
- les homo polymères et copolymères du polyéthylène, en particulier LDPE, HDPE, LLDPE(linear low density polyéthylène, ou polyéthylène basse densité linéaire), VLDPE(very low density polyéthylène, ou polyéthylène très basse densité) et le polyéthylène métallocène .
-les homopolymères ou copolymères du propylène.
- les copolymères éthylène/alpha-oléfine tels qu'éthylène/propylène, les EPR(abréviation d'éthylène-propylene-rubber) et éthylène/propylène/diène (EPDM).
- les copolymères blocs styrène/éthylène-butène/styrène (SEBS), styrène/butadiène/styrène (SBS), styrène/isoprène/ styrène (SIS), styrène/éthylène-propylène/styrène (SEPS).
- les copolymères de l'éthylène avec au moins un produit choisi parmi les sels ou les esters d'acides carboxyliques insaturés tel que le (méth)acrylate d'alkyle (par exemple acrylate de méthyle), ou les esters vinyliques d'acides carboxyliques saturés tel que l'acétate de vinyle (EVA), la proportion de comonomère pouvant atteindre 40% en poids.
La polyoléfine fonctionnalisée (B1) peut être un polymère d'alpha oléfines ayant des motifs réactifs (les fonctionnalités) ; de tels motifs réactifs sont les fonctions acides, anhydrides, ou époxy. À titre d'exemple, on peut citer les polyoléfines précédentes (B2) greffées ou co- ou ter polymérisées par des époxydes insaturés tels que le (méth)acrylate de glycidyle, ou par des acides carboxyliques ou les sels ou esters correspondants tels que l'acide (méth)acrylique (celui- ci pouvant être neutralisé totalement ou partiellement par des métaux tels que Zn, etc.) ou encore par des anhydrides d'acides carboxyliques tels que l'anhydride maléique. Une polyoléfine fonctionnalisée est par exemple un mélange PE/EPR, dont le ratio en poids peut varier dans de larges mesures, par exemple entre 40/60 et 90/10, ledit mélange étant co-greffé avec un anhydride, notamment anhydride maléique, selon un taux de greffage par exemple de 0,01 à 5% en poids.
La polyoléfine fonctionnalisée (B1) peut être choisie parmi les (co)polymères suivants, greffés avec anhydride maléique ou méthacrylate de glycidyle, dans lesquels le taux de greffage est par exemple de 0,01 à 5% en poids :
- du PE, du PP, des copolymères de l'éthylène avec propylène, butène, hexène, ou octène contenant par exemple de 35 à 80% en poids d'éthylène ;
- les copolymères éthylène/alpha-oléfine tels qu'éthylène/propylène, les EPR(abréviation d'éthylène-propylene-rubber) et éthylène/propylène/diène (EPDM).
- les copolymères blocs styrène/éthylène-butène/styrène (SEBS), styrène/butadiène/styrène (SBS), styrène/isoprène/ styrène (SIS), styrène/éthylène-propylène/styrène (SEPS).
- des copolymères éthylène et acétate de vinyle (EVA), contenant jusqu'à 40% en poids d'acétate de vinyle ;
- des copolymères éthylène et (méth)acrylate d'alkyle, contenant jusqu'à 40% en poids de (méth)acrylate d'alkyle ;
- des copolymères éthylène et acétate de vinyle (EVA) et (méth)acrylate d'alkyle, contenant jusqu'à 40% en poids de comonomères.
La polyoléfine fonctionnalisée (B1) peut être aussi choisie parmi les copolymères éthylène/propylène majoritaires en propylène greffés par de l'anhydride maléique puis condensés avec du polyamide (ou un oligomère de polyamide) mono aminé (produits décrits dans EP-A- 0342066).
La polyoléfine fonctionnalisée (B1) peut aussi être un co- ou ter polymère d'au moins les motifs suivants : (1) éthylène, (2) (méth)acrylate d'alkyle ou ester vinylique d'acide carboxylique saturé et (3) anhydride tel que anhydride maléique ou acide (méth)acrylique ou époxy tel que (méth)acrylate de glycidyle.
A titre d'exemple de polyoléfines fonctionnalisées de ce dernier type, on peut citer les copolymères suivants, où l'éthylène représente de préférence au moins 60% en poids et où le ter monomère (la fonction) représente par exemple de 0,1 à 10% en poids du copolymère :
- les copolymères éthylène/(méth)acrylate d'alkyle / acide (méth)acrylique ou anhydride maléique ou méthacrylate de glycidyle ; - les copolymères éthylène/acétate de vinyle/anhydride maléique ou méthacrylate de glycidyle ;
- les copolymères éthylène/acétate de vinyle ou (méth)acrylate d'alkyle / acide (méth)acrylique ou anhydride maléique ou méthacrylate de glycidyle.
Dans les copolymères qui précèdent, l'acide (méth)acrylique peut être salifié avec Zn ou Li.
Le terme "(méth)acrylate d'alkyle" dans (B1) ou (B2) désigne les méthacrylates et les acrylates d'alkyle en C1 à C8, et peut être choisi parmi l'acrylate de méthyle, l'acrylate d'éthyle, l'acrylate de n-butyle, l'acrylate d'iso butyle, l'acrylate d'éthyl-2-hexyle, l'acrylate de cyclohexyle, le méthacrylate de méthyle et le méthacrylate d'éthyle.
Par ailleurs, les polyoléfines précitées (B1 ) peuvent aussi être réticulées par tout procédé ou agent approprié (diépoxy, diacide, peroxyde, etc.) ; le terme polyoléfine fonctionnalisée comprend aussi les mélanges des polyoléfines précitées avec un réactif difonctionnel tel que diacide, dianhydride, diépoxy, etc. susceptible de réagir avec celles-ci ou les mélanges d'au moins deux polyoléfines fonctionnalisées pouvant réagir entre elles.
Les copolymères mentionnés ci-dessus, (B1) et (B2), peuvent être copolymérisés de façon statistique ou séquencée et présenter une structure linéaire ou ramifiée.
Le poids moléculaire, l'indice MFI, la densité de ces polyoléfines peuvent aussi varier dans une large mesure, ce que l'homme de l'art appréciera. MFI, abréviation de Melt Flow Index, est l'indice de fluidité à l'état fondu. On le mesure selon la norme ASTM 1238.
Avantageusement les polyoléfines (B2) non fonctionnalisées sont choisies parmi les homopolymères ou copolymères du polypropylène et tout homo polymère de l’éthylène ou copolymère de l’éthylène et d’un comonomère de type alpha oléfinique supérieur tel que le butène, l’hexène, l’octène ou le 4-méthyl 1-Pentène. On peut citer par exemple les PP, les PE de haute densité, PE de moyenne densité, PE basse densité linéaire, PE basse densité, PE de très basse densité. Ces polyéthylènes sont connus par l’Homme de l’Art comme étant produits selon un procédé « radicalaire », selon une catalyse de type « Ziegler » ou, plus récemment, selon une catalyse dite « métallocène ».
Avantageusement les polyoléfines fonctionnalisées (B1) sont choisies parmi tout polymère comprenant des motifs alpha oléfiniques et des motifs porteurs de fonctions réactives polaires comme les fonctions époxy, acide carboxylique ou anhydride d’acide carboxylique. A titre d’exemples de tels polymères, on peut citer les ter polymères de l’éthylène, d’acrylate d’alkyle et d’anhydride maléique ou de méthacrylate de glycidyle comme les Lotader® de la Demanderesse ou des polyoléfines greffées par de l’anhydride maléique comme les Orevac® de la Demanderesse ainsi que des ter polymères de l’éthylène, d’acrylate d’alkyle et d’acide (meth) acrylique. On peut citer aussi les homopolymères ou copolymères du polypropylène greffés par un anhydride d'acide carboxylique puis condensés avec des polyamides ou des oligomères mono aminés de polyamide. Avantageusement, ladite composition constitutive de ladite ou desdites couches d’étanchéité est dépourvue de polyéther block amide (PEBA). Dans ce mode de réalisation, les PEBA sont donc exclus des modifiants choc.
Avantageusement, ladite composition transparente est dépourvue de particules cœur-écorce ou polymères cœur-écorce « core-shell ».
Par particule cœur-écorce, il faut comprendre une particule dont la première couche forme le cœur et la deuxième ou toutes les couches suivantes forment les écorces respectives.
La particule cœur-écorce « core-shell » peut-être obtenu par un procédé à plusieurs étapes comprenant au moins deux étapes. Un tel procédé est décrit par exemple dans les documents US2009/0149600 ou EP0722961.
Dans un mode de réalisation, lorsque le polyamide de la composition est un polyamide semi- aromatique, la proportion de modifiant choc est alors de 0 à moins de 10% en poids, notamment de 0 à 8% en poids, en particulier de 1 à moins de 10% en poids, notamment de 1 à 8% en poids. Avantageusement, dans ce dernier mode de réalisation, ladite composition comprend également de 0,1 à 5% en poids d’additifs.
S’agissant du plastifiant
Le plastifiant peut être un plastifiant couramment utilisé dans les compositions à base de polyamide(s).
Avantageusement, on utilise un plastifiant qui présente une bonne stabilité thermique afin qu'il ne se forme pas de fumées lors des étapes de mélange des différents polymères et de transformation de la composition obtenue.
En particulier, ce plastifiant peut être choisi parmi : les dérivés du benzène sulfonamide tels que le n-butyl benzène sulfonamide (BBSA), les isomères ortho et para de l’éthyl toluène sulfonamide (ETSA), le N-cyclohexyl toluène sulfonamide et le N-(2-hydroxypropyl) benzène sulfonamide (HP-BSA), les esters d’acides hydroxybenzoïques tels que le para-hydroxybenzoate d'éthyl-2 hexyle (EHPB) et le para-hydroxybenzoate de décyl-2 hexyle (HDPB), les esters ou éthers du tétrahydrofurfuryl alcool comme l’oligoéthylèneoxy- tétrahydrofurfurylalcool, et les esters de l’acide citrique ou de l’acide hydroxymalonique, tels que l’oligoéthylèneoxymalonate.
Un plastifiant préféré est le n-butyl benzène sulfonamide (BBSA).
Un autre plastifiant plus particulièrement préféré est le N-(2-hydroxy-propyl) benzène sulfonamide (HP-BSA). Ce dernier présente en effet l'avantage d'éviter la formation de dépôts au niveau de la vis et/ou de la filière d'extrusion ("larmes de filières"), lors d'une étape de transformation par extrusion.
On peut bien évidemment utiliser un mélange de plastifiants. S’agissant des additifs
Les additifs peuvent être choisis parmi un antioxydant, un stabilisant à la chaleur, un absorbeur d’UV, un stabilisant à la lumière, un lubrifiant, une charge inorganique, un agent ignifugeant, un agent nucléant et un colorant.
S’agissant de la structure
Selon un autre aspect, la présente invention concerne une structure multicouche comprenant au moins une couche d’étanchéité (1) telle que définie ci-dessus.
Lors du contact de l’hydrogène avec ladite couche d’étanchéité, la proportion totale desdits contaminants extraits et présents dans l’hydrogène est inférieure ou égale à 3% en poids, en particulier inférieure à 2% en poids de la somme des constituants de la composition constituant ladite couche d’étanchéité, déterminée selon le test défini dans la norme CSA/ANSI CHMC 2 :19.
Dans un premier mode de réalisation, ladite structure multicouche correspond à un réservoir et comprend de plus au moins une couche de renfort composite (2), ladite couche d’étanchéité étant en contact avec l’hydrogène.
Premier mode de réalisation : réservoir
Ladite structure multicouche peut donc comprendre au moins une couche d’étanchéité et au moins une couche de renfort composite qui est enroulée autour de la couche d’étanchéité et qui peuvent adhérer ou non entre elles.
Dans un mode de réalisation, au moins l’une des dites couches de renfort composite (2) est constituée d’un matériau fibreux sous forme de fibres continues imprégné par une composition comprenant majoritairement au moins un polymère P2j, (j=1 à m, m étant le nombre de couches de renfort), en particulier une résine époxyde ou à base d’époxyde, ladite structure étant dépourvue d’une couche la plus extérieure et adjacente à la couche la plus extérieure de renfort composite en polymère polyamide.
Avantageusement, lesdites couches d’étanchéité et de renfort n’adhèrent pas entre elles et sont constituées de compositions qui comprennent respectivement des polymères différents. Néanmoins, lesdits polymères différents peuvent être du même type.
Ainsi, si l’une des deux couches d’étanchéité et de renfort composite est constituée d’une composition comprenant un polyamide aliphatique, alors l’autre couche est constituée d’une composition comprenant un polyamide qui n’est pas aliphatique et qui est par exemple un polyamide semi-aromatique de façon à disposer d’un polymère de haute tg comme matrice du renfort composite.
Ladite structure multicouche peut comprendre jusqu’à 10 couches d’étanchéité et jusqu’à 10 couches de renfort composite de natures différentes. Il est bien évident que ladite structure multicouche n’est pas obligatoirement symétrique et qu’elle peut donc comprendre plus de couches d’étanchéité que de couches composites ou vice et versa mais il ne peut y avoir alternance de couches et de couche de renfort.
Avantageusement, ladite structure multicouche comprend une, deux, trois, quatre, cinq, six, sept, huit, neuf ou dix couches d’étanchéité et une, deux, trois, quatre, cinq, six, sept, huit, neuf ou dix couches de renfort composite.
Avantageusement, ladite structure multicouche comprend une, deux, trois, quatre ou cinq, couches d’étanchéité et une, deux, trois, quatre ou cinq couches de renfort composite. Avantageusement, ladite structure multicouche comprend une, deux ou trois couches d’étanchéité et une deux ou trois couches de renfort composite.
Dans un mode de réalisation, ladite structure multicouche comprend une seule couche d’étanchéité et plusieurs couches de renfort, ladite couche de renfort adjacente étant enroulée autour de ladite couche d’étanchéité et les autres couches de renfort étant enroulées autour de la couche de renfort directement adjacente.
Dans un autre mode de réalisation, la ladite structure multicouche comprend une seule couche de renfort et plusieurs couches d’étanchéité, ladite couche de renfort étant enroulée à ladite couche d’étanchéité adjacente.
Dans un mode de réalisation avantageux, ladite structure multicouche comprend une seule couche d’étanchéité et une seule couche de renfort composite, ladite couche de renfort étant enroulée autour de ladite couche d’étanchéité.
Toutes les combinaisons de ces deux couches sont donc dans la portée de l’invention, à la condition qu’au moins ladite couche de renfort composite la plus interne soit enroulée autour de ladite couche d’étanchéité adjacente la plus externe, les autres couches adhérant ou non entre elles ou non.
Avantageusement, dans ladite structure multicouche, chaque couche d’étanchéité est constituée d’une composition comprenant le même type de polyamide.
Par l’expression même type de polymère, il faut entendre par exemple un polyamide qui peut être un polyamide identique ou différent en fonction des couches.
Avantageusement, dans ladite structure multicouche, chaque couche de renfort est constituée d’une composition comprenant le même type de polymère P2j, en particulier une résine époxyde ou à base d’époxyde.
Avantageusement, dans ladite structure multicouche, chaque couche d’étanchéité comprend le même type de polyamide et chaque couche de renfort comprend le même type de polymère P2j, en particulier une résine époxyde ou à base d’époxyde.
Avantageusement, le polyamide P2j est identique pour toutes les couches de renfort. Avantageusement, ledit polymère P2j est une résine époxyde ou à base d’époxyde. Avantageusement, le polyamide est identique pour toutes les couches d’étanchéité. Avantageusement, ledit polyamide de la couche d’étanchéité est un polyamide aliphatique, en particulier PA6, PA66, PA610, PA612, PA1010, PA 1012, PA 1212, PA11 , PA12, notamment PA 11 ou PA12 et ledit polymère P2j est un polyamide semi-aromatique, en particulier choisi parmi un PA MPMDT/6T, un PA11/10T, un PA 11/BACT, un PA 5T/10T, un PA 11/6T/10T, un PA MXDT/10T, un PA MPMDT/10T, un PA BACT/10T, un PA BACT/6T, PA BACT/10T/6T, un PA 11/BACT/6T, PA 11/MPMDT/6T, PA 11/MPMDT/10T, PA 11/ BACT/10T, un PA et 11/MXDT/10T. Dans un mode de réalisation, ladite structure multicouche est constituée d’une seule couche de renfort et d’une seule couche d’étanchéité dans lesquelles ledit polyamide de la couche d’étanchéité est un polyamide aliphatique à longue chaîne, en particulier PA1010, PA 1012, PA 1212, PA11 , PA12, notamment PA 11 ou PA12 et ledit polymère P2j est un polyamide semi- aromatique, en particulier choisi parmi un PA MPMDT/6T, un PA11/10T, un PA 11/BACT, un PA 5T/10T, un PA 11/6T/10T, un PA MXDT/10T, un PA MPMDT/10T, un PA BACT/10T, un PA BACT/6T, PA BACT/10T/6T, un PA 11/BACT/6T, PA 11/MPMDT/6T, PA 11/MPMDT/10T, PA 11/ BACT/10T et un PA 11/MXDT/10T.
Un polyamide à longue chaîne est un polyamide présentant un nombre moyen d’atome de carbone par atome d’azote supérieur à 8.
Dans un autre mode de réalisation, ladite structure multicouche est constituée d’une seule couche de renfort et d’une seule couche d’étanchéité dans lesquelles ledit polyamide de la couche d’étanchéité (1 ) est un polyamide aliphatique à longue chaîne, en particulier PA1010, PA 1012, PA 1212, PA12, notamment PA12 et ledit polymère P2j est un polyamide semi-aromatique, en particulier choisi parmi un PA MPMDT/6T, un PA PA11/10T, un PA 11/BACT, un PA 5T/10T un PA 11/6T/10T, un PA MXDT/10T, un PA MPMDT/10T, un PA BACT/10T, un PA BACT/6T, PA BACT/10T/6T, un PA 11/BACT/6T, PA 11/MPMDT/6T, PA 11/MPMDT/10T, PA 11/ BACT/10T et un PA 11/MXDT/10T.
Dans un encore autre mode de réalisation, la structure multicouche est constituée d’une seule couche de renfort et d’une seule couche d’étanchéité dans lesquelles ledit polyamide de la couche d’étanchéité (1 ) est un polyamide aliphatique à longue chaîne, en particulier PA1010, PA 1012, PA 1212, PA11 , PA12, ou semi-aromatique, en particulier choisi parmi le polyamide 11/5T ou 11/6T ou le 11/10T, la MXDT/10T, la MPMDT/10T et la BACT/10T, notamment PA 11 ou PA12 et ledit polymère P2j est une résine époxyde ou à base d’époxyde.
Dans un autre mode de réalisation, la structure multicouche, est constituée d’une seule couche de renfort et d’une seule couche d’étanchéité dans lesquelles ledit polyamide de la couche d’étanchéité (1 ) est un polyamide aliphatique à longue chaîne, en particulier PA1010, PA 1012, PA 1212, PA12, ou semi-aromatique, en particulier choisi parmi le polyamide 11/5T ou 11/6T ou le 11/10T, la MXDT/10T, la MPMDT/10T et la BACT/10T, notamment PA12 et ledit polymère P2j est une résine époxyde ou à base d’époxyde. Avantageusement, ladite structure multicouche comprend de plus au moins une couche externe constituée d’un matériau fibreux en fibre de verre continue imprégné d’un polymère amorphe transparent, ladite couche étant la couche plus externe de ladite structure multicouche.
Ladite couche externe est une seconde couche de renfort mais transparente qui permet de pouvoir mettre une inscription sur la structure.
Dans un second mode de réalisation, ladite structure multicouche correspond à un tuyau et comprend de plus au moins une tresse métallique extérieure (2’), ladite couche d’étanchéité étant en contact avec l’hydrogène.
Il n’y a donc pas de couche de renfort composite dans ce dernier mode de réalisation.
Ce tuyau est notamment destiné à relier le réservoir ci-dessus défini à la pile à combustible.
Les caractéristiques de la couche d’étanchéité sont identiques à ci-dessus.
S’agissant du matériau fibreux
Concernant les fibres de constitution dudit matériau fibreux, ce sont notamment des fibres d’origine minérale, organique ou végétale.
Avantageusement, ledit matériau fibreux peut être ensimé ou non ensimé.
Ledit matériau fibreux peut donc comprendre jusqu'à 3,5% en poids d’un matériau de nature organique (type résine thermodurcissable ou thermoplastique) dénommé ensimage.
Parmi les fibres d’origine minérale, on peut citer les fibres de carbone, les fibres de verre, les fibres de basalte ou à base de basalte, les fibres de silice, ou les fibres de carbure de silicium par exemple. Parmi les fibres d’origine organique, on peut citer les fibres à base de polymère thermoplastique ou thermodurcissable, telles que des fibres de polyamides semi-aromatiques, des fibres d’aramide ou des fibres en polyoléfines par exemple. De préférence, elles sont à base de polymère thermoplastique amorphe et présentent une température de transition vitreuse Tg supérieure à la Tg du polymère ou mélange de polymère thermoplastique de constitution de la matrice de pré-imprégnation lorsque ce dernier est amorphe, ou supérieure à la Tf du polymère ou mélange de polymère thermoplastique de constitution de la matrice de pré-imprégnation lorsque ce dernier est semi-cristallin. Avantageusement, elles sont à base de polymère thermoplastique semi-cristallin et présentent une température de fusion Tf supérieure à la Tg du polymère ou mélange de polymère thermoplastique de constitution de la matrice de pré imprégnation lorsque ce dernier est amorphe, ou supérieure à la Tf du polymère ou mélange de polymère thermoplastique de constitution de la matrice de pré-imprégnation lorsque ce dernier est semi-cristallin. Ainsi, il n’y a aucun risque de fusion pour les fibres organiques de constitution du matériau fibreux lors de l’imprégnation par la matrice thermoplastique du composite final.
Parmi les fibres d’origine végétale, on peut citer les fibres naturelles à base de lin, de chanvre, de lignine, de bambou, de soie notamment d’araignée, de sisal, et d’autres fibres cellulosiques, en particulier de viscose. Ces fibres d’origine végétale peuvent être utilisées pures, traitées ou bien enduites d’une couche d’enduction, en vue de faciliter l’adhérence et l’imprégnation de la matrice de polymère thermoplastique.
Le matériau fibreux peut également être un tissu, tressé ou tissé avec des fibres.
Il peut également correspondre à des fibres avec des fils de maintien.
Ces fibres de constitution peuvent être utilisées seules ou en mélanges. Ainsi, des fibres organiques peuvent être mélangées aux fibres minérales pour être pré-imprégnées de poudre polymère thermoplastique et former le matériau fibreux pré-imprégné.
Les mèches de fibres organiques peuvent avoir plusieurs grammages. Elles peuvent en outre présenter plusieurs géométries. Les fibres de constitution du matériau fibreux peuvent en outre se présenter sous forme d’un mélange de ces fibres de renfort de différentes géométries. Les fibres sont des fibres continues.
De préférence le matériau fibreux est choisi parmi les fibres de verre, les fibres de carbone, les fibres de basalte ou à base de basalte, ou un mélange de celles-ci, en particulier les fibres de carbone.
Il est utilisé sous forme d’une mèche ou de plusieurs mèches.
Selon un autre aspect, la présente invention concerne un procédé de fabrication d’une structure multicouche telle que définie ci-dessus, caractérisé en ce qu’il comprend une étape de fabrication d’une couche d’étanchéité (1) telle que définie dans l’une des revendications 1 à 12, par injection, extrusion, extrusion-soufflage ou rotomoulage.
Dans un mode de réalisation, ledit procédé comprend une étape préalable de lavage du polyamide de la composition au moins une fois avec un système choisi parmi un solvant polaire, en particulier le méthanol, de l’eau ou de la vapeur d’eau, ou un mélange de ceux-ci.
Avantageusement, ledit procédé de fabrication d’une structure multicouche qui correspond à un réservoir et telle que définie ci-dessus, est caractérisé en ce qu’il comprend une étape d’enroulement filamentaire d’une couche de renfort (2), telle que définie ci-dessus, autour de la couche d’étanchéité (1).
Avantageusement, ladite structure multicouche peut être lavée après fabrication au moins une fois avec un système choisi parmi un solvant polaire, en particulier le méthanol, de l’eau ou de la vapeur d’eau, ou un mélange de ceux-ci.
Dans le cas d’un lavage après fabrication avec un solvant polaire, en particulier du méthanol ou avec un mélange eau-solvant polaire, il est nécessaire de rincer la structure pour bien enlever toute trace de méthanol.
Avantageusement, la structure est séchée pendant 2 jours sous courant d’air sec, notamment à une température comprise de 40°C à 80°C, en particulier de 50°C à 70°C, notamment à 60°C après fabrication ou après fabrication et lavage.
Toutes les caractéristiques détaillée ci-dessus s’appliquent également au procédé. Exemples :
Les compositions suivantes ont été préparées selon les techniques bien connues de l'homme du métier pour la constitution de la couche d'étanchéité (1) des structures de l'invention (tableau 2). [Tableaux 2]
Figure imgf000022_0001
C1 à C2 : compositions comparatives
PA11 : Le PA11 est un polyamide 11 de Mn (masse moléculaire en nombre) 45000. La température de fusion est de 190°C, son enthalpie de fusion est 56 J/g.
PA11/10T : Rilsan HT (Arkema)
Plastifiant : BBSA (n-butyl benzène sulfonamide)
Modifiant choc : lotader® 4700 (50%) + lotader® AX8900 (25%) + lucalène® 3110 (25%) Additifs : stabilisants
Les couches d'étanchéité (liner) de l’invention comprenant une couche d’étanchéité (1) sont obtenues par rotomoulage de la couche d’étanchéité (liner) avec les différentes compositions ci- dessus à une température adaptée à la nature de la résine thermoplastique utilisée.
Les structures multicouches comprenant un renfort composite en résine époxyde ou à base d’époxyde sont obtenues par un procédé d’enroulement filamentaire voie humide qui consiste à enrouler des fibres de carbone autour du liner, lesquelles fibres étant préalablement pré imprégnée dans un bain d’époxyde liquide ou un bain à base d’époxyde liquide. Le réservoir est ensuite polymérisé en étuve pendant 2h.
Les contaminants extraits dans l’hydrogène des différentes couches d'étanchéité des structures multicouches fabriquées à partir des compositions ci-dessus ont été quantifiés selon la norme CSA/ANSI CHMC 2 :19 :
Structure multicouche avec couche d’étanchéité à base de composition-11 : <0,5%
Structure multicouche avec couche d’étanchéité à base de composition-12 : <0,5%
Structure multicouche avec couche d’étanchéité à base de composition-13 : <0,5%
Structure multicouche avec couche d’étanchéité à base de composition-14 : <0,5%
Structure multicouche avec couche d’étanchéité à base de composition-15 : <0,5%
Structure multicouche avec couche d’étanchéité à base de composition-CI : >3%
Structure multicouche avec couche d’étanchéité à base de composition-C2 : >3%

Claims

REVENDICATIONS
1. Utilisation d’une couche d’étanchéité (1) constituée d’une composition comprenant au moins un polyamide pour la préparation d’une structure multicouche destinée au transport, à la distribution ou au stockage de l’hydrogène, en particulier à la distribution ou au stockage de l’hydrogène, notamment au stockage de l’hydrogène, ladite couche d’étanchéité satisfaisant un test de contaminants présents dans l’hydrogène et extraits de ladite couche d’étanchéité après contact de l’hydrogène avec celle-ci, ledit test étant effectué tel que défini dans la norme CSA/ANSI CHMC 2 : 19, la proportion totale desdits contaminants extraits dans l’hydrogène, étant inférieure ou égale à 3% en poids, en particulier inférieure à 2% en poids de la somme des constituants de ladite composition.
2. Utilisation selon la revendication 1, dans laquelle les contaminants extraits sont choisis parmi les plastifiants, les stabilisants, les oligomères, de l’eau, un corps gras, des composés organiques volatils et un mélange de ceux-ci.
3. Utilisation selon la revendication 2, dans laquelle la proportion en poids de chaque contaminant individuel extrait est inférieure ou égale à 1%.
4. Utilisation selon la revendication 2 ou 3, dans laquelle la constitution des contaminants extraits est la suivante : jusqu’à 1% de plastifiants, jusqu’à 0,5% de stabilisants, jusqu’à 0,5% d’oligomères, jusqu’à 0,5% d’eau, jusqu’à 0,5% de corps gras, et jusqu’à 0,5% de composés organiques volatils, la somme des contaminants extraits étant inférieure ou égale à 3%, en particulier inférieure à 2% en poids de la somme des constituants de ladite composition.
5. Utilisation selon l’une des revendications 1 à 4, dans laquelle ladite composition comprend en poids : au moins 63,5% de polyamide, de 0 à moins de 30% de modifiant choc, notamment de 0 à moins de 15% de modifiant choc, en particulier de 0 à 12% de modifiant choc, de 0 à 1 ,5% de plastifiant, et de 0 à 5% en poids d’additifs, la somme des constituants de la composition étant égale à 100%.
6. Utilisation selon la revendication 1 , dans laquelle les contaminants extraits sont choisis parmi les stabilisants, de l’eau, de l’huile, des composés organiques volatils et un mélange de ceux-ci.
7. Utilisation selon la revendication 6, dans laquelle la proportion en poids de chaque contaminant individuel extrait est inférieure ou égale à 0,5%.
8. Utilisation selon la revendication 6 ou 7, dans laquelle la constitution des contaminants extraits est la suivante : jusqu’à 0,5% de stabilisants, jusqu’à 0,5% d’eau, jusqu’à 0,5% de corps gras, et jusqu’à 0,5% de composés organiques volatils, la somme des contaminants étant inférieure ou égale à 2% en poids de la somme des constituants de ladite composition.
9. Utilisation selon l’une des revendications 6 à 8, dans laquelle ladite composition comprend en poids : au moins 63,5% de polyamide, de 0 à moins de 30% de modifiant choc, notamment de 0 à moins de 15% de modifiant choc, en particulier de 0 à 12% de modifiant choc, et de 0 à 5% en poids d’additifs, la somme des constituants de la composition étant égale à 100%.
10. Utilisation selon l’une des revendications 1 à 9, dans laquelle le polyamide est choisi parmi un polyamide aliphatique, un polyamide semi-aromatique et un mélange des deux.
11. Utilisation selon la revendication 10, dans laquelle le polyamide est aliphatique et choisi parmi le PA6, le PA66, le PA11 , le PA12, le PA610, le PA612, PA1010, le PA1012 et le PA1212.
12. Utilisation selon la revendication 10, dans laquelle le polyamide est semi-aromatique et choisi parmi le polyamide 11/5T, 11/6T, le 11/10T, la MXDT/10T, la MPMDT/10T et la BACT/10T.
13. Structure multicouche comprenant au moins une couche d’étanchéité (1) telle que définie dans l’une des revendications 1 à 12.
14. Structure multicouche selon la revendication 13, caractérisée en ce qu’elle correspond à un réservoir et comprend de plus au moins une couche de renfort composite (2), ladite couche d’étanchéité étant en contact avec l’hydrogène.
15. Structure multicouche selon la revendication 13 ou 14, caractérisée en ce qu’au moins l’une des dites couches de renfort composite (2) est constituée d’un matériau fibreux sous forme de fibres continues imprégné par une composition comprenant majoritairement au moins un polymère P2j, (j=1 à m, m étant le nombre de couches de renfort), en particulier une résine époxyde ou à base d’époxyde, ladite structure étant dépourvue d’une couche la plus extérieure et adjacente à la couche la plus extérieure de renfort composite en polymère polyamide.
16. Structure multicouche selon l’une des revendications 13 à 15, caractérisée en ce que chaque couche d’étanchéité comprend le même type de polyamide.
17. Structure multicouche selon l’une des revendications 13 à 16, caractérisée en ce que chaque couche de renfort comprend le même type de polymère, en particulier une résine époxyde ou à base d’époxyde.
18. Structure multicouche selon l’une des revendications 13 à 17, caractérisée en ce que chaque couche d’étanchéité comprend le même type de polyamide et chaque couche de renfort comprend le même type de polymère, en particulier une résine époxyde ou à base d’époxyde.
19. Structure multicouche selon l’une des revendications 13 à 18, caractérisée en ce qu’elle présente une seule couche d’étanchéité et une seule couche de renfort.
20. Structure multicouche selon l’une des revendications 13 à 19, caractérisée en ce que ladite structure comprend de plus au moins une couche externe (3) constituée d’un matériau fibreux en fibre de verre continue imprégné d’un polymère amorphe transparent, ladite couche étant la couche plus externe de ladite structure multicouche.
21. Structure multicouche selon la revendication 13, caractérisée en ce qu’elle correspond à un tuyau et comprend de plus au moins une tresse métallique extérieure (2’), ladite couche d’étanchéité étant en contact avec l’hydrogène.
22. Procédé de fabrication d’une structure multicouche telle que définie dans l’une des revendications 13 à 20, caractérisé en ce qu’il comprend une étape de fabrication d’une couche d’étanchéité (1) telle que définie dans l’une des revendications 1 à 12, par injection, extrusion, extrusion-soufflage ou rotomoulage.
23. Procédé de fabrication d’une structure multicouche selon la revendication 22, caractérisé en ce qu’il comprend une étape préalable de lavage du polyamide de la composition au moins une fois avec un système choisi parmi un solvant polaire, en particulier le méthanol, de l’eau ou de la vapeur d’eau, ou un mélange de ceux-ci, avant l’étape de fabrication de ladite couche d’étanchéité (1) par injection, extrusion ou rotomoulage.
24. Procédé de fabrication d’une structure multicouche selon la revendication 22 ou 23, caractérisé en ce qu’il comprend une étape d’enroulement filamentaire d’une couche de renfort (2), telle que définie dans l’une des revendications 14 à 20, autour de la couche d’étanchéité (1).
PCT/FR2021/050657 2020-04-16 2021-04-15 Structure multicouche pour le transport ou le stockage de l'hydrogene WO2021209718A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP21725566.0A EP4136180A1 (fr) 2020-04-16 2021-04-15 Structure multicouche pour le transport ou le stockage de l'hydrogene
CN202180028433.6A CN115413292A (zh) 2020-04-16 2021-04-15 用于运输或存储氢的多层结构体
US17/917,052 US20230151255A1 (en) 2020-04-16 2021-04-15 Multilayer structure for transporting or storing hydrogen
CA3172593A CA3172593A1 (fr) 2020-04-16 2021-04-15 Structure multicouche pour le transport ou le stockage de l'hydrogene
KR1020227039796A KR20230007381A (ko) 2020-04-16 2021-04-15 수소를 수송 또는 저장하기 위한 다층 구조물
MX2022012608A MX2022012608A (es) 2020-04-16 2021-04-15 Estructura de multiples capas para transportar o almacenar hidrogeno.
JP2022562802A JP2023521463A (ja) 2020-04-16 2021-04-15 水素を輸送または貯蔵するための多層構造

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2003818 2020-04-16
FR2003818A FR3109389B1 (fr) 2020-04-16 2020-04-16 Structure multicouche pour le transport ou le stockage de l’hydrogene

Publications (1)

Publication Number Publication Date
WO2021209718A1 true WO2021209718A1 (fr) 2021-10-21

Family

ID=70918688

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2021/050657 WO2021209718A1 (fr) 2020-04-16 2021-04-15 Structure multicouche pour le transport ou le stockage de l'hydrogene

Country Status (9)

Country Link
US (1) US20230151255A1 (fr)
EP (1) EP4136180A1 (fr)
JP (1) JP2023521463A (fr)
KR (1) KR20230007381A (fr)
CN (1) CN115413292A (fr)
CA (1) CA3172593A1 (fr)
FR (1) FR3109389B1 (fr)
MX (1) MX2022012608A (fr)
WO (1) WO2021209718A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3124428A1 (fr) * 2021-06-28 2022-12-30 Arkema France Structure multicouche pour le transport ou le stockage de l’hydrogene
EP4155068A1 (fr) * 2021-09-27 2023-03-29 Arkema France Structure tubulaire multicouche presentant un faible taux d'extractibles pour le transport de l'hydrogene

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0342066A1 (fr) 1988-03-24 1989-11-15 Elf Atochem S.A. Copolymère greffé à base d'alpha-mono-oléfine, son procédé de fabrication, son application à la fabrication d'alliages thermoplastiques, alliages thermoplastiques obtenus
EP0722961A1 (fr) 1994-12-05 1996-07-24 Rohm And Haas Company Préparation d'agents modifiant la résistance à l'impact à base de butadiène
EP1505099A2 (fr) 2003-08-05 2005-02-09 Arkema Polymides semi aromatiques souples à faible reprise en humidité
US20060191588A1 (en) * 2005-02-25 2006-08-31 Tokai Rubber Industries, Ltd. Fuel cell hose
EP1951789A1 (fr) * 2005-11-24 2008-08-06 Commissariat A L'energie Atomique Composition a base de caprolactame, procede de fabrication d'un element d'etancheite, et reservoir
US20090149600A1 (en) 2004-11-22 2009-06-11 Arkema Inc. Impact modified thermoplastic resin composition
WO2014076281A1 (fr) * 2012-11-19 2014-05-22 Arkema France Composition à base d'un copolyamide semi-aromatique, d'une polyoléfine et d'un stabilisant thermique au cuivre, sa préparation et ses utilisations
EP2851190A1 (fr) * 2013-09-24 2015-03-25 Hanil Tube Corporation Tube de transfert d'hydrogène
US20190375182A1 (en) * 2017-02-24 2019-12-12 Bridgestone Corporation Hydrogen transport component

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1326832C (fr) * 1987-07-21 1994-02-08 Claude Leon Hembert Reservoir de fluide et son procede de fabrication
US5803506A (en) * 1997-09-10 1998-09-08 Flex-Hose Company, Inc. Flexible pipe loop
NL1010161C2 (nl) * 1998-09-23 2000-03-24 Dsm Nv Proces voor de productie van polyamide-6 uitgaande èpsilon-caprolactam.
JP6306027B2 (ja) * 2012-10-10 2018-04-04 ロディア オペレーションズRhodia Operations ガス貯蔵タンク
US9581342B2 (en) * 2014-03-28 2017-02-28 Google Inc. Mounting stand for multi-sensing environmental control device
WO2015177714A1 (fr) * 2014-05-18 2015-11-26 Nuova Connavi S.R.L. Procédé de préparation de produits finis et semi-finis, tels que des pré-imprégnés basés sur une composition de résine époxy et composition à cet effet
FR3049953B1 (fr) * 2016-04-08 2020-04-24 Arkema France Composition de polymere thermoplastique et stabilisant a base de cuivre, sa preparation et ses utilisations

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0342066A1 (fr) 1988-03-24 1989-11-15 Elf Atochem S.A. Copolymère greffé à base d'alpha-mono-oléfine, son procédé de fabrication, son application à la fabrication d'alliages thermoplastiques, alliages thermoplastiques obtenus
EP0722961A1 (fr) 1994-12-05 1996-07-24 Rohm And Haas Company Préparation d'agents modifiant la résistance à l'impact à base de butadiène
EP1505099A2 (fr) 2003-08-05 2005-02-09 Arkema Polymides semi aromatiques souples à faible reprise en humidité
US20090149600A1 (en) 2004-11-22 2009-06-11 Arkema Inc. Impact modified thermoplastic resin composition
US20060191588A1 (en) * 2005-02-25 2006-08-31 Tokai Rubber Industries, Ltd. Fuel cell hose
EP1951789A1 (fr) * 2005-11-24 2008-08-06 Commissariat A L'energie Atomique Composition a base de caprolactame, procede de fabrication d'un element d'etancheite, et reservoir
WO2014076281A1 (fr) * 2012-11-19 2014-05-22 Arkema France Composition à base d'un copolyamide semi-aromatique, d'une polyoléfine et d'un stabilisant thermique au cuivre, sa préparation et ses utilisations
EP2851190A1 (fr) * 2013-09-24 2015-03-25 Hanil Tube Corporation Tube de transfert d'hydrogène
US20190375182A1 (en) * 2017-02-24 2019-12-12 Bridgestone Corporation Hydrogen transport component

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SELON CHEN ET AL.: "A review of PEM hydrogen fuel cell contamination: impact, mechanisms and mitigation", JOURNAL OF POWER SOURCES, vol. 165, 2007, pages 739 - 756, XP005914524, DOI: 10.1016/j.jpowsour.2006.12.012

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3124428A1 (fr) * 2021-06-28 2022-12-30 Arkema France Structure multicouche pour le transport ou le stockage de l’hydrogene
WO2023275465A1 (fr) * 2021-06-28 2023-01-05 Arkema France Structure multicouche pour le transport ou le stockage de l'hydrogene
EP4155068A1 (fr) * 2021-09-27 2023-03-29 Arkema France Structure tubulaire multicouche presentant un faible taux d'extractibles pour le transport de l'hydrogene
WO2023047057A1 (fr) * 2021-09-27 2023-03-30 Arkema France Structure tubulaire multicouche presentant un faible taux d'extractibles pour le transport de l'hydrogene
FR3127435A1 (fr) * 2021-09-27 2023-03-31 Arkema France Structure tubulaire multicouche présentant un faible taux d’extractibles pour le transport de l’hydrogène

Also Published As

Publication number Publication date
JP2023521463A (ja) 2023-05-24
US20230151255A1 (en) 2023-05-18
CA3172593A1 (fr) 2021-10-21
CN115413292A (zh) 2022-11-29
EP4136180A1 (fr) 2023-02-22
FR3109389A1 (fr) 2021-10-22
MX2022012608A (es) 2022-11-07
KR20230007381A (ko) 2023-01-12
FR3109389B1 (fr) 2024-09-20

Similar Documents

Publication Publication Date Title
CA3163649C (fr) Structure multicouche pour le transport ou le stockage de l&#39;hydrogene
EP4136180A1 (fr) Structure multicouche pour le transport ou le stockage de l&#39;hydrogene
FR3074362B1 (fr) Dispositif de refroidissement et/ou chauffage d&#39;une batterie de vehicule automobile electrique ou hybride et circuit de refroidissement et/ou chauffage associe
FR3071965B1 (fr) Coffre a batterie
EP3969256A1 (fr) Structure multicouche pour le transport ou le stockage de l&#39;hydrogene
WO2023275465A1 (fr) Structure multicouche pour le transport ou le stockage de l&#39;hydrogene
EP4096922A1 (fr) Structure multicouche pour le transport ou le stockage de l&#39;hydrogene
WO2021152252A1 (fr) Structure multicouche pour le transport ou le stockage de l&#39;hydrogene
WO2023047057A1 (fr) Structure tubulaire multicouche presentant un faible taux d&#39;extractibles pour le transport de l&#39;hydrogene
EP4221975A1 (fr) Structure multicouche pour le stockage de l&#39;hydrogene
FR3124516A1 (fr) Compositions de soufflage moulage a base de polyamides branches et leurs utilisations
EP3977554A1 (fr) Dispositif de refroidissement et/ou de chauffage d&#39;une batterie de véhicule électrique

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21725566

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3172593

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2022562802

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227039796

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021725566

Country of ref document: EP

Effective date: 20221116