[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2021201178A1 - 快削鋼およびその製造方法 - Google Patents

快削鋼およびその製造方法 Download PDF

Info

Publication number
WO2021201178A1
WO2021201178A1 PCT/JP2021/014049 JP2021014049W WO2021201178A1 WO 2021201178 A1 WO2021201178 A1 WO 2021201178A1 JP 2021014049 W JP2021014049 W JP 2021014049W WO 2021201178 A1 WO2021201178 A1 WO 2021201178A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
free
steel
mass
sulfide
Prior art date
Application number
PCT/JP2021/014049
Other languages
English (en)
French (fr)
Inventor
正之 笠井
福岡 和明
西村 公宏
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to KR1020227033225A priority Critical patent/KR20220144864A/ko
Priority to US17/907,271 priority patent/US20230108640A1/en
Priority to EP21780703.1A priority patent/EP4130303A1/en
Priority to CN202180025472.0A priority patent/CN115362278B/zh
Priority to JP2021538730A priority patent/JP7024922B1/ja
Publication of WO2021201178A1 publication Critical patent/WO2021201178A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/13Modifying the physical properties of iron or steel by deformation by hot working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0081Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for slabs; for billets
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/02Hardening articles or materials formed by forging or rolling, with no further heating beyond that required for the formation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0075Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rods of limited length
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/22Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for drills; for milling cutters; for machine cutting tools
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Definitions

  • the present invention relates to free-cutting steel, particularly a steel that is a substitute for free-cutting steel containing sulfur, which is a machinability-improving element, and a trace amount of lead, and is equal to or higher than low-carbon sulfur-lead composite free-cutting steel. It relates to a free-cutting steel having machinability and a method for producing the same.
  • Low-carbon sulfur lead free-cutting steel represented by JIS standard SUM24L secures its excellent machinability by adding a large amount of lead (Pb) and sulfur (S) as free-cutting elements.
  • lead In steel materials, lead is useful for reducing tool wear and improving chip control during cutting. Therefore, lead is heavily used as an element that greatly improves the machinability of materials, and is used in steel products manufactured by many cutting processes.
  • lead is also mentioned as one of them, and its use is required to be restricted.
  • Patent Document 1 discloses a Pb-free free-cutting non-tempered steel.
  • Patent Document 2 also discloses a Pb-free free-cutting steel.
  • Patent Document 3 discloses a free-cutting steel in which Mn-Cr-S-based inclusions are present and machinability is ensured by adding Cr, which is easier to form a compound with S than Mn. ..
  • Patent Document 1 has a problem that it is hard because the target steel type is a non-microalloyed steel containing C: 0.2% or more, and the manufacturing cost is high because Nd, which is a special element, is used. There is. Further, the technique described in Patent Document 2 has low hot ductility because a large amount of S is added, and cracks occur during continuous casting or hot rolling, which is problematic from the viewpoint of surface properties. On the other hand, in the technique described in Patent Document 3, Cr and S are added by reducing the amount of Mn added, but the amount of Cr added is as high as 3.5% or more, which makes it difficult to reduce the cost and a large amount. Since CrS is generated, there is a manufacturing problem that it is difficult to melt the material in the steelmaking process.
  • the present invention has been made to solve the above-mentioned problems, and despite the fact that Pb is not added, the present invention has machinability equal to or higher than that of low-carbon sulfur-lead composite free-cutting steel. It is an object of the present invention to provide free-cutting steel which does not require addition of Nd or a large amount of S or Cr as in Patent Documents 1 to 3 described above, together with a method for producing the same.
  • the present invention has been made based on the above findings, and the gist thereof is as follows. 1.
  • C By mass% C: less than 0.09%, Mn: 0.50 to 1.50%, S: 0.250 to 0.600%, O: More than 0.0100% and less than 0.0500% and Cr: 0.50 to 1.50% It is composed of the balance Fe and unavoidable impurities, and has a component composition in which the A value defined by the following formula (1) satisfies 6.0 to 18.0.
  • Free-cutting steel having a steel structure in which 500 sulfides with a diameter equivalent to a circle of less than 1 ⁇ m are distributed at least 500 pieces / mm 2 and sulfides with a diameter equivalent to a circle of 1 to 5 ⁇ m are distributed at 2000 pieces / mm 2 or more.
  • a value 2 ([Mn] + 2 [Cr]) / [S] ⁇ ⁇ ⁇ (1)
  • [M] is the content (mass%) of the element in [].
  • the component composition is Si: 0.50% or less in mass%, P: 0.10% or less,
  • the component composition is Ca: 0.0010% or less in mass%, Se: 0.30% or less, Te: 0.15% or less, Bi: 0.20% or less, Sn: 0.020% or less, Sb: 0.025% or less, B: 0.010% or less, Cu: 0.50% or less, Ni: 0.50% or less, Ti: 0.100% or less, V: 0.20% or less,
  • the component composition is Si: 0.50% or less in mass%, P: 0.10% or less,
  • the component composition is Ca: 0.0010% or less in mass%, Se: 0.30% or less, Te: 0.15% or less, Bi: 0.20% or less, Sn: 0.020% or less, Sb: 0.025% or less, B: 0.010% or less, Cu: 0.50% or less, Ni: 0.50% or less, Ti: 0.100% or less, V: 0.20% or less,
  • C Less than 0.09% C is an important element that has a great influence on the strength and machinability of steel. However, if the content is 0.09% or more, the hardness becomes too high and the machinability deteriorates. Therefore, the C content is set to less than 0.09%. Preferably, it is within the range of 0.07% or less. From the viewpoint of ensuring strength, the C content is preferably 0.01% or more. Further, it is more preferably 0.03% or more.
  • Mn 0.50 to 1.50%
  • Mn is a sulfide-forming element that is important for improving machinability.
  • the Mn content is preferably 0.70% or more.
  • the upper limit of the Mn content is set to 1.50%.
  • the Mn content is preferably 1.20% or less.
  • S 0.250 to 0.600%
  • S is a sulfide-forming element effective for improving machinability.
  • the content is less than 0.250%, the machinability is not improved because there are few fine sulfides.
  • the content exceeds 0.600%, the sulfide becomes too coarse and the number of fine sulfides decreases, so that the machinability is lowered. It also reduces hot workability and ductility, which is an important mechanical property. Therefore, the S content is in the range of 0.250 to 0.600%. Preferably, it is 0.300% or more. Preferably, it is 0.450% or less.
  • O More than 0.0100% and 0.0500% or less O is an element that forms oxides and becomes precipitation nuclei of sulfides, and is also an effective element for suppressing elongation of sulfides during hot working such as rolling. By this action, machinability can be improved. However, if the content is 0.0100% or less, the effect of suppressing the elongation of sulfide is not sufficient, and the elongated sulfide remains, and the original effect cannot be expected. Therefore, the content of O is set to more than 0.0100%.
  • the upper limit is 0.0500%.
  • Cr 0.50 to 1.50% Cr forms sulfide and has the effect of improving machinability by lubricating action during cutting. Further, since the elongation of sulfide during hot working such as rolling is suppressed, the machinability can be improved. However, if the content is less than 0.50%, the formation of sulfide is not sufficient and the elongated sulfide tends to remain, so that the original effect cannot be sufficiently expected. On the other hand, if it is added in excess of 1.50%, in addition to hardening, the sulfide becomes coarse and the effect of suppressing elongation is saturated, and the machinability is rather lowered. Also, adding an excessive amount of alloy cost is economically disadvantageous. Therefore, the Cr content is set to 0.50 to 1.50%. Preferably, it is 0.70% or more. Preferably, it is 1.30% or less.
  • the balance contains Fe and unavoidable impurities, or further contains optional components described later.
  • the above components, or further optional components described later are composed of the remaining Fe and unavoidable impurities.
  • the A value defined by the following formula (1) is 6.0 to 18.0.
  • a value 2 ([Mn] + 2 [Cr]) / [S] ⁇ ⁇ ⁇ (1)
  • [M] is the content (mass%) of the element in []. That is, the A value is an important index that influences the miniaturization of Mn-Cr-S sulfide during hot working such as rolling, and by limiting this A value, machinability can be improved. can.
  • the A value is set to 6.0 to 18.0.
  • it is 6.5 or more.
  • it is 17.0 or less.
  • the optional contained components will be described.
  • the following components can be contained, if necessary.
  • Si 0.50% or less
  • Si is a deoxidizing element, and the oxide of Si acts as a sulfide formation nucleus, promotes the formation of sulfide, refines the sulfide, and improves the life of the cutting tool. Therefore, if it is desired to further extend the tool life, it may be contained in steel. However, if it is added in excess of 0.50%, the oxide will become large and the number will decrease, so that it will not be effective as a nucleation nuclei of sulfide, and in addition, it will induce abrasive wear due to the hard oxide and the tool life will be shortened. It causes deterioration. Therefore, the Si content should be 0.50% or less. Preferably, it is 0.03% or less. In addition, in order to exhibit the above-mentioned action by Si, it is preferably contained in an amount of 0.001% or more.
  • P 0.10% or less
  • P is an element effective in reducing the roughness of the finished surface by suppressing the formation of landmarks during cutting. From this viewpoint, P is preferably contained in an amount of 0.01% or more. However, if the content exceeds 0.10%, the material becomes hard and the machinability is lowered, and the hot workability and ductility are remarkably lowered. Therefore, the P content is preferably 0.10% or less. More preferably, it is 0.08% or less.
  • Al 0.010% or less
  • Al is a deoxidizing element like Si and may be contained.
  • Al produces Al 2 O 3 in steel, but since this oxide is hard, so-called abrasive wear deteriorates the life of the cutting tool, so it is necessary to avoid excessive Al content. ..
  • the amount of Al added is 0.010% or less. More preferably, it is 0.005% or less. From the viewpoint of exhibiting the deoxidizing effect of Al, it is preferable that Al is contained in an amount of 0.001% or more.
  • N 0.0150% or less N forms a nitride with Cr and the like, and the nitride decomposes due to the temperature rise during cutting to form an oxide film called bellague on the tool surface. Since the bellag has an effect of protecting the tool surface and thus improves the tool life, N may be contained. In order to effectively exhibit this effect, it is preferable that N is contained in an amount of 0.0050% or more. On the other hand, if it is added in excess of 0.0150%, the effect of Belag is saturated and the material is hardened, so that the tool life is shortened. Therefore, the N content is preferably 0.0150% or less. More preferably, it is 0.0060% or more. More preferably, it is 0.0120% or less.
  • the following components can be further contained, if necessary.
  • Ca, Se, Te, Bi, Sn, Sb, B, Cu, Ni, Ti, V, Zr, Mg are all covered. Since it has an action of improving machinability, it may be added when machinability is important.
  • the amount of these elements added is Ca: less than 0.0001%, Se: less than 0.02%, Te: less than 0.10%, Bi: less than 0.02%, Sn: less than 0.003%, Sb: less than 0.003%, B: less than 0.003%, Cu: less than 0.05%, Ni: less than 0.50%, Ti: less than 0.003%, V: less than 0.005%, Zr: less than 0.005%, Mg: less than 0.0005% is sufficient Since no effect can be obtained, Ca: 0.0001% or more, Se: 0.02% or more, Te: 0.10% or more, Bi: 0.02% or more, Sn: 0.003% or more, Sb: 0.003% or more, B: 0.003% or more, respectively. , Cu: 0.05% or more, Ni: 0.05% or more, Ti: 0.003% or more, V: 0.005% or more, Zr: 0.005% or more, Mg: 0.0005% or more.
  • the contents of these elements are Ca: 0.0010% or less, Se: 0.30% or less, Te: 0.15% or less, Bi: 0.20% or less, Sn: 0.020% or less, Sb: 0.025% or less, B: 0.010%, respectively.
  • Step structure Distribution of 500 pieces / mm 2 or more of sulfides with a diameter equivalent to a circle of less than 1 ⁇ m, and 2000 pieces / mm 2 or more of sulfides with a diameter equivalent to a circle of 1 to 5 ⁇ m. It is advantageous to promote the lubricating action between the tool and the work material during cutting. In order to ensure the machinability of free-cutting steel by fine dispersion of sulfides, sulfides with a circle-equivalent diameter of less than 1 ⁇ m and a circle-equivalent diameter of 1 to 5 ⁇ m are dispersed in a certain amount or more in the steel structure. There is a need.
  • Sulfide with a circular equivalent diameter of less than 1 ⁇ m is mainly effective for lubrication between the tool and the work material. Further, a sulfide having a circle-equivalent diameter of 1 to 5 ⁇ m is effective not only for the above-mentioned lubrication effect but also for chip fragmentation. Therefore, the number of sulfides with a circle-equivalent diameter of less than 1 ⁇ m is 500 pieces / mm 2 or more, and the number of sulfides with a circle-equivalent diameter of 1 to 5 ⁇ m is 2000 pieces / mm 2 or more.
  • a rectangular slab having the above-mentioned composition and having a side length of 250 mm or more perpendicular to the longitudinal direction is rolled at a heating temperature of 1120 ° C. or higher and a surface reduction rate of 60% or higher to billet.
  • the billet is hot-worked at a heating temperature of 1050 ° C. or higher and a surface reduction rate of 75% or higher.
  • the length of one side in the cross section of the slab shall be 250 mm or more. More preferably, it is 300 mm or more.
  • the upper limit of the length of one side in the cross section of the slab does not need to be particularly regulated, but from the viewpoint of feasibility of hot rolling following casting, the length is preferably 600 mm or less.
  • Heating temperature of slabs 1120 ° C or higher
  • the slabs are hot-rolled to form billets, but the heating temperature during this hot rolling must be 1120 ° C or higher. If the heating temperature is less than 1120 ° C., the coarse sulfide crystallized during cooling-solidification in the casting stage does not dissolve in solid solution, and the coarse sulfide remains even after the billet is formed. As a result, the sulfide remains coarse even after the subsequent hot working, and the desired fine sulfide distribution state cannot be obtained. Therefore, the heating temperature when hot rolling the slabs into billets is 1120 ° C or higher, preferably 1150 ° C or higher.
  • the upper limit of the heating temperature of the slab does not need to be particularly regulated, but from the viewpoint of suppressing scale loss, the heating temperature is preferably 1300 ° C. or lower, more preferably 1250 ° C. or lower.
  • the surface reduction ratio (%) of hot rolling is such that the cross-sectional area of the slab before hot rolling is S0 in the cross section perpendicular to the hot rolling direction, and the hot rolling direction of the billet manufactured by hot rolling.
  • S1 be the cross-sectional area of the cross section perpendicular to, and the following formula 100 ⁇ (S0-S1) / S0 Can be obtained by.
  • Heating temperature 1050 ° C or higher
  • the heating temperature when hot-working billets into steel bars or wires is an important factor. If the heating temperature is less than 1050 ° C., the sulfide is not finely dispersed, so that the lubricating action during cutting is reduced. As a result, the tool wear is increased and the tool life is shortened. Therefore, the heating temperature of the billet is set to 1050 ° C. or higher. More preferably, it is 1080 ° C. or higher. Although it is not necessary to regulate the upper limit, it is preferable to set the temperature to 1250 ° C. or lower from the viewpoint of suppressing the decrease in yield due to scale loss.
  • the surface reduction rate for hot working is also an important factor for the miniaturization of sulfides. If the surface reduction rate is less than 75%, the sulfide is not sufficiently refined, so the lower limit of the surface reduction rate is set to 75%. More preferably, it is 80% or more.
  • the surface reduction rate of hot working is S1 for the cross-sectional area of the billet before hot rolling, which is perpendicular to the hot working direction, and the hot working direction (stretching) of the steel bar or wire rod manufactured by hot working.
  • S2 be the cross-sectional area of the cross section perpendicular to the direction), and the following equation 100 ⁇ (S1-S2) / S1 Can be obtained by.
  • the steel having the chemical composition shown in Table 1 was made into a rectangular slab having a cross section perpendicular to the longitudinal direction with the dimensions shown in Table 2-1 and Table 2-2 by a continuous casting machine.
  • the obtained slabs were rolled into steel bars under the production conditions shown in Table 2-1 and Table 2-2.
  • the steel of the present invention and the comparative steel were subjected to the following tests. That is, the slabs are hot-rolled at the heating temperature and surface reduction rate shown in Tables 2-1 and 2-2, and the long piece dimensions and short piece dimensions are as shown in Tables 2-1 and 2-2. It was a square billet.
  • the obtained billets were heated at the heating temperatures shown in Tables 2-1 and 2-2 and hot-rolled to obtain steel bars having the diameters shown in Tables 2-1 and 2-2.
  • the obtained steel bars (steel of the present invention and comparative steel) were subjected to the tests shown below.
  • a test piece was collected from a cross section parallel to the rolling direction of the obtained steel bar, and the 1/4 position in the radial direction from the peripheral surface of the cross section was observed with a scanning electron microscope (SEM). , The circle-equivalent diameter and number density of sulfide in steel were investigated.
  • the composition of the precipitate was analyzed by Energy Dispersive X-ray spectrum (EDX), and the obtained SEM image of the precipitate confirmed to be sulfide by EDX is imaged. The analysis was performed and binarization was performed to obtain the equivalent circle diameter and the number density.
  • EDX Energy Dispersive X-ray spectrum
  • the machinability was evaluated by an outer peripheral turning test.
  • BNC-34C5 manufactured by Citizen Machinery was used as the cutting machine
  • Carbide EX 35-bit TNGG160404R-N manufactured by Hitachi Tool was used as the turning tip
  • DTGNR2020 manufactured by Kyocera was used as the holder.
  • As the lubricant a 15-fold diluted emulsion of Yushiroken FGE1010 manufactured by Yushiro Chemical Industry Co., Ltd. was used.
  • the cutting conditions were a cutting speed of 120 m / min, a feed rate of 0.05 mm / rev, a depth of cut of 2.0 mm, and a machining length of 10 m.
  • the machinability was evaluated by the flank wear Vb of the tool after the cutting test for a length of 10 m was completed.
  • the flank wear Vb after the completion of the cutting test was 200 ⁇ m or less, it was rated as “ ⁇ ”, and when the flank wear was more than 200 ⁇ m, it was rated as “x”.
  • Table 2-1 and Table 2-2 show the test results of the invention steel and the comparative steel. As is clear from Table 2-1 and Table 2-2, the steel of the present invention has good machinability with respect to the comparative steel.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Steel (AREA)
  • Metal Rolling (AREA)

Abstract

Pbの非添加であるにもかかわらず、低炭素硫黄鉛複合快削鋼と同等以上の被削性を有する快削鋼を提供する。質量%で、C:0.09%未満、Mn:0.50~1.50%、S:0.250~0.600%、O:0.010%超0.050%以下、および、Cr:0.50~1.50%を含有し、残部Feおよび不可避的不純物からなり、下記式(1)で定められるA値が6.0~18.0を満足する成分組成と、円相当径で1μm未満の硫化物が500個/mm2以上、円相当径で1~5μmの硫化物が2000個/mm2以上分布してなる鋼組織と、にする。 記 A値=2([Mn]+2[Cr])/[S] ・・・(1) 但し、[M]は[ ]内の元素の含有量(質量%)

Description

快削鋼およびその製造方法
 本発明は、快削鋼、特に、被削性向上元素である硫黄および微量の鉛を含有した快削鋼の代替となる鋼に関するものであり、低炭素硫黄鉛複合快削鋼と同等以上の被削性を有する快削鋼およびその製造方法に関するものである。
 JIS規格SUM24Lに代表される低炭素硫黄鉛快削鋼は、快削元素として、多量の鉛(Pb)および硫黄(S)の添加により、その優れた被削性を確保している。
 鉄鋼材料において、鉛は、切削加工における工具の摩耗の低減や切りくず処理性の改善に有用である。そのため、鉛は材料の被削性を大きく改善する元素として重用され、多くの切削加工によって製造される鋼製品に用いられている。しかしながら、近年の環境意識の高まりに伴い、環境負荷物質の使用を、世界的に廃止または制限する動きが広がっている。鉛もその1つとして挙げられ、使用を制限することが要求されている。
 そこで、例えば、特許文献1には、Pb非添加型の快削非調質鋼が開示されている。また、同様に特許文献2にも、Pb非添加型の快削鋼が開示されている。さらに、特許文献3には、MnよりSと化合物を作り易いCrを添加することにより、Mn-Cr-S系介在物を存在させて、被削性を確保した快削鋼が開示されている。
特開平9-25539号公報 特開2000-160284号公報 特公平2-6824号公報
 特許文献1に記載の技術は、対象とする鋼種がC:0.2%以上を含有した非調質鋼であるため硬質であり、特殊元素であるNdを用いているため、製造コストが高いという問題がある。また、特許文献2に記載の技術は、Sを大量に添加しているため、熱間延性が低く、連続鋳造や熱間圧延時に割れが生じ、表面性状の観点から問題がある。一方、特許文献3に記載の技術では、Mn添加量を減じてCrおよびSを添加する、成分としているが、Crの添加量が3.5%以上と高く、低コスト化が難しい上に、大量のCrSが生成するため、製鋼工程の材料溶製処理が難しいという、製造上の問題を有している。
 本発明は、上記した問題点を解決するためになされたものであり、Pbが非添加であるにもかかわらず、低炭素硫黄鉛複合快削鋼と同等以上の被削性を有し、かつ、上記の特許文献1~3のような、Nd添加や、大量のSやCrの添加を必要としない快削鋼を、その製造方法とともに提供することを目的とする。
 発明者等は、上記の課題を解決するために鋭意研究を重ねた結果、以下に記す知見を得るに至った。
(i)Mn、CrおよびSの適量添加ならびに2(Mn+2Cr)/Sの比の適正化により、適量の硫化物の組成がMn-Cr-Sの複合系となる。この複合系組成の硫化物は、熱間加工により微細化することができる。
(ii)上記の硫化物が微細であるほど、潤滑作用が大きくなり、構成刃先と呼ばれる工具表面に付着する硬質相の生成を防止でき、切屑処理性、表面粗さを含めた被削性が著しく向上する。
(iii)鋼中のS量の上昇と共に被削性が向上することは、従来知られている。一方、熱間加工性あるいは機械的性質の異方性の問題から、鋼中に添加できるS量の上限値は存在する。鋼中に存在する硫化物が微細であると、切屑処理性、表面粗さを含めた被削性が著しく向上する。よって、鋼中に硫化物を微細に分布させれば、上記の熱間加工性あるいは機械的性質の異方性の観点からのS量の上限値を超えずとも、良好な被削性を確保できる。
 本発明は、上記知見に基づきなされたものであって、その要旨は次のとおりである。
1.質量%で、
 C:0.09%未満、
 Mn:0.50~1.50%、
 S:0.250~0.600%、
 O:0.0100%超0.0500%以下および
 Cr:0.50~1.50%
を含有し、残部Feおよび不可避的不純物からなり、下記式(1)で定められるA値が6.0~18.0を満足する成分組成を有し、
 円相当径で1μm未満の硫化物が500個/mm2以上、円相当径で1~5μmの硫化物が2000個/mm2以上分布してなる鋼組織を有する快削鋼。
          記
 A値=2([Mn]+2[Cr])/[S] ・・・(1)
  但し、[M]は[ ]内の元素の含有量(質量%)
2.前記成分組成は、さらに、質量%で
 Si:0.50%以下、
 P:0.10%以下、
 Al:0.010%以下および
 N:0.0150%以下
から選ばれる1種または2種以上を含有する前記1に記載の快削鋼。
3.前記成分組成は、さらに、質量%で
 Ca:0.0010%以下、
 Se:0.30%以下、
 Te:0.15%以下、
 Bi:0.20%以下、
 Sn:0.020%以下、
 Sb:0.025%以下、
 B:0.010%以下、
 Cu:0.50%以下、
 Ni:0.50%以下、
 Ti:0.100%以下、
 V:0.20%以下、
 Zr:0.050%以下および
 Mg:0.0050%以下
から選ばれる1種または2種以上を含有する前記1または2に記載の快削鋼。
4.質量%で、
 C:0.09%未満、
 Mn:0.50~1.50%、
 S:0.250~0.600%、
 O:0.0100%超0.0500%以下および
 Cr:0.50~1.50%
を含有し、残部Feおよび不可避的不純物からなり、下記式(1)で定められるA値が6.0~18.0を満足する成分組成を有し、長手方向と垂直な断面の一辺の長さが250mm以上である矩形の鋳片を、加熱温度1120℃以上、減面率60%以上にて圧延してビレットとし、該ビレットを加熱温度:1050℃以上、減面率75%以上にて熱間加工する快削鋼の製造方法。
              記
 A値=2([Mn]+2[Cr])/[S] ・・・(1)
  但し、[M]は[ ]内の元素の含有量(質量%)
5.前記成分組成は、さらに、質量%で
 Si:0.50%以下、
 P:0.10%以下、
 Al:0.010%以下および
 N:0.0150%以下
から選ばれる1種または2種以上を含有する前記4に記載の快削鋼の製造方法。
6.前記成分組成は、さらに、質量%で
 Ca:0.0010%以下、
 Se:0.30%以下、
 Te:0.15%以下、
 Bi:0.20%以下、
 Sn:0.020%以下、
 Sb:0.025%以下、
 B:0.010%以下、
 Cu:0.50%以下、
 Ni:0.50%以下、
 Ti:0.100%以下、
 V:0.20%以下、
 Zr:0.050%以下および
 Mg:0.0050%以下
から選ばれる1種または2種以上を含有する前記4または5に記載の快削鋼の製造方法。
 本発明によれば、鉛を添加せずとも、被削性に優れた快削鋼を得ることが可能となる。
 次に、本発明の快削鋼について詳細に説明する。まず、快削鋼の成分組成における各成分含有量の限定理由から説明する。なお、成分に関する%表示は、特に断らない限り、質量%を意味する。
C:0.09%未満
 Cは、鋼の強度および被削性に大きな影響を及ぼす重要な元素である。しかし、その含有量が0.09%以上であると、硬質化し強度が高くなりすぎて、被削性が劣化する。従って、C含有量は、0.09%未満とする。好ましくは、0.07%以下の範囲内とする。なお、強度を確保する観点からは、C含有量を0.01%以上とすることが好ましい。さらには0.03%以上とすることがより好ましい。
Mn:0.50~1.50%
 Mnは、被削性の向上に重要な硫化物形成元素である。しかし、その含有量が0.50%未満では、硫化物量が少ないために十分な被削性が得られないので、下限を0.50%とする。Mn含有量は好ましくは、0.70%以上とする。一方、その含有量が1.50%を超えると、硫化物が粗大化することに加え、長く伸長して被削性が低下する。また、機械的性質が低下するので、Mn含有量の上限値は1.50%とする。Mn含有量は、好ましくは、1.20%以下とする。
S:0.250~0.600%
 Sは、被削性の向上に有効な硫化物形成元素である。しかし、その含有量が0.250%未満では微細な硫化物が少ないために被削性が向上しない。一方、その含有量が0.600%を超えると、硫化物が粗大化しすぎて、微細な硫化物の個数が減るため、被削性が低下する。また、熱間加工性ならびに重要な機械的特性である延性が低下する。従って、S含有量は、0.250~0.600%の範囲内とする。好ましくは、0.300%以上である。好ましくは、0.450%以下である。
O:0.0100%超0.0500%以下
 Oは、酸化物を形成し、硫化物の析出核となることに加え、圧延等の熱間加工時における硫化物の伸長を抑制するのに有効な元素であり、この作用により被削性を向上させることができる。しかし、その含有量が0.0100%以下では、硫化物の伸長の抑制効果が十分ではなく、伸長した硫化物が残存して、本来の効果が期待できない。従って、Oの含有量は、0.0100%超とする。一方、0.0500%を超えて添加しても硫化物の伸長抑制効果が飽和することに加え、硬質な酸化物系介在物の量が多くなるため、および、過剰な量の添加は経済的に不利であるため、上限を0.0500%とする。
Cr:0.50~1.50%
 Crは、硫化物を形成し、切削時の潤滑作用により被削性を向上させる作用を有する。また、圧延等の熱間加工時における硫化物の伸長を抑制させるため、被削性を向上させることができる。しかし、その含有量が0.50%未満では、硫化物の生成が充分でなく、伸長した硫化物が残存しやすくなるため、本来の効果が充分に期待できない。一方、1.50%を超えて添加すると、硬質化することに加え、硫化物が粗大になり、かつ伸長を抑制する効果が飽和し、かえって被削性が低下する。また、過剰な量の合金コストの添加は経済的に不利である。従って、Cr含有量は、0.50~1.50%とする。好ましくは、0.70%以上である。好ましくは、1.30%以下である。
 以上の成分を含み、残部はFeおよび不可避的不純物を含む、あるいはさらに、後述する任意含有成分を含む。ここで、以上の成分、あるいはさらに後述する任意含有成分と、残部のFeおよび不可避的不純物とからなることが好ましい。
 ここで、以上の成分組成において、次式(1)にて定義されるA値が6.0~18.0であることが肝要である。
 A値=2([Mn]+2[Cr])/[S] ・・・(1)
  但し、[M]は[ ]内の元素の含有量(質量%)
 すなわち、A値は、圧延等の熱間加工時におけるMn-Cr-S系硫化物の微細化を左右する重要な指標で、このA値を限定することにより、被削性を向上させることができる。しかし、A値が6.0未満であると、Mn-S単独の硫化物が生成し、粗大な硫化物となりやすく、被削性が劣化する。一方、A値が18.0を超えると、硫化物を微細化する効果が飽和することに加え、硫黄に対して硫化物形成元素が多くなりすぎ、硫化物が粗大になる。従って、A値は6.0~18.0とする。好ましくは、6.5以上である。好ましくは、17.0以下である。
 次に、任意含有成分について説明する。本発明では、以上の基本成分に加えて、必要に応じて、次の成分を含有することができる。
 Si:0.50%以下、
 P:0.10%以下、
 Al:0.010%以下および
 N:0.0150%以下
から選ばれる1種または2種以上
Si:0.50%以下
 Siは、脱酸元素であり、また、Siの酸化物は硫化物の生成核として作用し、硫化物の生成を促進し硫化物を微細化し、切削工具寿命を向上させる作用を有することから、工具寿命を更に延ばしたい場合は、鋼に含有されていてもよい。ただし、0.50%を超えての添加は、酸化物が大きくなり、数も少なくなるため、硫化物の生成核としての効果がなくなることに加え、硬質な酸化物によるアブレイシブ摩耗を誘発し工具寿命の劣化を招く。そのため、Siの含有量は0.50%以下とする。好ましくは、0.03%以下とする。なお、Siによる上記の作用を発現させるためには、0.001%以上含有されていることが好ましい。
P:0.10%以下
 Pは、切削加工時に構成刃先の生成を抑制することにより、仕上げ面粗さを低減させるのに有効な元素である。この観点から、Pは0.01%以上含有されることが好ましい。ただし、その含有率が0.10%を超えると、材質が硬質化するため被削性を低下させるとともに、熱間加工性および延性を著しく低下させる。従って、P含有量は、0.10%以下とすることが好ましい。より好ましくは、0.08%以下とする。
Al:0.010%以下
 Alは、Siと同様に脱酸元素であり含有されていてもよい。Alは鋼中でAl2O3を生成するが、この酸化物は硬質であるため、いわゆるアブレイシブ摩耗によって切削工具寿命を劣化させることから、Alを過剰に含有されることを回避する必要がある。この意味からは、Al添加量を0.010%以下とすることが好ましい。より好ましくは、0.005%以下とする。なお、Alによる脱酸効果を発現させる観点からは、Alは0.001%以上含有させることが好ましい。
N:0.0150%以下
 Nは、Cr等と窒化物を形成し、切削加工中の温度上昇により窒化物が分解することで、工具表面にベラーグと呼ばれる酸化物被膜を形成する。ベラーグは、工具表面を保護する作用があるため、工具寿命を向上させることから、Nを含有させてもよい。この作用を有効に発現させるためには、Nは0.0050%以上含有させることが好ましい。一方、0.0150%を超えて添加すると、ベラーグの効果が飽和することに加え、材質が硬質化するため、工具寿命が短くなる。そのため、Nの含有量は、0.0150%以下とすることが好ましい。より好ましくは、0.0060%以上である。より好ましくは、0.0120%以下である。
 本発明では、さらに、必要に応じて、次の成分を含有することができる。
 Ca:0.0010%以下、
 Se:0.30%以下、
 Te:0.15%以下、
 Bi:0.20%以下、
 Sn:0.020%以下、
 Sb:0.025%以下、
 B:0.010%以下、
 Cu:0.50%以下、
 Ni:0.50%以下、
 Ti:0.100%以下、
 V:0.20%以下、
 Zr:0.050%以下および
 Mg:0.0050%以下
から選ばれる1種または2種以上
 Ca、Se、Te、Bi、Sn、Sb、B、Cu、Ni、Ti、V、Zr、Mgは、何れも被削性を向上させる作用を有するため、被削性が重視される場合に添加されてもよい。被削性の向上を目的としてこれら元素を含有させる場合、その添加量が、Ca:0.0001%未満、Se:0.02%未満、Te:0.10%未満、Bi:0.02%未満、Sn:0.003%未満、Sb:0.003%未満、B:0.003%未満、Cu:0.05%未満、Ni:0.50%未満、Ti:0.003%未満、V:0.005%未満、Zr:0.005%未満、Mg:0.0005%未満では十分な効果が得られないので、それぞれ、Ca:0.0001%以上、Se:0.02%以上、Te:0.10%以上、Bi:0.02%以上、Sn:0.003%以上、Sb:0.003%以上、B:0.003%以上、Cu:0.05%以上、Ni:0.05%以上、Ti:0.003%以上、V:0.005%以上、Zr:0.005%以上、Mg:0.0005%以上とすることが好ましい。
 一方、Ca:0.0010%超、Se:0.30%超、Te:0.15%超、Bi:0.20%超、Sn:0.020%超、Sb:0.025%超、B:0.010%超、Cu:0.50%超、Ni:0.50%超、Ti:0.100%超、V:0.20%超、Zr:0.050%超、Mg:0.0050%超の添加量では、この効果が飽和してしまい、また、経済的にも不利である。よって、これら元素の含有量はそれぞれ、Ca:0.0010%以下、Se:0.30%以下、Te:0.15%以下、Bi:0.20%以下、Sn:0.020%以下、Sb:0.025%以下、B:0.010%以下、Cu:0.50%以下、Ni:0.50%以下、Ti:0.100%以下、V:0.20%以下、Zr:0.050%以下 、Mg:0.0050%以下とする。
(鋼組織)
円相当径で1μm未満の硫化物が500個/mm2以上、円相当径で1~5μmの硫化物が2000個/mm2以上分布
 快削鋼の組織に関しては、硫化物が微細分散していることが、切削加工時の工具と被削材の間の潤滑作用を促進するのに有利である。硫化物の微細分散により快削鋼の被削性を確保するためには、鋼組織中に、円相当径1μm未満と円相当径で1~5μmの硫化物が一定量以上に分散している必要がある。円相当径1μm未満の硫化物は主に工具と被削材との間の潤滑に有効である。また、円相当径1~5μmの硫化物は、前記の潤滑効果だけでなく、切りくずの分断性にも有効である。そのため、円相当径で1μm未満の硫化物の個数が500個/mm2以上、円相当径で1~5μmの硫化物が2000個/mm2以上とする。
 以下、本発明の快削鋼を製造するための条件について述べる。
 すなわち、上記した成分組成を有し、長手方向と垂直な断面の一辺の長さが250mm以上である矩形の鋳片を、加熱温度1120℃以上、減面率60%以上にて圧延してビレットとし、該ビレットを加熱温度:1050℃以上、減面率75%以上にて熱間加工する。
(鋳片)
長手方向と垂直な断面の一辺の長さが250mm以上の矩形断面
 まず、前記成分組成に調整された溶鋼を、鋳造して鋳片とするが、鋳片としては、長手方向と垂直な断面の一辺の長さが250mm以上である矩形の鋳片を用いる。
 該鋳片は、連続鋳造法や造塊法によって矩形断面の鋳片として製造する。その際、矩形断面の一辺の長さが250mmより小さいと、鋳片凝固時に硫化物粒のサイズが大きくなる。そのため、引き続き鋼片圧延でビレットとした後も粗大な硫化物が残存するため、最終的な熱間加工された後の硫化物の微細化に不利となる。そのため、鋳片の断面における一辺の長さは250mm以上とする。より好ましくは300mm以上とする。なお、鋳片の断面における一辺の長さについて、上限は特に規制する必要はないが、鋳造に続く熱間圧延の実現性の観点から、上記長さは600mm以下とすることが好ましい。
(鋳片からビレットへの熱間圧延)
鋳片の加熱温度:1120℃以上
 鋳片は、熱間圧延されてビレットとされるが、この熱間圧延の際の加熱温度は1120℃以上とする必要がある。加熱温度が1120℃未満では、鋳造段階において冷却-凝固する際に晶出した粗大な硫化物が固溶せず、ビレットとなった後も粗大な硫化物が残存することとなる。その結果、引き続く熱間加工後も硫化物が粗大なままで、所望の微細な硫化物の分布状態が得られない。そのため、鋳片をビレットへ熱間圧延する際の加熱温度は1120℃以上、好ましくは1150℃以上とする。なお、鋳片の加熱温度について、上限は特に規制する必要はないが、スケールロス抑制の観点から、加熱温度は1300℃以下、より好ましくは1250℃以下とすることが好ましい。
鋳片からビレットへの熱間圧延の減面率:60%以上
 凝固時に晶出した硫化物粒のサイズは大きいため、鋼片圧延である程度サイズを小さくしておく必要がある。熱間圧延での減面率が少ないと、硫化物粒が大きいままビレットとなる。そのため、引き続きビレットを棒鋼や線材へ熱間加工する際の加熱時-圧延時に、硫化物粒を微細化させることが困難である。そのため、鋳片からビレットへ60%以上の減面率にて熱間圧延することとする。
 ここで、熱間圧延の減面率(%)は、熱間圧延前の鋳片の、熱間圧延方向に垂直な断面の断面積をS0、熱間圧延により製造したビレットの熱間圧延方向に垂直な断面の断面積をS1として、次式
 100×(S0-S1)/S0
によって求めることができる。
(ビレットの熱間加工)
加熱温度:1050℃以上
 ビレットを棒鋼あるいは線材へと熱間加工する際の加熱温度は重要な因子である。加熱温度が1050℃未満では、硫化物が微細分散しないため、切削加工時の潤滑作用が少なくなる。その結果、工具摩耗が大きくなるため、工具寿命もが短くなる。従って、ビレットの加熱温度は1050℃以上とする。より好ましくは1080℃以上である。なお、上限は特に規制する必要はないが、スケールロスによる歩留まり低下抑制の観点から1250℃以下とすることが好ましい。
熱間加工の減面率:75%以上
 ビレットを棒鋼あるいは線材へと熱間加工する際の減面率も硫化物の微細化のため重要な因子である。この減面率が75%未満では、硫化物の微細化が十分でないため、減面率の下限を75%とした。より好ましくは80%以上とする。ここで、熱間加工の減面率は、熱間圧延前のビレットの、熱間加工方向に垂直な断面の断面積をS1、熱間加工により製造した棒鋼あるいは線材の熱間加工方向(延伸方向)に垂直な断面の断面積をS2として、次式
 100×(S1-S2)/S1
によって求めることができる。
 上記の鋼片のサイズと加熱温度、加えてビレットサイズと加熱温度、減面率を適正な範囲とすることで、硫化物を微細化し、被削性を向上させることができる。
 次に、本発明を実施例に従って詳細に説明する。
 表1に示す化学組成の鋼を、連続鋳造機にて長手方向と垂直な断面が表2-1および表2-2に示す寸法の矩形形状の鋳片とした。得られた鋳片を表2-1および表2-2に示す製造条件にて棒鋼に圧延した。本発明鋼および比較鋼について以下のような試験に供した。すなわち、鋳片を、表2-1および表2-2に示す加熱温度、減面率にて熱間圧延を行い、長片寸法および短片寸法が表2-1および表2-2に示すとおりの角ビレットとした。得られたビレットを表2-1および表2-2に示す加熱温度にて加熱し、熱間圧延して表2-1および表2-2に示す直径の棒鋼とした。得られた棒鋼(本発明鋼および比較鋼)を、以下に示す試験に供した。
Figure JPOXMLDOC01-appb-T000001
 得られた棒鋼の圧延方向と平行な断面から試験片を採取し、該断面の周面から径方向の1/4位置について、走査型電子顕微鏡SEM(Scanning Electron Microscope:SEM)による観察を行って、鋼中の硫化物の円相当径と数密度とを調査した。ここで、エネルギー分散型X線分析(Energy dispersive X-ray spectrometry:EDX)にて析出物の組成分析を行い、EDXで硫化物であることを確認した析出物について、得られたSEM像を画像解析して2値化を行い、円相当径と数密度を求めた。
 被削性は、外周旋削試験により評価した。切削機械としてシチズンマシナリー製BNC-34C5を用い、旋削チップは日立ツール製の超硬EX35バイトTNGG160404R-N、ホルダは京セラ製DTGNR2020をそれぞれ用いた。また、潤滑剤はユシロ化学製ユシローケンFGE1010の15倍希釈エマルジョン液を用いた。切削条件は、切削速度120m/min、送り速度0.05mm/rev、切込み量2.0mm、加工長さ10mにて行った。
 被削性の評価は、10m長さにわたる切削試験終了後の工具の逃げ面摩耗Vbにより行った。切削試験終了後の逃げ面摩耗Vbが200μm以下の場合を良好として「○」、逃げ面摩耗が200μm超の場合を劣るとして「×」とした。
 表2-1および表2-2に発明鋼と比較鋼の試験結果を示す。表2-1および表2-2から明らかなように、本発明鋼は比較鋼に対して良好な被削性を有している。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003

Claims (6)

  1.  質量%で、
     C:0.09%未満、
     Mn:0.50~1.50%、
     S:0.250~0.600%、
     O:0.0100%超0.0500%以下および
     Cr:0.50~1.50%
    を含有し、残部Feおよび不可避的不純物からなり、下記式(1)で定められるA値が6.0~18.0を満足する成分組成を有し、
     円相当径で1μm未満の硫化物が500個/mm2以上、円相当径で1~5μmの硫化物が2000個/mm2以上分布してなる鋼組織を有する快削鋼。
             記
     A値=2([Mn]+2[Cr])/[S] ・・・(1)
      但し、[M]は[ ]内の元素の含有量(質量%)
  2.  前記成分組成は、さらに、質量%で
     Si:0.50%以下、
     P:0.10%以下、
     Al:0.010%以下および
     N:0.0150%以下
    から選ばれる1種または2種以上を含有する請求項1に記載の快削鋼。
  3.  前記成分組成は、さらに、質量%で
     Ca:0.0010%以下、
     Se:0.30%以下、
     Te:0.15%以下、
     Bi:0.20%以下、
     Sn:0.020%以下、
     Sb:0.025%以下、
     B:0.010%以下、
     Cu:0.50%以下、
     Ni:0.50%以下、
     Ti:0.100%以下、
     V:0.20%以下、
     Zr:0.050%以下および
     Mg:0.0050%以下
    から選ばれる1種または2種以上を含有する請求項1または2に記載の快削鋼。
  4.  質量%で、
     C:0.09%未満、
     Mn:0.50~1.50%、
     S:0.250~0.600%、
     O:0.010%超0.050%以下および
     Cr:0.50~1.50%
    を含有し、残部Feおよび不可避的不純物からなり、下記式(1)で定められるA値が6.0~18.0を満足する成分組成を有し、長手方向と垂直な断面の一辺の長さが250mm以上である矩形の鋳片を、加熱温度1120℃以上、減面率60%以上にて圧延してビレットとし、該ビレットを加熱温度:1050℃以上、減面率75%以上にて熱間加工する快削鋼の製造方法。
               記
     A値=2([Mn]+2[Cr])/[S] ・・・(1)
      但し、[M]は[ ]内の元素の含有量(質量%)
  5.  前記成分組成は、さらに、質量%で
     Si:0.50%以下、
     P:0.10%以下、
     Al:0.010%以下および
     N:0.0150%以下
    から選ばれる1種または2種以上を含有する請求項4に記載の快削鋼の製造方法。
  6.  前記成分組成は、さらに、質量%で
     Ca:0.0010%以下、
     Se:0.30%以下、
     Te:0.15%以下、
     Bi:0.20%以下、
     Sn:0.020%以下、
     Sb:0.025%以下、
     B:0.010%以下、
     Cu:0.50%以下、
     Ni:0.50%以下、
     Ti:0.100%以下、
     V:0.20%以下、
     Zr:0.050%以下および
     Mg:0.0050%以下
    から選ばれる1種または2種以上を含有する請求項4または5に記載の快削鋼の製造方法。
PCT/JP2021/014049 2020-03-31 2021-03-31 快削鋼およびその製造方法 WO2021201178A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020227033225A KR20220144864A (ko) 2020-03-31 2021-03-31 쾌삭강 및 그 제조 방법
US17/907,271 US20230108640A1 (en) 2020-03-31 2021-03-31 Free-cutting steel and method of producing same
EP21780703.1A EP4130303A1 (en) 2020-03-31 2021-03-31 Free-cutting steel and method for manufacturing same
CN202180025472.0A CN115362278B (zh) 2020-03-31 2021-03-31 易切削钢及其制造方法
JP2021538730A JP7024922B1 (ja) 2020-03-31 2021-03-31 快削鋼およびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-063741 2020-03-31
JP2020063741 2020-03-31

Publications (1)

Publication Number Publication Date
WO2021201178A1 true WO2021201178A1 (ja) 2021-10-07

Family

ID=77929205

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/014049 WO2021201178A1 (ja) 2020-03-31 2021-03-31 快削鋼およびその製造方法

Country Status (7)

Country Link
US (1) US20230108640A1 (ja)
EP (1) EP4130303A1 (ja)
JP (1) JP7024922B1 (ja)
KR (1) KR20220144864A (ja)
CN (1) CN115362278B (ja)
TW (1) TWI779544B (ja)
WO (1) WO2021201178A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH026824B2 (ja) 1980-10-02 1990-02-14 Seiko Epson Corp
JPH0925539A (ja) 1995-07-11 1997-01-28 Sumitomo Metal Ind Ltd 強度と靭性に優れた快削非調質鋼
JP2000160284A (ja) 1998-11-25 2000-06-13 Sumitomo Metal Ind Ltd 快削鋼
JP2002249823A (ja) * 2001-02-22 2002-09-06 Kawasaki Steel Corp 快削鋼の製造方法
JP2004027297A (ja) * 2002-06-26 2004-01-29 Nkk Bars & Shapes Co Ltd 表面疵の少ない被削性に優れた硫黄および硫黄複合快削鋼
JP2004176176A (ja) * 2002-11-15 2004-06-24 Nippon Steel Corp 被削性に優れる鋼
JP2005232508A (ja) * 2004-02-18 2005-09-02 Jfe Bars & Shapes Corp 被削性に優れた硫黄および硫黄複合快削鋼
JP2005307243A (ja) * 2004-04-19 2005-11-04 Daido Steel Co Ltd 高硫黄快削鋼
JP2009007591A (ja) * 2007-06-26 2009-01-15 Sumitomo Metal Ind Ltd 低炭素硫黄快削鋼
CN103966531A (zh) * 2014-04-29 2014-08-06 江苏省沙钢钢铁研究院有限公司 一种硫化物形态优异的低碳高硫易切削钢的生产方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH026824A (ja) 1988-06-27 1990-01-11 Mitsubishi Rayon Co Ltd 濾過方法および装置
CN1276985C (zh) * 2001-11-30 2006-09-27 Jfe条钢株式会社 易切钢
US7488396B2 (en) * 2002-11-15 2009-02-10 Nippon Steel Corporation Superior in machinability and method of production of same
JP4264247B2 (ja) * 2002-11-15 2009-05-13 新日本製鐵株式会社 被削性に優れる鋼およびその製造方法
JP3918787B2 (ja) * 2003-08-01 2007-05-23 住友金属工業株式会社 低炭素快削鋼
JP2006206967A (ja) * 2005-01-28 2006-08-10 Sumitomo Metal Ind Ltd 機械構造用快削鋼の連続鋳造方法
KR101091275B1 (ko) * 2009-03-04 2011-12-07 주식회사 포스코 친환경 무연쾌삭강
RU2437739C1 (ru) * 2010-03-29 2011-12-27 ЗАО "Омутнинский металлургический завод" Способ производства автоматной стали ам14

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH026824B2 (ja) 1980-10-02 1990-02-14 Seiko Epson Corp
JPH0925539A (ja) 1995-07-11 1997-01-28 Sumitomo Metal Ind Ltd 強度と靭性に優れた快削非調質鋼
JP2000160284A (ja) 1998-11-25 2000-06-13 Sumitomo Metal Ind Ltd 快削鋼
JP2002249823A (ja) * 2001-02-22 2002-09-06 Kawasaki Steel Corp 快削鋼の製造方法
JP2004027297A (ja) * 2002-06-26 2004-01-29 Nkk Bars & Shapes Co Ltd 表面疵の少ない被削性に優れた硫黄および硫黄複合快削鋼
JP2004176176A (ja) * 2002-11-15 2004-06-24 Nippon Steel Corp 被削性に優れる鋼
JP2005232508A (ja) * 2004-02-18 2005-09-02 Jfe Bars & Shapes Corp 被削性に優れた硫黄および硫黄複合快削鋼
JP2005307243A (ja) * 2004-04-19 2005-11-04 Daido Steel Co Ltd 高硫黄快削鋼
JP2009007591A (ja) * 2007-06-26 2009-01-15 Sumitomo Metal Ind Ltd 低炭素硫黄快削鋼
CN103966531A (zh) * 2014-04-29 2014-08-06 江苏省沙钢钢铁研究院有限公司 一种硫化物形态优异的低碳高硫易切削钢的生产方法

Also Published As

Publication number Publication date
CN115362278B (zh) 2024-02-27
TWI779544B (zh) 2022-10-01
JP7024922B1 (ja) 2022-02-24
US20230108640A1 (en) 2023-04-06
KR20220144864A (ko) 2022-10-27
TW202138583A (zh) 2021-10-16
EP4130303A1 (en) 2023-02-08
CN115362278A (zh) 2022-11-18
JPWO2021201178A1 (ja) 2021-10-07

Similar Documents

Publication Publication Date Title
TWI707047B (zh) 麻田散鐵系s快削不鏽鋼
JP5092578B2 (ja) 低炭素硫黄快削鋼
WO2014125770A1 (ja) 鉛快削鋼
JP4986203B2 (ja) 工具寿命に優れたbn快削鋼
JP4348163B2 (ja) 被削性に優れる鋼及びその製造方法
JP7024922B1 (ja) 快削鋼およびその製造方法
JP7024921B1 (ja) 快削鋼およびその製造方法
JP4023196B2 (ja) 被削性にすぐれた機械構造用鋼
JP6927444B1 (ja) 快削鋼およびその製造方法
JP6814655B2 (ja) フェライト系快削ステンレス線材
JP2019183257A (ja) フェライト系s快削ステンレス鋼
JP2004068128A (ja) 切屑破砕性にすぐれた機械構造用鋼
TWI717990B (zh) 快削鋼及其製造方法
JP2005307241A (ja) 高硫黄快削鋼
JP2004091886A (ja) 被削性にすぐれるとともに切屑破砕性が高い機械構造用鋼
JP4310800B2 (ja) 高硫黄快削鋼
JP4222112B2 (ja) 高硫黄快削鋼
JP2011168859A (ja) 鍛造性に優れるオーステナイト系ステンレス快削鋼棒線
JP2001214239A (ja) 切屑分断性に優れた機械構造用鋼およびその製法
JP2005307243A (ja) 高硫黄快削鋼

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021538730

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21780703

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227033225

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202217057843

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021780703

Country of ref document: EP

Effective date: 20221031