[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2021205760A1 - Solder alloy, solder powder, solder paste, solder ball, solder preform, and solder joint - Google Patents

Solder alloy, solder powder, solder paste, solder ball, solder preform, and solder joint Download PDF

Info

Publication number
WO2021205760A1
WO2021205760A1 PCT/JP2021/006450 JP2021006450W WO2021205760A1 WO 2021205760 A1 WO2021205760 A1 WO 2021205760A1 JP 2021006450 W JP2021006450 W JP 2021006450W WO 2021205760 A1 WO2021205760 A1 WO 2021205760A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
less
solder
alloy
solder alloy
Prior art date
Application number
PCT/JP2021/006450
Other languages
French (fr)
Japanese (ja)
Inventor
浩由 川▲崎▼
正人 白鳥
勇司 川又
Original Assignee
千住金属工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 千住金属工業株式会社 filed Critical 千住金属工業株式会社
Priority to KR1020227034653A priority Critical patent/KR102587716B1/en
Priority to JP2022514327A priority patent/JP7212300B2/en
Priority to CN202180041107.9A priority patent/CN115768591A/en
Publication of WO2021205760A1 publication Critical patent/WO2021205760A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • B23K35/262Sn as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0244Powders, particles or spheres; Preforms made therefrom
    • B23K35/025Pastes, creams, slurries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C13/00Alloys based on tin
    • C22C13/02Alloys based on tin with antimony or bismuth as the next major constituent

Definitions

  • the present invention relates to solder alloys, solder powders, solder pastes, solder balls, solder preforms and solder joints.
  • the present application claims priority based on Japanese Patent Application No. 2020-071024 filed in Japan on April 10, 2020, the contents of which are incorporated herein by reference.
  • Electronic components mounted on printed circuit boards are increasingly required to be smaller and have higher performance.
  • Examples of such electronic components include semiconductor packages.
  • a semiconductor package a semiconductor element having electrodes is sealed with a resin component. Solder bumps made of a solder material are formed on this electrode. Further, the solder material connects the semiconductor element and the printed circuit board.
  • solder materials In solder materials, the effect of ⁇ rays on soft errors becomes a problem. In order to reduce such adverse effects on the operation of semiconductor devices, low ⁇ -dose materials including solder materials are being developed.
  • the factor that becomes the ⁇ -ray source is, for example, a trace amount of radioactive elements contained in the solder alloy in the solder material, particularly the base tin (Sn) bullion.
  • the solder alloy can be produced by melting and mixing the raw material metals. In such a solder alloy, it is important to remove upstream radioactive elements such as uranium (U), thorium (Th), and polonium (Po) from the alloy composition in order to design a low ⁇ -dose material. On the other hand, it is not technically difficult to remove U, Th, and Po in the refining of Sn bullion (see, for example, Patent Document 1). Generally, Sn contains lead (Pb) and bismuth (Bi) as impurities.
  • Radioisotopes 210 Pb and 210 Bi in Pb and Bi are ⁇ -decayed to 210 Po, 210 Po is ⁇ -decayed, and ⁇ rays are generated when 206 Pb is generated.
  • This series of decay (uranium series) is said to be the main cause of ⁇ -ray generation from solder materials.
  • Cph / cm 2 is often used as the unit.
  • Cph / cm 2 is an abbreviation for “counts per hours / cm 2 ” and means the number of alpha rays counted per 1 cm 2 per hour.
  • the half-lives of Pb and Bi are as follows.
  • the half-life of 210 Bi is about 5 days.
  • the half-life of 210 Pb is about 22.3 years.
  • the degree of influence (abundance ratio) can be expressed by the following equation (see Non-Patent Document 1). That is, the influence of Bi on ⁇ -ray generation is much lower than that of Pb.
  • [ 210 Bi] represents the molar concentration of 210 Bi.
  • [ 210 Pb] represents the molar concentration of 210 Pb.
  • the ⁇ dose generated from the solder material basically increases with the passage of time. It is said that this is because radioactive Pb and radioactive Bi in the solder alloy are ⁇ -decayed, the amount of Po is increased, and Po is ⁇ -decayed to generate ⁇ rays. Although the material having an extremely low ⁇ -dose contains almost no of these radioactive elements, the ⁇ -dose may increase with time due to the segregation of 210 Po. 210 Po originally emits ⁇ rays, but when the solder alloy is solidified, it segregates at the center of the solder alloy, so that the emitted ⁇ rays are shielded by the solder alloy. Then, with the passage of time, 210 Po is uniformly dispersed in the alloy and is also present on the surface where ⁇ rays are detected, so that the ⁇ dose increases with time (see Non-Patent Document 2).
  • the generated ⁇ -dose increases due to the influence of a very small amount of impurities contained in the solder alloy. For this reason, in the design of low ⁇ -dose materials, it becomes difficult to simply add various elements as in the conventional manufacturing method of solder alloys.
  • a method of adding arsenic (As) to a solder alloy is known in order to suppress the increase in viscosity of the solder paste over time (see, for example, Patent Document 2).
  • the present invention has been made in view of the above circumstances, suppresses an increase in the viscosity of the solder paste over time, has a small temperature difference ( ⁇ T) between the liquidus line temperature and the solidus line temperature, and has mechanical properties.
  • Solder alloy that can enhance and suppress the occurrence of soft errors, solder powder made of this solder alloy, solder paste containing this solder powder and flux, solder balls made of this solder alloy, solderp It is an object of the present invention to provide a remodeling and a solder joint.
  • the present inventors have studied for the purpose of designing a low ⁇ -dose solder alloy capable of suppressing thickening of solder paste over time without adding As with impurities containing radioactive elements. Through such studies, it was found that the above object can be achieved by adjusting the alloy composition to contain Sn as a main component and a predetermined amount of Bi and Sb, which are noble metals as compared with Sn in ionization tendency. , The present invention has been completed. That is, the present invention employs the following means in order to solve the above problems.
  • One aspect of the present invention is U: less than 5 mass ppb, Th: less than 5 mass ppb, Pb: less than 5 mass ppm, As: less than 5 mass ppm, Bi: 0% by mass or more and 0.9% by mass or less, and Sb. : It has an alloy composition of 0% by mass or more and 0.3% by mass or less, and the balance is Sn, satisfies the following formula (1), and has an ⁇ dose of 0.02 cph / cm 2 or less. It is a solder alloy. 0.005 ⁇ Bi + Sb ⁇ 1.2 (1) In the formula (1), Bi and Sb each represent the content (mass%) in the alloy composition.
  • One aspect of the present invention is U: less than 5 mass ppb, Th: less than 5 mass ppb, Pb: less than 5 mass ppm, As: less than 5 mass ppm, Bi: more than 0 mass% and 0.9 mass% or less, and Sb. : It has an alloy composition of 0% by mass or more and 0.3% by mass or less, and the balance is Sn, satisfies the following formula (1), and has an ⁇ dose of 0.02 cph / cm 2 or less. It is a solder alloy. 0.005 ⁇ Bi + Sb ⁇ 1.2 (1) In the formula (1), Bi and Sb each represent the content (mass%) in the alloy composition.
  • One aspect of the present invention is U: less than 5 mass ppb, Th: less than 5 mass ppb, Pb: less than 5 mass ppm, As: less than 5 mass ppm, Bi: 0% by mass or more and 0.9% by mass or less, and Sb. : It has an alloy composition of 0% by mass or more and less than 0.1% by mass, and the balance is Sn, satisfies the following formula (1), and has an ⁇ dose of 0.02 cph / cm 2 or less. It is a solder alloy. 0.005 ⁇ Bi + Sb ⁇ 1.2 (1) In the formula (1), Bi and Sb each represent the content (mass%) in the alloy composition.
  • one aspect of the present invention is a solder powder characterized by being composed of a solder alloy according to the one aspect of the present invention.
  • one aspect of the present invention is a solder paste characterized by containing the solder powder and the flux according to the one aspect of the present invention.
  • one aspect of the present invention is a solder ball characterized by being made of a solder alloy according to the one aspect of the present invention.
  • one aspect of the present invention is a solder preform characterized by being made of a solder alloy according to the one aspect of the present invention.
  • one aspect of the present invention is a solder joint characterized by being made of a solder alloy according to the one aspect of the present invention.
  • the increase in the viscosity of the solder paste over time is suppressed, the temperature difference ( ⁇ T) between the liquidus line temperature and the solidus line temperature is small, the mechanical properties can be improved, and soft errors occur.
  • a solder alloy capable of suppressing the above, a solder powder made of this solder alloy, a solder paste containing the solder powder and a flux, a solder ball made of this solder alloy, a solder preform and a solder joint. ..
  • ppb relating to the solder alloy composition is “mass ppb” unless otherwise specified.
  • Ppm is “mass ppm” unless otherwise specified.
  • % Is “mass%” unless otherwise specified.
  • solder alloy The solder alloy according to one aspect of the present invention has U: less than 5% by mass, Th: less than 5% by mass, Pb: less than 5% by mass, As: less than 5% by mass, Bi: 0% by mass or more and 0.9% by mass.
  • Bi and Sb each represent the content (mass%) in the alloy composition.
  • the solder alloy of this embodiment has U: less than 5 mass ppb, Th: less than 5 mass ppb, Pb: less than 5 mass ppm, As: less than 5 mass ppm, Bi: 0 mass% or more and 0.9 mass% or less, and Sb: It has an alloy composition of 0% by mass or more and 0.3% by mass or less, and the balance is Sn, and satisfies the above formula (1).
  • U and Th are radioactive elements.
  • the contents of U and Th in the solder alloy are based on the total mass (100% by mass) of the solder alloy from the viewpoint that the ⁇ dose generated from the solder alloy is 0.02 cf / cm 2 or less. , Each less than 5 ppb. From the viewpoint of suppressing the occurrence of soft errors in high-density mounting, the contents of U and Th are preferably 2 ppb or less, and the lower the better.
  • ⁇ Pb: less than 5 mass ppm Sn contains Pb as an impurity.
  • the radioactive isotope in this Pb undergoes ⁇ -decay to become 210 Po, and 210 Po undergoes ⁇ -decay to generate ⁇ -rays when 206 Pb is generated.
  • the content of Pb, which is an impurity, in the solder alloy is as small as possible.
  • the content of Pb in the solder alloy is less than 5 ppm, preferably less than 2 ppm, and more preferably less than 1 ppm with respect to the total mass (100% by mass) of the solder alloy.
  • the lower limit of the Pb content in the solder alloy may be 0 ppm or more.
  • ⁇ As less than 5 mass ppm ⁇ Adding As to the solder alloy is effective in suppressing the thickening of the solder paste over time, but with the addition of As, the alloy also contains radioactive elements, and the ⁇ dose generated from the solder material increases. It will increase.
  • An object of the present embodiment is to suppress thickening of the solder paste over time without adding As with impurities containing radioactive elements.
  • the content of As in the solder alloy is less than 5 ppm, preferably less than 2 ppm, and more preferably less than 1 ppm with respect to the total mass (100% by mass) of the solder alloy.
  • the lower limit of the As content in the solder alloy may be 0 ppm or more.
  • a SnAg alloy containing Ag which is noble to Sn, is less likely to be ionized than Sn. Therefore, it is presumed that the alloy containing an element nobler than Sn is difficult to ionize, and the effect of suppressing the thickening of the solder paste over time can be enhanced.
  • Bi 0% by mass or more and 0.9% by mass or less Bi is an element whose ionization tendency is noble with respect to Sn, has low reactivity with flux, and exhibits an effect of suppressing thickening of solder paste over time. be.
  • Bi is an element capable of suppressing deterioration of wettability because it lowers the liquidus temperature of the solder alloy and reduces the viscosity of the molten solder. However, depending on the content, the solidus temperature is remarkably lowered, and the temperature difference ( ⁇ T) between the liquidus temperature and the solidus temperature becomes wide.
  • the content of Bi in the solder alloy is 0% or more and 0.9% or less, preferably 0.030% or more and 0.9, based on the total mass (100% by mass) of the solder alloy. % Or less.
  • the lower limit of the Bi content in the solder alloy is 0% or more, preferably 0.0025% or more, more preferably 0.0050% or more, based on the total mass (100% by mass) of the solder alloy. , 0.010% or more is more preferable, and 0.030% or more is particularly preferable.
  • the upper limit of the Bi content in the solder alloy is 0.9% or less, preferably 0.7% or less, and 0.5% or less with respect to the total mass (100% by mass) of the solder alloy.
  • the content of Bi in the solder alloy is 0% or more and 0.9% or less, preferably 0.0025, with respect to the total mass (100% by mass) of the solder alloy. % Or more and 0.7% or less, more preferably 0.0050% or more and 0.5% or less, further preferably 0.010% or more and 0.3% or less, and particularly preferably 0.030% or more. It is 0.1% or less.
  • Sb 0% by mass or more and 0.3% by mass or less
  • Sb is an element having an ionization tendency noble to Sn, has low reactivity with flux, and suppresses thickening of solder paste over time, like Bi. It is an element that shows an effect. If the content of Sb in the solder alloy is too large, the wettability deteriorates. Therefore, when Sb is added, it is necessary to set the content to an appropriate level.
  • the content of Sb in the solder alloy is 0% or more and 0.3% or less, preferably 0.0040% or more and 0.3, based on the total mass (100% by mass) of the solder alloy. % Or less, more preferably 0.010% or more and 0.3% or less.
  • the lower limit of the Sb content in the solder alloy is 0% or more, preferably 0.0025% or more, more preferably 0.0040% or more, based on the total mass (100% by mass) of the solder alloy. , 0.0050% or more is more preferable, and 0.010% or more is particularly preferable.
  • the upper limit of the Sb content in the solder alloy is 0.3% or less, preferably 0.1% or less, and less than 0.1% with respect to the total mass (100% by mass) of the solder alloy. More preferably, 0.090% or less is further preferable.
  • the content of Sb in the solder alloy is 0% or more and 0.3% or less, preferably 0.0025, with respect to the total mass (100% by mass) of the solder alloy. % Or more and 0.1% or less, more preferably 0.0040% or more and less than 0.1%, further preferably 0.0050% or more and 0.090% or less, and particularly preferably 0.010% or more. It is 0.090% or less.
  • the alloy composition of the solder alloy of the present embodiment satisfies the following equation (1). 0.005 ⁇ Bi + Sb ⁇ 1.2 (1)
  • Bi and Sb each represent the content (mass%) in the alloy composition.
  • Both Bi and Sb in the formula (1) are elements that show the effect of suppressing the thickening of the solder paste over time.
  • both Bi and Sb also contribute to the wettability of the solder alloy.
  • the total content of Bi and Sb in the solder alloy needs to be 0.005% or more and 1.2% or less with respect to the total mass (100% by mass) of the solder alloy, preferably 0.03. Must be greater than or equal to% and less than or equal to 1.2%.
  • the total content of Bi and Sb in the solder alloy is 0.005% or more, preferably 0.03% or more and 1.0% or less, based on the total mass (100% by mass) of the solder alloy.
  • the lower limit of the total content of Bi and Sb in the solder alloy is 0.005% or more, preferably 0.01% or more, and 0, based on the total mass (100% by mass) of the solder alloy. .02% or more is more preferable, and 0.03% or more is further preferable.
  • the upper limit of the total content of Bi and Sb in the solder alloy is 1.2% or less, preferably 1.0% or less, and 0, based on the total mass (100% by mass) of the solder alloy.
  • the total content of Bi and Sb in the solder alloy is preferably 0.01% or more and 1.0% or less, more preferably 0, with respect to the total mass (100% by mass) of the solder alloy. It is 0.02% or more and 0.9% or less, more preferably 0.03% or more and 0.5% or less, and particularly preferably 0.03% or more and 0.1% or less.
  • the "total content of Bi and Sb" is the content of Sb when the content of Bi in the solder alloy is 0% by mass, and the content of Sb in the solder alloy is 0% by mass.
  • the content of Sb in the solder alloy is 0% by mass.
  • it is% it is the content of Bi, and when it has both Bi and Sb, it is the total content of these.
  • the ratio of Bi and Sb in the solder alloy is preferably 0.008 or more and 10 or less as the mass ratio represented by Sb / Bi, and more. It is preferably 0.01 or more and 10 or less, more preferably 0.1 or more and 5 or less, particularly preferably 0.1 or more and 2 or less, and most preferably 0.1 or more and 1 or less. If the mass ratio of Sb / Bi is in the above-mentioned preferable range, the effect of the present invention can be more easily obtained.
  • the alloy composition of the solder alloy of the present embodiment may contain elements other than the above-mentioned elements, if necessary.
  • elements other than the above-mentioned elements, if necessary.
  • at least one of Ag: 0% by mass or more and 4% by mass or less and Cu: 0% by mass or more and 0.9% by mass or less is further added. It may be contained.
  • Ag 0% by mass or more and 4% by mass or less
  • Ag is an arbitrary element capable of forming Ag 3 Sn at the crystal interface to improve the reliability of the solder alloy.
  • Ag is an element whose ionization tendency is noble with respect to Sn, and when it coexists with Bi and Sb, the effect of suppressing thickening of the solder paste over time is enhanced.
  • the content of Ag in the solder alloy is preferably 0% or more and 4% or less, more preferably 0.5% or more and 3.5%, based on the total mass (100% by mass) of the solder alloy. It is less than or equal to, more preferably 1.0% or more and 3.0% or less, and particularly preferably 2.0% or more and 3.0% or less.
  • Cu 0% by mass or more and 0.9% by mass or less
  • Cu is an optional element that is used in general solder alloys and can improve the joint strength of solder joints. Further, Cu is an element whose ionization tendency is noble with respect to Sn, and when it coexists with Bi and Sb, the effect of suppressing thickening of the solder paste over time is enhanced.
  • the content of Cu in the solder alloy is preferably 0% or more and 0.9% or less, more preferably 0.1% or more and 0.1% or more, based on the total mass (100% by mass) of the solder alloy. It is 8% or less, more preferably 0.2% or more and 0.7% or less.
  • the ratio of Cu and Bi in the solder alloy is preferably 0.5 or more and 280 or less as the mass ratio represented by Cu / Bi, and more preferably. It is 0.5 or more and 150 or less, more preferably 0.5 or more and 20 or less, and particularly preferably 1 or more and 15 or less. If the Cu / Bi of such a mass ratio is in the above-mentioned preferable range, the effect of the present invention can be more easily obtained.
  • the ratio of Cu and Sb in the solder alloy is preferably 1 or more and 280 or less, and more preferably 1 or more as the mass ratio represented by Cu / Sb. It is 150 or less, more preferably 5 or more and 125 or less. If the Cu / Sb having such a mass ratio is in the above-mentioned preferable range, the effect of the present invention can be more easily obtained.
  • the ratio of Cu, Bi and Sb in the solder alloy is preferably 0.4 or more and 150 or less as the mass ratio represented by Cu / (Bi + Sb). It is more preferably 5 or more and 100 or less. If the mass ratio of Cu / (Bi + Sb) is in the above-mentioned preferable range, the effect of the present invention can be more easily obtained.
  • the alloy composition of the solder alloy of the present embodiment further contains at least one of Ni: 0 mass ppm or more and 600 mass ppm or less, and Fe: 0 mass ppm or more and 100 mass ppm or less, in addition to the above-mentioned elements. You may.
  • Ni 0% by mass or more and 600% by mass or less
  • soldering promotes the formation of Sn-containing intermetallic compounds (Sn-containing intermetallic compounds) in the vicinity of the bonding interface in the solder alloy, and this Sn-containing intermetallic compound is precipitated. , The mechanical strength of the solder joint deteriorates.
  • Ni is an element that suppresses the formation of the Sn-containing intermetallic compound at the bonding interface. When the solder alloy contains Ni, the formation of the Sn-containing intermetallic compound is suppressed, and the mechanical strength of the solder joint is maintained.
  • the content of Ni in the solder alloy exceeds 600 mass ppm, SnNi compounds may precipitate in the vicinity of the bonding interface in the solder alloy, and the mechanical strength of the solder joint may deteriorate.
  • the content of Ni in the solder alloy is preferably 0 ppm or more and 600 ppm or less, more preferably 20 ppm or more and 600 ppm or less, based on the total mass (100% by mass) of the solder alloy.
  • Fe 0 mass ppm or more and 100 mass ppm or less Fe is an element that suppresses the formation of Sn-containing intermetallic compounds at the bonding interface, similar to Ni. In addition, within a predetermined content range, precipitation of acicular crystals due to the SnFe compound is suppressed, and a short circuit of the circuit can be prevented.
  • the term "acicular crystal” as used herein refers to a crystal derived from one SnFe compound having an aspect ratio of 2 or more, which is the ratio of the major axis to the minor axis.
  • the content of Fe in the solder alloy is preferably 0 ppm or more and 100 ppm or less, more preferably 20 ppm or more and 100 ppm or less, based on the total mass (100% by mass) of the solder alloy.
  • the alloy composition of the solder alloy of the present embodiment further contains at least one of Ni: 0 mass ppm or more and 600 mass ppm or less and Fe: 0 mass ppm or more and 100 mass ppm or less
  • the alloy composition is as follows ( It is preferable to satisfy the formula 2). 20 ⁇ Ni + Fe ⁇ 700 (2)
  • Ni and Fe each represent the content (mass ppm) in the alloy composition.
  • Both Ni and Fe in the formula (2) are elements that suppress the formation of Sn-containing intermetallic compounds at the bonding interface.
  • both Ni and Fe also contribute to the effect of suppressing the thickening of the solder paste over time.
  • the total content of Ni and Fe in the solder alloy is preferably 20 ppm or more and 700 ppm or less, more preferably 40 ppm or more and 700 ppm or less, still more preferably 40 ppm, based on the total mass (100% by mass) of the solder alloy. More than 600 ppm or less.
  • total content of Ni and Fe is the content of Fe when the content of Ni in the solder alloy is 0 mass ppm, and the content of Fe in the solder alloy is 0 mass ppm. When it is ppm, it is the content of Ni, and when it has both Ni and Fe, it is the total content of these.
  • the ratio of Ni and Fe in the solder alloy is preferably 0.4 or more and 30 or less as the mass ratio represented by Ni / Fe, and more preferably. It is 0.4 or more and 10 or less, and more preferably 0.4 or more and 5 or less. If the mass ratio of Ni / Fe is in the above-mentioned preferable range, the effect of the present invention can be more easily obtained.
  • the balance of the alloy composition of the solder alloy of the present embodiment is Sn.
  • unavoidable impurities may be contained. Even if it contains unavoidable impurities, it does not affect the above-mentioned effects.
  • the solder alloy of this embodiment has an ⁇ dose of 0.02 cf / cm 2 or less. This is an ⁇ -dose that does not cause soft errors in high-density mounting of electronic components.
  • the ⁇ dose in the solder alloy of the present embodiment is preferably 0.01 cf / cm 2 or less, more preferably 0.002 cf / cm 2 or less, from the viewpoint of suppressing soft errors in further high-density mounting. , More preferably 0.001 cf / cm 2 or less.
  • the ⁇ dose generated from the solder alloy can be measured as follows.
  • the method for measuring the ⁇ dose is based on the international standard JEDEC STANDARD.
  • a measurement sample a solder alloy sheet obtained by melting a solder alloy and forming a sheet having an area of 900 cm 2 on one surface is used.
  • the solder alloy sheet is installed as a measurement sample in the ⁇ -dosimetry device, and PR gas is purged therein.
  • PR gas For PR gas, use one that complies with the international standard JEDEC STANDARD. That is, it is assumed that the PR gas used for the measurement is the decay of radon (Rn) after 3 weeks or more have passed since the gas cylinder was filled with the mixed gas of 90% argon and 10% methane.
  • the solder alloy of the present embodiment can be produced, for example, by using a production method having a step of melting and mixing at least one of Bi and Sb and a raw material metal containing Sn. Since the purpose is to design a low ⁇ -dose solder alloy, it is preferable to use a low- ⁇ -dose material as the raw material metal. In addition, it is preferable to use the one from which U, Th and Pb have been removed.
  • a Sn produced according to the production method described in JP-A-2010-156502 (Patent Document 1) can be used.
  • the Bi as the raw material metal for example, one manufactured according to Japanese Patent Application Laid-Open No. 2013-185214 can be used.
  • As the raw material metal for example, one manufactured in accordance with Japanese Patent No. 5692467 can be used.
  • a conventionally known method can be used for the operation of melting and mixing the raw metal.
  • each constituent element constituting the solder alloy does not function independently, and various effects can be exhibited only when the contents of each constituent element are all within a predetermined range. ..
  • the solder alloy of the embodiment described above when the content of each constituent element is within the above range, the increase in viscosity of the solder paste over time can be suppressed, the mechanical strength of the solder joint can be increased, and the mechanical strength of the solder joint can be increased. , The occurrence of soft errors can be suppressed. That is, the solder alloy of the present embodiment is useful as a target low ⁇ -dose material, and by applying it to the formation of solder bumps around the memory, it is possible to suppress the occurrence of soft errors.
  • Another object of the present embodiment is to design a low ⁇ -dose solder alloy capable of suppressing thickening of solder paste over time without actively adding As.
  • the purpose is achieved by adopting a solder alloy containing Bi and Sb, which are metals having an ionization tendency higher than Sn, in a specific ratio in addition to Sn as a main component.
  • Sn for low ⁇ -dose solder alloys has a very high purity, and when the molten alloy is solidified, the crystal size of Sn becomes large. Further, the oxide film in Sn also forms a sparse oxide film corresponding to the oxide film.
  • the ⁇ dose after heat treatment at 100 ° C. for 1 hour is applied to the solder alloy sheet formed into a sheet having an area of 900 cm 2 on one surface. It is preferably 0.02 cf / cm 2 or less, more preferably 0.01 cf / cm 2 or less, still more preferably 0.002 cf / cm 2 or less, and particularly preferably 0. It is 001 cph / cm 2 or less.
  • a solder alloy exhibiting such an ⁇ dose is useful because segregation of 210 Po is unlikely to occur in the alloy and the influence of changes in the ⁇ dose over time is small. By applying a solder alloy exhibiting such an ⁇ dose, the occurrence of soft errors is further suppressed, and stable operation of the semiconductor element can be more easily ensured.
  • solder powder The solder powder according to one aspect of the present invention is made of the above-mentioned solder alloy according to one aspect of the present invention.
  • the solder powder of this embodiment is suitable for the solder paste described later.
  • Solder powder is produced by known methods such as a dropping method of dropping a molten solder alloy to obtain particles, a spraying method of centrifugal spraying, an atomizing method, a submerged granulation method, and a method of crushing a bulk solder alloy. Can be adopted.
  • the dropping or spraying method the dropping or spraying is preferably carried out in an inert atmosphere or a solvent in order to form particles.
  • the solder powder of this embodiment is preferably a spherical powder.
  • the spherical powder improves the fluidity of the solder alloy.
  • the symbols 1 to 8 are satisfied, and the symbols 4 to 8 are satisfied in the powder size classification (Table 2) in JIS Z 3284-1: 2014. It is more preferable to have.
  • the particle size of the solder powder satisfies this condition, the surface area of the powder is not too large, the increase in the viscosity of the solder paste over time is suppressed, and the aggregation of the fine powder is suppressed, so that the viscosity of the solder paste increases. May be suppressed. Therefore, it is possible to solder to finer parts.
  • the solder powder of the present embodiment also has two or more kinds of solder alloy particle groups having different particle size distributions. As a result, the slipperiness of the solder paste is enhanced, and workability such as easy printing is improved.
  • the sphericity of the spherical powder is preferably 0.8 or more, preferably 0.9 or more, more preferably 0.95 or more, still more preferably 0.99 or more.
  • the "spherical degree of spherical powder" referred to here shall be measured using a CNC image measurement system (Ultra Quick Vision ULT RA QV350-PRO measuring device manufactured by Mitutoyo Co., Ltd.) that uses the minimum region center method (MZC method). Can be done.
  • the sphericity represents the deviation from the sphere, and is, for example, an arithmetic mean value calculated when the diameter of each of 500 solder alloy particles is divided by the major axis, and the value is 1.00, which is the upper limit. The closer it is, the closer it is to a true sphere.
  • solder paste contains the solder powder according to one aspect of the present invention and a flux.
  • the flux used in the solder paste of the present embodiment is composed of, for example, any one of a resin component, an active component, a solvent, and other components, or a combination of two or more of these components.
  • Examples of the resin component include rosin-based resins.
  • Examples of the rosin-based resin include raw material rosins such as gum rosin, wood rosin and tall oil rosin, and derivatives obtained from the raw material rosin.
  • Examples of the derivative include purified rosin, hydrogenated rosin, disproportionated rosin, polymerized rosin and ⁇ , ⁇ unsaturated carboxylic acid modified products (acrylicated rosin, maleated rosin, fumarized rosin, etc.), and the polymerized rosin.
  • the resin components include terpene resin, modified terpene resin, terpenephenol resin, modified terpenephenol resin, styrene resin, modified styrene resin, xylene resin, modified xylene resin, acrylic resin, polyethylene resin, and acrylic. -Polyethylene copolymer resin, epoxy resin and the like can be mentioned.
  • modified terpene resin examples include aromatic modified terpene resin, hydrogenated terpene resin, hydrogenated aromatic modified terpene resin and the like.
  • modified terpene phenol resin examples include hydrogenated terpene phenol resin and the like.
  • modified styrene resin examples include styrene acrylic resin and styrene maleic acid resin.
  • modified xylene resin examples include a phenol-modified xylene resin, an alkylphenol-modified xylene resin, a phenol-modified resol-type xylene resin, a polyol-modified xylene resin, and a polyoxyethylene-added xylene resin.
  • Examples of the active ingredient include organic acids, amines, halogen-based activators, thixotropic agents, solvents, metal inactivating agents and the like.
  • organic acids include succinic acid, glutaric acid, adipic acid, pimelli acid, suberic acid, azelaic acid, sebacic acid, dimer acid, propionic acid, 2,2-bishydroxymethylpropionic acid, tartrate acid, malic acid and glycol.
  • examples thereof include acids, diglycolic acid, thioglycolic acid, dithioglycolic acid, stearic acid, 12-hydroxystearic acid, palmitic acid, oleic acid and the like.
  • amines include ethylamine, triethylamine, ethylenediamine, triethylenetetramine, 2-methylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 1,2-dimethylimidazole, 2-ethyl-4-methylimidazole, 2 -Phenylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2-phenylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-undecylimidazole, 1-Cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazolium trimerite, 1-cyanoethyl-2-phenylimidazolium trimerite, 1-
  • halogen-based activator examples include amine hydrogen halides and organic halogen compounds.
  • Amine halide hydrohydrate is a compound obtained by reacting an amine with hydrogen halide.
  • the amine here include ethylamine, ethylenediamine, triethylamine, diphenylguanidine, ditrilguanidine, methylimidazole, 2-ethyl-4-methylimidazole and the like
  • examples of the hydrogen halide include chlorine, bromine and the like. Examples include hydrides of iodine.
  • organic halogen compound examples include trans-2,3-dibromo-2-butene-1,4-diol, triallyl isocyanurate 6 bromide, 1-bromo-2-butanol, 1-bromo-2-propanol, 3 -Bromo-1-propanol, 3-bromo-1,2-propanediol, 1,4-dibromo-2-butanol, 1,3-dibromo-2-propanol, 2,3-dibromo-1-propanol, 2, Examples thereof include 3-dibromo-1,4-butanediol and 2,3-dibromo-2-butene-1,4-diol.
  • Examples of the thixotropy include wax-based thixotropy, amide-based thixotropy, sorbitol-based thixotropy, and the like.
  • Examples of the wax-based thixotropy include castor oil and the like.
  • Examples of amido-based fatty acid agents include monoamide-based fatty acid agents, bis-amide-based fatty acid agents, and polyamide-based fatty acid agents.
  • examples of the sorbitol-based thixotropy include dibenzylidene-D-sorbitol, bis (4-methylbenzylidene) -D-sorbitol and the like.
  • Examples of the solvent include water, alcohol-based solvents, glycol ether-based solvents, terpineols and the like.
  • Examples of the alcohol solvent include isopropyl alcohol, 1,2-butanediol, isobornylcyclohexanol, 2,4-diethyl-1,5-pentanediol, 2,2-dimethyl-1,3-propanediol, and the like.
  • glycol ether-based solvent examples include diethylene glycol mono-2-ethylhexyl ether, ethylene glycol monophenyl ether, 2-methylpentane-2,4-diol, diethylene glycol monohexyl ether, diethylene glycol dibutyl ether, and triethylene glycol monobutyl ether. Can be mentioned.
  • metal inactivating agent examples include hindered phenolic compounds and nitrogen compounds.
  • the flux contains either a hindered phenolic compound or a nitrogen compound, the effect of suppressing the thickening of the solder paste can be easily enhanced.
  • the term "metal inactivating agent" as used herein refers to a compound having the ability to prevent the metal from deteriorating due to contact with a certain compound.
  • the hindered phenolic compound refers to a phenolic compound having a bulky substituent (for example, a branched or cyclic alkyl group such as a t-butyl group) at at least one of the ortho positions of the phenol.
  • the hindered phenolic compound is not particularly limited, and is, for example, bis [3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionic acid] [ethylenebis (oxyethylene)], N, N.
  • Z is an optionally substituted alkylene group.
  • R 1 and R 2 are independently optionally substituted alkyl group, aralkyl group, aryl group, heteroaryl group, cycloalkyl. It is a group or a heterocycloalkyl group.
  • R 3 and R 4 are alkyl groups that may be substituted independently of each other.
  • Examples of the nitrogen compound in the metal inactivating agent include hydrazide nitrogen compounds, amide nitrogen compounds, triazole nitrogen compounds, and melamine nitrogen compounds.
  • the hydrazide-based nitrogen compound may be any nitrogen compound having a hydrazide skeleton, and is bis dodecanoate [N2- (2-hydroxybenzoyl) hydrazide], N, N'-bis [3- (3,5-di-tert).
  • the amide-based nitrogen compound may be any nitrogen compound having an amide skeleton, and N, N'-bis ⁇ 2- [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyloxyl] ethyl. ⁇ Oxamide and the like can be mentioned.
  • the triazole-based nitrogen compound may be any nitrogen compound having a triazole skeleton, and N- (2H-1,2,4-triazole-5-yl) salicylamide, 3-amino-1,2,4-triazole, Examples thereof include 3- (N-salicyloyl) amino-1,2,4-triazole.
  • the melamine-based nitrogen compound may be any nitrogen compound having a melamine skeleton, and examples thereof include melamine and melamine derivatives. More specifically, for example, trisaminotriazine, alkylated trisaminotriazine, alkoxyalkylated trisaminotriazine, melamine, alkylated melamine, alkoxyalkylated melamine, N2-butyl melamine, N2, N2-diethyl melamine, N, Examples thereof include N, N', N', N'', N''-hexakis (methoxymethyl) melamine and the like.
  • Examples of other components include surfactants, silane coupling agents, antioxidants, colorants and the like.
  • the surfactant examples include nonionic surfactants and weak cationic surfactants.
  • the nonionic surfactant examples include polyethylene glycol, polyethylene glycol-polypropylene glycol copolymer, aliphatic alcohol polyoxyethylene adduct, aromatic alcohol polyoxyethylene adduct, polyhydric alcohol polyoxyethylene adduct and the like.
  • the weak cationic surfactant examples include terminal diamine polyethylene glycol, terminal diamine polyethylene glycol-polypropylene glycol copolymer, aliphatic amine polyoxyethylene adduct, aromatic amine polyoxyethylene adduct, and polyvalent amine polyoxy. Examples include polyethylene adducts.
  • surfactants other than the above include polyoxyalkylene acetylene glycols, polyoxyalkylene glyceryl ethers, polyoxyalkylene alkyl ethers, polyoxyalkylene esters, polyoxyalkylene alkyl amines, polyoxyalkylene alkyl amides and the like. ..
  • the content of the flux in the solder paste of the present embodiment is preferably 5 to 95% by mass, more preferably 5 to 50% by mass, based on the total mass (100% by mass) of the solder paste. It is more preferably 5 to 15% by mass. When the flux content is in this range, the thickening suppressing effect caused by the solder powder is sufficiently exhibited.
  • the solder paste of the present embodiment can be produced by a production method common in the art.
  • a solder paste can be obtained by heating and mixing the compounding components constituting the flux to prepare a flux, and stirring and mixing the solder powder in the flux. Further, in anticipation of the effect of suppressing thickening over time, zirconium oxide powder may be further blended in addition to the solder powder.
  • solder ball The solder ball according to one aspect of the present invention is made of the above-mentioned solder alloy according to one aspect of the present invention.
  • the solder alloy of the above-described embodiment can be used as a solder ball.
  • the solder ball of the present embodiment can be manufactured by using a dropping method which is a common method in the art.
  • the particle size of the solder balls is preferably 1 ⁇ m or more, more preferably 10 ⁇ m or more, further preferably 20 ⁇ m or more, and particularly preferably 30 ⁇ m or more.
  • the particle size of the solder balls is preferably 3000 ⁇ m or less, more preferably 1000 ⁇ m or less, further preferably 600 ⁇ m or less, and particularly preferably 300 ⁇ m or less.
  • the particle size of the solder balls is, for example, preferably 1 ⁇ m or more and 3000 ⁇ m or less, more preferably 10 ⁇ m or more and 1000 ⁇ m or less, further preferably 20 ⁇ m or more and 600 ⁇ m or less, and particularly preferably 30 ⁇ m or more and 300 ⁇ m or less.
  • solder preform The solder preform according to one aspect of the present invention is made of the above-mentioned solder alloy according to one aspect of the present invention.
  • the solder alloy of the above-described embodiment can be used as a preform.
  • Examples of the shape of the preform of the present embodiment include washers, rings, pellets, discs, ribbons, wires, and the like.
  • solder joint The solder joint according to one aspect of the present invention is made of the above-mentioned solder alloy according to one aspect of the present invention.
  • the solder joint of the present embodiment is composed of an electrode and a solder joint.
  • the solder joint portion refers to a portion mainly formed of a solder alloy.
  • the solder joint of the present embodiment is formed by, for example, joining an electrode of a PKG (Package) such as an IC chip and an electrode of a substrate such as a PCB (printed circuit board) with the solder alloy of the above-described embodiment. be able to.
  • the solder joint of the present embodiment is manufactured by processing by a method common in the art, such as mounting one solder ball of the above-described embodiment on one electrode coated with flux and joining the solder joint. can do.
  • ppb for the solder alloy composition is “mass ppb”
  • ppm is “mass ppm”
  • % is “mass%”.
  • solder alloy> (Examples 1 to 414, comparative examples 1 to 8) The raw metal was melted and stirred to prepare solder alloys of each example having the alloy compositions shown in Tables 1A to 25B.
  • solder powder The solder alloys of each example are melted and composed of the solder alloys of each example having the alloy compositions shown in Tables 1A to 25B by the atomization method. A solder powder having a size (particle size distribution) satisfying the symbol 4 was prepared.
  • a rosin-based resin was used as the resin component.
  • a thixotropic agent, an organic acid, an amine and a halogen-based activator were used as the active ingredient.
  • a glycol ether solvent was used as the solvent. 42 parts by mass of rosin, 35 parts by mass of glycol ether solvent, 8 parts by mass of thixo agent, 10 parts by mass of organic acid, 2 parts by mass of amine, and 3 parts by mass of halogen-based activator are mixed and flux ( F0) was prepared.
  • solder paste ⁇ Manufacturing of solder paste>
  • the flux (F0) and a solder powder made of the solder alloys of each example having the alloy compositions shown in Tables 1A to 25B were mixed to produce a solder paste.
  • Verification method 1 The ⁇ -dose was measured by using an ⁇ -dose measuring device of a gas flow proportional counter and following the above-mentioned procedures (i), (ii) and (iii). As a measurement sample, a solder alloy sheet immediately after production was used. This solder alloy sheet was obtained by melting the solder alloy immediately after production and forming it into a sheet having an area of 900 cm 2 on one surface. This measurement sample was placed in an ⁇ -dose measuring device, and PR-10 gas was allowed to flow for 12 hours and allowed to stand, and then the ⁇ -dose was measured for 72 hours.
  • Verification method 2 The ⁇ dose was measured in the same manner as in (1) Verification method 1 above, except that the measurement sample was changed.
  • a measurement sample a solder alloy sheet formed by melting a solder alloy immediately after production and forming a sheet having an area of 900 cm 2 on one surface is heat-treated at 100 ° C. for 1 hour and allowed to cool. board.
  • Verification method 3 After storing the solder alloy sheet of the measurement sample whose ⁇ -dose was measured in the above (1) verification method 1 for one year, the ⁇ -dose is again followed by the above-mentioned procedures (i), (ii) and (iii). Was measured to evaluate the change in ⁇ dose over time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

The present invention uses a solder alloy that has an alloy composition containing less than 5 mass ppb of U, less than 5 mass ppb of Th, less than 5 mass ppm of Pb, less than 5 mass ppm of As, 0-0.9 mass% of Bi, and 0-0.3 mass% of Sb, the remaining portion being Sn, that satisfies formula (1), and that has an alpha ray amount of 0.02 cph/cm2 or less. (1): 0.005≤Bi+Sb≤1.2. In formula (1), Bi and Sb each represent the contained amount (mass%) thereof in the alloy composition. By using the solder alloy according to the present invention, it is possible to suppress an increase in viscosity of a solder paste over the course of time, increase mechanical properties by having little difference in temperature (ΔT) between a liquidus line temperature and a solidus line temperature, and suppress occurrence of soft errors.

Description

はんだ合金、はんだ粉末、ソルダペースト、はんだボール、ソルダプリフォーム及びはんだ継手Solder alloys, solder powders, solder pastes, solder balls, solder preforms and solder fittings
 本発明は、はんだ合金、はんだ粉末、ソルダペースト、はんだボール、ソルダプリフォーム及びはんだ継手に関する。
 本願は、2020年4月10日に、日本に出願された特願2020-071024号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to solder alloys, solder powders, solder pastes, solder balls, solder preforms and solder joints.
The present application claims priority based on Japanese Patent Application No. 2020-071024 filed in Japan on April 10, 2020, the contents of which are incorporated herein by reference.
 プリント基板に搭載される電子部品においては、小型化、高性能化がますます要求されている。かかる電子部品としては、例えば、半導体パッケージが挙げられる。半導体パッケージでは、電極を有する半導体素子が樹脂成分で封止されている。この電極には、はんだ材料によるはんだバンプが形成されている。また、はんだ材料は、半導体素子とプリント基板とを接続している。 Electronic components mounted on printed circuit boards are increasingly required to be smaller and have higher performance. Examples of such electronic components include semiconductor packages. In a semiconductor package, a semiconductor element having electrodes is sealed with a resin component. Solder bumps made of a solder material are formed on this electrode. Further, the solder material connects the semiconductor element and the printed circuit board.
 はんだ材料においては、ソフトエラーに対するα線の影響が問題となる。このような半導体素子の動作への悪影響を軽減させるために、はんだ材料を含めた低α線量材料の開発が行われている。 In solder materials, the effect of α rays on soft errors becomes a problem. In order to reduce such adverse effects on the operation of semiconductor devices, low α-dose materials including solder materials are being developed.
 α線源となる要因は、例えばはんだ材料におけるはんだ合金、特にベースとなる錫(Sn)地金中に含まれる微量の放射性元素である。はんだ合金は、原料金属を溶融混合して製造することができる。かかるはんだ合金において、低α線量材料の設計のためには、ウラン(U)、トリウム(Th)、ポロニウム(Po)といった、上流となる放射性元素を合金組成から取り除くことが重要となる。
 これに対し、Sn地金の精錬においてU、Th、Poを取り除くことは、技術的に難しくはない(例えば、特許文献1参照)。
 一般的に、Sn中には、不純物として鉛(Pb)、ビスマス(Bi)が含まれている。Pb及びBi中の放射性同位体である210Pb及び210Biがβ崩壊して210Poとなり、210Poがα崩壊して206Pb生成時にα線が発生する。この一連の壊変(ウラン系列)が、はんだ材料からのα線発生の主たる原因と言われている。
The factor that becomes the α-ray source is, for example, a trace amount of radioactive elements contained in the solder alloy in the solder material, particularly the base tin (Sn) bullion. The solder alloy can be produced by melting and mixing the raw material metals. In such a solder alloy, it is important to remove upstream radioactive elements such as uranium (U), thorium (Th), and polonium (Po) from the alloy composition in order to design a low α-dose material.
On the other hand, it is not technically difficult to remove U, Th, and Po in the refining of Sn bullion (see, for example, Patent Document 1).
Generally, Sn contains lead (Pb) and bismuth (Bi) as impurities. Radioisotopes 210 Pb and 210 Bi in Pb and Bi are β-decayed to 210 Po, 210 Po is α-decayed, and α rays are generated when 206 Pb is generated. This series of decay (uranium series) is said to be the main cause of α-ray generation from solder materials.
 尚、材料から発生するα線量の評価において、単位には「cph/cm」がよく用いられる。「cph/cm」は“counts per hours/cm”の略であり、1cm当たり、1時間当たりのα線のカウント数を意味する。 In the evaluation of the α dose generated from the material, "cph / cm 2 " is often used as the unit. “Cph / cm 2 ” is an abbreviation for “counts per hours / cm 2 ” and means the number of alpha rays counted per 1 cm 2 per hour.
 Pb及びBiの半減期については、以下の通りである。
 Biについて、210Biの半減期は約5日間である。Pbについて、210Pbの半減期は約22.3年間である。そして、これらの影響度(存在比)は、下式で表すことができるとされる(非特許文献1参照)。すなわち、Biのα線発生への影響は、Pbに比べて非常に低い。
  [210Bi]≒[210Pb]/1.6×10
 式中、[210Bi]は、210Biのモル濃度を表す。[210Pb]は、210Pbのモル濃度を表す。
The half-lives of Pb and Bi are as follows.
For Bi, the half-life of 210 Bi is about 5 days. For Pb, the half-life of 210 Pb is about 22.3 years. The degree of influence (abundance ratio) can be expressed by the following equation (see Non-Patent Document 1). That is, the influence of Bi on α-ray generation is much lower than that of Pb.
[ 210 Bi] ≒ [ 210 Pb] /1.6 × 10 3
In the formula, [ 210 Bi] represents the molar concentration of 210 Bi. [ 210 Pb] represents the molar concentration of 210 Pb.
 以上のように、従来、低α線量材料の設計においては、U、Thを取り除き、さらにPbを徹底して除去することが一般的である。 As described above, conventionally, in the design of low α-dose materials, it is common to remove U and Th, and then thoroughly remove Pb.
 また、はんだ材料から発生するα線量は、経時変化によって、基本的にα線量が増加することが知られている。これは、はんだ合金中の放射性Pb及び放射性Biがβ崩壊して、Po量が増加し、そしてPoがα壊変してα線を発生することが原因と言われている。
 極低α線量の材料においては、これら放射性元素をほとんど含有していないものの、210Poの偏析が原因となって、α線量が経時変化によって増加する場合がある。210Poは、もともとα線を放射しているが、はんだ合金凝固時においてはんだ合金中心部分に偏析するため、放射しているα線がはんだ合金で遮蔽されてしまう。そして、時間経過とともに210Poが合金中に均一に分散して、α線が検出される表面にも存在するようになるため、α線量が経時変化によって増加する(非特許文献2参照)。
Further, it is known that the α dose generated from the solder material basically increases with the passage of time. It is said that this is because radioactive Pb and radioactive Bi in the solder alloy are β-decayed, the amount of Po is increased, and Po is α-decayed to generate α rays.
Although the material having an extremely low α-dose contains almost no of these radioactive elements, the α-dose may increase with time due to the segregation of 210 Po. 210 Po originally emits α rays, but when the solder alloy is solidified, it segregates at the center of the solder alloy, so that the emitted α rays are shielded by the solder alloy. Then, with the passage of time, 210 Po is uniformly dispersed in the alloy and is also present on the surface where α rays are detected, so that the α dose increases with time (see Non-Patent Document 2).
 上述したように、はんだ合金中に含まれる極微量の不純物の影響で、発生するα線量は増加してしまう。このため、低α線量材料の設計においては、はんだ合金の従来の製造方法のように、単に各種元素を添加することが難しくなる。
 例えば、ソルダペーストの経時での粘度増加を抑制する増粘抑制のために、はんだ合金に砒素(As)を添加する方法が知られている(例えば、特許文献2参照)。
As described above, the generated α-dose increases due to the influence of a very small amount of impurities contained in the solder alloy. For this reason, in the design of low α-dose materials, it becomes difficult to simply add various elements as in the conventional manufacturing method of solder alloys.
For example, a method of adding arsenic (As) to a solder alloy is known in order to suppress the increase in viscosity of the solder paste over time (see, for example, Patent Document 2).
特開2010-156052号公報Japanese Unexamined Patent Publication No. 2010-156052 特開2015-98052号公報Japanese Unexamined Patent Publication No. 2015-98052
 ソルダペーストの経時での増粘抑制のため、例えば特許文献2に記載された方法のように、はんだ合金にAsを添加する方法では、Asが添加されることにより、合金に不純物も含まれることになる。この場合、その不純物中に放射性元素が存在することで、はんだ材料から発生するα線量が増加してしまう。 In order to suppress the thickening of the solder paste over time, in the method of adding As to the solder alloy, for example, as in the method described in Patent Document 2, impurities are also contained in the alloy due to the addition of As. become. In this case, the presence of radioactive elements in the impurities increases the α dose generated from the solder material.
 また、近年、CPU(Central Processing Unit)等のはんだ継手を有する電子デバイスは、小型化、高性能化が要求されている。これに伴い、プリント基板及び電子デバイスの電極の小型化が必要になる。電子デバイスは電極を介してプリント基板と接続されるため、電極の小型化に伴い、両者を接続するはんだ継手も小さくなる。
 そして、更に、微細な電極を接合するためには、はんだ継手の機械的特性等を向上させる必要がある。しかしながら、元素によっては、その含有量が多くなると、液相線温度が上昇して、液相線温度と固相線温度との温度差(△T)が大きくなり、凝固時に偏析して不均一な合金組織が形成されてしまう。はんだ合金がこのような合金組織を有すると、はんだ継手は引張強度などの機械的特性が劣り、外部からの応力により容易に破断してしまう。この問題は、近年の電極の小型化に伴い顕著になってきている。
Further, in recent years, electronic devices having a solder joint such as a CPU (Central Processing Unit) are required to be miniaturized and have high performance. Along with this, it is necessary to reduce the size of the electrodes of the printed circuit board and the electronic device. Since the electronic device is connected to the printed circuit board via the electrode, the solder joint connecting the two becomes smaller as the electrode becomes smaller.
Further, in order to join fine electrodes, it is necessary to improve the mechanical properties of the solder joint. However, depending on the element, as its content increases, the liquidus temperature rises, the temperature difference (ΔT) between the liquidus temperature and the solidus temperature increases, and segregation occurs during solidification, resulting in non-uniformity. Alloy structure is formed. When the solder alloy has such an alloy structure, the solder joint is inferior in mechanical properties such as tensile strength and easily breaks due to external stress. This problem has become remarkable with the recent miniaturization of electrodes.
 本発明は、上記の事情に鑑みてなされたものであり、ソルダペーストの経時での粘度増加を抑制し、液相線温度と固相線温度との温度差(△T)が小さく機械的特性を高められ、かつ、ソフトエラーの発生を抑制することが可能なはんだ合金、このはんだ合金からなるはんだ粉末、このはんだ粉末とフラックスとを含有するソルダペースト、このはんだ合金からなるはんだボール、ソルダプリフォーム及びはんだ継手を提供することを目的とする。 The present invention has been made in view of the above circumstances, suppresses an increase in the viscosity of the solder paste over time, has a small temperature difference (ΔT) between the liquidus line temperature and the solidus line temperature, and has mechanical properties. Solder alloy that can enhance and suppress the occurrence of soft errors, solder powder made of this solder alloy, solder paste containing this solder powder and flux, solder balls made of this solder alloy, solderp It is an object of the present invention to provide a remodeling and a solder joint.
 本発明者らは、放射性元素を含む不純物を伴うAsを添加することなく、ソルダペーストの経時での増粘抑制が可能な、低α線量のはんだ合金の設計を目的として検討した。かかる検討により、主成分としてのSnと、イオン化傾向においてSnと比べて貴な金属であるBi及びSbの所定量と、を含有する合金組成とすることで、前記目的を達成し得ることを見出し、本発明を完成するに至った。
 すなわち、本発明は、上記の課題を解決するため、以下の手段を採用する。
The present inventors have studied for the purpose of designing a low α-dose solder alloy capable of suppressing thickening of solder paste over time without adding As with impurities containing radioactive elements. Through such studies, it was found that the above object can be achieved by adjusting the alloy composition to contain Sn as a main component and a predetermined amount of Bi and Sb, which are noble metals as compared with Sn in ionization tendency. , The present invention has been completed.
That is, the present invention employs the following means in order to solve the above problems.
 本発明の一態様は、U:5質量ppb未満、Th:5質量ppb未満、Pb:5質量ppm未満、As:5質量ppm未満、Bi:0質量%以上0.9質量%以下、及びSb:0質量%以上0.3質量%以下、並びに残部がSnからなる合金組成を有し、下記(1)式を満たし、かつ、α線量が0.02cph/cm以下であることを特徴とする、はんだ合金である。
 0.005≦Bi+Sb≦1.2       (1)
 (1)式中、Bi及びSbは、各々前記合金組成での含有量(質量%)を表す。
One aspect of the present invention is U: less than 5 mass ppb, Th: less than 5 mass ppb, Pb: less than 5 mass ppm, As: less than 5 mass ppm, Bi: 0% by mass or more and 0.9% by mass or less, and Sb. : It has an alloy composition of 0% by mass or more and 0.3% by mass or less, and the balance is Sn, satisfies the following formula (1), and has an α dose of 0.02 cph / cm 2 or less. It is a solder alloy.
0.005 ≤ Bi + Sb ≤ 1.2 (1)
In the formula (1), Bi and Sb each represent the content (mass%) in the alloy composition.
 本発明の一態様は、U:5質量ppb未満、Th:5質量ppb未満、Pb:5質量ppm未満、As:5質量ppm未満、Bi:0質量%超0.9質量%以下、及びSb:0質量%以上0.3質量%以下、並びに残部がSnからなる合金組成を有し、下記(1)式を満たし、かつ、α線量が0.02cph/cm以下であることを特徴とする、はんだ合金である。
 0.005≦Bi+Sb≦1.2       (1)
 (1)式中、Bi及びSbは、各々前記合金組成での含有量(質量%)を表す。
One aspect of the present invention is U: less than 5 mass ppb, Th: less than 5 mass ppb, Pb: less than 5 mass ppm, As: less than 5 mass ppm, Bi: more than 0 mass% and 0.9 mass% or less, and Sb. : It has an alloy composition of 0% by mass or more and 0.3% by mass or less, and the balance is Sn, satisfies the following formula (1), and has an α dose of 0.02 cph / cm 2 or less. It is a solder alloy.
0.005 ≤ Bi + Sb ≤ 1.2 (1)
In the formula (1), Bi and Sb each represent the content (mass%) in the alloy composition.
 本発明の一態様は、U:5質量ppb未満、Th:5質量ppb未満、Pb:5質量ppm未満、As:5質量ppm未満、Bi:0質量%以上0.9質量%以下、及びSb:0質量%以上0.1質量%未満、並びに残部がSnからなる合金組成を有し、下記(1)式を満たし、かつ、α線量が0.02cph/cm以下であることを特徴とする、はんだ合金である。
 0.005≦Bi+Sb≦1.2       (1)
 (1)式中、Bi及びSbは、各々前記合金組成での含有量(質量%)を表す。
One aspect of the present invention is U: less than 5 mass ppb, Th: less than 5 mass ppb, Pb: less than 5 mass ppm, As: less than 5 mass ppm, Bi: 0% by mass or more and 0.9% by mass or less, and Sb. : It has an alloy composition of 0% by mass or more and less than 0.1% by mass, and the balance is Sn, satisfies the following formula (1), and has an α dose of 0.02 cph / cm 2 or less. It is a solder alloy.
0.005 ≤ Bi + Sb ≤ 1.2 (1)
In the formula (1), Bi and Sb each represent the content (mass%) in the alloy composition.
 また、本発明の一態様は、前記本発明の一態様に係るはんだ合金からなることを特徴とする、はんだ粉末である。 Further, one aspect of the present invention is a solder powder characterized by being composed of a solder alloy according to the one aspect of the present invention.
 また、本発明の一態様は、前記本発明の一態様に係るはんだ粉末と、フラックスとを含有することを特徴とする、ソルダペーストである。 Further, one aspect of the present invention is a solder paste characterized by containing the solder powder and the flux according to the one aspect of the present invention.
 また、本発明の一態様は、前記本発明の一態様に係るはんだ合金からなることを特徴とする、はんだボールである。 Further, one aspect of the present invention is a solder ball characterized by being made of a solder alloy according to the one aspect of the present invention.
 また、本発明の一態様は、前記本発明の一態様に係るはんだ合金からなることを特徴とする、ソルダプリフォームである。 Further, one aspect of the present invention is a solder preform characterized by being made of a solder alloy according to the one aspect of the present invention.
 また、本発明の一態様は、前記本発明の一態様に係るはんだ合金からなることを特徴とする、はんだ継手である。 Further, one aspect of the present invention is a solder joint characterized by being made of a solder alloy according to the one aspect of the present invention.
 本発明によれば、ソルダペーストの経時での粘度増加を抑制し、液相線温度と固相線温度との温度差(△T)が小さく機械的特性を高められ、かつ、ソフトエラーの発生を抑制することが可能なはんだ合金、このはんだ合金からなるはんだ粉末、このはんだ粉末とフラックスとを含有するソルダペースト、このはんだ合金からなるはんだボール、ソルダプリフォーム及びはんだ継手を提供することができる。 According to the present invention, the increase in the viscosity of the solder paste over time is suppressed, the temperature difference (ΔT) between the liquidus line temperature and the solidus line temperature is small, the mechanical properties can be improved, and soft errors occur. It is possible to provide a solder alloy capable of suppressing the above, a solder powder made of this solder alloy, a solder paste containing the solder powder and a flux, a solder ball made of this solder alloy, a solder preform and a solder joint. ..
 本発明を以下により詳しく説明する。
 本明細書において、はんだ合金組成に関する「ppb」は、特に指定しない限り「質量ppb」である。「ppm」は、特に指定しない限り「質量ppm」である。「%」は、特に指定しない限り「質量%」である。
The present invention will be described in more detail below.
In the present specification, "ppb" relating to the solder alloy composition is "mass ppb" unless otherwise specified. “Ppm” is “mass ppm” unless otherwise specified. “%” Is “mass%” unless otherwise specified.
(はんだ合金)
 本発明の一態様に係るはんだ合金は、U:5質量ppb未満、Th:5質量ppb未満、Pb:5質量ppm未満、As:5質量ppm未満、Bi:0質量%以上0.9質量%以下、及びSb:0質量%以上0.3質量%以下、並びに残部がSnからなる合金組成を有し、下記(1)式を満たし、かつ、α線量が0.02cph/cm以下のものである。
 0.005≦Bi+Sb≦1.2       (1)
 (1)式中、Bi及びSbは、各々前記合金組成での含有量(質量%)を表す。
(Solder alloy)
The solder alloy according to one aspect of the present invention has U: less than 5% by mass, Th: less than 5% by mass, Pb: less than 5% by mass, As: less than 5% by mass, Bi: 0% by mass or more and 0.9% by mass. The following, and Sb: 0% by mass or more and 0.3% by mass or less, and having an alloy composition in which the balance is Sn, satisfying the following formula (1), and having an α dose of 0.02 cph / cm 2 or less. Is.
0.005 ≤ Bi + Sb ≤ 1.2 (1)
In the formula (1), Bi and Sb each represent the content (mass%) in the alloy composition.
 <合金組成>
 本実施形態のはんだ合金は、U:5質量ppb未満、Th:5質量ppb未満、Pb:5質量ppm未満、As:5質量ppm未満、Bi:0質量%以上0.9質量%以下、及びSb:0質量%以上0.3質量%以下、並びに残部がSnからなる合金組成を有し、前記(1)式を満たす。
<Alloy composition>
The solder alloy of this embodiment has U: less than 5 mass ppb, Th: less than 5 mass ppb, Pb: less than 5 mass ppm, As: less than 5 mass ppm, Bi: 0 mass% or more and 0.9 mass% or less, and Sb: It has an alloy composition of 0% by mass or more and 0.3% by mass or less, and the balance is Sn, and satisfies the above formula (1).
 ≪U:5質量ppb未満、Th:5質量ppb未満≫
 U及びThは、放射性元素である。ソフトエラーの発生を抑制するには、はんだ合金中のこれらの含有量を抑える必要がある。
 本実施形態において、はんだ合金中のU及びThの含有量は、はんだ合金から発生するα線量を0.02cph/cm以下とする観点から、はんだ合金の総質量(100質量%)に対して、各々5ppb未満である。高密度実装でのソフトエラー発生を抑制する観点から、U及びThの含有量は、好ましくは各々2ppb以下であり、低いほどよい。
<< U: less than 5 mass ppb, Th: less than 5 mass ppb >>
U and Th are radioactive elements. In order to suppress the occurrence of soft errors, it is necessary to suppress these contents in the solder alloy.
In the present embodiment, the contents of U and Th in the solder alloy are based on the total mass (100% by mass) of the solder alloy from the viewpoint that the α dose generated from the solder alloy is 0.02 cf / cm 2 or less. , Each less than 5 ppb. From the viewpoint of suppressing the occurrence of soft errors in high-density mounting, the contents of U and Th are preferably 2 ppb or less, and the lower the better.
 ≪Pb:5質量ppm未満≫
 一般的に、Sn中には、不純物としてPbが含まれている。このPb中の放射性同位体がβ崩壊して210Poとなり、210Poがα崩壊して206Pb生成時にα線が発生する。このことから、はんだ合金中の、不純物であるPbの含有量も極力少ないことが好ましい。
 本実施形態において、はんだ合金中のPbの含有量は、はんだ合金の総質量(100質量%)に対して、5ppm未満であり、好ましくは2ppm未満であり、より好ましくは1ppm未満である。尚、はんだ合金中のPbの含有量の下限は0ppm以上でもよい。
<< Pb: less than 5 mass ppm >>
Generally, Sn contains Pb as an impurity. The radioactive isotope in this Pb undergoes β-decay to become 210 Po, and 210 Po undergoes α-decay to generate α-rays when 206 Pb is generated. For this reason, it is preferable that the content of Pb, which is an impurity, in the solder alloy is as small as possible.
In the present embodiment, the content of Pb in the solder alloy is less than 5 ppm, preferably less than 2 ppm, and more preferably less than 1 ppm with respect to the total mass (100% by mass) of the solder alloy. The lower limit of the Pb content in the solder alloy may be 0 ppm or more.
 ≪As:5質量ppm未満≫
 はんだ合金にAsを添加することは、ソルダペーストの経時での増粘抑制に有効であるが、Asの添加に伴い、合金に放射性元素も含まれることになり、はんだ材料から発生するα線量が増加してしまう。
 本実施形態においては、放射性元素を含む不純物を伴うAsを添加することなく、ソルダペーストの経時での増粘抑制を図ることを目的とする。
 本実施形態において、はんだ合金中のAsの含有量は、はんだ合金の総質量(100質量%)に対して、5ppm未満であり、好ましくは2ppm未満であり、より好ましくは1ppm未満である。尚、はんだ合金中のAsの含有量の下限は0ppm以上でもよい。
≪As: less than 5 mass ppm≫
Adding As to the solder alloy is effective in suppressing the thickening of the solder paste over time, but with the addition of As, the alloy also contains radioactive elements, and the α dose generated from the solder material increases. It will increase.
An object of the present embodiment is to suppress thickening of the solder paste over time without adding As with impurities containing radioactive elements.
In the present embodiment, the content of As in the solder alloy is less than 5 ppm, preferably less than 2 ppm, and more preferably less than 1 ppm with respect to the total mass (100% by mass) of the solder alloy. The lower limit of the As content in the solder alloy may be 0 ppm or more.
 ≪Bi:0質量%以上0.9質量%以下、Sb:0質量%以上0.3質量%以下、(1)式≫
 ソルダペーストの粘度が経時的に上昇する理由は、はんだ粉末とフラックスとが反応するためであると考えられる。
 ソルダペーストの経時での増粘抑制の効果は、フラックスとの反応を抑えることにより発揮される。このことから、フラックスとの反応性が低い元素として、イオン化傾向が低い元素が挙げられる。一般に、合金のイオン化は、合金組成としてのイオン化傾向、すなわち標準電極電位で考える。例えば、Snに対して貴なAgを含むSnAg合金は、Snよりもイオン化し難い。このため、Snよりも貴な元素を含有する合金は、イオン化し難いことになり、ソルダペーストの経時での増粘抑制の効果を高められると推測される。
<< Bi: 0% by mass or more and 0.9% by mass or less, Sb: 0% by mass or more and 0.3% by mass or less, equation (1) >>
It is considered that the reason why the viscosity of the solder paste increases with time is that the solder powder reacts with the flux.
The effect of suppressing the thickening of the solder paste over time is exhibited by suppressing the reaction with the flux. From this, an element having a low ionization tendency can be mentioned as an element having a low reactivity with the flux. Generally, the ionization of an alloy is considered in terms of the ionization tendency as the alloy composition, that is, the standard electrode potential. For example, a SnAg alloy containing Ag, which is noble to Sn, is less likely to be ionized than Sn. Therefore, it is presumed that the alloy containing an element nobler than Sn is difficult to ionize, and the effect of suppressing the thickening of the solder paste over time can be enhanced.
 Bi:0質量%以上0.9質量%以下
 Biは、イオン化傾向がSnに対して貴な元素であり、フラックスとの反応性が低く、ソルダペーストの経時での増粘抑制効果を示す元素である。また、Biは、はんだ合金の液相線温度を下げるとともに、溶融はんだの粘性を低減させるため、濡れ性の劣化を抑えることができる元素である。しかし、その含有量によっては固相線温度が著しく低下して、液相線温度と固相線温度との温度差(ΔT)が広くなる。
 本実施形態において、はんだ合金中のBiの含有量は、はんだ合金の総質量(100質量%)に対して、0%以上0.9%以下であり、好ましくは0.030%以上0.9%以下である。
 あるいは、はんだ合金中のBiの含有量の下限は、はんだ合金の総質量(100質量%)に対して、0%以上であり、0.0025%以上が好ましく、0.0050%以上がより好ましく、0.010%以上がさらに好ましく、0.030%以上が特に好ましい。一方、はんだ合金中のBiの含有量の上限は、はんだ合金の総質量(100質量%)に対して、0.9%以下であり、0.7%以下が好ましく、0.5%以下がより好ましく、0.3%以下がさらに好ましく、0.1%以下が特に好ましい。
 例えば、はんだ合金の一実施形態として、はんだ合金中のBiの含有量は、はんだ合金の総質量(100質量%)に対して、0%以上0.9%以下であり、好ましくは0.0025%以上0.7%以下であり、より好ましくは0.0050%以上0.5%以下であり、さらに好ましくは0.010%以上0.3%以下であり、特に好ましくは0.030%以上0.1%以下である。
Bi: 0% by mass or more and 0.9% by mass or less Bi is an element whose ionization tendency is noble with respect to Sn, has low reactivity with flux, and exhibits an effect of suppressing thickening of solder paste over time. be. In addition, Bi is an element capable of suppressing deterioration of wettability because it lowers the liquidus temperature of the solder alloy and reduces the viscosity of the molten solder. However, depending on the content, the solidus temperature is remarkably lowered, and the temperature difference (ΔT) between the liquidus temperature and the solidus temperature becomes wide.
In the present embodiment, the content of Bi in the solder alloy is 0% or more and 0.9% or less, preferably 0.030% or more and 0.9, based on the total mass (100% by mass) of the solder alloy. % Or less.
Alternatively, the lower limit of the Bi content in the solder alloy is 0% or more, preferably 0.0025% or more, more preferably 0.0050% or more, based on the total mass (100% by mass) of the solder alloy. , 0.010% or more is more preferable, and 0.030% or more is particularly preferable. On the other hand, the upper limit of the Bi content in the solder alloy is 0.9% or less, preferably 0.7% or less, and 0.5% or less with respect to the total mass (100% by mass) of the solder alloy. More preferably, 0.3% or less is further preferable, and 0.1% or less is particularly preferable.
For example, as one embodiment of the solder alloy, the content of Bi in the solder alloy is 0% or more and 0.9% or less, preferably 0.0025, with respect to the total mass (100% by mass) of the solder alloy. % Or more and 0.7% or less, more preferably 0.0050% or more and 0.5% or less, further preferably 0.010% or more and 0.3% or less, and particularly preferably 0.030% or more. It is 0.1% or less.
 Sb:0質量%以上0.3質量%以下
 Sbは、Biと同様に、イオン化傾向がSnに対して貴な元素であり、フラックスとの反応性が低く、ソルダペーストの経時での増粘抑制効果を示す元素である。はんだ合金中のSbの含有量が多すぎると、濡れ性が劣化するため、Sbを添加する場合には適度な含有量にする必要がある。
 本実施形態において、はんだ合金中のSbの含有量は、はんだ合金の総質量(100質量%)に対して、0%以上0.3%以下であり、好ましくは0.0040%以上0.3%以下であり、より好ましくは0.010%以上0.3%以下である。
 あるいは、はんだ合金中のSbの含有量の下限は、はんだ合金の総質量(100質量%)に対して、0%以上であり、0.0025%以上が好ましく、0.0040%以上がより好ましく、0.0050%以上がさらに好ましく、0.010%以上が特に好ましい。一方、はんだ合金中のSbの含有量の上限は、はんだ合金の総質量(100質量%)に対して、0.3%以下であり、0.1%以下が好ましく、0.1%未満がより好ましく、0.090%以下がさらに好ましい。
 例えば、はんだ合金の一実施形態として、はんだ合金中のSbの含有量は、はんだ合金の総質量(100質量%)に対して、0%以上0.3%以下であり、好ましくは0.0025%以上0.1%以下であり、より好ましくは0.0040%以上0.1%未満であり、さらに好ましくは0.0050%以上0.090%以下であり、特に好ましくは0.010%以上0.090%以下である。
Sb: 0% by mass or more and 0.3% by mass or less Sb is an element having an ionization tendency noble to Sn, has low reactivity with flux, and suppresses thickening of solder paste over time, like Bi. It is an element that shows an effect. If the content of Sb in the solder alloy is too large, the wettability deteriorates. Therefore, when Sb is added, it is necessary to set the content to an appropriate level.
In the present embodiment, the content of Sb in the solder alloy is 0% or more and 0.3% or less, preferably 0.0040% or more and 0.3, based on the total mass (100% by mass) of the solder alloy. % Or less, more preferably 0.010% or more and 0.3% or less.
Alternatively, the lower limit of the Sb content in the solder alloy is 0% or more, preferably 0.0025% or more, more preferably 0.0040% or more, based on the total mass (100% by mass) of the solder alloy. , 0.0050% or more is more preferable, and 0.010% or more is particularly preferable. On the other hand, the upper limit of the Sb content in the solder alloy is 0.3% or less, preferably 0.1% or less, and less than 0.1% with respect to the total mass (100% by mass) of the solder alloy. More preferably, 0.090% or less is further preferable.
For example, as one embodiment of the solder alloy, the content of Sb in the solder alloy is 0% or more and 0.3% or less, preferably 0.0025, with respect to the total mass (100% by mass) of the solder alloy. % Or more and 0.1% or less, more preferably 0.0040% or more and less than 0.1%, further preferably 0.0050% or more and 0.090% or less, and particularly preferably 0.010% or more. It is 0.090% or less.
 本実施形態のはんだ合金における合金組成においては、下記(1)式を満たす。
 0.005≦Bi+Sb≦1.2       (1)
 (1)式中、Bi及びSbは、各々前記合金組成での含有量(質量%)を表す。
The alloy composition of the solder alloy of the present embodiment satisfies the following equation (1).
0.005 ≤ Bi + Sb ≤ 1.2 (1)
In the formula (1), Bi and Sb each represent the content (mass%) in the alloy composition.
 (1)式におけるBi及びSbは、いずれも、ソルダペーストの経時での増粘抑制効果を示す元素である。加えて、本実施形態において、Bi及びSbは、いずれも、はんだ合金の濡れ性にも寄与する。
 はんだ合金中のBiとSbとの合計の含有量は、はんだ合金の総質量(100質量%)に対して、0.005%以上1.2%以下である必要があり、好ましくは0.03%以上1.2%以下である必要がある。はんだ合金中のBiとSbとの合計の含有量は、はんだ合金の総質量(100質量%)に対して、0.005%以上であり、好ましくは0.03%以上1.0%以下であり、より好ましくは0.03%以上0.9%以下であり、さらに好ましくは0.03%以上0.5%以下であり、特に好ましくは0.03%以上0.1%以下である。
 あるいは、はんだ合金中のBiとSbとの合計の含有量の下限は、はんだ合金の総質量(100質量%)に対して、0.005%以上であり、0.01%以上が好ましく、0.02%以上がより好ましく、0.03%以上がさらに好ましい。一方、はんだ合金中のBiとSbとの合計の含有量の上限は、はんだ合金の総質量(100質量%)に対して、1.2%以下であり、1.0%以下が好ましく、0.9%以下がより好ましく、0.5%以下がさらに好ましく、0.1%以下が特に好ましい。
 例えば、はんだ合金中のBiとSbとの合計の含有量は、はんだ合金の総質量(100質量%)に対して、好ましくは0.01%以上1.0%以下であり、より好ましくは0.02%以上0.9%以下であり、さらに好ましくは0.03%以上0.5%以下であり、特に好ましくは0.03%以上0.1%以下である。
Both Bi and Sb in the formula (1) are elements that show the effect of suppressing the thickening of the solder paste over time. In addition, in this embodiment, both Bi and Sb also contribute to the wettability of the solder alloy.
The total content of Bi and Sb in the solder alloy needs to be 0.005% or more and 1.2% or less with respect to the total mass (100% by mass) of the solder alloy, preferably 0.03. Must be greater than or equal to% and less than or equal to 1.2%. The total content of Bi and Sb in the solder alloy is 0.005% or more, preferably 0.03% or more and 1.0% or less, based on the total mass (100% by mass) of the solder alloy. Yes, more preferably 0.03% or more and 0.9% or less, further preferably 0.03% or more and 0.5% or less, and particularly preferably 0.03% or more and 0.1% or less.
Alternatively, the lower limit of the total content of Bi and Sb in the solder alloy is 0.005% or more, preferably 0.01% or more, and 0, based on the total mass (100% by mass) of the solder alloy. .02% or more is more preferable, and 0.03% or more is further preferable. On the other hand, the upper limit of the total content of Bi and Sb in the solder alloy is 1.2% or less, preferably 1.0% or less, and 0, based on the total mass (100% by mass) of the solder alloy. 9.9% or less is more preferable, 0.5% or less is further preferable, and 0.1% or less is particularly preferable.
For example, the total content of Bi and Sb in the solder alloy is preferably 0.01% or more and 1.0% or less, more preferably 0, with respect to the total mass (100% by mass) of the solder alloy. It is 0.02% or more and 0.9% or less, more preferably 0.03% or more and 0.5% or less, and particularly preferably 0.03% or more and 0.1% or less.
 但し、前記「BiとSbとの合計の含有量」は、はんだ合金中のBiの含有量が0質量%である場合にはSbの含有量となり、はんだ合金中のSbの含有量が0質量%である場合にはBiの含有量となり、BiとSbとを併有する場合にはこれらの合計の含有量となる。 However, the "total content of Bi and Sb" is the content of Sb when the content of Bi in the solder alloy is 0% by mass, and the content of Sb in the solder alloy is 0% by mass. When it is%, it is the content of Bi, and when it has both Bi and Sb, it is the total content of these.
 また、本実施形態においてBiとSbとを併有する場合、はんだ合金中のBiとSbとの比率は、Sb/Biで表される質量比として、好ましくは0.008以上10以下であり、より好ましくは0.01以上10以下であり、さらに好ましくは0.1以上5以下であり、特に好ましくは0.1以上2以下であり、最も好ましくは0.1以上1以下である。
 かかる質量比のSb/Biが前記の好ましい範囲であれば、本発明の効果がより得られやすくなる。
Further, when Bi and Sb are used together in the present embodiment, the ratio of Bi and Sb in the solder alloy is preferably 0.008 or more and 10 or less as the mass ratio represented by Sb / Bi, and more. It is preferably 0.01 or more and 10 or less, more preferably 0.1 or more and 5 or less, particularly preferably 0.1 or more and 2 or less, and most preferably 0.1 or more and 1 or less.
If the mass ratio of Sb / Bi is in the above-mentioned preferable range, the effect of the present invention can be more easily obtained.
 ≪任意元素≫
 本実施形態のはんだ合金における合金組成は、上述した元素以外の元素を必要に応じて含有してもよい。
 例えば、本実施形態のはんだ合金における合金組成は、上述した元素に加えて、更に、Ag:0質量%以上4質量%以下、及びCu:0質量%以上0.9質量%以下の少なくとも一種を含有してもよい。
≪Arbitrary element≫
The alloy composition of the solder alloy of the present embodiment may contain elements other than the above-mentioned elements, if necessary.
For example, in the alloy composition of the solder alloy of the present embodiment, in addition to the above-mentioned elements, at least one of Ag: 0% by mass or more and 4% by mass or less and Cu: 0% by mass or more and 0.9% by mass or less is further added. It may be contained.
 Ag:0質量%以上4質量%以下
 Agは、結晶界面にAgSnを形成してはんだ合金の信頼性を向上させることができる任意元素である。また、Agは、イオン化傾向がSnに対して貴な元素であり、Bi及びSbと共存することによって、ソルダペーストの経時での増粘抑制効果を高める。
 本実施形態において、はんだ合金中のAgの含有量は、はんだ合金の総質量(100質量%)に対して、0%以上4%以下が好ましく、より好ましくは0.5%以上3.5%以下であり、さらに好ましくは1.0%以上3.0%以下であり、特に好ましくは2.0%以上3.0%以下である。
Ag: 0% by mass or more and 4% by mass or less Ag is an arbitrary element capable of forming Ag 3 Sn at the crystal interface to improve the reliability of the solder alloy. In addition, Ag is an element whose ionization tendency is noble with respect to Sn, and when it coexists with Bi and Sb, the effect of suppressing thickening of the solder paste over time is enhanced.
In the present embodiment, the content of Ag in the solder alloy is preferably 0% or more and 4% or less, more preferably 0.5% or more and 3.5%, based on the total mass (100% by mass) of the solder alloy. It is less than or equal to, more preferably 1.0% or more and 3.0% or less, and particularly preferably 2.0% or more and 3.0% or less.
 Cu:0質量%以上0.9質量%以下
 Cuは、一般的なはんだ合金で使用されており、はんだ継手の接合強度を向上させることができる任意元素である。また、Cuは、イオン化傾向がSnに対して貴な元素であり、Bi及びSbと共存することによって、ソルダペーストの経時での増粘抑制効果を高める。
 本実施形態において、はんだ合金中のCuの含有量は、はんだ合金の総質量(100質量%)に対して、0%以上0.9%以下が好ましく、より好ましくは0.1%以上0.8%以下であり、さらに好ましくは0.2%以上0.7%以下である。
Cu: 0% by mass or more and 0.9% by mass or less Cu is an optional element that is used in general solder alloys and can improve the joint strength of solder joints. Further, Cu is an element whose ionization tendency is noble with respect to Sn, and when it coexists with Bi and Sb, the effect of suppressing thickening of the solder paste over time is enhanced.
In the present embodiment, the content of Cu in the solder alloy is preferably 0% or more and 0.9% or less, more preferably 0.1% or more and 0.1% or more, based on the total mass (100% by mass) of the solder alloy. It is 8% or less, more preferably 0.2% or more and 0.7% or less.
 本実施形態においてCuとBiとを併有する場合、はんだ合金中のCuとBiとの比率は、Cu/Biで表される質量比として、好ましくは0.5以上280以下であり、より好ましくは0.5以上150以下であり、さらに好ましくは0.5以上20以下であり、特に好ましくは1以上15以下である。
 かかる質量比のCu/Biが前記の好ましい範囲であれば、本発明の効果がより得られやすくなる。
When Cu and Bi are used together in the present embodiment, the ratio of Cu and Bi in the solder alloy is preferably 0.5 or more and 280 or less as the mass ratio represented by Cu / Bi, and more preferably. It is 0.5 or more and 150 or less, more preferably 0.5 or more and 20 or less, and particularly preferably 1 or more and 15 or less.
If the Cu / Bi of such a mass ratio is in the above-mentioned preferable range, the effect of the present invention can be more easily obtained.
 本実施形態においてCuとSbとを併有する場合、はんだ合金中のCuとSbとの比率は、Cu/Sbで表される質量比として、好ましくは1以上280以下であり、より好ましくは1以上150以下であり、さらに好ましくは5以上125以下である。
 かかる質量比のCu/Sbが前記の好ましい範囲であれば、本発明の効果がより得られやすくなる。
When Cu and Sb are used together in the present embodiment, the ratio of Cu and Sb in the solder alloy is preferably 1 or more and 280 or less, and more preferably 1 or more as the mass ratio represented by Cu / Sb. It is 150 or less, more preferably 5 or more and 125 or less.
If the Cu / Sb having such a mass ratio is in the above-mentioned preferable range, the effect of the present invention can be more easily obtained.
 本実施形態においてCuとBiとSbとを併有する場合、はんだ合金中のCuとBiとSbとの比率は、Cu/(Bi+Sb)で表される質量比として、好ましくは0.4以上150以下であり、より好ましくは5以上100以下である。
 かかる質量比のCu/(Bi+Sb)が前記の好ましい範囲であれば、本発明の効果がより得られやすくなる。
When Cu, Bi and Sb are used together in this embodiment, the ratio of Cu, Bi and Sb in the solder alloy is preferably 0.4 or more and 150 or less as the mass ratio represented by Cu / (Bi + Sb). It is more preferably 5 or more and 100 or less.
If the mass ratio of Cu / (Bi + Sb) is in the above-mentioned preferable range, the effect of the present invention can be more easily obtained.
 例えば、本実施形態のはんだ合金における合金組成は、上述した元素に加えて、更に、Ni:0質量ppm以上600質量ppm以下、及びFe:0質量ppm以上100質量ppm以下の少なくとも一種を含有してもよい。 For example, the alloy composition of the solder alloy of the present embodiment further contains at least one of Ni: 0 mass ppm or more and 600 mass ppm or less, and Fe: 0 mass ppm or more and 100 mass ppm or less, in addition to the above-mentioned elements. You may.
 Ni:0質量ppm以上600質量ppm以下
 はんだ付けにより、はんだ合金中の接合界面近傍において、Sn含有金属間化合物(Snを含む金属間化合物)の形成が進み、このSn含有金属間化合物が析出すると、はんだ継手の機械的強度が劣化する。
 Niは、前記Sn含有金属間化合物が接合界面で形成することを抑制する元素である。
 はんだ合金がNiを含有することで、前記Sn含有金属間化合物の形成が抑制されて、はんだ継手の機械的強度が維持される。一方、はんだ合金中のNiの含有量が600質量ppmを超えると、はんだ合金中の接合界面近傍において、SnNi化合物が析出し、はんだ継手の機械的強度が劣化するおそれがある。
 本実施形態において、はんだ合金中のNiの含有量は、はんだ合金の総質量(100質量%)に対して、0ppm以上600ppm以下が好ましく、より好ましくは20ppm以上600ppm以下である。
Ni: 0% by mass or more and 600% by mass or less When soldering promotes the formation of Sn-containing intermetallic compounds (Sn-containing intermetallic compounds) in the vicinity of the bonding interface in the solder alloy, and this Sn-containing intermetallic compound is precipitated. , The mechanical strength of the solder joint deteriorates.
Ni is an element that suppresses the formation of the Sn-containing intermetallic compound at the bonding interface.
When the solder alloy contains Ni, the formation of the Sn-containing intermetallic compound is suppressed, and the mechanical strength of the solder joint is maintained. On the other hand, if the content of Ni in the solder alloy exceeds 600 mass ppm, SnNi compounds may precipitate in the vicinity of the bonding interface in the solder alloy, and the mechanical strength of the solder joint may deteriorate.
In the present embodiment, the content of Ni in the solder alloy is preferably 0 ppm or more and 600 ppm or less, more preferably 20 ppm or more and 600 ppm or less, based on the total mass (100% by mass) of the solder alloy.
 Fe:0質量ppm以上100質量ppm以下
 Feは、Niと同様に、Sn含有金属間化合物が接合界面で形成することを抑制する元素である。加えて、所定の含有量の範囲内では、SnFe化合物による針状結晶の析出が抑制されて、回路の短絡を防ぐことができる。
 ここでいう「針状結晶」とは、1つのSnFe化合物由来の結晶において、長径と短径との比であるアスペクト比が2以上の結晶をいう。
 本実施形態において、はんだ合金中のFeの含有量は、はんだ合金の総質量(100質量%)に対して、0ppm以上100ppm以下が好ましく、より好ましくは20ppm以上100ppm以下である。
Fe: 0 mass ppm or more and 100 mass ppm or less Fe is an element that suppresses the formation of Sn-containing intermetallic compounds at the bonding interface, similar to Ni. In addition, within a predetermined content range, precipitation of acicular crystals due to the SnFe compound is suppressed, and a short circuit of the circuit can be prevented.
The term "acicular crystal" as used herein refers to a crystal derived from one SnFe compound having an aspect ratio of 2 or more, which is the ratio of the major axis to the minor axis.
In the present embodiment, the content of Fe in the solder alloy is preferably 0 ppm or more and 100 ppm or less, more preferably 20 ppm or more and 100 ppm or less, based on the total mass (100% by mass) of the solder alloy.
 本実施形態のはんだ合金における合金組成が、更に、Ni:0質量ppm以上600質量ppm以下、及びFe:0質量ppm以上100質量ppm以下の少なくとも一種を含有する場合、前記合金組成は、下記(2)式を満たすことが好ましい。
 20≦Ni+Fe≦700         (2)
 (2)式中、Ni及びFeは、各々前記合金組成での含有量(質量ppm)を表す。
When the alloy composition of the solder alloy of the present embodiment further contains at least one of Ni: 0 mass ppm or more and 600 mass ppm or less and Fe: 0 mass ppm or more and 100 mass ppm or less, the alloy composition is as follows ( It is preferable to satisfy the formula 2).
20 ≦ Ni + Fe ≦ 700 (2)
In the formula (2), Ni and Fe each represent the content (mass ppm) in the alloy composition.
 (2)式におけるNi及びFeは、いずれも、Sn含有金属間化合物が接合界面で形成することを抑制する元素である。加えて、本実施形態において、Ni及びFeは、いずれも、ソルダペーストの経時での増粘抑制の効果にも寄与する。
 はんだ合金中のNiとFeとの合計の含有量が、はんだ合金の総質量(100質量%)に対して、20ppm以上700ppm以下が好ましく、より好ましくは40ppm以上700ppm以下であり、さらに好ましくは40ppm以上600ppm以下である。
Both Ni and Fe in the formula (2) are elements that suppress the formation of Sn-containing intermetallic compounds at the bonding interface. In addition, in the present embodiment, both Ni and Fe also contribute to the effect of suppressing the thickening of the solder paste over time.
The total content of Ni and Fe in the solder alloy is preferably 20 ppm or more and 700 ppm or less, more preferably 40 ppm or more and 700 ppm or less, still more preferably 40 ppm, based on the total mass (100% by mass) of the solder alloy. More than 600 ppm or less.
 但し、前記「NiとFeとの合計の含有量」は、はんだ合金中のNiの含有量が0質量ppmである場合にはFeの含有量となり、はんだ合金中のFeの含有量が0質量ppmである場合にはNiの含有量となり、NiとFeとを併有する場合にはこれらの合計の含有量となる。 However, the above-mentioned "total content of Ni and Fe" is the content of Fe when the content of Ni in the solder alloy is 0 mass ppm, and the content of Fe in the solder alloy is 0 mass ppm. When it is ppm, it is the content of Ni, and when it has both Ni and Fe, it is the total content of these.
 本実施形態においてNiとFeとを併有する場合、はんだ合金中のNiとFeとの比率は、Ni/Feで表される質量比として、好ましくは0.4以上30以下であり、より好ましくは0.4以上10以下であり、さらに好ましくは0.4以上5以下である。
 かかる質量比のNi/Feが前記の好ましい範囲であれば、本発明の効果がより得られやすくなる。
When Ni and Fe are used together in the present embodiment, the ratio of Ni and Fe in the solder alloy is preferably 0.4 or more and 30 or less as the mass ratio represented by Ni / Fe, and more preferably. It is 0.4 or more and 10 or less, and more preferably 0.4 or more and 5 or less.
If the mass ratio of Ni / Fe is in the above-mentioned preferable range, the effect of the present invention can be more easily obtained.
 ≪残部:Sn≫
 本実施形態のはんだ合金における合金組成は、残部がSnからなる。上述した元素の他に不可避的不純物を含有してもよい。不可避的不純物を含有する場合であっても、上述の効果に影響することはない。
≪Remaining part: Sn≫
The balance of the alloy composition of the solder alloy of the present embodiment is Sn. In addition to the above-mentioned elements, unavoidable impurities may be contained. Even if it contains unavoidable impurities, it does not affect the above-mentioned effects.
 <α線量>
 本実施形態のはんだ合金は、α線量が0.02cph/cm以下である。
 これは、電子部品の高密度実装においてソフトエラーが問題にならない程度のα線量である。
 本実施形態のはんだ合金におけるα線量は、更なる高密度実装でのソフトエラーを抑制する観点から、好ましくは0.01cph/cm以下であり、より好ましくは0.002cph/cm以下であり、さらに好ましくは0.001cph/cm以下である。
<Α dose>
The solder alloy of this embodiment has an α dose of 0.02 cf / cm 2 or less.
This is an α-dose that does not cause soft errors in high-density mounting of electronic components.
The α dose in the solder alloy of the present embodiment is preferably 0.01 cf / cm 2 or less, more preferably 0.002 cf / cm 2 or less, from the viewpoint of suppressing soft errors in further high-density mounting. , More preferably 0.001 cf / cm 2 or less.
 はんだ合金から発生するα線量は、以下のようにして測定することができる。かかるα線量の測定方法は、国際標準であるJEDEC STANDARDに基づいている。 The α dose generated from the solder alloy can be measured as follows. The method for measuring the α dose is based on the international standard JEDEC STANDARD.
 手順(i):
 ガスフロー型のα線量測定装置を用いる。
 測定サンプルとして、はんだ合金を溶融し、一面の面積が900cmであるシート状に成形したはんだ合金シートを用いる。
 前記α線量測定装置内に、測定サンプルとして前記はんだ合金シートを設置し、そこにPRガスをパージする。
Procedure (i):
A gas flow type α dosimetry device is used.
As a measurement sample, a solder alloy sheet obtained by melting a solder alloy and forming a sheet having an area of 900 cm 2 on one surface is used.
The solder alloy sheet is installed as a measurement sample in the α-dosimetry device, and PR gas is purged therein.
 尚、PRガスには、国際標準であるJEDEC STANDARDに従うものを用いる。すなわち、測定に使用するPRガスは、アルゴン90%-メタン10%の混合ガスをガスボンベに充填してから3週間以上が経過した、ラドン(Rn)の崩壊したものとする。 For PR gas, use one that complies with the international standard JEDEC STANDARD. That is, it is assumed that the PR gas used for the measurement is the decay of radon (Rn) after 3 weeks or more have passed since the gas cylinder was filled with the mixed gas of 90% argon and 10% methane.
 手順(ii):
 前記はんだ合金シートを設置した前記α線量測定装置内に、前記PRガスを12時間流し静置した後、72時間α線量測定を行う。
Procedure (ii):
The PR gas is allowed to flow in the α-dose measuring device on which the solder alloy sheet is installed for 12 hours, and then the α-dose is measured for 72 hours.
 手順(iii):
 平均α線量を「cph/cm」として算出する。異常点(装置振動によるカウント等)はその1時間分のカウントを除去する。
Procedure (iii):
The average α-dose is calculated as “cph / cm 2”. Abnormal points (counts due to device vibration, etc.) are removed from the count for one hour.
 [はんだ合金の製造方法]
 本実施形態のはんだ合金は、例えば、Bi及びSbの少なくとも一種、並びにSnを含有する原料金属を溶融混合する工程を有する製造方法を用いることにより製造できる。
 低α線量のはんだ合金の設計を目的としていることから、その原料金属として低α線量材を用いることが好ましく、例えば、原料金属としてのSn、Bi及びSbには、それぞれ、高純度のもの、並びにU、Th及びPbを除去したものを用いることが好ましい。
 原料金属としてのSnとしては、例えば、特開2010-156052号公報(特許文献1)に記載の製造方法に準じて製造したものを用いることができる。
 原料金属としてのBiとしては、例えば、特開2013-185214号公報に準じて製造したものを用いることができる。
 原料金属としてのSbとしては、例えば、特許第5692467号公報に準じて製造したものを用いることができる。
 原料金属を溶融混合する操作は、従来公知の方法を用いることができる。
[Manufacturing method of solder alloy]
The solder alloy of the present embodiment can be produced, for example, by using a production method having a step of melting and mixing at least one of Bi and Sb and a raw material metal containing Sn.
Since the purpose is to design a low α-dose solder alloy, it is preferable to use a low-α-dose material as the raw material metal. In addition, it is preferable to use the one from which U, Th and Pb have been removed.
As the raw material metal, for example, a Sn produced according to the production method described in JP-A-2010-156502 (Patent Document 1) can be used.
As the Bi as the raw material metal, for example, one manufactured according to Japanese Patent Application Laid-Open No. 2013-185214 can be used.
As the raw material metal, for example, one manufactured in accordance with Japanese Patent No. 5692467 can be used.
A conventionally known method can be used for the operation of melting and mixing the raw metal.
 一般に、はんだ合金においては、はんだ合金を構成する各構成元素が独自に機能するものではなく、各構成元素の含有量がすべて所定の範囲である場合に、初めて種々の効果を発揮することができる。以上説明した実施形態のはんだ合金によれば、各構成元素の含有量が上述の範囲であることにより、ソルダペーストの経時での粘度増加を抑制し、はんだ継手の機械的強度を高められ、かつ、ソフトエラーの発生を抑制することができる。すなわち、本実施形態のはんだ合金は、目的とする低α線量材料として有用であり、メモリ周辺のはんだバンプの形成に適用することで、ソフトエラーの発生を抑制することが可能となる。 Generally, in a solder alloy, each constituent element constituting the solder alloy does not function independently, and various effects can be exhibited only when the contents of each constituent element are all within a predetermined range. .. According to the solder alloy of the embodiment described above, when the content of each constituent element is within the above range, the increase in viscosity of the solder paste over time can be suppressed, the mechanical strength of the solder joint can be increased, and the mechanical strength of the solder joint can be increased. , The occurrence of soft errors can be suppressed. That is, the solder alloy of the present embodiment is useful as a target low α-dose material, and by applying it to the formation of solder bumps around the memory, it is possible to suppress the occurrence of soft errors.
 また、本実施形態では、Asを積極的に添加することなく、ソルダペーストの経時での増粘抑制が可能な低α線量はんだ合金の設計を目的とする。これに対し、主成分としてのSnに加え、イオン化傾向がSnと比べて貴な金属であるBi及びSbを特定の割合で含有するはんだ合金を採用することで、目的を達成する。
 かかる効果が得られる理由は定かではないが、以下のように推測される。
 低α線量のはんだ合金用のSnは非常に高純度であり、溶融した合金を凝固する際、Snの結晶サイズが大きくなってしまう。また、そのSnにおける酸化膜も、それに応じた疎な酸化膜を形成してしまう。そこで、イオン化傾向がSnと比べて貴な金属であってイオン化しにくいBi及びSbを添加することにより、結晶サイズを小さくし、密な酸化膜を形成させることで、合金とフラックスとの反応性が抑えられるため、ソルダペーストの経時での増粘抑制が可能となる。
Another object of the present embodiment is to design a low α-dose solder alloy capable of suppressing thickening of solder paste over time without actively adding As. On the other hand, the purpose is achieved by adopting a solder alloy containing Bi and Sb, which are metals having an ionization tendency higher than Sn, in a specific ratio in addition to Sn as a main component.
The reason why such an effect is obtained is not clear, but it is presumed as follows.
Sn for low α-dose solder alloys has a very high purity, and when the molten alloy is solidified, the crystal size of Sn becomes large. Further, the oxide film in Sn also forms a sparse oxide film corresponding to the oxide film. Therefore, by adding Bi and Sb, which are metals that have a higher ionization tendency than Sn and are difficult to ionize, the crystal size is reduced and a dense oxide film is formed, so that the reactivity between the alloy and the flux Therefore, it is possible to suppress the thickening of the solder paste over time.
 加えて、本実施形態のはんだ合金は、一面の面積が900cmであるシート状に成形した際のはんだ合金シートに対して、100℃で1時間の加熱処理を施した後におけるα線量が、0.02cph/cm以下となるものが好ましく、より好ましくは0.01cph/cm以下となるものであり、さらに好ましくは0.002cph/cm以下となるものであり、特に好ましくは0.001cph/cm以下となるものである。
 このようなα線量を示すはんだ合金は、合金中で210Poの偏析が起こりにくいものであり、α線量の経時変化による影響が小さく、有用である。このようなα線量を示すはんだ合金を適用することにより、ソフトエラーの発生がより抑制されて、半導体素子の安定な動作がいっそう確保されやすくなる。
In addition, in the solder alloy of the present embodiment, the α dose after heat treatment at 100 ° C. for 1 hour is applied to the solder alloy sheet formed into a sheet having an area of 900 cm 2 on one surface. It is preferably 0.02 cf / cm 2 or less, more preferably 0.01 cf / cm 2 or less, still more preferably 0.002 cf / cm 2 or less, and particularly preferably 0. It is 001 cph / cm 2 or less.
A solder alloy exhibiting such an α dose is useful because segregation of 210 Po is unlikely to occur in the alloy and the influence of changes in the α dose over time is small. By applying a solder alloy exhibiting such an α dose, the occurrence of soft errors is further suppressed, and stable operation of the semiconductor element can be more easily ensured.
(はんだ粉末)
 本発明の一態様に係るはんだ粉末は、上記本発明の一態様に係るはんだ合金からなるものである。
 本実施形態のはんだ粉末は、後述のソルダペースト用として好適なものである。
 はんだ粉末の製造は、溶融させたはんだ合金を滴下して粒子を得る滴下法や、遠心噴霧する噴霧法、アトマイズ法、液中造粒法、バルクのはんだ合金を粉砕する方法など、公知の方法を採用することができる。滴下法又は噴霧法における、滴下又は噴霧は、粒子状とするために不活性雰囲気又は溶媒中で行うことが好ましい。
(Solder powder)
The solder powder according to one aspect of the present invention is made of the above-mentioned solder alloy according to one aspect of the present invention.
The solder powder of this embodiment is suitable for the solder paste described later.
Solder powder is produced by known methods such as a dropping method of dropping a molten solder alloy to obtain particles, a spraying method of centrifugal spraying, an atomizing method, a submerged granulation method, and a method of crushing a bulk solder alloy. Can be adopted. In the dropping method or the spraying method, the dropping or spraying is preferably carried out in an inert atmosphere or a solvent in order to form particles.
 本実施形態のはんだ粉末は、球状粉末であることが好ましい。球状粉末であることにより、はんだ合金の流動性が向上する。
 本実施形態のはんだ粉末が球状粉末である場合、JIS Z 3284-1:2014における粉末サイズの分類(表2)において、記号1~8を満たしていることが好ましく、記号4~8を満たしていることがより好ましい。はんだ粉末の粒径がこの条件を満たすと、粉末の表面積が大きすぎず、ソルダペーストの経時での粘度の上昇が抑制され、また、微細粉末の凝集が抑制されて、ソルダペーストの粘度の上昇が抑えられることがある。このため、より微細な部品へのはんだ付けが可能となる。
The solder powder of this embodiment is preferably a spherical powder. The spherical powder improves the fluidity of the solder alloy.
When the solder powder of the present embodiment is a spherical powder, it is preferable that the symbols 1 to 8 are satisfied, and the symbols 4 to 8 are satisfied in the powder size classification (Table 2) in JIS Z 3284-1: 2014. It is more preferable to have. When the particle size of the solder powder satisfies this condition, the surface area of the powder is not too large, the increase in the viscosity of the solder paste over time is suppressed, and the aggregation of the fine powder is suppressed, so that the viscosity of the solder paste increases. May be suppressed. Therefore, it is possible to solder to finer parts.
 また、本実施形態のはんだ粉末は、粒度分布の異なる2種以上のはんだ合金粒子群を併有することが好ましい。これにより、ソルダペーストの滑り性が高められて、印刷しやすくなる等の作業性が向上する。 Further, it is preferable that the solder powder of the present embodiment also has two or more kinds of solder alloy particle groups having different particle size distributions. As a result, the slipperiness of the solder paste is enhanced, and workability such as easy printing is improved.
 本実施形態のはんだ粉末において、球状粉末の真球度は、0.8以上が好ましく、0.9以上が好ましく、0.95以上がより好ましく、0.99以上がさらに好ましい。 In the solder powder of the present embodiment, the sphericity of the spherical powder is preferably 0.8 or more, preferably 0.9 or more, more preferably 0.95 or more, still more preferably 0.99 or more.
 ここでいう「球状粉末の真球度」は、最小領域中心法(MZC法)を用いるCNC画像測定システム(ミツトヨ社製のウルトラクイックビジョンULT RA QV350-PRO測定装置)を使用して測定することができる。
 真球度とは、真球からのずれを表し、例えば500個の各はんだ合金粒子の直径を長径で割った際に算出される算術平均値であり、その値が上限である1.00に近いほど真球に近いことを表す。
The "spherical degree of spherical powder" referred to here shall be measured using a CNC image measurement system (Ultra Quick Vision ULT RA QV350-PRO measuring device manufactured by Mitutoyo Co., Ltd.) that uses the minimum region center method (MZC method). Can be done.
The sphericity represents the deviation from the sphere, and is, for example, an arithmetic mean value calculated when the diameter of each of 500 solder alloy particles is divided by the major axis, and the value is 1.00, which is the upper limit. The closer it is, the closer it is to a true sphere.
(ソルダペースト)
 本発明の一態様に係るソルダペーストは、上記本発明の一態様に係るはんだ粉末と、フラックスとを含有するものである。
(Solder paste)
The solder paste according to one aspect of the present invention contains the solder powder according to one aspect of the present invention and a flux.
 <フラックス>
 本実施形態のソルダペーストに用いられるフラックスは、例えば、樹脂成分、活性成分、溶剤、その他成分の何れか、又はこれら2つ以上の配合成分の組合せで構成される。
<Flux>
The flux used in the solder paste of the present embodiment is composed of, for example, any one of a resin component, an active component, a solvent, and other components, or a combination of two or more of these components.
 樹脂成分としては、例えばロジン系樹脂が挙げられる。
 ロジン系樹脂としては、例えば、ガムロジン、ウッドロジン及びトール油ロジン等の原料ロジン、並びに該原料ロジンから得られる誘導体が挙げられる。
 該誘導体としては、例えば、精製ロジン、水添ロジン、不均化ロジン、重合ロジン及びα,β不飽和カルボン酸変性物(アクリル化ロジン、マレイン化ロジン、フマル化ロジン等)、並びに該重合ロジンの精製物、水素化物及び不均化物、並びに該α,β不飽和カルボン酸変性物の精製物、水素化物及び不均化物等が挙げられ、二種以上を使用することができる。
 また、樹脂成分としては、ロジン系樹脂の他、テルペン樹脂、変性テルペン樹脂、テルペンフェノール樹脂、変性テルペンフェノール樹脂、スチレン樹脂、変性スチレン樹脂、キシレン樹脂、変性キシレン樹脂、アクリル樹脂、ポリエチレン樹脂、アクリル-ポリエチレン共重合樹脂、エポキシ樹脂等が挙げられる。
 変性テルペン樹脂としては、芳香族変性テルペン樹脂、水添テルペン樹脂、水添芳香族変性テルペン樹脂等が挙げられる。変性テルペンフェノール樹脂としては、水添テルペンフェノール樹脂等が挙げられる。変性スチレン樹脂としては、スチレンアクリル樹脂、スチレンマレイン酸樹脂等が挙げられる。変性キシレン樹脂としては、フェノール変性キシレン樹脂、アルキルフェノール変性キシレン樹脂、フェノール変性レゾール型キシレン樹脂、ポリオール変性キシレン樹脂、ポリオキシエチレン付加キシレン樹脂等が挙げられる。
Examples of the resin component include rosin-based resins.
Examples of the rosin-based resin include raw material rosins such as gum rosin, wood rosin and tall oil rosin, and derivatives obtained from the raw material rosin.
Examples of the derivative include purified rosin, hydrogenated rosin, disproportionated rosin, polymerized rosin and α, β unsaturated carboxylic acid modified products (acrylicated rosin, maleated rosin, fumarized rosin, etc.), and the polymerized rosin. Examples thereof include purified products, hydrogenated products and disproportionate products of the above, and purified products, hydrogenated products and disproportionate products of the α, β unsaturated carboxylic acid modified products, and two or more of them can be used.
In addition to rosin-based resins, the resin components include terpene resin, modified terpene resin, terpenephenol resin, modified terpenephenol resin, styrene resin, modified styrene resin, xylene resin, modified xylene resin, acrylic resin, polyethylene resin, and acrylic. -Polyethylene copolymer resin, epoxy resin and the like can be mentioned.
Examples of the modified terpene resin include aromatic modified terpene resin, hydrogenated terpene resin, hydrogenated aromatic modified terpene resin and the like. Examples of the modified terpene phenol resin include hydrogenated terpene phenol resin and the like. Examples of the modified styrene resin include styrene acrylic resin and styrene maleic acid resin. Examples of the modified xylene resin include a phenol-modified xylene resin, an alkylphenol-modified xylene resin, a phenol-modified resol-type xylene resin, a polyol-modified xylene resin, and a polyoxyethylene-added xylene resin.
 活性成分としては、例えば、有機酸、アミン、ハロゲン系活性剤、チキソ剤、溶剤、金属不活性化剤等が挙げられる。 Examples of the active ingredient include organic acids, amines, halogen-based activators, thixotropic agents, solvents, metal inactivating agents and the like.
 有機酸としては、例えば、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ダイマー酸、プロピオン酸、2,2-ビスヒドロキシメチルプロピオン酸、酒石酸、リンゴ酸、グリコール酸、ジグリコール酸、チオグリコール酸、ジチオグリコール酸、ステアリン酸、12-ヒドロキシステアリン酸、パルミチン酸、オレイン酸等が挙げられる。 Examples of organic acids include succinic acid, glutaric acid, adipic acid, pimelli acid, suberic acid, azelaic acid, sebacic acid, dimer acid, propionic acid, 2,2-bishydroxymethylpropionic acid, tartrate acid, malic acid and glycol. Examples thereof include acids, diglycolic acid, thioglycolic acid, dithioglycolic acid, stearic acid, 12-hydroxystearic acid, palmitic acid, oleic acid and the like.
 アミンとしては、例えば、エチルアミン、トリエチルアミン、エチレンジアミン、トリエチレンテトラミン、2-メチルイミダゾール、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、1,2-ジメチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾリウムトリメリテイト、1-シアノエチル-2-フェニルイミダゾリウムトリメリテイト、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-ウンデシルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-エチル-4’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジンイソシアヌル酸付加物、2-フェニルイミダゾールイソシアヌル酸付加物、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール、2,3-ジヒドロ-1H-ピロロ[1,2-a]ベンズイミダゾール、1-ドデシル-2-メチル-3-ベンジルイミダゾリウムクロライド、2-メチルイミダゾリン、2-フェニルイミダゾリン、2,4-ジアミノ-6-ビニル-s-トリアジン、2,4-ジアミノ-6-ビニル-s-トリアジンイソシアヌル酸付加物、2,4-ジアミノ-6-メタクリロイルオキシエチル-s-トリアジン、エポキシ-イミダゾールアダクト、2-メチルベンゾイミダゾール、2-オクチルベンゾイミダゾール、2-ペンチルベンゾイミダゾール、2-(1-エチルペンチル)ベンゾイミダゾール、2-ノニルベンゾイミダゾール、2-(4-チアゾリル)ベンゾイミダゾール、ベンゾイミダゾール、2-(2’-ヒドロキシ-5’-メチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-3’-tert-ブチル-5’-メチルフェニル)-5-クロロベンゾトリアゾール、2-(2’-ヒドロキシ-3’,5’-ジ-tert-アミルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-5’-tert-オクチルフェニル)ベンゾトリアゾール、2,2’-メチレンビス[6-(2H-ベンゾトリアゾール-2-イル)-4-tert-オクチルフェノール]、6-(2-ベンゾトリアゾリル)-4-tert-オクチル-6’-tert-ブチル-4’-メチル-2,2’-メチレンビスフェノール、1,2,3-ベンゾトリアゾール、1-[N,N-ビス(2-エチルヘキシル)アミノメチル]ベンゾトリアゾール、カルボキシベンゾトリアゾール、1-[N,N-ビス(2-エチルヘキシル)アミノメチル]メチルベンゾトリアゾール、2,2’-[[(メチル-1H-ベンゾトリアゾール-1-イル)メチル]イミノ]ビスエタノール、1-(1’,2’-ジカルボキシエチル)ベンゾトリアゾール、1-(2,3-ジカルボキシプロピル)ベンゾトリアゾール、1-[(2-エチルヘキシルアミノ)メチル]ベンゾトリアゾール、2,6-ビス[(1H-ベンゾトリアゾール-1-イル)メチル]-4-メチルフェノール、5-メチルベンゾトリアゾール、5-フェニルテトラゾール等が挙げられる。 Examples of amines include ethylamine, triethylamine, ethylenediamine, triethylenetetramine, 2-methylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 1,2-dimethylimidazole, 2-ethyl-4-methylimidazole, 2 -Phenylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2-phenylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-undecylimidazole, 1-Cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazolium trimerite, 1-cyanoethyl-2-phenylimidazolium trimerite, 2 , 4-Diamino-6- [2'-methylimidazolyl- (1')]-ethyl-s-triazine, 2,4-diamino-6- [2'-undecylimidazolyl- (1')]-ethyl- s-triazine, 2,4-diamino-6- [2'-ethyl-4'-methylimidazolyl- (1')]-ethyl-s-triazine, 2,4-diamino-6- [2'-methylimidazolyl- -(1')]-Ethyl-s-triazine isocyanuric acid adduct, 2-phenylimidazole isocyanuric acid adduct, 2-phenyl-4,5-dihydroxymethylimidazole, 2-phenyl-4-methyl-5-hydroxymethyl Imidazole, 2,3-dihydro-1H-pyrrolo [1,2-a] benzimidazole, 1-dodecyl-2-methyl-3-benzylimidazolium chloride, 2-methylimidazoline, 2-phenylimidazolin, 2,4- Diamino-6-vinyl-s-triazine, 2,4-diamino-6-vinyl-s-triazine isocyanuric acid adduct, 2,4-diamino-6-methacryloyloxyethyl-s-triazine, epoxy-imidazole adduct, 2 -Methylbenzoimidazole, 2-octylbenzoimidazole, 2-pentylbenzoimidazole, 2- (1-ethylpentyl) benzoimidazole, 2-nonylbenzoimidazole, 2- (4-thiazolyl) benzoimidazole, 2-( 2'-Hydroxy-5'-methylphenyl) benzotriazole, 2- (2'-hydroxy-3'-tert-butyl-5'-methylphenyl) -5 -Chlorobenzotriazole, 2- (2'-hydroxy-3', 5'-di-tert-amylphenyl) benzotriazole, 2- (2'-hydroxy-5'-tert-octylphenyl) benzotriazole, 2, 2'-Methylenebis [6- (2H-benzotriazole-2-yl) -4-tert-octylphenol], 6- (2-benzotriazolyl) -4-tert-octyl-6'-tert-butyl-4 '-Methyl-2,2'-methylenebisphenol, 1,2,3-benzotriazole, 1- [N, N-bis (2-ethylhexyl) aminomethyl] benzotriazole, carboxybenzotriazole, 1- [N, N -Bis (2-ethylhexyl) aminomethyl] methylbenzotriazole, 2,2'-[[(methyl-1H-benzotriazole-1-yl) methyl] imino] bisethanol, 1- (1', 2'-di Carboxyethyl) benzotriazole, 1- (2,3-dicarboxypropyl) benzotriazole, 1-[(2-ethylhexylamino) methyl] benzotriazole, 2,6-bis [(1H-benzotriazole-1-yl)) Methyl] -4-methylphenol, 5-methylbenzotriazole, 5-phenyltetrazole and the like can be mentioned.
 ハロゲン系活性剤としては、例えば、アミンハロゲン化水素酸塩、有機ハロゲン化合物等が挙げられる。
 アミンハロゲン化水素酸塩は、アミンとハロゲン化水素とを反応させた化合物である。ここでのアミンとしては、例えば、エチルアミン、エチレンジアミン、トリエチルアミン、ジフェニルグアニジン、ジトリルグアニジン、メチルイミダゾール、2-エチル-4-メチルイミダゾール等が挙げられ、ハロゲン化水素としては、例えば、塩素、臭素、ヨウ素の水素化物が挙げられる。
 有機ハロゲン化合物としては、例えば、trans-2,3-ジブロモ-2-ブテン-1,4-ジオール、トリアリルイソシアヌレート6臭化物、1-ブロモ-2-ブタノール、1-ブロモ-2-プロパノール、3-ブロモ-1-プロパノール、3-ブロモ-1,2-プロパンジオール、1,4-ジブロモ-2-ブタノール、1,3-ジブロモ-2-プロパノール、2,3-ジブロモ-1-プロパノール、2,3-ジブロモ-1,4-ブタンジオール、2,3-ジブロモ-2-ブテン-1,4-ジオール等が挙げられる。
Examples of the halogen-based activator include amine hydrogen halides and organic halogen compounds.
Amine halide hydrohydrate is a compound obtained by reacting an amine with hydrogen halide. Examples of the amine here include ethylamine, ethylenediamine, triethylamine, diphenylguanidine, ditrilguanidine, methylimidazole, 2-ethyl-4-methylimidazole and the like, and examples of the hydrogen halide include chlorine, bromine and the like. Examples include hydrides of iodine.
Examples of the organic halogen compound include trans-2,3-dibromo-2-butene-1,4-diol, triallyl isocyanurate 6 bromide, 1-bromo-2-butanol, 1-bromo-2-propanol, 3 -Bromo-1-propanol, 3-bromo-1,2-propanediol, 1,4-dibromo-2-butanol, 1,3-dibromo-2-propanol, 2,3-dibromo-1-propanol, 2, Examples thereof include 3-dibromo-1,4-butanediol and 2,3-dibromo-2-butene-1,4-diol.
 チキソ剤としては、例えば、ワックス系チキソ剤、アマイド系チキソ剤、ソルビトール系チキソ剤等が挙げられる。
 ワックス系チキソ剤としては、例えばヒマシ硬化油等が挙げられる。
 アマイド系チキソ剤としては、モノアマイド系チキソ剤、ビスアマイド系チキソ剤、ポリアマイド系チキソ剤が挙げられ、具体的には、ラウリン酸アマイド、パルミチン酸アマイド、ステアリン酸アマイド、ベヘン酸アマイド、ヒドロキシステアリン酸アマイド、飽和脂肪酸アマイド、オレイン酸アマイド、エルカ酸アマイド、不飽和脂肪酸アマイド、p-トルエンメタンアマイド、芳香族アマイド、メチレンビスステアリン酸アマイド、エチレンビスラウリン酸アマイド、エチレンビスヒドロキシステアリン酸アマイド、飽和脂肪酸ビスアマイド、メチレンビスオレイン酸アマイド、不飽和脂肪酸ビスアマイド、m-キシリレンビスステアリン酸アマイド、芳香族ビスアマイド、飽和脂肪酸ポリアマイド、不飽和脂肪酸ポリアマイド、芳香族ポリアマイド、置換アマイド、メチロールステアリン酸アマイド、メチロールアマイド、脂肪酸エステルアマイド等が挙げられる。
 ソルビトール系チキソ剤としては、例えば、ジベンジリデン-D-ソルビトール、ビス(4-メチルベンジリデン)-D-ソルビトール等が挙げられる。
Examples of the thixotropy include wax-based thixotropy, amide-based thixotropy, sorbitol-based thixotropy, and the like.
Examples of the wax-based thixotropy include castor oil and the like.
Examples of amido-based fatty acid agents include monoamide-based fatty acid agents, bis-amide-based fatty acid agents, and polyamide-based fatty acid agents. , Saturated fatty acid amide, oleic acid amide, erucic acid amide, unsaturated fatty acid amide, p-toluenemethane amide, aromatic amide, methylene bisstearate amide, ethylene bislauric acid amide, ethylene bishydroxystearic acid amide, saturated fatty acid bis amide , Methylenebisoleic acid amide, unsaturated fatty acid bisamide, m-xylylene bisstearic acid amide, aromatic bisamide, saturated fatty acid polyamide, unsaturated fatty acid polyamide, aromatic polyamide, substituted amide, methylolstearic acid amide, methylolamide, fatty acid Examples include ester amide.
Examples of the sorbitol-based thixotropy include dibenzylidene-D-sorbitol, bis (4-methylbenzylidene) -D-sorbitol and the like.
 溶剤としては、例えば、水、アルコール系溶剤、グリコールエーテル系溶剤、テルピネオール類等が挙げられる。
 アルコール系溶剤としては、例えば、イソプロピルアルコール、1,2-ブタンジオール、イソボルニルシクロヘキサノール、2,4-ジエチル-1,5-ペンタンジオール、2,2-ジメチル-1,3-プロパンジオール、2,5-ジメチル-2,5-ヘキサンジオール、2,5-ジメチル-3-ヘキシン-2,5-ジオール、2,3-ジメチル-2,3-ブタンジオール、1,1,1-トリス(ヒドロキシメチル)エタン、2-エチル-2-ヒドロキシメチル-1,3-プロパンジオール、2,2’-オキシビス(メチレン)ビス(2-エチル-1,3-プロパンジオール)、2,2-ビス(ヒドロキシメチル)-1,3-プロパンジオール、1,2,6-トリヒドロキシヘキサン、ビス[2,2,2-トリス(ヒドロキシメチル)エチル]エーテル、1-エチニル-1-シクロヘキサノール、1,4-シクロヘキサンジオール、1,4-シクロヘキサンジメタノール、エリトリトール、トレイトール、グアヤコールグリセロールエーテル、3,6-ジメチル-4-オクチン-3,6-ジオール、2,4,7,9-テトラメチル-5-デシン-4,7-ジオール等が挙げられる。
 グリコールエーテル系溶剤としては、例えば、ジエチレングリコールモノ-2-エチルヘキシルエーテル、エチレングリコールモノフェニルエーテル、2-メチルペンタン-2,4-ジオール、ジエチレングリコールモノヘキシルエーテル、ジエチレングリコールジブチルエーテル、トリエチレングリコールモノブチルエーテル等が挙げられる。
Examples of the solvent include water, alcohol-based solvents, glycol ether-based solvents, terpineols and the like.
Examples of the alcohol solvent include isopropyl alcohol, 1,2-butanediol, isobornylcyclohexanol, 2,4-diethyl-1,5-pentanediol, 2,2-dimethyl-1,3-propanediol, and the like. 2,5-dimethyl-2,5-hexanediol, 2,5-dimethyl-3-hexine-2,5-diol, 2,3-dimethyl-2,3-butanediol, 1,1,1-tris ( Hydroxymethyl) ether, 2-ethyl-2-hydroxymethyl-1,3-propanediol, 2,2'-oxybis (methylene) bis (2-ethyl-1,3-propanediol), 2,2-bis ( Hydroxymethyl) -1,3-propanediol, 1,2,6-trihydroxyhexane, bis [2,2,2-tris (hydroxymethyl) ethyl] ether, 1-ethynyl-1-cyclohexanol, 1,4 -Cyclohexanediol, 1,4-cyclohexanedimethanol, erythritol, treitol, guayacol glycerol ether, 3,6-dimethyl-4-octine-3,6-diol, 2,4,7,9-tetramethyl-5- Descin-4,7-diol and the like can be mentioned.
Examples of the glycol ether-based solvent include diethylene glycol mono-2-ethylhexyl ether, ethylene glycol monophenyl ether, 2-methylpentane-2,4-diol, diethylene glycol monohexyl ether, diethylene glycol dibutyl ether, and triethylene glycol monobutyl ether. Can be mentioned.
 金属不活性化剤としては、例えば、ヒンダードフェノール系化合物、窒素化合物等が挙げられる。フラックスがヒンダードフェノール系化合物、又は窒素化合物のいずれかを含有することで、ソルダペーストの増粘抑制効果が高められやすくなる。
 ここでいう「金属不活性化剤」とは、ある種の化合物との接触により金属が劣化することを防止する性能を有する化合物をいう。
Examples of the metal inactivating agent include hindered phenolic compounds and nitrogen compounds. When the flux contains either a hindered phenolic compound or a nitrogen compound, the effect of suppressing the thickening of the solder paste can be easily enhanced.
The term "metal inactivating agent" as used herein refers to a compound having the ability to prevent the metal from deteriorating due to contact with a certain compound.
 ヒンダードフェノール系化合物とは、フェノールのオルト位の少なくとも一方に嵩高い置換基(例えばt-ブチル基等の分岐状又は環状アルキル基)を有するフェノール系化合物をいう。
 ヒンダードフェノール系化合物としては、特に限定されず、例えば、ビス[3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオン酸][エチレンビス(オキシエチレン)]、N,N’-ヘキサメチレンビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロパンアミド]、1,6-ヘキサンジオールビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオナート]、2,2’-メチレンビス[6-(1-メチルシクロヘキシル)-p-クレゾール]、2,2’-メチレンビス(6-tert-ブチル-p-クレゾール)、2,2’-メチレンビス(6-tert-ブチル-4-エチルフェノール)、トリエチレングリコール-ビス[3-(3-tert-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート]、1,6-ヘキサンジオール-ビス-[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、2,4-ビス-(n-オクチルチオ)-6-(4-ヒドロキシ-3,5-ジ-t-ブチルアニリノ)-1,3,5-トリアジン、ペンタエリスリチル-テトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、2,2-チオ-ジエチレンビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート、N,N’-ヘキサメチレンビス(3,5-ジ-t-ブチル-4-ヒドロキシ-ヒドロシンナマミド)、3,5-ジ-tert-ブチル-4-ヒドロキシベンジルフォスフォネート-ジエチルエステル、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)ベンゼン、N,N’-ビス[2-[2-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)エチルカルボニルオキシ]エチル]オキサミド、下記化学式で表される化合物等が挙げられる。
The hindered phenolic compound refers to a phenolic compound having a bulky substituent (for example, a branched or cyclic alkyl group such as a t-butyl group) at at least one of the ortho positions of the phenol.
The hindered phenolic compound is not particularly limited, and is, for example, bis [3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionic acid] [ethylenebis (oxyethylene)], N, N. '-Hexamethylenebis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propanamide], 1,6-hexanediolbis [3- (3,5-di-tert-butyl-4) -Hydroxyphenyl) propionate], 2,2'-methylenebis [6- (1-methylcyclohexyl) -p-cresol], 2,2'-methylenebis (6-tert-butyl-p-cresol), 2,2' -Methylenebis (6-tert-butyl-4-ethylphenol), triethylene glycol-bis [3- (3-tert-butyl-5-methyl-4-hydroxyphenyl) propionate], 1,6-hexanediol-bis -[3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], 2,4-bis- (n-octylthio) -6- (4-hydroxy-3,5-di-t-) Butylanilino) -1,3,5-triazine, pentaerythrityl-tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], 2,2-thio-diethylenebis [3-( 3,5-Di-tert-butyl-4-hydroxyphenyl) propionate], octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, N, N'-hexamethylenebis (3) , 5-Di-t-butyl-4-hydroxy-hydrocinnamamide), 3,5-di-tert-butyl-4-hydroxybenzylphosphonate-diethyl ester, 1,3,5-trimethyl-2, 4,6-Tris (3,5-di-tert-butyl-4-hydroxybenzyl) benzene, N, N'-bis [2- [2- (3,5-di-tert-butyl-4-hydroxyphenyl) ) Ethylcarbonyloxy] ethyl] oxamide, compounds represented by the following chemical formulas and the like.
Figure JPOXMLDOC01-appb-C000001
(式中、Zは、置換されてもよいアルキレン基である。R及びRは、それぞれ独立して、置換されてもよい、アルキル基、アラルキル基、アリール基、ヘテロアリール基、シクロアルキル基又はヘテロシクロアルキル基である。R及びRは、それぞれ独立して、置換されてもよいアルキル基である。)
Figure JPOXMLDOC01-appb-C000001
(In the formula, Z is an optionally substituted alkylene group. R 1 and R 2 are independently optionally substituted alkyl group, aralkyl group, aryl group, heteroaryl group, cycloalkyl. It is a group or a heterocycloalkyl group. R 3 and R 4 are alkyl groups that may be substituted independently of each other.)
 金属不活性化剤における窒素化合物としては、例えば、ヒドラジド系窒素化合物、アミド系窒素化合物、トリアゾール系窒素化合物、メラミン系窒素化合物等が挙げられる。 Examples of the nitrogen compound in the metal inactivating agent include hydrazide nitrogen compounds, amide nitrogen compounds, triazole nitrogen compounds, and melamine nitrogen compounds.
 ヒドラジド系窒素化合物としては、ヒドラジド骨格を有する窒素化合物であればよく、ドデカン二酸ビス[N2-(2ヒドロキシベンゾイル)ヒドラジド]、N,N’-ビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオニル]ヒドラジン、デカンジカルボン酸ジサリチロイルヒドラジド、N-サリチリデン-N’-サリチルヒドラジド、m-ニトロベンズヒドラジド、3-アミノフタルヒドラジド、フタル酸ジヒドラジド、アジピン酸ヒドラジド、オキザロビス(2-ヒドロキシ-5-オクチルベンジリデンヒドラジド)、N’-ベンゾイルピロリドンカルボン酸ヒドラジド、N,N’-ビス(3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオニル)ヒドラジン等が挙げられる。 The hydrazide-based nitrogen compound may be any nitrogen compound having a hydrazide skeleton, and is bis dodecanoate [N2- (2-hydroxybenzoyl) hydrazide], N, N'-bis [3- (3,5-di-tert). -Butyl-4-hydroxyphenyl) propionyl] hydrazine, decandicarboxylic acid disalicyloyl hydrazide, N-salicylidene-N'-salityl hydrazide, m-nitrobenzhydrazide, 3-aminophthalhydrazide, phthalic acid dihydrazide, adipate hydrazide , Oxalobis (2-hydroxy-5-octylbenzylidene hydrazide), N'-benzoylpyrrolidone carboxylic acid hydrazide, N, N'-bis (3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyl) Hydrazide and the like can be mentioned.
 アミド系窒素化合物としては、アミド骨格を有する窒素化合物であればよく、N,N’-ビス{2-[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオニルオキシル]エチル}オキサミド等が挙げられる。 The amide-based nitrogen compound may be any nitrogen compound having an amide skeleton, and N, N'-bis {2- [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyloxyl] ethyl. } Oxamide and the like can be mentioned.
 トリアゾール系窒素化合物としては、トリアゾール骨格を有する窒素化合物であればよく、N-(2H-1,2,4-トリアゾール-5-イル)サリチルアミド、3-アミノ-1,2,4-トリアゾール、3-(N-サリチロイル)アミノ-1,2,4-トリアゾール等が挙げられる。 The triazole-based nitrogen compound may be any nitrogen compound having a triazole skeleton, and N- (2H-1,2,4-triazole-5-yl) salicylamide, 3-amino-1,2,4-triazole, Examples thereof include 3- (N-salicyloyl) amino-1,2,4-triazole.
 メラミン系窒素化合物としては、メラミン骨格を有する窒素化合物であればよく、メラミン、メラミン誘導体等が挙げられる。より具体的には、例えば、トリスアミノトリアジン、アルキル化トリスアミノトリアジン、アルコキシアルキル化トリスアミノトリアジン、メラミン、アルキル化メラミン、アルコキシアルキル化メラミン、N2-ブチルメラミン、N2,N2-ジエチルメラミン、N,N,N’,N’,N’’,N’’-ヘキサキス(メトキシメチル)メラミン等が挙げられる。 The melamine-based nitrogen compound may be any nitrogen compound having a melamine skeleton, and examples thereof include melamine and melamine derivatives. More specifically, for example, trisaminotriazine, alkylated trisaminotriazine, alkoxyalkylated trisaminotriazine, melamine, alkylated melamine, alkoxyalkylated melamine, N2-butyl melamine, N2, N2-diethyl melamine, N, Examples thereof include N, N', N', N'', N''-hexakis (methoxymethyl) melamine and the like.
 その他成分としては、例えば、界面活性剤、シランカップリング剤、酸化防止剤、着色剤等が挙げられる。 Examples of other components include surfactants, silane coupling agents, antioxidants, colorants and the like.
 界面活性剤としては、ノニオン系界面活性剤、弱カチオン系界面活性剤等が挙げられる。
 ノニオン系界面活性剤としては、例えば、ポリエチレングリコール、ポリエチレングリコール-ポリプロピレングリコール共重合体、脂肪族アルコールポリオキシエチレン付加体、芳香族アルコールポリオキシエチレン付加体、多価アルコールポリオキシエチレン付加体等が挙げられる。
 弱カチオン系界面活性剤としては、例えば、末端ジアミンポリエチレングリコール、末端ジアミンポリエチレングリコール-ポリプロピレングリコール共重合体、脂肪族アミンポリオキシエチレン付加体、芳香族アミンポリオキシエチレン付加体、多価アミンポリオキシエチレン付加体が挙げられる。
Examples of the surfactant include nonionic surfactants and weak cationic surfactants.
Examples of the nonionic surfactant include polyethylene glycol, polyethylene glycol-polypropylene glycol copolymer, aliphatic alcohol polyoxyethylene adduct, aromatic alcohol polyoxyethylene adduct, polyhydric alcohol polyoxyethylene adduct and the like. Can be mentioned.
Examples of the weak cationic surfactant include terminal diamine polyethylene glycol, terminal diamine polyethylene glycol-polypropylene glycol copolymer, aliphatic amine polyoxyethylene adduct, aromatic amine polyoxyethylene adduct, and polyvalent amine polyoxy. Examples include polyethylene adducts.
 上記以外の界面活性剤としては、例えば、ポリオキシアルキレンアセチレングリコール類、ポリオキシアルキレングリセリルエーテル、ポリオキシアルキレンアルキルエーテル、ポリオキシアルキレンエステル、ポリオキシアルキレンアルキルアミン、ポリオキシアルキレンアルキルアミド等が挙げられる。 Examples of surfactants other than the above include polyoxyalkylene acetylene glycols, polyoxyalkylene glyceryl ethers, polyoxyalkylene alkyl ethers, polyoxyalkylene esters, polyoxyalkylene alkyl amines, polyoxyalkylene alkyl amides and the like. ..
 本実施形態のソルダペースト中のフラックスの含有量は、ソルダペーストの全質量(100質量%)に対して、5~95質量%であることが好ましく、5~50質量%であることがより好ましく、5~15質量%であることがさらに好ましい。
 フラックスの含有量がこの範囲であると、はんだ粉末に起因する増粘抑制効果が十分に発揮される。
The content of the flux in the solder paste of the present embodiment is preferably 5 to 95% by mass, more preferably 5 to 50% by mass, based on the total mass (100% by mass) of the solder paste. It is more preferably 5 to 15% by mass.
When the flux content is in this range, the thickening suppressing effect caused by the solder powder is sufficiently exhibited.
 本実施形態のソルダペーストは、当業界で一般的な製造方法により製造することができる。
 上記フラックスを構成する配合成分を加熱混合してフラックスを調製し、このフラックス中に、上記はんだ粉末を撹拌混合することにより、ソルダペーストを得ることができる。また、経時での増粘抑制効果を期待して、上記はんだ粉末とは別に、酸化ジルコニウム粉末をさらに配合してもよい。
The solder paste of the present embodiment can be produced by a production method common in the art.
A solder paste can be obtained by heating and mixing the compounding components constituting the flux to prepare a flux, and stirring and mixing the solder powder in the flux. Further, in anticipation of the effect of suppressing thickening over time, zirconium oxide powder may be further blended in addition to the solder powder.
(はんだボール)
 本発明の一態様に係るはんだボールは、上記本発明の一態様に係るはんだ合金からなるものである。
 上述した実施形態のはんだ合金は、はんだボールとして使用することができる。
 本実施形態のはんだボールは、当業界で一般的な方法である滴下法を用いることにより製造することができる。
 はんだボールの粒径は、1μm以上が好ましく、10μm以上がより好ましく、20μm以上がさらに好ましく、30μm以上が特に好ましい。一方、はんだボールの粒径は、3000μm以下が好ましく、1000μm以下がより好ましく、600μm以下がさらに好ましく、300μm以下が特に好ましい。
 また、はんだボールの粒径は、例えば、1μm以上3000μm以下が好ましく、10μm以上1000μm以下がより好ましく、20μm以上600μm以下がさらに好ましく、30μm以上300μm以下が特に好ましい。
(Solder ball)
The solder ball according to one aspect of the present invention is made of the above-mentioned solder alloy according to one aspect of the present invention.
The solder alloy of the above-described embodiment can be used as a solder ball.
The solder ball of the present embodiment can be manufactured by using a dropping method which is a common method in the art.
The particle size of the solder balls is preferably 1 μm or more, more preferably 10 μm or more, further preferably 20 μm or more, and particularly preferably 30 μm or more. On the other hand, the particle size of the solder balls is preferably 3000 μm or less, more preferably 1000 μm or less, further preferably 600 μm or less, and particularly preferably 300 μm or less.
The particle size of the solder balls is, for example, preferably 1 μm or more and 3000 μm or less, more preferably 10 μm or more and 1000 μm or less, further preferably 20 μm or more and 600 μm or less, and particularly preferably 30 μm or more and 300 μm or less.
(ソルダプリフォーム)
 本発明の一態様に係るソルダプリフォームは、上記本発明の一態様に係るはんだ合金からなるものである。
 上述した実施形態のはんだ合金は、プリフォームとして使用することができる。
 本実施形態のプリフォームの形状としては、ワッシャ、リング、ペレット、ディスク、リボン、ワイヤー等が挙げられる。
(Solder preform)
The solder preform according to one aspect of the present invention is made of the above-mentioned solder alloy according to one aspect of the present invention.
The solder alloy of the above-described embodiment can be used as a preform.
Examples of the shape of the preform of the present embodiment include washers, rings, pellets, discs, ribbons, wires, and the like.
(はんだ継手)
 本発明の一態様に係るはんだ継手は、上記本発明の一態様に係るはんだ合金からなるものである。
 本実施形態のはんだ継手は、電極及びはんだ接合部で構成される。はんだ接合部とは、主にはんだ合金で形成されている部分を示す。
 本実施形態のはんだ継手は、例えば、ICチップ等のPKG(Package)の電極と、PCB(printed circuit board)等の基板の電極とを、上述した実施形態のはんだ合金によって接合することにより形成することができる。
 また、本実施形態のはんだ継手は、フラックスを塗布した1つの電極上に、上述した実施形態のはんだボールを1つ搭載して接合するなど、当業界で一般的な方法で加工することにより製造することができる。
(Solder joint)
The solder joint according to one aspect of the present invention is made of the above-mentioned solder alloy according to one aspect of the present invention.
The solder joint of the present embodiment is composed of an electrode and a solder joint. The solder joint portion refers to a portion mainly formed of a solder alloy.
The solder joint of the present embodiment is formed by, for example, joining an electrode of a PKG (Package) such as an IC chip and an electrode of a substrate such as a PCB (printed circuit board) with the solder alloy of the above-described embodiment. be able to.
Further, the solder joint of the present embodiment is manufactured by processing by a method common in the art, such as mounting one solder ball of the above-described embodiment on one electrode coated with flux and joining the solder joint. can do.
 以下、実施例により本発明をさらに詳細に説明するが、本発明はこれらの例によって限定されるものではない。
 本実施例において、特に指定しない限り、はんだ合金組成についての「ppb」は「質量ppb」であり、「ppm」は「質量ppm」であり、「%」は「質量%」である。
Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these examples.
In this embodiment, unless otherwise specified, "ppb" for the solder alloy composition is "mass ppb", "ppm" is "mass ppm", and "%" is "mass%".
<はんだ合金>
 (実施例1~414、比較例1~8)
 原料金属を溶融・撹拌して、表1Aから表25Bに示す合金組成をそれぞれ有する各例のはんだ合金を作製した。
<Solder alloy>
(Examples 1 to 414, comparative examples 1 to 8)
The raw metal was melted and stirred to prepare solder alloys of each example having the alloy compositions shown in Tables 1A to 25B.
<はんだ粉末>
 各例のはんだ合金を溶融し、アトマイズ法により、表1Aから表25Bに示す合金組成をそれぞれ有する各例のはんだ合金からなり、JIS Z 3284-1:2014における粉末サイズの分類(表2)において記号4を満たすサイズ(粒度分布)のはんだ粉末を作製した。
<Solder powder>
The solder alloys of each example are melted and composed of the solder alloys of each example having the alloy compositions shown in Tables 1A to 25B by the atomization method. A solder powder having a size (particle size distribution) satisfying the symbol 4 was prepared.
<フラックス(F0)の調製>
 樹脂成分としてロジン系樹脂を用いた。
 活性成分としてチキソ剤、有機酸、アミン及びハロゲン系活性剤を用いた。
 溶剤としてグリコールエーテル系溶剤を用いた。
 ロジン42質量部と、グリコールエーテル系溶剤35質量部と、チキソ剤8質量部と、有機酸10質量部と、アミン2質量部と、ハロゲン系活性剤3質量部と、を混合してフラックス(F0)を調製した。
<Preparation of flux (F0)>
A rosin-based resin was used as the resin component.
A thixotropic agent, an organic acid, an amine and a halogen-based activator were used as the active ingredient.
A glycol ether solvent was used as the solvent.
42 parts by mass of rosin, 35 parts by mass of glycol ether solvent, 8 parts by mass of thixo agent, 10 parts by mass of organic acid, 2 parts by mass of amine, and 3 parts by mass of halogen-based activator are mixed and flux ( F0) was prepared.
<ソルダペーストの製造>
 前記フラックス(F0)と、表1Aから表25Bに示す合金組成をそれぞれ有する各例のはんだ合金からなるはんだ粉末とを混合して、ソルダペーストを製造した。
 フラックス(F0)とはんだ粉末との質量比は、フラックス(F0):はんだ粉末=11:89とした。
<Manufacturing of solder paste>
The flux (F0) and a solder powder made of the solder alloys of each example having the alloy compositions shown in Tables 1A to 25B were mixed to produce a solder paste.
The mass ratio of the flux (F0) to the solder powder was set to flux (F0): solder powder = 11:89.
<評価>
 前記のソルダペーストを用いて、増粘抑制の評価を行った。
 また、前記のはんだ合金を用いて、はんだ粉末の液相線温度と固相線温度との温度差(△T)の評価、α線量の評価をそれぞれ行った。さらに、総合評価を行った。
 詳細は以下のとおりである。評価した結果を、表1Aから表25Bに示した。
<Evaluation>
Using the solder paste described above, the suppression of thickening was evaluated.
Further, using the above-mentioned solder alloy, the temperature difference (ΔT) between the liquidus temperature and the solidus temperature of the solder powder was evaluated, and the α dose was evaluated, respectively. Furthermore, a comprehensive evaluation was conducted.
The details are as follows. The evaluation results are shown in Tables 1A to 25B.
[増粘抑制]
 (1)検証方法
 調製直後のソルダペーストについて、株式会社マルコム社製:PCU-205を用い、回転数:10rpm、25℃、大気中で12時間粘度を測定した。
[Suppression of thickening]
(1) Verification method The viscosity of the solder paste immediately after preparation was measured using PCU-205 manufactured by Malcolm Co., Ltd. at a rotation speed of 10 rpm, 25 ° C., and in the air for 12 hours.
 (2)判定基準
 〇:12時間後の粘度が、ソルダペーストを調製直後から30分経過した時の粘度と比較して1.2倍以下である。
 ×:12時間後の粘度が、ソルダペーストを調製直後から30分経過した時の粘度と比較して1.2倍を超える。
 この判定が「〇」であれば、十分な増粘抑制効果が得られたものであると言える。すなわち、ソルダペーストの経時での粘度増加を抑制することができる。
(2) Judgment criteria 〇: The viscosity after 12 hours is 1.2 times or less as compared with the viscosity when 30 minutes have passed immediately after the preparation of the solder paste.
X: The viscosity after 12 hours exceeds 1.2 times the viscosity when 30 minutes have passed immediately after the preparation of the solder paste.
If this determination is "◯", it can be said that a sufficient thickening suppressing effect has been obtained. That is, it is possible to suppress an increase in the viscosity of the solder paste over time.
[液相線温度と固相線温度との温度差(△T)]
 (1)検証方法
 フラックス(F0)と混合する前のはんだ粉末について、エスアイアイ・ナノテクノロジー株式会社製、型番:EXSTAR DSC7020を用い、サンプル量:約30mg、昇温速度:15℃/minにてDSC測定を行い、固相線温度及び液相線温度を得た。得られた液相線温度から固相線温度を引いてΔT(℃)を求めた。
[Temperature difference between liquidus temperature and solidus temperature (ΔT)]
(1) Verification method For the solder powder before mixing with the flux (F0), SII Nanotechnology Co., Ltd., model number: EXSTAR DSC7020 was used, the sample amount was about 30 mg, and the temperature rise rate was 15 ° C./min. DSC measurement was performed to obtain the solidus temperature and the liquidus temperature. ΔT (° C.) was determined by subtracting the solidus temperature from the obtained liquidus temperature.
 (2)判定基準
 〇:ΔTが10℃以下である。
 ×:ΔTが10℃を超える。
 この判定が「〇」であれば、液相線温度と固相線温度との温度差が小さいことから、凝固時に偏析が起こりにくく、不均一な合金組織が形成されにくいと言える。すなわち、はんだ継手の機械的強度を高めることができる。
(2) Judgment criteria 〇: ΔT is 10 ° C. or lower.
X: ΔT exceeds 10 ° C.
If this determination is "◯", it can be said that segregation is less likely to occur during solidification and a non-uniform alloy structure is less likely to be formed because the temperature difference between the liquidus temperature and the solidus temperature is small. That is, the mechanical strength of the solder joint can be increased.
[α線量]
 (1)検証方法その1
 α線量の測定は、ガスフロー比例計数器のα線量測定装置を用い、上述した手順(i)、(ii)及び(iii)に従うことにより行った。
 測定サンプルとして、製造直後のはんだ合金シートを用いた。
 このはんだ合金シートは、作製直後のはんだ合金を溶融し、一面の面積が900cmであるシート状に成形することにより得た。
 この測定サンプルを、α線量測定装置内に入れ、PR-10ガスを12時間流し静置した後、72時間α線量を測定した。
[Α dose]
(1) Verification method 1
The α-dose was measured by using an α-dose measuring device of a gas flow proportional counter and following the above-mentioned procedures (i), (ii) and (iii).
As a measurement sample, a solder alloy sheet immediately after production was used.
This solder alloy sheet was obtained by melting the solder alloy immediately after production and forming it into a sheet having an area of 900 cm 2 on one surface.
This measurement sample was placed in an α-dose measuring device, and PR-10 gas was allowed to flow for 12 hours and allowed to stand, and then the α-dose was measured for 72 hours.
 (2)判定基準その1
 〇〇:測定サンプルから発生するα線量が0.002cph/cm以下であった。
  〇:測定サンプルから発生するα線量が0.002cph/cm超、0.02cph/cm以下であった。
  ×:測定サンプルから発生するα線量が0.02cph/cm超であった。
 この判定が「〇〇」又は「〇」であれば、低α線量のはんだ材料であると言える。
(2) Judgment criteria 1
〇 〇: The α dose generated from the measurement sample was 0.002 cf / cm 2 or less.
〇: α dose generated from the measurement sample is 0.002cph / cm 2 than was 0.02cph / cm 2 or less.
X: The α dose generated from the measurement sample was more than 0.02 cf / cm 2.
If this judgment is "○○" or "○", it can be said that the solder material has a low α dose.
 (3)検証方法その2
 測定サンプルを変更した以外は、上記の(1)検証方法その1と同様にして、α線量の測定を行った。
 測定サンプルとして、作製直後のはんだ合金を溶融し、一面の面積が900cmであるシート状に成形したはんだ合金シートに対して、100℃で1時間の加熱処理を行い、放冷したものを用いた。
(3) Verification method 2
The α dose was measured in the same manner as in (1) Verification method 1 above, except that the measurement sample was changed.
As a measurement sample, a solder alloy sheet formed by melting a solder alloy immediately after production and forming a sheet having an area of 900 cm 2 on one surface is heat-treated at 100 ° C. for 1 hour and allowed to cool. board.
 (4)判定基準その2
 〇〇:測定サンプルから発生するα線量が0.002cph/cm以下であった。
  〇:測定サンプルから発生するα線量が0.002cph/cm超、0.02cph/cm以下であった。
  ×:測定サンプルから発生するα線量が0.02cph/cm超であった。
 この判定が「〇〇」又は「〇」であれば、低α線量のはんだ材料であると言える。
(4) Judgment criteria 2
〇 〇: The α dose generated from the measurement sample was 0.002 cf / cm 2 or less.
〇: α dose generated from the measurement sample is 0.002cph / cm 2 than was 0.02cph / cm 2 or less.
X: The α dose generated from the measurement sample was more than 0.02 cf / cm 2.
If this judgment is "○○" or "○", it can be said that the solder material has a low α dose.
 (5)検証方法その3
 上記の(1)検証方法その1にてα線量を測定した測定サンプルのはんだ合金シートを1年間保管した後、再度、上述した手順(i)、(ii)及び(iii)に従うことによりα線量を測定して、α線量の経時変化を評価した。
(5) Verification method 3
After storing the solder alloy sheet of the measurement sample whose α-dose was measured in the above (1) verification method 1 for one year, the α-dose is again followed by the above-mentioned procedures (i), (ii) and (iii). Was measured to evaluate the change in α dose over time.
 (6)判定基準その3
 〇〇:測定サンプルから発生するα線量が0.002cph/cm以下であった。
  〇:測定サンプルから発生するα線量が0.002cph/cm超、0.02cph/cm以下であった。
  ×:測定サンプルから発生するα線量が0.02cph/cm超であった。
 この判定が「〇〇」又は「〇」であれば、発生するα線量が経時変化せず、安定なものであると言える。すなわち、電子機器類におけるソフトエラーの発生を抑制することができる。
(6) Judgment criteria 3
〇 〇: The α dose generated from the measurement sample was 0.002 cf / cm 2 or less.
〇: α dose generated from the measurement sample is 0.002cph / cm 2 than was 0.02cph / cm 2 or less.
X: The α dose generated from the measurement sample was more than 0.02 cf / cm 2.
If this determination is "○○" or "○", it can be said that the generated α-dose does not change with time and is stable. That is, it is possible to suppress the occurrence of soft errors in electronic devices.
[総合評価]
 〇:表1Aから表25Bにおいて、増粘抑制、液相線温度と固相線温度との温度差(△T)、製造直後のα線量、加熱処理後のα線量、α線量の経時変化の各評価が、いずれも「〇〇」又は「〇」であった。
 ×:表1Aから表25Bにおいて、増粘抑制、液相線温度と固相線温度との温度差(△T)、製造直後のα線量、加熱処理後のα線量、α線量の経時変化の各評価のうち、少なくとも1つが×であった。
[comprehensive evaluation]
〇: In Tables 1A to 25B, thickening suppression, temperature difference between liquidus temperature and solidus temperature (ΔT), α dose immediately after production, α dose after heat treatment, and change over time of α dose Each evaluation was "○○" or "○".
X: In Tables 1A to 25B, thickening suppression, temperature difference between liquidus temperature and solidus temperature (ΔT), α dose immediately after production, α dose after heat treatment, and change over time of α dose Of each evaluation, at least one was x.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000044
Figure JPOXMLDOC01-appb-T000044
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000046
Figure JPOXMLDOC01-appb-T000046
Figure JPOXMLDOC01-appb-T000047
Figure JPOXMLDOC01-appb-T000047
Figure JPOXMLDOC01-appb-T000048
Figure JPOXMLDOC01-appb-T000048
Figure JPOXMLDOC01-appb-T000049
Figure JPOXMLDOC01-appb-T000049
Figure JPOXMLDOC01-appb-T000050
Figure JPOXMLDOC01-appb-T000050
Figure JPOXMLDOC01-appb-T000051
Figure JPOXMLDOC01-appb-T000051
 表1Aから表25Bに示すように、本発明を適用した実施例1~414のはんだ合金を用いた場合では、いずれにおいても、ソルダペーストの経時での粘度増加を抑制し、はんだ継手の機械的強度を高められ、かつ、ソフトエラーの発生を抑制することが可能であることが確認された。 As shown in Tables 1A to 25B, in all cases where the solder alloys of Examples 1 to 414 to which the present invention was applied were used, the increase in viscosity of the solder paste over time was suppressed, and the solder joint was mechanically It was confirmed that the strength can be increased and the occurrence of soft errors can be suppressed.
 一方、本発明の範囲外である比較例1~8のはんだ合金を用いた場合では、いずれにおいても、増粘抑制、液相線温度と固相線温度との温度差(△T)、及びα線量の評価のうちの少なくとも1つが劣る結果を示した。 On the other hand, when the solder alloys of Comparative Examples 1 to 8 which are outside the scope of the present invention are used, the thickening is suppressed, the temperature difference between the liquidus temperature and the solidus temperature (ΔT), and At least one of the α-dose assessments showed inferior results.

Claims (24)

  1.  U:5質量ppb未満、Th:5質量ppb未満、Pb:5質量ppm未満、As:5質量ppm未満、Bi:0質量%以上0.9質量%以下、及びSb:0質量%以上0.3質量%以下、並びに残部がSnからなる合金組成を有し、
     下記(1)式を満たし、かつ、
     α線量が0.02cph/cm以下である、はんだ合金。
     0.005≦Bi+Sb≦1.2       (1)
     (1)式中、Bi及びSbは、各々前記合金組成での含有量(質量%)を表す。
    U: less than 5 mass ppb, Th: less than 5 mass ppb, Pb: less than 5 mass ppm, As: less than 5 mass ppm, Bi: 0 mass% or more and 0.9 mass% or less, and Sb: 0 mass% or more and 0. It has an alloy composition of 3% by mass or less and the balance is Sn.
    Satisfy the following formula (1) and
    A solder alloy having an α dose of 0.02 cf / cm 2 or less.
    0.005 ≤ Bi + Sb ≤ 1.2 (1)
    In the formula (1), Bi and Sb each represent the content (mass%) in the alloy composition.
  2.  U:5質量ppb未満、Th:5質量ppb未満、Pb:5質量ppm未満、As:5質量ppm未満、Bi:0質量%超0.9質量%以下、及びSb:0質量%以上0.3質量%以下、並びに残部がSnからなる合金組成を有し、
     下記(1)式を満たし、かつ、
     α線量が0.02cph/cm以下である、はんだ合金。
     0.005≦Bi+Sb≦1.2       (1)
     (1)式中、Bi及びSbは、各々前記合金組成での含有量(質量%)を表す。
    U: less than 5 mass ppb, Th: less than 5 mass ppb, Pb: less than 5 mass ppm, As: less than 5 mass ppm, Bi: more than 0 mass% and 0.9 mass% or less, and Sb: 0 mass% or more and 0. It has an alloy composition of 3% by mass or less and the balance is Sn.
    Satisfy the following formula (1) and
    A solder alloy having an α dose of 0.02 cf / cm 2 or less.
    0.005 ≤ Bi + Sb ≤ 1.2 (1)
    In the formula (1), Bi and Sb each represent the content (mass%) in the alloy composition.
  3.  U:5質量ppb未満、Th:5質量ppb未満、Pb:5質量ppm未満、As:5質量ppm未満、Bi:0質量%以上0.9質量%以下、及びSb:0質量%以上0.1質量%未満、並びに残部がSnからなる合金組成を有し、
     下記(1)式を満たし、かつ、
     α線量が0.02cph/cm以下である、はんだ合金。
     0.005≦Bi+Sb≦1.2       (1)
     (1)式中、Bi及びSbは、各々前記合金組成での含有量(質量%)を表す。
    U: less than 5 mass ppb, Th: less than 5 mass ppb, Pb: less than 5 mass ppm, As: less than 5 mass ppm, Bi: 0 mass% or more and 0.9 mass% or less, and Sb: 0 mass% or more and 0. It has an alloy composition of less than 1% by mass and the balance is Sn.
    Satisfy the following formula (1) and
    A solder alloy having an α dose of 0.02 cf / cm 2 or less.
    0.005 ≤ Bi + Sb ≤ 1.2 (1)
    In the formula (1), Bi and Sb each represent the content (mass%) in the alloy composition.
  4.  更に、前記合金組成は、下記(1’)式を満たす、請求項1~3のいずれか一項に記載のはんだ合金。
     0.03≦Bi+Sb≦0.1       (1’)
     (1’)式中、Bi及びSbは、各々前記合金組成での含有量(質量%)を表す。
    The solder alloy according to any one of claims 1 to 3, wherein the alloy composition satisfies the following formula (1').
    0.03 ≤ Bi + Sb ≤ 0.1 (1')
    In the formula (1'), Bi and Sb each represent the content (mass%) in the alloy composition.
  5.  Pbが2質量ppm未満である、請求項1~4のいずれか一項に記載のはんだ合金。 The solder alloy according to any one of claims 1 to 4, wherein Pb is less than 2 parts by mass ppm.
  6.  Asが2質量ppm未満である、請求項1~5のいずれか一項に記載のはんだ合金。 The solder alloy according to any one of claims 1 to 5, wherein As is less than 2 parts by mass ppm.
  7.  更に、前記合金組成は、Ag:0質量%以上4質量%以下、及びCu:0質量%以上0.9質量%以下の少なくとも一種を含有する、請求項1~6のいずれか一項に記載のはんだ合金。 Further, according to any one of claims 1 to 6, the alloy composition contains at least one of Ag: 0% by mass or more and 4% by mass or less, and Cu: 0% by mass or more and 0.9% by mass or less. Solder alloy.
  8.  U:5質量ppb未満、Th:5質量ppb未満、Pb:5質量ppm未満、As:5質量ppm未満、Bi:0質量%超0.9質量%以下、及びSb:0質量%超0.3質量%以下と、
     Ag:0質量%超4質量%以下、及びCu:0質量%超0.9質量%以下の少なくとも一種と、
     残部がSnと、
    からなる合金組成を有し、
     下記(1)式を満たし、かつ、
     α線量が0.02cph/cm以下である、はんだ合金。
     0.005≦Bi+Sb≦1.2       (1)
     (1)式中、Bi及びSbは、各々前記合金組成での含有量(質量%)を表す。
    U: less than 5 mass ppb, Th: less than 5 mass ppb, Pb: less than 5 mass ppm, As: less than 5 mass ppm, Bi: more than 0 mass% and less than 0.9 mass%, and Sb: more than 0 mass% 0. 3% by mass or less,
    Ag: more than 0% by mass and 4% by mass or less, and Cu: more than 0% by mass and 0.9% by mass or less, and at least one of them.
    The rest is Sn,
    Has an alloy composition consisting of
    Satisfy the following formula (1) and
    A solder alloy having an α dose of 0.02 cf / cm 2 or less.
    0.005 ≤ Bi + Sb ≤ 1.2 (1)
    In the formula (1), Bi and Sb each represent the content (mass%) in the alloy composition.
  9.  U:5質量ppb未満、Th:5質量ppb未満、Pb:5質量ppm未満、As:5質量ppm未満、Bi:0質量%超0.9質量%以下、及びSb:0質量%以上0.3質量%以下と、
     Cu:0質量%超0.9質量%以下と、
     残部がSnと、
    からなる合金組成を有し、
     下記(1)式を満たし、
     CuとBiとの比率は、Cu/Biで表される質量比として、0.5以上280以下であり、かつ、
     α線量が0.02cph/cm以下である、はんだ合金。
     0.005≦Bi+Sb≦1.2       (1)
     (1)式中、Bi及びSbは、各々前記合金組成での含有量(質量%)を表す。
    U: less than 5 mass ppb, Th: less than 5 mass ppb, Pb: less than 5 mass ppm, As: less than 5 mass ppm, Bi: more than 0 mass% and 0.9 mass% or less, and Sb: 0 mass% or more and 0. 3% by mass or less,
    Cu: More than 0% by mass and 0.9% by mass or less
    The rest is Sn,
    Has an alloy composition consisting of
    Satisfy the following formula (1)
    The ratio of Cu and Bi is 0.5 or more and 280 or less as a mass ratio represented by Cu / Bi, and
    A solder alloy having an α dose of 0.02 cf / cm 2 or less.
    0.005 ≤ Bi + Sb ≤ 1.2 (1)
    In the formula (1), Bi and Sb each represent the content (mass%) in the alloy composition.
  10.  U:5質量ppb未満、Th:5質量ppb未満、Pb:5質量ppm未満、及びAs:5質量ppm未満と、
     Bi:0質量%以上0.9質量%以下、及びSb:0質量%以上0.3質量%以下の少なくとも一種と、
     Cu:0質量%超0.9質量%以下と、
     残部がSnと、
    からなる合金組成を有し、
     下記(1)式を満たし、
     CuとBiとSbとの比率は、Cu/(Bi+Sb)で表される質量比として、0.4以上150以下であり、かつ、
     α線量が0.02cph/cm以下である、はんだ合金。
     0.005≦Bi+Sb≦1.2       (1)
     (1)式中、Bi及びSbは、各々前記合金組成での含有量(質量%)を表す。
    U: less than 5 mass ppb, Th: less than 5 mass ppb, Pb: less than 5 mass ppm, and As: less than 5 mass ppm,
    Bi: 0% by mass or more and 0.9% by mass or less, and Sb: 0% by mass or more and 0.3% by mass or less.
    Cu: More than 0% by mass and 0.9% by mass or less
    The rest is Sn,
    Has an alloy composition consisting of
    Satisfy the following formula (1)
    The ratio of Cu, Bi and Sb is 0.4 or more and 150 or less as a mass ratio represented by Cu / (Bi + Sb), and
    A solder alloy having an α dose of 0.02 cf / cm 2 or less.
    0.005 ≤ Bi + Sb ≤ 1.2 (1)
    In the formula (1), Bi and Sb each represent the content (mass%) in the alloy composition.
  11.  U:5質量ppb未満、Th:5質量ppb未満、Pb:5質量ppm未満、As:5質量ppm未満、Bi:0質量%以上0.9質量%以下、及びSb:0質量%超0.3質量%以下と、
     Cu:0質量%超0.9質量%以下と、
     残部がSnと、
    からなる合金組成を有し、
     下記(1)式を満たし、
     CuとSbとの比率は、Cu/Sbで表される質量比として、1以上280以下であり、かつ、
     α線量が0.02cph/cm以下である、はんだ合金。
     0.005≦Bi+Sb≦1.2       (1)
     (1)式中、Bi及びSbは、各々前記合金組成での含有量(質量%)を表す。
    U: less than 5 mass ppb, Th: less than 5 mass ppb, Pb: less than 5 mass ppm, As: less than 5 mass ppm, Bi: 0 mass% or more and 0.9 mass% or less, and Sb: more than 0 mass% 0. 3% by mass or less,
    Cu: More than 0% by mass and 0.9% by mass or less
    The rest is Sn,
    Has an alloy composition consisting of
    Satisfy the following formula (1)
    The ratio of Cu and Sb is 1 or more and 280 or less as a mass ratio represented by Cu / Sb, and
    A solder alloy having an α dose of 0.02 cf / cm 2 or less.
    0.005 ≤ Bi + Sb ≤ 1.2 (1)
    In the formula (1), Bi and Sb each represent the content (mass%) in the alloy composition.
  12.  更に、前記合金組成は、Ag:0質量%超4質量%以下を含有する、請求項9~11のいずれか一項に記載のはんだ合金。 Further, the solder alloy according to any one of claims 9 to 11, wherein the alloy composition contains Ag: more than 0% by mass and 4% by mass or less.
  13.  BiとSbとの比率は、Sb/Biで表される質量比として、0.008以上10以下である、請求項1~12のいずれか一項に記載のはんだ合金。 The solder alloy according to any one of claims 1 to 12, wherein the ratio of Bi and Sb is 0.008 or more and 10 or less as a mass ratio represented by Sb / Bi.
  14.  更に、前記合金組成は、Ni:0質量ppm以上600質量ppm以下、及びFe:0質量ppm以上100質量ppm以下の少なくとも一種を含有する、請求項1~13のいずれか一項に記載のはんだ合金。 The solder according to any one of claims 1 to 13, wherein the alloy composition contains at least one of Ni: 0 mass ppm or more and 600 mass ppm or less, and Fe: 0 mass ppm or more and 100 mass ppm or less. alloy.
  15.  更に、前記合金組成は、下記(2)式を満たす、請求項14に記載のはんだ合金。
     20≦Ni+Fe≦700         (2)
     (2)式中、Ni及びFeは、各々前記合金組成での含有量(質量ppm)を表す。
    The solder alloy according to claim 14, wherein the alloy composition satisfies the following formula (2).
    20 ≦ Ni + Fe ≦ 700 (2)
    In the formula (2), Ni and Fe each represent the content (mass ppm) in the alloy composition.
  16.  一面の面積が900cmであるシート状に成形したはんだ合金シートに対して、100℃で1時間の加熱処理を施した後におけるα線量が、0.02cph/cm以下となる、請求項1~15のいずれか一項に記載のはんだ合金。 Claim 1 that the α dose after heat treatment at 100 ° C. for 1 hour on a solder alloy sheet formed into a sheet having an area of 900 cm 2 on one surface is 0.02 cf / cm 2 or less. The solder alloy according to any one of 15 to 15.
  17.  α線量が0.002cph/cm以下である、請求項1~16のいずれか一項に記載のはんだ合金。 The solder alloy according to any one of claims 1 to 16, wherein the α dose is 0.002 cf / cm 2 or less.
  18.  α線量が0.001cph/cm以下である、請求項17に記載のはんだ合金。 The solder alloy according to claim 17, wherein the α dose is 0.001 cf / cm 2 or less.
  19.  請求項1~18のいずれか一項に記載のはんだ合金からなる、はんだ粉末。 A solder powder made of the solder alloy according to any one of claims 1 to 18.
  20.  粒度分布の異なる2種以上のはんだ合金粒子群を併有する、請求項19に記載のはんだ粉末。 The solder powder according to claim 19, which also has two or more types of solder alloy particle groups having different particle size distributions.
  21.  請求項19又は20に記載のはんだ粉末と、フラックスとを含有する、ソルダペースト。 A solder paste containing the solder powder according to claim 19 or 20 and a flux.
  22.  請求項1~18のいずれか一項に記載のはんだ合金からなる、はんだボール。 A solder ball made of the solder alloy according to any one of claims 1 to 18.
  23.  請求項1~18のいずれか一項に記載のはんだ合金からなる、ソルダプリフォーム。 Solder preform made of the solder alloy according to any one of claims 1 to 18.
  24.  請求項1~18のいずれか一項に記載のはんだ合金からなる、はんだ継手。 A solder joint made of the solder alloy according to any one of claims 1 to 18.
PCT/JP2021/006450 2020-04-10 2021-02-19 Solder alloy, solder powder, solder paste, solder ball, solder preform, and solder joint WO2021205760A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020227034653A KR102587716B1 (en) 2020-04-10 2021-02-19 Solder alloy, solder powder, solder paste, solder ball, solder preform and solder joint
JP2022514327A JP7212300B2 (en) 2020-04-10 2021-02-19 Solder alloys, solder powders, solder pastes, solder balls, solder preforms and solder joints
CN202180041107.9A CN115768591A (en) 2020-04-10 2021-02-19 Solder alloy, solder powder, solder paste, solder ball, solder preform and solder joint

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020071024 2020-04-10
JP2020-071024 2020-04-10

Publications (1)

Publication Number Publication Date
WO2021205760A1 true WO2021205760A1 (en) 2021-10-14

Family

ID=78023297

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/006450 WO2021205760A1 (en) 2020-04-10 2021-02-19 Solder alloy, solder powder, solder paste, solder ball, solder preform, and solder joint

Country Status (5)

Country Link
JP (1) JP7212300B2 (en)
KR (1) KR102587716B1 (en)
CN (1) CN115768591A (en)
TW (1) TWI782423B (en)
WO (1) WO2021205760A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005103645A (en) * 2004-10-29 2005-04-21 Hitachi Metals Ltd Solder ball and its manufacturing method
JP4472752B2 (en) * 2005-07-01 2010-06-02 日鉱金属株式会社 High purity tin or tin alloy and method for producing high purity tin
JP5019764B2 (en) * 2006-03-09 2012-09-05 新日鉄マテリアルズ株式会社 Lead-free solder alloys, solder balls and electronic components
JP2017113756A (en) * 2015-12-21 2017-06-29 住友金属鉱山株式会社 SOLDER ALLOY INCLUDING Sn EXCELLENT IN SURFACE PROPERTY AS MAIN COMPONENT, AND SELECTION METHOD THEREFOR
JP6540869B1 (en) * 2018-03-30 2019-07-10 千住金属工業株式会社 Solder paste
JP2020055037A (en) * 2018-09-28 2020-04-09 荒川化学工業株式会社 Lead-free solder flux, and lead-free solder paste

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5019764B1 (en) * 1971-04-30 1975-07-09
JP2005040847A (en) * 2003-07-25 2005-02-17 Hitachi Metals Ltd Manufacturing method of solder bowl
WO2012127642A1 (en) * 2011-03-23 2012-09-27 千住金属工業株式会社 Lead-free solder alloy
EP3000554B1 (en) * 2013-04-09 2020-01-22 Senju Metal Industry Co., Ltd. Solder paste
JP6717559B2 (en) 2013-10-16 2020-07-01 三井金属鉱業株式会社 Solder alloy and solder powder
JP5534122B1 (en) * 2014-02-04 2014-06-25 千住金属工業株式会社 Core ball, solder paste, foam solder, flux coated core ball and solder joint
EP3326745B1 (en) * 2015-07-24 2020-09-02 Harima Chemicals, Inc. Solder alloy, solder paste, and electronic circuit board
KR101925760B1 (en) * 2016-03-22 2018-12-05 가부시키가이샤 다무라 세이사쿠쇼 Lead-free solder alloy, flux composition, solder paste composition, electronic circuit board and electronic control device
MY188597A (en) * 2017-03-31 2021-12-22 Senju Metal Industry Co Solder alloy, solder paste, and solder joint
JP6521161B1 (en) * 2018-07-20 2019-05-29 千住金属工業株式会社 Solder alloy, solder powder, solder paste, and solder joint using them
JP2020011293A (en) * 2019-04-11 2020-01-23 千住金属工業株式会社 Solder alloy, solder powder, solder paste, and solder joint with use thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005103645A (en) * 2004-10-29 2005-04-21 Hitachi Metals Ltd Solder ball and its manufacturing method
JP4472752B2 (en) * 2005-07-01 2010-06-02 日鉱金属株式会社 High purity tin or tin alloy and method for producing high purity tin
JP5296269B1 (en) * 2005-07-01 2013-09-25 Jx日鉱日石金属株式会社 High purity tin alloy
JP5019764B2 (en) * 2006-03-09 2012-09-05 新日鉄マテリアルズ株式会社 Lead-free solder alloys, solder balls and electronic components
JP2017113756A (en) * 2015-12-21 2017-06-29 住友金属鉱山株式会社 SOLDER ALLOY INCLUDING Sn EXCELLENT IN SURFACE PROPERTY AS MAIN COMPONENT, AND SELECTION METHOD THEREFOR
JP6540869B1 (en) * 2018-03-30 2019-07-10 千住金属工業株式会社 Solder paste
JP2020055037A (en) * 2018-09-28 2020-04-09 荒川化学工業株式会社 Lead-free solder flux, and lead-free solder paste

Also Published As

Publication number Publication date
JPWO2021205760A1 (en) 2021-10-14
KR20220149610A (en) 2022-11-08
KR102587716B1 (en) 2023-10-12
CN115768591A (en) 2023-03-07
TW202142347A (en) 2021-11-16
JP7212300B2 (en) 2023-01-25
TWI782423B (en) 2022-11-01

Similar Documents

Publication Publication Date Title
KR102241026B1 (en) Solder alloy, solder powder, solder paste and solder joints using these
KR102246523B1 (en) Solder alloy, solder powder, solder paste, and solder joints using them
JP6928296B1 (en) Solder paste
CN114378475B (en) Solder paste
JP6649597B1 (en) Solder alloys, solder powders and solder joints
JP7212300B2 (en) Solder alloys, solder powders, solder pastes, solder balls, solder preforms and solder joints
JP6836091B1 (en) Solder alloys, solder powders, solder pastes, solder balls, solder preforms and solder fittings
JP6649596B1 (en) Solder alloys, solder powders and solder joints
JP6928295B1 (en) Flux and solder paste
JP2020192599A (en) Solder alloy, solder powder, and solder joint
JP2020011293A (en) Solder alloy, solder powder, solder paste, and solder joint with use thereof
WO2020240928A1 (en) Solder alloy, solder powder, solder paste, and solder joint obtained using these
JP2020192601A (en) Solder alloy, solder powder, and solder joint

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21785612

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022514327

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227034653

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21785612

Country of ref document: EP

Kind code of ref document: A1