[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2021261200A1 - Microfluidic device - Google Patents

Microfluidic device Download PDF

Info

Publication number
WO2021261200A1
WO2021261200A1 PCT/JP2021/021152 JP2021021152W WO2021261200A1 WO 2021261200 A1 WO2021261200 A1 WO 2021261200A1 JP 2021021152 W JP2021021152 W JP 2021021152W WO 2021261200 A1 WO2021261200 A1 WO 2021261200A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
flow path
microfluidic device
path portion
conductor layer
Prior art date
Application number
PCT/JP2021/021152
Other languages
French (fr)
Japanese (ja)
Inventor
隆幸 小森
Original Assignee
Nok株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok株式会社 filed Critical Nok株式会社
Publication of WO2021261200A1 publication Critical patent/WO2021261200A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B1/00Devices without movable or flexible elements, e.g. microcapillary devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N37/00Details not covered by any other group of this subclass

Definitions

  • the present invention relates to a microfluidic device.
  • a microfluidic device is a device that performs analysis and synthesis by flowing a liquid through a microscale flow path. Since the microfluidic device has a low Reynolds number in the flow path, the liquid flow becomes a laminar flow. for that reason. Rich in liquid controllability and reproducibility. In addition, since the fluid is handled in a minute space, it is possible to reduce the size of the device, reduce the number of reagents used, shorten the reaction time, and the like. Further, by arranging the heat source in this fine space, rapid heating or cooling becomes possible. This makes it possible to synthesize products that have been difficult with ordinary laboratory equipment (see Patent Document 1).
  • a heating device such as a high temperature bath or a hot plate is generally used for heating the internal fluid (see Patent Document 2 and Patent Document 3).
  • a high temperature bath leads to an increase in the size of the synthesis system.
  • a hot plate when a hot plate is used, heating is performed from only one surface, and the heating efficiency is poor.
  • one object of the present invention is to provide a microfluidic device capable of efficiently heating an internal fluid while realizing the benefits of being a microscale device, for example, miniaturization of the device. It is something to do.
  • the microfluidic device of the present invention is a laminate including a conductor layer and a pair of insulator layers arranged on both sides of the conductor layer.
  • the conductor layer is formed with a groove-shaped flow path portion for flowing a fluid, which extends along the surface of the conductor layer.
  • a pair of communication ports communicating with each other at both ends of the flow path portion or in the vicinity thereof may be provided at any position of the pair of insulator layers.
  • the width of the conductor layer in the direction perpendicular to the extending direction of the flow path portion is narrower than other positions in the middle of the extending direction of the flow path portion. Can be.
  • the conductor layer may be formed of a metal material, or the pair of insulator layers may be formed of a resin material.
  • An insulating coating layer may be formed on the end face of the conductor layer.
  • a metal thin film layer may be formed on at least a part of the surface facing the fluid in the flow path portion, and among the facing surfaces, the end surface of the conductor layer and the pair of insulator layers. It is preferable that the metal thin film layer is formed on at least one surface of the above. In this case, it is preferable that the metal thin film layer is at least one of the plating layers selected from the group consisting of gold plating, platinum plating and nickel gold plating. Further, an insulating coating layer may be formed as an upper layer of the metal thin film layer.
  • microfluidic device capable of efficiently heating an internal fluid while realizing the benefits of being a microscale device, for example, miniaturization of the device.
  • FIG. 1 is an enlarged cross-sectional view taken along the line AA in FIG. 1 showing a schematic configuration of a microfluidic device according to a first embodiment. It is an enlarged cross-sectional view of the BB cross section in FIG. 1 which shows the schematic structure of the microfluidic device which concerns on 1st Embodiment.
  • FIG. 1 is an enlarged cross-sectional view taken along the line AA in FIG. 1 showing a schematic configuration of a microfluidic device according to a second embodiment.
  • FIG. 5 is an enlarged plan view showing a state in which the uppermost insulator film layer 12 is removed from the portion surrounded by the broken line in FIG.
  • FIG. 1 is a plan view for showing a schematic configuration of a microfluidic device 10 according to a first embodiment, which is an exemplary embodiment of the present invention.
  • the flow path portion represented by reference numeral 14 is located between the laminated layers as described later, but is drawn by a solid line for easy viewing.
  • the microfluidic device 10 is an elongated rectangular sheet-like object, and the flow path portion 14 extends while being folded back in the longitudinal direction.
  • the flow path portion 14 is folded back seven times from approximately the center in the longitudinal direction of the microfluidic device 10 to the vicinity of one end, and the folded flow path portions 14 are lined up in a region slightly less than the center half in the lateral direction. It is arranged in. Both ends of the flow path portion 14 extend in the direction of the other end in the longitudinal direction of the microfluidic device 10 and communicate with a pair of communication ports 15a and 15b described later.
  • FIG. 2 is an enlarged cross-sectional view of the AA cross section perpendicular to the extending direction of the flow path portion 14 in FIG.
  • the microfluidic device 10 includes an insulator sheet layer (one of a pair of insulator layers, which may be referred to as a “first insulator layer”) 11 and the insulator layer 10.
  • the three-layered laminated body including the insulator sheet layer 11, the conductor layer 13, and the insulator film layer 12 is hereinafter referred to with reference numeral 18.
  • the conductor layer 13 is not formed in the region shown by the flow path portion 14 in FIG. 1, and the space between the insulator sheet layer 11 and the insulator film layer 12 becomes hollow, as shown in FIG. ,
  • the flow path portion 14 is formed. That is, the flow path portion 14 is surrounded by the end surface of the conductor layer 13 facing the surface direction of the microfluidic device 10, the lower insulator sheet layer 11, and the upper insulator film layer 12.
  • the conductor layer 13 is formed only on both sides of the flow path portion 14, and the conductor layer 13 is not formed in the region away from the flow path portion 14, and the insulator sheet layer 11 and the insulator film are formed. It has a two-layer structure composed of layers 12. Further, the insulator film layer 12 is not formed in a certain region on the other end side (lower side) of the microfluidic device 10 in the longitudinal direction, and is in the state of only the insulator sheet layer 11 or the following. The downwardly stretched conductor layer 13 is formed in the insulator sheet layer 11 as described in 1.
  • the conductor layer 13 is further extended from both ends of the flow path portion 14 (pit portions 16a and 16b described later) toward the other end portion in the longitudinal direction of the microfluidic device 10 to form an insulator film layer 12. It is exposed to the outside in the area that is not exposed.
  • the ends of the conductor layer 13 are external connection terminals 17a and 17b.
  • the insulator sheet layer 11 corresponding to the first insulator layer may have flexibility, but has shape retention to some extent, and is selected from a thickness of about 10 ⁇ m to 100 ⁇ m.
  • the insulator sheet layer 11 is made of an insulating material, preferably a resin material.
  • Examples of the resin material that can be used for the insulator sheet layer 11 include polyimide, polyamide, polyamideimide, polycarbonate, polyvinyl chloride, polyvinylidene chloride, polyvinylidene fluoride, polyethylene, polypropylene, polyethylene terephthalate, and acrylic resin. Can be done. Since the surface of the flow path portion 14 facing the fluid comes into contact with the fluid, it is desirable to select a material having resistance to the fluid. In this embodiment, a polyimide sheet having a thickness of 25 ⁇ m was used as the insulator sheet layer 11.
  • the conductor layer 13 may be a conductive thin film, and the thickness thereof is adjusted to a desired thickness because it determines the height of the flow path portion 14 (the length in the vertical direction in FIG. 2; the same applies hereinafter). To.
  • the thickness of the conductor layer 13 is specifically selected from a thickness of about 10 ⁇ m to 500 ⁇ m.
  • the conductor layer 13 is made of a conductive material, preferably a metal material.
  • Examples of the metal material that can be used for the conductor layer 13 include copper, gold, platinum, stainless steel, nichrome, and the like. Since the surface (end surface) facing the fluid in the flow path portion 14 comes into contact with the fluid, it is desirable to select a material having resistance to the fluid. In this embodiment, a copper foil having a thickness of 50 ⁇ m was used as the conductor layer 13.
  • the insulator film layer 12 corresponding to the second insulator layer is in the form of a film and has flexibility, and is selected from a thickness of about 10 ⁇ m to 500 ⁇ m.
  • the insulator film layer 12 is also made of an insulating material, preferably a resin material.
  • the resin material that can be used for the insulator film layer 12 is the same as that exemplified for the insulator sheet layer 11.
  • a polycarbonate film having a thickness of 180 ⁇ m was used as the insulator film layer 12.
  • the width of the flow path portion 14 determines the thickness of the flow path portion 14 together with the height of the flow path portion 14. Therefore, by appropriately designing the width and height of the flow path portion 14, the thickness of the flow path portion 14 can be controlled to a desired size.
  • the width of the flow path portion 14 is specifically selected from the range of about 10 ⁇ m to 1000 ⁇ m, and is set to 200 ⁇ m in the present embodiment.
  • the pair of communication ports 15a and 15b are holes provided in the insulator film layer 12, and are connected to both ends of the flow path portion 14 to communicate the flow path portion 14 and the outside.
  • FIG. 3 shows an enlarged cross-sectional view of a BB cross section perpendicular to the extending direction of the flow path portion 14 in the communication port 15a.
  • the communication port 15a will be described with reference to FIG. 3, but the same applies to the communication port 15b.
  • a pit portion 16a (not shown in FIG. 3, but also 16b) for storing the fluid is formed at the end of the flow path portion 14.
  • the insulator film layer 12 above the pit portion 16a is provided with a communication port 15a (also 15b), and the communication port 15a communicates the flow path portion 14 with the outside.
  • the fluid When the fluid is supplied from the communication port 15a on the inlet side, the fluid flows into the flow path portion 14 from one end of the flow path portion 14 via the pit portion 16a.
  • the fluid that has made seven round trips through the flow path portion 14 proceeds to the other end of the flow path portion 14, passes through the pit portion 16b, and is outside the insulator film layer 12 from the communication port 15b on the outlet side. That is, it flows out to the outside of the microfluidic device 10 and is taken out.
  • the conductor layer 13 when the electrodes of the feeding means (not shown) are connected to the external connection terminals 17a and 17b and a voltage is applied between the external connection terminals 17a and 17b, the conductor layer 13 generates heat. And functions as a heater. Therefore, the fluid in contact with the conductor layer 13 in the flow path portion 14 is heated by heat propagating from the conductor layer 13.
  • the microfluidic device 10 having the above configuration can be manufactured, for example, as follows. First, a patterned metal (copper) foil layer is formed on one side of a resin (polyimide) sheet to be the insulator sheet layer 11. The patterning has a shape such that the flow path portion 14, the external connection terminals 17a, 17b, and the like are formed, and the metal (copper) foil becomes the conductor layer 13.
  • the general method for forming a circuit wiring can be applied as it is as a method for producing a flexible printed substrate.
  • the method for producing a flexible printed substrate is extremely suitable for forming a layer of a metal foil in the present embodiment because it can be patterned relatively easily, at low cost, and with high accuracy.
  • a metal foil layer is formed on the resin sheet, a conductor layer 13 is formed on the insulator sheet layer 11, and a resin film to be the insulator film layer 12 is formed on the conductor layer 13.
  • a general method of attaching a film by a laminating method can be applied as it is.
  • the method of attaching a film by the laminating method is extremely suitable for forming a layer of a resin film in the present embodiment because a thin film can be formed relatively easily and at low cost.
  • laminating When a resin film is attached by a laminating method (hereinafter referred to as "laminating"), two corresponding holes are previously placed at predetermined positions of the film forming a pair of communication ports 15a and 15b. Is provided. By overlapping the two holes provided in advance at both ends of the flow path portion 14 formed in the conductor layer 13 or in the vicinity thereof, the holes are in a state of communicating with the flow path portion 14, and a pair of communication ports. 15a and 15b are formed.
  • the resin When laminating the resin film, it is preferable not to fill the groove of the flow path portion 14 formed in the conductor layer 13 with the resin.
  • the resin may enter the groove of the flow path portion 14 to some extent, but it is desirable that the resin does not enter the groove of the flow path portion 14 as much as possible.
  • the temperature condition and the pressurizing condition at the time of laminating may be appropriately adjusted.
  • the insulator layer 13 is formed on the insulator sheet layer 11, and the insulator film layer 12 is formed on the conductor layer 13 to form the laminated body 18.
  • a flow path portion 14 is formed in the conductor layer 13 in the laminated body 18, and the microfluidic device 10 according to the present embodiment shown in FIGS. 1 and 2 is manufactured.
  • An external pipe (not shown) is connected to the obtained microfluidic device 10 so that fluid can be supplied and taken out from the outside. Then, by connecting the electrodes of the feeding means (not shown) to the external connection terminals 17a and 17b, the microfluidic device 10 can be put into a usable state.
  • the microfluidic device 10 according to the present embodiment, as shown in FIG. 2, two opposing end faces of the conductor layer 13 are in contact with the fluid flowing through the flow path portion 14. Therefore, heat can be supplied to the fluid from two directions, and the fluid can be efficiently heated. Further, it is not necessary to separately provide a heating device such as a high temperature bath or a hot plate, it is easy to manufacture, and it is possible to realize miniaturization.
  • a heating device such as a high temperature bath or a hot plate
  • the microfluidic device 20 according to the second embodiment which is an exemplary embodiment of the present invention, will be described.
  • the microfluidic device 20 according to the present embodiment is different from the microfluidic device 10 according to the first embodiment only in the cross-sectional shape of the flow path portion, and the shape of the plan view in which the cross-sectional shape does not appear is the first. It is the same as FIG. 1 in the embodiment of. Therefore, for the plan view, refer to FIG. 1 as it is.
  • FIG. 4 is an enlarged cross-sectional view similar to FIG. 2 in the first embodiment, and more specifically, an extension of the flow path portion 24 in FIG. 1 showing a schematic configuration of the microfluidic device according to the second embodiment.
  • FIG. 3 is an enlarged cross-sectional view taken along the line AA perpendicular to the direction.
  • the same reference numerals are given to the members having the same configuration as that of the first embodiment, and the detailed description thereof is omitted.
  • the laminated body 18 having a three-layer structure composed of the insulator sheet layer 11, the conductor layer 13, and the insulator film layer 12 is the same as that of the first embodiment.
  • the metal thin film layer 29 is formed on the two end faces of the conductor layer 13 and the insulator sheet layer (first insulator layer) 11 among the surfaces facing the fluid in the flow path portion 24. Has been done.
  • the metal thin film layer 29 is not particularly limited in the forming method and can be formed by, for example, plating, vapor deposition, or attaching a metal foil, but it is a very thin film and has a strong adhesive force. In order to obtain a thin film, it is preferably formed by plating.
  • the thickness of the metal thin film layer 29 is selected from a thickness of about 1 ⁇ m to 3 ⁇ m.
  • the material of the metal thin film layer 29 may be any metal, and is not particularly limited. However, since the surface of the flow path portion 24 facing the fluid comes into contact with the fluid, a material having resistance to the fluid can be used. It is desirable to select. Preferred materials for the metal thin film layer 29 include, for example, gold, platinum, nickel, copper, silver, stainless steel, nichrome and the like, which may be used alone or as two or more alloys. It may be used.
  • the metal thin film layer 29 is at least one of the plating layers selected from the group consisting of gold plating, platinum plating and nickel gold plating.
  • a nickel gold-plated layer having a thickness of 1 ⁇ m is formed as the metal thin film layer 29.
  • the metal thin film layer 29 is formed after the conductor layer 13 is formed on the insulator sheet layer 11 described in the section of the first embodiment, and the resin film to be the insulator film layer 12 is formed. Before forming, it may be plated by a conventionally known method. Similarly, a conventionally known method can be used for forming by a method other than plating, such as thin-film deposition or sticking.
  • the metal thin film layer 29 is formed on the three surfaces of the above. That is, the metal thin film layer 29 is in a state of bridging the end faces of the opposing conductor layers 13 via the faces formed on the insulator sheet layer 11.
  • the heat generated by the conductor layer 13 that functions as a heater is transferred to the metal thin film layer 29 formed on the surface of the insulator sheet layer 11, and the metal thin film layer 29 itself is a heater because of its thin film. Functions as. Further, the heat generated in the conductor layer 13 is directly transferred to the metal thin film layer 29 formed on the end face of the conductor layer 13.
  • the metal thin film layer 29 formed on these three surfaces is in contact with the fluid flowing through the flow path portion 24. Therefore, according to the microfluidic device 20 according to the present embodiment, heat can be supplied to the fluid flowing in the flow path portion 24 from three directions, and the fluid can be efficiently heated. Further, it is not necessary to separately provide a heating device such as a high temperature bath or a hot plate, it is easy to manufacture, and it is possible to realize miniaturization.
  • the material having resistance to the fluid flowing in the flow path portion 24 is made of metal.
  • the influence on the fluid can be suppressed.
  • the conductor layer 13 made of copper foil is used as in the present embodiment, there is a concern that it may be affected when it comes into contact with a fluid due to the reactivity of copper, but it is in a state of being coated with the metal thin film layer 29. Therefore, the concern is dispelled. Therefore, according to the microfluidic device 20 according to the present embodiment, the choice of materials for the conductor layer 13 (furthermore, the insulator sheet layer 11) is widened, and the degree of freedom in design is increased.
  • the embodiment in which the metal thin film layer 29 is formed on the insulator sheet layer (first insulator layer) 11 is given as an example.
  • the metal thin film layer 29 may be formed on the side of the insulator film layer (second insulator layer) 12 (modification example 1 of the second embodiment).
  • the present modification 1 is also the same as the present embodiment in that heat can be supplied to the fluid flowing through the flow path portion 24 from three directions, and the fluid can be efficiently heated.
  • the conductor layer 13 and the insulator film layer 12 do not have to have resistance to the fluid flowing in the flow path portion 24. Therefore, also in the present modification 1, the choice of materials for the conductor layer 13 and the insulator film layer 12 is widened, and the degree of freedom in design is increased.
  • a metal thin film layer is formed on both the insulator sheet layer (first insulator layer) 11 and the insulator film layer (second insulator layer) 12. 29 may be formed (modification 2 of the second embodiment). That is, in the present modification 2, the metal thin film layer 29 is formed on all the upper, lower, left, and right surfaces of the flow path portion 24 shown in FIG. In the second modification, heat can be supplied from all directions to the fluid flowing through the flow path portion 24, and the fluid can be heated more efficiently.
  • the conductor layer 13 is formed on the insulator sheet layer 11 and the necessary metal thin film layer 29 is formed separately.
  • the metal thin film layer 29 may be formed at a predetermined position on the resin film side to be the insulator film layer 12. By forming the insulator film layer 12 from the film on which the metal thin film layer 29 is formed in advance, the metal thin film layer 29 can be formed on the side of the insulator film layer 12.
  • FIG. 5 is a plan view for showing a schematic configuration of the microfluidic device 30 according to the third embodiment, which is an exemplary embodiment of the present invention.
  • the microfluidic device 30 is an elongated sheet-like object, and the flow path portion 34 extends in the longitudinal direction of the sheet. Both ends of the flow path portion 34 communicate with a pair of communication ports 35a and 35b, which will be described later.
  • the cross section of the plane perpendicular to the extending direction of the flow path portion 34 in FIG. 5 is the same as the enlarged cross section of FIG. 2 in the first embodiment. Therefore, please refer to FIG. 2 as it is for the enlarged cross-sectional view.
  • the laminated body 38 having a three-layer structure composed of the insulator sheet layer 31, the conductor layer 33, and the insulator film layer 32 is the insulator sheet layer 11, the conductor layer 13, and the insulation in the first embodiment. It is the same as the laminated body 18 having a three-layer structure composed of the body film layer 12. The detailed configuration of each layer will be omitted because it is the same as the corresponding layer in the first embodiment.
  • the cross-sectional structure around the communication ports 35a and 35b is the same as the cross-sectional structure around the communication ports 15a and 15b described with reference to FIG. 3 in the first embodiment. ..
  • the microfluidic device 30 according to the present embodiment is characterized by the structure of the dashed line box in FIG.
  • FIG. 6 is an enlarged plan view showing a state in which the uppermost insulator film layer 32 is removed in the portion surrounded by the broken line in FIG.
  • the width of the conductor layer 33 in the direction perpendicular to the extending direction (horizontal direction in FIGS. 5 and 6) of the flow path portion 34 (vertical direction in FIGS. 5 and 6) (hereinafter, simply referred to as simple).
  • the "width") is narrower in the middle of the flow path portion 34 in the extending direction (narrow region 38a) than at other positions (wide regions 38b, 38c).
  • the insulator sheet layer 31 which is the lower layer thereof appears on the drawing from the portion where the conductor layer 33 is missing.
  • the narrow region 38a gradually narrows from the wide region 38b in order from the left side (inlet side as described later) in FIG. 6 toward the right side (outlet side). It is divided into an inclined region 38a-2, a narrowest region 38a-1 maintained in parallel with the narrowest width, and an inclined region 38a-3 in which the width gradually increases from the narrowest width to the wide region 38c.
  • the width of the wide areas 38b and 38c is not particularly limited, but it is better not to be too wide. On the other hand, in the narrowest region 38a-1, as will be described later, it is desired that the resistance value be high at the relevant portion. Therefore, the width from the flow path portion 34 is selected from the range of about 10 ⁇ m to 100 ⁇ m per side. Will be done.
  • the communication ports 35a and 35b are connected to external pipes and the like, and the fluid flowing in the flow path portion 34 is supplied from the communication port 35a on the inlet side and the outlet. It is designed to be discharged from the communication port 35b on the side.
  • the fluid supplied from the communication port 35a on the inlet side flows into the flow path portion 14 from one end (left end) of the flow path portion 34.
  • the fluid flows through the flow path portion 34 in the order of the wide region 38b, the narrow region 38a, and the wide region 38c, flows out from the communication port 35b on the outlet side, and is taken out to the outside of the insulator film layer 32. There is.
  • the conductor layer 33 when the electrodes of the feeding means (not shown) are connected to the external connection terminals 37a and 37b and a voltage is applied between the external connection terminals 37a and 37b, the conductor layer 33 generates heat. And functions as a heater. Therefore, heat propagates from the conductor layer 13 to the fluid in contact with the conductor layer 13 in the flow path portion 34, and the fluid is heated. Since the present embodiment has the same configuration as that of the first embodiment, the same operation as that of the first embodiment can be generated and the same effect can be obtained.
  • the microfluidic device 30 according to the present embodiment, as shown in FIG. 2, two opposing end faces of the conductor layer 33 come into contact with the fluid flowing through the flow path portion 34, and the fluid is directed in two directions. Heat can be supplied from the fluid, and the fluid can be heated efficiently. Further, it is not necessary to separately provide a heating device such as a high temperature bath or a hot plate, it is easy to manufacture, and it is possible to realize miniaturization.
  • a heating device such as a high temperature bath or a hot plate
  • the width of the conductor layer 33 is greatly narrowed in the narrow region 38a, the cross-sectional area of the path through which the current flows becomes small in the narrow region 38a, and the resistance increases at that location. Therefore, in the narrow region 38a (particularly, the narrowest region 38a-1), the calorific value becomes large, and the temperature of the fluid flowing through the flow path portion 34 can be intensively increased at the location.
  • microfluidic device of the present invention has been described with reference to preferred embodiments and modifications, but the microfluidic device of the present invention has configurations of the microfluidic devices 10, 20, and 30 and configurations of modifications according to the above embodiment. Not limited to.
  • the configuration in which the metal layer such as the conductor layer 13 and the metal thin film layer 29 comes into contact with the fluid in the flow path portions 14, 24, and 34 has been described as an example.
  • An insulating coating layer may be further formed as an upper layer of the metal layer.
  • an insulating coating layer as an upper layer such as a conductor layer or a metal thin film layer, it is possible to secure the insulating property between the fluid flowing in the flow path portion and the conductor layer or the metal thin film layer. Therefore, by forming the insulating coating layer, even if a conductive liquid is used as the fluid, there is no concern that current leaks from the conductor layer or the metal thin film layer.
  • the material that can be used for the insulating coating layer is not particularly limited, and a resin material having an insulating property is preferable.
  • resin material having an insulating property includes, for example, polyimide, polyamide, polyamideimide, polycarbonate, polyvinyl chloride, polyvinylidene chloride, polyvinylidene fluoride, polyethylene, polypropylene, polyethylene terephthalate, acrylic resin, epoxy resin and the like. Since the surface facing the fluid in the flow path portion comes into contact with the fluid, it is desirable to select a material having resistance to the fluid.
  • the insulator sheet layers 11 and 31 and the insulator film layers 12 and 32 have different materials and thicknesses.
  • the pair of insulator layers may be made of the same material or thickness.
  • a more flexible microfluidic device can be obtained by using a highly flexible thin material or a resin film having a thickness as a pair of insulator layers.
  • the end surface of the conductor layer 11 and one or both surfaces of the pair of insulator layers are used among the surfaces facing the fluid in the flow path portion 24, the end surface of the conductor layer 11 and one or both surfaces of the pair of insulator layers are used.
  • the configuration in which the metal thin film layer 29 is formed on the three to four surfaces of the above is described as an example. However, if the metal thin film layer is formed on at least a part of the surface facing the fluid in the flow path portion, the merit of forming the metal thin film layer can be enjoyed.
  • a metal thin film is not formed on the end surface of the conductor layer 11, but is formed on any one surface of the insulator sheet layer 11 and the insulator film layer 12, or on both two surfaces.
  • the metal thin film layer 29 is in a state of being in contact with and bridging the end faces of the opposing conductor layers 13. Therefore, as in the second embodiment and its modifications, the heat generated in the conductor layer 13 is transferred, and the metal thin film layer 29 itself functions as a heater. Therefore, heat can be supplied to the fluid flowing in the flow path portion 24 from three or four directions, and the fluid can be efficiently heated.
  • the end face on which the metal thin film layer 29 is formed does not have resistance to the fluid flowing in the flow path portion 24. Will also get better.
  • the metal thin film layer may not be formed over the entire length of the flow path portion in the extending direction, and may be formed only on a part thereof, even if it is interrupted in the middle. Various effects can be expected depending on the site.
  • the configuration in which the metal thin film layer (29) described in the second embodiment is not formed in the flow path portion 34 is described as an example.
  • the metal thin film layer (29) is formed on the third surface similar to the second embodiment and the modification 1 thereof, or the four surfaces similar to the modification 2, or in the flow path portion.
  • a metal thin film layer may be formed on at least a part of the surface facing the fluid. In these cases as well, the effect can be expected depending on the location where the metal thin film layer is formed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

The present invention provides a microfluidic device that can efficiently heat fluid therein while utilizing the advantage of being a micro-scale device, for example, achieving a reduction in size of a device. A microfluidic device according to the present invention is a laminate (18) including a conductor layer (13) and a pair of insulator layers (11, 12) arranged on both sides of the conductor layer (13). The conductor layer (13) is provided with a groove-like flow path section (14) extending along a surface of the conductor layer (13) and through which the fluid flows.

Description

マイクロ流体デバイスMicrofluidic device
 本発明は、マイクロ流体デバイスに関する。 The present invention relates to a microfluidic device.
 マイクロ流体デバイスは、マイクロスケールの微小な流路に液体を流すことで、分析や合成を行うデバイスである。マイクロ流体デバイスは、流路内のレイノルズ数が低いため、液体の流れが層流となる。そのため.液体の制御性・再現性に富む。また、微小空間で流体を扱うため、装置の小型化や使用する試薬の低減、反応時間の短縮等が可能となる。さらに、この微細空間内に熱源を配置することにより、急速な加熱乃至冷却が可能になる。これにより、今まで通常の実験器具では困難だった製品の合成も可能になっている(特許文献1参照)。 A microfluidic device is a device that performs analysis and synthesis by flowing a liquid through a microscale flow path. Since the microfluidic device has a low Reynolds number in the flow path, the liquid flow becomes a laminar flow. for that reason. Rich in liquid controllability and reproducibility. In addition, since the fluid is handled in a minute space, it is possible to reduce the size of the device, reduce the number of reagents used, shorten the reaction time, and the like. Further, by arranging the heat source in this fine space, rapid heating or cooling becomes possible. This makes it possible to synthesize products that have been difficult with ordinary laboratory equipment (see Patent Document 1).
 一方で、内部の流体の加熱には、一般に高温槽やホットプレートのような加熱装置が用いられる(特許文献2及び特許文献3参照)。しかし、高温槽を用いると、合成システムの大型化につながってしまう。一方、ホットプレートを用いたのでは、一つの面からのみの加熱となり、加熱効率が悪い。 On the other hand, a heating device such as a high temperature bath or a hot plate is generally used for heating the internal fluid (see Patent Document 2 and Patent Document 3). However, using a high temperature bath leads to an increase in the size of the synthesis system. On the other hand, when a hot plate is used, heating is performed from only one surface, and the heating efficiency is poor.
特開2012-51762号公報Japanese Unexamined Patent Publication No. 2012-51762 特開2011-20044号公報Japanese Unexamined Patent Publication No. 2011-20044 特開2013-66885号公報Japanese Unexamined Patent Publication No. 2013-66885
 したがって、本発明は、マイクロスケールのデバイスであることの利益、たとえば、装置の小型化を実現しつつ、内部の流体を効率よく加熱することができるマイクロ流体デバイスを提供することを1つの目的とするものである。 Therefore, one object of the present invention is to provide a microfluidic device capable of efficiently heating an internal fluid while realizing the benefits of being a microscale device, for example, miniaturization of the device. It is something to do.
 上記目的は以下の本発明により達成される。即ち、本発明のマイクロ流体デバイスは、導電体層と、該導電体層の両側に配された一対の絶縁体層と、を備えた積層体であり、
 前記導電体層には、当該導電体層の面に沿って延びる溝状の、流体を流すための流路部が形成されている。
The above object is achieved by the following invention. That is, the microfluidic device of the present invention is a laminate including a conductor layer and a pair of insulator layers arranged on both sides of the conductor layer.
The conductor layer is formed with a groove-shaped flow path portion for flowing a fluid, which extends along the surface of the conductor layer.
 本発明においては、前記流路部の両端またはその近傍に連通する一対の連通口が、前記一対の絶縁体層の何れかの箇所に設けられていてもよい。
 本発明においては、前記流路部の延在方向とは垂直方向の前記導電体層の幅が、前記流路部の延在方向における中途で、他の位置に比して狭くなっている構成とすることができる。
In the present invention, a pair of communication ports communicating with each other at both ends of the flow path portion or in the vicinity thereof may be provided at any position of the pair of insulator layers.
In the present invention, the width of the conductor layer in the direction perpendicular to the extending direction of the flow path portion is narrower than other positions in the middle of the extending direction of the flow path portion. Can be.
 また、前記導電体層が金属材料で形成されていてもよいし、前記一対の絶縁体層が、樹脂材料で形成されていてもよい。
 前記導電体層の端面に、絶縁コーティング層が形成されていても構わない。
Further, the conductor layer may be formed of a metal material, or the pair of insulator layers may be formed of a resin material.
An insulating coating layer may be formed on the end face of the conductor layer.
 前記流路部における前記流体との対向面の少なくとも一部には、金属薄膜層が形成されていても構わないし、前記対向面のうち、前記導電体層の端面と、前記一対の絶縁体層の内の少なくとも一方の面と、に前記金属薄膜層が形成されていることが好ましい。この場合に、前記金属薄膜層が、金メッキ、白金メッキ及びニッケル金メッキからなる群より選ばれる少なくともいずれかのメッキ層であることが好ましい。さらに、前記金属薄膜層の上層として、絶縁コーティング層が形成されていても構わない。 A metal thin film layer may be formed on at least a part of the surface facing the fluid in the flow path portion, and among the facing surfaces, the end surface of the conductor layer and the pair of insulator layers. It is preferable that the metal thin film layer is formed on at least one surface of the above. In this case, it is preferable that the metal thin film layer is at least one of the plating layers selected from the group consisting of gold plating, platinum plating and nickel gold plating. Further, an insulating coating layer may be formed as an upper layer of the metal thin film layer.
 本発明によれば、マイクロスケールのデバイスであることの利益、たとえば、装置の小型化を実現しつつ、内部の流体を効率よく加熱することができるマイクロ流体デバイスを提供することができる。 According to the present invention, it is possible to provide a microfluidic device capable of efficiently heating an internal fluid while realizing the benefits of being a microscale device, for example, miniaturization of the device.
本発明の例示的一態様である第1の実施形態に係るマイクロ流体デバイスの概略構成を示すための平面図である。It is a top view for showing the schematic structure of the microfluidic device which concerns on 1st Embodiment which is an exemplary aspect of this invention. 第1の実施形態に係るマイクロ流体デバイスの概略構成を示す図1における、A-A断面の拡大断面図である。FIG. 1 is an enlarged cross-sectional view taken along the line AA in FIG. 1 showing a schematic configuration of a microfluidic device according to a first embodiment. 第1の実施形態に係るマイクロ流体デバイスの概略構成を示す図1における、B-B断面の拡大断面図である。It is an enlarged cross-sectional view of the BB cross section in FIG. 1 which shows the schematic structure of the microfluidic device which concerns on 1st Embodiment. 第2の実施形態に係るマイクロ流体デバイスの概略構成を示す図1における、A-A断面の拡大断面図である。FIG. 1 is an enlarged cross-sectional view taken along the line AA in FIG. 1 showing a schematic configuration of a microfluidic device according to a second embodiment. 本発明の例示的一態様である第3の実施形態に係るマイクロ流体デバイスの概略構成を示すための平面図である。It is a top view for showing the schematic structure of the microfluidic device which concerns on 3rd Embodiment which is an exemplary aspect of this invention. 図5における破線囲み部において、最上層の絶縁体フィルム層12を除した状態を示す拡大平面図である。FIG. 5 is an enlarged plan view showing a state in which the uppermost insulator film layer 12 is removed from the portion surrounded by the broken line in FIG.
 以下、本発明に係るマイクロ流体デバイスについて、図面を参照しながら説明する。なお、以下の説明において、「上」あるいは「下」等の上下関係を示す表現を用いているが、本発明に係るマイクロ流体デバイスは、上下反転させて用いたり、垂直を含むあらゆる角度に保持して用いたりすることができる物である。したがって、これら上下関係を示す表現は、あくまでも説明の便宜上用いているだけであり、実際の重力関係における上下関係を示すものではない。 Hereinafter, the microfluidic device according to the present invention will be described with reference to the drawings. In the following description, expressions indicating a vertical relationship such as "upper" or "lower" are used, but the microfluidic device according to the present invention is used upside down or held at any angle including vertical. It is a thing that can be used. Therefore, these expressions indicating the hierarchical relationship are used only for convenience of explanation, and do not indicate the hierarchical relationship in the actual gravity relationship.
[第1の実施形態]
 本発明の例示的一態様である第1の実施形態に係るマイクロ流体デバイス10について説明する。
 図1は、本発明の例示的一態様である第1の実施形態に係るマイクロ流体デバイス10の概略構成を示すための平面図である。なお、当該図1において、符号14で表される流路部は、後述するように積層された層間に位置しているが、見易くするために実線で描かれている。
[First Embodiment]
The microfluidic device 10 according to the first embodiment, which is an exemplary embodiment of the present invention, will be described.
FIG. 1 is a plan view for showing a schematic configuration of a microfluidic device 10 according to a first embodiment, which is an exemplary embodiment of the present invention. In FIG. 1, the flow path portion represented by reference numeral 14 is located between the laminated layers as described later, but is drawn by a solid line for easy viewing.
 マイクロ流体デバイス10は、図1に示されるように、細長い矩形のシート状の物であり、流路部14が、長手方向に折り返しながら延在している。流路部14は、マイクロ流体デバイス10の長手方向の略中央から一方の端部近傍までの間を7往復折り返し、短手方向の中央半分弱の領域で、折り返された流路部14が並んで配されている。流路部14の両端は、マイクロ流体デバイス10の長手方向の他方の端部方向へ延伸して、後述する一対の連通口15a,15bと連通している。 As shown in FIG. 1, the microfluidic device 10 is an elongated rectangular sheet-like object, and the flow path portion 14 extends while being folded back in the longitudinal direction. The flow path portion 14 is folded back seven times from approximately the center in the longitudinal direction of the microfluidic device 10 to the vicinity of one end, and the folded flow path portions 14 are lined up in a region slightly less than the center half in the lateral direction. It is arranged in. Both ends of the flow path portion 14 extend in the direction of the other end in the longitudinal direction of the microfluidic device 10 and communicate with a pair of communication ports 15a and 15b described later.
 図2は、図1における流路部14の延在方向と垂直な、A-A断面の拡大断面図である。マイクロ流体デバイス10は、図2に示されるように、絶縁体シート層(一対の絶縁体層の内の一方であり、「第1の絶縁体層」と称する場合がある。)11と、当該絶縁体シート層11の上に積層された導電体層13と、さらに当該導電体層13の上に積層された絶縁体フィルム層(一対の絶縁体層の内の他の一方であり、「第2の絶縁体層」と称する場合がある。)12と、からなる積層体で構成されている。なお、絶縁体シート層11、導電体層13及び絶縁体フィルム層12からなる3層構造の積層体は、以降、符号18を付して表現する。 FIG. 2 is an enlarged cross-sectional view of the AA cross section perpendicular to the extending direction of the flow path portion 14 in FIG. As shown in FIG. 2, the microfluidic device 10 includes an insulator sheet layer (one of a pair of insulator layers, which may be referred to as a “first insulator layer”) 11 and the insulator layer 10. The conductor layer 13 laminated on the insulator sheet layer 11 and the insulator film layer (the other one of the pair of insulator layers) further laminated on the conductor layer 13, "No. 1 It may be referred to as "insulator layer of 2".) It is composed of a laminated body composed of 12 and. The three-layered laminated body including the insulator sheet layer 11, the conductor layer 13, and the insulator film layer 12 is hereinafter referred to with reference numeral 18.
 導電体層13は、図1における流路部14で示される領域には形成されず、絶縁体シート層11と絶縁体フィルム層12との間が中空になって、図2に示されるように、流路部14が形成されている。即ち、流路部14は、マイクロ流体デバイス10の面方向に対向する導電体層13の端面と、下方の絶縁体シート層11と、上方の絶縁体フィルム層12とで囲まれている。 The conductor layer 13 is not formed in the region shown by the flow path portion 14 in FIG. 1, and the space between the insulator sheet layer 11 and the insulator film layer 12 becomes hollow, as shown in FIG. , The flow path portion 14 is formed. That is, the flow path portion 14 is surrounded by the end surface of the conductor layer 13 facing the surface direction of the microfluidic device 10, the lower insulator sheet layer 11, and the upper insulator film layer 12.
 導電体層13は、流路部14の両側にのみ形成されており、流路部14から離れた領域においては、導電体層13は形成されておらず、絶縁体シート層11及び絶縁体フィルム層12からなる2層構造となっている。さらに、絶縁体フィルム層12は、マイクロ流体デバイス10の長手方向の他方の端部側(下方側)の一定の領域には形成されておらず、絶縁体シート層11のみの状態、あるいは、以下に説明する、下方に延伸した導電体層13が絶縁体シート層11に形成された状態になっている。 The conductor layer 13 is formed only on both sides of the flow path portion 14, and the conductor layer 13 is not formed in the region away from the flow path portion 14, and the insulator sheet layer 11 and the insulator film are formed. It has a two-layer structure composed of layers 12. Further, the insulator film layer 12 is not formed in a certain region on the other end side (lower side) of the microfluidic device 10 in the longitudinal direction, and is in the state of only the insulator sheet layer 11 or the following. The downwardly stretched conductor layer 13 is formed in the insulator sheet layer 11 as described in 1.
 導電体層13は、流路部14の両端(後述するピット部16a,16b)から、マイクロ流体デバイス10の長手方向の他方の端部方向へさらに延伸して、絶縁体フィルム層12が形成されていない領域で、外部に露出した状態になっている。そして、導電体層13の端部は、外部接続端子17a,17bになっている。 The conductor layer 13 is further extended from both ends of the flow path portion 14 ( pit portions 16a and 16b described later) toward the other end portion in the longitudinal direction of the microfluidic device 10 to form an insulator film layer 12. It is exposed to the outside in the area that is not exposed. The ends of the conductor layer 13 are external connection terminals 17a and 17b.
 第1の絶縁体層に相当する絶縁体シート層11は、フレキシブル性を有していてもよいが、ある程度形状保持性を有するものであり、おおよそ10μm~100μm程度の厚みから選択される。絶縁体シート層11は、絶縁性を有する材料、好ましくは、樹脂材料で形成される。 The insulator sheet layer 11 corresponding to the first insulator layer may have flexibility, but has shape retention to some extent, and is selected from a thickness of about 10 μm to 100 μm. The insulator sheet layer 11 is made of an insulating material, preferably a resin material.
 絶縁体シート層11に使用可能な樹脂材料としては、例えば、ポリイミド、ポリアミド、ポリアミドイミド、ポリカーボネート、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリフッ化ビニリデン、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、アクリル樹脂等を挙げることができる。流路部14内で流体に対向する面が、当該流体と接触することから、当該流体に対する耐性を有する材料を選択することが望ましい。本実施形態では、絶縁体シート層11として、厚さ25μmのポリイミドシートを用いた。 Examples of the resin material that can be used for the insulator sheet layer 11 include polyimide, polyamide, polyamideimide, polycarbonate, polyvinyl chloride, polyvinylidene chloride, polyvinylidene fluoride, polyethylene, polypropylene, polyethylene terephthalate, and acrylic resin. Can be done. Since the surface of the flow path portion 14 facing the fluid comes into contact with the fluid, it is desirable to select a material having resistance to the fluid. In this embodiment, a polyimide sheet having a thickness of 25 μm was used as the insulator sheet layer 11.
 導電体層13は、導電性の薄膜であればよく、その厚みは、流路部14の高さ(図2における上下方向の長さ。以下同様。)を決定づけることから所望の厚みに調整される。導電体層13の厚みとしては、具体的には、10μm~500μm程度の厚みから選択される。導電体層13は、導電性を有する材料、好ましくは、金属材料で形成される。 The conductor layer 13 may be a conductive thin film, and the thickness thereof is adjusted to a desired thickness because it determines the height of the flow path portion 14 (the length in the vertical direction in FIG. 2; the same applies hereinafter). To. The thickness of the conductor layer 13 is specifically selected from a thickness of about 10 μm to 500 μm. The conductor layer 13 is made of a conductive material, preferably a metal material.
 導電体層13に使用可能な金属材料としては、例えば、銅、金、白金、ステンレス、ニクロム等を挙げることができる。流路部14内で流体に対向する面(端面)が、当該流体と接触することから、当該流体に対する耐性を有する材料を選択することが望ましい。本実施形態では、導電体層13として、厚さ50μmの銅箔を用いた。 Examples of the metal material that can be used for the conductor layer 13 include copper, gold, platinum, stainless steel, nichrome, and the like. Since the surface (end surface) facing the fluid in the flow path portion 14 comes into contact with the fluid, it is desirable to select a material having resistance to the fluid. In this embodiment, a copper foil having a thickness of 50 μm was used as the conductor layer 13.
 第2の絶縁体層に相当する絶縁体フィルム層12は、フィルム状でフレキシブル性を有するものであり、おおよそ10μm~500μm程度の厚みから選択される。絶縁体フィルム層12も絶縁性を有する材料、好ましくは、樹脂材料で形成される。絶縁体フィルム層12に使用可能な樹脂材料は、絶縁体シート層11で例示したものと同様である。また、流路部14内で流体に対向する面が、当該流体に対する耐性を有する材料を選択することが望ましい点も同様である。本実施形態では、絶縁体フィルム層12として、厚さ180μmのポリカーボネートフィルムを用いた。 The insulator film layer 12 corresponding to the second insulator layer is in the form of a film and has flexibility, and is selected from a thickness of about 10 μm to 500 μm. The insulator film layer 12 is also made of an insulating material, preferably a resin material. The resin material that can be used for the insulator film layer 12 is the same as that exemplified for the insulator sheet layer 11. Similarly, it is desirable to select a material having a surface facing the fluid in the flow path portion 14 having resistance to the fluid. In this embodiment, a polycarbonate film having a thickness of 180 μm was used as the insulator film layer 12.
 流路部14の幅(図2における左右方向の長さ。以下同様。)は、流路部14の高さとともに、流路部14の太さを決定づける。したがって、流路部14の幅と高さとを適宜設計することで、流路部14の太さを所望の大きさに制御することができる。流路部14の幅としては、具体的には、10μm~1000μm程度の範囲から選択され、本実施形態では、200μmとした。 The width of the flow path portion 14 (the length in the left-right direction in FIG. 2; the same applies hereinafter) determines the thickness of the flow path portion 14 together with the height of the flow path portion 14. Therefore, by appropriately designing the width and height of the flow path portion 14, the thickness of the flow path portion 14 can be controlled to a desired size. The width of the flow path portion 14 is specifically selected from the range of about 10 μm to 1000 μm, and is set to 200 μm in the present embodiment.
 一対の連通口15a,15bは、絶縁体フィルム層12に設けられた孔であり、流路部14の両端と連なり、流路部14と外部とを連通させている。図3に、連通口15aにおける流路部14の延在方向と垂直な、B-B断面の拡大断面図を示す。図3を用いて、連通口15aについて説明するが、連通口15bにおいても同様である。 The pair of communication ports 15a and 15b are holes provided in the insulator film layer 12, and are connected to both ends of the flow path portion 14 to communicate the flow path portion 14 and the outside. FIG. 3 shows an enlarged cross-sectional view of a BB cross section perpendicular to the extending direction of the flow path portion 14 in the communication port 15a. The communication port 15a will be described with reference to FIG. 3, but the same applies to the communication port 15b.
 図1及び図3に示されるように、流路部14の端部では、流体を溜めておくピット部16a(図3では不図示だが16bも)が形成されている。当該ピット部16aの上方の絶縁体フィルム層12には連通口15a(同様に15bも)が設けられており、当該連通口15aにより、流路部14と外部とが連通している。 As shown in FIGS. 1 and 3, a pit portion 16a (not shown in FIG. 3, but also 16b) for storing the fluid is formed at the end of the flow path portion 14. The insulator film layer 12 above the pit portion 16a is provided with a communication port 15a (also 15b), and the communication port 15a communicates the flow path portion 14 with the outside.
 流入口(inlet)側の連通口15aから流体を供給すると、ピット部16aを経由して、流路部14の一方の端部から流路部14内に流体が流れ込む。流路部14を7往復した流体は、流路部14の他方の端部へと進み、ピット部16bを経由して、流出口(outlet)側の連通口15bから絶縁体フィルム層12の外側、即ちマイクロ流体デバイス10の外部に流出し、取り出されるようになっている。 When the fluid is supplied from the communication port 15a on the inlet side, the fluid flows into the flow path portion 14 from one end of the flow path portion 14 via the pit portion 16a. The fluid that has made seven round trips through the flow path portion 14 proceeds to the other end of the flow path portion 14, passes through the pit portion 16b, and is outside the insulator film layer 12 from the communication port 15b on the outlet side. That is, it flows out to the outside of the microfluidic device 10 and is taken out.
 本実施形態にかかるマイクロ流体デバイス10において、不図示の給電手段の電極を外部接続端子17a,17bに接続し、当該外部接続端子17a,17b間に電圧を印加すると、導電体層13が発熱して、ヒータとして機能する。そのため、流路部14内で導電体層13と接触している流体は、当該導電体層13から熱が伝搬し、加熱される。 In the microfluidic device 10 according to the present embodiment, when the electrodes of the feeding means (not shown) are connected to the external connection terminals 17a and 17b and a voltage is applied between the external connection terminals 17a and 17b, the conductor layer 13 generates heat. And functions as a heater. Therefore, the fluid in contact with the conductor layer 13 in the flow path portion 14 is heated by heat propagating from the conductor layer 13.
 以上のような構成のマイクロ流体デバイス10は、例えば、以下のように製造することができる。
 まず、絶縁体シート層11となる樹脂(ポリイミド)製のシートの片面に、パターニングされた金属(銅)箔の層を形成する。当該パターニングは、流路部14や外部接続端子17a,17b等が形成されるような形状となっており、金属(銅)箔は、導電体層13となる。
The microfluidic device 10 having the above configuration can be manufactured, for example, as follows.
First, a patterned metal (copper) foil layer is formed on one side of a resin (polyimide) sheet to be the insulator sheet layer 11. The patterning has a shape such that the flow path portion 14, the external connection terminals 17a, 17b, and the like are formed, and the metal (copper) foil becomes the conductor layer 13.
 樹脂製のシートに金属箔の層を形成するには、フレキシブルプリント基板を作製する方法として一般的な、回路配線の形成方法をそのまま適用することができる。フレキシブルプリント基板を作製する方法は、比較的容易かつ低コストで、しかも高精度でパターニングすることができるため、本実施形態において金属箔の層を形成するのに極めて好適である。 In order to form a layer of metal foil on a resin sheet, the general method for forming a circuit wiring can be applied as it is as a method for producing a flexible printed substrate. The method for producing a flexible printed substrate is extremely suitable for forming a layer of a metal foil in the present embodiment because it can be patterned relatively easily, at low cost, and with high accuracy.
 樹脂製のシートに金属箔の層が形成されて、絶縁体シート層11上に導電体層13が形成されたさらにその上に、絶縁体フィルム層12となる樹脂製のフィルムを形成する。樹脂製のフィルムの形成には、一般的な、ラミネート法によるフィルムの貼着方法をそのまま適用することができる。ラミネート法によるフィルムの貼着方法は、比較的容易かつ低コストで薄膜を形成することができるため、本実施形態において樹脂製のフィルムの層を形成するのに極めて好適である。 A metal foil layer is formed on the resin sheet, a conductor layer 13 is formed on the insulator sheet layer 11, and a resin film to be the insulator film layer 12 is formed on the conductor layer 13. For the formation of the resin film, a general method of attaching a film by a laminating method can be applied as it is. The method of attaching a film by the laminating method is extremely suitable for forming a layer of a resin film in the present embodiment because a thin film can be formed relatively easily and at low cost.
 ラミネート法により樹脂製のフィルムを貼着する(以下、「ラミネートする」と称する。)際には、一対の連通口15a,15bとなる当該フィルムの所定の位置に、予め、対応する2つの孔を設けておく。予め設けておいた2つの孔が、導電体層13に形成された流路部14の両端またはその近傍に重なることで、当該孔が流路部14と連通した状態になり、一対の連通口15a,15bが形成される。 When a resin film is attached by a laminating method (hereinafter referred to as "laminating"), two corresponding holes are previously placed at predetermined positions of the film forming a pair of communication ports 15a and 15b. Is provided. By overlapping the two holes provided in advance at both ends of the flow path portion 14 formed in the conductor layer 13 or in the vicinity thereof, the holes are in a state of communicating with the flow path portion 14, and a pair of communication ports. 15a and 15b are formed.
 なお、樹脂製のフィルムをラミネートする際には、導電体層13に形成された流路部14の溝を樹脂で埋めないようにすることが好ましい。勿論、要求精度を満たす範疇で、多少流路部14の溝に樹脂が入り込むことは差し支えないが、できるだけ流路部14の溝に樹脂が入り込まないことが望ましい。
 流路部14の溝を樹脂で埋めないようにするためには、ラミネートする際の温度条件や加圧条件を適宜調整すればよい。
When laminating the resin film, it is preferable not to fill the groove of the flow path portion 14 formed in the conductor layer 13 with the resin. Of course, as long as the required accuracy is satisfied, the resin may enter the groove of the flow path portion 14 to some extent, but it is desirable that the resin does not enter the groove of the flow path portion 14 as much as possible.
In order not to fill the groove of the flow path portion 14 with the resin, the temperature condition and the pressurizing condition at the time of laminating may be appropriately adjusted.
 以上のようにして、絶縁体シート層11上に導電体層13が形成されたさらにその上に、絶縁体フィルム層12が形成されて、積層体18が作製される。当該積層体18における導電体層13には、流路部14が形成されており、図1及び図2に示す、本実施形態にかかるマイクロ流体デバイス10が製造される。 As described above, the insulator layer 13 is formed on the insulator sheet layer 11, and the insulator film layer 12 is formed on the conductor layer 13 to form the laminated body 18. A flow path portion 14 is formed in the conductor layer 13 in the laminated body 18, and the microfluidic device 10 according to the present embodiment shown in FIGS. 1 and 2 is manufactured.
 得られたマイクロ流体デバイス10に、不図示の外部配管を結合させ、外部から流体を供給及び取り出し可能とする。そして、不図示の給電手段の電極を外部接続端子17a,17bに接続することで、マイクロ流体デバイス10を使用に供し得る状態にすることができる。 An external pipe (not shown) is connected to the obtained microfluidic device 10 so that fluid can be supplied and taken out from the outside. Then, by connecting the electrodes of the feeding means (not shown) to the external connection terminals 17a and 17b, the microfluidic device 10 can be put into a usable state.
 本実施形態にかかるマイクロ流体デバイス10によれば、図2に示すように、導電体層13の対向する2つの端面が、流路部14を流れる流体に接触している。したがって、当該流体に2方向から熱を供給することができ、当該流体を効率よく加熱することができる。
 また、別途高温槽やホットプレートのような加熱装置を設ける必要が無く、作製が容易で、かつ、小型化を実現できる。
According to the microfluidic device 10 according to the present embodiment, as shown in FIG. 2, two opposing end faces of the conductor layer 13 are in contact with the fluid flowing through the flow path portion 14. Therefore, heat can be supplied to the fluid from two directions, and the fluid can be efficiently heated.
Further, it is not necessary to separately provide a heating device such as a high temperature bath or a hot plate, it is easy to manufacture, and it is possible to realize miniaturization.
[第2の実施形態]
 本発明の例示的一態様である第2の実施形態に係るマイクロ流体デバイス20について説明する。本実施形態に係るマイクロ流体デバイス20は、第1の実施形態に係るマイクロ流体デバイス10と、流路部の断面形状が異なるだけであり、当該断面形状が現れない平面図の形状は、第1の実施形態における図1と同一である。したがって、平面図については、図1をそのまま参照されたい。
[Second Embodiment]
The microfluidic device 20 according to the second embodiment, which is an exemplary embodiment of the present invention, will be described. The microfluidic device 20 according to the present embodiment is different from the microfluidic device 10 according to the first embodiment only in the cross-sectional shape of the flow path portion, and the shape of the plan view in which the cross-sectional shape does not appear is the first. It is the same as FIG. 1 in the embodiment of. Therefore, for the plan view, refer to FIG. 1 as it is.
 図4は、第1の実施形態における図2と同様の拡大断面図であり、詳しくは、第2の実施形態に係るマイクロ流体デバイスの概略構成を示す図1における、流路部24の延在方向と垂直な、A-A断面の拡大断面図である。本実施形態にかかる図4においては、第1の実施形態と同一の構成の部材に同一の符号を付して、その詳細な説明を省略している。 FIG. 4 is an enlarged cross-sectional view similar to FIG. 2 in the first embodiment, and more specifically, an extension of the flow path portion 24 in FIG. 1 showing a schematic configuration of the microfluidic device according to the second embodiment. FIG. 3 is an enlarged cross-sectional view taken along the line AA perpendicular to the direction. In FIG. 4 according to the present embodiment, the same reference numerals are given to the members having the same configuration as that of the first embodiment, and the detailed description thereof is omitted.
 本実施形態において、絶縁体シート層11、導電体層13及び絶縁体フィルム層12からなる3層構造の積層体18は、第1の実施形態と同様である。本実施形態においては、流路部24における流体との対向面のうち、導電体層13の2つの端面と、絶縁体シート層(第1の絶縁体層)11に、金属薄膜層29が形成されている。 In the present embodiment, the laminated body 18 having a three-layer structure composed of the insulator sheet layer 11, the conductor layer 13, and the insulator film layer 12 is the same as that of the first embodiment. In the present embodiment, the metal thin film layer 29 is formed on the two end faces of the conductor layer 13 and the insulator sheet layer (first insulator layer) 11 among the surfaces facing the fluid in the flow path portion 24. Has been done.
 金属薄膜層29は、形成方法に特に制限はなく、例えば、メッキ、蒸着、あるいは、金属箔を貼着すること等により形成することができるが、ごく薄膜で、かつ、高い貼着力の堅牢な薄膜を得るには、メッキにより形成することが好ましい。
 金属薄膜層29の厚みとしては、おおよそ1μm~3μm程度の厚みから選択される。
The metal thin film layer 29 is not particularly limited in the forming method and can be formed by, for example, plating, vapor deposition, or attaching a metal foil, but it is a very thin film and has a strong adhesive force. In order to obtain a thin film, it is preferably formed by plating.
The thickness of the metal thin film layer 29 is selected from a thickness of about 1 μm to 3 μm.
 金属薄膜層29の材料としては、金属であればよく、特に制限はないが、流路部24内で流体に対向する面が、当該流体と接触することから、当該流体に対する耐性を有する材料を選択することが望ましい。金属薄膜層29の好ましい材料としては、例えば、金、白金、ニッケル、銅、銀、ステンレス、ニクロム等を挙げることができ、これらは、単独で用いられても構わないし、2種以上の合金として用いられても構わない。 The material of the metal thin film layer 29 may be any metal, and is not particularly limited. However, since the surface of the flow path portion 24 facing the fluid comes into contact with the fluid, a material having resistance to the fluid can be used. It is desirable to select. Preferred materials for the metal thin film layer 29 include, for example, gold, platinum, nickel, copper, silver, stainless steel, nichrome and the like, which may be used alone or as two or more alloys. It may be used.
 金属薄膜層29として、金メッキ、白金メッキ及びニッケル金メッキからなる群より選ばれる少なくともいずれかのメッキ層であることが、特に好ましい。本実施形態では、金属薄膜層29として、厚さ1μmのニッケル金メッキ層を形成した。
 金属薄膜層29の形成は、第1の実施形態の項で説明した、絶縁体シート層11上に導電体層13を形成した後であって、絶縁体フィルム層12となる樹脂製のフィルムを形成する前に、従来公知の方法でメッキすればよい。メッキ以外の蒸着や貼着等の方法においても、同様に従来公知の方法で形成することができる。
It is particularly preferable that the metal thin film layer 29 is at least one of the plating layers selected from the group consisting of gold plating, platinum plating and nickel gold plating. In the present embodiment, a nickel gold-plated layer having a thickness of 1 μm is formed as the metal thin film layer 29.
The metal thin film layer 29 is formed after the conductor layer 13 is formed on the insulator sheet layer 11 described in the section of the first embodiment, and the resin film to be the insulator film layer 12 is formed. Before forming, it may be plated by a conventionally known method. Similarly, a conventionally known method can be used for forming by a method other than plating, such as thin-film deposition or sticking.
 本実施形態においては、流路部24における流体との対向面のうち、導電体層13の2つの端面と、前記一対の絶縁体層の内の少なくとも一方(絶縁体シート層11)の面と、の3つの面に金属薄膜層29が形成されている。即ち、金属薄膜層29が、対向する導電体層13の端面を、絶縁体シート層11上に形成された面を介して、橋渡しした状態になっている。 In the present embodiment, among the surfaces facing the fluid in the flow path portion 24, the two end surfaces of the conductor layer 13 and the surface of at least one of the pair of insulator layers (insulator sheet layer 11). The metal thin film layer 29 is formed on the three surfaces of the above. That is, the metal thin film layer 29 is in a state of bridging the end faces of the opposing conductor layers 13 via the faces formed on the insulator sheet layer 11.
 そのため、絶縁体シート層11上の面に形成された金属薄膜層29に、ヒータとして機能する導電体層13で生じた熱が伝わるほか、当該金属薄膜層29自身が、その薄膜さ故に、ヒータとして機能する。また、導電体層13の端面に形成された金属薄膜層29には、導電体層13で生じた熱がダイレクトに伝わる。 Therefore, the heat generated by the conductor layer 13 that functions as a heater is transferred to the metal thin film layer 29 formed on the surface of the insulator sheet layer 11, and the metal thin film layer 29 itself is a heater because of its thin film. Functions as. Further, the heat generated in the conductor layer 13 is directly transferred to the metal thin film layer 29 formed on the end face of the conductor layer 13.
 これら3つの面に形成された金属薄膜層29は、流路部24を流れる流体に接触している。したがって、本実施形態に係るマイクロ流体デバイス20によれば、流路部24に流れる流体に3方向から熱を供給することができ、当該流体を効率よく加熱することができる。
 また、別途高温槽やホットプレートのような加熱装置を設ける必要が無く、作製が容易で、かつ、小型化を実現できる。
The metal thin film layer 29 formed on these three surfaces is in contact with the fluid flowing through the flow path portion 24. Therefore, according to the microfluidic device 20 according to the present embodiment, heat can be supplied to the fluid flowing in the flow path portion 24 from three directions, and the fluid can be efficiently heated.
Further, it is not necessary to separately provide a heating device such as a high temperature bath or a hot plate, it is easy to manufacture, and it is possible to realize miniaturization.
 さらに、流路部24に流れる流体に接触するのが、導電体層13及び絶縁体シート層11に代わって金属薄膜層29になるので、流路部24に流れる流体に対する耐性を有する材料を金属薄膜層29として用いることで、当該流体への影響を抑制することができる。本実施形態のように、銅箔からなる導電体層13を用いた場合に、銅の反応性から、流体に接触すると影響を及ぼしてしまう懸念があるが、金属薄膜層29でコーティングされた状態になっているため、当該懸念が払拭される。したがって、本実施形態に係るマイクロ流体デバイス20によれば、導電体層13(さらには、絶縁体シート層11)の材料の選択肢が広くなり、設計の自由度が高くなる。 Further, since the metal thin film layer 29 comes into contact with the fluid flowing in the flow path portion 24 instead of the conductor layer 13 and the insulator sheet layer 11, the material having resistance to the fluid flowing in the flow path portion 24 is made of metal. By using it as the thin film layer 29, the influence on the fluid can be suppressed. When the conductor layer 13 made of copper foil is used as in the present embodiment, there is a concern that it may be affected when it comes into contact with a fluid due to the reactivity of copper, but it is in a state of being coated with the metal thin film layer 29. Therefore, the concern is dispelled. Therefore, according to the microfluidic device 20 according to the present embodiment, the choice of materials for the conductor layer 13 (furthermore, the insulator sheet layer 11) is widened, and the degree of freedom in design is increased.
 なお、本実施形態では、導電体層13の2つの端面の他、絶縁体シート層(第1の絶縁体層)11に金属薄膜層29が形成されている態様を例に挙げているが、絶縁体フィルム層(第2の絶縁体層)12の側に金属薄膜層29が形成されていても構わない(第2の実施形態の変形例1)。本変形例1においても、流路部24に流れる流体に3方向から熱を供給することができ、当該流体を効率よく加熱することができる点は、本実施形態と同じである。 In the present embodiment, in addition to the two end faces of the conductor layer 13, the embodiment in which the metal thin film layer 29 is formed on the insulator sheet layer (first insulator layer) 11 is given as an example. The metal thin film layer 29 may be formed on the side of the insulator film layer (second insulator layer) 12 (modification example 1 of the second embodiment). The present modification 1 is also the same as the present embodiment in that heat can be supplied to the fluid flowing through the flow path portion 24 from three directions, and the fluid can be efficiently heated.
 本変形例1においては、導電体層13及び絶縁体フィルム層12は、流路部24に流れる流体に対する耐性を有していなくても構わない。したがって、本変形例1においても、導電体層13及び絶縁体フィルム層12の材料の選択肢が広くなり、設計の自由度が高くなる。 In the present modification 1, the conductor layer 13 and the insulator film layer 12 do not have to have resistance to the fluid flowing in the flow path portion 24. Therefore, also in the present modification 1, the choice of materials for the conductor layer 13 and the insulator film layer 12 is widened, and the degree of freedom in design is increased.
 さらに、導電体層13の2つの端面の他、絶縁体シート層(第1の絶縁体層)11と、絶縁体フィルム層(第2の絶縁体層)12と、の両方に、金属薄膜層29が形成されていても構わない(第2の実施形態の変形例2)。即ち、本変形例2では、図4に示される流路部24の上下左右面全てに金属薄膜層29が形成されている態様となる。本変形例2においては、流路部24に流れる流体に四方から熱を供給することができ、当該流体をより効率よく加熱することができる。 Further, in addition to the two end faces of the conductor layer 13, a metal thin film layer is formed on both the insulator sheet layer (first insulator layer) 11 and the insulator film layer (second insulator layer) 12. 29 may be formed (modification 2 of the second embodiment). That is, in the present modification 2, the metal thin film layer 29 is formed on all the upper, lower, left, and right surfaces of the flow path portion 24 shown in FIG. In the second modification, heat can be supplied from all directions to the fluid flowing through the flow path portion 24, and the fluid can be heated more efficiently.
 また、本変形例2においては、積層体18を構成する導電体層13、絶縁体シート層11及び絶縁体フィルム層12の全てが、流路部24に流れる流体に接触していないので、これら全ての層が、当該流体に対する耐性を有していなくても構わない。したがって、本変形例2においては、導電体層13、絶縁体シート層11及び絶縁体フィルム層12の材料の選択肢が広くなり、設計の自由度がより高くなる。 Further, in the present modification 2, all of the conductor layer 13, the insulator sheet layer 11 and the insulator film layer 12 constituting the laminated body 18 are not in contact with the fluid flowing in the flow path portion 24. Not all layers need to be resistant to the fluid. Therefore, in the present modification 2, the choice of materials for the conductor layer 13, the insulator sheet layer 11, and the insulator film layer 12 is widened, and the degree of freedom in design is increased.
 絶縁体フィルム層12の側に金属薄膜層29を形成するには、絶縁体シート層11上に導電体層13が形成され、かつ、必要な金属薄膜層29を形成しておくのとは別に、絶縁体フィルム層12となる樹脂製のフィルム側の所定の位置に金属薄膜層29を形成しておけばよい。予め金属薄膜層29を形成しておいたフィルムにより絶縁体フィルム層12を形成することで、絶縁体フィルム層12の側に金属薄膜層29を形成することができる。 In order to form the metal thin film layer 29 on the side of the insulator film layer 12, the conductor layer 13 is formed on the insulator sheet layer 11 and the necessary metal thin film layer 29 is formed separately. The metal thin film layer 29 may be formed at a predetermined position on the resin film side to be the insulator film layer 12. By forming the insulator film layer 12 from the film on which the metal thin film layer 29 is formed in advance, the metal thin film layer 29 can be formed on the side of the insulator film layer 12.
[第3の実施形態]
 本発明の例示的一態様である第3の実施形態に係るマイクロ流体デバイス30について説明する。
 図5は、本発明の例示的一態様である第3の実施形態に係るマイクロ流体デバイス30の概略構成を示すための平面図である。
[Third Embodiment]
The microfluidic device 30 according to the third embodiment, which is an exemplary embodiment of the present invention, will be described.
FIG. 5 is a plan view for showing a schematic configuration of the microfluidic device 30 according to the third embodiment, which is an exemplary embodiment of the present invention.
 マイクロ流体デバイス30は、図5に示されるように、細長いシート状の物であり、流路部34が、シートの長手方向に延在している。流路部34の両端は、後述する一対の連通口35a,35bと連通している。
 図5における流路部34の延在方向と垂直な面の断面は、第1の実施形態における図2の拡大断面図と同一である。したがって、拡大断面図については、図2をそのまま参照されたい。
As shown in FIG. 5, the microfluidic device 30 is an elongated sheet-like object, and the flow path portion 34 extends in the longitudinal direction of the sheet. Both ends of the flow path portion 34 communicate with a pair of communication ports 35a and 35b, which will be described later.
The cross section of the plane perpendicular to the extending direction of the flow path portion 34 in FIG. 5 is the same as the enlarged cross section of FIG. 2 in the first embodiment. Therefore, please refer to FIG. 2 as it is for the enlarged cross-sectional view.
 本実施形態において、絶縁体シート層31、導電体層33及び絶縁体フィルム層32からなる3層構造の積層体38は、第1の実施形態における絶縁体シート層11、導電体層13及び絶縁体フィルム層12からなる3層構造の積層体18と同様である。それぞれの層における詳細構成についての説明は、第1の実施形態における対応するそれぞれの層と同一であるため省略する。 In the present embodiment, the laminated body 38 having a three-layer structure composed of the insulator sheet layer 31, the conductor layer 33, and the insulator film layer 32 is the insulator sheet layer 11, the conductor layer 13, and the insulation in the first embodiment. It is the same as the laminated body 18 having a three-layer structure composed of the body film layer 12. The detailed configuration of each layer will be omitted because it is the same as the corresponding layer in the first embodiment.
 また、本実施形態に係るマイクロ流体デバイス30において、連通口35a,35b周辺の断面構造は、第1の実施形態において図3を用いて説明した連通口15a,15b周辺の断面構造と同様である。
 本実施形態に係るマイクロ流体デバイス30は、図5における破線囲み部の構造が特徴的である。図6は、図5における破線囲み部において、最上層の絶縁体フィルム層32を除した状態を示す拡大平面図である。
Further, in the microfluidic device 30 according to the present embodiment, the cross-sectional structure around the communication ports 35a and 35b is the same as the cross-sectional structure around the communication ports 15a and 15b described with reference to FIG. 3 in the first embodiment. ..
The microfluidic device 30 according to the present embodiment is characterized by the structure of the dashed line box in FIG. FIG. 6 is an enlarged plan view showing a state in which the uppermost insulator film layer 32 is removed in the portion surrounded by the broken line in FIG.
 図6に示すように、流路部34の延在方向(図5や図6における左右方向)とは垂直方向(図5や図6における上下方向)の導電体層33の幅(以下、単に「幅」と称する。)が、流路部34の延在方向における中途(狭領域38a)で、他の位置(広領域38b,38c)に比して狭くなっている。導電体層33の幅が狭くなっている狭領域38aでは、導電体層33が欠けた部分から、その下層である絶縁体シート層31が図面上に現れた状態になっている。 As shown in FIG. 6, the width of the conductor layer 33 in the direction perpendicular to the extending direction (horizontal direction in FIGS. 5 and 6) of the flow path portion 34 (vertical direction in FIGS. 5 and 6) (hereinafter, simply referred to as simple). The "width") is narrower in the middle of the flow path portion 34 in the extending direction (narrow region 38a) than at other positions ( wide regions 38b, 38c). In the narrow region 38a where the width of the conductor layer 33 is narrowed, the insulator sheet layer 31 which is the lower layer thereof appears on the drawing from the portion where the conductor layer 33 is missing.
 詳しく見ると、狭領域38aは、図6における左(後述するように流入口(inlet)側)から、同右(流出口(outlet)側)に向けて順に、広領域38bから漸次幅が狭くなる傾斜領域38a-2と、最も狭い幅で平行に維持された最狭領域38a-1と、最も狭い幅から広領域38cに漸次幅が広くなる傾斜領域38a-3と、に分かれている。 Looking at it in detail, the narrow region 38a gradually narrows from the wide region 38b in order from the left side (inlet side as described later) in FIG. 6 toward the right side (outlet side). It is divided into an inclined region 38a-2, a narrowest region 38a-1 maintained in parallel with the narrowest width, and an inclined region 38a-3 in which the width gradually increases from the narrowest width to the wide region 38c.
 広領域38b,38cの幅は、特に制限はないが、あまり幅広過ぎない方がよい。一方、最狭領域38a-1では、後述する通り、当該箇所で抵抗値が高くなるようにすることが望まれるため、流路部34からの幅として、片側当たり10μm~100μm程度の範囲から選択される。 The width of the wide areas 38b and 38c is not particularly limited, but it is better not to be too wide. On the other hand, in the narrowest region 38a-1, as will be described later, it is desired that the resistance value be high at the relevant portion. Therefore, the width from the flow path portion 34 is selected from the range of about 10 μm to 100 μm per side. Will be done.
 本実施形態においても、連通口35a,35bは外部配管等と接続され、流路部34内を流れる流体が、流入口(inlet)側の連通口35aから供給されるとともに、流出口(outlet)側の連通口35bから排出されるようになっている。 Also in this embodiment, the communication ports 35a and 35b are connected to external pipes and the like, and the fluid flowing in the flow path portion 34 is supplied from the communication port 35a on the inlet side and the outlet. It is designed to be discharged from the communication port 35b on the side.
 inlet側の連通口35aから供給された流体は、流路部34の一方の端部(左端)から流路部14内に流体が流れ込む。当該流体は、広領域38b,狭領域38a及び広領域38cの順に、流路部34を流れ、outlet側の連通口35bから流出して、絶縁体フィルム層32の外部に取り出されるようになっている。 The fluid supplied from the communication port 35a on the inlet side flows into the flow path portion 14 from one end (left end) of the flow path portion 34. The fluid flows through the flow path portion 34 in the order of the wide region 38b, the narrow region 38a, and the wide region 38c, flows out from the communication port 35b on the outlet side, and is taken out to the outside of the insulator film layer 32. There is.
 本実施形態にかかるマイクロ流体デバイス30において、不図示の給電手段の電極を外部接続端子37a,37bに接続し、当該外部接続端子37a,37b間に電圧を印加すると、導電体層33が発熱して、ヒータとして機能する。そのため、流路部34内で導電体層13と接触している流体は、当該導電体層13から熱が伝搬し、加熱される。本実施形態では、第1の実施形態と同様の構成を備えているため、第1の実施形態と同様の作用が生じ、同様の効果を奏することができる。 In the microfluidic device 30 according to the present embodiment, when the electrodes of the feeding means (not shown) are connected to the external connection terminals 37a and 37b and a voltage is applied between the external connection terminals 37a and 37b, the conductor layer 33 generates heat. And functions as a heater. Therefore, heat propagates from the conductor layer 13 to the fluid in contact with the conductor layer 13 in the flow path portion 34, and the fluid is heated. Since the present embodiment has the same configuration as that of the first embodiment, the same operation as that of the first embodiment can be generated and the same effect can be obtained.
 即ち、本実施形態にかかるマイクロ流体デバイス30によれば、図2に示すように、導電体層33の対向する2つの端面が、流路部34を流れる流体に接触し、当該流体に2方向から熱を供給することができ、当該流体を効率よく加熱することができる。また、別途高温槽やホットプレートのような加熱装置を設ける必要が無く、作製が容易で、かつ、小型化を実現できる。 That is, according to the microfluidic device 30 according to the present embodiment, as shown in FIG. 2, two opposing end faces of the conductor layer 33 come into contact with the fluid flowing through the flow path portion 34, and the fluid is directed in two directions. Heat can be supplied from the fluid, and the fluid can be heated efficiently. Further, it is not necessary to separately provide a heating device such as a high temperature bath or a hot plate, it is easy to manufacture, and it is possible to realize miniaturization.
 本実施形態においては、狭領域38aで導電体層33の幅が大きく狭まっているため、電流の流れる経路の断面積が狭領域38aで小さくなり、当該箇所で抵抗が大きくなる。したがって、狭領域38a(特に、最狭領域38a-1)において、発熱量が大きくなり、流路部34を流れる流体の温度を当該箇所で集中的に上昇させることができる。 In the present embodiment, since the width of the conductor layer 33 is greatly narrowed in the narrow region 38a, the cross-sectional area of the path through which the current flows becomes small in the narrow region 38a, and the resistance increases at that location. Therefore, in the narrow region 38a (particularly, the narrowest region 38a-1), the calorific value becomes large, and the temperature of the fluid flowing through the flow path portion 34 can be intensively increased at the location.
 以上、本発明のマイクロ流体デバイスについて、好ましい実施形態及び変形例を挙げて説明したが、本発明のマイクロ流体デバイスは上記実施形態に係るマイクロ流体デバイス10,20,30の構成や変形例の構成に限定されるものではない。例えば、上記実施形態や変形例においては、流路部14,24,34において、導電体層13や金属薄膜層29等の金属層が流体と接触する構成を例に挙げて説明したが、これら金属層の上層として、さらに絶縁コーティング層が形成されていてもよい。 The microfluidic device of the present invention has been described with reference to preferred embodiments and modifications, but the microfluidic device of the present invention has configurations of the microfluidic devices 10, 20, and 30 and configurations of modifications according to the above embodiment. Not limited to. For example, in the above-described embodiment and modification, the configuration in which the metal layer such as the conductor layer 13 and the metal thin film layer 29 comes into contact with the fluid in the flow path portions 14, 24, and 34 has been described as an example. An insulating coating layer may be further formed as an upper layer of the metal layer.
 導電体層や金属薄膜層等の上層として絶縁コーティング層を形成することで、流路部に流れる流体と、導電体層や金属薄膜層との間の絶縁性を確保することができる。したがって、絶縁コーティング層を形成することで、流体として導電性の液体を使用しても、導電体層や金属薄膜層から電流が漏れ出る心配がなくなる。 By forming an insulating coating layer as an upper layer such as a conductor layer or a metal thin film layer, it is possible to secure the insulating property between the fluid flowing in the flow path portion and the conductor layer or the metal thin film layer. Therefore, by forming the insulating coating layer, even if a conductive liquid is used as the fluid, there is no concern that current leaks from the conductor layer or the metal thin film layer.
 絶縁コーティング層に使用可能な材料としては、特に制限はなく、絶縁性を有する樹脂材料が好ましい。具体的に好ましい材料としては、例えば、ポリイミド、ポリアミド、ポリアミドイミド、ポリカーボネート、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリフッ化ビニリデン、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、アクリル樹脂、エポキシ樹脂等を挙げることができる。流路部内で流体に対向する面が、当該流体と接触することから、当該流体に対する耐性を有する材料を選択することが望ましい。 The material that can be used for the insulating coating layer is not particularly limited, and a resin material having an insulating property is preferable. Specific preferred materials include, for example, polyimide, polyamide, polyamideimide, polycarbonate, polyvinyl chloride, polyvinylidene chloride, polyvinylidene fluoride, polyethylene, polypropylene, polyethylene terephthalate, acrylic resin, epoxy resin and the like. Since the surface facing the fluid in the flow path portion comes into contact with the fluid, it is desirable to select a material having resistance to the fluid.
 上記実施形態や変形例においては、導電体層の両側に配される一対の絶縁体層として、絶縁体シート層11,31と、絶縁体フィルム層12,32とで異なる材質乃至厚さの物を用いた例を挙げて説明したが、本発明において、一対の絶縁体層は、同一の材質乃至厚さの物を用いても構わない。例えば、一対の絶縁体層として、フレキシブル性の高い薄い材質乃至厚さの樹脂フィルムを用いて作製することで、よりフレキシブル性の高いマイクロ流体デバイスを得ることができる。 In the above-described embodiment and modification, as a pair of insulator layers arranged on both sides of the conductor layer, the insulator sheet layers 11 and 31 and the insulator film layers 12 and 32 have different materials and thicknesses. In the present invention, the pair of insulator layers may be made of the same material or thickness. For example, a more flexible microfluidic device can be obtained by using a highly flexible thin material or a resin film having a thickness as a pair of insulator layers.
 また、第2の実施形態及びその変形例においては、流路部24における流体との対向面のうち、導電体層11の端面と、一対の絶縁体層の内の一方もしくは双方の面と、の3面乃至4面に金属薄膜層29が形成されている構成を例に挙げて説明している。しかし、金属薄膜層は、流路部における流体との対向面の少なくとも一部に形成されていれば、当該金属薄膜層が形成されることによるメリットを享受することができる。 Further, in the second embodiment and its modification, among the surfaces facing the fluid in the flow path portion 24, the end surface of the conductor layer 11 and one or both surfaces of the pair of insulator layers are used. The configuration in which the metal thin film layer 29 is formed on the three to four surfaces of the above is described as an example. However, if the metal thin film layer is formed on at least a part of the surface facing the fluid in the flow path portion, the merit of forming the metal thin film layer can be enjoyed.
 例えば、図4を参照して説明すると、導電体層11の端面には形成せず、絶縁体シート層11及び絶縁体フィルム層12のいずれか1面、あるいは、両方の2面に、金属薄膜層29を形成すれば、当該金属薄膜層29で対向する導電体層13の端面と接触して橋渡しした状態になる。そのため、第2の実施形態及びその変形例と同様、導電体層13で生じた熱が伝わるほか、当該金属薄膜層29自身がヒータとして機能する。よって、流路部24に流れる流体に3方向あるいは4方向から熱を供給することができ、当該流体を効率よく加熱することができる。 For example, to explain with reference to FIG. 4, a metal thin film is not formed on the end surface of the conductor layer 11, but is formed on any one surface of the insulator sheet layer 11 and the insulator film layer 12, or on both two surfaces. When the layer 29 is formed, the metal thin film layer 29 is in a state of being in contact with and bridging the end faces of the opposing conductor layers 13. Therefore, as in the second embodiment and its modifications, the heat generated in the conductor layer 13 is transferred, and the metal thin film layer 29 itself functions as a heater. Therefore, heat can be supplied to the fluid flowing in the flow path portion 24 from three or four directions, and the fluid can be efficiently heated.
 また、導電体層13の端面の一方もしくは双方に金属薄膜層29を形成すれば、当該金属薄膜層29が形成された端面については、流路部24に流れる流体に対する耐性を有していなくてもよくなる。さらに、何れの面においても、その流路部の延在方向の全長に渡って金属薄膜層が形成されていなくてもよく、その一部にのみ形成されて、途中途切れていても、形成された部位に応じた各種効果を期待することができる。 Further, if the metal thin film layer 29 is formed on one or both of the end faces of the conductor layer 13, the end face on which the metal thin film layer 29 is formed does not have resistance to the fluid flowing in the flow path portion 24. Will also get better. Further, on any surface, the metal thin film layer may not be formed over the entire length of the flow path portion in the extending direction, and may be formed only on a part thereof, even if it is interrupted in the middle. Various effects can be expected depending on the site.
 第3の実施形態においては、流路部34に、第2の実施形態で説明した金属薄膜層(29)が形成されていない構成を例に挙げて説明している。しかし、第2の実施形態やその変形例1と同様の3面や、変形例2と同様の4面に金属薄膜層(29)が形成された構成であっても、あるいは、流路部における流体との対向面の少なくとも一部に、金属薄膜層が形成された構成であっても、構わない。これらの場合にも、金属薄膜層を形成した場所に応じた効果を期待することができる。 In the third embodiment, the configuration in which the metal thin film layer (29) described in the second embodiment is not formed in the flow path portion 34 is described as an example. However, even if the metal thin film layer (29) is formed on the third surface similar to the second embodiment and the modification 1 thereof, or the four surfaces similar to the modification 2, or in the flow path portion. A metal thin film layer may be formed on at least a part of the surface facing the fluid. In these cases as well, the effect can be expected depending on the location where the metal thin film layer is formed.
 その他、当業者は、従来公知の知見に従い、本発明のマイクロ流体デバイスを適宜改変することができる。かかる改変によってもなお本発明の構成を具備する限り、勿論、本発明の範疇に含まれるものである。 In addition, those skilled in the art can appropriately modify the microfluidic device of the present invention according to conventionally known knowledge. As long as the present invention is still provided by such modification, it is, of course, included in the category of the present invention.
10…マイクロ流体デバイス、11…絶縁体シート層(絶縁体層)、12…絶縁体フィルム層(絶縁体層)、13…導電体層、14…流路部、15a…連通口(inlet)、15b…連通口(outlet)、16a,16b…ピット部、17a,17b…外部接続端子、18…積層体、20…マイクロ流体デバイス、24…流路部、29…金属薄膜層、30…マイクロ流体デバイス、31…絶縁体シート層(絶縁体層)、32…絶縁体フィルム層(絶縁体層)、33…導電体層、34…流路部、38…積層体、37a,37b…外部接続端子、38a…狭領域、38a-1…最狭領域、38a-2,38a-3…傾斜領域、38b,38c…広領域 10 ... Microfluidic device, 11 ... Insulator sheet layer (insulator layer), 12 ... Insulator film layer (insulator layer), 13 ... Conductor layer, 14 ... Channel portion, 15a ... Communication port (inlet), 15b ... outlet, 16a, 16b ... pit portion, 17a, 17b ... external connection terminal, 18 ... laminate, 20 ... microfluidic device, 24 ... flow path portion, 29 ... metal thin film layer, 30 ... microfluidic Device, 31 ... Insulator sheet layer (insulator layer), 32 ... Insulator film layer (insulator layer), 33 ... Conductor layer, 34 ... Channel portion, 38 ... Laminated body, 37a, 37b ... External connection terminals , 38a ... Narrow region, 38a-1 ... Narrowest region, 38a-2, 38a-3 ... Inclined region, 38b, 38c ... Wide region

Claims (10)

  1.  導電体層と、該導電体層の両側に配された一対の絶縁体層と、を備えた積層体であり、
     前記導電体層には、当該導電体層の面に沿って延びる溝状の、流体を流すための流路部が形成されている、マイクロ流体デバイス。
    A laminate comprising a conductor layer and a pair of insulator layers arranged on both sides of the conductor layer.
    A microfluidic device in which a groove-shaped flow path portion for flowing a fluid is formed in the conductor layer, which extends along the surface of the conductor layer.
  2.  前記流路部の両端またはその近傍に連通する一対の連通口が、前記一対の絶縁体層の何れかの箇所に設けられている、請求項1に記載のマイクロ流体デバイス。 The microfluidic device according to claim 1, wherein a pair of communication ports communicating with each other at both ends of the flow path portion or in the vicinity thereof are provided at any of the pair of insulator layers.
  3.  前記流路部の延在方向とは垂直方向の前記導電体層の幅が、前記流路部の延在方向における中途で、他の位置に比して狭くなっている、請求項1または2に記載のマイクロ流体デバイス。 Claim 1 or 2 in which the width of the conductor layer in the direction perpendicular to the extending direction of the flow path portion is narrower than other positions in the middle of the extending direction of the flow path portion. The microfluidic device described in.
  4.  前記導電体層が金属材料で形成されている、請求項1~3のいずれかに記載のマイクロ流体デバイス。 The microfluidic device according to any one of claims 1 to 3, wherein the conductor layer is made of a metal material.
  5.  前記一対の絶縁体層が、樹脂材料で形成されている、請求項1~4のいずれかに記載のマイクロ流体デバイス。 The microfluidic device according to any one of claims 1 to 4, wherein the pair of insulator layers is made of a resin material.
  6.  前記導電体層の端面に、絶縁コーティング層が形成されている、請求項1~5のいずれかに記載のマイクロ流体デバイス。 The microfluidic device according to any one of claims 1 to 5, wherein an insulating coating layer is formed on the end face of the conductor layer.
  7.  前記流路部における前記流体との対向面の少なくとも一部に、金属薄膜層が形成されている、請求項1~5のいずれかに記載のマイクロ流体デバイス。 The microfluidic device according to any one of claims 1 to 5, wherein a metal thin film layer is formed on at least a part of the surface facing the fluid in the flow path portion.
  8.  前記対向面のうち、前記導電体層の端面と、前記一対の絶縁体層の内の少なくとも一方の面と、に前記金属薄膜層が形成されている、請求項7に記載のマイクロ流体デバイス。 The microfluidic device according to claim 7, wherein the metal thin film layer is formed on an end surface of the conductor layer and at least one surface of the pair of insulator layers among the facing surfaces.
  9.  前記金属薄膜層が、金メッキ、白金メッキ及びニッケル金メッキからなる群より選ばれる少なくともいずれかのメッキ層である、請求項7または8に記載のマイクロ流体デバイス。 The microfluidic device according to claim 7 or 8, wherein the metal thin film layer is at least one plating layer selected from the group consisting of gold plating, platinum plating, and nickel gold plating.
  10.  前記金属薄膜層の上層として、絶縁コーティング層が形成されている、請求項7~9のいずれかに記載のマイクロ流体デバイス。 The microfluidic device according to any one of claims 7 to 9, wherein an insulating coating layer is formed as an upper layer of the metal thin film layer.
PCT/JP2021/021152 2020-06-23 2021-06-03 Microfluidic device WO2021261200A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020108210 2020-06-23
JP2020-108210 2020-06-23

Publications (1)

Publication Number Publication Date
WO2021261200A1 true WO2021261200A1 (en) 2021-12-30

Family

ID=79282564

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/021152 WO2021261200A1 (en) 2020-06-23 2021-06-03 Microfluidic device

Country Status (1)

Country Link
WO (1) WO2021261200A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004256387A (en) * 2003-02-06 2004-09-16 Dainippon Printing Co Ltd Microreacter for hydrogen production and its production method
WO2004082823A1 (en) * 2003-03-19 2004-09-30 Tosoh Corporation Microchannel structure body
JP2005305234A (en) * 2004-04-19 2005-11-04 Seiko Epson Corp Microreactor chip
JP2012016811A (en) * 2010-07-06 2012-01-26 Xerox Corp Microfluidic device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004256387A (en) * 2003-02-06 2004-09-16 Dainippon Printing Co Ltd Microreacter for hydrogen production and its production method
WO2004082823A1 (en) * 2003-03-19 2004-09-30 Tosoh Corporation Microchannel structure body
JP2005305234A (en) * 2004-04-19 2005-11-04 Seiko Epson Corp Microreactor chip
JP2012016811A (en) * 2010-07-06 2012-01-26 Xerox Corp Microfluidic device

Similar Documents

Publication Publication Date Title
US20240203828A1 (en) Heat sink
JP5135225B2 (en) Use of a micro heat transfer device as a fluid cooler for micro heat transfer and electronic devices
US6911631B2 (en) Plate heat exchanger
US9137895B2 (en) Micro-electro-mechanical systems (MEMS) and corresponding manufacturing process
JP2007534937A (en) Compact fluid-cooled heat sink with integrated heater
JP2008539090A (en) Microfluidic structure and manufacturing method thereof
WO2021261200A1 (en) Microfluidic device
JP4380264B2 (en) Bonding substrate and substrate bonding method
CN209449029U (en) The mounting structure of multilager base plate and multilager base plate to circuit substrate
JP2008002896A5 (en)
JP6228768B2 (en) Fluid resistance device
WO2020254691A1 (en) A thermal platform and a method of fabricating a thermal platform
JP2023006367A (en) Thermoelectric conversion sheet and manufacturing method of thermoelectric conversion sheet
JP7114964B2 (en) Laminate, method for producing laminate, microchannel heat exchanger, and method for producing microchannel heat exchanger
KR20130022738A (en) Stacked type printed circuit electric heater and gas heater using thereof
US20170374742A1 (en) Composite wiring board and method for manufacturing composite wiring board
KR102064079B1 (en) Inductor
WO2003100358A1 (en) Thermal flowmeter
CN102903467A (en) Micro-resistance element with soft material layer and manufacturing method thereof
JP2007256261A (en) Fluid device with adjacent conductive layer on inner surface and outer surface
JP2007209885A (en) Microchip provided with reaction chamber and temperature sensor suitable for temperature measuring of the microchip
JP2013124917A (en) Flow sensor
IT202000031331A1 (en) HEATER FOR FLUIDS AND RELATED METHOD OF CONSTRUCTION
EP4383940A1 (en) Flow through heater and method of manufacture thereof
JP2005026045A (en) Flat heater

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21829194

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21829194

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP