WO2021261593A1 - 航空機のvr訓練システム、航空機のvr訓練方法及び航空機のvr訓練プログラム - Google Patents
航空機のvr訓練システム、航空機のvr訓練方法及び航空機のvr訓練プログラム Download PDFInfo
- Publication number
- WO2021261593A1 WO2021261593A1 PCT/JP2021/024237 JP2021024237W WO2021261593A1 WO 2021261593 A1 WO2021261593 A1 WO 2021261593A1 JP 2021024237 W JP2021024237 W JP 2021024237W WO 2021261593 A1 WO2021261593 A1 WO 2021261593A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- training
- terminal
- setting
- aircraft
- terminals
- Prior art date
Links
- 238000012549 training Methods 0.000 title claims abstract description 507
- 238000000034 method Methods 0.000 title claims description 25
- 238000004088 simulation Methods 0.000 claims abstract description 189
- 238000004891 communication Methods 0.000 claims description 56
- 238000002360 preparation method Methods 0.000 claims description 19
- 238000012545 processing Methods 0.000 description 63
- 230000006870 function Effects 0.000 description 42
- 238000004364 calculation method Methods 0.000 description 33
- 230000033001 locomotion Effects 0.000 description 33
- 230000036544 posture Effects 0.000 description 30
- 238000010586 diagram Methods 0.000 description 12
- 238000012544 monitoring process Methods 0.000 description 8
- 239000013256 coordination polymer Substances 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 238000012790 confirmation Methods 0.000 description 6
- 230000002093 peripheral effect Effects 0.000 description 6
- 238000003825 pressing Methods 0.000 description 6
- 230000004044 response Effects 0.000 description 6
- 239000003550 marker Substances 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- 230000002708 enhancing effect Effects 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 239000004973 liquid crystal related substance Substances 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 238000004804 winding Methods 0.000 description 3
- 238000001514 detection method Methods 0.000 description 2
- 238000007792 addition Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000015654 memory Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09B—EDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
- G09B9/00—Simulators for teaching or training purposes
- G09B9/02—Simulators for teaching or training purposes for teaching control of vehicles or other craft
- G09B9/08—Simulators for teaching or training purposes for teaching control of vehicles or other craft for teaching control of aircraft, e.g. Link trainer
- G09B9/30—Simulation of view from aircraft
- G09B9/301—Simulation of view from aircraft by computer-processed or -generated image
- G09B9/302—Simulation of view from aircraft by computer-processed or -generated image the image being transformed by computer processing, e.g. updating the image to correspond to the changing point of view
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/011—Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/011—Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
- G06F3/014—Hand-worn input/output arrangements, e.g. data gloves
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/017—Gesture based interaction, e.g. based on a set of recognized hand gestures
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T13/00—Animation
- G06T13/20—3D [Three Dimensional] animation
- G06T13/40—3D [Three Dimensional] animation of characters, e.g. humans, animals or virtual beings
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T19/00—Manipulating 3D models or images for computer graphics
- G06T19/006—Mixed reality
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09B—EDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
- G09B5/00—Electrically-operated educational appliances
- G09B5/06—Electrically-operated educational appliances with both visual and audible presentation of the material to be studied
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09B—EDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
- G09B5/00—Electrically-operated educational appliances
- G09B5/08—Electrically-operated educational appliances providing for individual presentation of information to a plurality of student stations
- G09B5/10—Electrically-operated educational appliances providing for individual presentation of information to a plurality of student stations all student stations being capable of presenting the same information simultaneously
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09B—EDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
- G09B5/00—Electrically-operated educational appliances
- G09B5/08—Electrically-operated educational appliances providing for individual presentation of information to a plurality of student stations
- G09B5/12—Electrically-operated educational appliances providing for individual presentation of information to a plurality of student stations different stations being capable of presenting different information simultaneously
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09B—EDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
- G09B9/00—Simulators for teaching or training purposes
- G09B9/02—Simulators for teaching or training purposes for teaching control of vehicles or other craft
- G09B9/08—Simulators for teaching or training purposes for teaching control of vehicles or other craft for teaching control of aircraft, e.g. Link trainer
- G09B9/30—Simulation of view from aircraft
- G09B9/307—Simulation of view from aircraft by helmet-mounted projector or display
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09B—EDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
- G09B9/00—Simulators for teaching or training purposes
- G09B9/02—Simulators for teaching or training purposes for teaching control of vehicles or other craft
- G09B9/08—Simulators for teaching or training purposes for teaching control of vehicles or other craft for teaching control of aircraft, e.g. Link trainer
- G09B9/46—Simulators for teaching or training purposes for teaching control of vehicles or other craft for teaching control of aircraft, e.g. Link trainer the aircraft being a helicopter
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2203/00—Indexing scheme relating to G06F3/00 - G06F3/048
- G06F2203/01—Indexing scheme relating to G06F3/01
- G06F2203/012—Walk-in-place systems for allowing a user to walk in a virtual environment while constraining him to a given position in the physical environment
Definitions
- the technology disclosed here relates to aircraft VR training systems, aircraft VR training methods and aircraft VR training programs.
- Prior Document 1 discloses a system in which a plurality of players play a game in a common VR space. In this system, when the game is started, initial settings such as reading save data for each player and initial placement of operating characters of each player are performed.
- the technology disclosed here was made in view of this point, and the purpose is to smoothly start training while enhancing the training effect in training using VR space.
- the VR training system of an aircraft disclosed herein generates a simulation image for performing simulated training in a common VR space, and provides the simulated image to a corresponding trainer with a plurality of training terminals and the simulation.
- a setting terminal having setting information necessary for generating an image is provided, the setting terminal transmits the setting information to the plurality of training terminals, and the plurality of training terminals are transmitted from the setting terminal.
- the completion notification of the setting of the setting information is transmitted to the setting terminal, and the setting terminal receives the completion notification from all of the plurality of training terminals, the plurality of the setting information is set.
- the training terminal of the above is started the simulation training.
- the VR training method for an aircraft disclosed herein is simulated training by a plurality of trainers corresponding to the plurality of training terminals using simulation images in a common VR space generated by each of the plurality of training terminals.
- This is a VR training method for an aircraft, in which the setting information is transmitted from the setting terminal having the setting information necessary for generating the simulation image to the plurality of training terminals, and the plurality of training terminals are used. Receives the setting information from the setting terminal and sets the setting information, and the plurality of training terminals send a notification of completion of the setting of the setting information to the setting terminal, and the setting.
- the present invention includes causing the plurality of training terminals to start the simulated training.
- the aircraft VR training program disclosed here realizes the function of generating a simulation image for performing simulated training in a common VR space and providing the simulated image to the corresponding trainee on the computer of the training terminal.
- This is a VR training program for an aircraft to receive the setting information from a setting terminal having the setting information necessary for generating the simulation image, and set the setting information, and the setting information.
- the computer is provided with a function of transmitting a setting completion notification to the setting terminal and a function of receiving the simulation training start notification from the setting terminal and starting the simulation training.
- the VR training program of the aircraft disclosed here is for setting a function of causing a plurality of training terminals to start the simulation training by providing a simulation image for performing a simulation training in a common VR space to a corresponding trainer. It is a VR training program to be realized on the computer of the terminal, and has a function of transmitting the setting information necessary for generating the simulation image to the plurality of training terminals and a notification of completion of the setting of the setting information. Upon receiving from all of the training terminals, the computer realizes a function of transmitting a start notification for starting the simulated training to the plurality of training terminals.
- the training can be started smoothly while enhancing the training effect.
- FIG. 1 is a diagram showing a configuration of a VR training system.
- FIG. 2 is a schematic diagram showing a state of a real space where training is performed using a VR training system.
- FIG. 3 shows an example of a helicopter generated in the VR space.
- FIG. 4 is a block diagram of training terminals for pilots and co-pilots and their peripheral devices.
- FIG. 5 is a block diagram of a training terminal for hoistmen and descendants and their peripheral devices.
- FIG. 6 is a block diagram of a setting terminal and its peripheral devices.
- FIG. 7 is a flowchart of the training start process of the setting terminal.
- FIG. 8 is a flowchart of the training start process of the training terminal.
- FIG. 9 is a flowchart showing the flow of various trainings in the simulated training.
- FIG. 10 is an example of a simulation image of a hoist man during flight training.
- FIG. 11 is an example of a simulation image of a hoist man or a descent member during descent training.
- FIG. 12 is an example of a simulated image of a descent member during descent training.
- FIG. 13 is a diagram showing an example of an arrangement situation in the VR space during descent training.
- FIG. 14 is an example of a simulation image of the co-pilot during descent training.
- FIG. 15 is an example of a simulated image of a hoist man during descent training.
- FIG. 16 is an example of a simulated image of a descendant in rescue training.
- FIG. 17 is an example of a simulated image of a descendant in rescue training.
- FIG. 18 is an example of a simulated image of a descendant in a pull-up training.
- FIG. 1 is a diagram showing a configuration of a VR training system 100.
- FIG. 2 is a schematic diagram showing a state of a real space where training is performed using the VR training system 100. Note that FIG. 2 omits the illustration of each terminal.
- the VR training system 100 is a system for performing simulated training (hereinafter referred to as "VR training") in a common VR space.
- This VR training system 100 is used for VR training in an aircraft (in this example, a helicopter).
- the VR training system 100 generates a simulation image for performing simulation training in a common VR space, provides a plurality of training terminals 1 to provide the simulation image to the corresponding trainer 9, and a setting necessary for generating the simulation image. It is equipped with a setting terminal 6 having information.
- the simulation image is an image that forms a VR space, and is a so-called VR image.
- the simulation image includes the trainer 9's avatar and the aircraft's airframe.
- Each of the plurality of training terminals 1 is connected so as to be able to communicate with each other. Further, the plurality of training terminals 1 are connected to the setting terminal 6 so as to be able to communicate with each other. Each of these terminals is connected by wire via a LAN or the like. In addition, each terminal may be a wireless connection.
- the simulated training is a collaborative training by a plurality of trainers 9 corresponding to each of the plurality of training terminals 1.
- the plurality of trainers 9 use the VR training system 100 to perform cooperative training in a rescue helicopter in a common VR space.
- the trainee 9 includes, for example, a pilot 91, a co-pilot 92, a hoistman 93, and a descent member 94.
- trainer 9 Collaborative training is training conducted by a plurality of trainers 9 in collaboration with each other.
- the cooperative training is a training in which a plurality of trainers 9 fly a helicopter to a point where a rescuer is present and rescue the rescuer.
- the contents of the cooperative training include flight of the helicopter from the starting point by the pilot 91 to the place of the person requiring rescue, flight assistance and safety confirmation by the co-pilot 92 in flight, descent by the hoistman 93 and the descent member 94, and Includes raising etc.
- FIG. 3 shows an example of a helicopter generated in the VR space.
- the helicopter 8 includes an airframe 80, a boom 81 that cantilevers from the upper part of the airframe 80 to the right or left side, a hoist cable 82 suspended from the boom 81, and a rescue band connected to the hoist cable 82. It has a winding machine 84 for winding the hoist cable 82, and a pendant type operation unit for operating the winding machine 84.
- the co-pilot avatar 91A which is the avatar of the co-pilot 91
- the co-pilot avatar 92A which is the co-pilot 92
- the hoist man avatar 93A which is the avatar of the hoist man 93
- the descendant avatar which is the avatar of the descendant 94, is also basically arranged in the aircraft 80.
- the training terminal 1 is a terminal for the trainee 9.
- One training terminal 1 is assigned to each trainer 9.
- Each training terminal 1 generates a simulation image for the corresponding trainer 9.
- each training terminal 1 generates a simulation image of the corresponding trainer 9 from the first-person viewpoint. That is, each training terminal 1 generates simulation images of different viewpoints in a common VR space.
- four training terminals 1 are provided for four trainers 9.
- a VR display device 2 is connected to each training terminal 1.
- the VR display device 2 displays a simulation image generated by the training terminal 1.
- the VR display device 2 is attached to the head of the trainee 9.
- the VR display device 2 is an HMD (Head Mounted Display).
- the HMD may be a goggle-shaped VR-dedicated device having a display, or may be configured by attaching a smartphone or a portable game device to a holder that can be worn on the head.
- the VR display device 2 displays a three-dimensional image including an image for the right eye and an image for the left eye.
- the VR display device 2 may have a headphone 28 and a microphone 29.
- the trainee 9 interacts with other trainees 9 via the headphones 28 and the microphone 29. Further, the trainee 9 can hear the voice required for the simulation through the headphones 28.
- the VR training system 100 further includes an operating device used by the trainee 9 in simulated training.
- the trainee 9 operates the operating device according to the training content.
- the operation device is appropriately changed according to the trainee 9 and the operation content.
- the VR training system 100 includes a control device 3A for the pilot 91 and a control device 3A for the co-pilot 92.
- the VR training system 100 comprises two controllers 3B for the Hoistman 93 and two controllers 3B for the descent 94.
- the control device 3A is operated by the trainer 9 who operates the aircraft among the plurality of trainers 9, that is, the pilot 91 or the co-pilot 92.
- the control device 3A receives the operation input of the pilot 91 or the co-pilot 92.
- the control device 3A has a control stick 31, a pedal 32, and a collective pitch lever 33 (hereinafter, referred to as “CP lever 33”).
- CP lever 33 a collective pitch lever 33
- Each of the control stick 31, the pedal 32, and the CP lever 33 is provided with a sensor for detecting the amount of operation. Each sensor outputs an operation signal according to the operation amount.
- the control device 3A further has a seat 34.
- the position and attitude of the aircraft in the simulation image, specifically, the helicopter 8 is changed.
- the control device 3A is connected to the airframe calculation terminal 5. That is, the operation signals from the control stick 31, the pedal 32, and the CP lever 33 are input to the machine calculation terminal 5.
- the aircraft calculation terminal 5 calculates the amount of movement and the amount of change in attitude of the aircraft based on the operation input via the control device 3A.
- the machine calculation terminal 5 is a terminal provided in the VR training system 100 in order to reduce the calculation load of the training terminal 1.
- the machine calculation terminal 5 is communicably connected to each of the plurality of training terminals 1 and setting terminals 6.
- the machine calculation terminal 5, the plurality of training terminals 1, and the setting terminal 6 are connected by wire via a LAN or the like.
- the machine calculation terminal 5 and the plurality of training terminals 1 and setting terminals 6 may be wirelessly connected.
- the aircraft calculation terminal 5 transmits the movement amount information regarding the movement amount of the aircraft and the change amount of the attitude to at least one of the training terminal 1 of the pilot 91 and the training terminal 1 of the co-pilot 92.
- the training terminal 1 that has received the movement amount information calculates the position and posture of the aircraft 80 in the VR space based on the movement amount information. That is, the aircraft calculation terminal 5 and the training terminal 1 that receives the movement amount information form the aircraft terminal 50 that calculates the position and attitude of the aircraft 80 in the VR space based on the operation input via the control device 3A. ..
- Controller 3B is a portable device.
- the trainee 9 ie, Hoistman 93 and descent 94
- the controller 3B has a motion tracker function. That is, the controller 3B is sensed by the tracking system 4 described later.
- the controller 3B has an operation switch 35 (see FIG. 5) that receives the input of the trainee 9.
- the operation switch 35 outputs an operation signal corresponding to the input from the trainee 9.
- the controller 3B is connected to the training terminal 1 of the hoist man 93 or the descent member 94. That is, the operation signal from the operation switch 35 is input to the training terminal 1 of the corresponding hoist man 93 or the descendant 94.
- the setting terminal 6 accepts input of setting information from an administrator (for example, an instructor) who has the authority to perform initial settings.
- the setting terminal 6 sets the input setting information as an initial setting.
- the setting terminal 6 transmits the setting information to the training terminal 1 and also transmits the notification of the start of the simulation training to the training terminal 1. Further, the setting terminal 6 displays a simulation image in the training. However, in the present embodiment, the setting terminal 6 does not generate a simulation image.
- the setting terminal 6 acquires and displays a simulation image generated by the training terminal 1. This allows a person other than the trainer 9 (eg, an instructor) to monitor the training simulation.
- the setting terminal 6 may acquire information from each training terminal 1 and generate a simulation image of each trainer 9.
- the VR training system 100 has a tracking system 4.
- the tracking system 4 detects the movements of a plurality of trainers 9 in the real space.
- the tracking system 4 senses the VR display device 2 and the controller 3B.
- the tracking system 4 is an outside-in type tracking system in this example.
- the tracking system 4 has a plurality of tracking sensors 41 and a communication device 42 (see FIGS. 4 and 5) that receives signals from the tracking sensors 41.
- the tracking sensor 41 is, for example, a camera.
- the tracking sensor 41 is arranged so that the real space in which the trainee 9 exists can be photographed in stereo.
- Each of the VR display device 2 and the controller 3B is provided with a light emitting type tracking marker.
- the plurality of tracking sensors 41 take stereo images of the tracking markers of the VR display device 2 and the controller 3B, respectively.
- the tracking system 4 is common to a plurality of trainees 9. That is, the VR display device 2 and the controller 3B of the plurality of trainees 9 are sensed, that is, tracked by the common tracking system 4.
- the image data captured by the tracking sensor 41 is transmitted to the communication device 42.
- the communication device 42 transmits the received image data to the training terminal 1.
- the communication device 42 is, for example, a cable modem, a soft modem, or a wireless modem.
- Each of the training terminals 1 obtains the position and posture of the corresponding trainer 9 in the VR space by image processing the image data from the tracking system 4.
- each of the training terminals 1 of the Hoistman 93 and the descendant 94 responds by image processing the image data from the tracking system 4 based on the tracking marker of the corresponding trainer 9 controller 3B. The position and posture of both hands in the VR space of the avatar of the trainee 9 are obtained.
- FIG. 4 is a block diagram of the training terminal 1 of the pilot 91 and the co-pilot 92 and their peripheral devices.
- the VR display device 2, the aircraft calculation terminal 5, and the tracking system 4 are connected to the training terminal 1 of the pilot 91 and the co-pilot 92.
- a control device 3A is connected to the machine calculation terminal 5.
- the training terminal 1 has an input unit 11, a communication unit 12, a storage unit 13, and a processing unit 14.
- the input unit 11 receives the operation input from the trainee 9.
- the input unit 11 outputs an input signal corresponding to the operation input to the processing unit 14.
- the input unit 11 is a touch panel operated by pressing a screen such as a keyboard, a mouse, or a liquid crystal display.
- the communication unit 12 is an interface for communicating with other terminals and the like.
- the communication unit 12 is formed of a cable modem, a soft modem, or a wireless modem.
- the communication unit 22, the communication unit 51, and the communication unit 63, which will be described later, are also configured in the same manner as the communication unit 12.
- the communication unit 12 realizes communication with other terminals such as another training terminal 1, an airframe calculation terminal 5, and a setting terminal 6.
- the storage unit 13 is a computer-readable storage medium that stores various programs and various data.
- the storage unit 13 is formed of a magnetic disk such as a hard disk, an optical disk such as a CD-ROM and a DVD, or a semiconductor memory.
- the storage unit 52 and the storage unit 64, which will be described later, are also configured in the same manner as the storage unit 13.
- the storage unit 13 stores the simulation program 131, the field definition data 132, the avatar definition data 133, the object definition data 134, the voice data 135, and the like.
- the simulation program 131 is a program for generating a simulation image for performing simulation training in a common VR space and realizing various functions of providing the simulation image to the corresponding trainee 9 in the computer, that is, the processing unit 14. Is.
- the simulation program 131 is read and executed by the processing unit 14.
- the field definition data 132 defines the field in which the training is performed.
- the field definition data 132 defines objects such as the size of the field, the terrain of the field, and obstacles in the field.
- the field definition data 132 is prepared for each type of field in which training is performed.
- the avatar definition data 133 defines one's own avatar (hereinafter referred to as "own avatar") and another trainer 9's avatar (hereinafter referred to as "other avatar”).
- the avatar definition data 133 is prepared for each type of avatar.
- the avatar definition data 133 of the own avatar includes not only the CG data of the own avatar (for example, polygon data) but also the initial position information (information regarding the initial position and the initial posture in the VR space).
- the position information (including the initial position information) of the avatar is the position coordinates (x, y, z) of the three orthogonal axes in the VR space as the information on the position, and the rotation angle ( ⁇ ) around each axis as the information on the posture. , ⁇ , ⁇ ) and.
- the position information of an object such as the aircraft 80 of the helicopter 8 described later.
- the object definition data 134 defines various objects required for training.
- the object definition data 134 is prepared for each type of object. For example, the body 80 of the helicopter 8, the boom 81, the hoist cable 82, the rescue band 83, the hoist 84, the pendant type operation unit, the person requiring rescue 88 (see FIGS. 16 and 17), and the object definition data 134 such as the ground surface are prepared. Has been done.
- the voice data 135 is data related to sound effects during simulation such as the flight sound of a helicopter.
- the processing unit 14 has various processors such as a CPU (Central Processing Unit), GPU (Graphics Processing Unit) and / or DSP (Digital Signal Processor), and various semiconductor memories such as VRAM, RAM and / or ROM. There is.
- the processing unit 25, the processing unit 53, and the processing unit 65, which will be described later, are also configured in the same manner as the processing unit 14.
- the processing unit 14 By reading and executing various programs stored in the storage unit 13, the processing unit 14 comprehensively controls each unit of the training terminal 1 and realizes various functions for providing simulation images. Specifically, the processing unit 14 has a communication control unit 141, a setting unit 142, a completion notification unit 143, a tracking control unit 144, a voice generation unit 145, and a simulation progress unit 146 as functional blocks.
- the communication control unit 141 executes communication processing with an external terminal or device via the communication unit 12.
- the communication control unit 141 executes data processing related to data communication.
- the setting unit 142 receives the setting information related to the generation of the simulation image from the setting terminal 6 and sets the setting information.
- the setting unit 142 sets various setting information as initial settings.
- the completion notification unit 143 sends a completion notification of the setting information setting to the setting terminal 6.
- the tracking control unit 144 calculates the position and posture of the corresponding avatar of the trainer 9 in the VR space based on the detection result of the tracking system 4.
- the tracking control unit 144 executes various arithmetic processes related to tracking based on the image data from the tracking sensor 41 input via the communication device 42. Specifically, the tracking control unit 144 tracks the tracking marker of the corresponding trainer 9's VR display device 2 by image processing the image data, and obtains the position and posture of the trainer 9 in the real space.
- the tracking control unit 144 obtains the position and posture of the self-avatar in the VR space based on a predetermined coordinate correspondence relationship with respect to the position and posture of the trainee 9 in the real space.
- position information Information regarding the position and posture of the own avatar in the VR space obtained by the tracking control unit 144 is referred to as position information.
- position and posture of avatar and “position of avatar” mean “position and posture in VR space” and “position in VR space”, respectively.
- the voice generation unit 145 reads the voice data 135 from the storage unit 13 and generates voice according to the progress of the simulation.
- the simulation progress unit 146 executes various arithmetic processes related to the progress of the simulation. For example, the simulation progress unit 146 generates a simulation image.
- the simulation progress unit 146 reads out the field definition data 132 and the object definition data 134 from the storage unit 13 based on the initial settings of the setting unit 142, and generates a simulation image in which the object image is combined with the field image.
- the simulation progress unit 146 reads the avatar definition data 133 corresponding to the avatar from the storage unit 13, synthesizes the avatar (for example, the limbs of the avatar) in the VR space based on the position information of the avatar, and simulates. Generate an image.
- the cockpit 91 and the co-pilot 92 may be maintained in a state of being seated in the cockpit and the co-pilot seat in the VR space. That is, in the simulation image, the positions of the own avatars of the pilot 91 and the co-pilot 92 in the aircraft 80 are fixed, and only the head of the own avatar may move (rotate and tilt). In that case, the simulation progress unit 146 of the training terminal 1 of the pilot 91 and the co-pilot 92 does not have to generate an image of the own avatar.
- the simulation progress unit 146 acquires and acquires the position information of the other avatar, which is the avatar of the trainer 9 corresponding to the other training terminal 1 among the plurality of training terminals 1, from the other training terminal 1. Another avatar is generated in the VR space based on the obtained position information. Specifically, the simulation progress unit 146 reads the avatar definition data 133 corresponding to the other avatar from the storage unit 13, and sets the other avatar in the VR space based on the position information of the other avatar acquired from the other training terminal 1. Generate a simulation image by synthesizing.
- the simulation progress unit 146 receives a notification of the start of the simulation training from the setting terminal 6 and starts the simulation training. That is, the simulation progress unit 146 starts training in the simulation image.
- the simulation progress unit 146 controls the progress of the simulation of the cooperative training during the simulation training.
- the simulation progress unit 146 is based on the movement amount information from the machine calculation terminal 5 described later (information on the movement amount of the machine and the change amount of the attitude according to the operation input of the control device 3A) of the machine 80. Calculate the position and posture in the VR space.
- the simulation progress unit 146 converts the amount of movement and the amount of change in the attitude of the aircraft from the aircraft calculation terminal 5 into the amount of movement and the amount of change in the attitude of the aircraft 80 in the coordinate system of the VR space, and the position of the aircraft 80 in the VR space. And calculate the posture.
- the helicopter 8 moves, that is, flies in the VR space in response to the operation input of the control device 3A.
- the calculation of the position and attitude of the aircraft 80 in this VR space is executed by the training terminal 1 of the pilot 91 and the co-pilot 92, whichever has the aircraft control function enabled. It is possible to switch which of the training terminals 1 of the pilot 91 and the co-pilot 92 is enabled for the training terminal 1. Normally, the maneuvering function of the training terminal 1 of the pilot 91 is effectively set. Depending on the training situation, the control function of the training terminal 1 of the co-pilot 92 may be effectively set.
- the simulation progress unit 146 operates its own avatar in the VR space based on the position information from the tracking control unit 144, and in the VR space based on the position information of the other avatar received from the other training terminal 1. Operate other avatars.
- the cockpits of the pilot 91 and the co-pilot 92 are fixed to the cockpit and the co-pilot seat in the VR space, only the head of the cockpit operates (rotates and tilts).
- the own avatars of the pilot 91 and the co-pilot 92 may operate not only in the head but also in the VR space based on the position information from the tracking control unit 144 like the other avatars. ..
- the simulation progress unit 146 changes the position or angle of the frame of the simulation image to be displayed according to the change in the orientation of the head of the pilot 91 or the co-pilot 92 based on the position information from the tracking control unit 144. ..
- the simulation progress unit 146 outputs the generated simulation image to the VR display device 2 and the setting terminal 6. At this time, the simulation progress unit 146 outputs the voice generated by the voice generation unit 145 to the headphones 28 and the setting terminal 6 as needed.
- the VR display device 2 has an input unit 21, a communication unit 22, a storage unit 23, a display unit 24, and a processing unit 25.
- the input unit 21 receives the operation input from the trainee 9.
- the input unit 21 outputs an input signal corresponding to the operation input to the processing unit 25.
- the input unit 21 is an operation button, a slide switch, or the like.
- the communication unit 22 is an interface that realizes communication with the training terminal 1.
- the storage unit 23 is a computer-readable storage medium that stores various programs and various data.
- the storage unit 23 is formed of a semiconductor memory or the like.
- the storage unit 23 stores programs and various data for realizing various functions for displaying the simulation image on the display unit 24 on the computer, that is, the processing unit 25.
- the display unit 24 is, for example, a liquid crystal display or an organic EL display.
- the display unit 24 can display an image for the right eye and an image for the left eye.
- the processing unit 25 comprehensively controls each unit of the VR display device 2 by reading and executing various programs stored in the storage unit 23, and also provides various functions for displaying the simulation image on the display unit 24. Realize.
- the machine calculation terminal 5 has a communication unit 51, a storage unit 52, and a processing unit 53.
- An operation signal output from the control device 3A is input to the aircraft calculation terminal 5.
- operation signals corresponding to the pressing of the switch and the operation amount are input from each of the control stick 31, the pedal 32, and the CP lever 33.
- the aircraft calculation terminal 5 calculates the amount of movement of the aircraft and the amount of change in posture according to the operation amount of the control device 3A, and outputs the movement amount information.
- the communication unit 51 is an interface that realizes communication with the training terminal 1 and the like.
- the storage unit 52 stores the arithmetic program 521 and the like.
- the calculation program 521 is a program for realizing various functions for calculating the position and attitude of the aircraft body 80 in the VR space in the computer, that is, the processing unit 53.
- the arithmetic program 521 is read and executed by the processing unit 53.
- the processing unit 53 comprehensively controls each unit of the machine calculation terminal 5 by reading and executing various programs stored in the storage unit 52, and calculates the amount of movement and the amount of change in posture of the machine. Realize various functions.
- the processing unit 53 has a communication control unit 531 and an airframe calculation unit 532 as functional blocks.
- the communication control unit 531 executes communication processing with the training terminal 1 and the like via the communication unit 51.
- the communication control unit 531 executes data processing related to data communication.
- the aircraft calculation unit 532 calculates the amount of movement of the aircraft and the amount of change in attitude based on the operation signal from the control device 3A. Specifically, the aircraft calculation unit 532 of the aircraft according to the pressing of the switches of the control stick 31, the pedal 32 and the CP lever 33 and the operation amount based on the operation signals from the control stick 31, the pedal 32 and the CP lever 33. Calculate the amount of movement and the amount of change in posture. The machine calculation unit 532 transmits the calculated movement amount information regarding the movement amount and the change amount of the posture of the machine to the training terminal 1.
- FIG. 5 is a block diagram of the training terminal 1 of the hoist man 93 and the descent member 94 and their peripheral devices.
- a VR display device 2 a controller 3B, and a tracking system 4 are connected to the training terminal 1 of the hoist man 93 and the descent member 94.
- the controller 3B has an operation switch 35.
- the operation signal of the operation switch 35 is input to the training terminal 1.
- the basic configuration of the training terminal 1 of the hoist man 93 and the descent member 94 is the same as that of the training terminal 1 of the pilot 91 and the co-pilot 92. However, due to the difference in training content between the hoist man 93 and the descendant 94 and the pilot 91 and the co-pilot 92, the processing content of the training terminal 1 of the hoist man 93 and the descendant 94 is the pilot 91 and the co-pilot 92. It is a little different from the training terminal 1 of the co-pilot 92.
- the tracking control unit 144 calculates the position and posture of the corresponding avatar of the trainer 9 in the VR space based on the detection result of the tracking system 4.
- the tracking control unit 144 executes various arithmetic processes related to tracking based on the image data from the tracking sensor 41 input via the communication device 42.
- the tracking control unit 144 tracks the tracking marker of the corresponding trainer 9's VR display device 2 by image processing the image data, and obtains the position and posture of the trainer 9 in the real space.
- the tracking control unit 144 obtains the position and posture of the self-avatar based on a predetermined coordinate correspondence relationship with respect to the position and posture of the trainee 9 in the real space.
- the tracking control unit 144 tracks the tracking marker of the controller 3B by image processing the image data, and obtains the positions and postures of both hands of the trainee 9 in the real space.
- the tracking control unit 144 obtains the positions and postures of both hands of the own avatar based on a predetermined coordinate correspondence relationship with respect to the positions and postures of both hands of the trainee 9 in the real space. That is, the tracking control unit 144 of the training terminal 1 of the hoist man 93 and the descent member 94 obtains the position and posture of the own avatar and the positions and postures of both hands of the own avatar as position information.
- the simulation progress unit 146 generates a simulation image and controls the progress of the simulation of the cooperative training.
- the hoist man 93 and the co-pilot 94 can move inside and outside the aircraft. Therefore, the simulation progress unit 146 freely moves its own avatar in the VR space. Further, the simulation progress unit 146 displays the position or angle of the frame of the simulation image to be displayed according to the change in the position or orientation of the head of the hoist man 93 or the descendant 94 based on the position information from the tracking control unit 144. To change.
- the simulation progress unit 146 causes its own avatar to execute processing according to the operation signal in the VR space in response to the operation signal from the operation switch 35 of the controller 3B.
- the processing according to the operation signal is, for example, opening / closing the door of the helicopter 8 or operating the pendant type operation unit.
- FIG. 6 is a block diagram of the setting terminal 6 and its peripheral devices.
- the setting terminal 6 has a display unit 61, an input unit 62, a communication unit 63, a storage unit 64, and a processing unit 65.
- the display unit 61 is, for example, a liquid crystal display, an organic EL display, or a projector and a screen.
- the input unit 62 accepts an input operation of an administrator (for example, an instructor) who has the authority to perform initial settings.
- the input unit 62 is, for example, a keyboard, a mouse, or a touch panel.
- the communication unit 63 is an interface that realizes communication with the training terminal 1 and the like.
- the storage unit 64 stores the start program 641 and the like.
- the start program 641 provides a computer, that is, a processing unit 65, with various functions for starting simulation training on a plurality of training terminals 1 that provide simulation images for performing simulation training in a common VR space to corresponding trainers. It is a program to realize it.
- the start program 641 is read and executed by the processing unit 65.
- the processing unit 65 By reading and executing various programs stored in the storage unit 64, the processing unit 65 comprehensively controls each unit of the setting terminal 6 and realizes various functions for performing initial settings related to simulation. Specifically, the processing unit 65 has a communication control unit 651, a setting unit 652, a start notification unit 653, and a monitoring unit 654 as functional blocks.
- the communication control unit 651 executes communication processing with an external terminal or device via the communication unit 63.
- the communication control unit 651 executes data processing related to data communication.
- the setting unit 652 accepts input from the user of various setting information related to the initial setting required for generating the simulation image, and sets the input setting information as the initial setting.
- the setting unit 652 causes the display unit 61 to display the setting input screen stored in the storage unit 64.
- the setting unit 652 stores the setting information input to the setting input screen via the input unit 62 in the storage unit 64 as an initial setting. Further, the setting unit 652 transmits the setting information to the plurality of training terminals 1.
- the start notification unit 653 When the start notification unit 653 receives the completion notification of the setting of the setting information from all of the plurality of training terminals 1, it sends a start notification to start the simulated training to the plurality of training terminals 1. By notifying all the training terminals 1 of the start from the start notification unit 653, the training is started in each training terminal 1.
- the monitoring unit 654 receives a simulation image from each training terminal 1. That is, the monitoring unit 654 receives the simulation image of the first-person viewpoint corresponding to each trainer 9.
- the monitoring unit 654 causes the display unit 61 to display a simulation image of the first-person viewpoint of any one trainer 9. Alternatively, the monitoring unit 654 causes the display unit 61 to display the simulation images of the first-person viewpoints of all the trainees 9 separately.
- the monitoring unit 654 may display the simulation image of any one of the first-person viewpoints on the display unit 61 according to the selection operation via the input unit 62. ..
- FIG. 7 is a flowchart of the training start process of the setting terminal 6.
- step Sa1 the processing unit 65 accepts the input of the initial setting. Specifically, the setting unit 652 displays the setting input screen for performing the initial setting on the display unit 61, and receives the input of the setting information from the administrator via the input unit 62.
- the setting unit 652 includes information for specifying the number of connected terminals (hereinafter referred to as "terminal number information”) and information for specifying the IP address of the connected terminal (hereinafter referred to as “terminal address information”). ), Information that identifies the training field in which the training simulation is performed (hereinafter referred to as "field information"), and the orientation of the helicopter boom (that is, whether the boom extends to the left or right of the helicopter). It accepts input of information (hereinafter referred to as "boom information”) and information specifying the position of a rescuer in the training field (hereinafter referred to as "rescuer information"). The trainee who participates in the training is specified by the terminal number information and the terminal address information.
- the field information also includes a preset initial position of the helicopter in the training field (that is, the initial position of the origin of the local coordinate system of the helicopter).
- the terminal number information, terminal address information, field information, boom information, and rescue-requiring person information are examples of setting information, and are not limited thereto.
- the setting unit 652 sets these setting information as initial settings.
- the initial position of the helicopter may not be included in the field information but may be input as one item of the setting information.
- the processing unit 65 determines in step Sa2 whether or not the initial setting is completed. Specifically, the setting unit 652 determines whether or not the initial setting is completed depending on whether or not the administrator has performed an input completion operation via the input unit 62. If the initial setting is not completed, the setting unit 652 repeats the processes of steps Sa1 and Sa2.
- Step Sa3 corresponds to transmitting the setting information from the setting terminal having the setting information necessary for generating the simulation image to the plurality of training terminals.
- step Sa4 determines in step Sa4 whether or not the setting information has been transmitted to all the training terminals 1.
- step Sa5 the processing unit 65 proceeds to step Sa5, while the transmission of the setting information to all the training terminals 1 is not completed.
- the processing unit 65 repeats the processing of steps Sa3 and Sa4.
- step Sa5 the processing unit 65 receives a completion notification indicating the completion of preparation of the training terminal 1 from the training terminal 1.
- the processing unit 65 determines in step Sa6 whether or not the completion notification has been received from all the training terminals 1. If the completion notification has not been received from any of the training terminals 1, the start notification unit 653 repeats the processes of steps Sa5 and Sa6.
- Step Sa7 When the completion notification is received from all the training terminals 1, the start notification unit 653 transmits the training start notification to all the training terminals 1 in step Sa7. With this start notification as a trigger, training is started in all training terminals 1. Steps Sa5 to Sa7 correspond to causing the plurality of training terminals to start the simulated training when the setting terminal receives the completion notification from all of the plurality of training terminals.
- the processing unit 65 specifically, the monitoring unit 654 causes the display unit 61 to display the simulation image in the VR space.
- the manager such as an instructor can monitor the cooperative training by the trainee 9 while watching the display unit 61.
- FIG. 8 is a flowchart of the training start process of the training terminal 1. The following training start processing is independently performed in each of the training terminals 1.
- step Sb1 the processing unit 14 establishes communication with the setting terminal 6.
- the trainee 9 makes an input requesting connection with the setting terminal 6 via the input unit 11 of the training terminal 1 or the input unit 21 of the VR display device 2.
- the input requesting connection with the setting terminal 6 may be an operation signal output from the control stick 31, the pedal 32, or the CP lever 33 of the control device 3.
- the simulation progress unit 146 Upon receiving the input of the connection request with the setting terminal 6, the simulation progress unit 146 transmits the connection request to the setting terminal 6. On the other hand, the simulation progress unit 146 receives the connection completion response from the setting terminal 6 to establish communication with the setting terminal 6.
- the simulation progress unit 146 also receives the initial setting setting information from the setting terminal 6 (step Sb2).
- the setting unit 142 sets the received setting information as the initial setting of the simulation.
- Steps Sb2 and Sb3 correspond to a plurality of training terminals receiving setting information from the setting terminal and setting the setting information.
- the simulation progress unit 146 reads out the field definition data 132, the avatar definition data 133, and the object definition data 134 from the storage unit 13 based on the initial setting in step Sb4, and displays the object image and the own avatar in the field image.
- a VR space in which images are combined is generated to generate a simulation image.
- the own avatar is a trainer existing in the aircraft 80
- the initial position information included in the avatar definition data 133 of the own avatar is fixed to the aircraft 80 instead of the absolute coordinate system in the VR space. It is the position information based on the local coordinate system in the aircraft 80 having the origin. That is, the self-avatar is displayed at a position relative to the aircraft 80 in the VR space.
- the simulation progress unit 146 outputs, that is, provides the generated simulation image to the VR display device 2. Accordingly, the VR display device 2 displays a simulation image.
- the simulation progress unit 146 establishes communication with all other training terminals 1 in step Sb5. Specifically, the trainer 9 makes an input requesting connection with another training terminal 1 via the input unit 11 of the training terminal 1 or the input unit 21 of the VR display device 2. On the other hand, the simulation progress unit 146 transmits a connection request to the other training terminal 1. On the other hand, the simulation progress unit 146 receives the connection completion response from the other training terminal 1 to establish communication with the other training terminal 1. The simulation progress unit 146 establishes communication with all other training terminals 1.
- the training terminal 1 for which the control function is enabled also establishes communication with the aircraft calculation terminal 5.
- step Sb6 the simulation progress unit 146 sends the other training terminal 1 to the initial position information (that is, the position coordinates (i.e., position coordinates)) of the own avatar in the VR space. y, z) and the angle of rotation ( ⁇ , ⁇ , ⁇ )) are transmitted.
- the initial position information that is, the position coordinates (i.e., position coordinates)
- y, z) and the angle of rotation ( ⁇ , ⁇ , ⁇ ) are transmitted.
- step Sb7 the simulation progress unit 146 receives initial position information (that is, position coordinates (x, y, z) and rotation angle ( ⁇ , ⁇ ) of the other avatar in the VR space from the other training terminal 1. , ⁇ ))) is received.
- initial position information that is, position coordinates (x, y, z) and rotation angle ( ⁇ , ⁇ ) of the other avatar in the VR space from the other training terminal 1. , ⁇ )
- the simulation progress unit 146 Upon receiving the initial position information of the other avatar, in step Sb8, the simulation progress unit 146 displays the other avatar. Specifically, the simulation progress unit 146 reads the avatar definition data 133 corresponding to the other avatar from the storage unit 13, and synthesizes the other avatar at the initial position in the VR space generated in step Sb4. At this time, the initial position information of the other avatar existing in the machine 80 is not the absolute coordinate system in the VR space, but the position information based on the local coordinate system in the machine 80 having the origin fixed to the machine 80. That is, the other avatar is displayed at a position relative to the aircraft 80 in the VR space.
- the simulation progress unit 146 determines whether or not the preparation of the training terminal 1 is completed. For example, when the preparation for the simulation is completed, the trainee 9 operates the input unit 21 of the VR display device 2 to input the preparation completion. The preparation for the simulation depends on the trainee 9. The preparation of the pilot 91 or the co-pilot 92 is to sit on the seat 34 of the pilot device 3A and to attach the VR display device 2. The preparation of the hoist man 93 and the descent member 94 is the installation of the VR display device 2 and the controller 3B. The simulation progress unit 146 determines the preparation completion of the training terminal 1 by receiving the preparation completion signal from the VR display device 2. The simulation progress unit 146 waits until the preparation is completed. The trainee 9 may operate the input unit 11 to input the completion of preparation. In that case, the simulation progress unit 146 determines the preparation completion of the training terminal 1 by receiving the preparation completion signal from the input unit 11.
- Step Sb10 corresponds to a plurality of training terminals transmitting a notification of completion of setting of setting information to the setting terminal.
- the simulation progress unit 146 waits for the start notification from the setting terminal 6 in step Sb11.
- the simulation progress unit 146 Upon receiving the start notification, the simulation progress unit 146 starts the training simulation in step Sb12.
- the setting information necessary for generating the simulation image in the common VR space is transmitted from the setting terminal 6 to each training terminal 1.
- Each training terminal 1 sets the setting information received from the setting terminal 6 as the initial setting, and generates a simulation image in a common VR space.
- Each trainer 9 does not need to make initial settings on the corresponding training terminal 1. Therefore, the prediction of the training content by each trainer 9 is avoided, and the training effect can be enhanced.
- the setting terminal 6 manages the confirmation of the completion of setting of the setting information in all the training terminals 1 and the trigger for starting the training. Specifically, when the setting of the setting information is completed, each training terminal 1 transmits a completion notification to the setting terminal 6 instead of all the other training terminals 1. The setting terminal 6 confirms whether or not the setting of the setting information is completed in all the training terminals 1. When the setting of the setting information is completed in all the training terminals 1, the setting terminal 6 sends a start notification to all the training terminals 1 and the training is started.
- FIG. 9 is a flowchart showing the flow of various trainings in the simulated training.
- This simulated training is started after the above-mentioned training start process is completed.
- Various processes are assigned to the various operations of the control device 3A and the controller 3B according to the training situation.
- the training terminal 1 executes a process corresponding to the operation of the control device 3A and the controller 3B according to the situation in the simulation image.
- step Sc1 flight training is performed in step Sc1.
- This flight training is a training to fly the helicopter 8 from the starting point to the point where the rescue-requiring person 88 exists (that is, the rescue point).
- the pilot 91 flies the helicopter 8 in the simulation image by operating the control device 3A.
- the training terminal 1 of the pilot 91 changes the position and attitude of the aircraft 80 in the VR space based on the calculation result of the aircraft calculation terminal 5.
- the other training terminal 1 acquires the position and posture of the aircraft 80 calculated by the training terminal 1 of the pilot 91, and generates a simulation image in which the position and attitude of the aircraft 80 are updated.
- the co-pilot 92 and others confirm the safety during flight while watching the simulation image.
- FIG. 10 is an example of a simulated image of the Hoistman 93 during flight training. This simulation image is an image when the hoist man 93 faces the cockpit side in the aircraft 80. In this simulation image, the avatar 91A of the cockpit 91 and the avatar 92A of the co-pilot 92 sitting in the cockpit and the co-pilot seat are displayed.
- hovering training in step Sc2 is performed.
- Hovering training is training that keeps the helicopter 8 stopped at a predetermined position in the air.
- a maneuvering operation by the pilot 91 and a safety confirmation operation by the co-pilot 92 and the like are performed.
- FIG. 11 is an example of a simulation image of the hoist man 93 or the descent member 94 during the descent training.
- FIG. 12 is an example of a simulation image of the descendant 94 during the descent training.
- FIG. 13 is a diagram showing an example of an arrangement situation in the VR space during descent training.
- FIG. 14 is an example of a simulation image of the co-pilot 92 during descent training.
- FIG. 15 is an example of a simulation image of the hoist man 93 during descent training.
- the descent training is a training in which the hoist man 93 operates the hoist 84 to lower the descent member 94 from the aircraft 80. That is, after the avatar 94A of the descent member 94 is connected to the hoist cable 82, the hoist man 93 operates the hoist 84 to lower the avatar 94A of the descent member 94.
- the hoistman 93 and the descent member 94 move their avatars to the vicinity of the door of the aircraft 80.
- This movement of the self-avatar is realized by the operation of the controller 3B of the hoist man 93 or the descent member 94.
- the hoist man 93 or the descendant 94 presses the operation switch 35 halfway, the pointer 70 is displayed on the floor 85 of the machine body 80 as shown in FIG.
- the hoist man 93 or the descendant 94 adjusts the position of the pointer 70 by adjusting the direction of the controller 3B while the operation switch 35 is half-pressed.
- the hoist man 93 or the descent member 94 can move its own avatar to the position of the pointer 70 by fully pressing the operation switch 35.
- the hoist man 93 or the descent member 94 can move its own avatar in the VR space without actually moving in the real space.
- the movement of the own avatar may be realized by the actual movement of the hoist man 93 or the descent member 94 in the real space.
- the display of the pointer 70 on the floor 85 actually means that the part of the object to be moved to the own avatar is selected.
- the selection of the object or a part thereof is executed by displaying the pointer 70 on the object or a part thereof.
- the hoistman 93 or the descendant 94 operates the controller 3B and selects the door of the aircraft 80 by the pointer 70. In this state, the hoist man 93 or the descent member 94 fully presses the operation switch 35 to open the door.
- the descent member 94 selects the tip of the hoist cable 82 or the vicinity of the carabiner 86 by the pointer 70.
- the carabiner 86 is connected to the binding band 87 (see FIG. 13) of the avatar 94A of the descent member 94.
- the avatar 94A of the descent member 94 is pre-worn with a binding band 87 different from the rescue binding band 83.
- the avatar 94A of the descent member 94 is connected to the hoist cable 82, and the avatar 94A of the descent member 94 is suspended from the hoist cable 82.
- the co-pilot 92 confirms the situation of the avatar 93A of the hoist man 93 and the avatar 94A of the descent member 94, and gives advice on hovering flight to the pilot 91 as necessary. ..
- the hoist man 93 selects the pendant type operation unit by the pointer 70, and by fully pressing the operation switch 35 in that state, the avatar 93A of the hoist man 93 grips the pendant type operation unit.
- the hoist man 93 moves in the real space so that the avatar 93A of the hoist man 93 leans out from the aircraft 80.
- the hoist man 93 can visually recognize the avatar 94A of the descendant 94 suspended from the hoist cable 82.
- the hoist man 93 operates the operation switch 35 while the avatar 93A of the hoist man 93 grips the pendant type operation unit, the hoist cable 82 is pulled out and the avatar 94A of the descent member 94 descends.
- the descendant 94 performs a hand signal in the real space according to the distance to the ground surface in the VR space (that is, moves the controller 3B).
- the avatar 94A of the descendant 94 also performs a similar hand signal, and informs the hoistman 93 of the distance between the avatar 94A of the descendant 94 and the ground surface.
- the hoist man 93 adjusts the pull-out amount of the hoist cable 82 according to the hand signal of the avatar 94A of the descent member 94.
- the descent member 94 selects the target landing point with the pointer 70. In that state, when the descendant 94 fully presses the operation switch 35, the avatar 94A of the descendant 94 lands at the target landing point. At this time, the operation of the avatar 94A of the descent member 94 to release the connection with the hoist cable 82 is omitted, and the avatar 94A of the descent member 94 is in a state of being disconnected from the hoist cable 82. This completes the descent training.
- FIG. 16 is an example of a simulation image of the descendant 94 in the rescue training.
- FIG. 17 is an example of a simulation image of the descendant 94 in the rescue training.
- the descent member 94 moves the abata 94A of the descent member 94 to the location of the rescuer 88. This movement is realized by selecting the movement destination by the pointer 70 and fully pressing the operation switch 35, similar to the movement in the aircraft 80 described above.
- the descender 94 half-presses the operation switch 35 and the rescuer 88 is within the rescueable range.
- the outline of the person requiring rescue 88 is displayed in color.
- the descendant 94 adjusts the direction of the controller 3B and touches the rescuer 88 with the hand of the avatar 94A of the descendant 94. In this state, when the descendant 94 fully presses the operation switch 35, the rescuer 88 is bound to the rescue band 83 as shown in FIG.
- the operation of the avatar 94A of the descendant 94 to move the rescuer 88 to the position of the rescue band 83 and the operation of the avatar 94A of the descendant 94 to bind the rescue band 83 to the rescuer 88 are omitted. Will be done.
- the descent member 94 moves the avatar 94A of the descent member 94 to the location of the hoist cable 82. This movement is as described above.
- the descent member 94 selects the hoist cable 82 with the pointer 70 and fully presses the operation switch 35 to cause the avatar 94A of the descent member 94 to move. It is connected to the hoist cable 82. This completes the rescue training.
- FIG. 18 is an example of a simulation image of the descendant 94 in the pull-up training.
- the descent member 94 sends a hand signal to the hoistman 93 to signal the start of pulling up.
- the hoist man 93 confirms the hand signal of the avatar 94A of the descendant 94, operates the pendant type operation unit, and starts pulling up the avatar 94A of the descendant 94 and the rescuer 88.
- the hoist man 93 adjusts the pulling amount of the hoist cable 82 while visually recognizing the avatar 94A of the descent member 94.
- the descent member 94 may send a hand signal to the avatar 93A of the hoist man 93 depending on the pulling situation. For example, when the shaking of the hoist cable 82 becomes large, the descent member 94 may send a signal to temporarily stop the pulling to the avatar 93A of the hoist man 93. Further, when the shaking of the hoist cable 82 has subsided, the descent member 94 may send a signal to the avatar 93A of the hoist man 93 to resume the pulling. In this case, the hoist man 93 executes a temporary stop of pulling, a restart of pulling, and the like in response to a hand signal of the avatar 94A of the descendant 94.
- the descent member 94 selects a part of the aircraft 80 with the pointer 70 and fully presses the operation switch 35.
- the avatar 94A of the descent member 94 gets into the aircraft 80.
- the hoist man 93 selects the rescue band 83 with the pointer 70 and fully presses the operation switch 35.
- the rescuer 88 is pulled up into the aircraft 80. That is, the operation of the avatar 94A of the descendant 94 getting into the aircraft 80 and the operation of the avatar 93A of the hoist man 93 and the like pulling the rescuer 88 into the aircraft 80 are omitted. This completes the pull-up training.
- step Sc6 the flight training of step Sc6 is performed.
- the flight training in step Sc6 is the same as the flight training in step Sc1.
- This flight training is a training to fly the helicopter 8 to the original starting point.
- the pilot 91 flies the helicopter 8 by operating the control device 3A.
- the co-pilot 92 and others confirm the safety during flight.
- the helicopter 8 arrives at the original departure point, the flight training is completed and a series of simulated training (cooperative training) is completed.
- this simulated training is only an example, and the content of the simulated training is not limited to this.
- the VR training system 100 of the aircraft together with the plurality of training terminals 1 that generate simulation images for performing simulated training in a common VR space and provide the simulated images to the corresponding trainers 9.
- a setting terminal 6 having setting information necessary for generating a simulation image is provided, the setting terminal 6 transmits the setting information to a plurality of training terminals 1, and the plurality of training terminals 1 are set terminals.
- the setting information received from 6 is set, the setting completion notification of the setting information is transmitted to the setting terminal 6, and the setting terminal 6 receives the completion notification from all of the plurality of training terminals 1, a plurality of trainings are performed. Let the terminal 1 start the simulation training.
- simulated training is performed by a plurality of trainers corresponding to the plurality of training terminals 1 using simulation images in a common VR space generated by each of the plurality of training terminals 1.
- This is a VR training method for an aircraft, in which setting information is transmitted from a setting terminal 6 having setting information necessary for generating a simulation image to a plurality of training terminals 1, and a plurality of training terminals 1 are set.
- the setting information is received from the setting terminal 6 and the setting information is set, the plurality of training terminals 1 send the completion notification of the setting of the setting information to the setting terminal, and the setting terminal 6 has a plurality of trainings.
- the completion notification is received from all of the terminal 1, a plurality of training terminals 1 are started to perform simulated training.
- the simulation program 131 provides the processing unit 14 (computer) of the training terminal 1 with a function of generating a simulation image for performing simulation training in a common VR space and providing the simulation image to the corresponding trainer 9.
- the processing unit 14 is provided with a function of transmitting a completion notification to the setting terminal 6 and a function of receiving a simulation training start notification from the setting terminal 6 to start the simulation training.
- the start program 641 has a function of setting a function of causing a plurality of training terminals 1 to provide simulation images for performing simulation training in a common VR space to a corresponding trainer 9 to start simulation training. It is a VR training program to be realized by the processing unit 65 (computer), and has a function of transmitting setting information necessary for generating a simulation image to a plurality of training terminals 1 and a plurality of notifications of completion of setting of setting information. Upon receiving from all of the training terminals 1, the processing unit 65 realizes a function of transmitting a start notification for starting the simulated training to the plurality of training terminals 1.
- a simulation image for performing simulated training in a common VR space in each of the plurality of training terminals 1 is generated. Therefore, it is necessary to set the setting information necessary for generating the simulation image in each of the plurality of training terminals 1. Therefore, the setting terminal 6 transmits the setting information to each training terminal 1.
- Each training terminal 1 sets the setting information received from the setting terminal 6 as the initial setting. As a result, each training terminal 1 can generate a simulation image in a common VR space. Since each trainer 9 does not need to make initial settings on the corresponding training terminal 1, prediction of the training content by each trainer 9 can be avoided, and the training effect can be enhanced.
- the training terminal 1 for which the setting information has been set sends a completion notification to the setting terminal 6, it is necessary for the training terminals 1 to confirm the completion of the setting information setting in the training terminal 1. It can be confirmed with one setting terminal 6. Further, since the completion notifications from all the training terminals 1 are collected in the setting terminal 6, the setting terminal 6 can easily determine whether or not the training can be started. When the setting of the setting information is completed in all the training terminals 1, the setting terminal 6 sends a start notification to all the training terminals 1 and the training is started. In this way, by having one setting terminal 6 manage the confirmation of the completion of the setting and the trigger for the start of the training in all the training terminals 1, the processing up to the start of the training can be smoothly performed.
- the simulation image includes the avatar of the trainer 9, and after each training terminal 1 of the plurality of training terminals 1 establishes communication with another training terminal 1 among the plurality of training terminals 1.
- the position information in the VR space of the other avatar, which is the avatar of the trainer 9 corresponding to the other training terminal 1, is acquired from the other training terminal 1, and the other avatar is placed in the VR space of the simulation image based on the position information. Generate.
- each training terminal 1 acquires the position information of the other avatar from the other training terminal 1. Therefore, the training terminal 1 does not need to calculate the position information of the other avatar, so that the calculation load is reduced.
- the simulation image includes the avatar of the trainer 9 and the aircraft body 80, and the plurality of training terminals 1 have the avatar existing in the aircraft 80 in the VR space among the avatars, and the local having the origin fixed to the aircraft 80. Generated based on the position information based on the coordinate system.
- the relative positional relationship between the avatar and the aircraft 80 is properly maintained. That is, in the simulation image, the aircraft 80 can move. Similarly, avatars can move. If each of the aircraft 80 and the avatar is generated with reference to the absolute coordinate system in the VR space, the positions of the aircraft 80 and the avatar may shift. For example, the avatar may penetrate the airframe 80, or the airframe may float from the floor of the airframe 80. On the other hand, by generating the avatar based on the local coordinate system of the aircraft 80, the relative positional relationship between the avatar and the aircraft 80 can be appropriately maintained, and the above-mentioned deviation can be reduced.
- the plurality of training terminals 1 transmit a completion notification after the preparation of the control stick 31 or the controller 3B (operation device) used by the trainee in the simulated training is completed.
- the completion notification indicates that the operation device is ready in addition to the completion of the setting of the setting information.
- the setting terminal can start the simulation training at an appropriate timing when the preparation of the operating device is completed.
- the simulated training is a collaborative training by a plurality of trainers 9 corresponding to each of the plurality of training terminals 1.
- the setting terminal 6 is a terminal that does not generate a simulation image.
- the setting terminal 6 is a terminal different from the training terminal 1. That is, the setting terminal 6 is not a terminal provided for the trainee.
- the VR training to which the VR training system 100 is applied is not limited to the VR training in the helicopter.
- the VR training system 100 can also be applied to VR training of aircraft other than helicopters.
- each of the 92 training terminals 1 may calculate the amount of movement and the amount of change in posture of the aircraft 80 in the VR space.
- the control device 3A corresponding to each of the training terminal 1 of the pilot 91 and the training terminal 1 of the co-pilot 92 is connected.
- the training terminal 1 of one of the plurality of training terminals (specifically, the training terminal 1 of the pilot 91 and the co-pilot 92 for which the maneuvering function is enabled is used for training.
- the terminal 1) functions as an aircraft terminal that calculates the position and attitude of the aircraft 80 in the VR space based on the operation input via the control device 3A.
- the aircraft calculation terminal 5 not only calculates the movement amount and the change amount of the attitude of the aircraft based on the operation input via the control device 3A, but also calculates the position and attitude of the aircraft 80 in the VR space based on the movement amount information. May be calculated.
- the aircraft calculation terminal 5 is a terminal different from the training terminal 1 that functions as an aircraft terminal that calculates the position and attitude of the aircraft 80 in the VR space based on the operation input via the control device 3A. Is.
- each of the training terminals 1 may acquire the movement amount information from the machine calculation terminal 5 and calculate the position and posture in the VR space of 80 based on the movement amount information.
- the training terminal 1 of the pilot 91 and the co-pilot 92 generates an avatar so that only the head operates in order to reduce the calculation load, but the training terminal 1 is not limited to this.
- the training terminals 1 of the pilot 91 and the co-pilot 92 may generate avatars to reflect the whole body movements of the trainer 9, similar to the training terminals 1 of the hoistman 93 and the descendant 94. ..
- the setting terminal 6 does not have to be a terminal different from the training terminal 1.
- the training terminal 1 may also function as the setting terminal 6. That is, any one of the plurality of training terminals 1 can be made to function as the setting terminal 6.
- the VR training system 100 of the aircraft generates a simulation image for performing simulation training in a common VR space, and provides the simulation image to the corresponding trainer 9 with a plurality of training terminals 1 and a simulation. It has a function as a setting terminal 6 having setting information necessary for image generation, generates a simulation image for performing simulation training in a common VR space, and provides the simulation image to the corresponding trainer 9. It is equipped with a training terminal 1 for simulation. For example, the instructor may participate in the training in the role of co-pilot 92.
- the training terminal 1 of the co-pilot 92 realizes the same function as the setting terminal 6.
- the instructor inputs initial setting setting information to the training terminal 1 of the co-pilot 92, and the setting information is transmitted from the training terminal 1 of the co-pilot 92 to another training terminal 1.
- the completion notification is transmitted from all the other training terminals 1 to the training terminal 1 of the co-pilot 92.
- the training terminal 1 of the co-pilot 92 receives the completion notification from all the other training terminals 1, it transmits the training start notification to all the other training terminals 1.
- the instructor participates in the training as the co-pilot 92 and monitors the training of the other trainers 9.
- the setting terminal 6 does not have to have a function of monitoring training.
- the trainee 9 is not limited to the pilot 91, the co-pilot 92, the hoistman 93, and the descent member 94.
- the trainee 9 may be three or two of these.
- the trainee 9 may be a person other than these four. That is, any person can be a trainer 9 as long as he / she can perform cooperative training using the VR training system 100.
- the trainee 9 may include a ground crew member (a person who guides a helicopter from the surface of the earth), a controller, or a person requiring rescue.
- the initial position of the trainee 9 in the VR space may be set as the initial setting information.
- the trainer 9 is a ground member
- the position of the trainer 9 on the ground surface in the VR space can be set.
- steps can be omitted, the order of steps can be changed, a plurality of steps can be processed in parallel, and another step can be added to the extent that the steps can be implemented.
- the setting terminal 6 accepts the input of the initial setting from the administrator, but is not limited to this.
- the initial setting may have already been made in the setting terminal 6, and the setting terminal 6 may already have the setting information regarding the initial setting.
- the flowchart of FIG. 7 starts from step Sa3. Further, even if the configuration is such that the initial setting is input to the setting terminal 6, the configuration may not be such that each item related to the initial setting is input.
- the setting terminal 6 has a plurality of initial settings in which various setting information is preset in advance, and the administrator may select one initial setting from the plurality of initial settings.
- step Sb5 the training terminal 1 establishes communication with another training terminal 1, but the timing of establishing communication with another training terminal 1 is not limited to this.
- step Sb1 when the training terminal 1 establishes communication with the setting terminal 6, communication with another training terminal 1 may be established.
- the training terminal 1 displays the self-avatar in step Sb4, the timing of displaying the self-avatar is not limited to this.
- the training terminal 1 may display its own avatar at the timing of displaying another avatar.
- the image displayed by the VR display device 2 is not limited to the simulation image of the first-person viewpoint.
- the VR display device 2 may display a simulation image of a third person viewpoint.
- the tracking system 4 can adopt any method as long as it can track the movement of the trainee 9.
- the tracking system 4 may be an inside-out system.
- the control device 3A and the controller 3B which are operation devices, can be appropriately changed according to the trainee and the training content.
- control device 3A and the controller 3B can be appropriately changed according to the trainee and the training contents.
- the control device 3A or the controller 3B may function in the same manner as the input unit 11.
- the functions of the configuration disclosed in this embodiment may be executed by using an electric circuit or a processing circuit.
- the electrical circuit or processing circuit may be a main processor, a dedicated processor, integrated circuits, ASICs, conventional electrical circuits, controllers, or a combination thereof, configured or programmed to perform the disclosed functions. good.
- a processor or controller is a processing circuit or the like that includes transistors and other circuits.
- a circuit, unit, controller or means is hardware or programmed to perform the described function.
- the hardware is the hardware disclosed in the present embodiment or known hardware configured or programmed to perform the functions disclosed in the present embodiment.
- the circuit, means or unit is a combination of hardware and software, and the software is used to configure the hardware and / or the processor.
- VR training system 1 Training terminal 131 Simulation program (VR training program) 6 Setting terminal 641 Start program 3A Steering device (operation device) 3B controller (operation device) 91 Pilot (trainer) 92 First Officer (Trainer) 93 Hoistman (trainer) 94 Descent (trainer)
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Business, Economics & Management (AREA)
- Educational Administration (AREA)
- Educational Technology (AREA)
- Aviation & Aerospace Engineering (AREA)
- Computer Hardware Design (AREA)
- Human Computer Interaction (AREA)
- Computer Graphics (AREA)
- Software Systems (AREA)
- Processing Or Creating Images (AREA)
Abstract
航空機のVR訓練システム100は、共通のVR空間における模擬訓練を行うためのシミュレーション画像を生成して、対応する訓練者9にシミュレーション画像を提供する複数の訓練用端末1と、シミュレーション画像の生成に必要な設定情報を有する設定用端末6とを備えている。設定用端末6は、設定情報を複数の訓練用端末1に送信し、複数の訓練用端末1は、設定用端末6から受信した設定情報を設定し、設定情報の設定の完了通知を設定用端末6に送信し、設定用端末6は、複数の訓練用端末1の全てから完了通知を受信すると、複数の訓練用端末1に模擬訓練を開始させる。
Description
ここに開示された技術は、航空機のVR訓練システム、航空機のVR訓練方法及び航空機のVR訓練プログラムに関する。
従来より、共通の仮想現実空間、即ち、共通のVR(Virtual Reality)空間において、複数のユーザがVR体験を行うシステムが知られている。例えば、先行文献1には、共通のVR空間において複数のプレーヤがゲームを行うシステムが開示されている。このシステムでは、ゲームを開始する際に、プレーヤごとにセーブデータを読み込んだり、各プレーヤの操作キャラクタの初期配置を行うなどの初期設定が行われる。
ところで、訓練にVR空間を活用することによって、安価なコストで且つ高いリアリティの訓練を実施することが考えられる。例えば、航空機における訓練の場合、実機での訓練は、コストがかかるだけでなく、現実の危険も伴う。また、操縦訓練だけであれば航空機の模擬装置等を使った訓練も考えられるが、操縦訓練等と連携した降下訓練等を模擬装置等を使って実現することは難しい。同様に、降下訓練だけであれば地上に設置された設備を使った訓練も考えられるが、降下訓練と操縦訓練等との連携を実現することは困難である。その一方で、VR空間を活用すれば、様々な連携訓練を柔軟に実現することが可能となる。
しかしながら、VR空間を使った訓練を行う場合、訓練内容に応じたVR空間を生成するための初期設定が必要となる。各訓練者が初期設定を行うと、各訓練者が訓練内容を予測できてしまうので、効果的な訓練とならない虞がある。
ここに開示された技術は、かかる点に鑑みてなされたものであり、その目的とするところは、VR空間を使った訓練において、訓練効果を高めつつ円滑に訓練を開始することにある。
ここに開示された航空機のVR訓練システムは、共通のVR空間における模擬訓練を行うためのシミュレーション画像を生成して、対応する訓練者に前記シミュレーション画像を提供する複数の訓練用端末と、前記シミュレーション画像の生成に必要な設定情報を有する設定用端末とを備え、前記設定用端末は、前記設定情報を前記複数の訓練用端末に送信し、前記複数の訓練用端末は、前記設定用端末から受信した前記設定情報を設定し、前記設定情報の設定の完了通知を前記設定用端末に送信し、前記設定用端末は、前記複数の訓練用端末の全てから前記完了通知を受信すると、前記複数の訓練用端末に前記模擬訓練を開始させる。
ここに開示された航空機のVR訓練方法は、複数の訓練用端末のそれぞれによって生成される共通のVR空間におけるシミュレーション画像を用いて、前記複数の訓練用端末に対応する複数の訓練者によって模擬訓練を行う、航空機のVR訓練方法であって、前記シミュレーション画像の生成に必要な設定情報を有する設定用端末から前記設定情報を前記複数の訓練用端末へ送信することと、前記複数の訓練用端末が前記設定用端末から前記設定情報を受信し、前記設定情報を設定することと、前記複数の訓練用端末が前記設定情報の設定の完了通知を前記設定用端末に送信することと、前記設定用端末が前記複数の訓練用端末の全てから前記完了通知を受信すると、前記複数の訓練用端末に前記模擬訓練を開始させることとを含む。
ここに開示された航空機のVR訓練プログラムは、共通のVR空間における模擬訓練を行うためのシミュレーション画像を生成して、対応する訓練者に前記シミュレーション画像を提供する機能を訓練用端末のコンピュータに実現させるための、航空機のVR訓練プログラムであって、前記シミュレーション画像の生成に必要な設定情報を有する設定用端末から前記設定情報を受信して、前記設定情報を設定する機能と、前記設定情報の設定の完了通知を前記設定用端末に送信する機能と、前記設定用端末から前記模擬訓練の開始通知を受信して前記模擬訓練を開始する機能とをコンピュータに実現させる。
ここに開示された航空機のVR訓練プログラムは、共通のVR空間における模擬訓練を行うためのシミュレーション画像を、対応する訓練者に提供する複数の訓練用端末に前記模擬訓練を開始させる機能を設定用端末のコンピュータに実現させるためのVR訓練プログラムであって、前記シミュレーション画像の生成に必要な設定情報を前記複数の訓練用端末に送信する機能と、前記設定情報の設定の完了通知を前記複数の訓練用端末の全てから受信すると、前記複数の訓練用端末に前記模擬訓練を開始させる開始通知を送信する機能とをコンピュータに実現させる。
前記航空機のVR訓練システムによれば、訓練効果を高めつつ円滑に訓練を開始することができる。
前記航空機のVR訓練方法によれば、訓練効果を高めつつ円滑に訓練を開始することができる。
前記航空機のVR訓練プログラムによれば、訓練効果を高めつつ円滑に訓練を開始することができる。
以下、例示的な実施形態を図面に基づいて詳細に説明する。図1は、VR訓練システム100の構成を示す図である。図2は、VR訓練システム100を用いて訓練を行う実空間の様子を示す概略図である。なお、図2では各端末の図示を省略している。
VR訓練システム100は、共通のVR空間における模擬訓練(以下、「VR訓練」と称する)を行うためのシステムである。このVR訓練システム100は、航空機(この例では、ヘリコプタ)におけるVR訓練に用いられる。VR訓練システム100は、共通のVR空間における模擬訓練を行うためのシミュレーション画像を生成し、対応する訓練者9にシミュレーション画像を提供する複数の訓練用端末1と、シミュレーション画像の生成に必要な設定情報を有する設定用端末6とを備えている。シミュレーション画像は、VR空間を形成する画像であり、いわゆるVR画像である。シミュレーション画像は、訓練者9のアバタ及び航空機の機体を含む。
複数の訓練用端末1のそれぞれは、互いに通信可能に接続されている。また、複数の訓練用端末1は、設定用端末6と通信可能に接続されている。これらの各端末は、LAN等を介して有線接続されている。なお、各端末は、無線接続であってもよい。
模擬訓練は、複数の訓練用端末1にそれぞれ対応する複数の訓練者9による連携訓練である。この例では、複数の訓練者9は、VR訓練システム100を使って、共通のVR空間において救助用ヘリコプタにおける連携訓練を行う。訓練者9には、例えば、操縦士91、副操縦士92、ホイストマン93及び降下員94が含まれている。以下、各訓練者を区別しない場合には、単に「訓練者9」と称する。連携訓練とは、複数の訓練者9が連携して行う訓練である。例えば、連携訓練は、複数の訓練者9によって、要救助者が存在する地点までヘリコプタを飛行させ、要救助者を救出する訓練である。連携訓練の内容には、操縦士91による出発地点から要救助者の場所までのヘリコプタの飛行、飛行中の副操縦士92等による操縦補助及び安全確認、ホイストマン93及び降下員94による降下及び引き上げ等が含まれる。
図3は、VR空間に生成されるヘリコプタの一例を示す。例えば、ヘリコプタ8は、機体80と、機体80の上部から右側又は左側へ片持ち状に延びるブーム81と、ブーム81から吊り下げられたホイストケーブル82と、ホイストケーブル82に連結された救助縛帯83と、ホイストケーブル82を巻き上げる巻き上げ機84と、巻き上げ機84を操作するためのペンダント型操作部とを有している。操縦士91のアバタである操縦士アバタ91A、副操縦士92のアバタである副操縦士アバタ92A及びホイストマン93のアバタであるホイストマンアバタ93Aは、機体80内に配置されている。降下員94のアバタである降下員アバタも、基本的には機体80内に配置されている。
訓練用端末1は、訓練者9のための端末である。訓練者9ごとに1台の訓練用端末1が割り当てられている。各訓練用端末1は、対応する訓練者9のためのシミュレーション画像を生成する。例えば、各訓練用端末1は、対応する訓練者9の一人称視点でのシミュレーション画像を生成する。つまり、各訓練用端末1は、共通のVR空間において異なる視点のシミュレーション画像を生成する。この例では、4人の訓練者9のための4台の訓練用端末1が設けられている。
各訓練用端末1には、VR表示装置2が接続されている。VR表示装置2は、訓練用端末1によって生成されたシミュレーション画像を表示する。VR表示装置2は、訓練者9の頭部に装着される。例えば、VR表示装置2は、HMD(Head Mounted Display)である。HMDは、ディスプレイを有するゴーグル形状のVR専用の装置であってもよく、あるいは、頭部に装着可能なホルダにスマートフォン又は携帯ゲーム装置を取り付けることによって構成されるものであってもよい。VR表示装置2は、右目用画像及び左目用画像を含む3次元画像を表示する。VR表示装置2は、ヘッドホン28及びマイク29を有していてもよい。訓練者9は、ヘッドホン28及びマイク29を介して、他の訓練者9と対話を行う。また、訓練者9は、シミュレーションに必要な音声をヘッドホン28を介して聞くことができる。
VR訓練システム100は、模擬訓練において訓練者9によって使用される操作装置をさらに備えている。訓練者9は、操作装置を訓練内容に応じて操作する。操作装置は、訓練者9及び操作内容に応じて適宜変更される。例えば、VR訓練システム100は、操縦士91のための操縦装置3Aと副操縦士92のための操縦装置3Aとを備えている。VR訓練システム100は、ホイストマン93のための2つのコントローラ3Bと、降下員94のための2つのコントローラ3Bとを備えている。
操縦装置3Aは、複数の訓練者9のうち航空機を操縦する訓練者9、即ち、操縦士91又は副操縦士92が操作する。操縦装置3Aは、操縦士91又は副操縦士92の操作入力を受け付ける。具体的には、操縦装置3Aは、操縦桿31、ペダル32及びコレクティブピッチレバー33(以下、「CPレバー33」と称する)を有している。操縦桿31、ペダル32及びCPレバー33のそれぞれには、操作量を検出するセンサが設けられている。各センサは、操作量に応じた操作信号を出力する。操縦装置3Aは、シート34をさらに有している。操縦士91又は副操縦士92が操縦装置3Aを操作することによって、シミュレーション画像中の航空機、具体的にはヘリコプタ8の位置及び姿勢が変更される。操縦装置3Aは、機体演算端末5に接続されている。つまり、操縦桿31、ペダル32及びCPレバー33からの操作信号は、機体演算端末5に入力される。
機体演算端末5は、操縦装置3Aを介した操作入力に基づいて航空機の機体の移動量及び姿勢の変化量を演算する。機体演算端末5は、訓練用端末1の演算負荷軽減のためにVR訓練システム100に設けられた端末である。機体演算端末5は、複数の訓練用端末1及び設定用端末6のそれぞれと通信可能に接続されている。機体演算端末5と複数の訓練用端末1及び設定用端末6とは、LAN等を介して有線接続されている。なお、機体演算端末5と複数の訓練用端末1及び設定用端末6とは、無線接続されていてもよい。
機体演算端末5は、機体の移動量及び姿勢の変化量に関する移動量情報を操縦士91の訓練用端末1及び副操縦士92の訓練用端末1の少なくとも一方へ送信する。移動量情報を受け取った訓練用端末1は、移動量情報に基づいて機体80のVR空間における位置及び姿勢を演算する。つまり、機体演算端末5と移動量情報を受け取る訓練用端末1とは、操縦装置3Aを介した操作入力に基づいて航空機の機体80のVR空間における位置及び姿勢を演算する機体端末50を形成する。
コントローラ3Bは、可搬型のデバイスである。訓練者9(即ち、ホイストマン93及び降下員94)は、右手と左手のそれぞれでコントローラ3Bを携帯する。コントローラ3Bは、モーショントラッカ機能を有する。すなわち、コントローラ3Bは、後述するトラッキングシステム4によってセンシングされる。コントローラ3Bは、訓練者9の入力を受け付ける操作スイッチ35(図5参照)を有している。操作スイッチ35は、訓練者9からの入力に応じた操作信号を出力する。コントローラ3Bは、ホイストマン93又は降下員94の訓練用端末1に接続されている。つまり、操作スイッチ35からの操作信号は、対応するホイストマン93又は降下員94の訓練用端末1に入力される。
設定用端末6は、初期設定を行う権限を有する管理者(例えば、教官)からの設定情報の入力を受け付ける。設定用端末6は、入力された設定情報を初期設定として設定する。設定用端末6は、設定情報を訓練用端末1に送信すると共に、模擬訓練の開始通知を訓練用端末1に送信する。また、設定用端末6は、訓練におけるシミュレーション画像を表示する。ただし、本実施形態では、設定用端末6は、シミュレーション画像を生成していない。設定用端末6は、訓練用端末1によって生成されたシミュレーション画像を取得して表示する。これにより、訓練者9以外の者(例えば、教官)が訓練のシミュレーションを監視することができる。なお、設定用端末6は、各訓練用端末1から情報を取得して各訓練者9のシミュレーション画像を生成してもよい。
さらに、VR訓練システム100は、トラッキングシステム4を有している。トラッキングシステム4は、実空間における複数の訓練者9の動きを検出する。トラッキングシステム4は、VR表示装置2及びコントローラ3Bをセンシングする。トラッキングシステム4は、この例では、アウトサイドイン方式のトラッキングシステムである。
具体的には、トラッキングシステム4は、複数のトラッキングセンサ41と、トラッキングセンサ41からの信号を受信する通信装置42(図4,5参照)とを有している。トラッキングセンサ41は、例えば、カメラである。トラッキングセンサ41は、訓練者9が存在する実空間をステレオ撮影できるように配置されている。VR表示装置2及びコントローラ3Bのそれぞれには、発光式のトラッキングマーカが設けられている。複数のトラッキングセンサ41は、VR表示装置2及びコントローラ3Bのそれぞれのトラッキングマーカをステレオ撮影する。
トラッキングシステム4は、複数の訓練者9に関して共通である。つまり、共通のトラッキングシステム4によって、複数の訓練者9のVR表示装置2及びコントローラ3Bがセンシング、即ち、トラッキングされる。
トラッキングセンサ41によって撮影された画像データは、通信装置42に送信される。通信装置42は、受信した画像データを、訓練用端末1へ送信する。通信装置42は、例えば、ケーブルモデム、ソフトモデム又は無線モデムである。
訓練用端末1のそれぞれは、トラッキングシステム4からの画像データを画像処理することによって、対応する訓練者9のアバタのVR空間における位置及び姿勢を求める。
それに加えて、ホイストマン93及び降下員94の訓練用端末1のそれぞれは、トラッキングシステム4からの画像データを画像処理することによって、対応する訓練者9のコントローラ3Bのトラッキングマーカに基づいて、対応する訓練者9のアバタのVR空間における両手の位置及び姿勢を求める。
図4は、操縦士91及び副操縦士92の訓練用端末1及びその周辺機器のブロック図である。
操縦士91及び副操縦士92の訓練用端末1には、VR表示装置2、機体演算端末5及びトラッキングシステム4が接続されている。機体演算端末5には、操縦装置3Aが接続されている。
訓練用端末1は、入力部11と、通信部12と、記憶部13と、処理部14とを有している。
入力部11は、訓練者9からの操作入力を受け付ける。入力部11は、操作入力に応じた入力信号を処理部14へ出力する。例えば、入力部11は、キーボード、マウス、又は液晶等の画面を押して操作するタッチパネルである。
通信部12は、他の端末等と通信を行うインターフェースである。例えば、通信部12は、ケーブルモデム、ソフトモデム又は無線モデムで形成されている。なお、後述する通信部22、通信部51及び通信部63も、通信部12と同様に構成されている。通信部12は、他の訓練用端末1、機体演算端末5及び設定用端末6等の他の端末との通信を実現する。
記憶部13は、各種プログラム及び各種データを記憶する、コンピュータに読み取り可能な記憶媒体である。記憶部13は、ハードディスク等の磁気ディスク、CD-ROM及びDVD等の光ディスク、又は半導体メモリによって形成されている。なお、後述する記憶部52及び記憶部64も、記憶部13と同様に構成されている。
記憶部13は、シミュレーションプログラム131、フィールド定義データ132、アバタ定義データ133、オブジェクト定義データ134及び音声データ135等を記憶している。
シミュレーションプログラム131は、共通のVR空間における模擬訓練を行うためのシミュレーション画像を生成して、対応する訓練者9にシミュレーション画像を提供する各種機能をコンピュータ、即ち、処理部14に実現させるためのプログラムである。シミュレーションプログラム131は、処理部14によって読み出され、実行される。
フィールド定義データ132は、訓練が行われるフィールドを定義する。例えば、フィールド定義データ132は、フィールドの広さ、フィールドの地形、及びフィールド内の障害物等のオブジェクトを定義する。フィールド定義データ132は、訓練が行われるフィールドの種類ごとに用意されている。
アバタ定義データ133は、自己のアバタ(以下、「自アバタ」と称する)及び他の訓練者9のアバタ(以下、「他アバタ」と称する)を定義する。アバタ定義データ133は、アバタの種類ごとに用意されている。自アバタのアバタ定義データ133は、自アバタのCGデータ(例えば、ポリゴンデータ)だけでなく、初期位置情報(VR空間における初期位置及び初期姿勢に関する情報)も含んでいる。
ここで、アバタの位置情報(初期位置情報も含む)は、位置に関する情報としてVR空間における直交三軸の位置座標(x,y,z)と、姿勢に関する情報として各軸回りの回転角(Φ,θ,ψ)とを含む。後述するヘリコプタ8の機体80等のオブジェクトの位置情報についても同様である。
オブジェクト定義データ134は、訓練に必要な各種オブジェクトを定義する。オブジェクト定義データ134は、オブジェクトの種類ごとに用意されている。例えば、ヘリコプタ8の機体80、ブーム81、ホイストケーブル82、救助縛帯83、巻き上げ機84、ペンダント型操作部、要救助者88(図16,17参照)及び地表等のオブジェクト定義データ134が用意されている。
音声データ135は、ヘリコプタの飛行音等のシミュレーション中の効果音に関するデータである。
処理部14は、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)及び/又はDSP(Digital Signal Processor)等の各種プロセッサと、VRAM、RAM及び/又はROM等の各種半導体メモリとを有している。なお、後述する処理部25、処理部53及び処理部65も、処理部14と同様に構成されている。
処理部14は、記憶部13に記憶された各種プログラムを読み出して実行することによって、訓練用端末1の各部を統括的に制御すると共に、シミュレーション画像を提供するための各種機能を実現する。具体的には、処理部14は、通信制御部141と、設定部142と、完了通知部143と、トラッキング制御部144と、音声生成部145と、シミュレーション進行部146とを機能ブロックとして有する。
通信制御部141は、通信部12を介した外部の端末又は装置との通信処理を実行する。通信制御部141は、データ通信に関するデータ処理を実行する。
設定部142は、シミュレーション画像の生成に関する設定情報を設定用端末6から受信して、設定情報を設定する。設定部142は、各種設定情報を初期設定として設定する。
完了通知部143は、設定部142による設定情報の設定が完了すると、設定情報の設定の完了通知を設定用端末6に送信する。
トラッキング制御部144は、対応する訓練者9のアバタである自アバタのVR空間における位置及び姿勢をトラッキングシステム4の検出結果に基づいて演算する。トラッキング制御部144は、通信装置42を介して入力されるトラッキングセンサ41からの画像データに基づいて、トラッキングに関する各種演算処理を実行する。具体的には、トラッキング制御部144は、画像データを画像処理することによって、対応する訓練者9のVR表示装置2のトラッキングマーカを追跡し、実空間における訓練者9の位置及び姿勢を求める。トラッキング制御部144は、実空間における訓練者9の位置及び姿勢を所定の座標対応関係に基づいて、VR空間における自アバタの位置及び姿勢を求める。トラッキング制御部144によって求められたVR空間における自アバタの位置及び姿勢に関する情報を位置情報と称する。以下、「アバタの位置及び姿勢」並びに「アバタの位置」は、それぞれ「VR空間における位置及び姿勢」並びに「VR空間における位置」を意味する。
音声生成部145は、音声データ135を記憶部13から読み出し、シミュレーションの進行に応じた音声を生成する。
シミュレーション進行部146は、シミュレーションの進行に関する各種演算処理を実行する。例えば、シミュレーション進行部146は、シミュレーション画像を生成する。シミュレーション進行部146は、設定部142の初期設定に基づいてフィールド定義データ132及びオブジェクト定義データ134を記憶部13から読み出し、フィールド画像にオブジェクト画像が合成されたシミュレーション画像を生成する。
また、シミュレーション進行部146は、自アバタに対応するアバタ定義データ133を記憶部13から読み出し、自アバタの位置情報に基づいて自アバタ(例えば、自アバタの手足)をVR空間に合成してシミュレーション画像を生成する。ここで、操縦士91及び副操縦士92の自アバタは、VR空間内の操縦席及び副操縦席に着席した状態が維持されていてもよい。すなわち、シミュレーション画像において、操縦士91及び副操縦士92の自アバタの、機体80内の位置は固定であり、自アバタの頭部のみが動作(回転及び傾動)してもよい。その場合、操縦士91及び副操縦士92の訓練用端末1のシミュレーション進行部146は、自アバタの画像を生成しなくてもよい。
さらに、シミュレーション進行部146は、複数の訓練用端末1のうちの他の訓練用端末1に対応する訓練者9のアバタである他アバタの位置情報を他の訓練用端末1から取得し、取得された位置情報に基づいて他アバタをVR空間に生成する。具体的には、シミュレーション進行部146は、他アバタに対応するアバタ定義データ133を記憶部13から読み出し、他の訓練用端末1から取得した他アバタの位置情報に基づいて他アバタをVR空間に合成してシミュレーション画像を生成する。
シミュレーション進行部146は、設定用端末6から模擬訓練の開始通知を受信して模擬訓練を開始する。すなわち、シミュレーション進行部146は、シミュレーション画像における訓練を開始する。シミュレーション進行部146は、模擬訓練中は、連携訓練のシミュレーションの進行を制御する。
具体的には、シミュレーション進行部146は、後述する機体演算端末5からの移動量情報(操縦装置3Aの操作入力に応じた機体の移動量及び姿勢の変化量に関する情報)に基づいて機体80のVR空間における位置及び姿勢を演算する。シミュレーション進行部146は、機体演算端末5からの機体の移動量及び姿勢の変化量を、VR空間の座標系における機体80の移動量及び姿勢の変化量に変換し、機体80のVR空間における位置及び姿勢を演算する。これにより、操縦装置3Aの操作入力に応じて、VR空間においてヘリコプタ8が移動、即ち、飛行する。
このVR空間における機体80の位置及び姿勢の演算は、操縦士91及び副操縦士92の訓練用端末1のうち、機体の操縦機能が有効となっている方の訓練用端末1が実行する。操縦士91及び副操縦士92の訓練用端末1のうち何れの訓練用端末1の操縦機能を有効とするかは切り替え可能となっている。通常は、操縦士91の訓練用端末1の操縦機能が有効に設定されている。訓練の状況に応じて、副操縦士92の訓練用端末1の操縦機能が有効に設定される場合もある。
また、シミュレーション進行部146は、トラッキング制御部144からの位置情報に基づいてVR空間内で自アバタを動作させ、他の訓練用端末1から受信する他アバタの位置情報に基づいてVR空間内で他アバタを動作させる。なお、操縦士91及び副操縦士92の自アバタは、VR空間内の操縦席及び副操縦席に固定されている場合には、自アバタの頭部のみが動作(回転及び傾動)する。ただし、操縦士91及び副操縦士92の自アバタは、頭部のみが動作するだけでなく、他アバタと同様にトラッキング制御部144からの位置情報に基づいてVR空間内で動作してもよい。
さらに、シミュレーション進行部146は、トラッキング制御部144からの位置情報に基づく操縦士91又は副操縦士92の頭部の向きの変更に応じて、表示させるシミュレーション画像のフレームの位置又は角度を変更する。シミュレーション進行部146は、生成したシミュレーション画像をVR表示装置2及び設定用端末6へ出力する。このとき、シミュレーション進行部146は、必要に応じて、音声生成部145によって生成された音声をヘッドホン28及び設定用端末6へ出力する。
VR表示装置2は、入力部21と、通信部22と、記憶部23と、表示部24と、処理部25とを有している。
入力部21は、訓練者9からの操作入力を受け付ける。入力部21は、操作入力に応じた入力信号を処理部25へ出力する。例えば、入力部21は、操作ボタン又はスライドスイッチ等である。
通信部22は、訓練用端末1との通信を実現するインターフェースである。
記憶部23は、各種プログラム及び各種データを記憶する、コンピュータに読み取り可能な記憶媒体である。記憶部23は、半導体メモリ等によって形成されている。記憶部23は、シミュレーション画像を表示部24で表示するための各種機能をコンピュータ、即ち、処理部25に実現させるためのプログラム及び各種データが記憶されている。
表示部24は、例えば、液晶ディスプレイ又は有機ELディスプレイである。表示部24は、右目用画像と左目用画像とを表示することができる。
処理部25は、記憶部23に記憶された各種プログラムを読み出して実行することによって、VR表示装置2の各部を統括的に制御すると共に、シミュレーション画像を表示部24に表示させるための各種機能を実現する。
機体演算端末5は、通信部51と、記憶部52と、処理部53とを有している。機体演算端末5には、操縦装置3Aから出力される操作信号が入力される。具体的には、操縦桿31、ペダル32及びCPレバー33のそれぞれから、スイッチの押下及び操作量に応じた操作信号が入力される。機体演算端末5は、操縦装置3Aの操作量に応じた機体の移動量及び姿勢の変化量を演算し、移動量情報を出力する。
通信部51は、訓練用端末1等との通信を実現するインターフェースである。
記憶部52は、演算プログラム521等を記憶している。演算プログラム521は、VR空間における航空機の機体80の位置及び姿勢を演算するための各種機能をコンピュータ、即ち、処理部53に実現させるためのプログラムである。演算プログラム521は、処理部53によって読み出され、実行される。
処理部53は、記憶部52に記憶された各種プログラムを読み出して実行することによって、機体演算端末5の各部を統括的に制御すると共に、機体の移動量及び姿勢の変化量を演算するための各種機能を実現する。具体的には、処理部53は、通信制御部531と、機体演算部532とを機能ブロックとして有する。
通信制御部531は、通信部51を介した訓練用端末1等との通信処理を実行する。通信制御部531は、データ通信に関するデータ処理を実行する。
機体演算部532は、操縦装置3Aからの操作信号に基づいて機体の移動量及び姿勢の変化量を演算する。詳しくは、機体演算部532は、操縦桿31、ペダル32及びCPレバー33からの各操作信号に基づいて、操縦桿31、ペダル32及びCPレバー33のスイッチの押下及び操作量に応じた機体の移動量及び姿勢の変化量を演算する。機体演算部532は、演算した機体の移動量及び姿勢の変化量に関する移動量情報を訓練用端末1へ送信する。
図5は、ホイストマン93及び降下員94の訓練用端末1及びその周辺機器のブロック図である。
ホイストマン93及び降下員94の訓練用端末1には、VR表示装置2、コントローラ3B及びトラッキングシステム4が接続されている。コントローラ3Bは、操作スイッチ35を有している。操作スイッチ35の操作信号は、訓練用端末1に入力される。
ホイストマン93及び降下員94の訓練用端末1の基本的な構成は、操縦士91及び副操縦士92の訓練用端末1と同様である。ただし、ホイストマン93及び降下員94と操縦士91及び副操縦士92との訓練内容の違いに起因して、ホイストマン93及び降下員94の訓練用端末1の処理内容は、操縦士91及び副操縦士92の訓練用端末1と少し異なる。
詳しくは、トラッキング制御部144は、対応する訓練者9のアバタである自アバタのVR空間における位置及び姿勢をトラッキングシステム4の検出結果に基づいて演算する。トラッキング制御部144は、通信装置42を介して入力されるトラッキングセンサ41からの画像データに基づいて、トラッキングに関する各種演算処理を実行する。具体的には、トラッキング制御部144は、画像データを画像処理することによって、対応する訓練者9のVR表示装置2のトラッキングマーカを追跡し、実空間における訓練者9の位置及び姿勢を求める。トラッキング制御部144は、実空間における訓練者9の位置及び姿勢を所定の座標対応関係に基づいて、自アバタの位置及び姿勢を求める。それに加えて、トラッキング制御部144は、画像データを画像処理することによって、コントローラ3Bのトラッキングマーカを追跡し、実空間における訓練者9の両手の位置及び姿勢を求める。トラッキング制御部144は、実空間における訓練者9の両手の位置及び姿勢を所定の座標対応関係に基づいて、自アバタの両手の位置及び姿勢を求める。つまり、ホイストマン93及び降下員94の訓練用端末1のトラッキング制御部144は、自アバタの位置及び姿勢、並びに、自アバタの両手の位置及び姿勢を位置情報として求める。
シミュレーション進行部146がシミュレーション画像を生成し、連携訓練のシミュレーションの進行を制御することは、操縦士91及び副操縦士92の訓練用端末1と同様である。ただし、操縦席及び副操縦席に着席したままの操縦士91及び副操縦士92と異なり、ホイストマン93及び降下員94は、機内及び機外で移動が可能である。そのため、シミュレーション進行部146は、VR空間内で自アバタを自由に移動させる。また、シミュレーション進行部146は、トラッキング制御部144からの位置情報に基づいて、ホイストマン93又は降下員94の頭部の位置又は向きの変更に応じて、表示させるシミュレーション画像のフレームの位置又は角度を変更する。それに加えて、シミュレーション進行部146は、コントローラ3Bの操作スイッチ35からの操作信号に応じて、VR空間内で自アバタに操作信号に応じた処理を実行させる。ここで、操作信号に応じた処理は、例えば、ヘリコプタ8のドアの開閉やペンダント型操作部の操作等である。
図6は、設定用端末6及びその周辺機器のブロック図である。
設定用端末6は、表示部61と、入力部62と、通信部63と、記憶部64と、処理部65とを有している。
表示部61は、例えば、液晶ディスプレイ、有機ELディスプレイ、又は、プロジェクタ及びスクリーンである。
入力部62は、初期設定を行う権限を有する管理者(例えば、教官)の入力操作を受け付ける。入力部62は、例えば、キーボード、マウス、又はタッチパネルである。
通信部63は、訓練用端末1等との通信を実現するインターフェースである。
記憶部64は、開始プログラム641等を記憶している。開始プログラム641は、共通のVR空間における模擬訓練を行うためのシミュレーション画像を、対応する訓練者に提供する複数の訓練用端末1に模擬訓練を開始させる各種機能をコンピュータ、即ち、処理部65に実現させるためのプログラムである。開始プログラム641は、処理部65によって読み出され、実行される。
処理部65は、記憶部64に記憶された各種プログラムを読み出して実行することによって、設定用端末6の各部を統括的に制御すると共に、シミュレーションに関する初期設定を行うための各種機能を実現する。具体的には、処理部65は、通信制御部651と、設定部652と、開始通知部653と、監視部654とを機能ブロックとして有する。
通信制御部651は、通信部63を介した外部の端末又は装置との通信処理を実行する。通信制御部651は、データ通信に関するデータ処理を実行する。
設定部652は、シミュレーション画像の生成に必要な初期設定に関する各種設定情報のユーザからの入力を受け付けると共に、入力された設定情報を初期設定として設定する。設定部652は、記憶部64に記憶された設定入力画面を表示部61に表示させる。設定部652は、設定入力画面に対して入力部62を介して入力された設定情報を初期設定として記憶部64に記憶させる。また、設定部652は、設定情報を複数の訓練用端末1に送信する。
開始通知部653は、設定情報の設定の完了通知を複数の訓練用端末1の全てから受信すると、複数の訓練用端末1に模擬訓練を開始させる開始通知を送信する。開始通知部653から全ての訓練用端末1に開始通知がなされることによって、各訓練用端末1において訓練が開始される。
監視部654は、各訓練用端末1からシミュレーション画像を受け取る。つまり、監視部654は、それぞれの訓練者9に応じた一人称視点のシミュレーション画像を受け取る。監視部654は、何れか1人の訓練者9の一人称視点のシミュレーション画像を表示部61に表示させる。あるいは、監視部654は、全ての訓練者9の一人称視点のシミュレーション画像を表示部61に分割表示させる。全ての一人称視点のシミュレーション画像を分割表示させた場合、監視部654は、入力部62を介した選択操作に応じて、何れか1つの一人称視点のシミュレーション画像を表示部61に表示させてもよい。
続いて、VR訓練システム100における訓練開始処理について説明する。図7は、設定用端末6の訓練開始処理のフローチャートである。
まず、ステップSa1において、処理部65は、初期設定の入力を受け付ける。具体的には、設定部652は、初期設定を行うための設定入力画面を表示部61に表示させると共に、入力部62を介して管理者から設定情報の入力を受け付ける。
例えば、設定部652は、接続される端末の個数を特定する情報(以下、「端末数情報」と称する)、接続される端末のIPアドレスを特定する情報(以下、「端末アドレス情報」と称する)、訓練のシミュレーションが実施される訓練フィールドを特定する情報(以下、「フィールド情報」と称する)、ヘリコプタのブームの向き(即ち、ブームがヘリコプタの左右のどちら側に延びているか)を特定する情報(以下、「ブーム情報」と称する)、及び、訓練フィールド内における要救助者の位置を特定する情報(以下、「要救助者情報」と称する)の入力を受け付ける。端末数情報及び端末アドレス情報によって、訓練に参加する訓練者が特定される。訓練フィールドとしては山間部等の各種フィールドが用意されている。なお、フィールド情報には、予め設定された、訓練フィールドにおけるヘリコプタの初期位置(即ち、ヘリコプタのローカル座標系の原点の初期位置)も含まれている。端末数情報、端末アドレス情報、フィールド情報、ブーム情報及び要救助者情報は、設定情報の一例であり、これに限定されない。設定部652は、これらの設定情報を初期設定として設定する。なお、ヘリコプタの初期位置は、フィールド情報に含まれるのではなく、設定情報の1つの項目として入力されてもよい。
処理部65は、ステップSa2において、初期設定が完了したか否かを判定する。具体的には、設定部652は、管理者が入力部62を介して入力完了の操作を行ったか否かによって、初期設定が完了したか否かを判定する。初期設定が完了していない場合には、設定部652は、ステップSa1,Sa2の処理を繰り返す。
初期設定が完了すると、処理部65は、ステップSa3において、初期設定に関する設定情報を訓練用端末1へ送信する。具体的には、設定部652は、訓練用端末1から接続要求を受信すると、通信の確立完了を示す接続完了応答と併せて設定情報を訓練用端末1に送信する。ステップSa3は、シミュレーション画像の生成に必要な設定情報を有する設定用端末から設定情報を複数の訓練用端末へ送信することに相当する。
その後、処理部65は、ステップSa4において、全ての訓練用端末1に設定情報を送信したか否かを判定する。全ての訓練用端末1への設定情報の送信が完了している場合には、処理部65はステップSa5へ進む一方、全ての訓練用端末1への設定情報の送信が完了していない場合には、処理部65は、ステップSa3,Sa4の処理を繰り返す。
ステップSa5において、処理部65は、訓練用端末1の準備完了を示す完了通知を訓練用端末1から受信する。
その後、処理部65、詳しくは、開始通知部653は、ステップSa6において、全ての訓練用端末1から完了通知を受信したか否かを判定する。いずれかの訓練用端末1から完了通知を受信していない場合には、開始通知部653は、ステップSa5,Sa6の処理を繰り返す。
全ての訓練用端末1から完了通知を受信した場合には、開始通知部653は、ステップSa7において、訓練の開始通知を全ての訓練用端末1へ送信する。この開始通知をトリガとして、全ての訓練用端末1において訓練が開始される。ステップSa5~Sa7は、設定用端末が複数の訓練用端末の全てから完了通知を受信すると、複数の訓練用端末に模擬訓練を開始させることに相当する。
その後、処理部65、詳しくは、監視部654は、表示部61にVR空間におけるシミュレーション画像を表示させる。これにより、教官等の管理者は、表示部61を観ながら、訓練者9による連携訓練を監視することができる。
図8は、訓練用端末1の訓練開始処理のフローチャートである。以下の訓練開始処理は、訓練用端末1のそれぞれにおいて独立して実施される。
まず、ステップSb1において、処理部14は、設定用端末6との通信を確立する。具体的には、訓練者9は、設定用端末6との接続を要求する入力を、訓練用端末1の入力部11又はVR表示装置2の入力部21を介して行う。なお、設定用端末6との接続を要求する入力は、操縦装置3の操縦桿31、ペダル32又はCPレバー33から出力される操作信号によるものであってもよい。シミュレーション進行部146は、設定用端末6との接続要求の入力を受けると、設定用端末6に接続要求を送信する。それに対して、シミュレーション進行部146は、設定用端末6から接続完了応答を受信することによって、設定用端末6との通信が確立される。
このとき、シミュレーション進行部146は、設定用端末6から初期設定の設定情報も受信する(ステップSb2)。ステップSb3において、設定部142は、受信された設定情報をシミュレーションの初期設定として設定する。ステップSb2,Sb3は、複数の訓練用端末が設定用端末から設定情報を受信し、設定情報を設定することに相当する。
初期設定が完了すると、シミュレーション進行部146は、ステップSb4において、初期設定に基づいてフィールド定義データ132、アバタ定義データ133及びオブジェクト定義データ134を記憶部13から読み出し、フィールド画像にオブジェクト画像及び自アバタ画像が合成されたVR空間を生成して、シミュレーション画像を生成する。このとき、自アバタが機体80内に存在する訓練者である場合には、自アバタのアバタ定義データ133に含まれる初期位置情報は、VR空間における絶対座標系ではなく、機体80に固定された原点を有する機体80におけるローカル座標系を基準とした位置情報である。つまり、自アバタは、VR空間において、機体80に対する相対位置に表示される。
シミュレーション進行部146は、生成したシミュレーション画像をVR表示装置2に出力、即ち、提供する。それに応じて、VR表示装置2は、シミュレーション画像を表示する。
続いて、シミュレーション進行部146は、ステップSb5において、他の全ての訓練用端末1との通信を確立する。具体的には、訓練者9は、他の訓練用端末1との接続を要求する入力を、訓練用端末1の入力部11又はVR表示装置2の入力部21を介して行う。それに対し、シミュレーション進行部146は、他の訓練用端末1に接続要求を送信する。それに対して、シミュレーション進行部146は、他の訓練用端末1から接続完了応答を受信することによって、他の訓練用端末1との通信が確立される。シミュレーション進行部146は、他の全ての訓練用端末1との通信を確立する。
なお、操縦士91及び副操縦士92の訓練用端末1のうち操縦機能が有効となっている訓練用端末1は、機体演算端末5との通信も確立する。
他の訓練用端末1との通信が確立されると、ステップSb6において、シミュレーション進行部146は、他の訓練用端末1へVR空間内における自アバタの初期位置情報(即ち、位置座標(x,y,z)及び回転角(Φ,θ,ψ))を送信する。
続いて、ステップSb7において、シミュレーション進行部146は、他の訓練用端末1から、VR空間内における他アバタの初期位置情報(即ち、位置座標(x,y,z)及び回転角(Φ,θ,ψ))を受信する。
他アバタの初期位置情報を受信すると、ステップSb8において、シミュレーション進行部146は、他アバタを表示させる。詳しくは、シミュレーション進行部146は、他アバタに対応するアバタ定義データ133を記憶部13から読み出し、ステップSb4で生成したVR空間における初期位置に他アバタを合成する。このとき、機体80内に存在する他アバタの初期位置情報は、VR空間における絶対座標系ではなく、機体80に固定された原点を有する機体80におけるローカル座標系を基準とした位置情報である。つまり、他アバタは、VR空間において、機体80に対する相対位置に表示される。
その後、ステップSb9において、シミュレーション進行部146は、訓練用端末1の準備が完了したか否かを判定する。例えば、訓練者9は、シミュレーションの準備が完了すると、VR表示装置2の入力部21を操作して、準備完了を入力する。シミュレーションの準備は、訓練者9に応じて異なる。操縦士91又は副操縦士92の準備は、操縦装置3Aのシート34への着席、及び、VR表示装置2の装着である。ホイストマン93及び降下員94の準備は、VR表示装置2及びコントローラ3Bの装着である。シミュレーション進行部146は、VR表示装置2から準備完了信号を受信することによって、訓練用端末1の準備完了を判定する。シミュレーション進行部146は、準備が完了するまで待機する。なお、訓練者9は、入力部11を操作して、準備完了を入力してもよい。その場合、シミュレーション進行部146は、入力部11からの準備完了信号を受信することによって、訓練用端末1の準備完了を判定する。
準備が完了すると、シミュレーション進行部146は、ステップSb10において、準備完了の旨を示す完了通知を設定用端末6に送信する。なお、準備には、訓練用端末1における初期設定に関する設定情報の設定も含まれる。そのため、完了通知には、設定情報の設定の完了通知でもある。ステップSb10は、複数の訓練用端末が設定情報の設定の完了通知を設定用端末に送信することに相当する。
その後、シミュレーション進行部146は、ステップSb11において、設定用端末6からの開始通知を待機する。
開始通知を受信すると、シミュレーション進行部146は、ステップSb12において、訓練のシミュレーションを開始する。
このような訓練開始処理によれば、共通のVR空間におけるシミュレーション画像の生成に必要な設定情報が設定用端末6から各訓練用端末1に送信される。各訓練用端末1は、設定用端末6から受信した設定情報を初期設定として設定し、共通のVR空間におけるシミュレーション画像を生成する。各訓練者9は、対応する訓練用端末1で初期設定を行う必要がない。そのため、各訓練者9による訓練内容の予測が回避され、訓練効果を高めることができる。
さらに、このような構成においては、全ての各訓練用端末1における設定情報の設定が完了するまで訓練の開始を待機する必要がある。VR訓練システム100では、設定用端末6が全ての訓練用端末1における設定情報の設定完了の確認と訓練開始のトリガを管理する。具体的には、各訓練用端末1は、設定情報の設定が完了すると、完了通知を他の全ての訓練用端末1ではなく、設定用端末6に送信する。設定用端末6は、全ての訓練用端末1において設定情報の設定が完了したか否かを確認する。全ての訓練用端末1において設定情報の設定が完了すると、設定用端末6は、全ての訓練用端末1に開始通知を送信し、訓練が開始される。仮に、全ての訓練用端末1における設定完了の確認と訓練開始のトリガとを、訓練用端末1のそれぞれで行うと、必要な信号の送受信が増加し、処理が煩雑になる。それに対し、全ての訓練用端末1における設定完了の確認と訓練開始のトリガを1つの端末、即ち、設定用端末6が管理することによって、訓練開始までの処理を円滑に行うことができる。
続いて、VR訓練システム100における模擬訓練の一例について説明する。この模擬訓練は、4人の訓練者9(操縦士91、副操縦士92、ホイストマン93及び降下員94)による連携訓練であり、要救助者88が存在する地点までヘリコプタ8を飛行させ、要救助者88を救出する訓練である。操縦士91の訓練用端末1の操縦機能が有効となっている。図9は、模擬訓練における各種訓練の流れを示すフローチャートである。この模擬訓練は、前述の訓練開始処理の完了後に開始される。操縦装置3A及びコントローラ3Bの各種操作には、訓練の状況に応じて、各種処理が割り当てられている。訓練用端末1は、シミュレーション画像中の状況に応じて、操縦装置3A及びコントローラ3Bの操作に対応する処理を実行する。
模擬訓練では、まず、ステップSc1において飛行訓練が行われる。この飛行訓練は、ヘリコプタ8を出発地から要救助者88が存在する地点(即ち、救助地点)まで飛行させる訓練である。操縦士91は、操縦装置3Aを操作することによって、シミュレーション画像内でヘリコプタ8を飛行させる。操縦士91の訓練用端末1は、機体演算端末5の演算結果に基づいて、VR空間における機体80の位置及び姿勢を変化させる。
他の訓練用端末1は、操縦士91の訓練用端末1によって演算された機体80の位置及び姿勢を取得し、機体80の位置及び姿勢を更新したシミュレーション画像を生成する。副操縦士92等は、シミュレーション画像を観ながら、飛行中の安全確認を行う。例えば、図10は、飛行訓練中のホイストマン93のシミュレーション画像の一例である。このシミュレーション画像は、ホイストマン93が機体80内で操縦席側を向いている場合の画像である。このシミュレーション画像では、操縦席及び副操縦席に座っている操縦士91のアバタ91A及び副操縦士92のアバタ92Aが表示されている。
ヘリコプタ8が救助地点に到着すると、飛行訓練が完了する。
続いて、ステップSc2のホバリング訓練が行われる。ホバリング訓練は、ヘリコプタ8を空中における所定位置に停止させ続ける訓練である。このホバリング訓練では、操縦士91による操縦動作及び副操縦士92等による安全確認動作が行われる。
ホバリング飛行が安定して行われると、ホバリング訓練が完了する。
次に、ステップSc3の降下訓練が行われる。図11は、降下訓練中のホイストマン93又は降下員94のシミュレーション画像の一例である。図12は、降下訓練中の降下員94のシミュレーション画像の一例である。図13は、降下訓練中のVR空間内の配置状況の一例を示す図である。図14は、降下訓練中の副操縦士92のシミュレーション画像の一例である。図15は、降下訓練中のホイストマン93のシミュレーション画像の一例である。
降下訓練は、ホイストマン93が巻き上げ機84を操作して降下員94を機体80から降下させる訓練である。つまり、降下員94のアバタ94Aがホイストケーブル82に連結された後、ホイストマン93が巻き上げ機84を操作して降下員94のアバタ94Aを降下させる。
例えば、降下訓練においては、ホイストマン93及び降下員94は、自アバタを機体80のドアの近傍へ移動させる。この自アバタの移動は、ホイストマン93又は降下員94のコントローラ3Bの操作によって実現される。例えば、ホイストマン93又は降下員94は、操作スイッチ35を半押しすることによって、図11に示すように、機体80の床85にポインタ70が表示される。ホイストマン93又は降下員94は、操作スイッチ35を半押しした状態でコントローラ3Bの向きを調整することによってポインタ70の位置を調整する。ホイストマン93又は降下員94は、操作スイッチ35を全押しすることによって、ポインタ70の位置に自アバタを移動させることができる。こうすることで、ホイストマン93又は降下員94が実空間で実際に移動しなくても、VR空間において自アバタを移動させることができる。なお、自アバタの移動は、ホイストマン93又は降下員94の実空間における実際の移動によって実現してもよい。
ここで、床85へのポインタ70の表示は、実質的には、オブジェクトのうち自アバタの移動先となる部分を選択することを意味する。以下、オブジェクト又はその一部の選択は、ポインタ70をオブジェクト又はその一部に重ねて表示させることによって実行される。
続いて、ホイストマン93又は降下員94は、コントローラ3Bを操作して、ポインタ70によって機体80のドアを選択する。この状態で、ホイストマン93又は降下員94が操作スイッチ35を全押しすることによって、ドアが開く。
降下員94は、図12に示すように、ポインタ70によってホイストケーブル82の先端又はカラビナ86の近傍を選択する。この状態で、降下員94が操作スイッチ35を全押しすることによって、降下員94のアバタ94Aの縛帯87(図13参照)にカラビナ86が連結される。降下員94のアバタ94Aは、救助縛帯83とは別の縛帯87を予め装着している。これにより、図13に示すように、降下員94のアバタ94Aがホイストケーブル82に連結され、降下員94のアバタ94Aがホイストケーブル82に吊り下げられた状態となる。
このとき、副操縦士92は、図14に示すように、ホイストマン93のアバタ93A及び降下員94のアバタ94Aの状況を確認して、必要に応じて操縦士91にホバリング飛行の助言を行う。
一方、ホイストマン93は、ポインタ70によってペンダント型操作部を選択し、その状態で操作スイッチ35を全押しすることによってホイストマン93のアバタ93Aにペンダント型操作部を把持させる。ホイストマン93は、図15に示すように、ホイストマン93のアバタ93Aが機体80から身を乗り出すように実空間において移動する。これにより、ホイストマン93は、ホイストケーブル82に吊り下げられた、降下員94のアバタ94Aを視認することができる。ホイストマン93のアバタ93Aがペンダント型操作部を把持した状態で、ホイストマン93が操作スイッチ35を操作することによって、ホイストケーブル82が引き出され、降下員94のアバタ94Aが降下していく。
このとき、降下員94は、VR空間における地表までの距離に応じて、実空間において手信号を行う(即ち、コントローラ3Bを動かす)。これにより、降下員94のアバタ94Aも同様の手信号を行い、降下員94のアバタ94Aと地表との距離をホイストマン93に知らせる。ホイストマン93は、降下員94のアバタ94Aの手信号に応じて、ホイストケーブル82の引き出し量を調整する。
降下員94は、降下員94のアバタ94Aが地表に接近すると、目標着地点をポインタ70によって選択する。その状態で、降下員94が操作スイッチ35を全押しすることによって、降下員94のアバタ94Aは、目標着地点に着陸する。このとき、降下員94のアバタ94Aがホイストケーブル82との連結を解除する動作が省略され、降下員94のアバタ94Aは、ホイストケーブル82から離脱した状態となる。これにより、降下訓練が完了する。
続いて、ステップSc4の救助訓練が行われる。図16は、救助訓練における降下員94のシミュレーション画像の一例である。図17は、救助訓練における降下員94のシミュレーション画像の一例である。
降下員94は、降下員94のアバタ94Aを要救助者88の場所まで移動させる。この移動は、前述の機体80内での移動と同様に、ポインタ70による移動先の選択及び操作スイッチ35の全押しによって実現される。
降下員94のアバタ94Aが要救助者88のところまで移動した状態においては、降下員94が操作スイッチ35を半押しし、要救助者88が救助可能範囲内にあると、図16に示すように、要救助者88の輪郭が色付けて表示される。降下員94は、コントローラ3Bの向きを調整して、降下員94のアバタ94Aの手で要救助者88を触る。その状態で、降下員94が操作スイッチ35を全押しすると、図17に示すように、要救助者88が救助縛帯83に縛着された状態となる。つまり、降下員94のアバタ94Aが要救助者88を救助縛帯83の位置まで移動させる動作、及び、降下員94のアバタ94Aが救助縛帯83を要救助者88に縛着させる動作が省略される。
その後、降下員94は、降下員94のアバタ94Aをホイストケーブル82の場所まで移動させる。この移動は、前述の通りである。
降下員94のアバタ94Aがホイストケーブル82のところまで移動した状態で、降下員94は、ポインタ70によってホイストケーブル82を選択し、操作スイッチ35を全押しすることによって、降下員94のアバタ94Aがホイストケーブル82に連結される。これにより、救助訓練が完了する。
次に、ステップSc5の引上げ訓練が行われる。図18は、引上げ訓練における降下員94のシミュレーション画像の一例である。
降下員94は、手信号を行って、ホイストマン93に引上げ開始の合図を送る。
ホイストマン93は、降下員94のアバタ94Aの手信号を確認して、ペンダント型操作部を操作し、降下員94のアバタ94A及び要救助者88の引上げを開始する。ホイストマン93は、降下員94のアバタ94Aを視認しながら、ホイストケーブル82の引上げ量を調整する。
降下員94は、引上げ状況に応じて、ホイストマン93のアバタ93Aに手信号を送ってもよい。例えば、ホイストケーブル82の揺れが大きくなった場合には、降下員94は、引上げを一旦停止する合図をホイストマン93のアバタ93Aに送ってもよい。さらに、ホイストケーブル82の揺れが収まると、降下員94は、引上げを再開する合図をホイストマン93のアバタ93Aに送ってもよい。この場合、ホイストマン93は、降下員94のアバタ94Aの手信号に応じて、引上げの一旦停止及び引上げの再開等を実行する。
降下員94は、図18に示すように、降下員94のアバタ94Aが機体80の近傍まで引き上げられると、ポインタ70で機体80内の一部を選択し、操作スイッチ35を全押しする。これにより、降下員94のアバタ94Aが機体80に乗り込む。その後、ホイストマン93は、ポインタ70で救助縛帯83を選択し、操作スイッチ35を全押しする。これにより、要救助者88は、機体80内に引き上げられる。つまり、降下員94のアバタ94Aが機体80内に乗り込む動作、及び、ホイストマン93のアバタ93A等が要救助者88を機体80内に引き込む動作が省略される。これにより、引上げ訓練が完了する。
その後、ステップSc6の飛行訓練が行われる。ステップSc6の飛行訓練は、ステップSc1の飛行訓練と同様である。この飛行訓練は、ヘリコプタ8を元の出発地まで飛行させる訓練である。操縦士91は、操縦装置3Aを操作することによって、ヘリコプタ8を飛行させる。副操縦士92等は、飛行中の安全確認を行う。ヘリコプタ8が元の出発地に到着すると、飛行訓練が終了すると共に、一連の模擬訓練(連携訓練)が終了する。
なお、この模擬訓練は、一例に過ぎず、模擬訓練の内容はこれに限定されるものではない。
以上のように、航空機のVR訓練システム100は、共通のVR空間における模擬訓練を行うためのシミュレーション画像を生成して、対応する訓練者9にシミュレーション画像を提供するする複数の訓練用端末1と、シミュレーション画像の生成に必要な設定情報を有する設定用端末6とを備え、設定用端末6は、設定情報を複数の訓練用端末1に送信し、複数の訓練用端末1は、設定用端末6から受信した設定情報を設定し、設定情報の設定の完了通知を設定用端末6に送信し、設定用端末6は、複数の訓練用端末1の全てから完了通知を受信すると、複数の訓練用端末1に模擬訓練を開始させる。
また、航空機のVR訓練方法は、複数の訓練用端末1のそれぞれによって生成される共通のVR空間におけるシミュレーション画像を用いて、前記複数の訓練用端末1に対応する複数の訓練者によって模擬訓練を行う、航空機のVR訓練方法であって、シミュレーション画像の生成に必要な設定情報を有する設定用端末6から設定情報を複数の訓練用端末1へ送信することと、複数の訓練用端末1が設定用端末6から設定情報を受信し、設定情報を設定することと、複数の訓練用端末1が設定情報の設定の完了通知を設定用端末に送信することと、設定用端末6が複数の訓練用端末1の全てから完了通知を受信すると、複数の訓練用端末1に模擬訓練を開始させることとを含む。
さらに、シミュレーションプログラム131は、共通のVR空間における模擬訓練を行うためのシミュレーション画像を生成して、対応する訓練者9にシミュレーション画像を提供する機能を訓練用端末1の処理部14(コンピュータ)に実現させるための、航空機のVR訓練プログラムであって、シミュレーション画像の生成に必要な設定情報を有する設定用端末6から設定情報を受信して、設定情報を設定する機能と、設定情報の設定の完了通知を設定用端末6に送信する機能と、設定用端末6から模擬訓練の開始通知を受信して模擬訓練を開始する機能とを処理部14に実現させる。
さらにまた、開始プログラム641は、共通のVR空間における模擬訓練を行うためのシミュレーション画像を、対応する訓練者9に提供する複数の訓練用端末1に模擬訓練を開始させる機能を設定用端末6の処理部65(コンピュータ)に実現させるためのVR訓練プログラムであって、シミュレーション画像の生成に必要な設定情報を複数の訓練用端末1に送信する機能と、設定情報の設定の完了通知を複数の訓練用端末1の全てから受信すると、複数の訓練用端末1に模擬訓練を開始させる開始通知を送信する機能とを処理部65に実現させる。
これらの構成によれば、複数の訓練用端末1のそれぞれにおいて共通のVR空間における模擬訓練を行うためのシミュレーション画像が生成される。そのため、複数の訓練用端末1のそれぞれにおいて、シミュレーション画像の生成に必要な設定情報の設定が必要となる。そこで、設定用端末6が設定情報を各訓練用端末1に送信する。各訓練用端末1は、設定用端末6から受信した設定情報を初期設定として設定する。これにより、各訓練用端末1が、共通のVR空間におけるシミュレーション画像を生成することができる。各訓練者9は、対応する訓練用端末1で初期設定を行う必要がないので、各訓練者9による訓練内容の予測が回避され、訓練効果を高めることができる。
それに加えて、設定情報の設定が完了した訓練用端末1は、設定用端末6に完了通知を送信するので、訓練用端末1における設定情報の設定完了を訓練用端末1同士で確認し合う必要がなく、1つの設定用端末6で確認できる。また、全ての訓練用端末1からの完了通知が設定用端末6に集まるので、設定用端末6は、訓練開始の可否を容易に判断することができる。全ての訓練用端末1において設定情報の設定が完了すると、設定用端末6は、全ての訓練用端末1に開始通知を送信し、訓練が開始される。このように、全ての訓練用端末1における設定完了の確認と訓練開始のトリガを1つの設定用端末6が管理することによって、訓練開始までの処理を円滑に行うことができる。
また、シミュレーション画像は、訓練者9のアバタを含み、複数の訓練用端末1の各訓練用端末1は、複数の訓練用端末1のうちの他の訓練用端末1との通信を確立した後に他の訓練用端末1に対応する訓練者9のアバタである他アバタのVR空間における位置情報を他の訓練用端末1から取得し、他アバタをシミュレーション画像のVR空間内に位置情報に基づいて生成する。
この構成によれば、各訓練用端末1は、他アバタの位置情報を他の訓練用端末1から取得する。そのため、訓練用端末1は、他アバタの位置情報を演算する必要がないので、演算負荷が軽減される。
シミュレーション画像は、訓練者9のアバタ及び航空機の機体80を含み、複数の訓練用端末1は、アバタのうちVR空間において機体80内に存在するアバタを、機体80に固定された原点を有するローカル座標系を基準とした位置情報に基づいて生成する。
この構成によれば、アバタと機体80との相対的な位置関係が適切に維持される。つまり、シミュレーション画像では、機体80は移動し得る。同様に、アバタも移動し得る。機体80とアバタとのそれぞれをVR空間の絶対座標系を基準に生成すると、機体80とアバタとの位置がずれる可能性がある。例えば、アバタが機体80を貫通してしまったり、アバタが機体80の床から浮いてしまったりする可能性がある。それに対し、アバタを機体80のローカル座標系を基準に生成することによって、アバタと機体80との相対的な位置関係が適切に維持され、前述のようなずれを低減できる。
さらに、複数の訓練用端末1は、模擬訓練において訓練者によって使用される操縦桿31又はコントローラ3B(操作装置)の準備が完了した後に、完了通知を送信する。
この構成によれば、完了通知は、設定情報の設定の完了に加えて、操作装置の準備完了も示す。これにより、設定用端末は、操作装置の準備が完了した適切なタイミングで模擬訓練を開始させることができる。
模擬訓練は、複数の訓練用端末1にそれぞれ対応する複数の訓練者9による連携訓練である。
また、設定用端末6は、シミュレーション画像を生成しない端末である。
この構成によれば、設定用端末6は、訓練用端末1とは別の端末である。つまり、設定用端末6は、訓練者のために設けられた端末ではない。
《その他の実施形態》
以上のように、本出願において開示する技術の例示として、前記実施形態を説明した。しかしながら、本開示における技術は、これに限定されず、適宜、変更、置き換え、付加、省略などを行った実施の形態にも適用可能である。また、前記実施形態で説明した各構成要素を組み合わせて、新たな実施の形態とすることも可能である。また、添付図面および詳細な説明に記載された構成要素の中には、課題解決のために必須な構成要素だけでなく、前記技術を例示するために、課題解決のためには必須でない構成要素も含まれ得る。そのため、それらの必須ではない構成要素が添付図面や詳細な説明に記載されていることをもって、直ちに、それらの必須ではない構成要素が必須であるとの認定をするべきではない。
以上のように、本出願において開示する技術の例示として、前記実施形態を説明した。しかしながら、本開示における技術は、これに限定されず、適宜、変更、置き換え、付加、省略などを行った実施の形態にも適用可能である。また、前記実施形態で説明した各構成要素を組み合わせて、新たな実施の形態とすることも可能である。また、添付図面および詳細な説明に記載された構成要素の中には、課題解決のために必須な構成要素だけでなく、前記技術を例示するために、課題解決のためには必須でない構成要素も含まれ得る。そのため、それらの必須ではない構成要素が添付図面や詳細な説明に記載されていることをもって、直ちに、それらの必須ではない構成要素が必須であるとの認定をするべきではない。
例えば、VR訓練システム100が適用されるVR訓練は、ヘリコプタにおけるVR訓練に限定されない。VR訓練システム100は、ヘリコプタ以外の航空機のVR訓練にも適用できる。
操縦士91の訓練用端末1及び副操縦士92の訓練用端末1の演算能力に余裕がある場合などにおいては、機体演算端末5を省略し、操縦士91の訓練用端末1及び副操縦士92の訓練用端末1のそれぞれがVR空間における機体80の移動量及び姿勢の変化量を演算してもよい。その場合には、操縦士91の訓練用端末1及び副操縦士92の訓練用端末1のそれぞれに対応する操縦装置3Aが接続される。この場合、複数の訓練用端末のうちの一の訓練用端末1(具体的には、操縦士91及び副操縦士92の訓練用端末1のうち操縦機能が有効となっている方の訓練用端末1)が、操縦装置3Aを介した操作入力に基づいて、航空機の機体80のVR空間における位置及び姿勢を演算する機体端末として機能する。
あるいは、機体演算端末5は、操縦装置3Aを介した操作入力に基づいて機体の移動量及び姿勢の変化量を演算するだけでなく、移動量情報に基づいて機体80のVR空間における位置及び姿勢を演算してもよい。この場合、機体演算端末5は、操縦装置3Aを介した操作入力に基づいて、航空機の機体80のVR空間における位置及び姿勢を演算する機体端末として機能する、訓練用端末1とは別の端末である。
あるいは、訓練用端末1のそれぞれが機体演算端末5から移動量情報を取得し、移動量情報に基づいて80のVR空間における位置及び姿勢を演算してもよい。
操縦士91及び副操縦士92の訓練用端末1は、演算負荷軽減のために、頭部のみが動作するようにアバタを生成するが、これに限定されるものではない。操縦士91及び副操縦士92の訓練用端末1は、ホイストマン93及び降下員94の訓練用端末1と同様に、訓練者9の全身の動作を反映するようにアバタを生成してもよい。
設定用端末6は、訓練用端末1と別の端末でなくてもよい。訓練用端末1が設定用端末6としても機能してもよい。つまり、複数の訓練用端末1の何れか1つの訓練用端末1を設定用端末6としても機能させることができる。この場合、航空機のVR訓練システム100は、共通のVR空間における模擬訓練を行うためのシミュレーション画像を生成して、対応する訓練者9にシミュレーション画像を提供するする複数の訓練用端末1と、シミュレーション画像の生成に必要な設定情報を有する設定用端末6としての機能を有すると共に、共通のVR空間における模擬訓練を行うためのシミュレーション画像を生成して、対応する訓練者9にシミュレーション画像を提供するする訓練用端末1とを備えている。例えば、教官が副操縦士92の役割をして訓練に参加してもよい。その場合には、副操縦士92の訓練用端末1が設定用端末6と同様の機能を実現する。教官は、副操縦士92の訓練用端末1に初期設定の設定情報を入力し、副操縦士92の訓練用端末1から他の訓練用端末1へ設定情報が送信される。他の訓練用端末1で設定情報の設定が完了すると、他の全ての訓練用端末1から副操縦士92の訓練用端末1へ完了通知が送信される。副操縦士92の訓練用端末1は、他の全ての訓練用端末1から完了通知を受信すると、他の全ての訓練用端末1へ訓練の開始通知を送信する。教官は、副操縦士92として訓練に参加しつつ、他の訓練者9の訓練の様子を監視する。
また、設定用端末6は、訓練を監視する機能を有していなくてもよい。
訓練者9は、操縦士91、副操縦士92、ホイストマン93及び降下員94に限定されない。訓練者9は、これらの中の3人又は2人であってもよい。あるいは、訓練者9は、これらの4人以外の者であってもよい。つまり、VR訓練システム100を使って連携訓練を行うことができる者であれば、任意の者が訓練者9となることができる。例えば、訓練者9に地上員(地表からヘリコプタを誘導する者)、管制官又は要救助者が含まれていてもよい。
初期設定の設定情報として、訓練者9のVR空間における初期位置が設定されてもよい。例えば、訓練者9が地上員である場合には、VR空間における訓練者9の地表の位置が設定され得る。
図7,8のフローチャートは、実施できる範囲で、ステップを省略したり、ステップの順番を変更したり、複数のステップを並行して処理したり、別のステップを追加したりすることができる。
図7のフローチャートでは、設定用端末6は、管理者からの初期設定の入力を受け付けているが、これに限定されない。設定用端末6において初期設定が既になされ、設定用端末6は初期設定に関する設定情報を既に有している状態であてもよい。その場合、図7のフローチャートは、ステップSa3から開始される。また、設定用端末6に初期設定を入力する構成であっても、初期設定に関する各項目を入力する構成でなくてもよい。設定用端末6は、各種の設定情報が予めプリセットされた複数の初期設定を有しており、管理者が複数の初期設定の中らから1つの初期設定を選択してもよい。
図8のフローチャートでは、ステップSb5において、訓練用端末1は他の訓練用端末1との通信を確立しているが、他の訓練用端末1と通信を確立するタイミングは、これに限定されない。例えば、ステップSb1において、訓練用端末1が設定用端末6と通信を確立する際に、他の訓練用端末1と通信を確立してもよい。また、訓練用端末1は、ステップSb4において、自アバタを表示させているが、自アバタを表示するタイミングはこれに限定されない。例えば、訓練用端末1は、他アバタを表示させるタイミングで自アバタも表示させてもよい。
VR表示装置2が表示する画像は、一人称視点のシミュレーション画像に限定されない。例えば、VR表示装置2は、三人称視点のシミュレーション画像を表示してもよい。
トラッキングシステム4は、訓練者9の動きを追跡できる限りは、任意の方式を採用することができる。例えば、トラッキングシステム4は、インサイドアウト方式であってもよい。
操作装置である操縦装置3A及びコントローラ3Bは、訓練者及び訓練内容に応じて適宜変更することができる。
また、操縦装置3A及びコントローラ3Bによって可能な操作の内容も訓練者及び訓練内容に応じて適宜変更することができる。例えば、VR表示装置2に表示されているアイコン等を操縦装置3A又はコントローラ3Bを介して操作することによって、操縦装置3A又はコントローラ3Bを入力部11と同様に機能させてもよい。
本実施の形態で開示された構成の機能は、電気回路又は処理回路を用いて実行されてもよい。電気回路又は処理回路は、開示された機能を実行するように構成若しくはプログラムされた、メインプロセッサ、専用プロセッサ、集積回路、ASICs、従来型の電気回路、コントローラ又はこれらを組み合わせたものであってもよい。プロセッサ又はコントローラは、トランジスタ及びその他の回路を含む処理回路等である。本開示において、回路、ユニット、コントローラ又は手段は、記載した機能を実行するためのハードウェア又はプログラムされたものである。ここで、ハードウェアは、本実施の形態で開示された機能を実行するように構成若しくはプログラムされた、本実施の形態で開示されたもの又は公知のハードウェアである。ハードウェアが、プロセッサ又はコントローラの場合、回路、手段又はユニットは、ハードウェアとソフトウェアの組み合わせであり、ソフトウェアは、ハードウェア及び/又はプロセッサを構成するために用いられる。
100 VR訓練システム
1 訓練用端末
131 シミュレーションプログラム(VR訓練プログラム)
6 設定用端末
641 開始プログラム
3A 操縦装置(操作装置)
3B コントローラ(操作装置)
91 操縦士(訓練者)
92 副操縦士(訓練者)
93 ホイストマン(訓練者)
94 降下員(訓練者)
1 訓練用端末
131 シミュレーションプログラム(VR訓練プログラム)
6 設定用端末
641 開始プログラム
3A 操縦装置(操作装置)
3B コントローラ(操作装置)
91 操縦士(訓練者)
92 副操縦士(訓練者)
93 ホイストマン(訓練者)
94 降下員(訓練者)
Claims (9)
- 共通のVR空間における模擬訓練を行うためのシミュレーション画像を生成して、対応する訓練者に前記シミュレーション画像を提供する複数の訓練用端末と、
前記シミュレーション画像の生成に必要な設定情報を有する設定用端末とを備え、
前記設定用端末は、前記設定情報を前記複数の訓練用端末に送信し、
前記複数の訓練用端末は、前記設定用端末から受信した前記設定情報を設定し、前記設定情報の設定の完了通知を前記設定用端末に送信し、
前記設定用端末は、前記複数の訓練用端末の全てから前記完了通知を受信すると、前記複数の訓練用端末に前記模擬訓練を開始させる、航空機のVR訓練システム。 - 請求項1に記載の航空機のVR訓練システムにおいて、
前記シミュレーション画像は、訓練者のアバタを含み、
前記複数の訓練用端末の各訓練用端末は、前記複数の訓練用端末のうちの他の訓練用端末との通信を確立した後に前記他の訓練用端末に対応する訓練者のアバタである他アバタのVR空間における位置情報を前記他の訓練用端末から取得し、前記他アバタを前記シミュレーション画像のVR空間内に前記位置情報に基づいて生成する、航空機のVR訓練システム。 - 請求項1又は2に記載の航空機のVR訓練システムにおいて、
前記シミュレーション画像は、訓練者のアバタ及び航空機の機体を含み、
前記複数の訓練用端末は、前記アバタのうちVR空間において前記機体内に存在するアバタを、前記機体に固定された原点を有するローカル座標系を基準とした位置情報に基づいて生成する、航空機のVR訓練システム。 - 請求項1乃至3の何れか1つに記載の航空機のVR訓練システムにおいて、
前記複数の訓練用端末は、前記模擬訓練において訓練者によって使用される操作装置の準備が完了した後に、前記完了通知を送信する、航空機のVR訓練システム。 - 請求項1乃至4の何れか1つに記載の航空機のVR訓練システムにおいて、
前記模擬訓練は、前記複数の訓練用端末にそれぞれ対応する複数の訓練者による連携訓練である、航空機のVR訓練システム。 - 請求項1乃至5の何れか1つに記載の航空機のVR訓練システムにおいて、
前記設定用端末は、前記シミュレーション画像を生成しない端末である、航空機のVR訓練システム。 - 複数の訓練用端末のそれぞれによって生成される共通のVR空間におけるシミュレーション画像を用いて、前記複数の訓練用端末に対応する複数の訓練者によって模擬訓練を行う、航空機のVR訓練方法であって、
前記シミュレーション画像の生成に必要な設定情報を有する設定用端末から前記設定情報を前記複数の訓練用端末へ送信することと、
前記複数の訓練用端末が前記設定用端末から前記設定情報を受信し、前記設定情報を設定することと、
前記複数の訓練用端末が前記設定情報の設定の完了通知を前記設定用端末に送信することと、
前記設定用端末が前記複数の訓練用端末の全てから前記完了通知を受信すると、前記複数の訓練用端末に前記模擬訓練を開始させることとを含む、航空機のVR訓練方法。 - 共通のVR空間における模擬訓練を行うためのシミュレーション画像を生成して、対応する訓練者に前記シミュレーション画像を提供する機能を訓練用端末のコンピュータに実現させるための、航空機のVR訓練プログラムであって、
前記シミュレーション画像の生成に必要な設定情報を有する設定用端末から前記設定情報を受信して、前記設定情報を設定する機能と、
前記設定情報の設定の完了通知を前記設定用端末に送信する機能と、
前記設定用端末から前記模擬訓練の開始通知を受信して前記模擬訓練を開始する機能とをコンピュータに実現させる、航空機のVR訓練プログラム。 - 共通のVR空間における模擬訓練を行うためのシミュレーション画像を、対応する訓練者に提供する複数の訓練用端末に前記模擬訓練を開始させる機能を設定用端末のコンピュータに実現させるための、航空機のVR訓練プログラムであって、
前記シミュレーション画像の生成に必要な設定情報を前記複数の訓練用端末に送信する機能と、
前記設定情報の設定の完了通知を前記複数の訓練用端末の全てから受信すると、前記複数の訓練用端末に前記模擬訓練を開始させる開始通知を送信する機能とをコンピュータに実現させる、航空機のVR訓練プログラム。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP21828112.9A EP4174824A4 (en) | 2020-06-26 | 2021-06-25 | VIRTUAL REALITY LEARNING SYSTEM FOR AIRCRAFT, VIRTUAL REALITY LEARNING METHOD FOR AIRCRAFT, AND VIRTUAL REALITY LEARNING PROGRAM FOR AIRCRAFT |
US18/086,705 US20230126008A1 (en) | 2020-06-26 | 2022-12-22 | Aircraft vr training system, aircraft vr training method, and aircraft vr training program |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-110965 | 2020-06-26 | ||
JP2020110965A JP7478041B2 (ja) | 2020-06-26 | 2020-06-26 | 航空機のvr訓練システム、航空機のvr訓練方法及び航空機のvr訓練プログラム |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/086,705 Continuation US20230126008A1 (en) | 2020-06-26 | 2022-12-22 | Aircraft vr training system, aircraft vr training method, and aircraft vr training program |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021261593A1 true WO2021261593A1 (ja) | 2021-12-30 |
Family
ID=79281448
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/024237 WO2021261593A1 (ja) | 2020-06-26 | 2021-06-25 | 航空機のvr訓練システム、航空機のvr訓練方法及び航空機のvr訓練プログラム |
Country Status (4)
Country | Link |
---|---|
US (1) | US20230126008A1 (ja) |
EP (1) | EP4174824A4 (ja) |
JP (1) | JP7478041B2 (ja) |
WO (1) | WO2021261593A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8827709B1 (en) * | 2008-05-08 | 2014-09-09 | ACME Worldwide Enterprises, Inc. | Dynamic motion seat |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10198652A (ja) * | 1997-01-09 | 1998-07-31 | Mitsubishi Electric Corp | 分散シミュレーション装置 |
CN106781809A (zh) * | 2017-01-22 | 2017-05-31 | 北京航空航天大学 | 一种针对直升机应急救援任务的训练方法和系统 |
CN206833745U (zh) * | 2017-03-29 | 2018-01-02 | 四川龙睿三航科技有限公司 | 一种vr直升机空中救援模拟训练系统 |
CN109389879A (zh) * | 2018-12-14 | 2019-02-26 | 大连海事大学 | 一种直升机救助训练虚拟仿真教学系统 |
JP2019080743A (ja) | 2017-10-30 | 2019-05-30 | 株式会社バンダイナムコエンターテインメント | プログラム及びコンピュータシステム |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102016104186A1 (de) | 2016-03-08 | 2017-09-14 | Rheinmetall Defence Electronics Gmbh | Simulator zum Training eines Teams einer Hubschrauberbesatzung |
-
2020
- 2020-06-26 JP JP2020110965A patent/JP7478041B2/ja active Active
-
2021
- 2021-06-25 WO PCT/JP2021/024237 patent/WO2021261593A1/ja unknown
- 2021-06-25 EP EP21828112.9A patent/EP4174824A4/en active Pending
-
2022
- 2022-12-22 US US18/086,705 patent/US20230126008A1/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10198652A (ja) * | 1997-01-09 | 1998-07-31 | Mitsubishi Electric Corp | 分散シミュレーション装置 |
CN106781809A (zh) * | 2017-01-22 | 2017-05-31 | 北京航空航天大学 | 一种针对直升机应急救援任务的训练方法和系统 |
CN206833745U (zh) * | 2017-03-29 | 2018-01-02 | 四川龙睿三航科技有限公司 | 一种vr直升机空中救援模拟训练系统 |
JP2019080743A (ja) | 2017-10-30 | 2019-05-30 | 株式会社バンダイナムコエンターテインメント | プログラム及びコンピュータシステム |
CN109389879A (zh) * | 2018-12-14 | 2019-02-26 | 大连海事大学 | 一种直升机救助训练虚拟仿真教学系统 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4174824A4 |
Also Published As
Publication number | Publication date |
---|---|
EP4174824A4 (en) | 2023-12-20 |
JP7478041B2 (ja) | 2024-05-02 |
JP2022007790A (ja) | 2022-01-13 |
EP4174824A1 (en) | 2023-05-03 |
US20230126008A1 (en) | 2023-04-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11830382B2 (en) | Virtual reality based pilot training system | |
US10795431B2 (en) | System and method for presenting virtual reality content to a user based on body posture | |
JP6290467B1 (ja) | 情報処理方法、装置、および当該情報処理方法をコンピュータに実行させるプログラム | |
JP2016506528A (ja) | 遠隔操作されたビークルの組み合わされたシミュレーション及び制御のための方法及び装置 | |
WO2021261595A1 (ja) | 航空機のvr訓練システム、航空機のvr訓練方法及び航空機のvr訓練プログラム | |
US10434402B2 (en) | Information processing apparatus, computer-readable non-transitory storage medium having stored therein information processing program, information processing method, and information processing system | |
WO2021261594A1 (ja) | 航空機のvr訓練システム、航空機のvr訓練方法および航空機のvr訓練プログラム | |
EP4118638A1 (en) | Systems and methods for multi-user virtual and augmented reality | |
WO2021261593A1 (ja) | 航空機のvr訓練システム、航空機のvr訓練方法及び航空機のvr訓練プログラム | |
US11931664B2 (en) | User experiences in simulated environments | |
JP2018125003A (ja) | 情報処理方法、装置、および当該情報処理方法をコンピュータに実行させるプログラム | |
EP3262624A1 (en) | Immersive vehicle simulator apparatus and method | |
GB2535729A (en) | Immersive vehicle simulator apparatus and method | |
JP2015157323A (ja) | 遠隔操縦装置、遠隔操縦システム、遠隔操縦方法、及びプログラム | |
JP6820299B2 (ja) | プログラム、情報処理装置、および方法 | |
KR102095841B1 (ko) | 다관절 마스터 암이 구비된 장갑형 로봇 시뮬레이터 | |
CN113677412A (zh) | 信息处理装置、信息处理方法和程序 | |
JP7452533B2 (ja) | 情報処理装置、情報処理方法及びプログラム | |
JP6933850B1 (ja) | 仮想空間体感システム | |
US20240216822A1 (en) | User experiences in simulated environments | |
KR20170079502A (ko) | 가상현실에서 압력비례형 컨트롤를 이용한 플레이어의 수직자세 제어가능한 시스템 | |
JP2002229433A (ja) | フライトシミュレータ | |
JP2024024304A (ja) | 操船訓練システムおよび操船訓練プログラム | |
KR20160095663A (ko) | 영상 시뮬레이팅 시스템, 플랫폼 제어 장치 및 플랫폼 제어 방법 | |
EP3136372A1 (en) | Immersive vehicle simulator apparatus and method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21828112 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021828112 Country of ref document: EP Effective date: 20230126 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |