[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2021208765A1 - 业务保障的方法和装置 - Google Patents

业务保障的方法和装置 Download PDF

Info

Publication number
WO2021208765A1
WO2021208765A1 PCT/CN2021/085334 CN2021085334W WO2021208765A1 WO 2021208765 A1 WO2021208765 A1 WO 2021208765A1 CN 2021085334 W CN2021085334 W CN 2021085334W WO 2021208765 A1 WO2021208765 A1 WO 2021208765A1
Authority
WO
WIPO (PCT)
Prior art keywords
network element
terminal device
remote terminal
relay
session management
Prior art date
Application number
PCT/CN2021/085334
Other languages
English (en)
French (fr)
Inventor
丁辉
邢玮俊
吴问付
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010809066.0A external-priority patent/CN113543053A/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21787859.4A priority Critical patent/EP4132026A4/en
Publication of WO2021208765A1 publication Critical patent/WO2021208765A1/zh
Priority to US17/966,048 priority patent/US20230035694A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/24Negotiating SLA [Service Level Agreement]; Negotiating QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/14Charging, metering or billing arrangements for data wireline or wireless communications
    • H04L12/1403Architecture for metering, charging or billing
    • H04L12/1407Policy-and-charging control [PCC] architecture
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M15/00Arrangements for metering, time-control or time indication ; Metering, charging or billing arrangements for voice wireline or wireless communications, e.g. VoIP
    • H04M15/61Arrangements for metering, time-control or time indication ; Metering, charging or billing arrangements for voice wireline or wireless communications, e.g. VoIP based on the service used
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M15/00Arrangements for metering, time-control or time indication ; Metering, charging or billing arrangements for voice wireline or wireless communications, e.g. VoIP
    • H04M15/66Policy and charging system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M15/00Arrangements for metering, time-control or time indication ; Metering, charging or billing arrangements for voice wireline or wireless communications, e.g. VoIP
    • H04M15/80Rating or billing plans; Tariff determination aspects
    • H04M15/8016Rating or billing plans; Tariff determination aspects based on quality of service [QoS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M15/00Arrangements for metering, time-control or time indication ; Metering, charging or billing arrangements for voice wireline or wireless communications, e.g. VoIP
    • H04M15/82Criteria or parameters used for performing billing operations
    • H04M15/8228Session based
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M15/00Arrangements for metering, time-control or time indication ; Metering, charging or billing arrangements for voice wireline or wireless communications, e.g. VoIP
    • H04M15/93Arrangements for metering, time-control or time indication ; Metering, charging or billing arrangements for voice wireline or wireless communications, e.g. VoIP using near field or similar technologies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0268Traffic management, e.g. flow control or congestion control using specific QoS parameters for wireless networks, e.g. QoS class identifier [QCI] or guaranteed bit rate [GBR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/24Accounting or billing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/22Communication route or path selection, e.g. power-based or shortest path routing using selective relaying for reaching a BTS [Base Transceiver Station] or an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/18Processing of user or subscriber data, e.g. subscribed services, user preferences or user profiles; Transfer of user or subscriber data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/24Traffic characterised by specific attributes, e.g. priority or QoS
    • H04L47/2483Traffic characterised by specific attributes, e.g. priority or QoS involving identification of individual flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0252Traffic management, e.g. flow control or congestion control per individual bearer or channel
    • H04W28/0263Traffic management, e.g. flow control or congestion control per individual bearer or channel involving mapping traffic to individual bearers or channels, e.g. traffic flow template [TFT]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/04Terminal devices adapted for relaying to or from another terminal or user

Definitions

  • This application relates to the field of communications, and more specifically, to a method and device for service guarantee.
  • the fourth generation (4th generation, 4G) communication protocol defines the proximity-based services (ProSe) relay (relay) communication scheme.
  • the current protocol stipulates that the ProSe relay communication scheme is only used to access public safety (public safety). ) Service, so the communication interface (for example, PC5 interface) established between the remote terminal device and the relay device only needs to support the quality of service (QoS) guarantee for public safety services.
  • QoS quality of service
  • the remote terminal device may access multiple services in the network through the relay device (for example, access to augmented reality (AR) or virtual reality (VR) services, etc.), No longer limited to public safety services, the QoS rules (rules) specified in the current agreement may no longer meet the QoS guarantee actually required by the business. Therefore, how to enable remote terminal devices to access different services through relay devices has become an urgent problem to be solved.
  • AR augmented reality
  • VR virtual reality
  • This application provides a service guarantee method and device, in order to improve the performance of remote terminal equipment accessing services through relay equipment.
  • a service guarantee method is provided.
  • the service guarantee method can be executed by a policy control network element, or can also be executed by a chip or circuit set in the policy control network element, which is not limited in this application .
  • the service guarantee method is applied in the case that a remote terminal device accesses the network through a relay device, and the method includes:
  • the policy control network element obtains a first identifier of the remote terminal device, and the first identifier is used to obtain subscription data of the remote terminal device; the policy control network element generates a policy charging control based on the subscription data of the remote terminal device PCC rule, the policy control network element sends the PCC rule to the session management network element, the PCC rule includes the first quality of service QoS parameter of the first communication interface and the second QoS parameter of the second communication interface, wherein the first The communication interface is the communication interface between the relay device and the access network device, the second communication interface is the communication interface between the relay device and the remote terminal device, and the first QoS parameter is used to generate the first QoS parameter.
  • the first QoS rule and the second QoS parameter corresponding to a communication interface are used to generate the second QoS rule corresponding to the second communication interface.
  • the core network device side (for example, the policy control network element) can obtain the subscription data of the remote terminal device based on the received first identifier of the remote terminal device, and based on the remote terminal device
  • the subscription data of the terminal device generates the PCC rule.
  • the second QoS parameter in the PCC rule is used to generate the QoS rule corresponding to the second communication interface between the relay device and the remote terminal device.
  • the session management network element can generate the above-mentioned second QoS rule because the PCC rule including the second QoS parameter is received from the policy control network element, and the second QoS parameter is used to generate the second QoS rule, so that the session management network
  • the QoS rule generated by the meta complies with the requirements of the second communication interface.
  • the method further includes: the policy control network element obtains Internet Protocol IP address information of the remote terminal device; and the policy control network element is based on all The IP address information determines flow description information, and the flow description information is carried in the PCC rule.
  • the policy control network element can determine the flow description information in the PCC rule based on the obtained IP address information.
  • the policy control network element acquiring the first identifier of the remote terminal device includes: the policy control network element receives a second message from the session management network element, the The second message includes the first identifier of the remote terminal device; or, the policy control network element receives a policy authorization request message from the application network element, and the policy authorization request message includes the second identifier of the remote terminal device , Wherein the second identifier is used to determine the first identifier.
  • the policy control network element can obtain the above-mentioned first identifier of the remote terminal device in different ways, which improves the flexibility of the solution.
  • the second identifier includes at least one of the following identifiers: the universal public user identifier GPSI of the remote terminal equipment, and the remote terminal equipment assigned by a third party.
  • User identification Internet Protocol Version 6 IPv6 address of the remote terminal device, IPv6 address prefix of the remote terminal device, Internet Protocol Version 4 IPv4 address of the relay device, and Transmission Control Protocol or User Datagram Protocol TCP/UDP port number The logo of the composition.
  • the second message further includes session management subscription data of the remote terminal device, and the session management subscription data includes the aggregate maximum bit rate of the remote terminal device ( aggregate maximum bit rate, AMBR), the second QoS parameter includes an AMBR that can be used by the remote terminal device.
  • the session management subscription data includes the aggregate maximum bit rate of the remote terminal device ( aggregate maximum bit rate, AMBR)
  • the second QoS parameter includes an AMBR that can be used by the remote terminal device.
  • the policy authorization request message further includes: a service identifier and/or QoS parameter requirement, the service identifier is used to indicate the service type, and the QoS parameter requirement is used for The network element assisting the policy control is based on generating the PCC rule.
  • the above-mentioned policy authorization request message sent by the application network element to the policy control network element may not only include the second identifier of the remote terminal device, but also may include QoS parameter requirements to assist the policy control network element to generate a PCC rule based on the auxiliary policy control network element.
  • the service identifier includes at least one of the following information: the first relay service code (Relay Service Code or Relay Service Filter, hereinafter referred to as Relay Service Code) ), the second Relay Service Code, the application identification APP ID, and the proximity service application name ProSe APP ID; where the first Relay Service Code is the Relay Service Code configured for the remote terminal device, and the second Relay Service Code is the The Relay Service Code configured for the relay device.
  • the first relay service code Relay Service Code or Relay Service Filter, hereinafter referred to as Relay Service Code
  • the second Relay Service Code is the The Relay Service Code configured for the relay device.
  • the method before the policy control network element receives the policy authorization request message from the application network element, the method further includes: the policy control network element receives the policy authorization request message from the application network element A subscription message, which is used to subscribe to whether the remote terminal device is online; the policy control network element sends a notification message to the application network element, and the notification message is used to instruct the remote terminal device to go online.
  • the reason why the application network element sends the policy authorization request message to the policy control network element is because the application network element learns that the remote terminal device is online.
  • the notification message includes the first identifier and a service identifier, wherein the service identifier is used to identify a service type.
  • the foregoing notification message includes the first identifier and the identifier of the service, so that the application network element can issue a policy authorization request message corresponding to the service and improve the accuracy of the solution.
  • the second message and/or the policy authorization request message further include: the first relay service code Relay Service Code and/or the second Relay Service Code, where , The first Relay Service Code is the Relay Service Code configured for the remote terminal device, and the second Relay Service Code is the Relay Service Code configured for the relay device; the policy control network element is based on the remote terminal device’s Subscription data generation policy charging control PCC rule.
  • the policy control network element includes: the policy control network element generates the PCC rule based on the subscription data of the remote terminal device and the first Relay Service Code and/or the second Relay Service Code .
  • the policy control network element can also obtain the Relay Service Code configured by the relay device and/or the remote terminal device, so that the policy control network element learns the service of the currently initiated service when the above-mentioned second QoS rule is generated.
  • Type based on the service type, generate a second QoS rule that is more in line with the service requirements, and further guarantee the performance of the remote terminal device accessing the service through the relay device.
  • the method further includes: the policy control network element determines the service type based on the first Relay Service Code and/or the second Relay Service Code; or, the policy control The network element learns the service type from the 5G proximity service name management function DDNMF network element based on the first Relay Service Code and/or the second Relay Service Code.
  • the policy control network element can directly determine the service type of the currently initiated service based on the above-mentioned first Relay Service Code and/or the second Relay Service Code, or after signaling interaction with the DDNMF network element , To learn the service type of the currently initiated service from the DDNMF network element. Determining the service type of the currently initiated service through the above two different methods can effectively improve the flexibility of network configuration.
  • the first identifier of the remote terminal device includes: a universal public user identifier GPSI or a user identifier assigned to the remote terminal device by a third-party application.
  • a service guarantee method is provided.
  • the service guarantee method may be executed by an application network element, or may also be executed by a chip or circuit set in the application network element, which is not limited in this application.
  • the business guarantee methods include:
  • the application network element determines a policy authorization request message; the application network element sends a policy authorization request message to the policy control network element, and the policy authorization request message includes the second identifier of the remote terminal device, and the remote terminal device passes through another terminal The terminal device of the device accessing the network; wherein the second identifier of the remote terminal device is used to determine the first identifier of the remote terminal device, and the first identifier of the remote terminal device is used to obtain the subscription data of the remote terminal device
  • the subscription data of the remote terminal device is used to determine a second quality of service QoS rule, and the second QoS rule is a QoS rule corresponding to a second communication interface between the relay device and the remote terminal device.
  • the core network device side (for example, the policy control network element) can obtain the subscription data of the remote terminal device based on the received first identifier of the remote terminal device, and based on the remote terminal device
  • the subscription data of the terminal device generates the PCC rule.
  • the second QoS parameter in the PCC rule is used to generate the QoS rule corresponding to the second communication interface between the relay device and the remote terminal device.
  • the method before the application network element determines the policy authorization request message, the method further includes: the application network element sends a subscription message to the policy control network element, and the subscription message is used To subscribe to whether the remote terminal device is online; the application network element receives a notification message from the policy control network element, and the notification message is used to instruct the remote terminal device to go online; or, the application network element obtains the information through a query request message The policy controls the information of the network element.
  • the application network element may first subscribe to the remote terminal device online event, or actively query the information of the policy control network element, and then send the policy authorization request to the policy control network element Messages provide different schemes for triggering application network elements to send policy authorization request messages, thereby improving the flexibility of the scheme.
  • the application network element determining the policy authorization request message includes: the application network element determining the policy authorization request message based on the first identifier and the service identifier,
  • the service identifier is used to identify the type of service, where the first identifier and the service identifier are carried in the notification message, or the first identifier and the service identifier are used by the application network element through the user plane Perceived.
  • the application network element may determine the policy authorization request message based on the first identifier and the service identifier, and the first identifier and the service identifier may be obtained in different ways, which improves the flexibility of the solution.
  • the method further includes: the application network element perceives through the user plane The event that the remote terminal device goes online.
  • the application network element can perceive whether the remote terminal device is online through the user plane, so as to obtain the first identifier and the service identifier.
  • the policy authorization request message further includes: a service identifier and/or QoS parameter requirement, the service identifier is used to indicate the service type, and the QoS parameter requirement is used for The network element assisting the policy control is based on generating the PCC rule.
  • the above-mentioned policy authorization request message sent by the application network element to the policy control network element may not only include the second identifier of the remote terminal device, but also may include QoS parameter requirements to assist the policy control network element to generate a PCC rule based on the auxiliary policy control network element.
  • the service identifier includes at least one of the following information: the first relay service code Relay Service Code, the second Relay Service Code, the application identifier APP ID, ProSe APP ID; where the first Relay Service Code is the Relay Service Code configured for the remote terminal device, and the second Relay Service Code is the Relay Service Code configured for the relay device.
  • the second identifier of the remote terminal device includes at least one of the following identifiers: the general public user identifier GPSI of the remote terminal device, and the remote terminal assigned by a third party.
  • the user ID of the end terminal device, the Internet Protocol version 6 IPv6 address of the remote terminal device, the IPv6 address prefix of the remote terminal device, the Internet Protocol version 4 IPv4 address of the relay device, and the transmission control protocol or user datagram The identification of the protocol TCP/UDP port number.
  • a service guarantee method may be executed by a session management network element, or may also be executed by a chip or circuit set in the session management network element, which is not limited in this application .
  • the service guarantee method is applied in the case that a remote terminal device accesses the network through a relay device, and the method includes:
  • the session management network element receives a first message from the relay device, and the first message includes the first identifier of the remote terminal device; the session management network element sends a second message to the policy control network element, the second message Includes the first identifier of the remote terminal device, where the first identifier of the remote terminal device is used to obtain the subscription data of the remote terminal device, and the subscription data of the remote terminal device is used to determine the second quality of service A QoS rule, and the second QoS rule is a QoS rule corresponding to the second communication interface between the relay device and the remote terminal device.
  • the relay device reports the first identifier of the remote terminal device to the core network device side (for example, the policy control network element) through the access network device, so that the core network device can receive
  • the received first identifier of the remote terminal device obtains the subscription data of the remote terminal device, and based on the subscription data of the remote terminal device, generates a QoS rule corresponding to the second communication interface between the relay device and the remote terminal device, Compared with the QoS rules set only for public safety services, the QoS rules generated taking into account the subscription data of the remote terminal equipment are more in line with the QoS guarantee of the services actually accessed by the remote terminal equipment.
  • the method further includes: the session management network element receives a policy and charging control PCC rule from the policy control network element, and the PCC rule includes the first communication interface The first QoS parameter of the second communication interface and the second QoS parameter of the second communication interface, where the first communication interface is the communication interface between the relay device and the access network device, and the session management network element is based on the first QoS The parameter generates a first QoS rule corresponding to the first communication interface, and the session management network element is used to generate the second QoS rule according to the second QoS parameter.
  • the session management network element can generate the above-mentioned second QoS rule because the PCC rule including the second QoS parameter is received from the policy control network element, and the second QoS parameter is used to generate the second QoS rule, so that the session management network
  • the QoS rule generated by the meta complies with the requirements of the second communication interface.
  • the method further includes: the session management network element assigns a QoS flow identifier QFI to the PCC rule, and the QFI is used to uniquely identify the QoS flow Flow corresponding to the PCC rule ;
  • the session management network element sends a third message to the access network device, and the third message includes the QFI, the first QoS rule, and the second QoS rule.
  • the session management network element assigns a QFI to the PCC rule to identify the QoS Flow corresponding to the PCC rule, and passes the QFI through the access network device It is issued to the relay device and the remote terminal device, so that the relay device, the remote terminal device, and the access network device can identify the QoS Flow and execute the QoS guarantee corresponding to the QFI.
  • the first message and the second message further include: the first relay service code Relay Service Code and/or the second Relay Service Code, the first Relay The Service Code or the second Relay Service Code is used to determine the second QoS rule; where the first Relay Service Code is the Relay Service Code configured by the remote terminal device, and the second Relay Service Code is the relay device The configured Relay Service Code.
  • the relay device can also report the Relay Service Code configured by itself or the remote terminal device to the core network device through the access network device, so that the core network device can learn the current initiated code when it generates the above-mentioned second QoS rule.
  • a second QoS rule that is more in line with the service requirements is generated based on the service type, which further guarantees the performance of the remote terminal device accessing the service through the relay device.
  • the second message further includes: the identifier of the relay device and/or the Internet Protocol IP address information of the remote terminal device.
  • the foregoing second message may further include the identifier of the relay device and/or the IP address information of the remote terminal device.
  • the first identifier of the remote terminal device includes: a universal public user identifier GPSI or a user identifier assigned to the remote terminal device by a third-party application.
  • a service guarantee method is provided.
  • the service guarantee method may be executed by a relay device, or may also be executed by a chip or circuit provided in the relay device, which is not limited in this application.
  • the service guarantee method is applied in the case that a remote terminal device accesses the network through a relay device, and the method includes:
  • the relay device sends a first message to the session management network element, where the first message includes the first identification information of the remote terminal device; the relay device receives the second quality of service QoS rule from the session management network element, The second QoS rule is generated based on the subscription data of the remote terminal device corresponding to the first identifier; the relay device performs the second QoS rule between the relay device and the remote terminal device based on the second QoS rule.
  • the communication interface carries out QoS guarantee.
  • the relay device reports the first identifier of the remote terminal device to the core network device side (for example, the policy control network element) through the access network device, so that the core network device can receive
  • the received first identifier of the remote terminal device obtains the subscription data of the remote terminal device, and based on the subscription data of the remote terminal device, generates a QoS rule corresponding to the second communication interface between the relay device and the remote terminal device, Compared with the QoS rules set only for the type of relay service or the contract data of the relay device, the QoS rules generated taking into account the subscription data of the remote terminal device are more in line with the QoS guarantee of the service actually accessed by the remote terminal device.
  • the method further includes: the relay device sending the second QoS rule to the remote terminal device.
  • the relay device After the relay device receives the above-mentioned second QoS rule from the core network device side through the access network device, it needs to transmit the second QoS rule to the remote terminal device so that the remote terminal device can also learn the second QoS rule , Provide QoS guarantee for remote terminal equipment to access services through relay equipment.
  • the first identifier of the remote terminal device includes a universal public user identifier GPSI or a user ID assigned to the remote terminal device by a third-party application.
  • the first message further includes: the first relay service code Relay Service Code and/or the second Relay Service Code, the first Relay Service Code or the The second Relay Service Code is used to determine the second QoS rule; where the first Relay Service Code is the Relay Service Code configured by the remote terminal device, and the second Relay Service Code is the Relay Device configured by the relay device. Service Code.
  • the relay device can also report the Relay Service Code configured by itself or the remote terminal device to the core network device through the access network device, so that the core network device can learn the current initiated code when it generates the above-mentioned second QoS rule.
  • a second QoS rule that is more in line with the service requirements is generated based on the service type, which further guarantees the performance of the remote terminal device accessing the service through the relay device.
  • the first relay service code and/or the second relay service code are associated with session management subscription data of the remote terminal device.
  • the method further includes: the relay device receiving a fourth message from the session management network element, the fourth message including the session management of the remote terminal device
  • the subscription data, the session management subscription data includes the AMBR of the remote terminal device; the relay device determines the AMBR of the PC5 link with the remote terminal device according to the AMBR of the remote terminal device.
  • the remote terminal device accessing the network through a relay device includes: establishing a communication connection between the relay device and the remote terminal device; the relay device A protocol data unit PDU session is established with the data network, and the PDU session is used to transmit the service of the remote terminal device.
  • the remote terminal device can access the network through the relay device because a communication connection (for example, a PC5 connection) is established between the remote terminal device and the relay device, and the relay device and the data network are connected A service PDU session for transmitting remote terminal equipment is established, so that the remote terminal equipment can access the service through the relay device.
  • a communication connection for example, a PC5 connection
  • the relay device includes a terminal device.
  • a specific form of the above-mentioned relay device is a terminal device, that is, the remote terminal device and the relay device may both be terminal devices.
  • the relay device and the remote terminal device The communication interface can be called PC5 interface.
  • a method of service guarantee is provided.
  • the method of service guarantee may be executed by a remote terminal device, or may also be executed by a chip or circuit set in the remote terminal device, which is not limited in this application. .
  • the service guarantee method is applied to the case where a remote terminal device accesses the network through a relay device, and the method includes: the remote terminal device receives a second quality of service QoS rule from the relay device, and the first 2.
  • QoS rules are generated based on the subscription data of the remote terminal device, and the remote terminal device performs QoS on the second communication interface between the relay device and the remote terminal device based on the second QoS rule Assure.
  • the remote terminal device receives the subscription data based on the remote terminal device and generates the QoS rule corresponding to the second communication interface between the relay device and the remote terminal device.
  • the QoS rules generated in the case of the subscription data of the terminal device are more in line with the QoS guarantee of the service actually accessed by the remote terminal device than the QoS rules set only for the type of relay service or the subscription data of the relay device.
  • a service guarantee method may be executed by a session management network element, or may also be executed by a chip or circuit set in the session management network element, which is not limited in this application .
  • the service guarantee method is applied to the case where a remote terminal device accesses the network through a relay device.
  • the method includes: a session management network element obtains session management subscription data of the remote terminal device, and the session management subscription data includes the remote terminal device.
  • the AMBR of the end terminal device; the session management network element generates a packet detection rule (PDR) corresponding to the remote terminal device.
  • the PDR includes the quality of service QoS enforcement rule (QER), and the QER includes The maximum bandwidth of is determined based on the AMBR of the remote terminal device; the session management network element sends the PDR to the user plane network element.
  • QER quality of service QoS enforcement rule
  • the session management network element in the N4 session configuration can determine the maximum QER of the remote terminal device based on the AMBR of the remote terminal device. bandwidth. Therefore, when the user plane network element performs the data packet transmission of the remote terminal device, it can limit the rate of data sent to the remote terminal device according to the maximum bandwidth of the remote terminal device.
  • the method further includes: the session management network element sending a fourth message to the relay device, the fourth message including the AMBR of the remote terminal device.
  • the session management network element can send the AMBR of the remote terminal device to the relay device, so that the relay device can update the AMBR of the PC5 link to the AMBR of the remote terminal device.
  • the AMBR of the remote terminal device includes at least one of the following: a subscribed session-AMBR (subscribed session-AMBR) of the remote terminal device, and the remote terminal device
  • a subscribed session-AMBR subscribed session-AMBR
  • the remote terminal device The PC5 interface AMBR (UE-PC5-AMBR) of the remote terminal device, and the PC5 link AMBR (PC5Link-AMBR) of the remote terminal device.
  • the maximum bandwidth in the QER is the smallest of the AMBR of the subscription session AMBR of the remote terminal device and the AMBR/PC5 link AMBR of the remote terminal device’s PC5 interface. value.
  • the method further includes: the session management network element sends a second message to the policy control network element, the second message includes the session management subscription data; the session The management network element receives the session-related policy and/or policy-charging control PCC rule from the policy control network element, and the session-related policy and/or PCC rule includes the second QoS parameter of the second communication interface, wherein the second The communication interface is the communication interface between the relay device and the remote terminal device, the second QoS parameter includes the AMBR that the remote terminal device can use; the maximum bandwidth in the QER is the AMBR of the remote terminal device and The minimum value of AMBR that can be used by the remote terminal device.
  • the session management network element acquiring session management subscription data of the remote terminal device includes: the session management network element receiving the first session from the relay device A message, the first message includes a first identifier of the remote terminal device; the session management network element obtains the session management subscription data according to the first identifier.
  • the session management network element acquiring the session management subscription data according to the first identifier includes: the session management network element sends to a data management network element/data warehouse network element A second request message, the second request message is used to request the session management subscription data, and the second request message includes the first identifier; the session management network element receives the second request from the data management network element/data warehouse network element 2. A response message. The second response message includes the session management subscription data.
  • the second request message further includes first indication information, and the first indication information is used to instruct the remote terminal device to access the network through the relay device .
  • the session management network element acquiring the session management subscription data according to the first identifier includes: the session management network element verifies authorization and charging with the data network (date network -authentication authorization and accounting, DN-AAA)
  • the server sends a third request message, the third request message is used to request the session management subscription data, the third request message includes the first identifier; the session management network element receives from The third response message of the DN-AAA server, where the third response message includes the session management subscription data.
  • the session management network element acquiring session management subscription data of the remote terminal device includes: the session management network element receiving the first medium from the relay device After the service code and/or the second relay service code, the first relay service code and/or the second relay service code are associated with the session management subscription data; the session management network element reports to the data management network element/data warehouse The network element sends a third request message, the third request message is used to request the session management subscription data, and the third request message includes the first relay service code and/or the second relay service code; the session management network The element receives a third response message from the data management network element/data warehouse network element, and the third response message includes the session management subscription data.
  • the session management network element acquiring session management subscription data of the remote terminal device includes: the session management network element receiving the first message from the relay device , The first message includes the session management subscription data.
  • a service guarantee method is provided.
  • the service guarantee method may be executed by a user plane network element, or may also be executed by a chip or circuit set in the user plane network element, which is not limited in this application .
  • the service guarantee method is applied to the case where a remote terminal device accesses the network through a relay device.
  • the method includes: a user plane network element receives a PDR from a session management network element, and the PDR corresponds to the remote terminal device.
  • the PDR includes QER, and the maximum bandwidth in the QER is determined based on the AMBR of the remote terminal device; the user plane network element determines the rate of data sent to the remote terminal device according to the maximum bandwidth in the QER.
  • the user plane network element after the user plane network element receives the PDR from the session management network element, it can obtain the maximum bandwidth in the QER from the PDR, so that the user plane network element executes the data packet of the remote terminal device.
  • the rate of data sent to the remote terminal device can be limited according to the maximum bandwidth of the remote terminal device.
  • the AMBR of the remote terminal device includes at least one of the following: the AMBR of the subscription session of the remote terminal device, the PC5 interface AMBR of the remote terminal device, the AMBR of the remote terminal device The PC5 link AMBR of the remote terminal device.
  • the maximum bandwidth in the QER is the smallest of the AMBR of the subscription session AMBR of the remote terminal device and the AMBR/PC5 link AMBR of the PC5 interface of the remote terminal device. value.
  • a method for obtaining a relay service code may be executed by a policy control network element, or may also be executed by a chip or circuit set in the policy control network element, This application does not limit this.
  • the method for obtaining a relay service code is applied when a remote terminal device accesses a network through a relay device, and the method includes: a policy control network element obtains session management subscription data of the remote terminal device, and the session management subscription data It includes the AMBR of the remote terminal device; the policy control network element decides a relay service code based on the subscription data, and the relay service code is associated with the session management subscription data; the policy control network element sends the remote terminal device and The relay device sends the relay service code.
  • the embodiment of the application provides a method for obtaining a relay service code, which associates the session management subscription data of a remote terminal device with the relay service code, so that the remote terminal device can match the relay service code according to the relay service code.
  • Relay equipment that provides relay services for itself.
  • the method further includes: the policy control network element sends the relay service code and the second indication information to the data management network element/data warehouse network element, and The second indication information is used to indicate that the relay service code is associated with the session management subscription data.
  • the method further includes: the policy control network element sending the session management subscription data to the remote terminal device and the relay device.
  • the AMBR of the remote terminal device includes at least one of the following: the AMBR of the subscription session of the remote terminal device, the PC5 interface AMBR of the remote terminal device, and the The PC5 link AMBR of the remote terminal device.
  • a service guarantee device configured to implement the function of the policy control network element in the method described in the first aspect.
  • the service guarantee device includes:
  • a receiving unit configured to acquire a first identifier of the remote terminal device, and the first identifier of the remote terminal device is used to acquire subscription data of the remote terminal device;
  • the processing unit is configured to generate a policy and charging control PCC rule based on the subscription data of the remote terminal device, and the PCC rule includes the first QoS parameter of the first communication interface and the second QoS parameter of the second communication interface,
  • the sending unit is used to send the PCC rule to the session management network element
  • the first communication interface is a communication interface between the relay device and an access network device
  • the second communication interface is a communication interface between the relay device and the remote terminal device
  • the first QoS parameter Used to generate the first QoS rule corresponding to the first communication interface
  • the second QoS parameter is used to generate the second QoS rule corresponding to the second communication interface.
  • the receiving unit is further configured to obtain Internet Protocol IP address information of the remote terminal device; the processing unit is further configured to be based on the IP address The information determines flow description information, and the flow description information is carried in the PCC rule.
  • the acquiring, by the receiving unit, the identification of the remote terminal device includes:
  • the receiving unit receives a second message from the session management network element, where the second message includes the identifier of the remote terminal device; or,
  • the receiving unit receives a policy authorization request message from an application network element, where the policy authorization request message includes a second identifier of the remote terminal device, where the second identifier is used to determine the first identifier.
  • the second message further includes session management subscription data of the remote terminal device, the session management subscription data includes the AMBR of the remote terminal device, and the second message
  • the QoS parameters include the AMBR that can be used by the remote terminal device.
  • the policy authorization request message further includes:
  • the service identifier and/or QoS parameter requirement is used to indicate the service type, and the QoS parameter requirement is used to assist the policy control network element to generate the PCC rule based on.
  • the service identifier includes at least one of the following information:
  • the first Relay Service Code is the Relay Service Code configured for the remote terminal device
  • the second Relay Service Code is the Relay Service Code configured for the relay device.
  • the receiving unit before the receiving unit receives the policy authorization request message from the application network element, the receiving unit is further configured to receive a subscription message from the application network element, and the subscription The message is used to subscribe whether the remote terminal device is online;
  • the sending unit is also used to send a notification message to the application network element, where the notification message is used to instruct the remote terminal device to go online.
  • the second message and/or the policy authorization request message further includes:
  • the first relay service code Relay Service Code and/or the second Relay Service Code are described.
  • the first Relay Service Code is the Relay Service Code configured for the remote terminal device
  • the second Relay Service Code is the Relay Service Code configured for the relay device
  • the processing unit generates a policy and charging control PCC rule based on the subscription data of the remote terminal device.
  • the policy control network element includes:
  • the processing unit generates the PCC rule based on the subscription data of the remote terminal device and the first Relay Service Code and/or the second Relay Service Code.
  • the processing unit is further configured to determine the service type based on the first Relay Service Code and/or the second Relay Service Code; or,
  • the processing unit is further configured to learn the service type from the 5G proximity service name management function DDNMF network element based on the first Relay Service Code and/or the second Relay Service Code.
  • the first identifier of the remote terminal device includes
  • the universal public user ID GPSI or a user ID assigned by a third-party application to the remote terminal device is not limited.
  • the service guarantee apparatus may further include a memory coupled with the processor, and the processor is configured to implement the function of the policy control network element in the method described in the first aspect.
  • the memory is used to store program instructions and data.
  • the memory is coupled with the processor, and the processor can call and execute the program instructions stored in the memory to implement the function of the policy control network element in the method described in the first aspect.
  • the service guarantee device may further include a communication interface, and the communication interface is used for the service guarantee device to communicate with other devices.
  • the communication interface may be a transceiver, an input/output interface, or a circuit.
  • the service guarantee device includes: a processor and a communication interface
  • the processor uses the communication interface to communicate with the outside;
  • the processor is used to run a computer program, so that the service guarantee device implements any one of the methods described in the first aspect.
  • the exterior may be an object other than the processor, or an object other than the device.
  • the service guarantee device is a chip or a chip system.
  • the communication interface may be an input/output interface, interface circuit, output circuit, input circuit, pin or related circuit on the chip or chip system.
  • the processor can also be embodied as a processing circuit or a logic circuit.
  • a service guarantee device in a tenth aspect, includes a processor for implementing the function of the application network element in the method described in the second aspect.
  • the service guarantee device includes:
  • the processing unit is used to determine the policy authorization request message
  • the sending unit is configured to send a policy authorization request message to the policy control network element, where the policy authorization request message includes the second identifier of the remote terminal device, and the remote terminal device is a terminal device that accesses the network through another terminal device;
  • the second identifier of the remote terminal device is used to determine the first identifier of the remote terminal device, the identifier of the remote terminal device is used to obtain the subscription data of the remote terminal device, and the subscription data of the remote terminal device is used for To determine a second quality of service QoS rule, the second QoS rule is a QoS rule corresponding to the second communication interface between the relay device and the remote terminal device.
  • the apparatus before the processing unit policy authorization request message, the apparatus further includes:
  • the sending unit is configured to send a subscription message to the policy control network element, where the subscription message is used to subscribe to whether the remote terminal device is online;
  • the receiving unit is configured to receive a notification message from the policy control network element, where the notification message is used to instruct the remote terminal device to go online; or,
  • the device also includes:
  • the query unit is used to obtain the information of the policy control network element through the query request message.
  • the processing unit determining the policy authorization request message includes: the processing unit determining the policy authorization request message based on the first identifier and the service identifier, the The service identifier is used to identify the type of service, where the first identifier and the service identifier are carried in the notification message, or the first identifier and the service identifier are obtained by the processing unit through user plane perception.
  • the policy authorization request message further includes:
  • the service identifier and/or QoS parameter requirement is used to indicate the service type, and the QoS parameter requirement is used to assist the policy control network element to generate the PCC rule.
  • the service identifier includes at least one of the following information:
  • the first Relay Service Code is the Relay Service Code configured for the remote terminal device
  • the second Relay Service Code is the Relay Service Code configured for the relay device
  • the identifier of the remote terminal device includes at least one of the following identifiers:
  • the universal public user ID GPSI of the remote terminal device The universal public user ID GPSI of the remote terminal device, the user ID of the remote terminal device assigned by a third party, the Internet Protocol version 6 IPv6 address of the remote terminal device, the IPv6 address prefix of the remote terminal device, and the relay device
  • the identification consisting of the IPv4 address of the fourth version of the Internet Protocol and the TCP/UDP port number of the Transmission Control Protocol or User Datagram Protocol.
  • the service guarantee apparatus may further include a memory, which is coupled with the processor, and the processor is configured to implement the function of the application network element in the method described in the second aspect.
  • the memory is used to store program instructions and data.
  • the memory is coupled with the processor, and the processor can call and execute the program instructions stored in the memory to implement the function of the application network element in the method described in the second aspect.
  • the service guarantee device may further include a communication interface, and the communication interface is used for the service guarantee device to communicate with other devices.
  • the communication interface may be a transceiver, an input/output interface, or a circuit.
  • the service guarantee device includes: a processor and a communication interface
  • the processor is configured to run a computer program, so that the service guarantee device implements any of the methods described in the second aspect;
  • the processor uses the communication interface to communicate with the outside.
  • the exterior may be an object other than the processor, or an object other than the device.
  • the service guarantee device is a chip or a chip system.
  • the communication interface may be an input/output interface, interface circuit, output circuit, input circuit, pin or related circuit on the chip or chip system.
  • the processor can also be embodied as a processing circuit or a logic circuit.
  • a service guarantee device in an eleventh aspect, includes a processor for implementing the function of the session management network element in the method described in the third aspect.
  • the service guarantee device includes:
  • a receiving unit configured to receive a first message from the relay device, where the first message includes the identifier of the remote terminal device;
  • the sending unit is configured to send a second message to the policy control network element, the second message includes the first identifier of the remote terminal device, wherein the first identifier of the remote terminal device is used to obtain the remote terminal device
  • the subscription data of the remote terminal device is used to determine a second quality of service QoS rule, and the second QoS rule is a QoS rule corresponding to the second communication interface between the relay device and the remote terminal device.
  • the receiving unit is further configured to receive a policy and charging control PCC rule from the policy control network element, where the PCC rule includes the information of the first communication interface The first QoS parameter and the second QoS parameter of the second communication interface,
  • the first communication interface is a communication interface between the relay device and the access network device
  • the business guarantee device also includes:
  • the processing unit is configured to generate a first QoS rule corresponding to the first communication interface according to the first QoS parameter, and generate the second QoS rule according to the second QoS parameter.
  • the device further includes:
  • the processing unit is configured to assign a QoS flow identifier QFI to the PCC rule, and the QFI is used to uniquely identify the QoS flow Flow corresponding to the PCC rule;
  • the sending unit is further configured to send a third message to the access network device, where the third message includes the QFI, the first QoS rule, and the second QoS rule.
  • the identifier of the remote terminal device includes:
  • the universal public user ID GPSI or a user ID assigned by a third-party application to the remote terminal device is not limited.
  • the first message and the second message further include:
  • the first relay service code Relay Service Code and/or the second Relay Service Code, the first Relay Service Code or the second Relay Service Code is used to determine the second QoS rule;
  • the first Relay Service Code is the Relay Service Code configured for the remote terminal device
  • the second Relay Service Code is the Relay Service Code configured for the relay device.
  • the second message further includes:
  • the identifier of the relay device and/or the Internet Protocol IP address information of the remote terminal device is not limited to the Internet Protocol IP address information.
  • the service guarantee apparatus may further include a memory coupled with the processor, and the processor is configured to implement the function of the session management network element in the method described in the third aspect.
  • the memory is used to store program instructions and data.
  • the memory is coupled with the processor, and the processor can call and execute the program instructions stored in the memory to implement the function of the session management network element in the method described in the third aspect.
  • the service guarantee device may further include a communication interface, and the communication interface is used for the service guarantee device to communicate with other devices.
  • the communication interface may be a transceiver, an input/output interface, or a circuit.
  • the service guarantee device includes: a processor and a communication interface
  • the processor uses the communication interface to communicate with the outside;
  • the processor is used to run a computer program, so that the service guarantee device implements any of the methods described in the third aspect.
  • the exterior may be an object other than the processor, or an object other than the device.
  • the service guarantee device is a chip or a chip system.
  • the communication interface may be an input/output interface, interface circuit, output circuit, input circuit, pin or related circuit on the chip or chip system.
  • the processor can also be embodied as a processing circuit or a logic circuit.
  • a service guarantee device in a twelfth aspect, includes a processor for implementing the function of the relay device in the method described in the fourth aspect.
  • the service guarantee device includes:
  • a sending unit configured to send a first message to the session management network element, where the first message includes the first identifier of the remote terminal device;
  • a receiving unit configured to receive a second quality of service QoS rule from the session management network element, where the second QoS rule is generated based on the subscription data of the remote terminal device corresponding to the first identifier;
  • the processing unit is configured to perform QoS guarantee on the second communication interface between the relay device and the remote terminal device based on the second QoS rule.
  • the sending unit is further configured to send the second QoS rule to the remote terminal device.
  • the first identifier of the remote terminal device includes:
  • the universal public user ID GPSI or a user ID assigned by a third-party application to the remote terminal device is not limited.
  • the first message further includes:
  • the first relay service code Relay Service Code and/or the second Relay Service Code, the first Relay Service Code or the second Relay Service Code is used to determine the second QoS rule;
  • the first Relay Service Code is the Relay Service Code configured for the remote terminal device
  • the second Relay Service Code is the Relay Service Code configured for the relay device.
  • the first relay service code and/or the second relay service code are associated with session management subscription data of the remote terminal device.
  • the receiving unit is further configured to receive a fourth message from the session management network element, where the fourth message includes session management of the remote terminal device
  • the subscription data includes the AMBR of the remote terminal device
  • the processing unit is further configured to determine the AMBR of the PC5 link with the remote terminal device according to the AMBR of the remote terminal device.
  • the service guarantee apparatus may further include a memory coupled with the processor, and the processor is configured to implement the function of the relay device in the method described in the fourth aspect.
  • the memory is used to store program instructions and data.
  • the memory is coupled with the processor, and the processor can call and execute the program instructions stored in the memory to implement the function of the relay device in the method described in the fourth aspect.
  • the service guarantee device may further include a communication interface, and the communication interface is used for the service guarantee device to communicate with other devices.
  • the communication interface may be a transceiver, an input/output interface, or a circuit.
  • the service guarantee device includes: a processor and a communication interface
  • the processor is used to run a computer program, so that the service guarantee device implements any one of the methods described in the fourth aspect;
  • the processor uses the communication interface to communicate with the outside.
  • the exterior may be an object other than the processor, or an object other than the device.
  • the service guarantee device is a chip or a chip system.
  • the communication interface may be an input/output interface, interface circuit, output circuit, input circuit, pin or related circuit on the chip or chip system.
  • the processor can also be embodied as a processing circuit or a logic circuit.
  • a service guarantee device in a thirteenth aspect, includes a processor for implementing the function of the remote terminal device in the method described in the fifth aspect.
  • the service guarantee device includes:
  • a receiving unit receiving a second quality of service QoS rule from the relay device, the second QoS rule being generated based on the subscription data of the remote terminal device;
  • the processing unit performs QoS guarantee on the second communication interface between the relay device and the remote terminal device based on the second QoS rule.
  • the service guarantee apparatus may further include a memory coupled to the processor, and the processor is configured to implement the function of the remote terminal device in the method described in the fifth aspect.
  • the memory is used to store program instructions and data.
  • the memory is coupled with the processor, and the processor can call and execute the program instructions stored in the memory to implement the function of the remote terminal device in the method described in the fifth aspect.
  • the service guarantee device may further include a communication interface, and the communication interface is used for the service guarantee device to communicate with other devices.
  • the communication interface may be a transceiver, an input/output interface, or a circuit.
  • the service guarantee device includes: a processor and a communication interface
  • the processor uses the communication interface to communicate with the outside;
  • the processor is used to run a computer program, so that the service guarantee device implements any of the methods described in the fifth aspect.
  • the exterior may be an object other than the processor, or an object other than the device.
  • the service guarantee device is a chip or a chip system.
  • the communication interface may be an input/output interface, interface circuit, output circuit, input circuit, pin or related circuit on the chip or chip system.
  • the processor can also be embodied as a processing circuit or a logic circuit.
  • a service guarantee device includes a processor for implementing the function of the session management network element in the method described in the sixth aspect.
  • the service guarantee device includes:
  • the receiving unit is configured to obtain session management subscription data of the remote terminal device, where the session management subscription data includes the AMBR of the remote terminal device;
  • a processing unit configured to generate a PDR corresponding to the remote terminal device, the PDR includes a QER, and the maximum bandwidth in the QER is determined based on the AMBR of the remote terminal device;
  • the sending unit is used to send the PDR to the user plane network element.
  • the sending unit is further configured to send a fourth message to the relay device, where the fourth message includes the AMBR of the remote terminal device.
  • the AMBR of the remote terminal device includes at least one of the following: the AMBR of the subscription session of the remote terminal device, and the PC5 interface AMBR of the remote terminal device , The PC5 link AMBR of the remote terminal device.
  • the maximum bandwidth in the QER is the AMBR of the subscription session of the remote terminal device and the AMBR of the remote terminal device’s PC5 interface AMBR/PC5 link AMBR The minimum value.
  • the sending unit is further configured to send a second message to the policy control network element, and the second message includes the session management subscription data;
  • the receiving unit Is also used to receive session-related policies and/or policy-charging control PCC rules from the policy control network element, and the session-related policies and/or PCC rules include the second QoS parameter of the second communication interface, where the first The second communication interface is the communication interface between the relay device and the remote terminal device, the second QoS parameter includes the AMBR that the remote terminal device can use; the maximum bandwidth in the QER is the AMBR of the remote terminal device And the minimum value of AMBR that can be used by the remote terminal device.
  • the receiving unit is further configured to: receive a first message from the relay device, where the first message includes the first identifier of the remote terminal device; Acquire the session management subscription data according to the first identifier.
  • the sending unit is further configured to send a second request message to the data management network element/data warehouse network element, and the second request message is used to request the session Manage subscription data, the second request message includes the first identifier; the receiving unit is further configured to: receive a second response message from the data management network element/data warehouse network element, the second response message includes the conversation Manage contract data.
  • the second request message further includes first indication information, and the first indication information is used to instruct the remote terminal device to connect through the relay device. Into the network.
  • the sending unit is further configured to send a third request message to the DN-AAA server, where the third request message is used to request the session management subscription data,
  • the third request message includes the first identifier;
  • the receiving unit is further configured to receive a third response message from the DN-AAA server, and the third response message includes the session management subscription data.
  • the receiving unit is further configured to receive the first relay service code and/or the second relay service code from the relay device, the first The relay service code and/or the second relay service code are associated with the session management subscription data;
  • the sending unit is further configured to send a third request message to the data management network element/data warehouse network element, the third request message Used to request the session management subscription data, the third request message includes the first relay service code and/or the second relay service code;
  • the receiving unit is also used to receive data from the data management network element/data warehouse A third response message of the network element, where the third response message includes the session management subscription data.
  • the receiving unit is further configured to receive a first message from the relay device, where the first message includes the session management subscription data.
  • the service guarantee apparatus may further include a memory coupled with the processor, and the processor is configured to implement the function of the session management network element in the method described in the sixth aspect.
  • the memory is used to store program instructions and data.
  • the memory is coupled with the processor, and the processor can call and execute the program instructions stored in the memory to implement the function of the session management network element in the method described in the sixth aspect.
  • the service guarantee device may further include a communication interface, and the communication interface is used for the service guarantee device to communicate with other devices.
  • the communication interface may be a transceiver, an input/output interface, or a circuit.
  • the service guarantee device includes: a processor and a communication interface
  • the processor uses the communication interface to communicate with the outside;
  • the processor is used to run a computer program, so that the service guarantee device implements any of the methods described in the sixth aspect.
  • the exterior may be an object other than the processor, or an object other than the device.
  • the service guarantee device is a chip or a chip system.
  • the communication interface may be an input/output interface, interface circuit, output circuit, input circuit, pin or related circuit on the chip or chip system.
  • the processor can also be embodied as a processing circuit or a logic circuit.
  • a service guarantee device in a fifteenth aspect, includes a processor configured to implement the function of the user plane network element in the method described in the seventh aspect.
  • the service guarantee device includes:
  • the receiving unit is configured to receive the PDR from the session management network element, the PDR corresponds to the remote terminal device, the PDR includes QER, and the maximum bandwidth in the QER is determined based on the AMBR of the remote terminal device;
  • the processing unit is configured to determine the rate of data sent to the remote terminal device according to the maximum bandwidth in the QER.
  • the AMBR of the remote terminal device includes at least one of the following: the AMBR of the subscription session of the remote terminal device, and the PC5 interface AMBR of the remote terminal device , The PC5 link AMBR of the remote terminal device.
  • the maximum bandwidth in the QER is the AMBR of the subscription session of the remote terminal device and the AMBR of the remote terminal device’s PC5 interface AMBR/PC5 link AMBR The minimum value.
  • the service guarantee apparatus may further include a memory, which is coupled with the processor, and the processor is configured to implement the function of the user plane network element in the method described in the seventh aspect.
  • the memory is used to store program instructions and data.
  • the memory is coupled with the processor, and the processor can call and execute the program instructions stored in the memory to implement the function of the user plane network element in the method described in the seventh aspect.
  • the service guarantee device may further include a communication interface, and the communication interface is used for the service guarantee device to communicate with other devices.
  • the communication interface may be a transceiver, an input/output interface, or a circuit.
  • the service guarantee device includes: a processor and a communication interface
  • the processor uses the communication interface to communicate with the outside;
  • the processor is used to run a computer program, so that the service guarantee device implements any of the methods described in the seventh aspect.
  • the exterior may be an object other than the processor, or an object other than the device.
  • the service guarantee device is a chip or a chip system.
  • the communication interface may be an input/output interface, interface circuit, output circuit, input circuit, pin or related circuit on the chip or chip system.
  • the processor can also be embodied as a processing circuit or a logic circuit.
  • an apparatus for obtaining a relay service code includes a processor configured to implement the function of a policy control network element in the method described in the eighth aspect.
  • the device for obtaining a relay service code includes:
  • the receiving unit is configured to obtain session management subscription data of the remote terminal device, where the session management subscription data includes the AMBR of the remote terminal device;
  • a processing unit configured to decide a relay service code according to the subscription data, and the relay service code is associated with the session management subscription data;
  • the sending unit is used to send the relay service code to the remote terminal device and the relay device.
  • the sending unit is further configured to send the relay service code and the second instruction information to the data management network element/data warehouse network element.
  • the second indication information is used to indicate that the relay service code is associated with the session management subscription data.
  • the sending unit is further configured to send the session management subscription data to the remote terminal device and the relay device.
  • the AMBR of the remote terminal device includes at least one of the following: the AMBR of the subscription session of the remote terminal device, and the PC5 interface AMBR of the remote terminal device , The PC5 link AMBR of the remote terminal device.
  • the service guarantee apparatus may further include a memory, which is coupled with the processor, and the processor is configured to implement the function of the policy control network element in the method described in the eighth aspect.
  • the memory is used to store program instructions and data.
  • the memory is coupled with the processor, and the processor can call and execute the program instructions stored in the memory to implement the function of the policy control network element in the method described in the eighth aspect.
  • the service guarantee device may further include a communication interface, and the communication interface is used for the service guarantee device to communicate with other devices.
  • the communication interface may be a transceiver, an input/output interface, or a circuit.
  • the service guarantee device includes: a processor and a communication interface
  • the processor uses the communication interface to communicate with the outside;
  • the processor is used to run a computer program, so that the service guarantee device implements any of the methods described in the eighth aspect.
  • the exterior may be an object other than the processor, or an object other than the device.
  • the service guarantee device is a chip or a chip system.
  • the communication interface may be an input/output interface, interface circuit, output circuit, input circuit, pin or related circuit on the chip or chip system.
  • the processor can also be embodied as a processing circuit or a logic circuit.
  • the present application provides a computer-readable storage medium that stores instructions in the computer-readable storage medium, which when run on a computer, causes the computer to execute the methods described in the above aspects.
  • this application provides a computer program product containing instructions, which when run on a computer, causes the computer to execute the methods described in the above aspects.
  • a communication system including the service guarantee device shown in the ninth aspect and the service guarantee device shown in the tenth aspect.
  • the communication system further includes the service guarantee device shown in the eleventh aspect or the fourteenth aspect.
  • the communication system further includes the service guarantee device shown in the twelfth aspect and the service guarantee device shown in the thirteenth aspect.
  • the communication system further includes the service guarantee device shown in the fifteenth aspect.
  • the communication system further includes the device for obtaining a relay service code as shown in the sixteenth aspect.
  • a chip system including a memory and a processor, the memory is used to store a computer program, and the processor is used to call and run the computer program from the memory, so that the communication device installed with the chip system executes The method in any one of the possible implementation manners of the foregoing first to eighth aspects.
  • Fig. 1 is a network architecture suitable for an embodiment of the present application.
  • Fig. 2 is a schematic diagram of a ProSe relay communication architecture provided by the present application.
  • FIG. 3 is a schematic diagram of the architecture of a standard definition in a ProSe relay communication scenario provided by this application.
  • Fig. 4 is a schematic flowchart of a remote terminal device accessing a network through a relay device.
  • Fig. 5 is a schematic flowchart of a method for service guarantee provided by an embodiment of the present application.
  • Fig. 6 is a schematic flowchart of another method for service guarantee provided by an embodiment of the present application.
  • FIG. 7 is a schematic flowchart of yet another service guarantee method provided by an embodiment of the present application.
  • FIG. 8 is a schematic flowchart of yet another service guarantee method provided by an embodiment of the present application.
  • FIG. 9 is a schematic flowchart of another service guarantee method provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of the service guarantee device 8000 proposed in this application.
  • FIG. 11 is a schematic structural diagram of a relay device or a remote terminal device 900 applicable to an embodiment of the present application.
  • FIG. 12 is a schematic diagram of the service guarantee apparatus 1000 proposed in this application.
  • FIG. 13 is a schematic structural diagram of a session management network element 1100 applicable to an embodiment of the present application.
  • FIG. 14 is a schematic diagram of the service guarantee device 1200 proposed in this application.
  • FIG. 15 is a schematic structural diagram of a policy control network element 1200 applicable to an embodiment of the present application.
  • FIG. 16 is a schematic diagram of the service guarantee device 1400 proposed in this application.
  • FIG. 17 is a schematic structural diagram of an application network element 1500 applicable to an embodiment of the present application.
  • FIG. 18 is a schematic diagram of the service guarantee device 1600 proposed by this application.
  • FIG. 19 is a schematic diagram of the service guarantee device 1900 proposed by this application.
  • FIG. 20 is a schematic structural diagram of a user plane network element 2000 applicable to an embodiment of the present application.
  • Fig. 1 is a network architecture suitable for an embodiment of the present application. As shown in Figure 1, each part involved in the network architecture will be described separately below.
  • User equipment (UE) 110 It can include various handheld devices with wireless communication functions, vehicle-mounted devices, wearable devices, computing devices, or other processing devices connected to wireless modems, as well as various forms of terminals, Mobile station (mobile station, MS), terminal (terminal) or soft terminal, etc. For example, water meters, electricity meters, sensors, etc.
  • the user equipment in the embodiments of the present application may refer to an access terminal, a user unit, a user station, a mobile station, a mobile station, a relay station, a remote station, a remote terminal, a mobile device, a user terminal, and a terminal device.
  • terminal equipment wireless communication equipment, user agent or user device.
  • the user equipment can also be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), with wireless communication Functional handheld devices, computing devices, or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, user equipment in the future 5G network or future evolution of the public land mobile network (PLMN)
  • PLMN public land mobile network
  • wearable devices can also be referred to as wearable smart devices. It is a general term for using wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, Gloves, watches, clothing and shoes, etc.
  • a wearable device is a portable device that is directly worn on the body or integrated into the user's clothes or accessories. Wearable devices are not only a kind of hardware device, but also realize powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized, complete or partial functions that can be achieved without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, and need to cooperate with other devices such as smart phones.
  • the user equipment may also be the user equipment in the Internet of Things (IoT) system.
  • IoT Internet of Things
  • the IoT is an important part of the development of information technology in the future, and its main technical feature is to pass items through communication technology. Connect with the network to realize the intelligent network of human-machine interconnection and interconnection of things.
  • the IOT technology can achieve massive connections, deep coverage, and power saving of the terminal through, for example, narrowband (NB) technology.
  • user equipment may also include sensors such as smart printers, train detectors, gas stations, etc.
  • the main functions include collecting data (part of user equipment), receiving control information and downlink data from access network equipment, and Send electromagnetic waves to transmit uplink data to the access network equipment.
  • (Wireless) access network equipment (radio access network, (R)AN) 120 Used to provide network access functions for authorized user equipment in a specific area, and can use different quality devices according to the level of user equipment and service requirements. Transmission tunnel.
  • radio access network, (R)AN) 120 Used to provide network access functions for authorized user equipment in a specific area, and can use different quality devices according to the level of user equipment and service requirements. Transmission tunnel.
  • (R)AN can manage wireless resources, provide access services for user equipment, and then complete the forwarding of control signals and user equipment data between the user equipment and the core network.
  • (R)AN can also be understood as a base station in a traditional network.
  • the access network device in the embodiment of the present application may be any communication device with a wireless transceiving function for communicating with user equipment.
  • the access network equipment includes but is not limited to: evolved Node B (eNB), radio network controller (RNC), node B (Node B, NB), base station controller (base station controller) , BSC), base transceiver station (base transceiver station, BTS), home base station (home evolved NodeB, HeNB, or home Node B, HNB), baseband unit (baseBand unit, BBU), wireless fidelity (wireless fidelity, WIFI)
  • the access point (AP), wireless relay node, wireless backhaul node, transmission point (TP) or transmission and reception point (TRP) in the system can also be 5G,
  • one or a group of antenna panels (including multiple antenna panels) of the base station in the 5G system or it can also be a gNB or transmission point.
  • the gNB may include a centralized unit (CU) and a DU.
  • the gNB may also include an active antenna unit (AAU).
  • the CU implements some of the functions of the gNB, and the DU implements some of the functions of the gNB.
  • the CU is responsible for processing non-real-time protocols and services, and implements radio resource control (radio resource control, RRC) and packet data convergence protocol (packet data convergence protocol, PDCP) layer functions.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • the DU is responsible for processing the physical layer protocol and real-time services, and realizes the functions of the radio link control (RLC) layer, the media access control (MAC) layer, and the physical (PHY) layer.
  • RLC radio link control
  • MAC media access control
  • PHY physical
  • AAU realizes some physical layer processing functions, radio frequency processing and related functions of active antennas. Since the information of the RRC layer will eventually become the information of the PHY layer, or be transformed from the information of the PHY layer, under this architecture, high-level signaling, such as RRC layer signaling, can also be considered to be sent by the DU , Or, sent by DU+AAU.
  • the access network device may be a device including one or more of the CU node, the DU node, and the AAU node.
  • the CU can be divided into access network equipment in the access network (radio access network, RAN), or the CU can be divided into access network equipment in the core network (core network, CN). This application does not Make a limit.
  • User plane network element 130 used for packet routing and forwarding, QoS processing of user plane data, completion of user plane data forwarding, session/stream-level billing statistics, bandwidth limitation and other functions.
  • the user plane network element may be a user plane function (UPF) network element.
  • UPF user plane function
  • the user plane network element may still be a UPF network element, or may also have other names, which is not limited in this application.
  • Data network network element 140 used to provide a network for transmitting data.
  • the data network element may be a data network (DN) network element.
  • DN data network
  • the data network network element may still be a DN network element, or may also have other names, which is not limited in this application.
  • Access management network element 150 mainly used for mobility management and access management, responsible for transferring user policies between user equipment and policy control function (PCF) network elements, etc., which can be used to implement mobility management Other functions in the entity (mobility management entity, MME) function besides session management, such as lawful interception and access authorization/authentication functions.
  • PCF policy control function
  • the access management network element may be an access and mobility management function (AMF).
  • AMF access and mobility management function
  • the access management network element may still be AMF, or may also have other names, which is not limited by this application.
  • Session management network element 160 Mainly used for session management, Internet Protocol (IP) address allocation and management of user equipment, selection of end points that can manage user plane functions, policy control and charging function interfaces, and downlink Data notification, etc.
  • IP Internet Protocol
  • the session management network element may be a session management function (session management function, SMF) network element.
  • SMF session management function
  • the session management network element may still be an SMF network element, or may also have other names, which is not limited in this application.
  • Policy control network element 170 a unified policy framework used to guide network behavior, and provide policy rule information for control plane function network elements (such as AMF, SMF network elements, etc.).
  • the policy control network element may be a policy and charging rules function (PCRF) network element.
  • the policy control network element may be a policy control function (PCF) network element.
  • PCF policy control function
  • the policy control network element may still be a PCF network element, or may also have other names, which is not limited in this application.
  • the PCF network element is mainly responsible for policy control functions such as charging for sessions and service flow levels, QoS bandwidth guarantee and mobility management, and user equipment policy decision-making.
  • the PCF connected to the AMF corresponds to AM PCF (PCF for access and mobility control)
  • the PCF connected to SMF corresponds to SM PCF (PCF for session management).
  • AM PCF It may not be the same PCF entity as SM PCF.
  • Data warehouse network element 180 used to be responsible for the access function of contracted data, policy data, application data and other types of data.
  • the data warehouse network element may be a unified data repository (UDR) network element.
  • the data warehouse network element may still be a UDR network element, or may also have other names, which are not limited by this application.
  • Data management network element 190 used to process user equipment identification, access authentication, registration, and mobility management.
  • the data management network element may be a unified data management (UDM) network element; in a 4G communication system, the data management network element may be a home subscriber server (HSS) network In the future communication system, the unified data management can still be a UDM network element, or it can have other names, which is not limited in this application.
  • UDM unified data management
  • HSS home subscriber server
  • Application network element 1100 used to convey the requirements of the application side to the network side, access network open function network elements, interact with the policy framework for policy control, etc.
  • the application network element may be an application function (AF) network element.
  • AF application function
  • the application network element may still be an AF network element, or may also have other names, which is not limited by this application.
  • the AF network element mainly transmits the requirements of the application side to the network side, for example, QoS requirements or user equipment status event subscriptions.
  • the AF may be a third-party functional entity, or an application service deployed by an operator (such as an Internet Protocol Multimedia Subsystem (IMS) voice call service).
  • IMS Internet Protocol Multimedia Subsystem
  • application function entities of third-party applications when interacting with the core network, they can also perform authorization processing through network exposure function (NEF) network elements.
  • NEF network exposure function
  • the third-party application function directly sends a request message to NEF, and NEF determines the Whether the AF is allowed to send the request message, if the verification is passed, the request message will be forwarded to the corresponding PCF or UDM.
  • FIG. 1 is just an example and does not constitute any limitation to the protection scope of the present application.
  • the service guarantee method provided by the embodiment of the present application may also involve a network element not shown in FIG. 1.
  • the service guarantee method provided by the embodiment of the present application also relates to a network open network element. QoS capability opening, AF request traffic guidance, etc.
  • the network open network element may be the aforementioned NEF network element.
  • the network storage network element may still be a NEF network element, or may also have other names, which is not limited in this application.
  • the aforementioned network elements or functions may be network elements in hardware devices, software functions running on dedicated hardware, or virtualization functions instantiated on a platform (for example, a cloud platform).
  • the foregoing network element or function may be implemented by one device, or jointly implemented by multiple devices, or may be a functional module in one device, which is not specifically limited in the embodiment of the present application.
  • the access management network element is the AMF network element
  • the network opening network element is the NEF network element
  • the session management network element is the SMF network element
  • the policy control network element is the PCF network element
  • the application network element is An example of an AF network element will be described.
  • AMF network elements are abbreviated as AMF
  • NEF network elements are abbreviated as NEF
  • SMF network elements are abbreviated as SMF
  • PCF network elements are abbreviated as PCF
  • AF network elements are abbreviated as AF. That is, the AMF described later in this application can be replaced with an access management network element, NEF can be replaced with a network open network element, SMF can be replaced with a session management network element, PCF can be replaced with a policy control network element, and both AF Can be replaced by application network elements.
  • the device is an AMF entity, an SMF entity, a PCF entity, an AF entity, and an NEF entity as examples to describe the device for service guarantee.
  • the devices for service assurance as the chip in the AMF entity, the chip in the SMF entity, the chip in the PCF entity, the chip in the AF entity, and the chip in the NEF entity, please refer to the device as the AMF entity, SMF entity, The specific description of PCF entity, AF entity and NEF entity will not be repeated.
  • N7 The interface between PCF and SMF, used to issue protocol data unit (protocol data unit, PDU) session granularity and service data flow granularity control strategy.
  • protocol data unit protocol data unit
  • N15 The interface between PCF and AMF, used to issue user equipment policies and access control related policies.
  • N5 The interface between AF and PCF, used for application service request issuance and network event reporting.
  • N4 The interface between SMF and UPF, used to transfer information between the control plane and the user plane, including controlling the issuance of user-oriented forwarding rules, QoS control rules, traffic statistics rules, etc., and user-plane information reporting .
  • N11 The interface between SMF and AMF, used to transfer PDU session tunnel information between RAN and UPF, transfer control messages sent to UE, and transfer radio resource control information sent to RAN.
  • N2 The interface between AMF and RAN, used to transfer radio bearer control information from the core network side to the RAN.
  • N1 The interface between the AMF and the UE, which has nothing to do with access, and is used to deliver QoS control rules to the UE.
  • N8 The interface between AMF and UDM, used for AMF to obtain access and mobility management related subscription data and authentication data from UDM, and AMF to register UE current mobility management related information with UDM, etc.
  • N10 The interface between SMF and UDM, used for SMF to obtain session management related subscription data from UDM, and SMF to register UE current session related information with UDM, etc.
  • N35 The interface between UDM and UDR, used for UDM to obtain user subscription data information from UDR.
  • N36 Interface between PCF and UDR, used for PCF to obtain policy-related contract data and application data-related information from UDR.
  • network architecture applicable to the embodiment of the application shown in FIG. 1 is only an example, and the network architecture applicable to the embodiment of the application is not limited to this, and any network architecture that can realize the functions of the foregoing various network elements The network architecture is applicable to the embodiments of this application.
  • network function network element entities such as AMF, SMF network elements, PCF network elements, and UDM network elements are all called network function (NF) network elements; or, in other network architectures
  • a collection of network elements such as AMF, SMF network elements, PCF network elements, UDM network elements, etc. can all be called control plane function network elements.
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD time division duplex
  • UMTS universal mobile telecommunication system
  • WiMAX worldwide interoperability for microwave access
  • 5G fifth generation
  • NSA non-standalone
  • SA standalone
  • SA 5G mobile communication system
  • the communication system can also be a public land mobile network (PLMN) network, a device-to-device (D2D) communication system, a machine-to-machine (M2M) communication system, and a device-to-device (D2D) communication system.
  • PLMN public land mobile network
  • D2D device-to-device
  • M2M machine-to-machine
  • D2D device-to-device
  • IoT Internet of Things
  • the user equipment or the access network device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes hardware such as a central processing unit (CPU), a memory management unit (MMU), and memory (also referred to as main memory).
  • the operating system may be any one or more computer operating systems that implement business processing through processes, for example, Linux operating system, Unix operating system, Android operating system, iOS operating system or windows operating system.
  • the application layer includes applications such as browsers, address books, word processing software, and instant messaging software.
  • the embodiments of the application do not specifically limit the specific structure of the execution body of the method provided in the embodiments of the application, as long as the program that records the codes of the methods provided in the embodiments of the application can be provided in accordance with the embodiments of the application.
  • the execution subject of the method provided in this embodiment of the application may be user equipment or access network equipment, or a functional module in the user equipment or access network equipment that can call and execute programs.
  • various aspects or features of the present application can be implemented as methods, devices, or products using standard programming and/or engineering techniques.
  • article of manufacture used in this application encompasses a computer program accessible from any computer-readable device, carrier, or medium.
  • computer-readable media may include, but are not limited to: magnetic storage devices (for example, hard disks, floppy disks, or tapes, etc.), optical disks (for example, compact discs (CD), digital versatile discs (DVD)) Etc.), smart cards and flash memory devices (for example, erasable programmable read-only memory (EPROM), cards, sticks or key drives, etc.).
  • various storage media described herein may represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable storage medium” may include, but is not limited to, wireless channels and various other media capable of storing, containing, and/or carrying instructions and/or data.
  • the service guarantee method provided in the embodiment of the present application also involves ProSe relay communication.
  • the cellular communication network introduces ProSerelay communication.
  • the application scenarios of the ProSerelay communication method may include: base station coverage edge Scenarios such as signal enhancement and uncovered area relay access to the operator’s network.
  • the coverage edge signal enhancement of the base station can be understood as when the remote terminal equipment is in the edge area of the base station, the signal strength cannot meet the high bandwidth requirements required by the service due to the signal attenuation, so the remote terminal equipment in the edge area of the base station can pass
  • the relay device is connected to the network.
  • the relay device in the embodiment of this application may be called ProSe UE-to-NW Relay device means that the remote terminal device in the proximity service accesses the network through the relay device (proximity-based services usere For devices in the “quipment to network relay, ProSe UE-to-NW Relay) mode, the relay device may also be a terminal device, so it may also be called a relay terminal device, hereinafter referred to as a relay device for short.
  • Relay access to the operator's network without coverage area can be understood as when the remote terminal device is outside the coverage of the operator's network, indirectly accessing the 5G network through the relay device.
  • a communication link (such as a sidelink) can be directly established between two adjacent user equipment (such as a remote terminal device and a relay device). It is called using the PC5 interface to implement communication between user equipment, so that remote terminal equipment can access the operator's network at the edge of the base station and in the uncovered area of the network through the relay device.
  • Fig. 2 is a schematic diagram of a ProSe relay communication architecture provided by the present application.
  • the remote user equipment can access the 5G network through the relay device (ProSe UE-to-NW Relay).
  • the access process includes:
  • the remote UE establishes a connection with the relay device through the communication interface (the PC5 interface as shown in Figure 2), and the relay device establishes a connection with the base station through the communication interface (the N1 interface as shown in Figure 2) interface, and the base station can connect to the core network equipment
  • the connection is established, and the core network device establishes a connection with the user application service network element through the interface (N6 interface as shown in FIG. 2).
  • both the remote UE and the relay device can be understood as user equipment, so the communication interface between the remote UE and the relay device can be understood as the PC5 interface.
  • the remote terminal device in the embodiment of this application can access the network through the relay device and establish a packet data unit.
  • the (packet data unit, PDU) session (session) is used to ensure the normal operation of the service.
  • FIG. 3 is a schematic diagram of the architecture of a standard definition in a ProSe relay communication scenario provided by this application.
  • PCF is responsible for providing corresponding authorization information when user equipment accesses the 5G network. For example, whether user equipment is authorized to use the ProSe function to access specific services, in which PLMNs are allowed to enable the ProSe function, and ProSe discovery user identification (PDUID) in restricted ProSe scenarios, etc., the process is in the user It can be implemented in the device registration process. For the specific process, you can refer to the current agreement for the provision of authorization information for PCF, which is not limited in this application.
  • ProSe relay communication may also involve 5G proximity service name management function (direct discovery name management function, DDNMF) network elements.
  • 5G DDNMF network elements are responsible for assigning corresponding relays to user equipment after receiving a discovery request from the user equipment.
  • Service code/mask Relay Service Code/Filter
  • Relay Service Code/Filter information is hereinafter referred to as Relay Service Code for short.
  • the 5G DDNMF can also deliver the above-mentioned relay service code to the relay device and the remote terminal device through a static configuration, without the need for it to actively trigger the ProSe discovery request process.
  • the Relay Service Code allocated by the 5G DDNMF network element to the user equipment enables the user equipment to listen to the connection establishment request sent by other user equipment through broadcast messages, and trigger the establishment of a communication connection with other user equipment (for example, PC5 connection).
  • the 5G DDNMF network element can be combined with other network elements in actual deployment, for example, combined with network elements such as PCF, UDR, or UDM.
  • the embodiments of this application do not limit how the 5G DDNMF network element allocates the Relay Service Code to the user equipment. It is sufficient to refer to the provisions in the current agreement, and the specific content included in the Relay Service Code is not limited, for example, , Relay Service Code includes business information, security policies, etc.
  • UE#B shown in FIG. 3 can be understood as a remote UE, and UE#A can be understood as a ProSe UE-to-NW Relay.
  • UE#B is referred to as a remote terminal device
  • UE#A is referred to as a relay device.
  • the remote terminal device Before the remote terminal device establishes a communication connection with the relay device (for example, a PC5 connection), it also needs to configure the Relay Service Code and other information required by the ProSe relay service. After the relay device and the remote terminal device complete the above information configuration process, the mutual discovery process between the two can be triggered.
  • the above discovery process can be divided into two modes:
  • the relay device broadcasts according to the Relay Service Code and related frequency information received from the PCF, and the remote terminal device monitors the broadcast signal.
  • the remote terminal device monitors the qualified Relay Service Code, it can initiate PC5 Connection establishment request.
  • the broadcast information initiated by the relay device may specifically include:
  • Relay device ID link layer ID
  • the Relay Service Code may include specific service information, security policies, and optionally, a list of users authorized to be accessed.
  • the remote terminal device broadcasts according to the Relay Service Code and related frequency information received from the PCF, and the relay device monitors the broadcast signal.
  • the relay device monitors the qualified Relay Service Code
  • the relay device can return The response message is sent to the remote terminal device.
  • the broadcast information initiated by the remote terminal device may specifically include:
  • Relay Service Code It can include specific service information, security policies, and optionally a list of users authorized to access, etc.;
  • the response message returned by the relay device may specifically include:
  • Relay device ID link layer ID
  • the remote terminal device can parse the Relay Service Code that it monitors to determine whether the relay device supports the provision of the relay service required by itself; in the scenario of mode 2, the relay device Then, the Relay Service Code obtained by monitoring is analyzed to determine whether it supports providing the required relay service for the user equipment.
  • the monitoring user equipment can also directly judge what is monitored based on the Relay Service Code received locally Whether the Relay Service Code is available.
  • the Relay Service Code configured by the monitor UE and the broadcast user equipment can be the same, equivalent, or through specific encryption/decryption.
  • the algorithm can obtain peer-to-peer information, such as corresponding to the same application ID.
  • FIG. 4 is a kind of remote terminal equipment accessing the network through the relay device.
  • the executive body in Figure 4 includes remote terminal equipment (remote UE), relay equipment (ProSe UE-to-NW Relay), base station (evolved Node B, eNB), mobility management entity (mobility management entity, MME), service Gateway (service gateway, S-GW) and packet data network gateway (packet data network gateway, P-GW).
  • remote terminal equipment remote terminal equipment
  • ProSe UE-to-NW Relay base station
  • eNB evolved Node B
  • mobility management entity mobility management entity
  • MME mobility management entity
  • service Gateway service gateway
  • S-GW packet data network gateway
  • P-GW packet data network gateway
  • Figure 4 is a process description of the remote terminal device accessing the network via the relay device specified in the 4G protocol. The steps shown in Figure 4 will not be described in detail in this application, and the provisions in the current protocol can be referred to.
  • S420 can be understood as the remote terminal device or relay device performing broadcasting or monitoring according to the locally configured Relay Service Code, thereby establishing a communication connection (for example, a PC5 connection).
  • a communication connection for example, a PC5 connection.
  • S430 can be understood as a situation in which no packet data network (PDN) connection is currently available, the relay device can trigger the establishment of a new PDN connection for the remote terminal device.
  • PDN packet data network
  • the main process of communication between the remote terminal equipment and the relay device can be: after the relay device is registered to the core network, it discovers each other with the remote terminal device (such as the above-mentioned mode 1 and mode 2), and establishes a communication connection (For example, PC5 connection).
  • the relay device can request the network device to establish a PDN connection in order to transmit the relay data of the remote terminal device.
  • which PDN connection is used to transmit the relay data is determined by the relay device.
  • the relay device can use all relay data for a dedicated PDN connection for transmission.
  • IP Internet Protocol
  • the relay device can also assign an IP address to the remote terminal device. After that, the relay device and the remote terminal The equipment can carry out business transmission.
  • IP Internet Protocol
  • the method flow shown in FIG. 4 also includes S450.
  • the relay device sends a remote terminal equipment report (remote UE report) to the MME.
  • the remote terminal equipment report includes the identifier of the remote terminal equipment (e.g., remote UE). ID) and the relay device can also allocate IP address information (IP info) to the remote terminal device.
  • IP info IP address information
  • the MME learns the remote UE report it can forward the remote UE report to the P-GW so that the P-GW knows the above remote UE ID and IP info.
  • the remote UE ID and IP info are used by the PCF to make policy decisions. Establish a relay connection.
  • the current 4G protocol defines the Relay Service Code in the ProSe relay communication scheme involved in public safety as the equivalent configuration parameters on the remote terminal device and the relay device.
  • the remote terminal device and the relay device are based on the Relay configured by each other. Service Code found the other party.
  • the communication connection for example, PC5 connection
  • the remote terminal device may access multiple services through the relay device.
  • the VR headSet accesses the VR service through the relay device to access the 5GC, which is no longer limited to the public safety scenario.
  • the 5GC may not perceive the specific service initiated during the session establishment process, so the determined QoS rules may not meet the actual service quality guarantee required by the service.
  • the PDU session established by the relay device for the service is based on the QoS rule received by the relay device, that is, the QoS decision based on the service at this time
  • Rules and other rules are rules configured by the core network equipment according to the contract information of the relay equipment, the current area network load and other information.
  • the remote terminal device may have opened the corresponding value-added service or subscribed to the value-added package, so that the operator can configure the remote terminal device with higher quality QoS rules, such as more Large bandwidth, higher scheduling priority, etc. If it is based on the existing solution, the PDU session triggered by the relay device for the remote terminal device will not satisfy the contract of the remote terminal device. Of course, it may happen that the service quality guarantee contracted by the relay device exceeds the service quality guarantee contracted by the remote terminal device.
  • this application provides a method of service guarantee.
  • the core network equipment side By enabling the core network equipment side to perceive the specific services initiated by the remote terminal equipment, and provide service quality assurance that meets the actual needs of the business, the performance of the remote terminal equipment accessing different services through the relay equipment is improved.
  • the embodiments shown below do not specifically limit the specific structure of the execution body of the method provided in the embodiments of the application, as long as the program can be run and recorded with the code of the method provided in the embodiments of the application to provide the method according to the embodiments of the application.
  • the execution subject of the method provided in the embodiment of the present application may be a terminal device or a core network device, or a functional module in the terminal device or the core network device that can call and execute the program.
  • the interaction between the terminal device or the core network device is taken as an example to describe in detail the service guarantee method provided by the embodiment of the present application.
  • used to indicate can include both used for direct indication and used for indirect indication.
  • the indication information may directly indicate A or indirectly indicate A, but it does not mean that A must be carried in the indication information.
  • the information indicated by the instruction information is called the information to be indicated.
  • the information to be indicated can be directly indicated, such as the information to be indicated or the information to be indicated. Indicates the index of the information, etc.
  • the information to be indicated can also be indicated indirectly by indicating other information, where there is an association relationship between the other information and the information to be indicated. It is also possible to indicate only a part of the information to be indicated, while other parts of the information to be indicated are known or agreed in advance. For example, it is also possible to realize the indication of specific information by means of a pre-arranged order (for example, stipulated in an agreement) of various information, so as to reduce the indication overhead to a certain extent. At the same time, it can also identify the common parts of each information and give unified instructions, so as to reduce the instruction overhead caused by separately indicating the same information.
  • the first, second, and various digital numbers (for example, "#1", “#2”, etc.) shown in this application are only for convenience of description, and are used for distinguishing objects, and are not used to limit the text. Apply for the scope of the embodiment. For example, distinguish different messages, etc. It is not used to describe a specific order or sequence. It should be understood that the objects described in this way can be interchanged under appropriate circumstances, so as to be able to describe solutions other than the embodiments of the present application.
  • the "storage” involved in the embodiments of the present application may refer to being stored in one or more memories.
  • the one or more memories may be provided separately, or integrated in an encoder or decoder, a processor, or a communication device.
  • the one or more memories may also be partly provided separately, and partly integrated in a decoder, a processor, or a communication device.
  • the type of the memory can be any form of storage medium, which is not limited in this application.
  • the “protocols” involved in the embodiments of this application may refer to standard protocols in the communications field, for example, they may include 5G protocols, new radio (NR) protocols, and related protocols applied to future communication systems.
  • 5G protocols new radio
  • NR protocols new radio
  • the application is not limited.
  • Fig. 5 is a schematic flowchart of a method for service guarantee provided by an embodiment of the present application.
  • the business guarantee method includes at least some of the following steps:
  • S501 Establish a communication connection between the remote terminal device and the relay device.
  • the remote terminal device and the relay device are both terminal devices, and the communication connection established between the remote terminal device and the relay device can be understood as a PC5 connection, or a side link connection .
  • the remote terminal device there is no limitation on how to establish a communication connection between the remote terminal device and the relay device.
  • it may be the ProSerelay communication scheme specified in the current protocol, where the remote terminal device is in the base station.
  • the remote terminal device needs to access the operator's network through a relay device.
  • S502 Establish a PDU session between the relay device and a data network (data network, DN).
  • the relay device can establish a PDU session between the user plane device (for example, UPF) and the DN.
  • the PDU session involved in this application mainly refers to the user plane link between the relay device and the DN, which is used to transmit service data. .
  • the service data of the remote terminal device needs to be relayed through the relay device, and the service data of the relay device also needs to be transmitted through the relay device, and the service data needs to be transmitted through the PDU session to ensure the normal operation of the service. Therefore, a PDU session needs to be established between the relay device and the policy control network element to ensure the normal operation of the service.
  • the policy control network element in the embodiment of the present application can make policy decisions to provide QoS guarantee that is more in line with the actual access services of the remote terminal device.
  • the policy control network element may be a PCF.
  • the policy control network element can still be a PCF network element, or it can have other names.
  • the name of the policy control network element is not limited in this application, and it can be implemented to provide a strategy for the control plane function network element.
  • the network element of the rule information can be understood as the policy control network element.
  • the method flow shown in Figure 5 also includes:
  • the relay device sends a first message to the session management network element.
  • the session management network element is used for session management.
  • the session management network element may be an SMF network element.
  • the session management network element may still be an SMF network element, or it may have other names.
  • the session management network The name of the element is not limited, and a network element that can implement session management, IP address allocation and management of user equipment can be understood as the session management network element.
  • the first message includes the first identification (remote UE ID) of the remote terminal device.
  • the first message also includes IP address information (IP info) allocated by the relay device to the remote terminal device.
  • IP info IP address information
  • the first identifier of the remote terminal device is used to identify the remote terminal device, and the IP information allocated by the relay device to the remote terminal device can be called the IP address information of the remote terminal device, which can be used to indicate the remote terminal device.
  • the port corresponding to the terminal device (for example, the same PDU session carries multiple (remote terminal device #1 and remote terminal device #2) service data of the remote terminal device, IP address information #1 (for example, port A) Corresponding to remote terminal device #1, IP address information #2 (for example, port B) corresponds to remote terminal device #2).
  • the first message may be multiplexed with a remote UE report message specified in the current protocol, or the first message may be a relay device specified in the current protocol that needs to report to the session management network element Send other signaling, or the first message may also be newly added signaling between the relay device and the session management network element, etc. It can be understood that when the first message reuses the signaling that the existing relay device needs to send to the session management network element, the signaling overhead can be saved.
  • the first identifier of the remote terminal device may be a generic public subscription identity (GPSI), or a user identifier (user ID) assigned by a third-party application to the remote terminal device.
  • GPSI public subscription identity
  • user ID user identifier
  • the account name information of the remote terminal device in the third-party application can also be the unique user permanent identifier (SUPI) of the remote terminal device.
  • SUPI unique user permanent identifier
  • GPSI GPSI
  • user ID user ID
  • SUPI SUPI
  • the specific embodiment of the first identifier of the remote terminal device is not limited, and the information that can be used to identify the remote terminal device is within the protection scope of the present application.
  • the first message may also include the first Relay Service Code configured by the remote terminal device and/or the second Relay Service Code configured by the relay device, where the first Relay Service Code and the second Relay Service Code are configured.
  • Service Code can all correspond to the same ProSe Application ProSe. It can be understood that the first Relay Service Code corresponds to the second Relay Service Code, that is, if the Relay Service Code needs to be carried in the first message, at least one of the first Relay Service Code and the second Relay Service Code can be used to determine the current The business type of the specific business initiated.
  • the correspondence between the first Relay Service Code and the second Relay Service Code mentioned above can be understood as: the first Relay Service Code and the second Relay Service Code are the same, the first Relay Service Code and the second Relay Service Code are the same, or the first Relay Service Code is the same.
  • the Code and the second Relay Service Code can obtain peer-to-peer information through specific encryption or decryption algorithms.
  • the relay device sending the first message to the session management network element includes:
  • the relay device sends the first message to the access network device
  • the access network device forwards the first message to the access management function network element;
  • the access management function network element forwards the received first message to the session management network element.
  • the transmission process of the first message is simply described as medium in this embodiment of the application. Then the device sends the first message to the session management network element.
  • the access management network element may be AMF. In the future communication system, the access management network element may still be AMF, or it may have other names. In this application, the access management network element The name of is not limited, and the network element that can realize the user policy transfer between the user equipment and the PCF network element can be understood as the access management network element.
  • the session management network element needs to send the first identifier of the remote terminal device, the IP address information, and the Relay Service Code that may be included in the received first message to the policy control network element That is, the method flow shown in FIG. 5 further includes S520, the session management network element sends a second message to the policy control network element.
  • the second message includes the first identifier of the remote terminal device.
  • first identifier of the remote terminal device For the specific embodiment of the first identifier of the remote terminal device, reference may be made to the first identifier of the remote terminal device carried in the above first message, which will not be repeated here. .
  • the second message may also include the identifier of the relay device, for example, including the SUPI or GPSI of the relay device.
  • the second message may also include the above-mentioned IP address information allocated by the relay device to the remote terminal device.
  • the second message may also include the first Relay Service Code; in the same way, when the above-mentioned first message carries the second Relay Service Code In the case of, the second message may also include the second Relay Service Code.
  • the policy control network element can determine the service type of the currently initiated service after receiving the second message. For example, according to the first Relay Service Code and/or the second Relay Service Code, it is determined that the currently initiated service is a video service, an audio service, a VR service, and so on.
  • the second message may reuse the session management association policy creation or update (session management policy association create/update) request message specified in the current protocol, or the second message may be the session management specified in the current protocol
  • the network element needs to send other signaling to the policy control network element.
  • the subsequent execution steps after the policy control network element receives the second message include the following possibilities:
  • the policy control network element can obtain the subscription data of the remote terminal device based on the information element carried in the second message.
  • the method flow shown in FIG. 5 further includes S531, The policy control network element obtains the subscription data of the remote terminal device.
  • the process of acquiring the subscription data of the remote terminal device specifically includes:
  • the policy control network element obtains the subscription data of the remote terminal device from the UDR network element based on the first identifier of the remote terminal device in the second message.
  • the policy control network element can be based on the first Relay Service Code and/or the second Relay Service Code.
  • the code and the local configuration of the policy control network element determine the service type of the currently initiated service.
  • the above-mentioned local configuration of the policy control network element may be the mapping relationship between part or all of the information included in the Relay Service Code (for example, the first Relay Service Code or the second Relay Service Code) and the service type, that is, the policy control network
  • the element can determine the service type of the currently initiated service on the premise that the mapping relationship between the information in the Relay Service Code and the Relay Service Code and the service type is known.
  • the possibility that the policy control network element can determine the service type of the currently initiated service may also be: after the policy control network element performs signaling interaction with the 5G DDNMF network element, the first Relay Service Code is obtained by analysis. And/or the mapping relationship between the second Relay Service Code and the service, so that the policy control network element can determine the currently initiated service type based on the first Relay Service Code and/or the second Relay Service Code.
  • the signaling interaction between the policy control network element and 5G DDNMF involved in the embodiment of this application may include:
  • the policy control network element sends a query request message to 5G DDNMF, and the query request message carries Relay Service Code (for example, the first Relay Service Code and/or the second Relay Service Code); after 5G DDNMF receives the query request message, it is based on The Relay Service Code carried in the query request message determines the service type of the currently initiated service, and then the information related to the determined service type is carried in the query response message and sent to the policy control network element, so that the policy control network element can determine the current service type.
  • the business type of the initiated business is
  • the query request message may also carry the first identifier of the remote terminal device and/or the identifier of the relay device.
  • the policy control network element After the policy control network element receives the second message, when the first identifier of the remote terminal device included in the second message is the user ID, the policy control network element can perform the process according to the user ID and the application network element. Interact to determine the QoS guarantee required by the currently initiated service. In the second possibility, the method flow shown in FIG. 5 further includes S532. The policy control network element receives the policy authorization request message sent by the application network element.
  • the policy control network element cannot obtain the remote terminal device based on the first identifier of the remote terminal device.
  • the contract data corresponding to the end terminal device so in this case, the policy control network element can determine the actual first identifier of the remote terminal device through signaling interaction with the application network element (for example, the SUPI or GPSI of the remote terminal device) Wait).
  • the signaling interaction between the policy control network element and the application network element can be implemented via the network open network element.
  • the application network element may be an AF network element.
  • the application network element can still be an AF network element, or it can have other names.
  • the name of the application network element is not limited in this application, and it can transmit the network element that the application side needs on the network side. All can be understood as the application network element.
  • the policy authorization request message includes the service identifier, the second identifier of the remote terminal device, and the QoS parameter requirements.
  • the service identification may be the APP ID, or the service identification may also be the ProSe APP ID, and the ProSe APP ID refers to the APP ID corresponding to the ProSe service.
  • the APP ID is the APP Name, which can be understood as a unified application name configured between the application network element and the policy control network element, and is used to identify the specific application corresponding to the application network element currently initiating the request;
  • ProSe APP ID refers to the application name corresponding to the neighboring service, which can be understood as a unified application name configured on the remote terminal device, application network element, and policy control network element to identify the current proximity service initiated The corresponding specific application.
  • the service identifier may also be the above-mentioned first Relay Service Code and/or the second Relay Service Code.
  • the second identifier of the remote terminal device included in the policy authorization request message includes at least one of the following identifiers:
  • TCP transmission control protocol
  • UDP user datagram protocol
  • port number port number
  • the specific form of the second identifier of the remote terminal device included in the policy authorization request message may be the IPv6 address of the remote terminal device, the IPv6 address prefix of the remote terminal device, the IPv4 address of the relay device, and TCP Any one of the identifiers composed of /UDP port number is because:
  • the second message received by the policy control network element from the session management network element includes the first identifier of the remote terminal device (for example, the GPSI of the remote terminal device, the user ID assigned to the remote terminal device by a third-party application) And IP address information. Then, when the policy authorization request message received by the policy control network element from the application network element contains the IP address information, it can be understood that the policy authorization request message corresponds to the first identifier of the remote terminal device. Therefore, the specific embodiment of the second identifier of the remote terminal device carried in the policy authorization request message may be IP address information.
  • the second identifier of the remote terminal device carried in the policy authorization request message is IP address information
  • there is a one-to-one correspondence between the IP address information and the IP address information carried in the second message that is, if the information carried in the second message If the IP address information is IPv6prefix, the second identifier of the remote terminal device carried in the policy authorization request message is IPv6prefix; if the IP address information carried in the second message is TCP/UDP port number, the policy authorization request message carries The second identifier of the remote terminal device is an identifier composed of the IPv4 and TCP/UDM port number of the relay device.
  • the QoS parameter requirements included in the policy authorization request message are optional, and are used to indicate the QoS guarantee required by the current service, as input information for the policy control network element to implement the policy decision, and to assist the policy control network element to perform the policy decision.
  • the QoS parameter requirements may include information such as bandwidth guarantee and scheduling priority corresponding to the service.
  • the premise that the policy control network element can interact with the application network element to determine the QoS guarantee required by the currently initiated service is: the application network element subscribes to the remote terminal device online event, then Before the above-mentioned S532 is executed in the second possibility, the method flow shown in FIG. 5 further includes the application network element subscribing to the online event of the remote terminal device.
  • the process of the application network element subscribing to the online event of the remote terminal device specifically includes:
  • the application network element sends a subscription message to the policy control network element, where the subscription message is used to subscribe to the online event of the remote terminal device.
  • the subscription message includes the service identifier and the uniform resource identifier (notification uniform resource identify, Notification URI) for the application network element to receive notifications.
  • the Notification URI is the address information that can be understood as the application network element to receive the event report, and is used to indicate The destination for receiving event report information from the policy control network element, and the service identifier is used for the policy control network element to perform capability verification, event matching, and to determine whether the event needs to be reported to the application network element.
  • the online event of the remote terminal device subscribed by the application network element may be identified by an event ID (event ID), that is, the subscription message carries an event ID, a service ID, and an event notification address Notification URI.
  • event ID event ID
  • the subscription message carries an event ID, a service ID, and an event notification address Notification URI.
  • the above-mentioned application network element sending a subscription message to the policy control network element refers to: the application network element sends the subscription message to the policy control network element through the network opening function network element.
  • the network opening function network element plays a role of transparent transmission, so it can be simply described as the application network element sending a subscription message to the policy control network element.
  • the policy control network element After the policy control network element receives the subscription message, it needs to send a subscription response message to the application network element through the network opening function network element to respond to whether the subscription of the application network element is successful.
  • the process of signaling interaction between the policy control network element and the application network element specifically includes:
  • the policy control network element sends a notification message to the application network element, where the notification message is used to notify the remote terminal device of the online event.
  • the notification message carries the first identifier of the remote terminal device and the service identifier, and the service identifier is used to identify the service type of the currently initiated service.
  • the application network element After receiving the notification message, the application network element needs to send a notification response message to the policy control network element to respond to whether the notification message sent by the policy control network element is successful.
  • the policy authorization request message sent by the application network element to the policy control network element is carried in the notification response message, that is, the notification response message and the policy authorization request message are sent to the policy control through the same message.
  • the policy authorization request message and the notification response message sent by the network element to the policy control network element are respectively applied.
  • the policy control network element After receiving the second message, the policy control network element sends a second response message to the relay device, where the second response message is used to indicate the PDU session establishment or update response. Then, in the third possibility, the method flow shown in FIG. 5 further includes S535: the policy control network element sends a second response message to the relay device.
  • the policy control network element returns the second response message after receiving the second message. It is understood that the conventional session establishment procedure can be referred to in the existing protocol for the policy control network element after receiving the second message. The response made.
  • the policy control network element sending the second response message to the relay device includes:
  • the policy control network element sends a second response message to the session management network element
  • the session management network element forwards the second response message to the access network device;
  • the access network device forwards the second response message to the relay device after receiving the second response message.
  • the transmission process of the second response message is simply described as It is sufficient for the policy control network element to send the second response message to the relay device.
  • the application network element can obtain the policy control network element that provides services for the PDU session established in the above process through the policy control network element query. Then, in the third possibility, the method flow shown in FIG. 5 further includes S536, applying the network element to query the information of the policy control network element.
  • the application network element can query the policy control network element that provides services for the PDU session through the BSF according to the IP address, data network name (DNN) and other information in the message sent by the remote terminal device. information.
  • DNN data network name
  • the message delivered by the remote terminal device externally presents the IP address of the relay device, that is, the information query request carried by the policy control network element initiated by the application network element
  • the IP address information actually indicates the IP address corresponding to the relay device.
  • the application network element may send a policy authorization request message to the policy control network element according to the information of the policy control network element queried in S536, and then the method flow shown in FIG. 5 in the third possibility is still Including S537, the application network element sends a policy authorization request message to the policy control network element.
  • the policy authorization request message is used to instruct the policy control network element to perform context association, that is, to associate the policy authorization request with a service initiated by a specific remote terminal device under a specific PDU session.
  • the policy control network element may associate with the corresponding user context according to the second identifier of the remote terminal device carried in the policy authorization request message, so as to execute the policy decision.
  • step S532 in the second step is initiated by the policy control network element for the remote terminal device online event. Therefore, the policy control request message sent by the application network element may not carry the second identifier of the remote terminal device, and only the service identifier (such as , Relay Service Code), QoS authorization and other information; and it is possible that the three step S537 is actively initiated by the application network element, so the policy control request message sent by the application network element needs to carry the second identifier of the remote terminal device, and also needs Carry the identifier of the service, and optionally carry the QoS parameter requirements.
  • the service identifier such as , Relay Service Code
  • the second identification of the remote terminal device, the identification of the service, and the QoS parameter requirements that may be carried in the policy control request message in the third possibility are the same as those sent by the application network element to the policy control network element in step S532 in the second possibility.
  • the policy authorization request message is similar and will not be repeated here.
  • the three application network elements may obtain the above-mentioned second identifier and service identifier of the remote terminal device through the user plane channel.
  • the user plane message sent after the remote terminal device goes online includes With the second identifier of the remote terminal device and the service identifier, the application network element can obtain the second identifier of the remote terminal device and the service identifier through user plane perception.
  • the application network element perceives through the user plane. You can refer to the relevant provisions in the current protocol or the next-generation protocol, which will not be repeated here.
  • the policy control network element may execute policy decisions based on the learned information to generate policy charging control (PCC) rules, that is, the method process shown in FIG. 5 further includes S540, where the policy control network element generates PCC rules.
  • PCC policy charging control
  • the PCC rule includes the first QoS parameter of the first communication interface and the second QoS parameter of the second communication interface.
  • the content of the first QoS parameter may include: 5G interface QoS indicator (5G QoS Indicator, 5QI), address resolution protocol (address resolution protocol, ARP), guaranteed bit rate (guaranteed bitrate, GBR), maximum bit rate (maximum bitrate, MBR), session aggregated maximum bitrate (session aggregated maximum bitrate, Session AMBR), etc.;
  • 5G interface QoS indicator (5G QoS Indicator, 5QI)
  • address resolution protocol address resolution protocol, ARP
  • guaranteed bit rate guaranteed bit rate
  • GBR maximum bit rate
  • MBR maximum bit rate
  • Session AMBR session aggregated maximum bitrate
  • the content contained in the second QoS parameter may include: PC5 interface QoS indicator (PC5 QoS Indicator, PQI), ARP, GBR, MBR, total maximum bitrate (TMBR), and so on.
  • PC5 interface QoS indicator PC5 QoS Indicator, PQI
  • ARP PC5 QoS Indicator
  • GBR GBR
  • MBR total maximum bitrate
  • the first communication interface is the communication interface between the relay device and the access network device (e.g., Uu interface), and the second communication interface is the communication interface between the relay device and the remote terminal device (e.g., PC5 interface). ).
  • the first QoS parameter is used to generate the first QoS Rule
  • the first QoS Profile and the second QoS parameter are used to generate the second QoS Rule
  • the first QoS Rule and the first QoS Profile are the difference between the relay device and the access network device
  • the QoS rule and the second QoS Rule corresponding to the first communication interface between the relay device and the remote terminal device are the QoS rules corresponding to the second communication interface between the relay device and the remote terminal device.
  • the first QoS Profile mainly includes the quality of service guarantee parameters that the service flow needs to perform (for example, it may include one or more of 5QI, ARP, AMBR, GBR, MBR and other parameter information),
  • the first QoS Rule or the second QoS Rule may not only include some or all of the above-mentioned service quality assurance parameters, but also the flow description information corresponding to the service flow, which is used for remote terminal equipment and/or relays.
  • the device performs upstream matching, where the flow description information can be determined based on the above-mentioned IP address information of the remote terminal device.
  • the QoS information that the policy control network element can determine based on the subscription data of the remote terminal device is only the terminal device granularity, and the specific service granularity is not determined, that is, the default QoS can be determined when the service type is not sensed. 5QI, ARP, Session-AMBR and other parameter information corresponding to Flow. Therefore, in order for the policy control network element to determine the QoS information corresponding to different services for different services, the second message and/or the policy authorization request message need to carry the service identifier (for example, the first Relay Service Code and/or the second Relay Service Code).
  • the service identifier for example, the first Relay Service Code and/or the second Relay Service Code
  • the first QoS parameter and the second QoS parameter that can be used can be determined according to the subscription data corresponding to the relay device and the remote terminal device, so as to avoid violations.
  • the relay equipment and the remote terminal equipment contract strategy can be used.
  • the method flow shown in FIG. 5 further includes S550.
  • the policy control network element sends the PCC rule to the session management network element.
  • the session management network element After the session management network element receives the PCC rule, it performs QoS Flow binding according to the received PCC rule, and associates the PCC rule with a specific QoS Flow.
  • the QoS Flow is defined by the QoS Flow Identifier (QFI). ) For unique identification.
  • the session management network element can allocate QFI for the QoS Flow by itself.
  • QFI can be unique within the granularity of the PDU session.
  • the main function of QFI is to uniquely identify the specific QoS Flow in the PDU session, thereby relaying equipment, remote terminal equipment and access
  • the network equipment can identify the QoS Flow and execute the QoS guarantee corresponding to the QFI.
  • the session management network element generates the first QoS Rule
  • the first QoS Profile and the first QoS Rule include:
  • the first QoS Rule is determined according to the first QoS parameter and the second QoS parameter in the PCC rule, and the flow description information, and the value of the corresponding cell in the first QoS Profile and the first QoS Rule is determined.
  • the first QoS Profile is the information provided by the session management network element to the access network device, which mainly contains information related to the first QoS parameter;
  • the first QoS Rule is the information provided by the session management network element to the relay device
  • the second QoS Rule is the information provided by the session management network element to the remote terminal device.
  • the first QoS Rule and the second QoS Rule may respectively include the first QoS Rule and the second QoS Rule.
  • it may also include flow description information, which is used to associate the service flow with a specific QoS Flow when the relay device and the remote terminal device perform upstream matching.
  • the session management network element sends a third message to the access network device.
  • the method flow shown in FIG. 5 further includes S560.
  • the session management network element sends a third message to the access network device.
  • the third message is used to instruct the access network device.
  • the equipment reserves resources. Among them, the resources include, for example, bandwidth resources, scheduling resources, etc.
  • the access network equipment needs to provide bandwidth guarantees for the GBR services to prevent user service experience from being affected by other services.
  • the third message includes the aforementioned QFI, first QoS profile, first QoS Rule, and second QoS Rule.
  • the relay device, remote terminal device, or UPF needs to add QFI tags to the upstream/downlink packet headers, respectively. , That is, to identify that a certain service flow belongs to the QoS Flow corresponding to the QFI, and the access network device needs to execute the QoS profile corresponding to the QoS Flow according to the QFI.
  • the access network device After receiving the aforementioned third message, the access network device performs resource reservation based on the third message, and sends the first QoS Rule and the second QoS Rule included in the third message to the relay device, and the relay After the device receives the second QoS Rule, it can forward the second QoS Rule to the remote terminal device through the second communication interface (for example, the PC5 interface) between the relay device and the remote terminal device, as shown in Figure 5
  • the method flow also includes:
  • the access network device sends the second QoS Rule to the relay device; S571, the relay device sends the second QoS Rule to the remote terminal device. After receiving the information, the remote terminal device can reserve resources for the execution of the service, and execute the quality of service QoS guarantee required by the second QoS Rule for the service flow.
  • the quality of service QoS guarantee performed by the remote terminal device and the relay device may include: performing the mapping between the uplink and/or downlink service flow in the PC5 interface and the QoS Flow according to the service flow information in the second QoS Rule, and according to One or more parameters such as TMBR, PQI, and GBR in the second QoS Rule implement QoS guarantee policies such as uplink and/or downlink service flow bandwidth control, scheduling priority, packet loss rate, and delay in the PC5 interface.
  • QoS guarantee policies such as uplink and/or downlink service flow bandwidth control, scheduling priority, packet loss rate, and delay in the PC5 interface.
  • the policy control network element implements more reasonable policy decisions, and improves the service quality guarantee between the remote terminal equipment communication and the relay equipment.
  • FIG. 6 is a schematic flowchart of another service guarantee method provided by an embodiment of the present application.
  • the business guarantee method includes at least some of the following steps:
  • a remote (Remote) UE and a relay device (Relay) establish a PC5 connection.
  • step S501 Similar to step S501 in FIG. 5, it can be understood that the remote terminal device and the relay device shown in step S501 are both terminal devices, so the communication connection between the Remote UE and the Relay is a PC5 connection.
  • S602 The Relay establishes a PDU session.
  • step S502 in FIG. 5 It is similar to step S502 in FIG. 5 and will not be repeated here.
  • S610 The Relay sends a Remote UE report to the SMF.
  • the Relay sends a Remote UE report (report) to the SMF through the RAN and AMF, where the RAN is the access network device that the Relay accesses.
  • the Remote UE report includes the user identity of the Remote UE, and the user identity of the Remote UE is the same as the first identity shown in step S510 in FIG. 5, which will not be repeated here.
  • the Remote UE report may also include the IP info allocated by the Relay for the Remote UE.
  • the IP info is the same as the IP info shown in step S510 in FIG. 5 and will not be repeated here.
  • the Remote UE report may also include the Relay Service Code corresponding to the Remote UE and/or the Relay Service Code corresponding to the Relay, where the Relay Service Code corresponding to the Remote UE is the same as the first Relay shown in step S510 in FIG. 5
  • the Service Code is the same, and the Relay Service Code corresponding to the Relay is the same as the second Relay Service Code shown in step S510 in FIG. 5, and will not be repeated here.
  • the SMF sends an SM association policy creation or update message to the PCF.
  • the information carried in the Remote UE report can be sent to the PCF through an SM association policy creation or update message.
  • the user ID of the Remote UE carried in the Remote UE report can be sent to the PCF through an SM association policy creation or update message; or,
  • the Remote UE report When the Remote UE report carries the Relay Service Code corresponding to the Remote UE and/or the Relay Service Code corresponding to the Relay, after the SMF receives the above Remote UE report, the Remote UE report carries the Relay Service corresponding to the Remote UE.
  • the Code and/or Relay Service Code corresponding to the Relay is sent to the PCF through the SM association policy creation or update message.
  • the SM association policy creation or update message also carries the user identifier of the Relay and the aforementioned IP info.
  • the steps that can be performed based on the information carried in the association policy creation or update message include the following two possibilities:
  • the method process shown in this embodiment further includes S621, where the PCF obtains the subscription data of the Remote UE.
  • S621 For a specific method of obtaining the subscription data of the Remote UE, reference may be made to step S531 in FIG. 5, which will not be repeated here.
  • the method flow shown in this embodiment also includes S622.
  • the AF sends a subscription message to the PCF for subscribing to a Remote UE online event. This message is called a Remote UE subscription message.
  • This message is called a Remote UE subscription message.
  • For the specific subscription process refer to the step S533 shown in Figure 5 , I won’t repeat it here;
  • the PCF After the PCF receives the above SM association policy creation or update message, it can perform signaling interaction with the AF to obtain the QoS guarantee required by the currently initiated service.
  • the method flow shown in this embodiment further includes:
  • the PCF sends a notification message to the AF to notify the remote UE of the online event.
  • the notification message carries the user ID of the Remote UE and the service ID of the currently initiated service.
  • the specific notification method can refer to the step S534 shown in Figure 5 , I won’t repeat it here.
  • the AF sends a policy authorization request message to the PCF.
  • the policy authorization request message For a specific description of the policy authorization request message, reference may be made to the step S532 shown in FIG. 5, which will not be repeated here.
  • Possibility One and Possibility Two can both be executed, that is, the PCF can not only obtain the subscription data of the Remote UE, but also receive the policy authorization request message from the AF.
  • the PCF in this embodiment can make a policy decision, that is, the method process shown in this embodiment further includes S630, and the PCF makes a policy decision.
  • the manner in which the PCF makes a policy decision to generate a PCC rule can refer to the method shown in step S540 in FIG. 5, which will not be repeated here.
  • the PCF sends the generated PCC rules to the SMF.
  • the SMF Based on the QoS parameters in the PCC rules, the SMF generates the QoS rules corresponding to the Uu port between the Relay and the RAN (can be referred to as Uu QoS rule for short), and the PC5 between the Remote UE and the Relay.
  • QoS rule corresponding to the port can be referred to as PC5 QoS rule for short
  • SMF sends Uu QoS rule and PC5 QoS rule to RAN, RAN then sends PC5 QoS rule to Relay, and Relay sends to Remote UE, then the implementation
  • the method flow shown in the example also includes:
  • S640 PCF sends PCC rules to SMF;
  • S650 SMF generates Uu QoS rule and PC5 QoS rule;
  • S660 SMF sends Uu QoS rule and PC5 QoS rule to RAN;
  • the Relay sends the PC5 QoS rule to the Remote UE.
  • S640 to S680 reference may be made to the description of S540 to S571 in FIG. 5.
  • FIG. 7 is a schematic flowchart of another service guarantee method provided by an embodiment of the present application.
  • the business guarantee method includes at least some of the following steps:
  • a remote (Remote) UE and a relay device (Relay) establish a PC5 connection.
  • step S601 in FIG. 6, It is the same as step S601 in FIG. 6, and will not be repeated here.
  • S702 The Relay establishes a PDU session.
  • step S602 in FIG. 6, It is the same as step S602 in FIG. 6, and will not be repeated here.
  • the Relay sends a Remote UE report to the SMF.
  • step S610 in FIG. 6, It is the same as step S610 in FIG. 6, and will not be repeated here.
  • S720 The SMF sends an SM association policy creation or update message to the PCF.
  • step S620 in FIG. 6, It is the same as step S620 in FIG. 6, and will not be repeated here.
  • the SMF after the SMF receives the above SM association policy creation or update message, it does not obtain the subscription data of the Remote UE or sends a notification to the AF that the Remote UE is online according to the received SM association policy creation or update message, but executes it.
  • the conventional policy session establishment process sends an SM association policy creation or update response to the SMF, and the SMF sends a confirmation message for confirming the session establishment to the Relay.
  • the method process shown in this embodiment further includes:
  • the PCF sends an SM association policy creation or update response to the SMF; S722, the SMF sends a confirmation message to the Relay.
  • the AF can obtain the PCF serving the PDU session established in the above process through the PCF query.
  • the method process shown in FIG. 7 further includes S730. The AF queries PDU information.
  • the AF can perceive that the Remote UE is online through the user plane, and obtain the user identity of the Remote UE and the service identity of the currently initiated service through the user plane perception.
  • the AF After the AF learns the above-mentioned PCF information, the user ID of the Remote UE, and the service ID of the currently initiated service, it can send a policy authorization request message to the PCF.
  • the method flow shown in FIG. 7 further includes S740 , The AF sends a policy authorization request message to the PCF.
  • the specific information included in the policy authorization request message refer to the information shown in step S537 in FIG. 5, which will not be repeated here.
  • the method flow shown in this embodiment further includes S750, PCF makes policy decisions; S760, PCF sends PCC rules to SMF; S770, SMF generates Uu QoS rule and PC5 QoS rule; S780, SMF sends RAN sends Uu QoS rule and PC5 QoS rule; S790, RAN sends PC5 QoS rule to Relay; S791, Relay sends PC5 QoS rule to Remote UE.
  • S750 to S791 reference may be made to the description of S540 to S571 in FIG. 5.
  • FIG. 8 is a schematic flowchart of another service guarantee method provided by an embodiment of the present application.
  • the business guarantee method includes at least some of the following steps:
  • Remote UE an example of remote terminal equipment
  • Relay an example of relay equipment
  • S803 Relay sends a first message to SMF (an example of a session management network element).
  • the method flow shown in Figure 8 also includes:
  • S810 The SMF obtains session management subscription data of the Remote UE.
  • the session management subscription data of the Remote UE may include the AMBR of the Remote UE.
  • the AMBR of the Remote UE may include the AMBR of the subscription session of the Remote UE.
  • the AMBR of the Remote UE may also include the PC5 interface AMBR of the Remote UE or the PC5 link AMBR of the Remote UE.
  • the embodiment of this application does not limit the method for the SMF to obtain the session management subscription data of the Remote UE.
  • the SMF may obtain the session management subscription data of the Remote UE from the local database according to the first identifier.
  • the SMF can request the session management subscription data of the Remote UE from the UDM/UDR, or the SMF can perform the second session with the DN-AAA server Remote UE.
  • the session management subscription data of the Remote UE is obtained from the DN-AAA server.
  • the SMF obtains the remote UE's subscription session management data from the UDM/UDR.
  • SMF can send a second request message to UDM (an example of data management network element)/UDR (an example of data warehouse network element).
  • the second request message is used to request Remote UE's session management subscription data.
  • the second request message includes Remote The first identifier of the UE.
  • the UDM/UDR obtains the session management subscription data of the Remote UE from the local database according to the first identifier, and sends a second response message to the SMF.
  • the second response message includes the session management subscription data of the Remote UE.
  • the second request message can reuse the Nudm_SDM_Get request service specified in the current protocol, that is, the SMF can use Nudm_SDM_Get signaling to request the UDM for the session management subscription data of the Remote UE.
  • the second request message may also reuse the Nudm_SDM_Subscribe signaling specified in the current protocol, that is, the SMF may use the Nudm_SDM_Subscribe signaling to subscribe to the UDM for the session management subscription data update notification of the Remote UE.
  • the UDM may send a request message to the UDR (an example of a data warehouse network element) to obtain the session management subscription data of the Remote UE.
  • the UDM may use Nudr_DM_Query signaling to obtain the session management subscription data of the Remote UE from the UDR, or the UDM may use Nudr_DM_Subscribe signaling to subscribe to the update notification of the session management subscription data of the Remote UE from the UDR.
  • the second request message sent by the SMF to the UDM/UDR may include SUPI; further, the UDM/UDR may feed back this to the SMF according to SUPI.
  • the session management subscription data corresponding to the SUPI that is, the second response message sent by the UDM/UDR to the SMF includes the session management subscription data corresponding to the SUPI.
  • the SMF can obtain the remote UE from the UDM/UDR.
  • the GPSI or the SUPI corresponding to the third-party identifier further, the SMF carries the SUPI of the Remote UE obtained from the UDM/UDR in the second request message and sends it to the UDM/UDR to obtain the session management subscription data of the Remote UE.
  • the SMF may carry the GPSI or the third-party identifier in the second request message and send it to the UDM/UDR to obtain the Remote UE.
  • the session management contract data Further, after the UDM/UDR receives the second request message from the SMF, it can find the corresponding SUPI information according to the GPSI or the third-party identifier in the second request message, and further, obtain the SUPI corresponding to the SUPI from the local database according to the SUPI information.
  • the session management subscription data for the SUPI, and the session management subscription data corresponding to the SUPI is fed back to the SMF.
  • the UDM/UDR may also feed back the SUPI corresponding to the GPSI or the third-party identifier of the Remote UE to the SMF, that is, the second response message sent by the UDM/UDR to the SMF may include the GPSI or the third-party identifier of the Remote UE.
  • the corresponding SUPI may be used to feed back the SUPI corresponding to the GPSI or the third-party identifier of the Remote UE to the SMF.
  • the second request message may also include first indication information, and the first indication information is used to indicate that the Remote UE accesses the network through the Relay.
  • the second request message sent by SMF to UDM/UDR also includes the third identifier of Relay
  • UDM/UDR cannot distinguish between Remote UE and Relay.
  • UDM/UDR cannot determine the corresponding feedback of the first identifier to SMF.
  • the session management subscription data still feeds back the session management subscription data corresponding to the third identifier to the SMF.
  • the third request message also includes the first indication information
  • the UDM/UDR can distinguish between Remote UE and Relay according to the first indication information.
  • the UDM/UDR can feed back to the SMF the information corresponding to the first identifier.
  • Session management subscription data that is, the session management subscription data of the Remote UE is fed back to the SMF.
  • the SMF obtains the session management subscription data of the Remote UE from the DN-AAA server.
  • the SMF may send a third request message to the DN-AAA server, the third request message is used to request session management subscription data of the Remote UE, and the third request message includes the first identifier of the Remote UE. Further, the DN-AAA server obtains the session management subscription data of the Remote UE from the local database according to the first identifier, and sends a third response message to the SMF. The third response message includes the session management subscription data of the Remote UE.
  • the SMF may obtain the session management subscription data of the Remote UE from the PCF.
  • the method flow for SMF to obtain session management subscription data of Remote UE from PCF may include S821 to S823:
  • S821 The SMF sends a second message to the PCF.
  • the second message may also include the session management subscription data of the Remote UE.
  • the PCF generates PCC rules and/or session-related policies.
  • the PCF may generate session-related policies and/or PCC rules according to the subscription data corresponding to the Remote UE and the Relay.
  • the subscription data corresponding to the Remote UE and the Relay may include policy-related subscription data and session management subscription data.
  • the method may further include S8221.
  • the PCF obtains the subscription data of the Remote UE from the UDM/UDR.
  • the PCF may send a fourth request message to the UDM/UDR, the fourth request message is used to request the subscription data of the Remote UE, and the fourth request message includes the first identifier of the Remote UE; further, the UDM/UDR feeds back to the PCF The fourth response message.
  • the fourth response message includes the subscription data of the Remote UE.
  • the PCF obtains the policy-related subscription data of the Remote UE from the UDM/UDR.
  • the PCF may also obtain session management subscription data of the Remote UE from the UDM/UDR to verify the session management subscription data included in the second message.
  • the fourth request message may include first indication information, and the first indication information is used to instruct the Remote UE to access the network through the Relay.
  • the PCC rules and/or session-related policies generated by the PCF may include the session management subscription data of the Remote UE.
  • the PCC rule may include the second QoS parameter of the second communication interface, the second communication interface is the communication interface between the Remote UE and the Relay, and the second QoS parameter may include the AMBR that the Remote UE can use.
  • the session-related policy may include AMBR that can be used by the Remote UE.
  • the AMBR that the Remote UE can use is determined according to the session management subscription data of the Remote UE. For example, the AMBR that the Remote UE can use is the minimum of the AMBR of the subscription session of the Remote UE and the AMBR of the PC5 interface/PC5 link.
  • the PCF sends the session-related policy and/or PCC rule to the SMF.
  • the SMF After the SMF receives the session-related policy and/or PCC rule, it obtains the session management subscription data of the Remote UE according to the session-related policy and/or PCC rule.
  • the SMF generates a PDR.
  • the SMF After the SMF obtains the session management subscription data of the Remote UE, it can establish a separate PDR for the Remote UE, that is, the SMF generates a PDR corresponding to the Remote UE.
  • the SMF may generate the PDR according to the first identifier of the Remote UE. Specifically, the SMF may generate the PDR corresponding to the Remote UE according to at least one of the IP address, port number, or MAC address of the Remote UE.
  • PDR includes QER, and the maximum bandwidth in QER is determined based on the AMBR of the Remote UE.
  • the maximum bandwidth in QER can also be referred to as MBR.
  • the maximum bandwidth in the QER is the AMBR of the subscription session of the Remote UE.
  • the maximum bandwidth in the QER is the AMBR of the PC5 interface of the Remote UE.
  • the maximum bandwidth in the QER is the PC5 link AMBR of the Remote UE.
  • the maximum bandwidth in the QER is the AMBR of the Remote UE's subscription session and the PC5 interface AMBR/PC5 link.
  • the PCC rules and/or session-related policies received by the SMF from the PCF include AMBR that can be used by the Remote UE
  • the maximum bandwidth in the QER is the AMBR and Remote of the Remote UE.
  • S830 The SMF sends the PDR to the UPF.
  • the UPF can send a feedback message to the SMF to indicate that the PDR has been received.
  • the method shown in FIG. 8 may further include S840 and S850:
  • S840 The SMF sends a fourth message to the Relay, where the fourth message includes session management subscription data of the terminal device.
  • the fourth message may include the remote terminal equipment AMBR.
  • the SMF may send a fourth message to the Relay.
  • the fourth message may include the maximum bandwidth in QER, that is, the fourth message includes MBR. If the QER of the Remote UE is different from the AMBR of the subscription session of the Relay, the SMF sends a fourth message to the Relay.
  • the Relay receives the fourth message from the SMF, it adjusts the AMBR of the PC5 link with the Remote UE according to the session management subscription data of the Remote UE included in the fourth message. That is, the AMBR of the PC5 link is updated to the AMBR of the Remote UE.
  • Remote UE and Relay update the AMBR of the PC5 link to the minimum of the AMBR of the subscription session of the Remote UE and the AMBR of the PC5 interface/AMBR of the PC5 link.
  • the method shown in FIG. 8 may further include S860: the UPF performs data transmission with the Remote UE through the Relay according to the received PDR.
  • the UPF can filter out the data to be sent to the Remote UE according to the PDR, and limit the rate of the data sent to the Remote UE according to the maximum bandwidth in the QER included in the PDR, that is, the rate of the data sent to the Remote UE by the UPF through the Relay cannot The maximum bandwidth in QER is exceeded.
  • the SMF can determine the AMBR of the Remote UE based on the AMBR of the Remote UE in the N4 session configuration. MBR in QER.
  • the SMF can send the MBR of the Remote UE to the Relay, so that the Relay can update the AMBR of the PC5 link to the MBR of the Remote UE.
  • FIG. 9 is a schematic flowchart of another service guarantee method provided by an embodiment of the present application.
  • the business guarantee method includes at least some of the following steps:
  • the PCF (an example of a policy control network element) acquires session management subscription data of a Remote UE (an example of a remote terminal device).
  • the PCF can obtain the session management subscription data of the Remote UE from UDM (an example of a data management network element)/UDR (an example of a data warehouse network element).
  • UDM an example of a data management network element
  • UDR an example of a data warehouse network element
  • the session management subscription data of the Remote UE may include PDU session related information, such as DNN, slice information, PDU session type, etc.
  • the session management subscription data of the Remote UE may also include the AMBR of the Remote UE.
  • the AMBR of the Remote UE may include the AMBR of the subscription session of the Remote UE.
  • the AMBR of the Remote UE may also include the PC5 interface AMBR of the Remote UE or the PC5 link AMBR of the Remote UE.
  • the PCF decides a relay service code (RSC).
  • RSC relay service code
  • the PCF decides the RSC based on the session management subscription data of the Remote UE, that is, the RSC decided by the PCF is associated with the session management subscription data of the Remote UE.
  • the PCF may decide the RSC according to the AMBR of the Remote UE, that is, the RSC decided by the PCF is associated with the AMBR of the Remote UE.
  • the PCF may decide the first RSC and/or the second RSC according to the session management subscription data of the Remote UE.
  • the first RSC is an RSC configured for the Remote UE
  • the second RSC is an RSC configured for a Relay (an example of a relay device).
  • the first RSC and/or the second RSC are associated with session management subscription data of the Remote UE.
  • the PCF may decide the first RSC and/or the second RSC according to the AMBR of the Remote UE.
  • the PCF may decide the first RSC and/or the second RSC according to the minimum value of the AMBR of the Remote UE's subscription session AMBR and the PC5 interface AMBR/PC5 link AMBR.
  • the PCF may associate the RSC with the session management subscription data of the Remote UE and save it.
  • the method may further include S903.
  • the PCF sends the RSC and second indication information to the UDM/UDR, where the second indication information is used to indicate that the RSC is associated with the session management subscription data of the Remote UE.
  • the UDM/UDR associates and saves the RSC with the session management subscription data of the Remote UE, that is, the session management subscription data of the Remote UE can be determined according to the RSC.
  • S904 The PCF sends the RSC to the Remote UE and Relay.
  • the PCF may send the first RSC to the Remote UE and the Relay; further, the Remote UE and the Relay may establish a PC5 connection based on the first RSC.
  • the PCF may send the second RSC to the Remote UE and the Relay; further, the Remote UE and the Relay may establish a PC5 connection based on the second RSC.
  • the PCF decides the first RSC and the second RSC, the PCF can send the first RSC to the Remote UE and the second RSC to the Relay; further, the Remote UE and the Relay can be based on the first RSC Establish a PC5 connection with the second RSC.
  • the PCF may send the first RSC and the second RSC to the Remote UE and Relay.
  • the PCF may send the session management subscription data of the Remote UE to the Remote UE and Relay.
  • the Remote UE and Relay can establish a PC5 connection based on the first RSC and/or the second RSC received from the PCF.
  • the Remote UE and Relay may determine the AMBR of the PC5 link according to the session management subscription data of the Remote UE.
  • the Remote UE and Relay may determine the AMBR of the subscription session of the Remote UE as the AMBR of the PC5 link.
  • the Remote UE and Relay may determine the PC5 interface AMBR of the Remote UE as the AMBR of the PC5 link.
  • the Remote UE and Relay may determine the PC5 link AMBR of the Remote UE as the AMBR of the PC5 link.
  • the Remote UE’s session management subscription data includes the Remote UE’s subscription session AMBR and the PC5 interface AMBR/PC5 link AMBR
  • the Remote UE and Relay can combine the Remote UE’s subscription session AMBR and the PC5 interface AMBR/PC5 link AMBR. The value is determined as the AMBR of the PC5 link.
  • the Relay sends the first message to SMF (an example of a session management network element).
  • the first message may include the first RSC and/or the second RSC.
  • the first message may include the session management subscription data of the Remote UE.
  • the method flow shown in Figure 9 further includes:
  • S910 The SMF obtains session management subscription data of the Remote UE.
  • the SMF can obtain the session management subscription data of the Remote UE in the following manner:
  • the SMF obtains the remote UE's subscription session management data from the UDM/UDR.
  • the SMF can send a third request message to UDM (an example of data management network element)/UDR (an example of data warehouse network element).
  • the third request message is used to request session management subscription data of the Remote UE.
  • the third request message includes the first One RSC and/or second RSC.
  • the PCF can send the decided RSC to the UDM/UDR, and the UDM/UDR can associate the RSC with the session management subscription data of the Remote UE. Therefore, the UDM/UDR receives the third request from the SMF After the message, the session management subscription data of the Remote UE can be obtained from the local database according to the first RSC and/or the second RSC in the third request message, and a third response message can be sent to the SMF.
  • the third response message includes the Remote UE.
  • the session management contract data includes the Remote UE.
  • the SMF obtains the remote UE's subscription session management data from the PCF.
  • the SMF may send a fifth request message to the PCF.
  • the fifth request message is used to request session management subscription data of the Remote UE.
  • the fifth request message includes the first RSC and/or the second RSC.
  • the PCF can associate the decision-making RSC with the session management subscription data of the Remote UE. Therefore, after the PCF receives the fifth and third request message from the SMF, it can follow the first RSC and/or the first RSC in the fifth request message. Or the second RSC obtains the session management subscription data of the Remote UE from the local database, and sends a fifth response message to the SMF.
  • the fifth response message includes the session management subscription data of the Remote UE.
  • the SMF may obtain the session management subscription data of the Remote UE from the first message.
  • S920 The SMF generates a PDR.
  • S930 The SMF sends the PDR to the UPF.
  • the method shown in FIG. 9 may further include S940 and S950:
  • the SMF sends a fourth message to the Relay, where the fourth message includes the AMBR of the Remote UE.
  • the method shown in FIG. 9 may further include S960: the UPF performs data transmission with the Remote UE through the Relay according to the received PDR.
  • the PCF can determine the RSC related to the session management subscription data of the Remote UE based on the session management subscription data of the Remote UE, and send the decided RSC and/or the session management subscription data of the Remote UE to the Remote UE and Relay; further, the SMF can determine the MBR value in the QER in the N4 session according to the RSC reported by the Relay and/or the session management subscription data of the Remote UE.
  • the UPF performs remote UE data packet transmission
  • the remote UE's data rate can be limited according to the remote UE's MBR.
  • execution subject for example, core network element
  • the execution subject may execute some or all of the steps in the embodiment. These steps or operations are only examples.
  • the embodiments of the present application may also include performing other operations or various operations. Deformation of the operation.
  • the size of the sequence numbers of the foregoing processes does not mean the order of execution.
  • the execution order of the processes should be determined by their functions and internal logic, and should not correspond to the implementation process of the embodiments of this application. Constitute any limitation.
  • the device 8000 includes a receiving unit 8100, a sending unit 8200, and a processing unit 8300.
  • the service guarantee apparatus 8000 can be used to implement the function of the relay device in any of the foregoing method embodiments.
  • the service guarantee apparatus 8000 may be a relay device.
  • the service guarantee apparatus 8000 can be used as a relay device, and executes the steps performed by the relay device in the foregoing method embodiment.
  • the receiving unit 8100 and/or the sending unit 8200 can be used to communicate with the device 8000 supporting service guarantee, for example, to perform the sending and/or receiving actions performed by the relay device in FIG. 5 to FIG. 9, and the processing unit 8300 can be used.
  • the apparatus 8000 supporting service guarantee executes the processing actions in the foregoing method embodiments, for example, executes the processing actions performed by the relay device in FIGS. 5-9.
  • the service guarantee device 8000 may further include a storage unit 840 (not shown in FIG. 10) for storing the program code and data of the service guarantee device 8000.
  • the sending unit 8200 is configured to send a first message to the session management network element, where the first message includes the first identifier of the remote terminal device;
  • the receiving unit 8100 is configured to receive a second quality of service QoS rule from the session management network element, the second QoS rule is generated based on the subscription data of the remote terminal device, and the subscription data of the remote terminal device is based on the first acquired get;
  • the processing unit 8300 is configured to perform QoS guarantee on the second communication interface between the relay device and the remote terminal device based on the second QoS rule.
  • the apparatus 8000 completely corresponds to the relay device in the method embodiment, and the apparatus 8000 may be the relay device in the method embodiment, or a chip or functional module inside the relay device in the method embodiment.
  • the corresponding units of the apparatus 8000 are used to execute the corresponding steps performed by the relay device in the method embodiments shown in FIGS. 5-9.
  • the receiving unit 8100 in the apparatus 8000 executes the steps of receiving by the relay device in the method embodiment. For example, step S570 of receiving the second QoS Rule sent by the access network device in FIGS. 5-7, or the step of receiving the fourth message sent by the session management network element in FIGS. 8-9 is performed.
  • the sending unit 8200 in the apparatus 8000 is used to implement the function of sending messages to other devices. For example, perform the steps of sending the first message to the session management network element in Figures 5-9.
  • the processing unit 8300 in the apparatus 8000 executes the steps implemented or processed inside the relay device in the method embodiment.
  • the receiving unit 8100 and the sending unit 8200 can form a transceiver unit, and have the functions of receiving and sending at the same time.
  • the processing unit 8300 may be a processor.
  • the sending unit 8200 may be a receiver.
  • the receiving unit 8100 may be a transmitter. The receiver and transmitter can be integrated to form a transceiver.
  • FIG. 11 is a schematic structural diagram of a relay device and a remote terminal device 900 applicable to an embodiment of the present application.
  • the relay device or remote terminal device 900 can be applied to the system shown in FIG. 2.
  • FIG. 11 only shows the main components of the relay device or the remote terminal device.
  • the relay device or remote terminal device includes a processor, a memory, a control circuit, an antenna, and an input and output device.
  • the processor is used to control the antenna and the input and output devices to send and receive signals
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program from the memory to execute the corresponding process executed by the user equipment in the service guarantee method proposed in this application And/or operation. I won't repeat them here.
  • FIG. 11 only shows a memory and a processor. In an actual relay device, there may be multiple processors and memories.
  • the memory may also be referred to as a storage medium or a storage device, etc., which is not limited in the embodiment of the present application.
  • FIG. 12 is a schematic diagram of the service guarantee apparatus 1000 proposed in this application.
  • the device 1000 includes a receiving unit 1010 and a sending unit 1020.
  • the service guarantee apparatus 1000 can be used to implement the function of the session management network element in any of the foregoing method embodiments.
  • the service guarantee device 1000 may be an SMF.
  • the network element or network function may be a network element in a hardware device, a software function running on dedicated hardware, or a virtualization function instantiated on a platform (for example, a cloud platform).
  • the service guarantee apparatus 1000 can be used as a session management network element, and executes the steps performed by the session management network element in the foregoing method embodiment.
  • the receiving unit 1010 and/or the sending unit 1020 may be used to communicate with the device 1000 supporting service guarantee, for example, to perform the sending and/or receiving actions performed by the session management network element in FIG. 5 to FIG. 9.
  • the service guarantee apparatus 1000 may further include a processing unit 1030 (not shown in FIG. 12), which can be used to support the service guarantee apparatus 1000 to perform the processing actions in the foregoing method embodiments, for example, perform the processing actions in FIG. 5 to FIG. 9 The processing actions performed by the session management network element.
  • a processing unit 1030 (not shown in FIG. 12), which can be used to support the service guarantee apparatus 1000 to perform the processing actions in the foregoing method embodiments, for example, perform the processing actions in FIG. 5 to FIG. 9 The processing actions performed by the session management network element.
  • the service guarantee apparatus 1000 may further include a storage unit 1040 (not shown in FIG. 12) for storing program codes and data of the service guarantee apparatus 1000. Specifically, you can refer to the following description:
  • the receiving unit 1010 is configured to receive a first message from the relay device, where the first message includes the first identifier of the remote terminal device;
  • the sending unit 1020 is configured to send a second message to the policy control network element, the second message including the first identifier of the remote terminal device, where the first identifier of the remote terminal device is used to obtain the remote terminal.
  • the subscription data of the device, the subscription data of the remote terminal device is used to determine the second quality of service QoS rule, and the second QoS rule is the QoS rule corresponding to the second communication interface between the relay device and the remote terminal device .
  • the receiving unit 1010 is configured to obtain session management subscription data of the remote terminal device, where the session management subscription data includes the AMBR of the remote terminal device;
  • the processing unit 1030 is configured to generate a PDR corresponding to the remote terminal device, where the PDR includes a QER, and the maximum bandwidth in the QER is determined based on the AMBR of the remote terminal device;
  • the sending unit 1020 is configured to send the PDR to the user plane network element.
  • the apparatus 1000 completely corresponds to the session management network element in the method embodiment, and the apparatus 1000 may be the session management network element in the method embodiment, or a chip or functional module inside the session management network element in the method embodiment.
  • the corresponding units of the apparatus 1000 are used to execute the corresponding steps performed by the session management network element in the method embodiments shown in FIGS. 5-9.
  • the receiving unit 1010 in the apparatus 1000 executes the step of the session management network element in the method embodiment receiving a message sent by another device. For example, step S510 of receiving the first message sent by the relay device in FIG. 5 and step S550 of receiving the PCC rule sent by the policy control network in FIG. 5 are executed.
  • the sending unit 1020 in the device 1000 executes the step of sending by the session management network element in the method embodiment. For example, step S520 of sending the second message to the policy control network element in FIG. 5 is performed.
  • the service guarantee device shown in the device 1000 may further include a processing unit (not shown in FIG. 12), and the processing unit executes the steps implemented or processed inside the session management network element in the method embodiment.
  • the receiving unit 1010 and the sending unit 1020 can form a transceiver unit, and have the functions of receiving and sending at the same time.
  • the processing unit may be a processor.
  • the sending unit 1020 may be a receiver.
  • the receiving unit 1010 may be a transmitter.
  • the receiver and transmitter can be integrated to form a transceiver.
  • an embodiment of the present application also provides a session management network element 1100.
  • the session management network element 1100 includes a processor 1110, a memory 1120, and a transceiver 1130.
  • the memory 1120 stores instructions or programs and processes
  • the device 1130 is used to execute instructions or programs stored in the memory 1120.
  • the transceiver 1130 is used to execute the operations performed by the receiving unit 1010 and the sending unit 1020 in the apparatus 1000 shown in FIG. 12.
  • FIG. 14 is a schematic diagram of the service guarantee apparatus 1200 proposed in this application.
  • the apparatus 1200 includes a receiving unit 1210, a processing unit 1220, and a sending unit 1230.
  • the service guarantee apparatus 1200 can be used to implement the function of the policy control network element in any of the foregoing method embodiments.
  • the service guarantee device 1200 may be a PCF.
  • the network element or network function may be a network element in a hardware device, a software function running on dedicated hardware, or a virtualization function instantiated on a platform (for example, a cloud platform).
  • the service guarantee apparatus 1200 can be used as a policy control network element, and executes the steps performed by the policy control network element in the foregoing method embodiment.
  • the receiving unit 1210 and/or the sending unit 1230 may be used to communicate with the apparatus 1200 supporting service guarantee, for example, to perform the sending and/or receiving actions performed by the policy control network element in FIG. 5.
  • the processing unit 1220 may be used to support the service guarantee device 1200 to execute the processing actions in the foregoing method embodiments, for example, execute the processing actions executed by the policy control network element in FIG. 5.
  • the service guarantee apparatus 1200 may further include a storage unit 1240 (not shown in FIG. 14) for storing program codes and data of the service guarantee apparatus 1200. Specifically, you can refer to the following description:
  • the receiving unit 1210 is configured to obtain a first identifier of the remote terminal device, and the first identifier of the remote terminal device is used to obtain subscription data of the remote terminal device;
  • the processing unit 1220 is configured to generate a policy and charging control PCC rule based on the subscription data of the remote terminal device, and the PCC rule includes the first QoS parameter of the first communication interface and the second QoS parameter of the second communication interface,
  • the sending unit 1230 is configured to send the PCC rule to the session management network element.
  • the first communication interface is a communication interface between the relay device and an access network device
  • the second communication interface is a communication interface between the relay device and the remote terminal device
  • the first QoS parameter Used to generate the first QoS rule corresponding to the first communication interface
  • the second QoS parameter is used to generate the second QoS rule corresponding to the second communication interface.
  • the service guarantee device may also be used as a device for obtaining a relay service code.
  • the device 1200 for obtaining a relay service code may be specifically used for:
  • the receiving unit 1210 is configured to obtain session management subscription data of the remote terminal device, where the session management subscription data includes the AMBR of the remote terminal device;
  • the processing unit 1220 is configured to decide a relay service code according to the subscription data, and the relay service code is associated with the session management subscription data;
  • the sending unit 1230 is configured to send the relay service code to the remote terminal device and the relay device.
  • the device 1200 completely corresponds to the policy control network element in the method embodiment, and the device 1200 may be the policy control network element in the method embodiment, or a chip or functional module inside the policy control network element in the method embodiment.
  • the corresponding unit of the device 1200 is used to execute the corresponding steps executed by the policy control network element in the method embodiment shown in FIG. 5.
  • the receiving unit 1210 in the device 1200 executes the step of receiving the policy control network element in the method embodiment. For example, perform step S520 of receiving the second message from the session management network element in FIG. 5, perform steps S532 and S537 of receiving the policy authorization request message from the application network element in FIG. Step S533 of subscribing to the message of the meta.
  • the processing unit 1220 executes the internal implementation or processing steps of the policy control network element in the method embodiment. For example, step S540 of generating PCC rules in FIG. 5 is executed.
  • the sending unit 1230 in the device 1200 executes the steps of the policy control network element sending in the method embodiment. For example, step S550 of sending a PCC rule to the session management network element in FIG. 5 is performed, and step S534 of sending a notification message to the application network element in FIG. 5 is performed.
  • the receiving unit 1210 and the sending unit 1230 may constitute a transceiver unit, and have the functions of receiving and sending at the same time.
  • the processing unit 1220 may be a processor.
  • the sending unit 1230 may be a receiver.
  • the receiving unit 1210 may be a transmitter. The receiver and transmitter can be integrated to form a transceiver.
  • an embodiment of the present application also provides a policy control network element 1300.
  • the policy control network element 1300 includes a processor 1310, a memory 1320, and a transceiver 1330.
  • the memory 1320 stores instructions or programs to process
  • the processor 1330 is used to execute instructions or programs stored in the memory 1320.
  • the transceiver 1330 is used to execute the operations performed by the receiving unit 1210 and the sending unit 1230 in the apparatus 1200 shown in FIG. 14.
  • FIG. 16 is a schematic diagram of the service guarantee apparatus 1400 proposed in this application.
  • the apparatus 1400 includes a sending unit 1410 and a processing unit 1420.
  • the service guarantee device 1400 can be used to implement the function of the application network element in any of the foregoing method embodiments.
  • the service guarantee device 1400 may be an AF.
  • the network element or network function may be a network element in a hardware device, a software function running on dedicated hardware, or a virtualization function instantiated on a platform (for example, a cloud platform).
  • the service guarantee apparatus 1400 can be used as an application network element, and executes the steps performed by the application network element in the foregoing method embodiment.
  • the receiving unit 1410 may be used to communicate with the device 1400 supporting service guarantee, for example, to perform the receiving action performed by the application network element in FIG. 5 to FIG. 7.
  • the processing unit 1420 may be used to support the service guarantee device 1400 to execute the processing actions in the foregoing method embodiments, for example, to execute the processing actions executed by the application network element in FIGS. 5-7.
  • the service guarantee apparatus 1400 may further include a receiving unit 1430 (not shown in FIG. 16 for the time being) to support the sending action performed by the service guarantee apparatus 1400.
  • the service guarantee apparatus 1400 may further include a storage unit 1440 (not shown in FIG. 16) for storing program codes and data of the service guarantee apparatus 1400. Specifically, you can refer to the following description:
  • the processing unit 1420 is configured to determine the policy authorization request message
  • the sending unit 1410 is configured to send a policy authorization request message to the policy control network element, where the policy authorization request message includes the second identifier of the remote terminal device, which is a terminal device that accesses the network through another terminal device ;
  • the second identifier is used to determine the first identifier of the remote terminal device, and the first identifier is used for the identifier of the remote terminal device to obtain the subscription data of the remote terminal device.
  • the subscription data is used to determine a second quality of service QoS rule, and the second QoS rule is a QoS rule corresponding to the second communication interface between the relay device and the remote terminal device.
  • the device 1400 completely corresponds to the application network element in the method embodiment, and the device 1400 may be the application network element in the method embodiment, or a chip or functional module inside the application network element in the method embodiment.
  • the corresponding unit of the device 1400 is used to execute the corresponding steps executed by the application network element in the method embodiments shown in FIGS. 5-7.
  • the sending unit 1410 in the device 1400 executes the steps of applying network element sending in the method embodiment. For example, steps S532 and S537 of sending a policy authorization request message to the policy control network element in FIG. 5 are performed, and step S533 of sending a subscription message to the policy control network element in FIG. 5 is performed.
  • the processing unit 1420 executes the steps implemented or processed inside the application network element in the method embodiment.
  • the service guarantee device shown in the device 1400 may also include a receiving unit (not shown in FIG. 16), and the sending unit executes the step of the policy control network element in the method embodiment receiving messages sent by other devices. For example, step S534 of receiving the notification message sent by the session management network element in FIG. 5 is performed.
  • the receiving unit and the sending unit 1410 may constitute a transceiver unit, and have the functions of receiving and sending at the same time.
  • the processing unit 1420 may be a processor.
  • the sending unit 1410 may be a receiver.
  • the receiving unit may be a transmitter.
  • the receiver and transmitter can be integrated to form a transceiver.
  • an embodiment of the present application further provides an application network element 1500.
  • the application network element 1500 includes a processor 1510, a memory 1520, and a transceiver 1530.
  • the memory 1520 stores instructions or programs, and the processor 1530 Used to execute instructions or programs stored in the memory 1520.
  • the transceiver 1530 is used to execute the operations performed by the receiving unit and the sending unit 1410 in the apparatus 1400 shown in FIG. 16.
  • FIG. 18 is a schematic diagram of the service guarantee apparatus 1600 proposed in this application.
  • the apparatus 1600 includes a receiving unit 1610 and a processing unit 1620.
  • the service guarantee apparatus 1600 can be used to implement the functions related to the remote terminal equipment in any of the foregoing method embodiments.
  • the service guarantee apparatus 1600 may be a remote terminal device.
  • the service guarantee apparatus 1600 can be used as a remote terminal device, and executes the steps performed by the remote terminal device in the foregoing method embodiment.
  • the receiving unit 1610 can be used to support the service guarantee device 1600 to communicate, for example, to perform the receiving action performed by the remote terminal device in FIGS. 5-9, and the processing unit 1620 can be used to support the service guarantee device 1600 to perform the above
  • the processing actions in the method embodiment for example, execute the processing actions performed by the remote terminal device in FIGS. 5-9.
  • the service guarantee apparatus 1600 may further include a sending unit 1630 (not shown in FIG. 18), which can be used to support the service guarantee apparatus 1600 to perform the sending actions in the foregoing method embodiments, for example, perform the sending actions in the above method embodiments, for example, perform the operations in FIGS. The sending action performed by the remote terminal device.
  • a sending unit 1630 (not shown in FIG. 18), which can be used to support the service guarantee apparatus 1600 to perform the sending actions in the foregoing method embodiments, for example, perform the sending actions in the above method embodiments, for example, perform the operations in FIGS. The sending action performed by the remote terminal device.
  • the service guarantee apparatus 1600 may further include a storage unit 1640 (not shown in FIG. 18) for storing program codes and data of the service guarantee apparatus 1600.
  • the receiving unit 1610 is configured to receive a second quality of service QoS rule from the relay device, and the second QoS rule is generated based on the subscription data of the remote terminal device;
  • the processing unit 1630 is configured to perform QoS guarantee on the second communication interface between the relay device and the remote terminal device based on the second QoS rule.
  • the apparatus 1600 completely corresponds to the remote terminal device in the method embodiment.
  • the apparatus 1600 may be the remote terminal device in the method embodiment, or a chip or functional module inside the remote terminal device in the method embodiment.
  • the corresponding unit of the apparatus 1600 is used to execute the corresponding steps executed by the remote terminal device in the method embodiments shown in FIGS. 5-9.
  • the receiving unit 1610 in the apparatus 1600 executes the step of receiving by the remote terminal device in the method embodiment. For example, step S571 in FIG. 5 where the second QoS Rule is sent by the receiving relay device is performed.
  • the processing unit 1620 in the apparatus 1600 executes the steps implemented or processed internally by the remote terminal device in the method embodiment.
  • the service guarantee apparatus shown in the apparatus 1600 may also include a sending unit (not shown in FIG. 18) to realize the function of sending messages to other devices.
  • the receiving unit 1610 and the sending unit may constitute a transceiver unit, and have the functions of receiving and sending at the same time.
  • the processing unit 1620 may be a processor.
  • the sending unit may be a receiver.
  • the receiving unit 1610 may be a transmitter. The receiver and transmitter can be integrated to form a transceiver.
  • FIG. 19 is a schematic diagram of the service guarantee device 1900 proposed in this application.
  • the apparatus 1900 includes a sending unit 14910 and a processing unit 1920.
  • the service guarantee apparatus 1900 can be used to implement the functions related to the user plane network element in any of the foregoing method embodiments.
  • the service guarantee device 1900 may be a UPF.
  • the service guarantee apparatus 1900 may serve as a user plane network element, and execute the steps performed by the user plane network element in the foregoing method embodiment.
  • the receiving unit 1910 may be used to communicate with the device 1900 supporting service guarantee, for example, to perform the receiving action performed by the user plane network element in FIGS. 8-9.
  • the processing unit 1920 may be used to support the service guarantee device 1900 to execute the processing actions in the foregoing method embodiment, for example, execute the processing actions performed by the user plane network element in FIGS. 8-9.
  • the service guarantee apparatus 1900 may further include a receiving unit 1930 (not shown in FIG. 19), which supports the sending action performed by the service guarantee apparatus 1900.
  • the service guarantee device 1900 may further include a storage unit 1940 (not shown in FIG. 19) for storing the program code and data of the service guarantee device 1900.
  • a storage unit 1940 for storing the program code and data of the service guarantee device 1900.
  • the receiving unit 1910 is configured to receive a PDR from a session management network element, where the PDR corresponds to the remote terminal device, the PDR includes a QER, and the maximum bandwidth in the QER is determined based on the AMBR of the remote terminal device;
  • the processing unit 1920 is configured to determine the rate of data sent to the remote terminal device according to the maximum bandwidth in the QER.
  • the device 1900 completely corresponds to the user plane network element in the method embodiment, and the device 1900 may be the user network element in the method embodiment, or a chip or functional module inside the user plane network element in the method embodiment.
  • the corresponding unit of the apparatus 1900 is used to execute the corresponding steps performed by the user plane network element in the method embodiments shown in FIGS. 8-9.
  • the sending unit 1910 in the device 1900 executes the steps of sending by the user plane network element in the method embodiment. For example, perform the step of sending data to the remote terminal device through the relay device in FIG. 8.
  • the processing unit 1920 executes internal implementation or processing steps of the user plane network element in the method embodiment.
  • the service guarantee apparatus shown in the apparatus 1900 may further include a receiving unit (not shown in FIG. 19), and the receiving unit executes the steps of the user plane network element receiving messages sent by other devices in the method embodiment. For example, the PDR sent by the session management network element in FIG. 8 is received.
  • the receiving unit and the sending unit 1910 can form a transceiver unit, and have the functions of receiving and sending at the same time.
  • the processing unit 1920 may be a processor.
  • the sending unit 1910 may be a receiver.
  • the receiving unit may be a transmitter.
  • the receiver and transmitter can be integrated to form a transceiver.
  • an embodiment of the present application also provides a user plane network element 2000.
  • the user plane network element 2000 includes a processor 2010, a memory 2020, and a transceiver 2030.
  • the memory 2020 stores instructions or programs to process
  • the device 2030 is used to execute instructions or programs stored in the memory 2020.
  • the transceiver 2030 is used to execute the operations performed by the receiving unit and the sending unit in the apparatus 1900 shown in FIG. 19.
  • An embodiment of the present application also provides a communication system, which includes the aforementioned relay device, remote terminal device, session management network element, policy control network element, user plane network element, and application network element.
  • This application also provides a computer-readable storage medium that stores instructions in the computer-readable storage medium.
  • the computer executes the remote control method shown in FIGS. 5-9. The various steps performed by the terminal device.
  • the present application also provides a computer-readable storage medium that stores instructions in the computer-readable storage medium.
  • the computer executes the relay method shown in FIGS. 5-9. The various steps performed by the device.
  • This application also provides a computer-readable storage medium that stores instructions in the computer-readable storage medium.
  • the computer executes the session management in the method shown in FIGS. 5-9. The steps performed by the network element.
  • This application also provides a computer-readable storage medium that stores instructions in the computer-readable storage medium.
  • the computer executes the policy control in the method shown in FIGS. 5-9. The steps performed by the network element.
  • the present application also provides a computer-readable storage medium that stores instructions in the computer-readable storage medium.
  • the computer executes the above-mentioned method shown in FIGS. 5-7. The various steps performed by the meta.
  • the present application also provides a computer-readable storage medium that stores instructions in the computer-readable storage medium.
  • the computer executes the user interface in the method shown in FIGS. 8-9. The steps performed by the network element.
  • This application also provides a computer program product containing instructions.
  • the computer program product runs on a computer, the computer executes the steps performed by the remote terminal device in the method shown in FIGS. 5-9.
  • This application also provides a computer program product containing instructions.
  • the computer program product runs on a computer, the computer executes the steps performed by the relay device in the method shown in FIGS. 5-7.
  • This application also provides a computer program product containing instructions.
  • the computer program product runs on a computer, the computer executes the steps performed by the session management network element in the method shown in FIGS. 5-9.
  • This application also provides a computer program product containing instructions.
  • the computer program product runs on a computer, the computer executes the steps performed by the policy control network element in the method shown in FIGS. 5-9.
  • This application also provides a computer program product containing instructions.
  • the computer program product runs on a computer, the computer executes the steps performed by the application network element in the method shown in FIGS. 5-9.
  • This application also provides a computer program product containing instructions.
  • the computer program product runs on a computer, the computer executes the steps performed by the user plane network element in the method shown in FIGS. 8-9.
  • the application also provides a chip including a processor.
  • the processor is used to read and run the computer program stored in the memory to execute the corresponding operation and/or process performed by the remote terminal device in the service guarantee method provided by this application.
  • the chip further includes a memory, the memory and the processor are connected to the memory through a circuit or a wire, and the processor is used to read and execute the computer program in the memory.
  • the chip further includes a communication interface, and the processor is connected to the communication interface.
  • the communication interface is used to receive data and/or information that needs to be processed, and the processor obtains the data and/or information from the communication interface, and processes the data and/or information.
  • the communication interface can be an input and output interface.
  • the application also provides a chip including a processor.
  • the processor is used to read and run the computer program stored in the memory to execute the corresponding operation and/or process performed by the relay device in the service guarantee method provided by the present application.
  • the chip further includes a memory, the memory and the processor are connected to the memory through a circuit or a wire, and the processor is used to read and execute the computer program in the memory.
  • the chip further includes a communication interface, and the processor is connected to the communication interface.
  • the communication interface is used to receive data and/or information that needs to be processed, and the processor obtains the data and/or information from the communication interface, and processes the data and/or information.
  • the communication interface can be an input and output interface.
  • the application also provides a chip including a processor.
  • the processor is used to call and run a computer program stored in the memory to execute the corresponding operation and/or process performed by the session management network element in the service guarantee method provided by this application.
  • the chip further includes a memory, the memory and the processor are connected to the memory through a circuit or a wire, and the processor is used to read and execute the computer program in the memory.
  • the chip further includes a communication interface, and the processor is connected to the communication interface.
  • the communication interface is used to receive data and/or information that needs to be processed, and the processor obtains the data and/or information from the communication interface, and processes the data and/or information.
  • the communication interface can be an input and output interface.
  • the application also provides a chip including a processor.
  • the processor is used to call and run a computer program stored in the memory to execute the corresponding operation and/or process performed by the policy control network element in the service guarantee method provided by this application.
  • the chip further includes a memory, the memory and the processor are connected to the memory through a circuit or a wire, and the processor is used to read and execute the computer program in the memory.
  • the chip further includes a communication interface, and the processor is connected to the communication interface.
  • the communication interface is used to receive data and/or information that needs to be processed, and the processor obtains the data and/or information from the communication interface, and processes the data and/or information.
  • the communication interface can be an input and output interface.
  • the application also provides a chip including a processor.
  • the processor is used to call and run a computer program stored in the memory to execute the corresponding operation and/or process performed by the application network element in the service guarantee method provided by this application.
  • the chip further includes a memory, the memory and the processor are connected to the memory through a circuit or a wire, and the processor is used to read and execute the computer program in the memory.
  • the chip further includes a communication interface, and the processor is connected to the communication interface.
  • the communication interface is used to receive data and/or information that needs to be processed, and the processor obtains the data and/or information from the communication interface, and processes the data and/or information.
  • the communication interface can be an input and output interface.
  • the application also provides a chip including a processor.
  • the processor is used to call and run a computer program stored in the memory to execute the corresponding operation and/or process performed by the user plane network element in the service guarantee method provided by this application.
  • the chip further includes a memory, the memory and the processor are connected to the memory through a circuit or a wire, and the processor is used to read and execute the computer program in the memory.
  • the chip further includes a communication interface, and the processor is connected to the communication interface.
  • the communication interface is used to receive data and/or information that needs to be processed, and the processor obtains the data and/or information from the communication interface, and processes the data and/or information.
  • the communication interface can be an input and output interface.
  • the disclosed system, device, and method can be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disks or optical disks and other media that can store program codes. .
  • the term "and/or” in this application is only an association relationship that describes associated objects, which means that there can be three types of relationships, for example, A and/or B, which can mean that A alone exists, and both A and B exist. , There are three cases of B alone.
  • the character "/" in this document generally means that the associated objects before and after are in an "or” relationship; the term “at least one” in this application can mean “one” and "two or more", for example, A At least one of, B and C can mean: A alone exists, B alone exists, C alone exists, A and B exist alone, A and C exist at the same time, C and B exist at the same time, A and B and C exist at the same time, this Seven situations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Databases & Information Systems (AREA)
  • Business, Economics & Management (AREA)
  • Accounting & Taxation (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种业务保障的方法和装置,该业务保障的方法应用在远端终端设备通过中继设备接入网络的场景下,该方法包括:策略控制网元基于远端终端设备的签约数据生成的PCC规则中包括远端终端设备和中继设备之间的第二通信接口的第二服务质量QoS参数,从而使得会话管理网元能够基于接收到的PCC规则生成该第二通信接口对应的第二QoS规则,会话管理网元能够将该第二QoS规则发送至中继设备。通过基于远端终端设备的签约数据生成第二通信接口所需的QoS规则,能够保障远端终端设备通过中继设备访问业务的性能。

Description

业务保障的方法和装置
本申请要求于2020年04月17日提交中国专利局、申请号为202010303982.7、申请名称为“业务保障的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请要求于2020年08月12日提交中国专利局、申请号为202010809066.0、申请名称为“业务保障的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及一种业务保障的方法和装置。
背景技术
第四代(4th generation,4G)通信协议中定义了邻近服务(proximity-based services,ProSe)中继(relay)通信方案,目前协议中规定该ProSe relay通信方案仅用于访问公共安全(public safety)业务,所以远端终端设备与中继设备之间建立的通信接口(如,PC5接口)仅需要支持public safety业务执行服务质量(quality of service,QoS)保障即可。
当前讨论的ProSe relay通信场景中,远端终端设备可能通过中继设备访问网络中的多种业务(如,访问增强现实(augmented reality,AR)或虚拟现实(virtual reality,VR)业务等),不再局限于public safety业务,那么目前协议中规定的QoS规则(rules)可能不再符合业务实际所需的QoS保障。因此如何使得远端终端设备可以通过中继设备访问不同业务成为亟待解决的问题。
发明内容
本申请提供一种业务保障的方法和装置,以期提高远端终端设备通过中继设备访问业务的性能。
第一方面,提供了一种业务保障的方法,该业务保障的方法可以由策略控制网元执行,或者,也可以由设置于策略控制网元中的芯片或电路执行,本申请对此不作限定。
该业务保障的方法应用于远端终端设备通过中继设备接入网络的情况下,该方法包括:
策略控制网元获取该远端终端设备的第一标识,该第一标识用于获取该远端终端设备的签约数据;该策略控制网元基于该远端终端设备的签约数据生成策略计费控制PCC规则,该策略控制网元向会话管理网元发送该PCC规则,该PCC规则中包括第一通信接口的第一服务质量QoS参数和第二通信接口的第二QoS参数,其中,该第一通信接口为该中继设备与接入网设备之间的通信接口、该第二通信接口为该中继设备和该远端终端设备之间的通信接口,该第一QoS参数用于生成该第一通信接口对应的第一QoS规则、该第 二QoS参数用于生成该第二通信接口对应的第二QoS规则。
本申请实施例提供的业务保障的方法,核心网设备侧(如,策略控制网元)能够基于接收到的远端终端设备的第一标识获取得到远端终端设备的签约数据,并且基于远端终端设备的签约数据生成PCC规则,PCC规则中的第二QoS参数用于生成中继设备和远端终端设备之间的第二通信接口对应的QoS规则,在考虑远端终端设备的签约数据的情况下生成的QoS规则相比于仅针对中继业务类型或中继设备的签约数据设定的QoS规则更符合远端终端设备实际访问业务的QoS保障。
具体地,会话管理网元能够生成上述的二QoS规则是因为从策略控制网元处接收到包括第二QoS参数的PCC规则,该第二QoS参数用于生成第二QoS规则,使得会话管理网元生成的QoS规则符合第二通信接口的需求。
结合第一方面,在第一方面的某些实现方式中,所述方法还包括:所述策略控制网元获取所述远端终端设备的互联网协议IP地址信息;所述策略控制网元基于所述IP地址信息确定流描述信息,所述流描述信息携带在所述PCC规则中。
本申请实施例提供的业务保障的方法,策略控制网元能够基于获得的IP地址信息确定出PCC规则中的流描述信息。
结合第一方面,在第一方面的某些实现方式中,该策略控制网元获取该远端终端设备的第一标识包括:该策略控制网元接收来自会话管理网元的第二消息,该第二消息中包括该远端终端设备的第一标识;或者,该策略控制网元接收来自应用网元的策略授权请求消息,该策略授权请求消息中包括所述远端终端设备的第二标识,其中,所述第二标识用于确定所述第一标识。
本申请实施例中,策略控制网元可以通过不同的方式获得上述的远端终端设备的第一标识,提高方案的灵活性。
结合第一方面,在第一方面的某些实现方式中,所述第二标识包括以下标识中的至少一种:远端终端设备的通用公开用户标识GPSI、第三方分配的远端终端设备的用户标识、远端终端设备的互联网协议第六版IPv6地址、远端终端设备的IPv6地址前缀、中继设备的互联网协议第四版IPv4地址和传输控制协议或用户数据报协议TCP/UDP端口号组成的标识。
本申请实施例中远端终端设备的第二标识的具体体现形式有多种,提高方案的灵活性。
结合第一方面,在第一方面的某些实现方式中,该第二消息还包括该远端终端设备的会话管理签约数据,该会话管理签约数据包括该远端终端设备的聚合最大比特率(aggregate maximum bit rate,AMBR),该第二QoS参数包括该远端终端设备可使用的AMBR。
结合第一方面,在第一方面的某些实现方式中,该策略授权请求消息中还包括:业务的标识和/或QoS参数需求,该业务标识用于指示业务类型,该QoS参数需求用于辅助该策略控制网元基于生成该PCC规则。
上述的应用网元向策略控制网元发送的策略授权请求消息除了包括远端终端设备的第二标识之外,还可以包括QoS参数需求辅助策略控制网元基于生成PCC规则。
结合第一方面,在第一方面的某些实现方式中,该业务的标识包括以下信息中的至少 一种:第一中继服务码(Relay Service Code或Relay Service Filter,以下称为Relay Service Code)、第二Relay Service Code、应用标识APP ID、邻近服务应用名ProSe APP ID;其中,该第一Relay Service Code为该远端终端设备被配置的Relay Service Code,该第二Relay Service Code为该中继设备被配置的Relay Service Code。
本申请实施例中业务标识的具体体现形式有多种,提高方案的灵活性。
结合第一方面,在第一方面的某些实现方式中,该策略控制网元接收来自应用网元的策略授权请求消息之前,该方法还包括:该策略控制网元接收来自该应用网元的订阅消息,该订阅消息用于订阅该远端终端设备是否上线;该策略控制网元向该应用网元发送通知消息,该通知消息用于指示该远端终端设备上线。
本申请实施例中应用网元之所以向策略控制网元发送策略授权请求消息是因为:应用网元获知远端终端设备上线。
结合第一方面,在第一方面的某些实现方式中,所述通知消息中包括所述第一标识和业务的标识,其中,所述业务的标识用于标识业务类型。
上述的通知消息中包括所述第一标识和业务的标识,以便于应用网元下发业务对应的策略授权请求消息,提高方案的准确性。
结合第一方面,在第一方面的某些实现方式中,该第二消息和/或策略授权请求消息中还包括:第一中继服务码Relay Service Code和/或第二Relay Service Code,其中,该第一Relay Service Code为该远端终端设备被配置的Relay Service Code,该第二Relay Service Code为该中继设备被配置的Relay Service Code;该策略控制网元基于该远端终端设备的签约数据生成策略计费控制PCC规则该策略控制网元包括:该策略控制网元基于该远端终端设备的签约数据以及该第一Relay Service Code和/或该第二Relay Service Code生成该PCC规则。
进一步地,策略控制网元还可以获取到中继设备和/或远端终端设备被配置的Relay Service Code,从而使得策略控制网元生成上述的第二QoS规则的时候获知当前发起的业务的业务类型,基于该业务类型生成更符合业务要求的第二QoS规则,进一步保障远端终端设备通过中继设备访问业务的性能。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:该策略控制网元基于该第一Relay Service Code和/或第二Relay Service Code判断业务类型;或者,该策略控制网元基于该第一Relay Service Code和/或第二Relay Service Code从5G邻近服务名称管理功能DDNMF网元处获知该业务类型。
本申请实施例中策略控制网元能够基于上述的第一Relay Service Code和/或第二Relay Service Code直接判断出当前发起的业务的业务类型,还可以是通过跟DDNMF网元进行信令交互之后,从DDNMF网元处获知当前发起的业务的业务类型。通过上述两种不同的方式确定当前所发起的业务的业务类型,可有效提高网络配置灵活性。
结合第一方面,在第一方面的某些实现方式中,该远端终端设备的第一标识包括:通用公开用户标识GPSI或第三方应用为该远端终端设备分配的用户标识user ID。
本申请实施例中远端终端设备的第一标识的具体体现形式有多种,能够提高方案的灵活性。
第二方面,提供了一种业务保障的方法,该业务保障的方法可以由应用网元执行,或 者,也可以由设置于应用网元中的芯片或电路执行,本申请对此不作限定。
该业务保障的方法包括:
应用网元确定策略授权请求消息;该应用网元向策略控制网元发送策略授权请求消息,该策略授权请求消息中包括远端终端设备的第二标识,该远端终端设备为通过另一个终端设备接入网络的终端设备;其中,远端终端设备的第二标识用于确定远端终端设备的第一标识,该远端终端设备的第一标识用于获取该远端终端设备的签约数据,该远端终端设备的签约数据用于确定第二服务质量QoS规则,该第二QoS规则为该中继设备和该远端终端设备之间的第二通信接口对应的QoS规则。
本申请实施例提供的业务保障的方法,核心网设备侧(如,策略控制网元)能够基于接收到的远端终端设备的第一标识获取得到远端终端设备的签约数据,并且基于远端终端设备的签约数据生成PCC规则,PCC规则中的第二QoS参数用于生成中继设备和远端终端设备之间的第二通信接口对应的QoS规则,在考虑远端终端设备的签约数据的情况下生成的QoS规则相比于仅针对中继业务类型或中继设备的签约数据设定的QoS规则更符合远端终端设备实际访问业务的QoS保障。
结合第二方面,在第二方面的某些实现方式中,该应用网元确定策略授权请求消息之前,该方法还包括:该应用网元向该策略控制网元发送订阅消息,该订阅消息用于订阅该远端终端设备是否上线;该应用网元接收来自该策略控制网元的通知消息,该通知消息用于指示该远端终端设备上线;或者,该应用网元通过查询请求消息获取该策略控制网元的信息。
本申请实施例中,应用网元确定策略授权请求消息之前可以是先订阅了远端终端设备上线事件,还可以是主动查询到策略控制网元的信息,然后向策略控制网元发送策略授权请求消息,提供不同的触发应用网元发送策略授权请求消息的方案,从而提高方案的灵活性。
结合第二方面,在第二方面的某些实现方式中,所述应用网元确定策略授权请求消息包括:所述应用网元基于所述第一标识和业务标识确定所述策略授权请求消息,所述业务标识用于标识业务类型其中,所述第一标识和所述业务标识携带在所述通知消息中,或者,所述第一标识和所述业务标识由所述应用网元通过用户面感知获得。
本申请实施例中,应用网元可以基于第一标识和业务标识确定策略授权请求消息,而第一标识和业务标识可以通过不同的方式获得,提高方案的灵活性。
结合第二方面,在第二方面的某些实现方式中,应用网元通过用户面感知的方式获得上述的第一标识和业务标识的情况下,该方法还包括:应用网元通过用户面感知远端终端设备上线这个事件。
本申请实施例中,应用网元可以通过用户面感知到远端终端设备是否上线,从而获得第一标识和业务标识。
结合第二方面,在第二方面的某些实现方式中,该策略授权请求消息中还包括:业务的标识和/或QoS参数需求,该业务标识用于指示业务类型,该QoS参数需求用于辅助该策略控制网元基于生成该PCC规则。
上述的应用网元向策略控制网元发送的策略授权请求消息除了包括远端终端设备的第二标识之外,还可以包括QoS参数需求辅助策略控制网元基于生成PCC规则。
结合第二方面,在第二方面的某些实现方式中,该业务的标识包括以下信息中的至少一种:第一中继服务码Relay Service Code、第二Relay Service Code、应用标识APP ID、邻近服务应用名ProSe APP ID;其中,该第一Relay Service Code为该远端终端设备被配置的Relay Service Code,该第二Relay Service Code为该中继设备被配置的Relay Service Code。
本申请实施例中业务标识的具体体现形式有多种,提高方案的灵活性。
结合第二方面,在第二方面的某些实现方式中,该远端终端设备的第二标识包括以下标识中的至少一种:远端终端设备的通用公开用户标识GPSI、第三方分配的远端终端设备的用户标识user ID、远端终端设备的互联网协议第六版IPv6地址、远端终端设备的IPv6地址前缀、中继设备的互联网协议第四版IPv4地址和传输控制协议或用户数据报协议TCP/UDP端口号组成的标识。
本申请实施例中远端终端设备的第二标识的具体体现形式有多种,提高方案的灵活性。
第三方面,提供了一种业务保障的方法,该业务保障的方法可以由会话管理网元执行,或者,也可以由设置于会话管理网元中的芯片或电路执行,本申请对此不作限定。
该业务保障的方法应用于远端终端设备通过中继设备接入网络的情况下,该方法包括:
会话管理网元接收来自该中继设备的第一消息,该第一消息中包括该远端终端设备的第一标识;该会话管理网元向策略控制网元发送第二消息,该第二消息中包括该远端终端设备的第一标识,其中,该远端终端设备的第一标识用于获取该远端终端设备的签约数据,该远端终端设备的签约数据用于确定第二服务质量QoS规则,该第二QoS规则为该中继设备和该远端终端设备之间的第二通信接口对应的QoS规则。
本申请实施例提供的业务保障的方法,中继设备通过接入网设备将远端终端设备的第一标识给上报核心网设备侧(如,策略控制网元),使得核心网设备能够基于接收到的远端终端设备的第一标识获取得到远端终端设备的签约数据,并且基于远端终端设备的签约数据生成中继设备和远端终端设备之间的第二通信接口对应的QoS规则,在考虑远端终端设备的签约数据的情况下生成的QoS规则相比于仅针对public safety业务设定的QoS规则更符合远端终端设备实际访问业务的QoS保障。
结合第三方面,在第三方面的某些实现方式中,该方法还包括:该会话管理网元接收来自该策略控制网元的策略计费控制PCC规则,该PCC规则中包括第一通信接口的第一QoS参数和该第二通信接口的第二QoS参数,其中,该第一通信接口为该中继设备与接入网设备之间的通信接口,该会话管理网元根据该第一QoS参数生成该第一通信接口对应的第一QoS规则、该会话管理网元根据该第二QoS参数用于生成该第二QoS规则。
具体地,会话管理网元能够生成上述的二QoS规则是因为从策略控制网元处接收到包括第二QoS参数的PCC规则,该第二QoS参数用于生成第二QoS规则,使得会话管理网元生成的QoS规则符合第二通信接口的需求。
结合第三方面,在第三方面的某些实现方式中,该方法还包括:该会话管理网元为该PCC规则分配QoS流标识QFI,该QFI用于唯一标识该PCC规则对应的QoS流Flow;该会话管理网元向接入网设备发送第三消息,该第三消息中包括该QFI、该第一QoS规则 和该第二QoS规则。
进一步地,会话管理网元从策略控制网元处接收到包括第二QoS参数的PCC规则之后,为该PCC规则分配QFI标识出该PCC规则对应的QoS Flow,并将该QFI通过接入网设备下发至中继设备和远端终端设备,使得中继设备、远端终端设备以及接入网设备可对该QoS Flow进行识别并执行该QFI所对应的QoS保障。
结合第三方面,在第三方面的某些实现方式中,该第一消息和第二消息中还包括:第一中继服务码Relay Service Code和/或第二Relay Service Code,该第一Relay Service Code或该第二Relay Service Code用于确定该第二QoS规则;其中,该第一Relay Service Code为该远端终端设备被配置的Relay Service Code,该第二Relay Service Code为该中继设备被配置的Relay Service Code。
进一步地,中继设备还可以将自身或远端终端设备被配置的Relay Service Code通过接入网设备上报给核心网设备,从而使得核心网设备生成上述的第二QoS规则的时候获知当前发起的业务的业务类型,基于该业务类型生成更符合业务要求的第二QoS规则,进一步保障远端终端设备通过中继设备访问业务的性能。
结合第三方面,在第三方面的某些实现方式中,该第二消息中还包括:该中继设备的标识和/或该远端终端设备的互联网协议IP地址信息。
上述的第二消息中可以进一步地包括中继设备的标识和/或远端终端设备的IP地址信息。
结合第三方面,在第三方面的某些实现方式中,该远端终端设备的第一标识包括:通用公开用户标识GPSI或第三方应用为该远端终端设备分配的用户标识user ID。
本申请实施例中远端终端设备的第一标识的具体体现形式有多种,能够提高方案的灵活性。
第四方面,提供了一种业务保障的方法,该业务保障的方法可以由中继设备执行,或者,也可以由设置于中继设备中的芯片或电路执行,本申请对此不作限定。
该业务保障的方法应用于远端终端设备通过中继设备接入网络的情况下,该方法包括:
该中继设备向会话管理网元发送第一消息,该第一消息中包括该远端终端设备的第一标识息;该中继设备接收来自该会话管理网元的第二服务质量QoS规则,该第二QoS规则基于第一标识对应的该远端终端设备的签约数据生成;所述中继设备基于所述第二QoS规则对所述中继设备和所述远端终端设备之间的第二通信接口进行QoS保障。
本申请实施例提供的业务保障的方法,中继设备通过接入网设备将远端终端设备的第一标识给上报核心网设备侧(如,策略控制网元),使得核心网设备能够基于接收到的远端终端设备的第一标识获取得到远端终端设备的签约数据,并且基于远端终端设备的签约数据生成中继设备和远端终端设备之间的第二通信接口对应的QoS规则,在考虑远端终端设备的签约数据的情况下生成的QoS规则相比于仅针对中继业务类型或中继设备的签约数据设定的QoS规则更符合远端终端设备实际访问业务的QoS保障。
结合第四方面,在第四方面的某些实现方式中,该方法还包括:该中继设备向该远端终端设备发送该第二QoS规则。
中继设备通过接入网设备从核心网设备侧接收到上述的第二QoS规则之后,需要将 该第二QoS规则传输到远端终端设备,使得该远端终端设备也能够获知第二QoS规则,为远端终端设备通过中继设备访问业务提供QoS保障。
结合第四方面,在第四方面的某些实现方式中,该远端终端设备的第一标识包括通用公开用户标识GPSI或第三方应用为该远端终端设备分配的用户标识user ID。
本申请实施例中远端终端设备的第一标识的具体体现形式有多种,能够提高方案的灵活性。
结合第四方面,在第四方面的某些实现方式中,该第一消息中还包括:第一中继服务码Relay Service Code和/或第二Relay Service Code,该第一Relay Service Code或该第二Relay Service Code用于确定该第二QoS规则;其中,该第一Relay Service Code为该远端终端设备被配置的Relay Service Code,该第二Relay Service Code为该中继设备被配置的Relay Service Code。
进一步地,中继设备还可以将自身或远端终端设备被配置的Relay Service Code通过接入网设备上报给核心网设备,从而使得核心网设备生成上述的第二QoS规则的时候获知当前发起的业务的业务类型,基于该业务类型生成更符合业务要求的第二QoS规则,进一步保障远端终端设备通过中继设备访问业务的性能。
结合第四方面,在第四方面的某些实现方式中,该第一中继服务码和/或第二中继服务码与该远端终端设备的会话管理签约数据相关联。
结合第四方面,在第四方面的某些实现方式中,该方法还包括:该中继设备接收来自该会话管理网元的第四消息,该第四消息包括该远端终端设备的会话管理签约数据,该会话管理签约数据包括该远端终端设备的AMBR;该中继设备根据该远端终端设备的AMBR确定与该远端终端设备之间的PC5链路的AMBR。
结合第四方面,在第四方面的某些实现方式中,该远端终端设备通过中继设备接入网络包括:该中继设备和该远端终端设备之间建立通信连接;该中继设备和数据网络之间建立协议数据单元PDU会话,该PDU会话用于传输该远端终端设备的业务。
本申请实施例中,远端终端设备能够通过中继设备接入网络是因为远端终端设备和中继设备之间建立了通信连接(如,PC5连接),并且中继设备和数据网络之间建立了用于传输远端终端设备的业务PDU会话,使得远端终端设备能够通过中继设备访问业务。
结合第四方面,在第四方面的某些实现方式中,该中继设备包括终端设备。
本申请实施例中,上述的中继设备的一种具体形式为终端设备,即远端终端设备和中继设备可以均为终端设备,在此情况下中继设备和该远端终端设备之间的通信接口可以称为PC5接口。
第五方面,提供了一种业务保障的方法,该业务保障的方法可以由远端终端设备执行,或者,也可以由设置于远端终端设备中的芯片或电路执行,本申请对此不作限定。
该业务保障的方法应用于远端终端设备通过中继设备接入网络的情况下,该方法包括:所述远端终端设备接收来自所述中继设备的第二服务质量QoS规则,所述第二QoS规则基于所述远端终端设备的签约数据生成,所述远端终端设备基于所述第二QoS规则对所述中继设备和所述远端终端设备之间的第二通信接口进行QoS保障。
本申请实施例提供的业务保障的方法,远端终端设备接收到基于远端终端设备的签约数据生成中继设备和远端终端设备之间的第二通信接口对应的QoS规则,在考虑远端终 端设备的签约数据的情况下生成的QoS规则相比于仅针对中继业务类型或中继设备的签约数据设定的QoS规则更符合远端终端设备实际访问业务的QoS保障。
第六方面,提供了一种业务保障的方法,该业务保障的方法可以由会话管理网元执行,或者,也可以由设置于会话管理网元中的芯片或电路执行,本申请对此不作限定。
该业务保障的方法应用于远端终端设备通过中继设备接入网络的情况下,该方法包括:会话管理网元获取该远端终端设备的会话管理签约数据,该会话管理签约数据包括该远端终端设备的AMBR;该会话管理网元生成与该远端终端设备对应的包检测规则(packet detection rule,PDR),该PDR包括服务质量QoS执行规则(QoS enforcement rule,QER),该QER中的最大带宽是基于该远端终端设备的AMBR确定的;该会话管理网元向用户面网元发送该PDR。
在本申请实施例中,若会话管理网元获取到远端终端设备的AMBR,则会话管理网元在N4会话配置中,可以基于远端终端设备的AMBR确定远端终端设备的QER中的最大带宽。从而使得在用户面网元在执行远端终端设设备的数据包传输的过程中,可以根据远端终端设备的最大带宽限制发送给远端终端设备的数据的速率。
结合第六方面,在第六方面的某些实现方式中,该方法还包括:该会话管理网元向该中继设备发送第四消息,该第四消息包括该远端终端设备的AMBR。
在本申请实施例中,会话管理网元可以将远端终端设备的AMBR发送给中继设备,从而使得中继设备可以将PC5链路的AMBR更新为远端终端设备的AMBR。
结合第六方面,在第六方面的某些实现方式中,该远端终端设备的AMBR包括以下至少一种:该远端终端设备的签约会话AMBR(subscribed session-AMBR)、该远端终端设备的PC5接口AMBR(UE-PC5-AMBR)、该远端终端设备的PC5链路AMBR(PC5Link-AMBR)。
结合第六方面,在第六方面的某些实现方式中,该QER中的最大带宽是该远端终端设备的签约会话AMBR与该远端终端设备的PC5接口AMBR/PC5链路AMBR中的最小值。
结合第六方面,在第六方面的某些实现方式中,该方法还包括:该会话管理网元向策略控制网元发送第二消息,该第二消息中包括该会话管理签约数据;该会话管理网元接收来自该策略控制网元的会话相关策略和/或策略计费控制PCC规则,该会话相关策略和/或PCC规则中包括第二通信接口的第二QoS参数,其中,该第二通信接口为该中继设备与该远端终端设备之间的通信接口,该第二QoS参数包括该远端终端设备可使用的AMBR;该QER中的最大带宽是该远端终端设备的AMBR和该远端终端设备可使用的AMBR中的最小值。
结合第六方面,在第六方面的某些实现方式中,该会话管理网元获取该远端终端设备的会话管理签约数据,包括:该所述会话管理网元接收来自该中继设备的第一消息,该第一消息包括远端终端设备的第一标识;该会话管理网元根据该第一标识获取该会话管理签约数据。
结合第六方面,在第六方面的某些实现方式中,该会话管理网元根据该第一标识获取该会话管理签约数据包括:该会话管理网元向数据管理网元/数据仓库网元发送第二请求消息,该第二请求消息用于请求该会话管理签约数据,该第二请求消息中包括该第一标识; 该会话管理网元接收来自该数据管理网元/数据仓库网元的第二响应消息,该第二响应消息中包括该会话管理签约数据。
结合第六方面,在第六方面的某些实现方式中,该第二请求消息中还包括第一指示信息,该第一指示信息用于指示该远端终端设备通过该中继设备接入网络。
结合第六方面,在第六方面的某些实现方式中,该会话管理网元根据该第一标识获取该会话管理签约数据包括:该会话管理网元向数据网络验证授权和计费(date network-authentication authorization and accounting,DN-AAA)服务器发送第三请求消息,该第三请求消息用于请求该会话管理签约数据,该第三请求消息中包括该第一标识;该会话管理网元接收来自该DN-AAA服务器的第三响应消息,该第三响应消息中包括该会话管理签约数据。
结合第六方面,在第六方面的某些实现方式中,该会话管理网元获取该远端终端设备的会话管理签约数据,包括:该会话管理网元接收来自该中继设备的第一中继服务码和/第二中继服务码,该第一中继服务码和/或第二中继服务码与该会话管理签约数据相关联;该会话管理网元向数据管理网元/数据仓库网元发送第三请求消息,该第三请求消息用于请求该会话管理签约数据,该第三请求消息中包括该第一中继服务码和/或第二中继服务码;该会话管理网元接收来自该数据管理网元/数据仓库网元的第三响应消息,该第三响应消息中包括该会话管理签约数据。
结合第六方面,在第六方面的某些实现方式中,该会话管理网元获取该远端终端设备的会话管理签约数据,包括:该会话管理网元接收来自该中继设备的第一消息,该第一消息包括所述会话管理签约数据。
第七方面,提供了一种业务保障的方法,该业务保障的方法可以由用户面网元执行,或者,也可以由设置于用户面网元中的芯片或电路执行,本申请对此不作限定。
该业务保障的方法应用于远端终端设备通过中继设备接入网络的情况下,该方法包括:用户面网元接收来自会话管理网元的PDR,该PDR与该远端终端设备对应,该PDR包括QER,该QER中的最大带宽是基于该远端终端设备的AMBR确定的;该用户面网元根据该QER中的最大带宽确定向该远端终端设备发送的数据的速率。
在本申请实施例中,用户面网元接收到来自会话管理网元的PDR之后,可以从PDR中获取QER中的最大带宽,从而使得在用户面网元在执行远端终端设设备的数据包传输的过程中,可以根据远端终端设备的最大带宽限制发送给远端终端设备的数据的速率。
结合第七方面,在第七方面的某些实现方式中,该远端终端设备的AMBR包括以下至少一种:该远端终端设备的签约会话AMBR、该远端终端设备的PC5接口AMBR、该远端终端设备的PC5链路AMBR。
结合第七方面,在第七方面的某些实现方式中,该QER中的最大带宽是该远端终端设备的签约会话AMBR与该远端终端设备的PC5接口AMBR/PC5链路AMBR中的最小值。
第八方面,提供了一种获取中继服务码的方法,该获取中继服务码的方法可以由策略控制网元执行,或者,也可以由设置于策略控制网元中的芯片或电路执行,本申请对此不作限定。
该获取中继服务码的方法应用于远端终端设备通过中继设备接入网络的情况下,该方 法包括:策略控制网元获取该远端终端设备的会话管理签约数据,该会话管理签约数据包括该远端终端设备的AMBR;该策略控制网元根据该签约数据决策中继服务码,该中继服务码与该会话管理签约数据相关联;该策略控制网元向该远端终端设备和该中继设备发送该中继服务码。
本申请实施例提供了一种获取中继服务码的方法,将远端终端设备的会话管理签约数据与中继服务码相关联,从而使得远端终端设备根据该中继服务码可以匹配到能为自己提供中继服务的中继设备。
结合第八方面,在第八方面的某些实现方式中,该方法还包括:该策略控制网元向数据管理网元/数据仓库网元发送所述中继服务码和第二指示信息,该第二指示信息用于指示该中继服务码与该会话管理签约数据相关联。
结合第八方面,在第八方面的某些实现方式中,该方法还包括:该策略控制网元向该远端终端设备和该中继设备发送该会话管理签约数据。
结合第八方面,在第八方面的某些实现方式中,该远端终端设备的AMBR包括以下至少一种:该远端终端设备的签约会话AMBR、该远端终端设备的PC5接口AMBR、该远端终端设备的PC5链路AMBR。
第九方面,提供一种业务保障的装置,该业务保障的装置包括处理器,用于实现上述第一方面描述的方法中策略控制网元的功能。
具体地该业务保障的装置包括:
接收单元,用于获取该远端终端设备的第一标识,该远端终端设备的第一标识用于获取该远端终端设备的签约数据;
处理单元,用于基于该远端终端设备的签约数据生成策略计费控制PCC规则,该PCC规则中包括第一通信接口的第一QoS参数和第二通信接口的第二QoS参数,
发送单元,用于向会话管理网元发送该PCC规则;
其中,该第一通信接口为该中继设备与接入网设备之间的通信接口、该第二通信接口为该中继设备和该远端终端设备之间的通信接口,该第一QoS参数用于生成该第一通信接口对应的第一QoS规则、该第二QoS参数用于生成该第二通信接口对应的第二QoS规则。
结合第九方面,在第九方面的某些实现方式中,该接收单元,还用于获取所述远端终端设备的互联网协议IP地址信息;所述处理单元,还用于基于所述IP地址信息确定流描述信息,所述流描述信息携带在所述PCC规则中。
结合第九方面,在第九方面的某些实现方式中,该接收单元获取该远端终端设备的标识包括:
该接收单元接收来自会话管理网元的第二消息,该第二消息中包括该远端终端设备的标识;或者,
该接收单元接收来自应用网元的策略授权请求消息,该策略授权请求消息中包括所述远端终端设备的第二标识,其中,所述第二标识用于确定所述第一标识。
结合第九方面,在第九方面的某些实现方式中,该第二消息还包括该远端终端设备的会话管理签约数据,该会话管理签约数据包括该远端终端设备的AMBR,该第二QoS参数包括该远端终端设备可使用的AMBR。
结合第九方面,在第九方面的某些实现方式中,该策略授权请求消息中还包括:
业务的标识和/或QoS参数需求,该业务标识用于指示业务类型,该QoS参数需求用于辅助该策略控制网元基于生成该PCC规则。
结合第九方面,在第九方面的某些实现方式中,该业务的标识包括以下信息中的至少一种:
第一中继服务码Relay Service Code、第二Relay Service Code、应用标识APP ID、邻近服务应用名ProSe APP ID;
其中,该第一Relay Service Code为该远端终端设备被配置的Relay Service Code,该第二Relay Service Code为该中继设备被配置的Relay Service Code。
结合第九方面,在第九方面的某些实现方式中,该接收单元接收来自应用网元的策略授权请求消息之前,该接收单元,还用于接收来自该应用网元的订阅消息,该订阅消息用于订阅该远端终端设备是否上线;
该发送单元,还用于向该应用网元发送通知消息,该通知消息用于指示该远端终端设备上线。
结合第九方面,在第九方面的某些实现方式中,该第二消息和/或策略授权请求消息中还包括:
第一中继服务码Relay Service Code和/或第二Relay Service Code,
其中,该第一Relay Service Code为该远端终端设备被配置的Relay Service Code,该第二Relay Service Code为该中继设备被配置的Relay Service Code;
该处理单元基于该远端终端设备的签约数据生成策略计费控制PCC规则该策略控制网元包括:
该处理单元基于该远端终端设备的签约数据以及该第一Relay Service Code和/或该第二Relay Service Code生成该PCC规则。
结合第九方面,在第九方面的某些实现方式中,该处理单元,还用于基于该第一Relay Service Code和/或第二Relay Service Code判断业务类型;或者,
该处理单元,还用于基于该第一Relay Service Code和/或第二Relay Service Code从5G邻近服务名称管理功能DDNMF网元处获知该业务类型。
结合第九方面,在第九方面的某些实现方式中,该远端终端设备的第一标识包括
通用公开用户标识GPSI或第三方应用为该远端终端设备分配的用户标识user ID。
可选地,该业务保障的装置还可以包括存储器,该存储器与该处理器耦合,该处理器用于实现上述第一方面描述的方法中策略控制网元的功能。
在一种可能的实现中,该存储器用于存储程序指令和数据。该存储器与该处理器耦合,该处理器可以调用并执行该存储器中存储的程序指令,用于实现上述第一方面描述的方法中策略控制网元的功能。
可选地,该业务保障的装置还可以包括通信接口,该通信接口用于该业务保障的装置与其它设备进行通信。当该业务保障的装置为用户设备时,该通信接口可以为收发器、输入/输出接口、或电路等。
在一种可能的设计中,该业务保障的装置包括:处理器和通信接口,
该处理器利用该通信接口与外部通信;
该处理器用于运行计算机程序,以使得该业务保障的装置实现上述第一方面描述的任一种方法。
可以理解,该外部可以是处理器以外的对象,或者是该装置以外的对象。
在另一种可能的设计中,该业务保障的装置为芯片或芯片系统。该通信接口可以是该芯片或芯片系统上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。该处理器也可以体现为处理电路或逻辑电路。
第十方面,提供一种业务保障的装置,该业务保障的装置包括处理器,用于实现上述第二方面描述的方法中应用网元的功能。
具体地该业务保障的装置包括:
处理单元,用于确定策略授权请求消息;
发送单元,用于向策略控制网元发送策略授权请求消息,该策略授权请求消息中包括远端终端设备的第二标识,该远端终端设备为通过另一个终端设备接入网络的终端设备;
其中,远端终端设备的第二标识用于确定远端终端设备的第一标识,该远端终端设备的标识用于获取该远端终端设备的签约数据,该远端终端设备的签约数据用于确定第二服务质量QoS规则,该第二QoS规则为该中继设备和该远端终端设备之间的第二通信接口对应的QoS规则。
结合第十方面,在第十方面的某些实现方式中,该处理单元策略授权请求消息之前,该装置还包括:
发送单元,用于向该策略控制网元发送订阅消息,该订阅消息用于订阅该远端终端设备是否上线;
接收单元,用于接收来自该策略控制网元的通知消息,该通知消息用于指示该远端终端设备上线;或者,
该装置还包括:
查询单元,用于通过查询请求消息获取该策略控制网元的信息。
结合第十方面,在第十方面的某些实现方式中,所述处理单元确定策略授权请求消息包括:所述处理单元基于所述第一标识和业务标识确定所述策略授权请求消息,所述业务标识用于标识业务类型其中,所述第一标识和所述业务标识携带在所述通知消息中,或者,所述第一标识和所述业务标识由所述处理单元通过用户面感知获得。
结合第十方面,在第十方面的某些实现方式中,该策略授权请求消息还包括:
业务的标识和/或QoS参数需求,该业务标识用于指示业务类型,该QoS参数需求用于辅助该策略控制网元生成该PCC规则。
结合第十方面,在第十方面的某些实现方式中,该业务的标识包括以下信息中的至少一种:
第一中继服务码Relay Service Code、第二Relay Service Code、应用标识APP ID、邻近服务应用名ProSe APP ID;
其中,该第一Relay Service Code为该远端终端设备被配置的Relay Service Code,该第二Relay Service Code为该中继设备被配置的Relay Service Code
结合第十方面,在第十方面的某些实现方式中,该远端终端设备的标识包括以下标识中的至少一种:
远端终端设备的通用公开用户标识GPSI、第三方分配的远端终端设备的用户标识user ID、远端终端设备的互联网协议第六版IPv6地址、远端终端设备的IPv6地址前缀、中继设备的互联网协议第四版IPv4地址和传输控制协议或用户数据报协议TCP/UDP端口号组成的标识。
可选地,该业务保障的装置还可以包括存储器,该存储器与该处理器耦合,该处理器用于实现上述第二方面描述的方法中应用网元的功能。
在一种可能的实现中,该存储器用于存储程序指令和数据。该存储器与该处理器耦合,该处理器可以调用并执行该存储器中存储的程序指令,用于实现上述第二方面描述的方法中应用网元的功能。
可选地,该业务保障的装置还可以包括通信接口,该通信接口用于该业务保障的装置与其它设备进行通信。当该业务保障的装置为应用网元时,该通信接口可以为收发器、输入/输出接口、或电路等。
在一种可能的设计中,该业务保障的装置包括:处理器和通信接口,
该处理器用于运行计算机程序,以使得该业务保障的装置实现上述第二方面描述的任一种方法;
该处理器利用该通信接口与外部通信。
可以理解,该外部可以是处理器以外的对象,或者是该装置以外的对象。
在另一种可能的设计中,该业务保障的装置为芯片或芯片系统。该通信接口可以是该芯片或芯片系统上输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。该处理器也可以体现为处理电路或逻辑电路。
第十一方面,提供一种业务保障的装置,该业务保障的装置包括处理器,用于实现上述第三方面描述的方法中会话管理网元的功能。
具体地该业务保障的装置包括:
接收单元,用于接收来自该中继设备的第一消息,该第一消息中包括该远端终端设备的标识;
发送单元,用于向策略控制网元发送第二消息,该第二消息中包括该远端终端设备的第一标识,其中,该远端终端设备的第一标识用于获取该远端终端设备的签约数据,该远端终端设备的签约数据用于确定第二服务质量QoS规则,该第二QoS规则为该中继设备和该远端终端设备之间的第二通信接口对应的QoS规则。
结合第十一方面,在第十一方面的某些实现方式中,该接收单元,还用于接收来自该策略控制网元的策略计费控制PCC规则,该PCC规则中包括第一通信接口的第一QoS参数和该第二通信接口的第二QoS参数,
其中,该第一通信接口为该中继设备与接入网设备之间的通信接口;
该业务保障的装置还包括:
处理单元,用于根据该第一QoS参数生成该第一通信接口对应的第一QoS规则、根据该第二QoS参数生成该第二QoS规则。
结合第十一方面,在第十一方面的某些实现方式中,该装置还包括:
处理单元,用于为该PCC规则分配QoS流标识QFI,该QFI用于唯一标识该PCC规则对应的QoS流Flow;
发送单元,还用于向接入网设备发送第三消息,该第三消息中包括该QFI、该第一QoS规则和该第二QoS规则。
结合第十一方面,在第十一方面的某些实现方式中,该远端终端设备的标识包括:
通用公开用户标识GPSI或第三方应用为该远端终端设备分配的用户标识user ID。
结合第十一方面,在第十一方面的某些实现方式中,该第一消息和第二消息中还包括:
第一中继服务码Relay Service Code和/或第二Relay Service Code,该第一Relay Service Code或该第二Relay Service Code用于确定该第二QoS规则;
其中,该第一Relay Service Code为该远端终端设备被配置的Relay Service Code,该第二Relay Service Code为该中继设备被配置的Relay Service Code。
结合第十一方面,在第十一方面的某些实现方式中,该第二消息中还包括:
该中继设备的标识和/或该远端终端设备的互联网协议IP地址信息。
可选地,该业务保障的装置还可以包括存储器,该存储器与该处理器耦合,该处理器用于实现上述第三方面描述的方法中会话管理网元的功能。
在一种可能的实现中,该存储器用于存储程序指令和数据。该存储器与该处理器耦合,该处理器可以调用并执行该存储器中存储的程序指令,用于实现上述第三方面描述的方法中会话管理网元的功能。
可选地,该业务保障的装置还可以包括通信接口,该通信接口用于该业务保障的装置与其它设备进行通信。当该业务保障的装置为会话管理网元时,该通信接口可以为收发器、输入/输出接口、或电路等。
在一种可能的设计中,该业务保障的装置包括:处理器和通信接口,
该处理器利用该通信接口与外部通信;
该处理器用于运行计算机程序,以使得该业务保障的装置实现上述第三方面描述的任一种方法。
可以理解,该外部可以是处理器以外的对象,或者是该装置以外的对象。
在另一种可能的设计中,该业务保障的装置为芯片或芯片系统。该通信接口可以是该芯片或芯片系统上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。该处理器也可以体现为处理电路或逻辑电路。
第十二方面,提供一种业务保障的装置,该业务保障的装置包括处理器,用于实现上述第四方面描述的方法中中继设备的功能。
具体地该业务保障的装置包括:
发送单元,用于向会话管理网元发送第一消息,该第一消息中包括该远端终端设备的第一标识;
接收单元,用于接收来自该会话管理网元的第二服务质量QoS规则,该第二QoS规则基于第一标识对应的该远端终端设备的签约数据生成;
处理单元,用于基于所述第二QoS规则对所述中继设备和所述远端终端设备之间的第二通信接口进行QoS保障。
结合第十二方面,在第十二方面的某些实现方式中,该发送单元,还用于向该远端终端设备发送该第二QoS规则。
结合第十二方面,在第十二方面的某些实现方式中,该远端终端设备的第一标识包括:
通用公开用户标识GPSI或第三方应用为该远端终端设备分配的用户标识user ID。
结合第十二方面,在第十二方面的某些实现方式中,该第一消息中还包括:
第一中继服务码Relay Service Code和/或第二Relay Service Code,该第一Relay Service Code或该第二Relay Service Code用于确定该第二QoS规则;
其中,该第一Relay Service Code为该远端终端设备被配置的Relay Service Code,该第二Relay Service Code为该中继设备被配置的Relay Service Code。
结合第十二方面,在第十二方面的某些实现方式中,该第一中继服务码和/或第二中继服务码与该远端终端设备的会话管理签约数据相关联。
结合第十二方面,在第十二方面的某些实现方式中,该接收单元,还用于接收来自该会话管理网元的第四消息,该第四消息包括该远端终端设备的会话管理签约数据,该会话管理签约数据包括该远端终端设备的AMBR;该处理单元,还用于根据该远端终端设备的AMBR确定与该远端终端设备之间的PC5链路的AMBR。
可选地,该业务保障的装置还可以包括存储器,该存储器与该处理器耦合,该处理器用于实现上述第四方面描述的方法中中继设备的功能。
在一种可能的实现中,该存储器用于存储程序指令和数据。该存储器与该处理器耦合,该处理器可以调用并执行该存储器中存储的程序指令,用于实现上述第四方面描述的方法中中继设备的功能。
可选地,该业务保障的装置还可以包括通信接口,该通信接口用于该业务保障的装置与其它设备进行通信。当该业务保障的装置为中继设备时,该通信接口可以为收发器、输入/输出接口、或电路等。
在一种可能的设计中,该业务保障的装置包括:处理器和通信接口,
该处理器用于运行计算机程序,以使得该业务保障的装置实现上述第四方面描述的任一种方法;
该处理器利用该通信接口与外部通信。
可以理解,该外部可以是处理器以外的对象,或者是该装置以外的对象。
在另一种可能的设计中,该业务保障的装置为芯片或芯片系统。该通信接口可以是该芯片或芯片系统上输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。该处理器也可以体现为处理电路或逻辑电路。
第十三方面,提供一种业务保障的装置,该业务保障的装置包括处理器,用于实现上述第五方面描述的方法中远端终端设备的功能。
具体地该业务保障的装置包括:
接收单元,接收来自所述中继设备的第二服务质量QoS规则,所述第二QoS规则基于所述远端终端设备的签约数据生成;
处理单元,基于所述第二QoS规则对所述中继设备和所述远端终端设备之间的第二通信接口进行QoS保障。
可选地,该业务保障的装置还可以包括存储器,该存储器与该处理器耦合,该处理器用于实现上述第五方面描述的方法中远端终端设备的功能。
在一种可能的实现中,该存储器用于存储程序指令和数据。该存储器与该处理器耦合,该处理器可以调用并执行该存储器中存储的程序指令,用于实现上述第五方面描述的方法 中远端终端设备的功能。
可选地,该业务保障的装置还可以包括通信接口,该通信接口用于该业务保障的装置与其它设备进行通信。当该业务保障的装置为远端终端设备时,该通信接口可以为收发器、输入/输出接口、或电路等。
在一种可能的设计中,该业务保障的装置包括:处理器和通信接口,
该处理器利用该通信接口与外部通信;
该处理器用于运行计算机程序,以使得该业务保障的装置实现上述第五方面描述的任一种方法。
可以理解,该外部可以是处理器以外的对象,或者是该装置以外的对象。
在另一种可能的设计中,该业务保障的装置为芯片或芯片系统。该通信接口可以是该芯片或芯片系统上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。该处理器也可以体现为处理电路或逻辑电路。
第十四方面,提供一种业务保障的装置,该业务保障的装置包括处理器,用于实现上述第六方面描述的方法中会话管理网元的功能。
具体地该业务保障的装置包括:
接收单元,用于获取该远端终端设备的会话管理签约数据,该会话管理签约数据包括该远端终端设备的AMBR;
处理单元,用于生成与该远端终端设备对应的PDR,该PDR包括QER,该QER中的最大带宽是基于该远端终端设备的AMBR确定的;
发送单元,用于向用户面网元发送该PDR。
结合第十四方面,在十四方面的某些实现方式中,该发送单元,还用于向该中继设备发送第四消息,该第四消息包括该远端终端设备的AMBR。
结合第十四方面,在第十四方面的某些实现方式中,该远端终端设备的AMBR包括以下至少一种:该远端终端设备的签约会话AMBR、该远端终端设备的PC5接口AMBR、该远端终端设备的PC5链路AMBR。
结合第十四方面,在第十四方面的某些实现方式中,该QER中的最大带宽是该远端终端设备的签约会话AMBR与该远端终端设备的PC5接口AMBR/PC5链路AMBR中的最小值。
结合第十四方面,在第十四方面的某些实现方式中,该发送单元,还用于向策略控制网元发送第二消息,该第二消息中包括该会话管理签约数据;该接收单元,还用于接收来自该策略控制网元的会话相关策略和/或策略计费控制PCC规则,该会话相关策略和/或PCC规则中包括第二通信接口的第二QoS参数,其中,该第二通信接口为该中继设备与该远端终端设备之间的通信接口,该第二QoS参数包括该远端终端设备可使用的AMBR;该QER中的最大带宽是该远端终端设备的AMBR和该远端终端设备可使用的AMBR中的最小值。
结合第十四方面,在第十四方面的某些实现方式中,该接收单元还用于:接收来自该中继设备的第一消息,该第一消息包括远端终端设备的第一标识;根据该第一标识获取该会话管理签约数据。
结合第十四方面,在第十四方面的某些实现方式中,该发送单元还用于向数据管理网 元/数据仓库网元发送第二请求消息,该第二请求消息用于请求该会话管理签约数据,该第二请求消息中包括该第一标识;该接收单元还用于:接收来自该数据管理网元/数据仓库网元的第二响应消息,该第二响应消息中包括该会话管理签约数据。
结合第十四方面,在第十四方面的某些实现方式中,该第二请求消息中还包括第一指示信息,该第一指示信息用于指示该远端终端设备通过该中继设备接入网络。
结合第十四方面,在第十四方面的某些实现方式中,该发送单元,还用于向DN-AAA服务器发送第三请求消息,该第三请求消息用于请求该会话管理签约数据,该第三请求消息中包括该第一标识;该接收单元还用于,接收来自该DN-AAA服务器的第三响应消息,该第三响应消息中包括该会话管理签约数据。
结合第十四方面,在第十四方面的某些实现方式中,该接收单元,还用于接收来自该中继设备的第一中继服务码和/第二中继服务码,该第一中继服务码和/或第二中继服务码与该会话管理签约数据相关联;该发送单元还用于,向数据管理网元/数据仓库网元发送第三请求消息,该第三请求消息用于请求该会话管理签约数据,该第三请求消息中包括该第一中继服务码和/或第二中继服务码;该接收单元还用于,接收来自该数据管理网元/数据仓库网元的第三响应消息,该第三响应消息中包括该会话管理签约数据。
结合第十四方面,在第十四方面的某些实现方式中,该接收单元,还用于接收来自该中继设备的第一消息,该第一消息包括所述会话管理签约数据。
可选地,该业务保障的装置还可以包括存储器,该存储器与该处理器耦合,该处理器用于实现上述第六方面描述的方法中会话管理网元的功能。
在一种可能的实现中,该存储器用于存储程序指令和数据。该存储器与该处理器耦合,该处理器可以调用并执行该存储器中存储的程序指令,用于实现上述第六方面描述的方法中会话管理网元的功能。
可选地,该业务保障的装置还可以包括通信接口,该通信接口用于该业务保障的装置与其它设备进行通信。当该业务保障的装置为远端终端设备时,该通信接口可以为收发器、输入/输出接口、或电路等。
在一种可能的设计中,该业务保障的装置包括:处理器和通信接口,
该处理器利用该通信接口与外部通信;
该处理器用于运行计算机程序,以使得该业务保障的装置实现上述第六方面描述的任一种方法。
可以理解,该外部可以是处理器以外的对象,或者是该装置以外的对象。
在另一种可能的设计中,该业务保障的装置为芯片或芯片系统。该通信接口可以是该芯片或芯片系统上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。该处理器也可以体现为处理电路或逻辑电路。
第十五方面,提供一种业务保障的装置,该业务保障的装置包括处理器,用于实现上述第七方面描述的方法中用户面网元的功能。
具体地该业务保障的装置包括:
接收单元,用于接收来自会话管理网元的PDR,该PDR与该远端终端设备对应,该PDR包括QER,该QER中的最大带宽是基于该远端终端设备的AMBR确定的;
处理单元,用于根据该QER中的最大带宽确定向该远端终端设备发送的数据的速率。
结合第十五方面,在第十五方面的某些实现方式中,该远端终端设备的AMBR包括以下至少一种:该远端终端设备的签约会话AMBR、该远端终端设备的PC5接口AMBR、该远端终端设备的PC5链路AMBR。
结合第十五方面,在第十五方面的某些实现方式中,该QER中的最大带宽是该远端终端设备的签约会话AMBR与该远端终端设备的PC5接口AMBR/PC5链路AMBR中的最小值。
可选地,该业务保障的装置还可以包括存储器,该存储器与该处理器耦合,该处理器用于实现上述第七方面描述的方法中用户面网元的功能。
在一种可能的实现中,该存储器用于存储程序指令和数据。该存储器与该处理器耦合,该处理器可以调用并执行该存储器中存储的程序指令,用于实现上述第七方面描述的方法中用户面网元的功能。
可选地,该业务保障的装置还可以包括通信接口,该通信接口用于该业务保障的装置与其它设备进行通信。当该业务保障的装置为远端终端设备时,该通信接口可以为收发器、输入/输出接口、或电路等。
在一种可能的设计中,该业务保障的装置包括:处理器和通信接口,
该处理器利用该通信接口与外部通信;
该处理器用于运行计算机程序,以使得该业务保障的装置实现上述第七方面描述的任一种方法。
可以理解,该外部可以是处理器以外的对象,或者是该装置以外的对象。
在另一种可能的设计中,该业务保障的装置为芯片或芯片系统。该通信接口可以是该芯片或芯片系统上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。该处理器也可以体现为处理电路或逻辑电路。
第十六方面,提供一种获取中继服务码的装置,该获取中继服务码的装置包括处理器,用于实现上述第八方面描述的方法中测策略控制网元的功能。
具体地该获取中继服务码的装置包括:
接收单元,用于获取该远端终端设备的会话管理签约数据,该会话管理签约数据包括该远端终端设备的AMBR;
处理单元,用于根据该签约数据决策中继服务码,该中继服务码与该会话管理签约数据相关联;
发送单元,用于向该远端终端设备和该中继设备发送该中继服务码。
结合第十六方面,在第十六方面的某些实现方式中,该发送单元,还用于向数据管理网元/数据仓库网元发送所述中继服务码和第二指示信息,该第二指示信息用于指示该中继服务码与该会话管理签约数据相关联。
结合第十六方面,在第十六方面的某些实现方式中,该发送单元,还用于向该远端终端设备和该中继设备发送该会话管理签约数据。
结合第十六方面,在第十六方面的某些实现方式中,该远端终端设备的AMBR包括以下至少一种:该远端终端设备的签约会话AMBR、该远端终端设备的PC5接口AMBR、该远端终端设备的PC5链路AMBR。
可选地,该业务保障的装置还可以包括存储器,该存储器与该处理器耦合,该处理器 用于实现上述第八方面描述的方法中策略控制网元的功能。
在一种可能的实现中,该存储器用于存储程序指令和数据。该存储器与该处理器耦合,该处理器可以调用并执行该存储器中存储的程序指令,用于实现上述第八方面描述的方法中策略控制网元的功能。
可选地,该业务保障的装置还可以包括通信接口,该通信接口用于该业务保障的装置与其它设备进行通信。当该业务保障的装置为远端终端设备时,该通信接口可以为收发器、输入/输出接口、或电路等。
在一种可能的设计中,该业务保障的装置包括:处理器和通信接口,
该处理器利用该通信接口与外部通信;
该处理器用于运行计算机程序,以使得该业务保障的装置实现上述第八方面描述的任一种方法。
可以理解,该外部可以是处理器以外的对象,或者是该装置以外的对象。
在另一种可能的设计中,该业务保障的装置为芯片或芯片系统。该通信接口可以是该芯片或芯片系统上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。该处理器也可以体现为处理电路或逻辑电路。
第十七方面,本申请提供一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
第十八方面,本申请提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
第十九方面,提供了一种通信系统,包括第九方面所示的业务保障的装置和第十方面所示的业务保障的装置。
进一步地,该通信系统还包括第十一方面或第十四方面所示的业务保障的装置。
进一步地,该通信系统还包括第十二方面所示的业务保障的装置和第十三方面所示的业务保障的装置。
进一步地,该通信系统还包括第十五方面所示的业务保障的装置。
进一步地,该通信系统还包括第十六方面所示的获取中继服务码的装置。
第二十方面,提供了一种芯片系统,包括存储器和处理器,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得安装有该芯片系统的通信设备执行上述第一至第八方面中任一种可能实现方式中的方法。
附图说明
图1是适用于本申请实施例的网络架构。
图2是本申请提供的一种ProSe relay通信架构示意图。
图3本申请提供的一种ProSe relay通信场景下标准定义的架构示意图。
图4是一种远端终端设备通过中继设备接入网络的示意性流程图。
图5是本申请实施例提供的一种业务保障的方法示意性流程图。
图6是本申请实施例提供的另一种业务保障的方法示意性流程图。
图7是本申请实施例提供的又一种业务保障的方法示意性流程图。
图8是本申请实施例提供的又一种业务保障的方法示意性流程图。
图9是本申请实施例提供的又一种业务保障的方法示意性流程图。
图10是本申请提出的业务保障的装置8000的示意图。
图11是适用于本申请实施例的中继设备或远端终端设备900的结构示意图。
图12是本申请提出的业务保障的装置1000的示意图。
图13是适用于本申请实施例的会话管理网元1100的结构示意图。
图14是本申请提出的业务保障的装置1200的示意图。
图15是适用于本申请实施例的策略控制网元1200的结构示意图。
图16是本申请提出的业务保障的装置1400的示意图。
图17是适用于本申请实施例的应用网元1500的结构示意图。
图18是本申请提出的业务保障的装置1600的示意图。
图19是本申请提出的业务保障的装置1900的示意图。
图20是适用于本申请实施例的用户面网元2000的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
图1是适用于本申请实施例的网络架构。如图1所示,下面对该网络架构中涉及的各个部分分别进行说明。
1、用户设备(user equipment,UE)110:可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备,以及各种形式的终端、移动台(mobile station,MS)、终端(terminal)或软终端等等。例如,水表、电表、传感器等。
示例性地,本申请实施例中的用户设备可以指接入终端、用户单元、用户站、移动站、移动台、中继站、远方站、远程终端、移动设备、用户终端(user terminal)、终端设备(terminal equipment)、无线通信设备、用户代理或用户装置。用户设备还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的用户设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的用户设备或者未来车联网中的用户设备等,本申请实施例对此并不限定。
作为示例而非限定,在本申请实施例中,可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
此外,在本申请实施例中,用户设备还可以是物联网(internet of Things,IoT)系统中的用户设备,IoT是未来信息技术发展的重要组成部分,其主要技术特点是将物品通过 通信技术与网络连接,从而实现人机互连,物物互连的智能化网络。在本申请实施例中,IOT技术可以通过例如窄带(narrow band,NB)技术,做到海量连接,深度覆盖,终端省电。此外,在本申请实施例中,用户设备还可以包括智能打印机、火车探测器、加油站等传感器,主要功能包括收集数据(部分用户设备)、接收接入网设备的控制信息与下行数据,并发送电磁波,向接入网设备传输上行数据。
2、(无线)接入网设备(radio access network,(R)AN)120:用于为特定区域的授权用户设备提供入网功能,并能够根据用户设备的级别,业务的需求等使用不同质量的传输隧道。
(R)AN能够管理无线资源,为用户设备提供接入服务,进而完成控制信号和用户设备数据在用户设备和核心网之间的转发,(R)AN也可以理解为传统网络中的基站。
示例性地,本申请实施例中的接入网设备可以是用于与用户设备通信的任意一种具有无线收发功能的通信设备。该接入网设备包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(home evolved NodeB,HeNB,或home Node B,HNB)、基带单元(baseBand unit,BBU),无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为5G,如,NR,系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括有源天线单元(active antenna unit,AAU)。CU实现gNB的部分功能,DU实现gNB的部分功能。比如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理(physical,PHY)层的功能。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU+AAU发送的。可以理解的是,接入网设备可以为包括CU节点、DU节点、AAU节点中一项或多项的设备。此外,可以将CU划分为接入网(radio access network,RAN)中的接入网设备,也可以将CU划分为核心网(core network,CN)中的接入网设备,本申请对此不做限定。
3、用户面网元130:用于分组路由和转发、用户面数据的QoS处理、完成用户面数据转发、基于会话/流级的计费统计,带宽限制等功能等。
在5G通信系统中,该用户面网元可以是用户面功能(user plane function,UPF)网元。在未来通信系统中,用户面网元仍可以是UPF网元,或者,还可以有其它的名称,本申请不做限定。
4、数据网络网元140:用于提供传输数据的网络。
在5G通信系统中,该数据网络网元可以是数据网络(data network,DN)网元。在未来通信系统中,数据网络网元仍可以是DN网元,或者,还可以有其它的名称,本申请不做限定。
5、接入管理网元150:主要用于移动性管理和接入管理、负责在用户设备与策略控制功能(policy control function,PCF)网元间传递用户策略等,可以用于实现移动性管理实体(mobility management entity,MME)功能中除会话管理之外的其它功能,例如,合法监听以及接入授权/鉴权等功能。
在5G通信系统中,该接入管理网元可以是接入管理功能(access and mobility management function,AMF)。在未来通信系统中,接入管理网元仍可以是AMF,或者,还可以有其它的名称,本申请不做限定。
6、会话管理网元160:主要用于会话管理、用户设备的网络互连协议(internet protocol,IP)地址分配和管理、选择可管理用户平面功能、策略控制和收费功能接口的终结点以及下行数据通知等。
在5G通信系统中,该会话管理网元可以是会话管理功能(session management function,SMF)网元。在未来通信系统中,会话管理网元仍可以是SMF网元,或者,还可以有其它的名称,本申请不做限定。
7、策略控制网元170:用于指导网络行为的统一策略框架,为控制面功能网元(例如AMF,SMF网元等)提供策略规则信息等。
在4G通信系统中,该策略控制网元可以是策略和计费规则功能(policy and charging rules function,PCRF)网元。在5G通信系统中,该策略控制网元可以是策略控制功能(policy control function,PCF)网元。在未来通信系统中,策略控制网元仍可以是PCF网元,或者,还可以有其它的名称,本申请不做限定。
具体地,该PCF网元主要负责针对会话、业务流级别进行计费、QoS带宽保障及移动性管理、用户设备策略决策等策略控制功能。图1所示的网络架构中,AMF所连接的PCF对应AM PCF(PCF for access and mobility control)、SMF所连接的PCF对应SM PCF(PCF for session management),其中,在实际部署场景中AM PCF和SM PCF可能不是同一个PCF实体。
8、数据仓库网元180:用于负责签约数据、策略数据、应用数据等类型数据的存取功能。
在5G通信系统中,该数据仓库网元可以是统一数据管理(unified data repository,UDR)网元。在未来通信系统中,数据仓库网元仍可以是UDR网元,或者,还可以有其它的名称,本申请不做限定。
9、数据管理网元190:用于处理用户设备标识,接入鉴权,注册以及移动性管理等。
在5G通信系统中,该数据管理网元可以是统一数据管理(unified data management,UDM)网元;在4G通信系统中,该数据管理网元可以是归属用户服务器(home subscriber server,HSS)网元在未来通信系统中,统一数据管理仍可以是UDM网元,或者,还可以有其它的名称,本申请不做限定。
10、应用网元1100:用于传递应用侧对网络侧的需求,接入网络开放功能网元,与策略框架交互进行策略控制等。
在5G通信系统中,该应用网元可以是应用功能(application function,AF)网元。在未来通信系统中,应用网元仍可以是AF网元,或者,还可以有其它的名称,本申请不做限定。AF网元主要传递应用侧对网络侧的需求,例如,QoS需求或用户设备状态事件订阅等。
示例性地,该AF可以是第三方功能实体,也可以是运营商部署的应用服务(如互联网协议多媒体系统(internet protocol multimedia subsystem,IMS)语音呼叫业务)。对于第三方应用的应用功能实体,其与核心网进行交互时还可经由网络开放功能(network exposure function,NEF)网元进行授权处理,例如第三方应用功能直接向NEF发送请求消息,NEF判断该AF是否被允许发送该请求消息,若验证通过,则将转发该请求消息至对应PCF或UDM。
还应理解,图1只是一种示例对本申请的保护范围不构成任何限定。本申请实施例提供的业务保障的方法还可以涉及图1中未示出的网元,例如,本申请实施例提供的业务保障的方法还涉及网络开放网元,其中,网络开放网元用于QoS能力开放、AF请求的流量引导等。
在5G通信系统中,该网络网络开放网元可以是上述的NEF网元。在未来通信系统中,网络存储网元仍可以是NEF网元,或者,还可以有其它的名称,本申请不做限定。
可以理解的是,上述网元或者功能既可以是硬件设备中的网络元件,也可以是在专用硬件上运行软件功能,或者是平台(例如,云平台)上实例化的虚拟化功能。上述网元或者功能可以由一个设备实现,也可以由多个设备共同实现,还可以是一个设备内的一个功能模块,本申请实施例对此不作具体限。为方便说明,本申请后续,以接入管理网元为AMF网元,网络开放网元为NEF网元,会话管理网元为SMF网元,策略控制网元为PCF网元,应用网元为AF网元例进行说明。
进一步地,将AMF网元简称为AMF,NEF网元简称为NEF,SMF网元简称为SMF,PCF网元简称为PCF,AF网元简称为AF。即本申请后续所描述的AMF均可替换为接入管理网元,NEF均可替换为网络开放网元,SMF均可替换为会话管理网元,PCF均可替换为策略控制网元,AF均可替换为应用网元。
为方便说明,本申请实施例中以装置为AMF实体、SMF实体、PCF实体、AF实体、NEF实体为例,对业务保障的装置进行说明。对于业务保障的装置为AMF实体内的芯片、SMF实体内的芯片、PCF实体内的芯片、AF实体内的芯片、NEF实体内的芯片的实现方法,可参考装置分别为AMF实体、SMF实体、PCF实体、AF实体、NEF实体的具体说明,不再重复介绍。
在图1所示的网络架构中,涉及到不同网元之间的通信接口,具体地图1中所示的各个接口功能描述如下:
1、N7:PCF与SMF之间的接口,用于下发协议数据单元(protocol data unit,PDU)会话粒度以及业务数据流粒度控制策略。
2、N15:PCF与AMF之间的接口,用于下发用户设备策略及接入控制相关策略。
3、N5:AF与PCF之间的接口,用于应用业务请求下发以及网络事件上报。
4、N4:SMF与UPF之间的接口,用于控制面与用户面之间传递信息,包括控制面向用户面的转发规则、QoS控制规则、流量统计规则等的下发以及用户面的信息上报。
5、N11:SMF与AMF之间的接口,用于传递RAN和UPF之间的PDU会话隧道信息、传递发送给UE的控制消息、传递发送给RAN的无线资源控制信息等。
6、N2:AMF与RAN之间的接口,用于传递核心网侧至RAN的无线承载控制信息等。
7、N1:AMF与UE之间的接口,接入无关,用于向UE传递QoS控制规则等。
8、N8:AMF与UDM间的接口,用于AMF向UDM获取接入与移动性管理相关签约数据与鉴权数据,以及AMF向UDM注册UE当前移动性管理相关信息等。
9、N10:SMF与UDM间的接口,用于SMF向UDM获取会话管理相关签约数据,以及SMF向UDM注册UE当前会话相关信息等。
10、N35:UDM与UDR间的接口,用于UDM从UDR中获取用户签约数据信息。
11、N36:PCF与UDR间的接口,用于PCF从UDR中获取策略相关签约数据以及应用数据相关信息。
应理解,图1中所涉及的各个网元以及网元之间的通信接口的名称是以目前协议中规定的为例进行简单说明的,但并不限定本申请实施例只能够应用于目前已知的通信系统。因此,以目前协议为例描述时出现的标准名称,都是功能性描述,本申请对于网元、接口或信令等的具体名称并不限定,仅表示网元、接口或者信令的功能,可以对应的扩展到其它系统,比如2G、3G、4G或未来通信系统中。
还应理解,上述图1所示的适用于本申请实施例的网络架构仅是一种举例说明,适用本申请实施例的网络架构并不局限于此,任何能够实现上述各个网元的功能的网络架构都适用于本申请实施例。
例如,在某些网络架构中,AMF、SMF网元、PCF网元以及UDM网元等网络功能网元实体都称为网络功能(network function,NF)网元;或者,在另一些网络架构中,AMF,SMF网元,PCF网元,UDM网元等网元的集合都可以称为控制面功能网元。
本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)系统、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、第五代(5th generation,5G)系统、新无线(new radio,NR)或未来网络等,本申请中所述的5G移动通信系统包括非独立组网(non-standalone,NSA)的5G移动通信系统或独立组网(standalone,SA)的5G移动通信系统。本申请提供的技术方案还可以应用于未来的通信系统,如第六代移动通信系统。通信系统还可以是陆上公用移动通信网(public land mobile network,PLMN)网络、设备到设备(device-to-device,D2D)通信系统、机器到机器(machine to machine,M2M)通信系统、物联网(internet of Things,IoT)通信系统或者其他通信系统。
在本申请实施例中,用户设备或接入网设备包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows 操作系统等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是用户设备或接入网设备,或者,是用户设备或接入网设备中能够调用程序并执行程序的功能模块。
另外,本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读存储介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
进一步地,本申请实施例提供的业务保障的方法还涉及到ProSe relay通信。应理解,为了提高无线频谱利用率,并为蜂窝网络覆盖之外的远端终端设备提供蜂窝网络服务,蜂窝通信网络引入了ProSe relay通信,该ProSe relay通信方式的应用场景可包括:基站覆盖边缘信号增强、无覆盖区域中继接入运营商网络等场景。
其中,基站覆盖边缘信号增强可理解为远端终端设备在基站覆盖边缘区域时,由于信号衰减,导致信号强度无法满足业务所需的高带宽要求,因此基站覆盖边缘区域的远端终端设备可通过中继设备接入网络,其中,本申请实施例中的中继设备可以称为ProSe UE-to-NW Relay设备表示邻近服务中远端终端设备通过中继设备接入网络(proximity-based services usere quipment to network relay,ProSe UE-to-NW Relay)的方式下的设备,该中继设备也可以是终端设备,所以也可以称为中继终端设备,下文中简称为中继设备。
无覆盖区域中继接入运营商网络则可理解为远端终端设备在运营商网络覆盖范围外时,通过中继设备间接接入5G网络。
综上所述,在ProSe通信中,距离邻近的两个用户设备(如,远端终端设备和中继设备)之间可以直接建立通信链路(如,侧行链路(sidelink)),也称为使用PC5接口实现用户设备之间通信,从而实现远端终端设备通过中继设备可以在基站边缘、网络无覆盖区域接入运营商网络。
3GPP在4G通信协议中定义了仅用于公共安全的ProSe relay通信架构,该通信架构在5G网络中可以扩展为支持除公共安全业务之外的其他业务。图2是本申请提供的一种ProSe relay通信架构示意图。
从图2中可以看出,远端用户设备(remote UE)可以通过中继设备(ProSe UE-to-NW Relay)接入5G网络,具体地该接入过程包括:
remote UE通过通信接口(如图2所示的PC5接口)与中继设备建立连接、中继设备通过通信接口(如图2所示的N1接口)接口与基站建立连接、基站可以与核心网设备建立连接、核心网设备通过(如图2所示的N6接口)接口与用户应用服务网元建立连接。其中,remote UE和中继设备都可以理解为用户设备,所以remote UE和中继设备之间的 通信接口可以理解为PC5接口。
为了便于区分下文中称remote UE为远端终端设备,ProSe UE-to-NW Relay为中继设备,本申请实施例中远端终端设备可以通过中继设备接入网络中,并建立分组数据单元(packet data unit,PDU)会话(session)用以保证业务的正常进行。
需要说明的是,本申请实施例中对于远端终端设备如何通过中继设备接入网络,以及如何建立PDU会话用以保证业务的正常进行不做限定,可以参考目前协议中的规定,或者还可以参考未来协议中对于该部分流程的规定。本申请中主要涉及到远端终端设备通过中继设备接入网络,并建立了PDU会话之后,核心网设备侧如何基于不同的业务配置不同QoS保障。
图3本申请提供的一种ProSe relay通信场景下标准定义的架构示意图。
PCF负责在用户设备接入5G网络时提供相应授权信息。例如,授权是否允许用户设备使用ProSe功能接入特定业务、允许在哪些PLMN内启用ProSe功能、受限ProSe场景下的ProSe发现用户设备标识(ProSe discovery user identify,PDUID)等信息,该过程在用户设备注册流程中即可实现,具体流程可以参考目前协议中对于PCF提供授权信息的规定,本申请对此不做限定。
此外,ProSe relay通信中还可能涉及5G邻近服务名称管理功能(direct discovery name management function,DDNMF)网元,5G DDNMF网元负责在收到来自用户设备的发现请求后为用户设备分配相应的中继服务码/掩码(Relay Service Code/Filter)信息,为了便于描述,下文中将Relay Service Code/Filter信息简称为Relay Service Code。
可选地,5G DDNMF也可以通过静态配置的方式下发上述中继服务码至中继设备和远端终端设备,而无需其主动触发ProSe发现请求流程。
进一步地,5G DDNMF网元为用户设备分配的Relay Service Code使得用户设备可以通过广播消息侦听到其他用户设备发送的建立连接的请求,触发与其他用户设备建立通信连接(如,PC5连接),该5G DDNMF网元在实际部署中可以与其他的网元合并设置,如与PCF、UDR或UDM等网元合并设置。
需要说明的是,本申请实施例中对于5G DDNMF网元如何为用户设备分配Relay Service Code不做限定,参考目前协议中的规定即可,对于Relay Service Code包括的具体内容也不做限定,例如,Relay Service Code包括业务信息、安全策略等。
示例性地,图3中所示的UE#B可以理解为remote UE,UE#A可以理解为ProSe UE-to-NW Relay。为了便于描述,本申请实施例中UE#B称为远端终端设备、UE#A称为中继设备。远端终端设备在与中继设备建立通信连接(如,PC5连接)前,还需配置ProSe relay业务所需的Relay Service Code等信息。当中继设备与远端终端设备完成上述信息配置流程之后,可触发两者间互相发现的流程。
具体地,上述的发现流程可分为两种模式:
模式一:
中继设备根据从PCF所收到的Relay Service Code及相关频点信息进行广播,由远端终端设备对广播信号进行监听,当远端终端设备在监听到符合条件的Relay Service Code后可发起PC5连接建立请求。该模式一下中继设备所发起的广播信息中具体可包括:
1)中继设备ID:链路层ID;
2)广播者信息(Announcer Info):中继设备信息;
3)Relay Service Code。
具体地,Relay Service Code可包含具体的业务信息、安全策略、及可选地还可包含授权允许接入的用户列表等。
模式二:
远端终端设备根据从PCF所收到的Relay Service Code及相关频点信息进行广播,由中继设备对广播信号进行监听,当中继设备监听到符合条件的Relay Service Code后,中继设备可返回响应消息至远端终端设备。该模式二下,远端终端设备所发起的广播信息具体可包括:
1)发现者信息(Discoverer Info):远端终端设备信息;
2)Relay Service Code:可包含具体的业务信息、安全策略、及可选地还可包含授权允许接入的用户列表等;
3)中继设备信息(可选地)。
该模式下二,中继设备所返回的响应消息具体可包括:
1)中继设备ID:链路层ID;
2)被发现者信息(Discoveree Info):中继设备信息。
需要说明的是,对于模式一场景,远端终端设备可对所监听得到的Relay Service Code进行解析,以判断该中继设备是否支持提供自身所需的中继业务;模式二场景,中继设备则对所监听得到的Relay Service Code进行解析,以判断自身是否支持为该用户设备提供其所需的中继业务。
可选地,上述两种场景下,监视用户设备(monitor UE,如模式一下的远端终端设备或模式二下的中继设备)也可直接根据本地所收到的Relay Service Code判断所监听到的Relay Service Code是否可用。具体而言,monitor UE与广播用户设备(announcer UE,如,模式一下的中继设备或模式二下的远端终端设备)所配置的Relay Service Code可以相同、等同、或是通过特定加密/解密算法可得到对等信息,如对应同一应用标识(application ID)等。
进一步地,为了便于理解上述的远端终端设备通过中继设备接入网络的流程,下面结合图4详细介绍该接入流程,图4是一种远端终端设备通过中继设备接入网络的示意性流程图。
图4中执行主体包括远端终端设备(remote UE)、中继设备(ProSe UE-to-NW Relay)、基站(evolved Node B,eNB)、移动性管理实体(mobility management entity,MME)、服务网关(service gateway,S-GW)以及分组数据网络网关(packet data network gateway,P-GW)。
图4为4G协议中规定的远端终端设备经由中继设备接入网络的流程描述,对于图4中所示的步骤本申请不进行详细说明,参考目前协议中的规定即可。
例如,S420可以理解为远端终端设备或中继设备根据本地配置的Relay Service Code执行广播或者监控,从而建立通信连接(如,PC5连接)。
S430可以理解为当前无分组数据网络(packet data network,PDN)连接可用的情况下,该中继设备可为远端终端设备触发建立新的PDN连接。
远端终端设备和中继设备之间通信的主要流程可以为:中继设备注册到核心网后,和远端终端设备之间互相发现(如上述的模式一和模式二),并建立通信连接(如,PC5连接)。在中继设备和远端终端设备之间建立连接时,中继设备为了传输远端终端设备的中继数据,可以向网络设备请求建立PDN连接。其中,使用哪个PDN连接来传输中继数据是由中继设备确定的。一般情况下,中继设备可以将所有的中继数据都用于一个专门的PDN连接来传输。若中继设备和远端终端设备之间的通信地址是互联网协议(internet protocol,IP)地址的话,则中继设备还可以为远端终端设备分配IP地址,之后,中继设备和远端终端设备可以进行业务传输。
进一步地,图4所示的方法流程还包括S450,中继设备向MME发送远端终端设备报告(remote UE report),该远端终端设备报告中包括远端终端设备的标识(如,remote UE ID)以及中继设备还可以为远端终端设备分配IP地址信息(IP info)。MME获知remote UE report之后,可以将该remote UE report转发给P-GW,以使得P-GW获知上述的remote UE ID和IP info,其中,remote UE ID和IP info用于PCF进行策略决策从而实现建立中继连接。
当前4G协议中针对公共安全所涉及的ProSe relay通信方案中定义了Relay Service Code作为远端终端设备和中继设备上对等的配置参数,远端终端设备与中继设备根据彼此所配置的Relay Service Code发现对方。
上述结合图1-图4详细介绍了本申请实施例能够应用的网络架构的示意图,以及本申请实施例中涉及到的ProSe relay通信。
由上述可知4G所定义的ProSe relay方案中,由于仅用于公共安全业务,因此远端终端设备和中继设备所建立的通信连接(如,PC5连接)仅需支持根据公共安全业务执行QoS保障即可。但是在当前所讨论的ProSe relay场景中,远端终端设备可能通过中继设备访问多种业务,如VR headSet通过中继设备接入5GC访问VR业务,而不再局限于公共安全场景。当前流程中,5GC在会话建立流程中可能并未感知具体所发起的业务,因此所确定的QoS规则可能并不符合业务实际所需的服务质量保障。
另外,当前远端终端设备在通过中继设备发起业务时,中继设备为该业务所建立的PDU会话基于的是中继设备所收到的QoS规则,即此时根据该业务所决策的QoS规则等规则为核心网设备根据中继设备的签约信息、当前区域网络负荷等信息所配置的规则。而对于远端终端设备而言,远端终端设备可能开通了相应增值业务,或是订购了增值套餐,从而运营商为该远端终端设备配置的可以是服务质量更高的QoS规则,如更大的带宽、更高的调度优先级等。若基于现有方案,则将导致中继设备为远端终端设备所触发建立的PDU会话并不满足远端终端设备的签约。当然,也可能出现中继设备所签约的服务质量保障超出远端终端设备所签约的服务质量保障。
为了解决上述4G协议中规定的远端终端设备通过中继设备发起业务存在的缺陷,本申请提供一种业务保障的方法。通过使得核心网设备侧感知远端终端设备具体所发起的业务,并提供符合业务实际所需的服务质量保障,提高远端终端设备通过中继设备访问不同业务的性能。
应理解,本申请实施例提供的方法可以应用于5G通信系统,例如,图1中所示的通信系统。
下文示出的实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端设备或核心网设备,或者,是终端设备或核心网设备中能够调用程序并执行程序的功能模块。
以下,不失一般性,以终端设备或核心网设备之间的交互为例详细说明本申请实施例提供的业务保障的方法。
为了便于理解本申请实施例,做出以下几点说明。
第一,在本申请中,“用于指示”可以包括用于直接指示和用于间接指示。当描述某一指示信息用于指示A时,可以包括该指示信息直接指示A或间接指示A,而并不代表该指示信息中一定携带有A。
将指示信息所指示的信息称为待指示信息,则具体实现过程中,对待指示信息进行指示的方式有很多种,例如但不限于,可以直接指示待指示信息,如待指示信息本身或者该待指示信息的索引等。也可以通过指示其他信息来间接指示待指示信息,其中该其他信息与待指示信息之间存在关联关系。还可以仅仅指示待指示信息的一部分,而待指示信息的其他部分则是已知的或者提前约定的。例如,还可以借助预先约定(例如协议规定)的各个信息的排列顺序来实现对特定信息的指示,从而在一定程度上降低指示开销。同时,还可以识别各个信息的通用部分并统一指示,以降低单独指示同样的信息而带来的指示开销。
第二,在本申请中示出的第一、第二以及各种数字编号(例如,“#1”、“#2”等)仅为描述方便,用于区分的对象,并不用来限制本申请实施例的范围。例如,区分不同消息等。而不是用于描述特定的顺序或先后次序。应该理解这样描述的对象在适当情况下可以互换,以便能够描述本申请的实施例以外的方案。
第三,本申请实施例中涉及的“存储”,可以是指的保存在一个或者多个存储器中。所述一个或者多个存储器,可以是单独的设置,也可以是集成在编码器或者译码器,处理器、或通信装置中。所述一个或者多个存储器,也可以是一部分单独设置,一部分集成在译码器、处理器、或通信装置中。存储器的类型可以是任意形式的存储介质,本申请并不对此限定。
第四,本申请实施例中涉及的“协议”可以是指通信领域的标准协议,例如可以包括5G协议、新空口(new radio,NR)协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
图5是本申请实施例提供的一种业务保障的方法示意性流程图。该业务保障的方法至少包括以下部分步骤:
S501,远端终端设备和中继设备之间建立通信连接。
示例性地,本申请实施例中远端终端设备和中继设备均为终端设备,则远端终端设备和中继设备之间建立的通信连接可以理解为PC5连接,或者,侧行链路连接。
需要说明的是,本申请实施例中对于远端终端设备和中继设备之间如何建立通信连接不做限定,例如,可以是目前协议中规定的ProSe relay通信方案中,远端终端设备处于基站边缘,或者远端终端设备处于网络无覆盖区域,远端终端设备需要通过中继设备接入运营商网络。
远端终端设备和中继设备之间建立通信连接的具体流程本申请实施例中不进行赘述,参考目前协议中关于远端终端设备通过中继设备接入网络的相关规定即可。
S502,中继设备和数据网络(data network,DN)之间建立PDU会话。
中继设备可以通过用户面设备(如,UPF)和DN之间建立PDU会话,本申请中涉及的PDU会话主要指的是中继设备与DN之间的用户面链路,用于传输业务数据。
应理解,远端终端设备的业务数据需要通过中继设备进行中继传输,中继设备的业务数据也需要通过中继设备传输,而业务数据需要使用PDU会话进行传输才能保证业务的正常运行,所以中继设备和策略控制网元之间需要建立PDU会话,以保证业务的正常运行。
需要说明的是,本申请实施例中对于中继设备和数据网络之间建立PDU会话的具体流程不做限定,可以参考目前协议中对于中继设备和数据网络之间建立PDU会话建立流程的规定,本申请实施例中不进行赘述。
具体地,在中继设备和数据网络之间建立PDU会话之后,本申请实施例中策略控制网元可以进行策略决策,以提供更符合远端终端设备实际访问业务的QoS保障。
在5G通信系统中,该策略控制网元可以是PCF。在未来通信系统中,策略控制网元仍可以是PCF网元,或者,还可以有其它的名称,本申请中对于策略控制网元的名称不做限定,能够实现为控制面功能网元提供策略规则信息的网元都可以理解为该策略控制网元。
为了使得策略控制网元进行策略决策的过程中能够提供更符合远端终端设备实际访问业务的QoS保障,图5所示的方法流程还包括:
S510,中继设备向会话管理网元发送第一消息。
该会话管理网元用于会话管理。
在5G通信系统中,该会话管理网元可以是SMF网元,在未来通信系统中,会话管理网元仍可以是SMF网元,或者,还可以有其它的名称,本申请中对于会话管理网元的名称不做限定,能够实现会话管理、用户设备的IP地址分配和管理的网元都可以理解为该会话管理网元。
该第一消息中包括远端终端设备的第一标识(remote UE ID)。
进一步地,该第一消息中还包括继设备为远端终端设备分配的IP地址信息(IP info)。
其中,远端终端设备的第一标识用于标识该远端终端设备,中继设备为远端终端设备分配的IP信息可以称为远端终端设备的IP地址信息,可以用于指示该远端终端设备对应的端口(如,同一个PDU会话承载了多个(远端终端设备#1和远端终端设备#2)远端终端设备的业务数据,IP地址信息#1(如,端口A)对应远端终端设备#1,IP地址信息#2(如,端口B)对应远端终端设备#2)。
可选地,该第一消息可以复用目前协议中规定的远端终端设备报告(remote UE report)消息,或者,该第一消息可以为目前协议中规定的中继设备需要向会话管理网元发送其他的信令,或者,该第一消息还可以为中继设备和会话管理网元之间新增的信令等。可以理解当第一消息复用现有中继设备需要向会话管理网元发送的信令的情况下,可以节省信令的开销。
示例性地,该远端终端设备的第一标识可以是通用公开用户标识(generic public  subscription identity,GPSI)、也可以是第三方应用为远端终端设备分配的用户标识(user identifier,user ID),例如远端终端设备在第三方应用中的账户名信息、还可以是远端终端设备的唯一用户永久标识符(subscription permanent identifier,SUPI)等。
应理解,上述的GPSI、user ID以及SUPI只是举例,对本申请的保护范围不构任何的限定。本申请实施例中对于远端终端设备的第一标识的具体体现形式不做限制,能够用于标识远端终端设备的信息都在本申请的保护范围之内。
可选地,该第一消息中还可以包括远端终端设备被配置的第一Relay Service Code和/或中继设备被配置的第二Relay Service Code,其中,第一Relay Service Code和第二Relay Service Code均可对应至同一邻近服务应用ProSe Application。可以理解为第一Relay Service Code和第二Relay Service Code相对应,即如果第一消息中需要携带Relay Service Code,携带第一Relay Service Code和第二Relay Service Code中的至少一个即可用于判断当前所发起的具体业务的业务类型。
上述的第一Relay Service Code和第二Relay Service Code相对应可以理解为:第一Relay Service Code和第二Relay Service Code相同、第一Relay Service Code和第二Relay Service Code等同、或第一Relay Service Code和第二Relay Service Code通过特定加密或解密算法可得到对等信息等。
另外,应理解本申请实施例中,中继设备向会话管理网元发送第一消息包括:
首先,中继设备向接入网设备发送该第一消息;
其次,该接入网设备接收到该第一消息之后将该第一消息转发给接入管理功能网元;
然后,该接入管理功能网元将接收到的第一消息转发给会话管理网元。
由于该第一消息传输过程中接入网设备和接入管理功能网元所起的作用可以理解为透传该第一消息,所以本申请实施例中将第一消息的传输过程简单描述为中继设备向会话管理网元发送第一消息即可。
在5G通信系统中,该接入管理网元可以是AMF,在未来通信系统中,接入管理网元仍可以是AMF,或者,还可以有其它的名称,本申请中对于接入管理网元的名称不做限定,能够实现在用户设备与PCF网元间传递用户策略的网元都可以理解为该接入管理网元。进一步地,会话管理网元接收到第一消息之后,需要将接收到的第一消息中包括的远端终端设备的第一标识、IP地址信息以及可能包括的Relay Service Code发送给策略控制网元,即图5所示的方法流程还包括S520,会话管理网元向策略控制网元第二消息。
该第二消息中包括远端终端设备的第一标识,其中,远端终端设备的第一标识具体体现形式可以参考上述第一消息中携带的远端终端设备的第一标识,这里不再赘述。
可选地,该第二消息中还可以包括中继设备的标识,例如,包括中继设备的SUPI或GPSI。
可选地,该第二消息中还可以包括上述的中继设备为远端终端设备分配的IP地址信息。
可选地,当上述第一消息中携带第一Relay Service Code的情况下,该第二消息中还可以包括该第一Relay Service Code;同理,当上述第一消息中携带第二Relay Service Code的情况下,该第二消息中还可以包括该第二Relay Service Code。
需要说明的是,当第二消息中包括第一Relay Service Code和/或第二Relay Service  Code的情况下,策略控制网元接收到该第二消息之后能够确定当前发起的业务的业务类型。例如,根据第一Relay Service Code和/或第二Relay Service Code确定当前发起的业务为视频业务、音频业务、VR业务等。
可选地,该第二消息可以复用目前协议中规定的会话管理关联策略创建或更新(session management policy association create/update)请求消息,或者,该第二消息可以为目前协议中规定的会话管理网元需要向策略控制网元发送的其他信令。
本申请实施例中,策略控制网元接收到第二消息之后后续执行步骤包括以下几种可能:
可能一、策略控制网元接收到第二消息之后,能够基于该第二消息中携带的信元获取远端终端设备的签约数据,在该可能一中图5所示的方法流程还包括S531,策略控制网元获取远端终端设备的签约数据。
该获取远端终端设备的签约数据的流程具体包括:
策略控制网元基于第二消息中的远端终端设备的第一标识从UDR网元中获取到该远端终端设备的签约数据。
进一步地,在该可能一中,如果第二消息中携带该第一Relay Service Code和/或第二Relay Service Code,则策略控制网元能够基于该第一Relay Service Code和/或第二Relay Service Code以及策略控制网元本地配置确定当前所发起的业务的业务类型。
其中,上述的策略控制网元本地配置可以是Relay Service Code(如,第一Relay Service Code或第二Relay Service Code)中包括的部分或者全部信息与业务类型之间的映射关系,即策略控制网元在已知Relay Service Code以及Relay Service Code中信息和业务类型之间的映射关系的前提下能够确定当前所发起的业务的业务类型。
可选地,在该可能一中策略控制网元能够确定当前所发起的业务的业务类型还可以是:策略控制网元与5G DDNMF网元进行信令交互之后,以解析得到第一Relay Service Code和/或第二Relay Service Code与业务之间的映射关系,从而策略控制网元能够基于第一Relay Service Code和/或第二Relay Service Code确定当前所发起的业务类型。
其中,本申请实施例中涉及的策略控制网元与5G DDNMF之间的信令交互可以包括:
策略控制网元向5G DDNMF发送查询请求消息,该查询请求消息中携带Relay Service Code(如,第一Relay Service Code和/或第二Relay Service Code);5G DDNMF接收到该查询请求消息之后,基于查询请求消息中携带的Relay Service Code确定当前所发起的业务的业务类型,然后将确定出的业务类型相关的信息携带在查询响应消息中发送给策略控制网元,从而策略控制网元能够确定当前所发起的业务的业务类型。
可选地,该查询请求消息中还可以携带远端终端设备的第一标识和/或中继设备的标识。
可能二、策略控制网元接收到第二消息之后,当第二消息中包括的远端终端设备的第一标识为user ID的情况下,策略控制网元能够根据该user ID与应用网元进行交互以确定当前所发起的业务需要的QoS保障,在该可能二中图5所示的方法流程还包括S532,策略控制网元接收应用网元发送的策略授权请求消息。
需要说明的是,当上述的第二消息中包括的远端终端设备的第一标识为第三方应用分配的情况下,策略控制网元无法基于该远端终端设备的第一标识获取到该远端终端设备对 应的签约数据,所以在该情况下策略控制网元可以通过与应用网元进行信令交互以确定实际的远端终端设备的第一标识(如,远端终端设备的SUPI或GPSI等)。
策略控制网元与应用网元之间的信令交互可以经由网络开放网元实现。
在5G通信系统中,该应用网元可以是AF网元。在未来通信系统中,应用网元仍可以是AF网元,或者,还可以有其它的名称,本申请中对于应用网元的名称不做限定,能够传递应用侧对网络侧的需求的网元都可以理解为该应用网元。
该策略授权请求消息中包括业务的标识、远端终端设备的第二标识和QoS参数需求。
示例性地,业务标识可以是APP ID,或者,业务标识还可以是ProSe APP ID,该ProSe APP ID指的是ProSe业务对应的APP ID。该APP ID即APP Name,具体可以理解为应用网元和策略控制网元之间所配置的统一的应用名,用于识别当前所发起请求的应用网元对应的具体应用;
ProSe APP ID则指的是邻近业务所对应的应用名,具体可以理解为远端终端设备、应用网元和策略控制网元上所配置的统一的应用名,用于识别当前所发起的邻近业务所对应的具体应用。
示例性地,业务的标识还可以是上述的第一Relay Service Code和/或第二Relay Service Code。
策略授权请求消息中包括的远端终端设备的第二标识包括以下标识中的至少一种:
远端终端设备的GPSI、第三方应用为该远端终端设备分配的user ID、远端终端设备的互联网协议第六版(Internet Protocol Version 6,IPv6)地址、远端终端设备的IPv6地址前缀(prefix)、中继设备的互联网协议第四版(Internet Protocol Version 4,IPv4)地址和传输控制协议(transmission control protocol,TCP)或用户数据报协议(user datagram protocol,UDP)端口号(port number)组成的标识。
需要说明的是,策略授权请求消息中包括的远端终端设备的第二标识的具体形式可以为远端终端设备的IPv6地址、远端终端设备的IPv6地址前缀、中继设备的IPv4地址和TCP/UDP端口号组成的标识中的任意一种是因为:
策略控制网元从会话管理网元处接收到的第二消息中包括远端终端设备的第一标识(如,远端终端设备的GPSI、第三方应用为该远端终端设备分配的user ID)以及IP地址信息。那么当策略控制网元从应用网元处接收到的策略授权请求消息中包含该IP地址信息的情况下,可以理解为该策略授权请求消息对应的是该远端终端设备的第一标识所对应的远端终端设备,所以策略授权请求消息中携带的远端终端设备的第二标识的具体体现形式可以为IP地址信息。
策略授权请求消息中携带的远端终端设备的第二标识为IP地址信息的时候,该IP地址信息与第二消息中携带的IP地址信息存在一一对应关系,即若第二消息中携带的IP地址信息为IPv6prefix,则策略授权请求消息中携带的远端终端设备的第二标识为IPv6prefix;若第二消息中携带的IP地址信息为为TCP/UDP port number,则策略授权请求消息中携带的远端终端设备的第二标识为中继设备的IPv4和TCP/UDM port number组成的标识。
策略授权请求消息中包括的QoS参数需求为可选的,用于指示当前业务所需要的QoS保障,作为策略控制网元执行策略决策的输入信息,辅助策略控制网元执行策略决策。其 中,QoS参数需求可以包括业务所对应的带宽保障、调度优先级等信息。
需要说明的是,在该可能二中策略控制网元能够与应用网元进行交互以确定当前所发起的业务需要的QoS保障的前提是:应用网元订阅了远端终端设备上线事件,则在该可能二中执行上述的S532之前,图5所示的方法流程还包括应用网元订阅远端终端设备上线事件。
该应用网元订阅远端终端设备上线事件的流程具体包括:
S533,应用网元向策略控制网元发送订阅消息,该订阅消息用于订阅远端终端设备上线事件。其中,该订阅消息中包括业务的标识和应用网元接收通知的统一资源标识符(notification uniform resource identify,Notification URI),Notification URI为可以理解为应用网元接收事件报告的地址信息,用于指示接收来自策略控制网元的事件报告信息的目的地,业务的标识用于策略控制网元执行能力校验、事件匹配并判断事件是否需上报至应用网元。
订阅消息中携带的业务的标识具体形式可以参考上述步骤S532中应用网元发送的策略授权请求消息中包括的业务的标识,这里不再赘述。
可选地,应用网元所订阅的远端终端设备上线事件可以以事件标识符(event ID)进行标识,即该订阅消息中携带有event ID、业务标识和事件通知地址Notification URI。
需要说明的是,上述的应用网元向策略控制网元发送订阅消息指的是:应用网元通过网络开放功能网元向策略控制网元发送该订阅消息。其中,网络开放功能网元起到透传的作用,所以可以简单描述为应用网元向策略控制网元发送订阅消息。
进一步地,在策略控制网元接收到订阅消息之后,需要通过网络开放功能网元向应用网元发送订阅响应消息,用于响应应用网元的订阅是否成功。
在应用网元订阅了远端终端设备上线事件的情况下,该策略控制网元与应用网元进行信令交互的流程具体包括:
S534,策略控制网元向应用网元发送通知消息,该通知消息用于通知远端终端设备上线事件。该通知消息中携带远端终端设备的第一标识和业务的标识,该业务的标识用于标识当前发起的业务的业务类型。
应用网元接收到通知消息之后,需要向策略控制网元发送通知响应消息,用于响应策略控制网元发送的通知消息是否成功。
作为一种可能的实现方式,上述的应用网元向策略控制网元发送的策略授权请求消息携带在该通知响应消息中,即通知响应消息和策略授权请求消息通过同一条消息下发给策略控制网元;
作为另一种可能的实现方式,应用网元分别向策略控制网元发送的策略授权请求消息和通知响应消息。
本申请实施例中对于上述的策略授权请求消息和通知响应消息发送的先后关系不做限定,对于是否通过同一条消息发送也不做限定。
需要说明的是,上述的可能一和可能二可以同时执行。
可能三、策略控制网元接收到第二消息之后,向中继设备发送第二响应消息,该第二响应消息用于指示PDU会话建立或者更新响应。则在该可能三中图5所示的方法流程还包括S535,策略控制网元向中继设备发送第二响应消息。
本申请实施例中对于策略控制网元接收到第二消息之后如何返回第二响应消息不做限定,理解为执行常规会话建立流程可以参考现有协议中对于策略控制网元接收到第二消息之后所作出的响应。
策略控制网元向中继设备发送第二响应消息包括:
首先,策略控制网元向会话管理网元发送第二响应消息;
其次,会话管理网元接收到该第二响应消息之后将该第二响应消息转发给接入网设备;
然后,接入网设备接收到该第二响应消息之后将该第二响应消息转发给中继设备。
由于该第二响应消息传输过程中接入网设备和会话管理网元所起的作用可以理解为透传该第二响应消息,所以本申请实施例中将第二响应消息的传输过程简单描述为策略控制网元向中继设备发送第二响应消息即可。
在该可能三中,应用网元可以通过策略控制网元查询获知为上述流程所建立的PDU会话提供服务的策略控制网元。则在该可能三中图5所示的方法流程还包括S536,应用网元查询策略控制网元的信息。
具体地,应用网元可以根据远端终端设备所发送的报文中的IP地址、数据网络名称(data network name,DNN)等信息,通过BSF查询为该PDU会话提供服务的策略控制网元的信息。
需要说明的是,对于当前ProSe relay场景,远端终端设备所传递的报文对外呈现的是中继设备的IP地址,即应用网元所发起的策略控制网元的信息查询请求中所携带的IP地址信息实际指示的是中继设备对应的IP地址。
进一步地,在该可能三中应用网元可以根据S536中所查询到的策略控制网元的信息向策略控制网元发送策略授权请求消息,则在该可能三中图5所示的方法流程还包括S537,应用网元向策略控制网元发送策略授权请求消息。该策略授权请求消息用于指示策略控制网元执行上下文关联,即将该策略授权请求关联至特定PDU会话下的特定远端终端设备所发起的业务。具体地,策略控制网元可根据该策略授权请求消息中所携带的远端终端设备的第二标识,关联至对应的用户上下文,以便执行策略决策。
可能三中应用网元向策略控制网元发送的策略授权请求消息与上述可能二中步骤S532所示的应用网元向策略控制网元发送的策略授权请求消息的区别在于:
可能二中步骤S532由策略控制网元针对远端终端设备上线事件发起,因此应用网元所发送的策略控制请求消息中可以无需携带远端终端设备的第二标识,仅下发业务标识(如,Relay Service Code)、QoS授权等信息即可;而可能三中步骤S537为应用网元主动发起,因此应用网元所发送的策略控制请求消息需要携带远端终端设备的第二标识,还需要携带业务的标识,可选地携带QoS参数需求。
其中,可能三中策略控制请求消息需要携带的远端终端设备的第二标识、业务的标识以及可能携带的QoS参数需求等信息与上述可能二中步骤S532应用网元向策略控制网元发送的策略授权请求消息中携带的类似,这里不再赘述。
另外,需要说明的是,可能三中应用网元可以通过用户面通道获取上述的远端终端设备的第二标识和业务的标识,例如,远端终端设备上线之后发送的用户面报文中包括有远端终端设备的第二标识和业务的标识,则应用网元可以通过用户面感知得到远端终端设备 的第二标识和业务的标识。本申请实施例中对于应用网元如何通过用户面感知并不限定,可以参考目前协议或下一代协议中相关规定,这里不再赘述。
进一步地,在策略控制网元从应用网元处获知上述的业务保障需求,和/或,当策略控制网元获知上述的当前所发起的业务类型以及远端终端设备的签约数据之后,策略控制网元可以基于获知的信息执行策略决策生成策略计费控制(policy charging control,PCC)规则,即图5所示的方法流程还包括S540,策略控制网元生成PCC规则。
该PCC规则中包括第一通信接口的第一QoS参数和第二通信接口的第二QoS参数。
第一QoS参数包含的内容可以有:5G接口QoS指示(5G QoS Indicator,5QI)、地址解析协议(address resolution protocol,ARP)、保证比特率(guaranteed bitrate,GBR),最大比特率(maximum bitrate,MBR)、会话聚合最大比特率(session aggregated maximum bitrate,Session AMBR)等;
第二QoS参数包含的内容可以有:PC5接口QoS指示(PC5 QoS Indicator,PQI)、ARP、GBR、MBR、总比特率(total maximum bitrate,TMBR)等。
其中,第一通信接口为中继设备与接入网设备之间的通信接口(如,Uu接口)、第二通信接口为中继设备和远端终端设备之间的通信接口(如,PC5接口)。
第一QoS参数用于生成第一QoS Rule,第一QoS Profile、第二QoS参数用于生成第二QoS Rule,其中,第一QoS Rule与第一QoS Profile为中继设备与接入网设备之间的第一通信接口对应的QoS规则、第二QoS Rule为中继设备和远端终端设备之间的第二通信接口对应的QoS规则。
需要说明的是,第一QoS Profile中主要包括的是该业务流所需执行的服务质量保障参数(如,可包括5QI、ARP、AMBR、GBR、MBR等参数信息中的一个或多个),第一QoS Rule或第二QoS Rule则除了可包括上述服务质量保障参数中的部分或全部参数外,还可包括该业务流所对应的流描述信息,用于远端终端设备和/或中继设备执行上行流匹配,其中,流描述信息可以基于上述的远端终端设备的IP地址信息确定。
另外,需要说明的是,策略控制网元可以基于远端终端设备的签约数据确定的QoS信息仅为终端设备粒度,并没有确定到具体业务粒度,即不感知业务类型时可以确定的是默认QoS Flow所对应的5QI,ARP,Session-AMBR等参数信息。所以为了策略控制网元针对不同业务确定出不同业务对应的QoS信息,上述第二消息和/或策略授权请求消息中需要携带业务的标识(如,第一Relay Service Code和/或第二Relay Service Code)。
示例性地,策略控制网元执行策略决策生成PCC规则的过程中,可以根据中继设备和远端终端设备分别对应的签约数据确定可以使用的第一QoS参数和第二QoS参数,从而避免违反中继设备和远端终端设备签约策略。
本申请实施例中策略控制网元生成PCC规则之后,将该PCC规则发送给会话管理网元,则图5所示的方法流程还包括S550,策略控制网元向会话管理网元发送PCC规则。
该会话管理网元接收到PCC规则之后,根据所接收到的PCC规则执行QoS Flow绑定,并将该PCC规则关联至特定QoS Flow,其中该QoS Flow由QoS流标识符(QoS Flow Identifier,QFI)进行唯一标识。
其中,会话管理网元可以自行为QoS Flow分配QFI,QFI在PDU会话粒度内唯一即可,QFI主要功能是唯一标识PDU会话内的特定QoS Flow,从而中继设备、远端终端设 备以及接入网设备可对该QoS Flow进行识别并执行该QFI所对应的QoS保障。
具体地,会话管理网元生成第一QoS Rule,第一QoS Profile与第一QoS Rule的方式包括:
根据PCC规则中的第一QoS参数和第二QoS参数、流描述信息确定第一QoS Rule,第一QoS Profile与第一QoS Rule中的对应信元取值。
第一QoS Profile是会话管理网元提供给接入网设备的信息,其中主要包含第一QoS参数相关信息;
第一QoS Rule是会话管理网元提供给中继设备的信息、第二QoS Rule是会话管理网元提供给远端终端设备的信息,第一QoS Rule和第二QoS Rule中除分别可包含第一QoS参数和第二QoS参数中的部分或全部内容外,还可包含流描述信息,用于中继设备和远端终端设备执行上行流匹配时将业务流关联至具体的QoS Flow。
该会话管理网元向接入网设备发送第三消息,图5所示的方法流程还包括S560,会话管理网元向接入网设备发送第三消息,该第三消息用于指示接入网设备进行资源预留。其中,资源包括例如带宽资源、调度资源等,对于GBR业务而言,接入网设备需要对该GBR业务提供带宽保障,避免用户业务体验受到其他业务的影响。
该第三消息中包括上述的QFI、第一QoS profile、第一QoS Rule和第二QoS Rule,具体地,中继设备、远端终端设备或UPF分别需在上行/下行报文包头增加QFI标签,即标识某业务流属于该QFI所对应的QoS Flow,接入网设备需要根据该QFI执行该QoS Flow所对应的QoS profile。
进一步地,接入网设备接收到上述的第三消息之后,基于第三消息执行资源预留,并将第三消息中包括的第一QoS Rule和第二QoS Rule发送给中继设备,中继设备接收到第二QoS Rule之后可以通过中继设备和远端终端设备之间的第二通信接口(如,PC5接口)将该第二QoS Rule转发给远端终端设备,则图5所示的方法流程还包括:
S570,接入网设备向中继设备发送第二QoS Rule;S571,中继设备向远端终端设备发送第二QoS Rule。远端终端设备收到该信息后可为该业务执行资源预留,并为该业务流执行第二QoS Rule所需要的服务质量QoS保障。
具体地,远端终端设备与中继设备执行的服务质量QoS保障可包括:根据第二QoS Rule中的业务流信息执行PC5接口中上行和/或下行业务流与QoS Flow间的映射,及根据第二QoS Rule中的TMBR、PQI、GBR等一个或多个参数执行PC5接口中的上行和/或下行业务流带宽控制、调度优先级、丢包率、时延等QoS保障策略。
图5所示的实施例中,通过提供远端终端设备的相关信息(如,上述的远端中端设备的标识)及业务相关信息(如,上述的业务标识)至策略控制网元,以便策略控制网元执行更为合理的策略决策,提高远端终端设备通和中继设备之间的业务服务质量保障。
为了便于理解,下面结合图6和图7详细说明本申请实施例提供的业务保障的方法。
如图6所示,图6是本申请实施例提供的另一种业务保障的方法示意性流程图。该业务保障的方法至少包括以下部分步骤:
S601,远端(Remote)UE和中继设备(Relay)建立PC5连接。
与图5中的步骤S501类似,可以理解为步骤S501中所示的远端终端设备和中继设备均为终端设备,所以Remote UE和Relay之间的通信连接为PC5连接。
S602,Relay建立PDU会话。
与图5中的步骤S502类似,这里不再赘述。
S610,Relay向SMF发送Remote UE报告。
该实施例中Relay通过RAN和AMF向SMF发送Remote UE报告(report),其中,RAN为Relay接入的接入网设备。
该Remote UE report中包括Remote UE的用户标识,该Remote UE的用户标识与图5中步骤S510中所示的第一标识相同,这里不再赘述。
进一步地,该Remote UE report中还可以包括Relay为Remote UE分配的IP info,该IP info与图5中步骤S510中所示的IP info相同,这里不再赘述。
进一步地,该Remote UE report中还可以包括Remote UE对应的Relay Service Code和/或Relay对应的Relay Service Code,其中,Remote UE对应的Relay Service Code与图5中步骤S510中所示的第一Relay Service Code相同、Relay对应的Relay Service Code与图5中步骤S510中所示的第二Relay Service Code相同,这里不再赘述。
S620,SMF向PCF发送SM关联策略创建或更新消息。
该实施例中SMF接收到上述的Remote UE report之后,可以将Remote UE report中携带的信息通过SM关联策略创建或更新消息发送给PCF。
例如,可以将Remote UE report中携带的Remote UE的用户标识通过SM关联策略创建或更新消息发送给PCF;或者,
当Remote UE report中携带有Remote UE对应的Relay Service Code和/或Relay对应的Relay Service Code情况下,SMF接收到上述的Remote UE report之后,可以将Remote UE report中携带的Remote UE对应的Relay Service Code和/或Relay对应的Relay Service Code通过SM关联策略创建或更新消息发送给PCF。
进一步地,该SM关联策略创建或更新消息中还携带有Relay的用户标识和上述的IP info。
该实施例中PCF接收到SM关联策略创建或更新消息之后,基于该关联策略创建或更新消息中携带的信息能够执行的步骤包括以下两种可能:
可能一:
该实施例所示的方法流程还包括S621,PCF获取Remote UE的签约数据,具体获取Remote UE的签约数据的方式可以参考图5中步骤S531中所示的,这里不再赘述。
可能二:
该实施例所示的方法流程还包括S622,AF向PCF发送订阅用于订阅Remote UE上线事件的消息,该消息称为Remote UE订阅消息,具体订阅流程可以参考图5中步骤S533中所示的,这里不再赘述;
PCF接收到上述的SM关联策略创建或更新消息之后,可以和AF进行信令交互以获得当前所发起的业务需要的QoS保障,则该实施例所示的方法流程还包括:
S623,PCF向AF发送用于通知Remote UE上线事件的通知消息,通知消息中携带有Remote UE的用户标识以及当前发起的业务的业务标识,具体通知方式可以参考图5中步骤S534中所示的,这里不再赘述。
S624,AF向PCF发送策略授权请求消息,该策略授权请求消息的具体描述可以参考 图5中步骤S532中所示的,这里不再赘述。
应理解,上述的可能一和可能二可以均执行,即PCF既可以获取得到Remote UE的签约数据还可以从AF接收到策略授权请求消息。
进一步地,执行上述步骤之后,该实施例中PCF可以进行策略决策,即该实施例所示的方法流程还包括S630,PCF进行策略决策。
具体地,PCF进行策略决策生成PCC规则的方式可以参考图5中步骤S540中所示的,这里不再赘述。
PCF将生成的PCC规则发送给SMF,由SMF基于PCC规则中的QoS参数生成Relay与RAN之间的Uu口对应的QoS规则(可以简称为Uu QoS rule),以及Remote UE与Relay之间的PC5口对应的QoS规则(可以简称为PC5 QoS rule);进一步地,SMF将Uu QoS rule和PC5 QoS rule发送给RAN,RAN再将PC5 QoS rule发送给Relay,由Relay发送给Remote UE,则该实施例所示的方法流程还包括:
S640,PCF向SMF发送PCC规则;S650,SMF生成Uu QoS rule和PC5 QoS rule;S660,SMF向RAN发送Uu QoS rule和PC5 QoS rule;
S670,RAN向Relay发送PC5 QoS rule;
S680,Relay向Remote UE发送PC5 QoS rule。具体地,S640~S680可以参考图5中的S540~S571的描述。
如图7所示,图7是本申请实施例提供的另一种业务保障的方法示意性流程图。该业务保障的方法至少包括以下部分步骤:
S701,远端(Remote)UE和中继设备(Relay)建立PC5连接。
与图6中的步骤S601相同,这里不再赘述。
S702,Relay建立PDU会话。
与图6中的步骤S602相同,这里不再赘述。
S710,Relay向SMF发送Remote UE报告。
与图6中的步骤S610相同,这里不再赘述。
S720,SMF向PCF发送SM关联策略创建或更新消息。
与图6中的步骤S620相同,这里不再赘述。
该实施例中SMF接收到上述的SM关联策略创建或更新消息之后,并未根据接收到SM关联策略创建或更新消息获取Remote UE的签约数据或者向AF发送通知Remote UE上线的通知,而是执行常规策略会话建立流程向SMF发送SM关联策略创建或更新响应,SMF再向Relay发送用于确认会话建立的确认消息,则该实施例所示的方法流程还包括:
S721,PCF向SMF发送SM关联策略创建或更新响应;S722,SMF向Relay发送确认消息。
进一步地,在该实施例中AF可以通过PCF查询获知为上述流程所建立的PDU会话提供服务的PCF,则在该实施例中图7所示的方法流程还包括S730,AF查询PDU的信息。
并且,在该实施例中AF可以通过用户面感知到Remote UE上线,通过用户面感知获得Remote UE的用户标识以及当前发起的业务的业务标识。
在AF获知上述的PCF的信息以及Remote UE的用户标识以及当前发起的业务的业 务标识之后,可以向该PCF发送策略授权请求消息,则在该实施例中图7所示的方法流程还包括S740,AF向PCF发送策略授权请求消息,具体地该策略授权请求消息包括的信息可以参考图5中步骤S537中所示的,这里不再赘述。
进一步地,执行上述步骤之后,该实施例所示的方法流程还包括S750,PCF进行策略决策;S760,PCF向SMF发送PCC规则;S770,SMF生成Uu QoS rule和PC5 QoS rule;S780,SMF向RAN发送Uu QoS rule和PC5 QoS rule;S790,RAN向Relay发送PC5 QoS rule;S791,Relay向Remote UE发送PC5 QoS rule。具体地,S750~S791可以参考图5中的S540~S571的描述。
如图8所示,图8是本申请实施例提供的另一种业务保障的方法示意性流程图。该业务保障的方法至少包括以下部分步骤:
S801,Remote UE(远端终端设备的一例)和Relay(中继设备的一例)建立PC5连接。
与图5中的S501相同,这里不再赘述。
S802,Relay建立PDU会话。
与图5中的S502相同,这里不再赘述。
S803,Relay向SMF(会话管理网元的一例)发送第一消息。
与图5中的S510相同,这里不再赘述。
为了使得SMF在建立PDR的过程中能够提供更符合Remote UE实际可使用带宽的最大比特率(maximum bit rate,MBR),图8所示的方法流程还包括:
S810,SMF获取Remote UE的会话管理签约数据。
Remote UE的会话管理签约数据可以包括Remote UE的AMBR。Remote UE的AMBR可以包括Remote UE的签约会话AMBR。可选地,Remote UE的AMBR还可以包括Remote UE的PC5接口AMBR或Remote UE的PC5链路AMBR。
本申请实施例对SMF获取Remote UE的会话管理签约数据的方法不做限定。
作为一个示例,若SMF预先保存或预先配置了Remote UE的会话管理签约数据,则SMF可以根据第一标识从本地数据库中获取Remote UE的会话管理签约数据。
作为另一个示例,若SMF没有预先保存或预先配置Remote UE的会话管理签约数据,则SMF可以向UDM/UDR请求Remote UE的会话管理签约数据,或者SMF在和DN-AAA服务器Remote UE进行二次认证的过程中,从DN-AAA服务器获取Remote UE的会话管理签约数据。
例如,S811,SMF从UDM/UDR获取Remote UE的签约会话管理数据。
SMF可以向UDM(数据管理网元的一例)/UDR(数据仓库网元的一例)发送第二请求消息,第二请求消息用于请求Remote UE的会话管理签约数据,第二请求消息中包括Remote UE的第一标识。进一步地,UDM/UDR根据第一标识从本地数据库获取Remote UE的会话管理签约数据,并向SMF发送第二响应消息,第二响应消息中包括Remote UE的会话管理签约数据。
例如,第二请求消息可以复用目前协议中规定的Nudm_SDM_Get请求服务,即SMF可以使用Nudm_SDM_Get信令向UDM请求Remote UE的会话管理签约数据。
又例如,第二请求消息还可以复用目前协议中规定的Nudm_SDM_Subscribe信令,即 SMF可以使用Nudm_SDM_Subscribe信令向UDM订阅Remote UE的会话管理签约数据更新通知。
可选地,若UDM没有预先保存Remote UE的会话管理签约数据,则UDM可以UDR(数据仓库网元一例)发送请求消息以获取Remote UE的会话管理签约数据。例如,UDM可以使用Nudr_DM_Query信令从UDR获取Remote UE的会话管理签约数据,或者,UDM可以使用Nudr_DM_Subscribe信令从UDR订阅Remote UE的会话管理签约数据的更新通知。
可选地,若SMF从Relay获取到的Remote UE的第一标识是SUPI,则SMF向UDM/UDR发送的第二请求消息中可以包括SUPI;进一步地,UDM/UDR可以根据SUPI向SMF反馈该SUPI对应的会话管理签约数据,即UDM/UDR向SMF发送的第二响应消息中包括该SUPI对应的会话管理签约数据。
可选地,若SMF从Relay获取到的Remote UE的第一标识是GPSI或第三方应用服务器为Remote UE分配的用户标识(记为第三方标识),则SMF可以从UDM/UDR获取与Remote UE的GPSI或第三方标识对应的SUPI;进一步地,SMF将从UDM/UDR获取的Remote UE的SUPI携带在第二请求消息中发送给UDM/UDR,以获取Remote UE的会话管理签约数据。
可选地,若SMF从Relay获取到的Remote UE的第一标识是GPSI或第三方标识,则SMF可以将GPSI或第三方标识携带在第二请求消息中发送给UDM/UDR,以获取Remote UE的会话管理签约数据。进一步地,UDM/UDR接收来自SMF的第二请求消息后,可以根据第二请求消息中的GPSI或第三方标识找到对应的SUPI信息,进一步地,根据SUPI信息从本地数据库中获取与该SUPI对应的会话管理签约数据,并将与该SUPI对应的会话管理签约数据反馈给SMF。可选地,UDM/UDR还可以将与Remote UE的GPSI或第三方标识对应的SUPI反馈给SMF,即UDM/UDR向SMF发送的第二响应消息中可以包括与Remote UE的GPSI或第三方标识对应的SUPI。
可选地,第二请求消息中还可以包括第一指示信息,第一指示信息用于指示Remote UE是通过Relay接入网络的。例如,若SMF向UDM/UDR发送的第二请求消息中还包括Relay的第三标识,则UDM/UDR无法区分Remote UE和Relay,进一步地,UDM/UDR无法确定向SMF反馈第一标识对应的会话管理签约数据,还是向SMF反馈第三标识对应的会话管理签约数据。在此情况下,若第三请求消息中还包括第一指示信息,则UDM/UDR根据该第一指示信息可以区分Remote UE和Relay,进一步地,UDM/UDR可以向SMF反馈第一标识对应的会话管理签约数据,即向SMF反馈Remote UE的会话管理签约数据。
又例如,S812,SMF从DN-AAA服务器获取Remote UE的会话管理签约数据。
SMF可以向DN-AAA服务器发送第三请求消息,第三请求消息用于请求Remote UE的会话管理签约数据,第三请求消息中包括Remote UE的第一标识。进一步地,DN-AAA服务器根据第一标识从本地数据库获取Remote UE的会话管理签约数据,并向SMF发送第三响应消息,第三响应消息中包括Remote UE的会话管理签约数据。
作为又一个示例,SMF可以从PCF获取Remote UE的会话管理签约数据。
SMF从PCF获取Remote UE的会话管理签约数据的方法流程可以包括S821至S823:
S821,SMF向PCF发送第二消息。
关于SMF向PCF发送第二消息的描述可以参考上文S520中的描述。
可选地,若SMF在先从UDM/UDR或DN-AAA服务器获取了Remote UE的会话管理签约数据,则第二消息还可以包括Remote UE的会话管理签约数据。
S822,PCF生成PCC规则和/或会话相关策略。
PCF可以根据Remote UE和Relay对应的签约数据生成会话相关策略和/或PCC规则。Remote UE和Relay对应的签约数据可以包括策略相关签约数据和会话管理签约数据。
可选地,若PCF没有预先保存或预先配置Remote UE的签约数据,则在S822之前,该方法还可以包括S8221,PCF从UDM/UDR处获取Remote UE的签约数据。
具体地,PCF可以向UDM/UDR发第四请求消息,第四请求消息用于请求Remote UE的签约数据,第四请求消息中包括Remote UE的第一标识;进一步地,UDM/UDR向PCF反馈第四响应消息,第四响应消息中包括Remote UE的签约数据。
若PCF接收到的第一消息中包括Remote UE的会话管理签约数据,则在S8221中,PCF从UDM/UDR获取Remote UE的策略相关签约数据。可选地,PCF还可以从UDM/UDR获取Remote UE的会话管理签约数据,以对第二消息中包括的会话管理签约数据进行验证。
可选地,第四请求消息中可以包括第一指示信息,第一指示信息用于指示Remote UE通过Relay接入网络。
PCF生成的PCC规则和/会话相关策略中可以包括Remote UE的会话管理签约数据。
例如,PCC规则中可以包括第二通信接口的第二QoS参数,第二通信接口为Remote UE与Relay之间的通信接口,第二QoS参数可以包括Remote UE可以使用的AMBR。
又例如,会话相关策略中可以包括Remote UE可以使用的AMBR。
Remote UE可以使用的AMBR是根据Remote UE的会话管理签约数据确定的,例如,Remote UE可使用的AMBR是Remote UE的签约会话AMBR和PC5接口AMBR/PC5链路AMBR中的最小值。
更多关于PCF生成会话相关策略和/或PCC规则的描述可以参考上文S540中的描述。
S823,PCF向SMF发送会话相关策略和/或PCC规则。
SMF收到会话相关策略和/或PCC规则之后,则根据会话相关策略和/或PCC规则获取Remote UE的会话管理签约数据。
S820,SMF生成PDR。
SMF获取到Remote UE的会话管理签约数据之后,可以为Remote UE建立单独的PDR,即SMF生成与Remote UE对应的PDR。SMF可以根据Remote UE的第一标识生成PDR,具体地,SMF可以根据Remote UE的IP地址、端口号或MAC地址中的至少一项生成与Remote UE对应的PDR。
PDR中包括QER,QER中的最大带宽是基于Remote UE的AMBR确定的。QER中的最大带宽也可以称为MBR。
作为一个示例,若SMF获取到的Remote UE的AMBR是Remote UE的签约会话AMBR,则QER中的最大带宽是Remote UE的签约会话AMBR。
作为另一个示例,若SMF获取到的Remote UE的AMBR是Remote UE的PC5接口AMBR,则QER中的最大带宽是Remote UE的PC5接口AMBR。
作为又一个示例,若SMF获取到的Remote UE的AMBR是Remote UE的PC5链路AMBR,则QER中的最大带宽是Remote UE的PC5链路AMBR。
作为又一个示例,若SMF获取到的Remote UE的AMBR是Remote UE的签约会话AMBR和PC5接口AMBR/PC5链路AMBR,则QER中的最大带宽是Remote UE的签约会话AMBR和PC5接口AMBR/PC5链路AMBR中的最小值,即QER中的最大带宽=min(Remote UE的签约会话AMBR,PC5接口AMBR/PC5链路AMBR)。
作为又一个示例,若SMF从PCF(策略控制网元的一例)接收到的PCC规则和/或会话相关策略中包括Remote UE可使用的AMBR,则QER中的最大带宽是Remote UE的AMBR和Remote UE可使用的AMBR中的最小值。
S830,SMF向UPF发送PDR。
相应地,UPF接收到来自SMF的PDR之后,可以向SMF发送一个反馈信息,用于指示已接收到PDR。
可选地,图8所示的方法还可以包括S840和S850:
S840,SMF向Relay发送第四消息,第四消息中包括终端设备的会话管理签约数据。
可选地,第四消息中可以包括远端终端设备AMBR。在远端终端设备的AMBR与Relay的AMBR不相同的情况下,SMF可以向Relay发送第四消息。
可选地,第四消息中可以包括QER中的最大带宽,即第四消息包括MBR。若Remote UE的QER不同于Relay的签约会话AMBR,则SMF向Relay发送第四消息。
S850,Remote UE与Relay进行PC5链路更新。
具体地,Relay接收到来自SMF的第四消息之后,根据第四消息中包括的Remote UE的会话管理签约数据与Remote UE调整PC5链路的AMBR。即,将PC5链路的AMBR更新为Remote UE的AMBR。
例如,Remote UE和Relay将PC5链路的AMBR更新为Remote UE的签约会话AMBR和PC5接口AMBR/PC5链路AMBR中的最小值。
图8所示的方法还可以包括S860:UPF根据接收到的PDR,通过Relay与Remote UE进行数据传输。
具体地,UPF可以根据PDR过滤出要发送给Remote UE的数据,并根据PDR包括的QER中的最大带宽限制发送给Remote UE的数据的速率,即UPF通过Relay发送给Remote UE的数据的速率不能超过QER中的最大带宽。
在本申请实施例中,若SMF获取到Remote UE的AMBR(签约会话AMBR和/或PC5接口AMBR/PC5链路AMBR),则SMF在N4会话配置中,可以基于Remote UE的AMBR确定Remote UE的QER中的MBR。从而使得在UPF执行Remote UE的数据包传输的过程中,可以根据Remote UE的MBR限制发送给Remote UE的数据的速率。同时,SMF可以将Remote UE的MBR发送给Relay,从而使得Relay可以将PC5链路的AMBR更新为Remote UE的MBR。
如图9所示,图9是本申请实施例提供的另一种业务保障的方法示意性流程图。该业务保障的方法至少包括以下部分步骤:
S901,PCF(策略控制网元的一例)获取Remote UE(远端终端设备的一例)的会话管理签约数据。
在PCF需要为Remote UE配置用户策略(UE policy)信息的情况下,PCF可以从UDM(数据管理网元的一例)/UDR(数据仓库网元的一例)获取Remote UE的会话管理签约数据。
Remote UE的会话管理签约数据可以包括PDU会话相关信息,例如DNN、切片信息、PDU会话类型等,Remote UE的会话管理签约数据还可以包括Remote UE的AMBR。Remote UE的AMBR可以包括Remote UE的签约会话AMBR。可选地,Remote UE的AMBR还可以包括Remote UE的PC5接口AMBR或Remote UE的PC5链路AMBR。
S902,PCF决策中继服务码(relay service code,RSC)。
具体地,PCF根据Remote UE的会话管理签约数据决策RSC,即PCF决策的RSC与Remote UE的会话管理签约数据相关联。具体地,PCF可以根据Remote UE的AMBR决策RSC,即PCF决策的RSC与Remote UE的AMBR相关联。
PCF可以根据Remote UE的会话管理签约数据决策第一RSC和/或第二RSC,第一RSC是为Remote UE配置的RSC,第二RSC是为Relay(中继设备的一例)配置的RSC。该第一RSC和/或第二RSC与Remote UE的会话管理签约数据相关联。
可选地,PCF可以根据Remote UE的AMBR决策第一RSC和/或第二RSC。
可选地,PCF可以根据Remote UE的签约会话AMBR和PC5接口AMBR/PC5链路AMBR中的最小值决策第一RSC和/或第二RSC。
可选地,PCF可以将RSC与Remote UE的会话管理签约数据关联保存。
可选地,该方法还可以包括S903,PCF向UDM/UDR发送RSC和第二指示信息,第二指示信息用于指示RSC与Remote UE的会话管理签约数据相关联。相应地,UDM/UDR接收到来自PCF的RSC之后,将该RSC与Remote UE的会话管理签约数据关联保存,即根据该RSC可以确定Remote UE的会话管理签约数据。
S904,PCF向Remote UE和Relay发送RSC。
具体地,若在S902中,PCF决策的是第一RSC,则PCF可以将第一RSC发送给Remote UE和Relay;进一步地,Remote UE和Relay可以基于该第一RSC建立PC5连接。
若在S902中,PCF决策的是第二RSC,则PCF可以将第二RSC发送给Remote UE和Relay;进一步地,Remote UE和Relay可以基于该第二RSC建立PC5连接。
若在S902中,PCF决策的是第一RSC和第二RSC,则PCF可以将第一RSC发送给Remote UE,将第二RSC发送给Relay;进一步地,Remote UE和Relay可以基于该第一RSC和第二RSC建立PC5连接。可选地,PCF可以将第一RSC和第二RSC发送给Remote UE和Relay。
可选地,在S904中,PCF可以将Remote UE的会话管理签约数据发送给Remote UE和Relay。
S911,Remote UE和Relay建立PC5连接。
Remote UE和Relay可以基于从PCF接收到的第一RSC和/第二RSC建立PC5连接。
可选地,若Remote UE和Relay从PCF接收到了Remote UE的会话管理签约数据,则Remote UE和Relay可以根据Remote UE的会话管理签约数据确定PC5链路的AMBR。
例如,若Remote UE的会话管理签约数据包括Remote UE的签约会话AMBR,则Remote UE和Relay可以将Remote UE的签约会话AMBR确定为PC5链路的AMBR。
若Remote UE的会话管理签约数据包括Remote UE的PC5接口AMBR,则Remote UE和Relay可以将Remote UE的PC5接口AMBR确定为PC5链路的AMBR。
若Remote UE的会话管理签约数据包括Remote UE的PC5链路AMBR,则Remote UE和Relay可以将Remote UE的PC5链路AMBR确定为PC5链路的AMBR。
若Remote UE的会话管理签约数据包括Remote UE的签约会话AMBR和PC5接口AMBR/PC5链路AMBR,则Remote UE和Relay可以将Remote UE的签约会话AMBR和PC5接口AMBR/PC5链路AMBR中的最小值确定为PC5链路的AMBR。
S912,Relay建立PDU会话。
与图5中的S502相同,这里不再赘述。
S913,Relay向SMF(会话管理网元的一例)发送第一消息。
在一种实现方式中,第一消息中可以包括第一RSC和/第二RSC。
在另一种实现方式中,若Remote UE和Relay在先从PCF接收到了Remote UE的会话管理签约数据,则第一消息中可以包括Remote UE的会话管理签约数据。
为了使得SMF在建立PDR的过程中能够提供更符合Remote UE实际可使用带宽的QER,图9所示的方法流程还包括:
S910,SMF获取Remote UE的会话管理签约数据。
如上文所述,若第一消息中包括第一RSC和/或第二RSC,则SMF可以根据以下方式获取Remote UE的会话管理签约数据:
S921,SMF从UDM/UDR获取Remote UE的签约会话管理数据。
SMF可以向UDM(数据管理网元的一例)/UDR(数据仓库网元的一例)发送第三请求消息,第三请求消息用于请求Remote UE的会话管理签约数据,第三请求消息中包括第一RSC和/或第二RSC。如上文所述,PCF可以将决策的RSC发送给UDM/UDR,并且,UDM/UDR可以将该RSC与Remote UE的会话管理签约数据关联保存,因此,UDM/UDR接收到来自SMF的第三请求消息之后,可以根据第三请求消息中的第一RSC和/或第二RSC,从本地数据库获取Remote UE的会话管理签约数据,并向SMF发送第三响应消息,第三响应消息中包括Remote UE的会话管理签约数据。
S922,SMF从PCF获取Remote UE的签约会话管理数据。
SMF可以向PCF发送第五请求消息,第五请求消息用于请求Remote UE的会话管理签约数据,第五请求消息中包括第一RSC和/或第二RSC。如上文所述,PCF可以将决策的RSC与Remote UE的会话管理签约数据关联保存,因此,PCF接收到来自SMF的第五三请求消息之后,可以根据第五请求消息中的第一RSC和/或第二RSC,从本地数据库获取Remote UE的会话管理签约数据,并向SMF发送第五响应消息,第五响应消息中包括Remote UE的会话管理签约数据。
若第一消息中包括Remote UE的会话管理签约数据,则SMF可以从第一消息中获取Remote UE的会话管理签约数据。
S920,SMF生成PDR。
与图8中的S820相同,这里不再赘述。
S930,SMF向UPF发送PDR。
与图8中的S830相同,这里不再赘述。
可选地,若在S904中,PCF没有将Remote UE的会话管理签约数据发送给Remote UE和Relay,则图9所示的方法还可以包括S940和S950:
S940,SMF向Relay发送第四消息,第四消息中包括Remote UE的AMBR。
与图8中的S840相同,这里不再赘述。
S950,Remote UE与Relay进行PC5链路更新。
与图8中的S850相同,这里不再赘述。
图9所示的方法还可以包括S960:UPF根据接收到的PDR,通过Relay与Remote UE进行数据传输。
与图8中的S860相同,这里不再赘述。
在本申请实施例中,PCF可以根据Remote UE的会话管理签约数据决策出与Remote UE的会话管理签约数据相关的RSC,并将决策出的RSC和/或Remote UE的会话管理签约数据发送给Remote UE和Relay;进一步地,SMF根据Relay上报的RSC和/或Remote UE的会话管理签约数据,可以确定出N4会话中QER中的MBR值。从而使得在UPF执行Remote UE的数据包传输的过程中,可以根据Remote UE的MBR限制Remote UE的数据速率。
应理解,上述方法实施例中执行主体(如,核心网网元)可以执行施例中的部分或全部步骤,这些步骤或操作仅是示例,本申请实施例还可以包括执行其它操作或者各种操作的变形。
还应理解,在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述可以具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
还应理解,上述方法实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
上面结合图5-图9详细介绍了本申请实施例提供的业务保障的方法,下面结合图10-图20详细介绍本申请实施例提供的业务保障的装置。
参见图10,图10是本申请提出的业务保障的装置8000的示意图。如图10所示,装置8000包括接收单元8100、发送单元8200和处理单元8300。
该业务保障的装置8000可用于实现上述任一方法实施例中涉及中继设备的功能。例如,该业务保障的装置8000可以是中继设备。
业务保障的装置8000可以作为中继设备,并执行上述方法实施例中由中继设备执行的步骤。所述接收单元8100和/或发送单元8200可用于支持业务保障的装置8000进行通信,例如执行图5-图9中由中继设备执行的发送和/或接收的动作,所述处理单元8300可用于支持业务保障的装置8000执行上述方法实施例中的处理动作,例如执行图5-图9中由中继设备执行的处理动作。
可选的,业务保障的装置8000还可以包括存储单元840(图10中暂未示出),用于存储业务保障的装置8000的程序代码和数据。具体的,可以参考如下描述:发送单元8200,用于向会话管理网元发送第一消息,该第一消息中包括该远端终端设备的第一标识;
接收单元8100,用于接收来自该会话管理网元的第二服务质量QoS规则,该第二QoS 规则基于该远端终端设备的签约数据生成,该远端终端设备的签约数据基于该第一获取得到;
处理单元8300,用于基于该第二QoS规则对该中继设备和该远端终端设备之间的第二通信接口进行QoS保障。
装置8000和方法实施例中的中继设备完全对应,装置8000可以是方法实施例中的中继设备,或者方法实施例中的中继设备内部的芯片或功能模块。装置8000的相应单元用于执行图5-图9所示的方法实施例中由中继设备执行的相应步骤。
其中,装置8000中的接收单元8100执行方法实施例中中继设备接收的步骤。例如,执行图5-图7中接收接入网设备发送第二QoS Rule的步骤S570,或图8-图9中接收会话管理网元发送的第四消息的步骤。
装置8000中的发送单元8200用于实现向其他设备发送消息的功能。例如,执行图5-图9中向会话管理网元发送第一消息的步骤。
装置8000中的处理单元8300执行方法实施例中中继设备内部实现或处理的步骤。
接收单元8100和发送单元8200可以组成收发单元,同时具有接收和发送的功能。其中,处理单元8300可以是处理器。发送单元8200可以是接收器。接收单元8100可以是发射器。接收器和发射器可以集成在一起组成收发器。
参见图11,图11是适用于本申请实施例的中继设备和远端终端设备900的结构示意图。该中继设备或远端终端设备900可应用于图2所示出的系统中。为了便于说明,图11仅示出了中继设备或远端终端设备的主要部件。如图11所示,中继设备或远端终端设备包括处理器、存储器、控制电路、天线以及输入输出装置。处理器用于控制天线以及输入输出装置收发信号,存储器用于存储计算机程序,处理器用于从存储器中调用并运行该计算机程序,以执行本申请提出的业务保障的方法中由用户设备执行的相应流程和/或操作。此处不再赘述。
本领域技术人员可以理解,为了便于说明,图11仅示出了一个存储器和处理器。在实际的中继设备中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本申请实施例对此不做限制。
参见图12,图12是本申请提出的业务保障的装置1000的示意图。如图12所示,装置1000包括接收单元1010和发送单元1020。该业务保障的装置1000可用于实现上述任一方法实施例中涉及会话管理网元的功能。例如,该业务保障的装置1000可以是SMF。该网元或者网络功能既可以是硬件设备中的网络元件,也可以是在专用硬件上运行的软件功能,或者是平台(例如,云平台)上实例化的虚拟化功能。
业务保障的装置1000可以作为会话管理网元,并执行上述方法实施例中由会话管理网元执行的步骤。所述接收单元1010和/或发送单元1020可用于支持业务保障的装置1000进行通信,例如执行图5-图9中由会话管理网元执行的发送和/或接收的动作。
可选的,业务保障的装置1000还可以包括处理单元1030(图12中暂未示出)可用于支持业务保障的装置1000执行上述方法实施例中的处理动作,例如执行图5-图9中由会话管理网元执行的处理动作。
可选的,业务保障的装置1000还可以包括存储单元1040(图12中暂未示出),用于存储业务保障的装置1000的程序代码和数据。具体的,可以参考如下描述:
接收单元1010,用于接收来自该中继设备的第一消息,该第一消息中包括该远端终端设备的第一标识;
发送单元1020,用于向策略控制网元发送第二消息,该第二消息中包括该远端终端设备的第一标识,其中,该远端终端设备的第一标识用于获取该远端终端设备的签约数据,该远端终端设备的签约数据用于确定第二服务质量QoS规则,该第二QoS规则为该中继设备和该远端终端设备之间的第二通信接口对应的QoS规则。
或者,
接收单元1010,用于获取该远端终端设备的会话管理签约数据,该会话管理签约数据包括该远端终端设备的AMBR;
处理单元1030,用于生成与该远端终端设备对应的PDR,该PDR包括QER,该QER中的最大带宽是基于该远端终端设备的AMBR确定的;
发送单元1020,用于向用户面网元发送该PDR。
装置1000和方法实施例中的会话管理网元完全对应,装置1000可以是方法实施例中的会话管理网元,或者方法实施例中的会话管理网元内部的芯片或功能模块。装置1000的相应单元用于执行图5-图9所示的方法实施例中由会话管理网元执行的相应步骤。
其中,装置1000中的接收单元1010执行方法实施例中会话管理网元接收其他设备发送的消息的步骤。例如,执行图5中接收中继设备发送的第一消息的步骤S510、执行图5中接收策略控制网发送的PCC规则的步骤S550。
装置1000中的发送单元1020执行方法实施例中会话管理网元发送的步骤。例如,执行图5中向策略控制网元发送第二消息的步骤S520。
装置1000中所示的业务保障的装置还可能包括处理单元(图12中并未示出),处理单元执行方法实施例中会话管理网元内部实现或处理的步骤。
接收单元1010和发送单元1020可以组成收发单元,同时具有接收和发送的功能。其中,处理单元可以是处理器。发送单元1020可以是接收器。接收单元1010可以是发射器。接收器和发射器可以集成在一起组成收发器。
如图13所示,本申请实施例还提供了一种会话管理网元1100,该会话管理网元1100包括处理器1110,存储器1120与收发器1130,其中,存储器1120中存储指令或程序,处理器1130用于执行存储器1120中存储的指令或程序。存储器1120中存储的指令或程序被执行时,收发器1130用于执行图12所示的装置1000中的接收单元1010和发送单元1020执行的操作。
参见图14,图14是本申请提出的业务保障的装置1200的示意图。如图14所示,装置1200包括接收单元1210、处理单元1220和发送单元1230。
该业务保障的装置1200可用于实现上述任一方法实施例中涉及策略控制网元的功能。例如,该业务保障的装置1200可以是PCF。该网元或者网络功能既可以是硬件设备中的网络元件,也可以是在专用硬件上运行的软件功能,或者是平台(例如,云平台)上实例化的虚拟化功能。
业务保障的装置1200可以作为策略控制网元,并执行上述方法实施例中由策略控制网元执行的步骤。所述接收单元1210和/或发送单元1230可用于支持业务保障的装置1200进行通信,例如执行图5中由策略控制网元执行的发送和/或接收的动作。所述处理单元 1220可用于支持业务保障的装置1200执行上述方法实施例中的处理动作,例如执行图5中由策略控制网元执行的处理动作。
可选的,业务保障的装置1200还可以包括存储单元1240(图14中暂未示出),用于存储业务保障的装置1200的程序代码和数据。具体的,可以参考如下描述:
接收单元1210,用于获取该远端终端设备的第一标识,该远端终端设备的第一标识用于获取该远端终端设备的签约数据;
处理单元1220,用于基于该远端终端设备的签约数据生成策略计费控制PCC规则,该PCC规则中包括第一通信接口的第一QoS参数和第二通信接口的第二QoS参数,
发送单元1230,用于向会话管理网元发送该PCC规则。
其中,该第一通信接口为该中继设备与接入网设备之间的通信接口、该第二通信接口为该中继设备和该远端终端设备之间的通信接口,该第一QoS参数用于生成该第一通信接口对应的第一QoS规则、该第二QoS参数用于生成该第二通信接口对应的第二QoS规则。
或者,该业务保障的装置还可以作为获取中继服务码的装置,在此情况下,该获取中继服务码的装置1200具体可以用于:
接收单元1210,用于获取该远端终端设备的会话管理签约数据,该会话管理签约数据包括该远端终端设备的AMBR;
处理单元1220,用于根据该签约数据决策中继服务码,该中继服务码与该会话管理签约数据相关联;
发送单元1230,用于向该远端终端设备和该中继设备发送该中继服务码。
装置1200和方法实施例中的策略控制网元完全对应,装置1200可以是方法实施例中的策略控制网元,或者方法实施例中的策略控制网元内部的芯片或功能模块。装置1200的相应单元用于执行图5所示的方法实施例中由策略控制网元执行的相应步骤。
其中,装置1200中的接收单元1210执行方法实施例中策略控制网元接收的步骤。例如,执行图5中接收来自会话管理网元的第二消息的步骤S520、执行图5中接收接收来自应用网元的策略授权请求消息的步骤S532和S537、执行图5中接收接收来自应用网元的订阅消息的步骤S533。
处理单元1220执行方法实施例中策略控制网元内部实现或处理的步骤。例如,执行图5中生成PCC规则的步骤S540。
装置1200中的发送单元1230执行方法实施例中策略控制网元发送的步骤。例如,执行图5中向会话管理网元发送PCC规则的步骤S550、执行图5中向应用网元发送通知消息的步骤S534。
接收单元1210和发送单元1230可以组成收发单元,同时具有接收和发送的功能。其中,处理单元1220可以是处理器。发送单元1230可以是接收器。接收单元1210可以是发射器。接收器和发射器可以集成在一起组成收发器。
如图15所示,本申请实施例还提供了一种策略控制网元1300,该策略控制网元1300包括处理器1310,存储器1320与收发器1330,其中,存储器1320中存储指令或程序,处理器1330用于执行存储器1320中存储的指令或程序。存储器1320中存储的指令或程序被执行时,收发器1330用于执行图14所示的装置1200中的接收单元1210与发送单元 1230执行的操作。
参见图16,图16是本申请提出的业务保障的装置1400的示意图。如图16所示,装置1400包括发送单元1410和处理单元1420。
该业务保障的装置1400可用于实现上述任一方法实施例中涉及应用网元的功能。例如,该业务保障的装置1400可以是AF。该网元或者网络功能既可以是硬件设备中的网络元件,也可以是在专用硬件上运行的软件功能,或者是平台(例如,云平台)上实例化的虚拟化功能。
业务保障的装置1400可以作为应用网元,并执行上述方法实施例中由应用网元执行的步骤。所述接收单元1410可用于支持业务保障的装置1400进行通信,例如执行图5-图7中由应用网元执行的接收的动作。所述处理单元1420可用于支持业务保障的装置1400执行上述方法实施例中的处理动作,例如执行图5-图7中由应用网元执行的处理动作。
可选的,业务保障的装置1400还可以包括接收单元1430(图16中暂未示出),支持业务保障的装置1400执行的发送的动作。
可选的,业务保障的装置1400还可以包括存储单元1440(图16中暂未示出),用于存储业务保障的装置1400的程序代码和数据。具体的,可以参考如下描述:
处理单元1420,用于确定策略授权请求消息;
发送单元1410,用于向策略控制网元发送策略授权请求消息,该策略授权请求消息中包括远端终端设备的第二标识,该远端终端设备为通过另一个终端设备接入网络的终端设备;
其中,该第二标识用于确定该远端终端设备的第一标识,该第一标识用于该远端终端设备的标识用于获取该远端终端设备的签约数据,该远端终端设备的签约数据用于确定第二服务质量QoS规则,该第二QoS规则为该中继设备和该远端终端设备之间的第二通信接口对应的QoS规则。
装置1400和方法实施例中的应用网元完全对应,装置1400可以是方法实施例中的应用网元,或者方法实施例中的应用网元内部的芯片或功能模块。装置1400的相应单元用于执行图5-图7所示的方法实施例中由应用网元执行的相应步骤。
其中,装置1400中的发送单元1410执行方法实施例中应用网元发送的步骤。例如,执行图5中向策略控制网元发送策略授权请求消息的步骤S532和S537、执行图5中向策略控制网元发送订阅消息的步骤S533。
处理单元1420执行方法实施例中应用网元内部实现或处理的步骤。
装置1400中所示的业务保障的装置还可能包括接收单元(图16中并未示出),发送单元执行方法实施例中策略控制网元接收其他设备发送消息的步骤。例如,执行图5中接收会话管理网元发送的通知消息的步骤S534。
接收单元和发送单元1410可以组成收发单元,同时具有接收和发送的功能。其中,处理单元1420可以是处理器。发送单元1410可以是接收器。接收单元可以是发射器。接收器和发射器可以集成在一起组成收发器。
如图17所示,本申请实施例还提供了一种应用网元1500,该应用网元1500包括处理器1510,存储器1520与收发器1530,其中,存储器1520中存储指令或程序,处理器1530用于执行存储器1520中存储的指令或程序。存储器1520中存储的指令或程序被执 行时,收发器1530用于执行图16所示的装置1400中的接收单元与发送单元1410执行的操作。
参见图18,图18是本申请提出的业务保障的装置1600的示意图。如图18所示,装置1600包括接收单元1610和处理单元1620。
该业务保障的装置1600可用于实现上述任一方法实施例中涉及远端终端设备的功能。例如,该业务保障的装置1600可以是远端终端设备。
业务保障的装置1600可以作为远端终端设备,并执行上述方法实施例中由远端终端设备执行的步骤。所述接收单元1610可用于支持业务保障的装置1600进行通信,例如执行图5-图9中由远端终端设备执行的接收的动作,所述处理单元1620可用于支持业务保障的装置1600执行上述方法实施例中的处理动作,例如执行图5-图9中由远端终端设备执行的处理动作。
可选的,业务保障的装置1600还可以包括发送单元1630(图18中暂未示出)可用于支持业务保障的装置1600执行上述方法实施例中的发送动作,例如执行图5-图9中由远端终端设备执行的发送动作。
可选的,业务保障的装置1600还可以包括存储单元1640(图18中暂未示出),用于存储业务保障的装置1600的程序代码和数据。具体的,可以参考如下描述:接收单元1610,用于接收来自所述中继设备的第二服务质量QoS规则,所述第二QoS规则基于所述远端终端设备的签约数据生成;
处理单元1630,用于基于所述第二QoS规则对所述中继设备和所述远端终端设备之间的第二通信接口进行QoS保障。
装置1600和方法实施例中的远端终端设备完全对应,装置1600可以是方法实施例中的远端终端设备,或者方法实施例中的远端终端设备内部的芯片或功能模块。装置1600的相应单元用于执行图5-图9所示的方法实施例中由远端终端设备执行的相应步骤。
其中,装置1600中的接收单元1610执行方法实施例中远端终端设备接收的步骤。例如,执行图5中接收中继设备发送第二QoS Rule的步骤S571。
装置1600中的处理单元1620执行方法实施例中远端终端设备内部实现或处理的步骤。
装置1600中所示的业务保障的装置还可能包括发送单元(图18中并未示出)实现向其他设备发送消息的功能。
接收单元1610和发送单元可以组成收发单元,同时具有接收和发送的功能。其中,处理单元1620可以是处理器。发送单元可以是接收器。接收单元1610可以是发射器。接收器和发射器可以集成在一起组成收发器。
参见图19,图19是本申请提出的业务保障的装置1900的示意图。如图19所示,装置1900包括发送单元14910和处理单元1920。
该业务保障的装置1900可用于实现上述任一方法实施例中涉及用户面网元的功能。例如,该业务保障的装置1900可以是UPF。
业务保障的装置1900可以作为用户面网元,并执行上述方法实施例中由用户面网元执行的步骤。所述接收单元1910可用于支持业务保障的装置1900进行通信,例如执行图8-图9中由用户面网元执行的接收的动作。所述处理单元1920可用于支持业务保障的装 置1900执行上述方法实施例中的处理动作,例如执行图8-图9中由用户面网元执行的处理动作。
可选的,业务保障的装置1900还可以包括接收单元1930(图19中暂未示出),支持业务保障的装置1900执行的发送的动作。
可选的,业务保障的装置1900还可以包括存储单元1940(图19中暂未示出),用于存储业务保障的装置1900的程序代码和数据。具体的,可以参考如下描述:
接收单元1910,用于接收来自会话管理网元的PDR,该PDR与该远端终端设备对应,该PDR包括QER,该QER中的最大带宽是基于该远端终端设备的AMBR确定的;
处理单元1920,用于根据该QER中的最大带宽确定向该远端终端设备发送的数据的速率。
装置1900和方法实施例中的用户面网元完全对应,装置1900可以是方法实施例中的用户网元,或者方法实施例中的用户面网元内部的芯片或功能模块。装置1900的相应单元用于执行图8-图9所示的方法实施例中由用户面网元执行的相应步骤。
其中,装置1900中的发送单元1910执行方法实施例中用户面网元发送的步骤。例如,执行图8中通过中继设备向远端终端设备发送数据的步骤。
处理单元1920执行方法实施例中用户面网元内部实现或处理的步骤。
装置1900中所示的业务保障的装置还可能包括接收单元(图19中并未示出),接收单元执行方法实施例中用户面网元接收其他设备发送消息的步骤。例如,执行图8中接收会话管理网元发送的PDR。
接收单元和发送单元1910可以组成收发单元,同时具有接收和发送的功能。其中,处理单元1920可以是处理器。发送单元1910可以是接收器。接收单元可以是发射器。接收器和发射器可以集成在一起组成收发器。
如图20所示,本申请实施例还提供了一种用户面网元2000,该用户面网元2000包括处理器2010,存储器2020与收发器2030,其中,存储器2020中存储指令或程序,处理器2030用于执行存储器2020中存储的指令或程序。存储器2020中存储的指令或程序被执行时,收发器2030用于执行图19所示的装置1900中的接收单元与发送单元执行的操作。
本申请实施例还提供一种通信系统,其包括前述的中继设备、远端终端设备、会话管理网元、策略控制网元、用户面网元和应用网元。
本申请还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当该指令在计算机上运行时,使得计算机执行上述如图5-图9所示的方法中远端终端设备执行的各个步骤。
本申请还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当该指令在计算机上运行时,使得计算机执行上述如图5-图9所示的方法中中继设备执行的各个步骤。
本申请还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当该指令在计算机上运行时,使得计算机执行上述如图5-图9所示的方法中会话管理网元执行的各个步骤。
本申请还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当 该指令在计算机上运行时,使得计算机执行上述如图5-图9所示的方法中策略控制网元执行的各个步骤。
本申请还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当该指令在计算机上运行时,使得计算机执行上述如图5-图7所示的方法中应用网元执行的各个步骤。
本申请还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当该指令在计算机上运行时,使得计算机执行上述如图8-图9所示的方法中用户面网元执行的各个步骤。
本申请还提供了一种包含指令的计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行如图5-图9所示的方法中远端终端设备执行的各个步骤。
本申请还提供了一种包含指令的计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行如图5-图7所示的方法中中继设备执行的各个步骤。
本申请还提供了一种包含指令的计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行如图5-图9所示的方法中会话管理网元执行的各个步骤。
本申请还提供了一种包含指令的计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行如图5-图9所示的方法中策略控制网元执行的各个步骤。
本申请还提供了一种包含指令的计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行如图5-图9所示的方法中应用网元执行的各个步骤。
本申请还提供了一种包含指令的计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行如图8-图9所示的方法中用户面网元执行的各个步骤。
本申请还提供一种芯片,包括处理器。该处理器用于读取并运行存储器中存储的计算机程序,以执行本申请提供的业务保障的方法中由远端终端设备执行的相应操作和/或流程。可选地,该芯片还包括存储器,该存储器与该处理器通过电路或电线与存储器连接,处理器用于读取并执行该存储器中的计算机程序。进一步可选地,该芯片还包括通信接口,处理器与该通信接口连接。通信接口用于接收需要处理的数据和/或信息,处理器从该通信接口获取该数据和/或信息,并对该数据和/或信息进行处理。该通信接口可以是输入输出接口。
本申请还提供一种芯片,包括处理器。该处理器用于读取并运行存储器中存储的计算机程序,以执行本申请提供的业务保障的方法中由中继设备执行的相应操作和/或流程。可选地,该芯片还包括存储器,该存储器与该处理器通过电路或电线与存储器连接,处理器用于读取并执行该存储器中的计算机程序。进一步可选地,该芯片还包括通信接口,处理器与该通信接口连接。通信接口用于接收需要处理的数据和/或信息,处理器从该通信接口获取该数据和/或信息,并对该数据和/或信息进行处理。该通信接口可以是输入输出接口。
本申请还提供一种芯片,包括处理器。该处理器用于调用并运行存储器中存储的计算机程序,以执行本申请提供的业务保障的方法中由会话管理网元执行的相应操作和/或流程。可选地,该芯片还包括存储器,该存储器与该处理器通过电路或电线与存储器连接,处理器用于读取并执行该存储器中的计算机程序。进一步可选地,该芯片还包括通信接口,处理器与该通信接口连接。通信接口用于接收需要处理的数据和/或信息,处理器从该通 信接口获取该数据和/或信息,并对该数据和/或信息进行处理。该通信接口可以是输入输出接口。
本申请还提供一种芯片,包括处理器。该处理器用于调用并运行存储器中存储的计算机程序,以执行本申请提供的业务保障的方法中由策略控制网元执行的相应操作和/或流程。可选地,该芯片还包括存储器,该存储器与该处理器通过电路或电线与存储器连接,处理器用于读取并执行该存储器中的计算机程序。进一步可选地,该芯片还包括通信接口,处理器与该通信接口连接。通信接口用于接收需要处理的数据和/或信息,处理器从该通信接口获取该数据和/或信息,并对该数据和/或信息进行处理。该通信接口可以是输入输出接口。
本申请还提供一种芯片,包括处理器。该处理器用于调用并运行存储器中存储的计算机程序,以执行本申请提供的业务保障的方法中由应用网元执行的相应操作和/或流程。可选地,该芯片还包括存储器,该存储器与该处理器通过电路或电线与存储器连接,处理器用于读取并执行该存储器中的计算机程序。进一步可选地,该芯片还包括通信接口,处理器与该通信接口连接。通信接口用于接收需要处理的数据和/或信息,处理器从该通信接口获取该数据和/或信息,并对该数据和/或信息进行处理。该通信接口可以是输入输出接口。
本申请还提供一种芯片,包括处理器。该处理器用于调用并运行存储器中存储的计算机程序,以执行本申请提供的业务保障的方法中由用户面网元执行的相应操作和/或流程。可选地,该芯片还包括存储器,该存储器与该处理器通过电路或电线与存储器连接,处理器用于读取并执行该存储器中的计算机程序。进一步可选地,该芯片还包括通信接口,处理器与该通信接口连接。通信接口用于接收需要处理的数据和/或信息,处理器从该通信接口获取该数据和/或信息,并对该数据和/或信息进行处理。该通信接口可以是输入输出接口。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
应理解,上述的芯片也可以替换为芯片系统,这里不再赘述。
本申请中的术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装 置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
另外,本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系;本申请中术语“至少一个”,可以表示“一个”和“两个或两个以上”,例如,A、B和C中至少一个,可以表示:单独存在A,单独存在B,单独存在C、同时存在A和B,同时存在A和C,同时存在C和B,同时存在A和B和C,这七种情况。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (53)

  1. 一种业务保障的方法,应用于远端终端设备通过中继设备接入网络的情况下,其特征在于,包括:
    策略控制网元获取所述远端终端设备的第一标识,所述第一标识用于获取所述远端终端设备的签约数据;
    所述策略控制网元基于所述远端终端设备的签约数据生成策略计费控制PCC规则,所述PCC规则中包括第一通信接口的第一服务质量QoS参数和第二通信接口的第二QoS参数;
    所述策略控制网元向会话管理网元发送所述PCC规则,
    其中,所述第一通信接口为所述中继设备与接入网设备之间的通信接口、所述第二通信接口为所述中继设备和所述远端终端设备之间的通信接口,所述第一QoS参数用于生成所述第一通信接口对应的第一QoS规则、所述第二QoS参数用于生成所述第二通信接口对应的第二QoS规则。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述策略控制网元获取所述远端终端设备的互联网协议IP地址信息;
    所述策略控制网元基于所述IP地址信息确定流描述信息,所述流描述信息携带在所述PCC规则中。
  3. 根据权利要求1或2所述的方法,其特征在于,所述策略控制网元获取所述第一标识包括:
    所述策略控制网元接收来自会话管理网元的第二消息,所述第二消息中包括所述第一标识;或者,
    所述策略控制网元接收来自应用网元的策略授权请求消息,所述策略授权请求消息中包括所述远端终端设备的第二标识,其中,所述第二标识用于确定所述第一标识。
  4. 根据权利要求3所述的方法,其特征在于,所述第二标识包括以下标识中的至少一种:
    远端终端设备的通用公开用户标识GPSI、第三方分配的远端终端设备的用户标识、远端终端设备的互联网协议第六版IPv6地址、远端终端设备的IPv6地址前缀、中继设备的互联网协议第四版IPv4地址和传输控制协议或用户数据报协议TCP/UDP端口号组成的标识。
  5. 根据权利要求3或4所述的方法,其特征在于,所述第二消息中还包括所述远端终端设备的会话管理签约数据,所述会话管理签约数据包括所述远端终端设备的聚合最大比特率AMBR,所述第二QoS参数包括所述远端终端设备可使用的AMBR。
  6. 根据权利要求3或4所述的方法,其特征在于,所述策略授权请求消息中还包括:
    业务的标识和/或QoS参数需求,所述业务标识用于指示业务类型,所述QoS参数需求用于辅助所述策略控制网元基于生成所述PCC规则。
  7. 根据权利要求6所述的方法,其特征在于,所述业务的标识包括以下信息中的至少一种:
    第一中继服务码、第二中继服务码、应用标识APP ID、邻近服务应用名ProSe APP ID;
    其中,所述第一中继服务码为所述远端终端设备被配置的中继服务码,所述第二中继服务码为所述中继设备被配置的中继服务码。
  8. 根据权利要求3-7中任一项所述的方法,其特征在于,所述策略控制网元接收来自应用网元的策略授权请求消息之前,所述方法还包括:
    所述策略控制网元接收来自所述应用网元的订阅消息,所述订阅消息用于订阅所述远端终端设备是否上线;
    所述策略控制网元向所述应用网元发送通知消息,所述通知消息用于指示所述远端终端设备上线。
  9. 根据权利要求8所述的方法,其特征在于,所述通知消息中包括所述第一标识和业务的标识,其中,所述业务的标识用于标识业务类型。
  10. 根据权利要求3-9中任一项所述的方法,其特征在于,所述第二消息和/或策略授权请求消息中还包括:
    第一中继服务码和/或第二中继服务码,
    其中,所述第一中继服务码为所述远端终端设备被配置的中继服务码,所述第二中继服务码为所述中继设备被配置的中继服务码;
    所述策略控制网元基于所述远端终端设备的签约数据生成所述PCC规则包括:
    所述策略控制网元基于所述远端终端设备的签约数据以及所述第一中继服务码和/或所述第二中继服务码生成所述PCC规则。
  11. 根据权利要求10所述的方法,其特征在于,所述方法还包括:
    所述策略控制网元基于所述第一中继服务码和/或第二中继服务码判断业务类型;或者,
    所述策略控制网元基于所述第一中继服务码和/或第二中继服务码从5G邻近服务名称管理功能DDNMF网元处获知所述业务类型。
  12. 根据权利要求1-11中任一项所述的方法,其特征在于,所述第一标识包括:
    通用公开用户标识GPSI和/或第三方应用为所述远端终端设备分配的用户标识。
  13. 一种业务保障的方法,其特征在于,包括:
    应用网元确定策略授权请求消息;
    所述应用网元向策略控制网元发送策略授权请求消息,所述策略授权请求消息中包括远端终端设备的第二标识,所述远端终端设备为通过另一个终端设备接入网络的终端设备;
    其中,所述第二标识用于确定所述远端终端设备的第一标识,所述第一标识用于获取所述远端终端设备的签约数据,所述远端终端设备的签约数据用于确定第二服务质量QoS规则,所述第二QoS规则为所述中继设备和所述远端终端设备之间的第二通信接口对应的QoS规则。
  14. 根据权利要求13所述的方法,其特征在于,所述应用网元确定策略授权请求消息之前,所述方法还包括:
    所述应用网元向所述策略控制网元发送订阅消息,所述订阅消息用于订阅所述远端终端设备是否上线;
    所述应用网元接收来自所述策略控制网元的通知消息,所述通知消息用于指示所述远端终端设备上线;或者,
    所述应用网元通过查询请求消息获取所述策略控制网元的信息。
  15. 根据权利要求14所述的方法,其特征在于,所述应用网元确定策略授权请求消息包括:
    所述应用网元基于所述第一标识和业务标识确定所述策略授权请求消息,所述业务标识用于标识业务类型
    其中,所述第一标识和所述业务标识携带在所述通知消息中,或者,所述第一标识和所述业务标识由所述应用网元通过用户面感知获得。
  16. 根据权利要求15所述的方法,其特征在于,在所述第一标识和所述业务标识由所述应用网元通过用户面感知获得的情况下,所述方法还包括:
    所述应用网元通过用户面感知所述远端终端设备上线。
  17. 一种业务保障的方法,应用于远端终端设备通过中继设备接入网络的情况下,其特征在于,包括:
    会话管理网元接收来自所述中继设备的第一消息,所述第一消息中包括所述远端终端设备的第一标识;
    所述会话管理网元向策略控制网元发送第二消息,所述第二消息中包括所述第一标识,
    其中,所述第一标识用于获取所述远端终端设备的签约数据,所述远端终端设备的签约数据用于确定第二服务质量QoS规则,所述第二QoS规则为所述中继设备和所述远端终端设备之间的第二通信接口对应的QoS规则。
  18. 根据权利要求17所述的方法,其特征在于,所述方法还包括:
    所述会话管理网元接收来自所述策略控制网元的策略计费控制PCC规则,所述PCC规则中包括第一通信接口的第一QoS参数和所述第二通信接口的第二QoS参数,其中,所述第一通信接口为所述中继设备与接入网设备之间的通信接口;
    所述会话管理网元根据所述第一QoS参数生成所述第一通信接口对应的第一QoS规则、根据所述第二QoS参数生成所述第二QoS规则。
  19. 一种业务保障的方法,应用于远端终端设备通过中继设备接入网络的情况下,其特征在于,包括:
    所述中继设备向会话管理网元发送第一消息,所述第一消息中包括所述远端终端设备的第一标识;
    所述中继设备接收来自所述会话管理网元的第二服务质量QoS规则,所述第二QoS规则基于所述第一标识对应的所述远端终端设备的签约数据生成;
    所述中继设备基于所述第二QoS规则对所述中继设备和所述远端终端设备之间的第二通信接口进行QoS保障。
  20. 根据权利要求19所述的方法,其特征在于,所述方法还包括:
    所述中继设备向所述远端终端设备发送所述第二QoS规则。
  21. 根据权利要求19或20所述的方法,其特征在于,所述第一消息中还包括:
    第一中继服务码和/或第二中继服务码,所述第一中继服务码或所述第二中继服务码 用于确定所述第二QoS规则;
    其中,所述第一中继服务码为所述远端终端设备被配置的中继服务码,所述第二中继服务码为所述中继设备被配置的中继服务码。
  22. 根据权利要求21所述的方法,其特征在于,所述第一中继服务码和/或第二中继服务码与所述远端终端设备的会话管理签约数据相关联。
  23. 根据权利要求19-22中任一项所述的方法,其特征在于,所述方法还包括:
    所述中继设备接收来自所述会话管理网元的第四消息,所述第四消息包括所述远端终端设备的会话管理签约数据,所述会话管理签约数据包括所述远端终端设备的聚合最大比特率AMBR;
    所述中继设备根据所述远端终端设备的AMBR确定与所述远端终端设备之间的PC5链路的AMBR。
  24. 一种业务保障的方法,应用于远端终端设备通过中继设备接入网络的情况下,其特征在于,包括:
    所述远端终端设备接收来自所述中继设备的第二服务质量QoS规则,所述第二QoS规则基于所述远端终端设备的签约数据生成,
    所述远端终端设备基于所述第二QoS规则对所述中继设备和所述远端终端设备之间的第二通信接口进行QoS保障。
  25. 一种业务保障的方法,应用于远端终端设备通过中继设备接入网络的情况下,其特征在于,包括:
    会话管理网元获取所述远端终端设备的会话管理签约数据,所述会话管理签约数据包括所述远端终端设备的聚合最大比特速率AMBR;
    所述会话管理网元生成与所述远端终端设备对应的包检测规则PDR,所述PDR包括服务质量QoS执行规则QER,所述QER中的最大带宽是基于所述远端终端设备的AMBR确定的;
    所述会话管理网元向用户面网元发送所述PDR。
  26. 根据权利要求25所述的方法,其特征在于,所述方法还包括:
    所述会话管理网元向所述中继设备发送第四消息,所述第四消息包括所述远端终端设备的AMBR。
  27. 根据权利要求25或26所述的方法,其特征在于,所述远端终端设备的AMBR包括以下至少一种:所述远端终端设备的签约会话AMBR、所述远端终端设备的PC5接口AMBR、所述远端终端设备的PC5链路AMBR。
  28. 根据权利要求27所述的方法,其特征在于,所述QER中的最大带宽是所述远端终端设备的签约会话AMBR与所述远端终端设备的PC5接口AMBR/PC5链路AMBR中的最小值。
  29. 根据权利要求25-28中任一项所述的方法,其特征在于,所述方法还包括:
    所述会话管理网元向策略控制网元发送第二消息,所述第二消息中包括所述会话管理签约数据;
    所述会话管理网元接收来自所述策略控制网元的会话相关策略和/或策略计费控制PCC规则,所述会话相关策略和/或PCC规则中包括第二通信接口的第二QoS参数,其中, 所述第二通信接口为所述中继设备与所述远端终端设备之间的通信接口,所述第二QoS参数包括所述远端终端设备可使用的AMBR;
    所述QER中的最大带宽是所述远端终端设备的AMBR和所述远端终端设备可使用的AMBR中的最小值。
  30. 根据权利要求25-29中任一项所述的方法,其特征在于,所述会话管理网元获取所述远端终端设备的会话管理签约数据,包括:
    所述会话管理网元接收来自所述中继设备的第一消息,所述第一消息包括所述远端终端设备的第一标识;
    所述会话管理网元根据所述第一标识获取所述会话管理签约数据。
  31. 根据权利要求30所述的方法,其特征在于,所述会话管理网元根据所述第一标识获取所述会话管理签约数据包括:
    所述会话管理网元向数据管理网元/数据仓库网元发送第二请求消息,所述第二请求消息用于请求所述会话管理签约数据,所述第二请求消息中包括所述第一标识;
    所述会话管理网元接收来自所述数据管理网元/数据仓库网元的第二响应消息,所述第二响应消息中包括所述会话管理签约数据。
  32. 根据权利要求31所述的方法,其特征在于,所述第二请求消息中还包括第一指示信息,所述第一指示信息用于指示所述远端终端设备通过所述中继设备接入网络。
  33. 根据权利要求30所述的方法,其特征在于,所述会话管理网元根据所述第一标识获取所述会话管理签约数据包括:
    所述会话管理网元向数据网络验证授权和计费DN-AAA服务器发送第三请求消息,所述第三请求消息用于请求所述会话管理签约数据,所述第三请求消息中包括所述第一标识;
    所述会话管理网元接收来自所述DN-AAA服务器的第三响应消息,所述第三响应消息中包括所述会话管理签约数据。
  34. 根据权利要求25-29中任一项所述的方法,其特征在于,所述会话管理网元获取所述远端终端设备的会话管理签约数据,包括:
    所述会话管理网元接收来自所述中继设备的第一中继服务码和/第二中继服务码,所述第一中继服务码和/或第二中继服务码与所述会话管理签约数据相关联;
    所述会话管理网元向数据管理网元/数据仓库网元发送第三请求消息,所述第三请求消息用于请求所述会话管理签约数据,所述第三请求消息中包括所述第一中继服务码和/或第二中继服务码;
    所述会话管理网元接收来自所述数据管理网元/数据仓库网元的第三响应消息,所述第三响应消息中包括所述会话管理签约数据。
  35. 根据权利要求25-29中任一项所述的方法,其特征在于,所述会话管理网元获取所述远端终端设备的会话管理签约数据,包括:
    所述会话管理网元接收来自所述中继设备的第一消息,所述第一消息包括所述会话管理签约数据。
  36. 一种业务保障的方法,应用于远端终端设备通过中继设备接入网络的情况下,其特征在于,包括:
    用户面网元接收来自会话管理网元的包检测规则PDR,所述PDR与所述远端终端设备对应,所述PDR包括服务质量QoS执行规则QER,所述QER中的最大带宽是基于所述远端终端设备的聚合最大比特速率AMBR确定的;
    所述用户面网元根据所述QER中的最大带宽确定向所述远端终端设备发送的数据的速率。
  37. 根据权利要求36所述的方法,其特征在于,所述远端终端设备的AMBR包括以下至少一种:所述远端终端设备的签约会话AMBR、所述远端终端设备的PC5接口AMBR、所述远端终端设备的PC5链路AMBR。
  38. 根据权利要求37所述的方法,其特征在于,所述QER中的最大带宽是所述远端终端设备的签约会话AMBR与所述远端终端设备的PC5接口AMBR/PC5链路AMBR中的最小值。
  39. 一种获取中继服务码的方法,应用于远端终端设备通过中继设备接入网络的情况下,其特征在于,其特征在于,包括:
    策略控制网元获取所述远端终端设备的会话管理签约数据,所述会话管理签约数据包括所述远端终端设备的聚合最大比特率AMBR;
    所述策略控制网元根据所述签约数据决策中继服务码,所述中继服务码与所述会话管理签约数据相关联;
    所述策略控制网元向所述远端终端设备和所述中继设备发送所述中继服务码。
  40. 根据权利要求39所述的方法,其特征在于,所述方法还包括:
    所述策略控制网元向数据管理网元/数据仓库网元发送所述中继服务码和第二指示信息,所述第二指示信息用于指示所述中继服务码与所述会话管理签约数据相关联。
  41. 根据权利要求39或40所述的方法,其特征在于,所述方法还包括:
    所述策略控制网元向所述远端终端设备和所述中继设备发送所述会话管理签约数据。
  42. 根据权利要求39-41中任一项所述的方法,其特征在于,所述远端终端设备的AMBR包括以下至少一种:所述远端终端设备的签约会话AMBR、所述远端终端设备的PC5接口AMBR、所述远端终端设备的PC5链路AMBR。
  43. 一种业务保障的装置,其特征在于,用于实现如权利要求1-12中任意一项所述的方法。
  44. 一种业务保障的装置,其特征在于,用于实现如权利要求13-16中任意一项所述的方法。
  45. 一种业务保障的装置,其特征在于,用于实现如权利要求17或18所述的方法。
  46. 一种业务保障的装置,其特征在于,用于实现如权利要求19-23中任意一项所述的方法。
  47. 一种业务保障的装置,其特征在于,用于实现如权利要求24所述的方法。
  48. 一种业务保障的装置,其特征在于,用于实现如权利要求25-35中任意一项所述的方法。
  49. 一种业务保障的装置,其特征在于,用于实现如权利要求36-38中任意一项所述的方法。
  50. 一种获取中继服务码的装置,其特征在于,用于实现如权利要求39-42中任意一 项所述的方法。
  51. 一种通信设备,其特征在于,包括:
    存储器,所述存储器用于存储计算机程序;
    收发器,所述收发器用于执行收发步骤;
    处理器,所述处理器用于从所述存储器中调用并运行所述计算机程序,使得所述通信设备执行权利要求1-12中任一项所述的方法或使得所述通信设备执行如权利要求13-16中任一项所述的方法或使得所述通信设备执行如权利要求17或18所述的方法或使得所述通信设备执行如权利要求19-23中任一项所述的方法或使得所述通信设备执行如权利要求24所述的方法或使得所述通信设备执行如权利要求25-35中任一项所述的方法或使得所述通信设备执行如权利要求36-38中任一项所述的方法或使得所述通信设备执行如权利要求39-42中任一项所述的方法。
  52. 一种计算机可读存储介质,其特征在于,包括:所述计算机可读介质存储有计算机程序;所述计算机程序在计算机上运行时,使得所述计算机执行权利要求1-12中任一项所述的方法或使得所述计算机执行如权利要求13-16中任一项所述的方法或使得所述计算机执行如权利要求17或18所述的方法或使得所述计算机执行如权利要求19-23中任一项所述的方法或使得所述计算机执行如权利要求24所述的方法或使得所述计算机执行如权利要求25-35中任一项所述的方法或使得所述计算机执行如权利要求36-38中任一项所述的方法或使得所述计算机执行如权利要求39-42中任一项所述的方法。
  53. 一种通信系统,其特征在于,包括:
    权利要求43所述的业务保障的装置、权利要求44所述的业务保障的装置、权利要求45或48所述的业务保障的装置、权利要求46所述的业务保障的装置、权利要求47所述的业务保障的装置、权利要求49所述的业务保障的装置、和权利要求50所述的获取中继服务码的装置。
PCT/CN2021/085334 2020-04-17 2021-04-02 业务保障的方法和装置 WO2021208765A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21787859.4A EP4132026A4 (en) 2020-04-17 2021-04-02 METHOD AND APPARATUS FOR SERVICE ASSURANCE
US17/966,048 US20230035694A1 (en) 2020-04-17 2022-10-14 Service guarantee method and apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010303982.7 2020-04-17
CN202010303982 2020-04-17
CN202010809066.0A CN113543053A (zh) 2020-04-17 2020-08-12 业务保障的方法和装置
CN202010809066.0 2020-08-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/966,048 Continuation US20230035694A1 (en) 2020-04-17 2022-10-14 Service guarantee method and apparatus

Publications (1)

Publication Number Publication Date
WO2021208765A1 true WO2021208765A1 (zh) 2021-10-21

Family

ID=78085227

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/085334 WO2021208765A1 (zh) 2020-04-17 2021-04-02 业务保障的方法和装置

Country Status (3)

Country Link
US (1) US20230035694A1 (zh)
EP (1) EP4132026A4 (zh)
WO (1) WO2021208765A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115277584A (zh) * 2022-06-14 2022-11-01 中国电信股份有限公司 通信流量的识别方法、装置、电子设备和可读介质
WO2023109894A1 (zh) * 2021-12-16 2023-06-22 维沃移动通信有限公司 Rsc确定方法、终端及网络侧设备
WO2024212254A1 (zh) * 2023-04-14 2024-10-17 北京小米移动软件有限公司 信息处理方法以及装置、通信设备及存储介质

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022160205A1 (zh) * 2021-01-28 2022-08-04 Oppo广东移动通信有限公司 一种数据传输方法、终端设备和网络设备
CN117440446B (zh) * 2023-12-20 2024-05-31 商飞智能技术有限公司 一种基于数据分发服务的数据传输方法和装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018085568A1 (en) * 2016-11-04 2018-05-11 Intel IP Corporation Quality of service support over evolved universal terrestrial radio access based sidelink system
CN109997334A (zh) * 2016-10-06 2019-07-09 康维达无线有限责任公司 具有用于3gpp网络中物联网应用的间接连接的中继和收费的会话管理

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109997334A (zh) * 2016-10-06 2019-07-09 康维达无线有限责任公司 具有用于3gpp网络中物联网应用的间接连接的中继和收费的会话管理
WO2018085568A1 (en) * 2016-11-04 2018-05-11 Intel IP Corporation Quality of service support over evolved universal terrestrial radio access based sidelink system

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: ""Study on System Enhancement for Proximity Based Services (ProSe) in The 5G System (5GS)"", 3GPP STANDARD; TECHNICAL REPORT; 3GPP TR 23.752, vol. SA WG2, no. V0.3.0, 27 January 2020 (2020-01-27), pages 1 - 73, XP051860834 *
HUAWEI; HISILICON: "Open Issues of Solution #6", SA WG2 MEETING #136AH S2-2000493, vol. SA WG2, 7 January 2020 (2020-01-07), Incheon, South Korea, pages 1 - 4, XP051842558 *
OPPO: "KI#3, New Sol: QoS Handling for Layer-3 UE-to-Network Relay", 3GPP DRAFT; S2-2003945, vol. SA WG2, 22 May 2020 (2020-05-22), Elbonia, pages 1 - 4, XP051889953 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023109894A1 (zh) * 2021-12-16 2023-06-22 维沃移动通信有限公司 Rsc确定方法、终端及网络侧设备
CN115277584A (zh) * 2022-06-14 2022-11-01 中国电信股份有限公司 通信流量的识别方法、装置、电子设备和可读介质
WO2024212254A1 (zh) * 2023-04-14 2024-10-17 北京小米移动软件有限公司 信息处理方法以及装置、通信设备及存储介质

Also Published As

Publication number Publication date
EP4132026A4 (en) 2023-09-13
US20230035694A1 (en) 2023-02-02
EP4132026A1 (en) 2023-02-08

Similar Documents

Publication Publication Date Title
WO2021208765A1 (zh) 业务保障的方法和装置
CN107667514B (zh) 用于在移动通信系统中订购电子设备的方法和装置
US10911979B2 (en) AT commands for 5G session management
CN113543053A (zh) 业务保障的方法和装置
US11811670B2 (en) Packet delay parameter obtaining method, system, and apparatus
US12058139B2 (en) Method for implementing user plane security policy, apparatus, and system
WO2022161148A1 (zh) 一种服务质量的控制方法和装置
EP4132085A1 (en) Communication method and apparatus
US20230047783A1 (en) Data transmission method and apparatus
US20240107417A1 (en) Communication method and apparatus
CN115175255A (zh) 一种多播广播业务的传输切换方法及装置
CN114916018A (zh) 通信方法及通信装置
EP3962157B1 (en) Mdbv determining methods and apparatuses
WO2023001003A1 (zh) 通信的方法和通信装置
WO2022151206A1 (zh) 通信方法和网络设备
CN115706973A (zh) 一种安全通信的方法及通信装置
CN114363975A (zh) 数据通信方法、装置、电子设备及存储介质
CN114270934A (zh) 控制数据传输速率的方法、装置、通信设备及存储介质
KR102158329B1 (ko) 서비스 품질 정보 갱신 방법
WO2024032531A1 (zh) 一种通信的方法、装置和系统
EP4383935A1 (en) Communication method and device
WO2024001897A1 (zh) 通信方法和装置
WO2023011279A1 (zh) 一种周期业务的传输方法及通信装置
EP4351209A1 (en) Session management method and apparatus
WO2023138452A1 (zh) 通信方法、装置及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21787859

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021787859

Country of ref document: EP

Effective date: 20221028

NENP Non-entry into the national phase

Ref country code: DE