[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2021258380A1 - Allocating frequency domain resources for multiple component carrier communication - Google Patents

Allocating frequency domain resources for multiple component carrier communication Download PDF

Info

Publication number
WO2021258380A1
WO2021258380A1 PCT/CN2020/098297 CN2020098297W WO2021258380A1 WO 2021258380 A1 WO2021258380 A1 WO 2021258380A1 CN 2020098297 W CN2020098297 W CN 2020098297W WO 2021258380 A1 WO2021258380 A1 WO 2021258380A1
Authority
WO
WIPO (PCT)
Prior art keywords
ccs
aggregation level
mcs
transmission
fdra
Prior art date
Application number
PCT/CN2020/098297
Other languages
French (fr)
Inventor
Siyi Chen
Changlong Xu
Jing Sun
Xiaoxia Zhang
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/098297 priority Critical patent/WO2021258380A1/en
Publication of WO2021258380A1 publication Critical patent/WO2021258380A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • aspects of the present disclosure generally relate to wireless communication and to techniques and apparatuses for allocating frequency domain resources for multiple component carrier communication.
  • Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts.
  • Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, and/or the like) .
  • multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency-division multiple access (FDMA) systems, orthogonal frequency-division multiple access (OFDMA) systems, single-carrier frequency-division multiple access (SC-FDMA) systems, time division synchronous code division multiple access (TD-SCDMA) systems, and Long Term Evolution (LTE) .
  • LTE/LTE-Advanced is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
  • UMTS Universal Mobile Telecommunications System
  • a wireless network may include a number of base stations (BSs) that can support communication for a number of user equipment (UEs) .
  • a user equipment (UE) may communicate with a base station (BS) via the downlink and uplink.
  • the downlink (or forward link) refers to the communication link from the BS to the UE
  • the uplink (or reverse link) refers to the communication link from the UE to the BS.
  • a BS may be referred to as a Node B, a gNB, an access point (AP) , a radio head, a transmit receive point (TRP) , a New Radio (NR) BS, a 5G Node B, and/or the like.
  • New Radio which may also be referred to as 5G, is a set of enhancements to the LTE mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
  • 3GPP Third Generation Partnership Project
  • NR is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) (CP-OFDM) on the downlink (DL) , using CP-OFDM and/or SC-FDM (e.g., also known as discrete Fourier transform spread OFDM (DFT-s-OFDM) ) on the uplink (UL) , as well as supporting beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation.
  • OFDM orthogonal frequency division multiplexing
  • SC-FDM e.g., also known as discrete Fourier transform spread OFDM (DFT-s-OFDM)
  • DFT-s-OFDM discrete Fourier transform spread OFDM
  • MIMO multiple-input multiple-output
  • a method of wireless communication performed by a user equipment includes receiving an indication of a frequency domain resource allocation (FDRA) that configures a plurality of component carriers (CCs) for the UE; and at least one of receiving a first transmission across the plurality of CCs, or transmitting a second transmission across the plurality of CCs.
  • FDRA frequency domain resource allocation
  • a method of wireless communication performed by a base station includes transmitting an indication of an FDRA that configures a plurality of CCs for a UE; and at least one of receiving, from the UE, a first transmission across the plurality of CCs, or transmitting a second transmission, to the UE, across the plurality of CCs.
  • a UE for wireless communication includes a memory; and one or more processors operatively coupled to the memory, the memory and the one or more processors configured to receive an indication of an FDRA that configures a plurality of CCs for the UE; and at least one of receive a first transmission across the plurality of CCs, or transmit a second transmission across the plurality of CCs.
  • a base station for wireless communication includes a memory; and one or more processors operatively coupled to the memory, the memory and the one or more processors configured to transmit an indication of an FDRA that configures a plurality of CCs for a UE; and at least one of receive , from the UE, a first transmission across the plurality of CCs, or transmit a second transmission, to the UE, across the plurality of CCs.
  • a non-transitory computer-readable medium storing a set of instructions for wireless communication includes one or more instructions that, when executed by one or more processors of a UE, cause the UE to receiving an indication of an FDRA that configures a plurality of CCs for the UE; and at least one of receive a first transmission across the plurality of CCs, or transmit a second transmission across the plurality of CCs.
  • a non-transitory computer-readable medium storing a set of instructions for wireless communication includes one or more instructions that, when executed by one or more processors of a base station, cause the base station to transmitting an indication of an FDRA that configures a plurality of CCs for a UE; and at least one of receive , from the UE, a first transmission across the plurality of CCs, or transmit a second transmission, to the UE, across the plurality of CCs.
  • an apparatus for wireless communication includes receiving an indication of an FDRA that configures a plurality of CCs for the apparatus; and at least one of means for receiving a first transmission across the plurality of CCs, or means for transmitting a second transmission across the plurality of CCs.
  • an apparatus for wireless communication includes transmitting an indication of an FDRA that configures a plurality of CCs for a UE; and at least one of means for receiving, from the UE, a first transmission across the plurality of CCs, or means for transmitting a second transmission, to the UE, across the plurality of CCs.
  • aspects generally include a method, apparatus, system, computer program product, non-transitory computer-readable medium, user equipment, base station, wireless communication device, and/or processing system as substantially described herein with reference to and as illustrated by the drawings and specification.
  • Fig. 1 is a diagram illustrating an example of a wireless network, in accordance with various aspects of the present disclosure.
  • Fig. 2 is a diagram illustrating an example of a base station in communication with a UE in a wireless network, in accordance with various aspects of the present disclosure.
  • Figs. 3A-3G are diagrams illustrating examples associated with allocating frequency domain resources for multiple component carrier communication, in accordance with various aspects of the present disclosure.
  • Figs. 4 and 5 are diagrams illustrating example processes associated with allocating frequency domain resources for multiple component carrier communication, in accordance with various aspects of the present disclosure.
  • aspects may be described herein using terminology commonly associated with a 5G or NR radio access technology (RAT) , aspects of the present disclosure can be applied to other RATs, such as a 3G RAT, a 4G RAT, and/or a RAT subsequent to 5G (e.g., 6G) .
  • RAT radio access technology
  • Fig. 1 is a diagram illustrating an example of a wireless network 100, in accordance with various aspects of the present disclosure.
  • the wireless network 100 may be or may include elements of a 5G New Radio (NR) network, an LTE network, and/or the like.
  • the wireless network 100 may include a number of base stations 110 (shown as BS 110a, BS 110b, BS 110c, and BS 110d) and other network entities.
  • a base station (BS) is an entity that communicates with user equipment (UEs) and may also be referred to as an NR BS, a Node B, a gNB, a 5G node B (NB) , an access point, a transmit receive point (TRP) , and/or the like.
  • Each BS may provide communication coverage for a particular geographic area.
  • the term “cell” can refer to a coverage area of a BS and/or a BS subsystem serving this coverage area, depending on the context in which the term is used.
  • a BS may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or another type of cell.
  • a macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription.
  • a pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription.
  • a femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having association with the femto cell (e.g., UEs in a closed subscriber group (CSG) ) .
  • a BS for a macro cell may be referred to as a macro BS.
  • a BS for a pico cell may be referred to as a pico BS.
  • a BS for a femto cell may be referred to as a femto BS or a home BS.
  • a BS 110a may be a macro BS for a macro cell 102a
  • a BS 110b may be a pico BS for a pico cell 102b
  • a BS 110c may be a femto BS for a femto cell 102c.
  • a BS may support one or multiple (e.g., three) cells.
  • eNB base station
  • NR BS NR BS
  • gNB gNode B
  • AP AP
  • node B node B
  • 5G NB 5G NB
  • cell may be used interchangeably herein.
  • a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile BS.
  • the BSs may be interconnected to one another and/or to one or more other BSs or network nodes (not shown) in the wireless network 100 through various types of backhaul interfaces such as a direct physical connection, a virtual network, and/or the like using any suitable transport network.
  • Wireless network 100 may also include relay stations.
  • a relay station is an entity that can receive a transmission of data from an upstream station (e.g., a BS or a UE) and send a transmission of the data to a downstream station (e.g., a UE or a BS) .
  • a relay station may also be a UE that can relay transmissions for other UEs.
  • a relay BS 110d may communicate with macro BS 110a and a UE 120d in order to facilitate communication between BS 110a and UE 120d.
  • a relay BS may also be referred to as a relay station, a relay base station, a relay, and/or the like.
  • Wireless network 100 may be a heterogeneous network that includes BSs of different types, e.g., macro BSs, pico BSs, femto BSs, relay BSs, and/or the like. These different types of BSs may have different transmit power levels, different coverage areas, and different impacts on interference in wireless network 100.
  • macro BSs may have a high transmit power level (e.g., 5 to 40 watts) whereas pico BSs, femto BSs, and relay BSs may have lower transmit power levels (e.g., 0.1 to 2 watts) .
  • a network controller 130 may couple to a set of BSs and may provide coordination and control for these BSs.
  • Network controller 130 may communicate with the BSs via a backhaul.
  • the BSs may also communicate with one another, e.g., directly or indirectly via a wireless or wireline backhaul.
  • UEs 120 may be dispersed throughout wireless network 100, and each UE may be stationary or mobile.
  • a UE may also be referred to as an access terminal, a terminal, a mobile station, a subscriber unit, a station, and/or the like.
  • a UE may be a cellular phone (e.g., a smart phone) , a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device or equipment, biometric sensors/devices, wearable devices (smart watches, smart clothing, smart glasses, smart wrist bands, smart jewelry (e.g., smart ring, smart bracelet) ) , an entertainment device (e.g., a music or video device, or a satellite radio) , a vehicular component or sensor, smart meters/sensors, industrial manufacturing equipment, a global positioning system device, or any other suitable device that is configured to communicate via a wireless or wired medium.
  • PDA personal digital assistant
  • WLL wireless local loop
  • Some UEs may be considered machine-type communication (MTC) or evolved or enhanced machine-type communication (eMTC) UEs.
  • MTC and eMTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, and/or the like, that may communicate with a base station, another device (e.g., remote device) , or some other entity.
  • a wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular network) via a wired or wireless communication link.
  • Some UEs may be considered Internet-of-Things (IoT) devices, and/or may be implemented as NB-IoT (narrowband internet of things) devices.
  • IoT Internet-of-Things
  • NB-IoT narrowband internet of things
  • UE 120 may be included inside a housing that houses components of UE 120, such as processor components, memory components, and/or the like.
  • the processor components and the memory components may be coupled together.
  • the processor components e.g., one or more processors
  • the memory components e.g., a memory
  • the processor components and the memory components may be operatively coupled, communicatively coupled, electronically coupled, electrically coupled, and/or the like.
  • any number of wireless networks may be deployed in a given geographic area.
  • Each wireless network may support a particular RAT and may operate on one or more frequencies.
  • a RAT may also be referred to as a radio technology, an air interface, and/or the like.
  • a frequency may also be referred to as a carrier, a frequency channel, and/or the like.
  • Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs.
  • NR or 5G RAT networks may be deployed.
  • two or more UEs 120 may communicate directly using one or more sidelink channels (e.g., without using a base station 110 as an intermediary to communicate with one another) .
  • the UEs 120 may communicate using peer-to-peer (P2P) communications, device-to-device (D2D) communications, a vehicle-to-everything (V2X) protocol (e.g., which may include a vehicle-to-vehicle (V2V) protocol, a vehicle-to-infrastructure (V2I) protocol, and/or the like) , a mesh network, and/or the like.
  • V2X vehicle-to-everything
  • the UE 120 may perform scheduling operations, resource selection operations, and/or other operations described elsewhere herein as being performed by the base station 110.
  • Devices of wireless network 100 may communicate using the electromagnetic spectrum, which may be subdivided based on frequency or wavelength into various classes, bands, channels, and/or the like.
  • devices of wireless network 100 may communicate using an operating band having a first frequency range (FR1) , which may span from 410 MHz to 7.125 GHz, and/or may communicate using an operating band having a second frequency range (FR2) , which may span from 24.25 GHz to 52.6 GHz.
  • FR1 first frequency range
  • FR2 second frequency range
  • the frequencies between FR1 and FR2 are sometimes referred to as mid-band frequencies.
  • FR1 is often referred to as a “sub-6 GHz” band.
  • FR2 is often referred to as a “millimeter wave” band despite being different from the extremely high frequency (EHF) band (30 GHz –300 GHz) which is identified by the International Telecommunications Union (ITU) as a “millimeter wave” band.
  • EHF extremely high frequency
  • ITU International Telecommunications Union
  • sub-6 GHz or the like, if used herein, may broadly represent frequencies less than 6 GHz, frequencies within FR1, and/or mid-band frequencies (e.g., greater than 7.125 GHz) .
  • millimeter wave may broadly represent frequencies within the EHF band, frequencies within FR2, and/or mid-band frequencies (e.g., less than 24.25 GHz) . It is contemplated that the frequencies included in FR1 and FR2 may be modified, and techniques described herein are applicable to those modified frequency ranges.
  • Fig. 1 is provided as an example. Other examples may differ from what is described with regard to Fig. 1.
  • Fig. 2 is a diagram illustrating an example 200 of a base station 110 in communication with a UE 120 in a wireless network 100, in accordance with various aspects of the present disclosure.
  • Base station 110 may be equipped with T antennas 234a through 234t
  • UE 120 may be equipped with R antennas 252a through 252r, where in general T ⁇ 1 and R ⁇ 1.
  • a transmit processor 220 may receive data from a data source 212 for one or more UEs, select one or more modulation and coding schemes (MCS) for each UE based at least in part on channel quality indicators (CQIs) received from the UE, process (e.g., encode and modulate) the data for each UE based at least in part on the MCS (s) selected for the UE, and provide data symbols for all UEs. Transmit processor 220 may also process system information (e.g., for semi-static resource partitioning information (SRPI) and/or the like) and control information (e.g., CQI requests, grants, upper layer signaling, and/or the like) and provide overhead symbols and control symbols.
  • MCS modulation and coding schemes
  • Transmit processor 220 may also generate reference symbols for reference signals (e.g., a cell-specific reference signal (CRS) , a demodulation reference signal (DMRS) , and/or the like) and synchronization signals (e.g., the primary synchronization signal (PSS) and secondary synchronization signal (SSS) ) .
  • a transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, the overhead symbols, and/or the reference symbols, if applicable, and may provide T output symbol streams to T modulators (MODs) 232a through 232t.
  • MIMO multiple-input multiple-output
  • Each modulator 232 may process a respective output symbol stream (e.g., for OFDM and/or the like) to obtain an output sample stream. Each modulator 232 may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal. T downlink signals from modulators 232a through 232t may be transmitted via T antennas 234a through 234t, respectively.
  • antennas 252a through 252r may receive the downlink signals from base station 110 and/or other base stations and may provide received signals to demodulators (DEMODs) 254a through 254r, respectively.
  • Each demodulator 254 may condition (e.g., filter, amplify, downconvert, and digitize) a received signal to obtain input samples.
  • Each demodulator 254 may further process the input samples (e.g., for OFDM and/or the like) to obtain received symbols.
  • a MIMO detector 256 may obtain received symbols from all R demodulators 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols.
  • a receive processor 258 may process (e.g., demodulate and decode) the detected symbols, provide decoded data for UE 120 to a data sink 260, and provide decoded control information and system information to a controller/processor 280.
  • controller/processor may refer to one or more controllers, one or more processors, or a combination thereof.
  • a channel processor may determine reference signal received power (RSRP) , received signal strength indicator (RSSI) , reference signal received quality (RSRQ) , channel quality indicator (CQI) , and/or the like.
  • RSRP reference signal received power
  • RSSI received signal strength indicator
  • RSRQ reference signal received quality
  • CQI channel quality indicator
  • one or more components of UE 120 may be included in a housing 284.
  • Network controller 130 may include communication unit 294, controller/processor 290, and memory 292.
  • Network controller 130 may include, for example, one or more devices in a core network.
  • Network controller 130 may communicate with base station 110 via communication unit 294.
  • a transmit processor 264 may receive and process data from a data source 262 and control information (e.g., for reports that include RSRP, RSSI, RSRQ, CQI, and/or the like) from controller/processor 280. Transmit processor 264 may also generate reference symbols for one or more reference signals. The symbols from transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by modulators 254a through 254r (e.g., for DFT-s-OFDM, CP-OFDM, and/or the like) , and transmitted to base station 110.
  • the UE 120 includes a transceiver.
  • the transceiver may include any combination of antenna (s) 252, modulators and/or demodulators 254, MIMO detector 256, receive processor 258, transmit processor 264, and/or TX MIMO processor 266.
  • the transceiver may be used by a processor (e.g., controller/processor 280) and memory 282 to perform aspects of any of the methods described herein, for example, as described with reference to Figs. 3A-3G, 4, and/or 5.
  • the uplink signals from UE 120 and other UEs may be received by antennas 234, processed by demodulators 232, detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by UE 120.
  • Receive processor 238 may provide the decoded data to a data sink 239 and the decoded control information to controller/processor 240.
  • Base station 110 may include communication unit 244 and communicate to network controller 130 via communication unit 244.
  • Base station 110 may include a scheduler 246 to schedule UEs 120 for downlink and/or uplink communications.
  • the base station 110 includes a transceiver.
  • the transceiver may include any combination of antenna (s) 234, modulators and/or demodulators 232, MIMO detector 236, receive processor 238, transmit processor 220, and/or TX MIMO processor 230.
  • the transceiver may be used by a processor (e.g., controller/processor 240) and memory 242 to perform aspects of any of the methods described herein, for example, as described with reference to Figs. 3A-3G, 4, and/or 5.
  • Controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform one or more techniques associated with allocating frequency domain resources for multiple component carrier communication, as described in more detail elsewhere herein.
  • controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform or direct operations of, for example, process 400 of Fig. 4, process 500 of Fig. 5, and/or other processes as described herein.
  • Memories 242 and 282 may store data and program codes for base station 110 and UE 120, respectively.
  • memory 242 and/or memory 282 may include a non-transitory computer-readable medium storing one or more instructions (e.g., code, program code, and/or the like) for wireless communication.
  • the one or more instructions when executed (e.g., directly, or after compiling, converting, interpreting, and/or the like) by one or more processors of the base station 110 and/or the UE 120, may cause the one or more processors, the UE 120, and/or the base station 110 to perform or direct operations of, for example, process 400 of Fig. 4, process 500 of Fig. 5, and/or other processes as described herein.
  • executing instructions may include running the instructions, converting the instructions, compiling the instructions, interpreting the instructions, and/or the like.
  • UE 120 may include means for receiving an indication of a frequency domain resource allocation (FDRA) that configures a plurality of component carriers (CCs) for the UE 120, means for receiving a first transmission across the plurality of CCs, means for transmitting a second transmission across the plurality of CCs, and/or the like.
  • FDRA frequency domain resource allocation
  • such means may include one or more components of UE 120 described in connection with Fig. 2, such as controller/processor 280, transmit processor 264, TX MIMO processor 266, MOD 254, antenna 252, DEMOD 254, MIMO detector 256, receive processor 258, and/or the like.
  • base station 110 may include means for transmitting an indication of an FDRA that configures a plurality of CCs for a UE 120, means for receiving, from the UE 120, a first transmission across the plurality of CCs, means for transmitting a second transmission, to the UE 120 across the plurality of CCs, and/or the like.
  • such means may include one or more components of base station 110 described in connection with Fig. 2, such as antenna 234, DEMOD 232, MIMO detector 236, receive processor 238, controller/processor 240, transmit processor 220, TX MIMO processor 230, MOD 232, antenna 234, and/or the like.
  • While blocks in Fig. 2 are illustrated as distinct components, the functions described above with respect to the blocks may be implemented in a single hardware, software, or combination component or in various combinations of components.
  • the functions described with respect to the transmit processor 264, the receive processor 258, and/or the TX MIMO processor 266 may be performed by or under the control of controller/processor 280.
  • Fig. 2 is provided as an example. Other examples may differ from what is described with regard to Fig. 2.
  • a wireless communication device such as a UE or a base station, may be capable of wirelessly communicating on various frequency bands.
  • a wireless communication device may be capable of wirelessly communicating on a 3GPP Frequency Range 1 (FR1) frequency band, which may be a sub-6 Gigahertz (sub-6 GHz) frequency band.
  • FR1 3GPP Frequency Range 1
  • FR2 3GPP Frequency Range 2
  • mmW millimeter wave
  • a wireless communication device may be capable of wirelessly communicating on licensed and unlicensed (or shared) frequency bands.
  • a wireless communication device may be capable of wirelessly communicating on an unlicensed or shared frequency band according to a 5G NR unlicensed (NR-U) communication standard or specification.
  • NR-U 5G NR unlicensed
  • wireless communication devices may be included in one or more device classes, where each device class is associated with one or more operating parameters.
  • device classes include a standard power access point base station class (which may be associated with an automated frequency coordination (AFC) controlled standard power operating mode) , a client device connected to a standard-power access point UE class, a low power access point base station class (which may be associated with a low-power indoor (LPI) operating mode) , a client device connected to a low power access point UE class, a very low power device base station or UE class (which may be associated with a very low power operating mode) , and/or the like.
  • AFC automated frequency coordination
  • LPI low-power indoor
  • the operating parameters associated with a device class may include, for example, one or more operating frequency bands for the device class, a maximum equivalent isotropic radiated power (EIRP) for the device class, a maximum power spectral density (PSD) for the device class, and/or the like.
  • EIRP maximum equivalent isotropic radiated power
  • PSD maximum power spectral density
  • a UE’s transmit power may be configured to be lower than the base station with which the UE communicates in terms of EIRP and PSD.
  • a UE may be configured to operate 6 decibels per milliwatt (dBM) lower for EIRP and PSD relative to the base station.
  • a UE operating in a standard power mode may be configured with a 30 dBm EIRP and a 17 dBM/megahertz (MHz) PSD whereas a base station operating in the standard power mode may operate at 36 dBm EIRP and 23 dBM/MHz PSD, and a UE operating in a low power mode may be configured with a 24 dBm EIRP and a -1 dBM/MHz PSD whereas a base station operating in the low power mode may operate at 30 dBm EIRP and 5 dBM/MHz PSD.
  • a UE and an associated base station may not be permitted to transmit at full or peak transmit power.
  • a UE operating in an LPI mode may be limited to 24 dBm EIRP and -1 dBM/MHz PSD. Accordingly, the UE may need 320 MHz of frequency bandwidth to reach full or peak transmit power on an uplink. However, the UE may be permitted to transmit across 100 MHz per CC for an FR1 frequency band or less (e.g., 80 MHz) for a mmW frequency band. Thus, if the UE is permitted to transmit on only one CC, the UE may be unable to transmit at full or peak transmit power. Similar restrictions in transmit power may be imposed on the base station on downlink.
  • a base station may configure a plurality of CCs for a UE. In this way, if the UE and the base station are operating in a mode that restricts the ability of the UE and the base station to transmit at full or peak power on a single CC, the UE and the base station may spread transmissions across the plurality of CCs (which increases the frequency bandwidth for the transmissions) to reach full or peak transmit power.
  • the base station may signal various parameters of the plurality of CCs to the UE. For example, the base station may transmit an indication of an FDRA to the UE to signal the resource block groups (RBGs) that are allocated to the UE in each of the plurality of CCs. As another example, the base station may transmit an indication of an aggregation level and an aggregation level pattern to the UE.
  • RBGs resource block groups
  • the UE may receive an indication of the FDRA, the aggregation level, and/or the aggregation level pattern, and may receive transmissions across the plurality of CCs and/or may transmit across the plurality of CCs based at least in part on the FDRA, the aggregation level, and/or the aggregation level pattern.
  • Figs. 3A-3G are diagrams illustrating examples 300 associated with allocating frequency domain resources for multiple component carrier communication, in accordance with various aspects of the present disclosure.
  • examples 300 include communication between a base station 110 and a UE 120.
  • the base station 110 and the UE 120 may be included in a wireless network such as wireless network 100.
  • the base station 110 and the UE 120 may communicate on a wireless access link, which may include an uplink and a downlink.
  • the base station 110 may configure a plurality of CCs for communication between the base station 110 and the UE 120. In this way, the base station 110 and/or the UE 120 may communicate across the plurality of CCs. If the base station 110 and/or the UE 120 are transmit power restricted on a single CC, such as in cases where the base station 110 and/or the UE 120 operate in a low power mode or LPI mode, the plurality of CCs permits the base station 110 and/or the UE 120 to spread transmissions across a plurality of CCs, which permits the base station 110 and/or the UE 120 to transmit at full peak transmit power.
  • the base station 110 may transmit, to the UE 120, an indication of an FDRA, an MCS, and/or a redundancy version (RV) to configure the plurality of CCs.
  • the FDRA, the MCS, and the RV may be indicated to the UE 120 in the same downlink communication.
  • one or more of the FDRA, the MCS, and/or the RV may be indicated to the UE 120 in separate communications.
  • the FDRA for the plurality of CCs may be semi-statically configured for the UE 120 by a radio resource control (RRC) communication transmitted by the base station 110 to the UE 120, and the MCS and/or the RV may be dynamically configured for the UE 120 in a downlink control information (DCI) communication.
  • the DCI communication may be associated with a grant for a transmission of the base station 110 or the UE 120 on the plurality of CCs or may be another type of DCI communication.
  • the FDRA may indicate a plurality of resource block groups (RBGs) , across the plurality of CCs, that are allocated to the UE 120 (e.g., for transmission or reception) .
  • RBG resource block groups
  • Each RBG may include a plurality of resource blocks or physical resource blocks (PRBs) .
  • PRBs physical resource blocks
  • the FDRA may indicate a common RBG configuration that is used for each CC of the plurality of CCs.
  • the FDRA may indicate a global RBG that spans across the plurality of CCs.
  • Figs. 3B and 3C illustrate various example RBG configurations that may be indicated in an FDRA for a plurality of CCs. In practice, other RBG configurations may be used.
  • Fig. 3B illustrates a plurality of examples of common RBG configurations for a plurality of CCs.
  • an FDRA for a 5G NR resource allocation type 0 may include a bitmap.
  • the bitmap may indicate the common RBG configuration for the plurality of CCs.
  • each bit in the bitmap may correspond to an RBG in a CC.
  • the first bit in the bitmap may correspond to the first RBG in the CC
  • the second bit in the bitmap may correspond to the second RBG in the CC
  • the value of a bit corresponding to an RBG may indicate whether the RBG is allocated to the UE 120.
  • a 1-value bit may indicate that an associated RBG is allocated to the UE 120
  • a 0-value bit may indicate that an associated RBG is not allocated to the UE 120.
  • a 0-value bit may indicate that an associated RBG is allocated to the UE 120
  • a 1-value bit may indicate that an associated RBG is not allocated to the UE 120.
  • the common RBG indicated by the bitmap may be used for each CC of the plurality of CCs.
  • the bitmap of 110010 may indicate that the first, the second, and the fifth RBGs in each CC are allocated to the UE 120. In these cases, the first, the second, and the fifth RBGs in CC1 through CC4 are allocated to the UE 120.
  • CC1 may be a primary CC (PCC) for the UE 120
  • CC2 through CC4 may be secondary CCs (SCCs) for the UE 120.
  • an FDRA for a 5G NR resource allocation type 1 may include a resource indicator value (RIV) .
  • the RIV may indicate the starting resource block of a set of one or more contiguous RBGs allocated to the UE 120 in a CC.
  • the FDRA may also indicate a quantity of resource blocks.
  • the starting resource block and the quantity of resource blocks may indicate, to the UE 120, the identity of the RBGs allocated to the UE 120 in a CC. In these cases, the same RIV and quantity of resource blocks may be used for each of the plurality of CCs (e.g., for CC1 through CC4) .
  • the FDRA for CC1 through CC4 may indicate an RIV corresponding to the starting resource block in the third RBG. Moreover, the FDRA may indicate a quantity of resource blocks corresponding to three RBGs. Accordingly, the third through fifth RBGs in each of CC1 through CC4 is allocated to the UE 120.
  • Fig. 3C illustrates a plurality of example global RBG configurations for a plurality of CCs.
  • an FDRA for a 5G NR resource allocation type 0 may include a bitmap.
  • the bitmap may indicate the global RBG configuration for the plurality of CCs.
  • each bit in the bitmap may correspond to a CC.
  • the first bit in the bitmap may correspond to CC1
  • the second bit in the bitmap may correspond to CC2, and so on.
  • the value of a bit associated with a CC may indicate whether an RBG configuration of one or more RBGs in the CC is allocated to the UE 120.
  • a 1-value bit may indicate that an associated RBG configuration of one or more RBGs in a CC is allocated to the UE 120, and a 0-value bit may indicate that an associated RBG configuration of one or more RBGs in a CC is not allocated to the UE 120.
  • a 0-value bit may indicate that an associated RBG configuration of one or more RBGs in a CC is allocated to the UE 120, and a 1-value bit may indicate that an associated RBG configuration of one or more RBGs in a CC is not allocated to the UE 120.
  • An RBG configuration may indicate which RBGs in an associated CC are to be allocated to the UE 120 if the associated bit in the bitmap indicates that the RBGs in the CC are to be allocated to the UE.
  • Each RBG configuration may be indicated to the UE 120 in downlink signaling from the base station 110, such as in an RRC communication, a DCI communication, system information, a medium access control control element (MAC-CE) , and/or other types of downlink signaling.
  • RRC communication such as in an RRC communication, a DCI communication, system information, a medium access control control element (MAC-CE) , and/or other types of downlink signaling.
  • MAC-CE medium access control control element
  • an FDRA for a 5G NR resource allocation type 1 may include an RIV.
  • the RIV may indicate the starting resource block for a set of a plurality of contiguous RBGs, allocated to the UE 120, that spans across the plurality of CCs.
  • the FDRA may also indicate a quantity of resource blocks. The starting resource block and the quantity of resource blocks may indicate, to the UE 120, the identity of RBGs allocated to the UE 120 across the plurality of CCs.
  • the UE 120 may determine an aggregation level and/or an aggregation level pattern for the plurality of CCs.
  • the aggregation level may indicate the quantity of CCs included in the plurality of CCs configured for the UE 120.
  • an aggregation level of 3 may indicate that 3 CCs are configured for the UE 120
  • an aggregation level of 4 may indicate that 4 CCs are configured for the UE 102, and/or the like.
  • the UE 120 determines the aggregation level based at least in part on the MCS indicated by the base station 110.
  • the relationship between the MCS and the aggregation level may be configured and indicated in a table, a wireless communication standard, a wireless communication specification, an electronic database, an electronic file or file system, electronic information stored by the UE 120, and/or the like.
  • relationships between the MCSs and aggregation levels may be configured for low (or the lowest) MCSs such as quadrature phase key shifting (QPSK) .
  • QPSK quadrature phase key shifting
  • Fig. 3E illustrates a plurality of example tables indicating relationships between MCSs and aggregation levels. Other data structures may be used to indicate relationships between MCSs and aggregation levels.
  • an example aggregation level table may be introduced for the purpose of indicating relationships between MCSs and aggregation levels.
  • the example aggregation level table may indicate a plurality of relationships. Each relationship may include an RRC configuration index (or another type of index) , an MCS index (e.g., I MCS ) , and an aggregation level.
  • Each MCS index may be associated with a respective and unique aggregation level.
  • the UE 120 may determine the aggregation level based at least in part on the relationships in the aggregation level table.
  • the aggregation level table may further indicate one (unique) aggregation level pattern per aggregation level.
  • An aggregation level pattern may indicate the CCs, of a plurality of candidate CCs, that are configured for the UE 120.
  • the aggregation level table may include a bitmap for each aggregation level, and each bit in the bitmap may correspond to a CC of a plurality of candidate CCs. The value of a bit in the bitmap may indicate whether a corresponding CC is configured for the UE 120.
  • a 1-value may indicate that an associated CC is configured for the UE 120, whereas a 0-value may indicate that an associated CC is not configured for the UE 120.
  • a 0-value may indicate that an associated CC is configured for the UE 120, whereas a 1-value may indicate that an associated CC is not configured for the UE 120.
  • an MCS table (e.g., a table configured to indicate MCSs) may be modified to include an additional row or column that indicates relationships between MCS indexes and aggregation levels.
  • the MCS table may indicate one or more parameters for a particular MCS index (e.g., one or more of a particular modulation order, target coding rate, spectral efficiency, and/or the like) , and a row or column may be added to the table to indicate an associated (and unique) aggregation level.
  • the MCS table may be further modified to indicate one (unique) aggregation level pattern per aggregation level, as shown in the example in Fig. 3E.
  • the MCS table may be modified to permit an MCS index to be associated with a plurality of MCSs and aggregation level patterns.
  • the MCS table may be modified to include a plurality of aggregation level/aggregation level pattern pairs.
  • the UE 120 may determine an aggregation level/aggregation level pattern pair based at least in part on an associated MCS and an associated target coding rate indicated in the MCS table.
  • an example aggregation level pattern table may be introduced to indicate relationships between RVs and aggregation level patterns.
  • the UE 120 may use the aggregation level pattern table in conjunction with the MCS table and/or the aggregation level table to determine the aggregation level and the aggregation level pattern. For example, the UE 120 may determine an aggregation level, based at least in part on a relationship between the MCS and the aggregation level indicated in the aggregation level table and/or the MCS table. The UE 120 may determine the aggregation level pattern for the aggregation level based at least in part on a relationship between the RV, the aggregation level, and the aggregation level pattern indicated in the aggregation level pattern table.
  • the base station 110 and the UE 120 may communicate across the plurality of CCs based at least in part on the FDRA, the aggregation level, and/or the aggregation level pattern. For example, the base station 110 may transmit a transmission across the plurality of CCs to the UE 120, and the UE 120 may receive the transmission across the plurality of CCs. As another example, the UE 120 may transmit a transmission across the plurality of CCs, and the base station 110 may receive the transmission across the plurality of CCs.
  • the base station 110 may configure a plurality of CCs for the UE 120, which permits the UE 120 and the base station 110 to spread transmissions across the plurality of CCs. This increases the frequency bandwidth for the transmissions, which permits the base station 110 and the UE 120 to reach full or peak transmit power.
  • Figs. 3A-3G are provided as one or more examples. Other examples may differ from what is described with regard to Figs. 3A-3G.
  • Fig. 4 is a diagram illustrating an example process 400 performed, for example, by a UE, in accordance with various aspects of the present disclosure.
  • Example process 400 is an example where the UE (e.g., UE 120 and/or the like) performs operations associated with allocating frequency domain resources for multiple component carrier communication.
  • the UE e.g., UE 120 and/or the like
  • process 400 may include receiving an indication of an FDRA that configures a plurality of CCs for the UE (block 410) .
  • the UE e.g., using receive processor 258, transmit processor 264, controller/processor 280, memory 282, and/or the like
  • process 400 may include at least one of receiving a first transmission across the plurality of CCs or transmitting a second transmission across the plurality of CCs (block 420) .
  • the UE e.g., using receive processor 258, transmit processor 264, controller/processor 280, memory 282, and/or the like
  • Process 400 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
  • the indication of the FDRA is included in an RRC communication.
  • the FDRA includes a bitmap indicating sets of RBGs allocated to the UE for respective CCs of the plurality of CCs, and each bit in the bitmap indicates whether an associated RBG, for the plurality of the CCs, is allocated to the UE.
  • the FDRA includes a bitmap indicating sets of RBGs allocated to the UE for respective CCs of the plurality of CCs, and each bit in the bitmap indicates an RBG configuration for an associated CC of the plurality of the CCs.
  • At least one of receiving the first transmission across the plurality of CCs comprises receiving at least a portion of the first transmission in a guard band region between adjacent CCs of the plurality of CCs, or transmitting the second transmission across the plurality of CCs comprises transmitting at least a portion of the second transmission in a guard band region between adjacent CCs of the plurality of CCs.
  • the FDRA includes an RIV that identifies a starting resource block for a same set of contiguous RBGs that is used for each of the plurality of CCs.
  • the FDRA includes an RIV that identifies a starting resource block for a set of contiguous RBGs that spans across the plurality of the CCs.
  • process 400 includes receiving an indication of an MCS; and determining an aggregation level of the plurality of CCs based at least in part on the MCS.
  • the indication of the MCS is included in a DCI communication
  • determining the aggregation level of the plurality of CCs comprises determining the aggregation level based at least in part on a configured relationship between the MCS and the aggregation level in an RRC configuration.
  • the indication of the MCS is included in a downlink control information communication
  • determining the aggregation level of the plurality of CCs comprises determining that the aggregation level is associated with the MCS based at least in part on an MCS table.
  • process 400 includes determining an aggregation level pattern for the aggregation level and the plurality of CCs based at least in part on the MCS and a target code rate for the MCS.
  • an association between the aggregation level pattern, the MCS, and the target code rate is indicated in a table, and the table includes a plurality of different combinations of MCSs, target code rates, and aggregation level patterns for the target code rate.
  • process 400 includes determining an aggregation level pattern for the aggregation level and the plurality of CCs based at least in part on an RV and the aggregation level.
  • least one of receiving the first transmission across the plurality of CCs comprises receiving the first transmission across the plurality of CCs from a base station operating in an LPI mode, or transmitting the second transmission across the plurality of CCs comprises transmitting the second transmission across the plurality of CCs from the base station operating in the LPI mode.
  • process 400 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 4. Additionally, or alternatively, two or more of the blocks of process 400 may be performed in parallel.
  • Fig. 5 is a diagram illustrating an example process 500 performed, for example, by a base station, in accordance with various aspects of the present disclosure.
  • Example process 500 is an example where the base station (e.g., base station 110 and/or the like) performs operations associated with allocating frequency domain resources for multiple component carrier communication.
  • the base station e.g., base station 110 and/or the like
  • process 500 may include transmitting an indication of an FDRA that configures a plurality of CCs for a UE (block 510) .
  • the base station e.g., using transmit processor 220, receive processor 238, controller/processor 240, memory 242, and/or the like
  • process 500 may include at least one of receiving, from the UE, a first transmission across the plurality of CCs or transmitting a second transmission, to the UE, across the plurality of CCs (block 520) .
  • the base station e.g., using transmit processor 220, receive processor 238, controller/processor 240, memory 242, and/or the like
  • Process 500 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
  • transmitting the indication of the FDRA comprises: transmitting the indication of the FDRA in a RRC communication.
  • the FDRA includes a bitmap indicating sets of RBGs allocated to the UE for respective CCs of the plurality of CCs, and each bit in the bitmap indicates whether an associated RBG, for the plurality of the CCs, is allocated to the UE.
  • the FDRA includes a bitmap indicating sets of RBGs allocated to the UE for respective CCs of the plurality of CCs, and each bit in the bitmap indicates an RBG configuration for an associated CC of the plurality of the CCs.
  • At least one of: receiving the first transmission across the plurality of CCs comprises: receiving at least a portion of the first transmission in a guard band region between adjacent CCs of the plurality of CCs, or transmitting the second transmission across the plurality of CCs comprises: transmitting at least a portion of the second transmission in a guard band region between adjacent CCs of the plurality of CCs.
  • the FDRA includes an RIV that identifies a starting resource block for a same set of contiguous RBGs that is used for each of the plurality of CCs.
  • the FDRA includes an RIV that identifies a starting resource block for a set of contiguous RBGs that spans across the plurality of the CCs.
  • process 500 includes transmitting an indication of an MCS, wherein an aggregation level of the plurality of CCs is being based at least in part on the MCS.
  • transmitting the indication of the MCS comprises: transmitting the indication of the MCS in a DCI communication, and the aggregation level based at least in part on a configured relationship between the MCS and the aggregation level in an RRC configuration.
  • transmitting the indication of the MCS comprises: transmitting the indication of the MCS in a DCI communication, and the aggregation level is associated with the MCS in an MCS table.
  • an aggregation level pattern for the aggregation level and the plurality of CCs based at least in part on the MCS and a target code rate for the MCS.
  • an association between the aggregation level pattern, the MCS, and the target code rate is indicated in a table, and the table includes a plurality of different combinations of MCSs, target code rates, and aggregation level patterns for the target code rate.
  • an aggregation level pattern for the aggregation level and the plurality of CCs is based at least in part on an RV and the aggregation level.
  • the base station is operating in a low-power indoor (LPI) mode.
  • LPI low-power indoor
  • process 500 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 5. Additionally, or alternatively, two or more of the blocks of process 500 may be performed in parallel.
  • the term “component” is intended to be broadly construed as hardware, firmware, and/or a combination of hardware and software.
  • a processor is implemented in hardware, firmware, and/or a combination of hardware and software. It will be apparent that systems and/or methods described herein may be implemented in different forms of hardware, firmware, and/or a combination of hardware and software. The actual specialized control hardware or software code used to implement these systems and/or methods is not limiting of the aspects. Thus, the operation and behavior of the systems and/or methods were described herein without reference to specific software code-it being understood that software and hardware can be designed to implement the systems and/or methods based, at least in part, on the description herein.
  • satisfying a threshold may, depending on the context, refer to a value being greater than the threshold, greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, not equal to the threshold, and/or the like.
  • “at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c) .
  • the phrase “only one” or similar language is used.
  • the terms “has, ” “have, ” “having, ” and/or the like are intended to be open-ended terms.
  • the phrase “based on” is intended to mean “based, at least in part, on” unless explicitly stated otherwise.
  • the term “or” is intended to be inclusive when used in a series and may be used interchangeably with “and/or, ” unless explicitly stated otherwise (e.g., if used in combination with “either” or “only one of” ) .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may receive an indication of frequency domain resource allocation (FDRA) that configures a plurality of component carriers (CCs) for the UE. The UE may receive a first transmission across the plurality of CCs and/or may transmit a second transmission across the plurality of CCs. Numerous other aspects are provided.

Description

ALLOCATING FREQUENCY DOMAIN RESOURCES FOR MULTIPLE COMPONENT CARRIER COMMUNICATION
FIELD OF THE DISCLOSURE
Aspects of the present disclosure generally relate to wireless communication and to techniques and apparatuses for allocating frequency domain resources for multiple component carrier communication.
BACKGROUND
Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts. Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, and/or the like) . Examples of such multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency-division multiple access (FDMA) systems, orthogonal frequency-division multiple access (OFDMA) systems, single-carrier frequency-division multiple access (SC-FDMA) systems, time division synchronous code division multiple access (TD-SCDMA) systems, and Long Term Evolution (LTE) . LTE/LTE-Advanced is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
A wireless network may include a number of base stations (BSs) that can support communication for a number of user equipment (UEs) . A user equipment (UE) may communicate with a base station (BS) via the downlink and uplink. The downlink (or forward link) refers to the communication link from the BS to the UE, and the uplink (or reverse link) refers to the communication link from the UE to the BS. As will be described in more detail herein, a BS may be referred to as a Node B, a gNB, an access point (AP) , a radio head, a transmit receive point (TRP) , a New Radio (NR) BS, a 5G Node B, and/or the like.
The above multiple access technologies have been adopted in various telecommunication standards to provide a common protocol that enables different user equipment to communicate on a municipal, national, regional, and even global level.  New Radio (NR) , which may also be referred to as 5G, is a set of enhancements to the LTE mobile standard promulgated by the Third Generation Partnership Project (3GPP) . NR is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) (CP-OFDM) on the downlink (DL) , using CP-OFDM and/or SC-FDM (e.g., also known as discrete Fourier transform spread OFDM (DFT-s-OFDM) ) on the uplink (UL) , as well as supporting beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation. As the demand for mobile broadband access continues to increase, further improvements in LTE, NR, and other radio access technologies remain useful.
SUMMARY
In some aspects, a method of wireless communication performed by a user equipment (UE) includes receiving an indication of a frequency domain resource allocation (FDRA) that configures a plurality of component carriers (CCs) for the UE; and at least one of receiving a first transmission across the plurality of CCs, or transmitting a second transmission across the plurality of CCs.
In some aspects, a method of wireless communication performed by a base station includes transmitting an indication of an FDRA that configures a plurality of CCs for a UE; and at least one of receiving, from the UE, a first transmission across the plurality of CCs, or transmitting a second transmission, to the UE, across the plurality of CCs.
In some aspects, a UE for wireless communication includes a memory; and one or more processors operatively coupled to the memory, the memory and the one or more processors configured to receive an indication of an FDRA that configures a plurality of CCs for the UE; and at least one of receive a first transmission across the plurality of CCs, or transmit a second transmission across the plurality of CCs.
In some aspects, a base station for wireless communication includes a memory; and one or more processors operatively coupled to the memory, the memory and the one or more processors configured to transmit an indication of an FDRA that configures a plurality of CCs for a UE; and at least one of receive , from the UE, a first  transmission across the plurality of CCs, or transmit a second transmission, to the UE, across the plurality of CCs.
In some aspects, a non-transitory computer-readable medium storing a set of instructions for wireless communication includes one or more instructions that, when executed by one or more processors of a UE, cause the UE to receiving an indication of an FDRA that configures a plurality of CCs for the UE; and at least one of receive a first transmission across the plurality of CCs, or transmit a second transmission across the plurality of CCs.
In some aspects, a non-transitory computer-readable medium storing a set of instructions for wireless communication includes one or more instructions that, when executed by one or more processors of a base station, cause the base station to transmitting an indication of an FDRA that configures a plurality of CCs for a UE; and at least one of receive , from the UE, a first transmission across the plurality of CCs, or transmit a second transmission, to the UE, across the plurality of CCs.
In some aspects, an apparatus for wireless communication includes receiving an indication of an FDRA that configures a plurality of CCs for the apparatus; and at least one of means for receiving a first transmission across the plurality of CCs, or means for transmitting a second transmission across the plurality of CCs.
In some aspects, an apparatus for wireless communication includes transmitting an indication of an FDRA that configures a plurality of CCs for a UE; and at least one of means for receiving, from the UE, a first transmission across the plurality of CCs, or means for transmitting a second transmission, to the UE, across the plurality of CCs.
Aspects generally include a method, apparatus, system, computer program product, non-transitory computer-readable medium, user equipment, base station, wireless communication device, and/or processing system as substantially described herein with reference to and as illustrated by the drawings and specification.
The foregoing has outlined rather broadly the features and technical advantages of examples according to the disclosure in order that the detailed description that follows may be better understood. Additional features and advantages will be described hereinafter. The conception and specific examples disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present disclosure. Such equivalent constructions do not depart from the scope of the appended claims. Characteristics of the concepts disclosed herein, both  their organization and method of operation, together with associated advantages will be better understood from the following description when considered in connection with the accompanying figures. Each of the figures is provided for the purposes of illustration and description, and not as a definition of the limits of the claims.
BRIEF DESCRIPTION OF THE DRAWINGS
So that the above-recited features of the present disclosure can be understood in detail, a more particular description, briefly summarized above, may be had by reference to aspects, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only certain typical aspects of this disclosure and are therefore not to be considered limiting of its scope, for the description may admit to other equally effective aspects. The same reference numbers in different drawings may identify the same or similar elements.
Fig. 1 is a diagram illustrating an example of a wireless network, in accordance with various aspects of the present disclosure.
Fig. 2 is a diagram illustrating an example of a base station in communication with a UE in a wireless network, in accordance with various aspects of the present disclosure.
Figs. 3A-3G are diagrams illustrating examples associated with allocating frequency domain resources for multiple component carrier communication, in accordance with various aspects of the present disclosure.
Figs. 4 and 5 are diagrams illustrating example processes associated with allocating frequency domain resources for multiple component carrier communication, in accordance with various aspects of the present disclosure.
DETAILED DESCRIPTION
Various aspects of the disclosure are described more fully hereinafter with reference to the accompanying drawings. This disclosure may, however, be embodied in many different forms and should not be construed as limited to any specific structure or function presented throughout this disclosure. Rather, these aspects are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the disclosure to those skilled in the art. Based on the teachings herein, one skilled in the art should appreciate that the scope of the disclosure is intended to cover any aspect  of the disclosure disclosed herein, whether implemented independently of or combined with any other aspect of the disclosure. For example, an apparatus may be implemented or a method may be practiced using any number of the aspects set forth herein. In addition, the scope of the disclosure is intended to cover such an apparatus or method which is practiced using other structure, functionality, or structure and functionality in addition to or other than the various aspects of the disclosure set forth herein. It should be understood that any aspect of the disclosure disclosed herein may be embodied by one or more elements of a claim.
Several aspects of telecommunication systems will now be presented with reference to various apparatuses and techniques. These apparatuses and techniques will be described in the following detailed description and illustrated in the accompanying drawings by various blocks, modules, components, circuits, steps, processes, algorithms, and/or the like (collectively referred to as “elements” ) . These elements may be implemented using hardware, software, or combinations thereof. Whether such elements are implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system.
It should be noted that while aspects may be described herein using terminology commonly associated with a 5G or NR radio access technology (RAT) , aspects of the present disclosure can be applied to other RATs, such as a 3G RAT, a 4G RAT, and/or a RAT subsequent to 5G (e.g., 6G) .
Fig. 1 is a diagram illustrating an example of a wireless network 100, in accordance with various aspects of the present disclosure. The wireless network 100 may be or may include elements of a 5G New Radio (NR) network, an LTE network, and/or the like. The wireless network 100 may include a number of base stations 110 (shown as BS 110a, BS 110b, BS 110c, and BS 110d) and other network entities. A base station (BS) is an entity that communicates with user equipment (UEs) and may also be referred to as an NR BS, a Node B, a gNB, a 5G node B (NB) , an access point, a transmit receive point (TRP) , and/or the like. Each BS may provide communication coverage for a particular geographic area. In the Third Generation Partnership Project (3GPP) , the term “cell” can refer to a coverage area of a BS and/or a BS subsystem serving this coverage area, depending on the context in which the term is used.
A BS may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or another type of cell. A macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by  UEs with service subscription. A pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription. A femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having association with the femto cell (e.g., UEs in a closed subscriber group (CSG) ) . A BS for a macro cell may be referred to as a macro BS. A BS for a pico cell may be referred to as a pico BS. A BS for a femto cell may be referred to as a femto BS or a home BS. In the example shown in Fig. 1, a BS 110a may be a macro BS for a macro cell 102a, a BS 110b may be a pico BS for a pico cell 102b, and a BS 110c may be a femto BS for a femto cell 102c. A BS may support one or multiple (e.g., three) cells. The terms “eNB” , “base station” , “NR BS” , “gNB” , “TRP” , “AP” , “node B” , “5G NB” , and “cell” may be used interchangeably herein.
In some aspects, a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile BS. In some aspects, the BSs may be interconnected to one another and/or to one or more other BSs or network nodes (not shown) in the wireless network 100 through various types of backhaul interfaces such as a direct physical connection, a virtual network, and/or the like using any suitable transport network.
Wireless network 100 may also include relay stations. A relay station is an entity that can receive a transmission of data from an upstream station (e.g., a BS or a UE) and send a transmission of the data to a downstream station (e.g., a UE or a BS) . A relay station may also be a UE that can relay transmissions for other UEs. In the example shown in Fig. 1, a relay BS 110d may communicate with macro BS 110a and a UE 120d in order to facilitate communication between BS 110a and UE 120d. A relay BS may also be referred to as a relay station, a relay base station, a relay, and/or the like.
Wireless network 100 may be a heterogeneous network that includes BSs of different types, e.g., macro BSs, pico BSs, femto BSs, relay BSs, and/or the like. These different types of BSs may have different transmit power levels, different coverage areas, and different impacts on interference in wireless network 100. For example, macro BSs may have a high transmit power level (e.g., 5 to 40 watts) whereas pico BSs, femto BSs, and relay BSs may have lower transmit power levels (e.g., 0.1 to 2 watts) .
network controller 130 may couple to a set of BSs and may provide coordination and control for these BSs. Network controller 130 may communicate with  the BSs via a backhaul. The BSs may also communicate with one another, e.g., directly or indirectly via a wireless or wireline backhaul.
UEs 120 (e.g., 120a, 120b, 120c) may be dispersed throughout wireless network 100, and each UE may be stationary or mobile. A UE may also be referred to as an access terminal, a terminal, a mobile station, a subscriber unit, a station, and/or the like. A UE may be a cellular phone (e.g., a smart phone) , a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device or equipment, biometric sensors/devices, wearable devices (smart watches, smart clothing, smart glasses, smart wrist bands, smart jewelry (e.g., smart ring, smart bracelet) ) , an entertainment device (e.g., a music or video device, or a satellite radio) , a vehicular component or sensor, smart meters/sensors, industrial manufacturing equipment, a global positioning system device, or any other suitable device that is configured to communicate via a wireless or wired medium.
Some UEs may be considered machine-type communication (MTC) or evolved or enhanced machine-type communication (eMTC) UEs. MTC and eMTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, and/or the like, that may communicate with a base station, another device (e.g., remote device) , or some other entity. A wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular network) via a wired or wireless communication link. Some UEs may be considered Internet-of-Things (IoT) devices, and/or may be implemented as NB-IoT (narrowband internet of things) devices. Some UEs may be considered a Customer Premises Equipment (CPE) . UE 120 may be included inside a housing that houses components of UE 120, such as processor components, memory components, and/or the like. In some aspects, the processor components and the memory components may be coupled together. For example, the processor components (e.g., one or more processors) and the memory components (e.g., a memory) may be operatively coupled, communicatively coupled, electronically coupled, electrically coupled, and/or the like.
In general, any number of wireless networks may be deployed in a given geographic area. Each wireless network may support a particular RAT and may operate on one or more frequencies. A RAT may also be referred to as a radio technology, an air interface, and/or the like. A frequency may also be referred to as a carrier, a  frequency channel, and/or the like. Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs. In some cases, NR or 5G RAT networks may be deployed.
In some aspects, two or more UEs 120 (e.g., shown as UE 120a and UE 120e) may communicate directly using one or more sidelink channels (e.g., without using a base station 110 as an intermediary to communicate with one another) . For example, the UEs 120 may communicate using peer-to-peer (P2P) communications, device-to-device (D2D) communications, a vehicle-to-everything (V2X) protocol (e.g., which may include a vehicle-to-vehicle (V2V) protocol, a vehicle-to-infrastructure (V2I) protocol, and/or the like) , a mesh network, and/or the like. In this case, the UE 120 may perform scheduling operations, resource selection operations, and/or other operations described elsewhere herein as being performed by the base station 110.
Devices of wireless network 100 may communicate using the electromagnetic spectrum, which may be subdivided based on frequency or wavelength into various classes, bands, channels, and/or the like. For example, devices of wireless network 100 may communicate using an operating band having a first frequency range (FR1) , which may span from 410 MHz to 7.125 GHz, and/or may communicate using an operating band having a second frequency range (FR2) , which may span from 24.25 GHz to 52.6 GHz. The frequencies between FR1 and FR2 are sometimes referred to as mid-band frequencies. Although a portion of FR1 is greater than 6 GHz, FR1 is often referred to as a “sub-6 GHz” band. Similarly, FR2 is often referred to as a “millimeter wave” band despite being different from the extremely high frequency (EHF) band (30 GHz –300 GHz) which is identified by the International Telecommunications Union (ITU) as a “millimeter wave” band. Thus, unless specifically stated otherwise, it should be understood that the term “sub-6 GHz” or the like, if used herein, may broadly represent frequencies less than 6 GHz, frequencies within FR1, and/or mid-band frequencies (e.g., greater than 7.125 GHz) . Similarly, unless specifically stated otherwise, it should be understood that the term “millimeter wave” or the like, if used herein, may broadly represent frequencies within the EHF band, frequencies within FR2, and/or mid-band frequencies (e.g., less than 24.25 GHz) . It is contemplated that the frequencies included in FR1 and FR2 may be modified, and techniques described herein are applicable to those modified frequency ranges.
As indicated above, Fig. 1 is provided as an example. Other examples may differ from what is described with regard to Fig. 1.
Fig. 2 is a diagram illustrating an example 200 of a base station 110 in communication with a UE 120 in a wireless network 100, in accordance with various aspects of the present disclosure. Base station 110 may be equipped with T antennas 234a through 234t, and UE 120 may be equipped with R antennas 252a through 252r, where in general T ≥ 1 and R ≥ 1.
At base station 110, a transmit processor 220 may receive data from a data source 212 for one or more UEs, select one or more modulation and coding schemes (MCS) for each UE based at least in part on channel quality indicators (CQIs) received from the UE, process (e.g., encode and modulate) the data for each UE based at least in part on the MCS (s) selected for the UE, and provide data symbols for all UEs. Transmit processor 220 may also process system information (e.g., for semi-static resource partitioning information (SRPI) and/or the like) and control information (e.g., CQI requests, grants, upper layer signaling, and/or the like) and provide overhead symbols and control symbols. Transmit processor 220 may also generate reference symbols for reference signals (e.g., a cell-specific reference signal (CRS) , a demodulation reference signal (DMRS) , and/or the like) and synchronization signals (e.g., the primary synchronization signal (PSS) and secondary synchronization signal (SSS) ) . A transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, the overhead symbols, and/or the reference symbols, if applicable, and may provide T output symbol streams to T modulators (MODs) 232a through 232t. Each modulator 232 may process a respective output symbol stream (e.g., for OFDM and/or the like) to obtain an output sample stream. Each modulator 232 may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal. T downlink signals from modulators 232a through 232t may be transmitted via T antennas 234a through 234t, respectively.
At UE 120, antennas 252a through 252r may receive the downlink signals from base station 110 and/or other base stations and may provide received signals to demodulators (DEMODs) 254a through 254r, respectively. Each demodulator 254 may condition (e.g., filter, amplify, downconvert, and digitize) a received signal to obtain input samples. Each demodulator 254 may further process the input samples (e.g., for OFDM and/or the like) to obtain received symbols. A MIMO detector 256 may obtain received symbols from all R demodulators 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols. A receive  processor 258 may process (e.g., demodulate and decode) the detected symbols, provide decoded data for UE 120 to a data sink 260, and provide decoded control information and system information to a controller/processor 280. The term "controller/processor" may refer to one or more controllers, one or more processors, or a combination thereof. A channel processor may determine reference signal received power (RSRP) , received signal strength indicator (RSSI) , reference signal received quality (RSRQ) , channel quality indicator (CQI) , and/or the like. In some aspects, one or more components of UE 120 may be included in a housing 284.
Network controller 130 may include communication unit 294, controller/processor 290, and memory 292. Network controller 130 may include, for example, one or more devices in a core network. Network controller 130 may communicate with base station 110 via communication unit 294.
On the uplink, at UE 120, a transmit processor 264 may receive and process data from a data source 262 and control information (e.g., for reports that include RSRP, RSSI, RSRQ, CQI, and/or the like) from controller/processor 280. Transmit processor 264 may also generate reference symbols for one or more reference signals. The symbols from transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by modulators 254a through 254r (e.g., for DFT-s-OFDM, CP-OFDM, and/or the like) , and transmitted to base station 110. In some aspects, the UE 120 includes a transceiver. The transceiver may include any combination of antenna (s) 252, modulators and/or demodulators 254, MIMO detector 256, receive processor 258, transmit processor 264, and/or TX MIMO processor 266. The transceiver may be used by a processor (e.g., controller/processor 280) and memory 282 to perform aspects of any of the methods described herein, for example, as described with reference to Figs. 3A-3G, 4, and/or 5.
At base station 110, the uplink signals from UE 120 and other UEs may be received by antennas 234, processed by demodulators 232, detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by UE 120. Receive processor 238 may provide the decoded data to a data sink 239 and the decoded control information to controller/processor 240. Base station 110 may include communication unit 244 and communicate to network controller 130 via communication unit 244. Base station 110 may include a scheduler 246 to schedule UEs 120 for downlink and/or uplink communications. In some aspects, the base station 110 includes a transceiver. The  transceiver may include any combination of antenna (s) 234, modulators and/or demodulators 232, MIMO detector 236, receive processor 238, transmit processor 220, and/or TX MIMO processor 230. The transceiver may be used by a processor (e.g., controller/processor 240) and memory 242 to perform aspects of any of the methods described herein, for example, as described with reference to Figs. 3A-3G, 4, and/or 5.
Controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform one or more techniques associated with allocating frequency domain resources for multiple component carrier communication, as described in more detail elsewhere herein. For example, controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform or direct operations of, for example, process 400 of Fig. 4, process 500 of Fig. 5, and/or other processes as described herein.  Memories  242 and 282 may store data and program codes for base station 110 and UE 120, respectively. In some aspects, memory 242 and/or memory 282 may include a non-transitory computer-readable medium storing one or more instructions (e.g., code, program code, and/or the like) for wireless communication. For example, the one or more instructions, when executed (e.g., directly, or after compiling, converting, interpreting, and/or the like) by one or more processors of the base station 110 and/or the UE 120, may cause the one or more processors, the UE 120, and/or the base station 110 to perform or direct operations of, for example, process 400 of Fig. 4, process 500 of Fig. 5, and/or other processes as described herein. In some aspects, executing instructions may include running the instructions, converting the instructions, compiling the instructions, interpreting the instructions, and/or the like.
In some aspects, UE 120 may include means for receiving an indication of a frequency domain resource allocation (FDRA) that configures a plurality of component carriers (CCs) for the UE 120, means for receiving a first transmission across the plurality of CCs, means for transmitting a second transmission across the plurality of CCs, and/or the like. In some aspects, such means may include one or more components of UE 120 described in connection with Fig. 2, such as controller/processor 280, transmit processor 264, TX MIMO processor 266, MOD 254, antenna 252, DEMOD 254, MIMO detector 256, receive processor 258, and/or the like.
In some aspects, base station 110 may include means for transmitting an indication of an FDRA that configures a plurality of CCs for a UE 120, means for receiving, from the UE 120, a first transmission across the plurality of CCs, means for  transmitting a second transmission, to the UE 120 across the plurality of CCs, and/or the like. In some aspects, such means may include one or more components of base station 110 described in connection with Fig. 2, such as antenna 234, DEMOD 232, MIMO detector 236, receive processor 238, controller/processor 240, transmit processor 220, TX MIMO processor 230, MOD 232, antenna 234, and/or the like.
While blocks in Fig. 2 are illustrated as distinct components, the functions described above with respect to the blocks may be implemented in a single hardware, software, or combination component or in various combinations of components. For example, the functions described with respect to the transmit processor 264, the receive processor 258, and/or the TX MIMO processor 266 may be performed by or under the control of controller/processor 280.
As indicated above, Fig. 2 is provided as an example. Other examples may differ from what is described with regard to Fig. 2.
A wireless communication device, such as a UE or a base station, may be capable of wirelessly communicating on various frequency bands. For example, a wireless communication device may be capable of wirelessly communicating on a 3GPP Frequency Range 1 (FR1) frequency band, which may be a sub-6 Gigahertz (sub-6 GHz) frequency band. As another example, a wireless communication device may be capable of wirelessly communicating on a 3GPP Frequency Range 2 (FR2) frequency band, which may be a millimeter wave (mmW) frequency band at or above 6 GHz. Moreover, a wireless communication device may be capable of wirelessly communicating on licensed and unlicensed (or shared) frequency bands. For example, a wireless communication device may be capable of wirelessly communicating on an unlicensed or shared frequency band according to a 5G NR unlicensed (NR-U) communication standard or specification.
For mmW communication, wireless communication devices may be included in one or more device classes, where each device class is associated with one or more operating parameters. Examples of device classes include a standard power access point base station class (which may be associated with an automated frequency coordination (AFC) controlled standard power operating mode) , a client device connected to a standard-power access point UE class, a low power access point base station class (which may be associated with a low-power indoor (LPI) operating mode) , a client device connected to a low power access point UE class, a very low power  device base station or UE class (which may be associated with a very low power operating mode) , and/or the like.
The operating parameters associated with a device class may include, for example, one or more operating frequency bands for the device class, a maximum equivalent isotropic radiated power (EIRP) for the device class, a maximum power spectral density (PSD) for the device class, and/or the like. In some device classes, a UE’s transmit power may be configured to be lower than the base station with which the UE communicates in terms of EIRP and PSD. For example, a UE may be configured to operate 6 decibels per milliwatt (dBM) lower for EIRP and PSD relative to the base station. In these examples, a UE operating in a standard power mode may be configured with a 30 dBm EIRP and a 17 dBM/megahertz (MHz) PSD whereas a base station operating in the standard power mode may operate at 36 dBm EIRP and 23 dBM/MHz PSD, and a UE operating in a low power mode may be configured with a 24 dBm EIRP and a -1 dBM/MHz PSD whereas a base station operating in the low power mode may operate at 30 dBm EIRP and 5 dBM/MHz PSD.
Due to the restrictions on EIRP and PSD for some device classes and operating modes, a UE and an associated base station may not be permitted to transmit at full or peak transmit power. As an example, a UE operating in an LPI mode may be limited to 24 dBm EIRP and -1 dBM/MHz PSD. Accordingly, the UE may need 320 MHz of frequency bandwidth to reach full or peak transmit power on an uplink. However, the UE may be permitted to transmit across 100 MHz per CC for an FR1 frequency band or less (e.g., 80 MHz) for a mmW frequency band. Thus, if the UE is permitted to transmit on only one CC, the UE may be unable to transmit at full or peak transmit power. Similar restrictions in transmit power may be imposed on the base station on downlink.
Some aspects described herein provide techniques and apparatuses for allocating frequency domain resources for multiple CC communication. In some aspects, a base station may configure a plurality of CCs for a UE. In this way, if the UE and the base station are operating in a mode that restricts the ability of the UE and the base station to transmit at full or peak power on a single CC, the UE and the base station may spread transmissions across the plurality of CCs (which increases the frequency bandwidth for the transmissions) to reach full or peak transmit power.
To configure the plurality of CCs, the base station may signal various parameters of the plurality of CCs to the UE. For example, the base station may transmit an indication of an FDRA to the UE to signal the resource block groups  (RBGs) that are allocated to the UE in each of the plurality of CCs. As another example, the base station may transmit an indication of an aggregation level and an aggregation level pattern to the UE. In this way, the UE may receive an indication of the FDRA, the aggregation level, and/or the aggregation level pattern, and may receive transmissions across the plurality of CCs and/or may transmit across the plurality of CCs based at least in part on the FDRA, the aggregation level, and/or the aggregation level pattern.
Figs. 3A-3G are diagrams illustrating examples 300 associated with allocating frequency domain resources for multiple component carrier communication, in accordance with various aspects of the present disclosure. As shown in Figs. 3A-3G, examples 300 include communication between a base station 110 and a UE 120. In some aspects, the base station 110 and the UE 120 may be included in a wireless network such as wireless network 100. The base station 110 and the UE 120 may communicate on a wireless access link, which may include an uplink and a downlink.
In some aspects, the base station 110 may configure a plurality of CCs for communication between the base station 110 and the UE 120. In this way, the base station 110 and/or the UE 120 may communicate across the plurality of CCs. If the base station 110 and/or the UE 120 are transmit power restricted on a single CC, such as in cases where the base station 110 and/or the UE 120 operate in a low power mode or LPI mode, the plurality of CCs permits the base station 110 and/or the UE 120 to spread transmissions across a plurality of CCs, which permits the base station 110 and/or the UE 120 to transmit at full peak transmit power.
As shown in Fig. 3A, and by reference number 302, the base station 110 may transmit, to the UE 120, an indication of an FDRA, an MCS, and/or a redundancy version (RV) to configure the plurality of CCs. In some aspects, the FDRA, the MCS, and the RV may be indicated to the UE 120 in the same downlink communication. In some aspects, one or more of the FDRA, the MCS, and/or the RV may be indicated to the UE 120 in separate communications. For example, the FDRA for the plurality of CCs may be semi-statically configured for the UE 120 by a radio resource control (RRC) communication transmitted by the base station 110 to the UE 120, and the MCS and/or the RV may be dynamically configured for the UE 120 in a downlink control information (DCI) communication. The DCI communication may be associated with a grant for a transmission of the base station 110 or the UE 120 on the plurality of CCs or may be another type of DCI communication.
The FDRA may indicate a plurality of resource block groups (RBGs) , across the plurality of CCs, that are allocated to the UE 120 (e.g., for transmission or reception) . Each RBG may include a plurality of resource blocks or physical resource blocks (PRBs) . In some aspects, the FDRA may indicate a common RBG configuration that is used for each CC of the plurality of CCs. In some aspects, the FDRA may indicate a global RBG that spans across the plurality of CCs.
Figs. 3B and 3C illustrate various example RBG configurations that may be indicated in an FDRA for a plurality of CCs. In practice, other RBG configurations may be used. Fig. 3B illustrates a plurality of examples of common RBG configurations for a plurality of CCs. As shown in Fig. 3B, an FDRA for a 5G NR resource allocation type 0 may include a bitmap. The bitmap may indicate the common RBG configuration for the plurality of CCs. In particular, each bit in the bitmap may correspond to an RBG in a CC. For example, the first bit in the bitmap may correspond to the first RBG in the CC, the second bit in the bitmap may correspond to the second RBG in the CC, and so on. The value of a bit corresponding to an RBG may indicate whether the RBG is allocated to the UE 120. As an example, a 1-value bit may indicate that an associated RBG is allocated to the UE 120, and a 0-value bit may indicate that an associated RBG is not allocated to the UE 120. As another example, a 0-value bit may indicate that an associated RBG is allocated to the UE 120, and a 1-value bit may indicate that an associated RBG is not allocated to the UE 120.
As further shown in Fig. 3B, the common RBG indicated by the bitmap may be used for each CC of the plurality of CCs. To illustrate an example, and as shown in Fig. 3B, the bitmap of 110010 may indicate that the first, the second, and the fifth RBGs in each CC are allocated to the UE 120. In these cases, the first, the second, and the fifth RBGs in CC1 through CC4 are allocated to the UE 120. CC1 may be a primary CC (PCC) for the UE 120, and CC2 through CC4 may be secondary CCs (SCCs) for the UE 120.
As further shown in Fig. 3B, an FDRA for a 5G NR resource allocation type 1 may include a resource indicator value (RIV) . The RIV may indicate the starting resource block of a set of one or more contiguous RBGs allocated to the UE 120 in a CC. The FDRA may also indicate a quantity of resource blocks. The starting resource block and the quantity of resource blocks may indicate, to the UE 120, the identity of the RBGs allocated to the UE 120 in a CC. In these cases, the same RIV and quantity  of resource blocks may be used for each of the plurality of CCs (e.g., for CC1 through CC4) .
To illustrate an example, and as shown in Fig. 3B, the FDRA for CC1 through CC4 may indicate an RIV corresponding to the starting resource block in the third RBG. Moreover, the FDRA may indicate a quantity of resource blocks corresponding to three RBGs. Accordingly, the third through fifth RBGs in each of CC1 through CC4 is allocated to the UE 120.
Fig. 3C illustrates a plurality of example global RBG configurations for a plurality of CCs. As shown in Fig. 3C, an FDRA for a 5G NR resource allocation type 0 may include a bitmap. The bitmap may indicate the global RBG configuration for the plurality of CCs. In particular, each bit in the bitmap may correspond to a CC. For example, the first bit in the bitmap may correspond to CC1, the second bit in the bitmap may correspond to CC2, and so on. The value of a bit associated with a CC may indicate whether an RBG configuration of one or more RBGs in the CC is allocated to the UE 120. As an example, a 1-value bit may indicate that an associated RBG configuration of one or more RBGs in a CC is allocated to the UE 120, and a 0-value bit may indicate that an associated RBG configuration of one or more RBGs in a CC is not allocated to the UE 120. As another example, a 0-value bit may indicate that an associated RBG configuration of one or more RBGs in a CC is allocated to the UE 120, and a 1-value bit may indicate that an associated RBG configuration of one or more RBGs in a CC is not allocated to the UE 120.
An RBG configuration may indicate which RBGs in an associated CC are to be allocated to the UE 120 if the associated bit in the bitmap indicates that the RBGs in the CC are to be allocated to the UE. Each RBG configuration may be indicated to the UE 120 in downlink signaling from the base station 110, such as in an RRC communication, a DCI communication, system information, a medium access control control element (MAC-CE) , and/or other types of downlink signaling.
As further shown in Fig. 3C, an FDRA for a 5G NR resource allocation type 1 may include an RIV. The RIV may indicate the starting resource block for a set of a plurality of contiguous RBGs, allocated to the UE 120, that spans across the plurality of CCs. The FDRA may also indicate a quantity of resource blocks. The starting resource block and the quantity of resource blocks may indicate, to the UE 120, the identity of RBGs allocated to the UE 120 across the plurality of CCs.
As shown in Fig. 3D, and by reference number 304, the UE 120 may determine an aggregation level and/or an aggregation level pattern for the plurality of CCs. The aggregation level may indicate the quantity of CCs included in the plurality of CCs configured for the UE 120. For example, an aggregation level of 3 may indicate that 3 CCs are configured for the UE 120, an aggregation level of 4 may indicate that 4 CCs are configured for the UE 102, and/or the like. In some aspects, the UE 120 determines the aggregation level based at least in part on the MCS indicated by the base station 110. In some aspects, the relationship between the MCS and the aggregation level may be configured and indicated in a table, a wireless communication standard, a wireless communication specification, an electronic database, an electronic file or file system, electronic information stored by the UE 120, and/or the like. In some aspects, relationships between the MCSs and aggregation levels may be configured for low (or the lowest) MCSs such as quadrature phase key shifting (QPSK) .
Fig. 3E illustrates a plurality of example tables indicating relationships between MCSs and aggregation levels. Other data structures may be used to indicate relationships between MCSs and aggregation levels. As shown in Fig. 3E, an example aggregation level table may be introduced for the purpose of indicating relationships between MCSs and aggregation levels. The example aggregation level table may indicate a plurality of relationships. Each relationship may include an RRC configuration index (or another type of index) , an MCS index (e.g., I MCS) , and an aggregation level. Each MCS index may be associated with a respective and unique aggregation level. In these cases, the UE 120 may determine the aggregation level based at least in part on the relationships in the aggregation level table.
As further shown in Fig. 3E, in some cases, the aggregation level table may further indicate one (unique) aggregation level pattern per aggregation level. An aggregation level pattern may indicate the CCs, of a plurality of candidate CCs, that are configured for the UE 120. For example, and as shown in Fig. 3E, the aggregation level table may include a bitmap for each aggregation level, and each bit in the bitmap may correspond to a CC of a plurality of candidate CCs. The value of a bit in the bitmap may indicate whether a corresponding CC is configured for the UE 120. For example, a 1-value may indicate that an associated CC is configured for the UE 120, whereas a 0-value may indicate that an associated CC is not configured for the UE 120. As another example, a 0-value may indicate that an associated CC is configured for the UE 120, whereas a 1-value may indicate that an associated CC is not configured for the UE 120.
As further shown in Fig. 3E, an MCS table (e.g., a table configured to indicate MCSs) may be modified to include an additional row or column that indicates relationships between MCS indexes and aggregation levels. For example, the MCS table may indicate one or more parameters for a particular MCS index (e.g., one or more of a particular modulation order, target coding rate, spectral efficiency, and/or the like) , and a row or column may be added to the table to indicate an associated (and unique) aggregation level. In some cases, the MCS table may be further modified to indicate one (unique) aggregation level pattern per aggregation level, as shown in the example in Fig. 3E.
As shown in Fig. 3F, the MCS table may be modified to permit an MCS index to be associated with a plurality of MCSs and aggregation level patterns. In these cases, the MCS table may be modified to include a plurality of aggregation level/aggregation level pattern pairs. The UE 120 may determine an aggregation level/aggregation level pattern pair based at least in part on an associated MCS and an associated target coding rate indicated in the MCS table.
As further shown in Fig. 3F, an example aggregation level pattern table may be introduced to indicate relationships between RVs and aggregation level patterns. In some aspects, the UE 120 may use the aggregation level pattern table in conjunction with the MCS table and/or the aggregation level table to determine the aggregation level and the aggregation level pattern. For example, the UE 120 may determine an aggregation level, based at least in part on a relationship between the MCS and the aggregation level indicated in the aggregation level table and/or the MCS table. The UE 120 may determine the aggregation level pattern for the aggregation level based at least in part on a relationship between the RV, the aggregation level, and the aggregation level pattern indicated in the aggregation level pattern table.
As shown in Fig. 3G, the base station 110 and the UE 120 may communicate across the plurality of CCs based at least in part on the FDRA, the aggregation level, and/or the aggregation level pattern. For example, the base station 110 may transmit a transmission across the plurality of CCs to the UE 120, and the UE 120 may receive the transmission across the plurality of CCs. As another example, the UE 120 may transmit a transmission across the plurality of CCs, and the base station 110 may receive the transmission across the plurality of CCs.
In this way, the base station 110 may configure a plurality of CCs for the UE 120, which permits the UE 120 and the base station 110 to spread transmissions across  the plurality of CCs. This increases the frequency bandwidth for the transmissions, which permits the base station 110 and the UE 120 to reach full or peak transmit power.
As indicated above, Figs. 3A-3G are provided as one or more examples. Other examples may differ from what is described with regard to Figs. 3A-3G.
Fig. 4 is a diagram illustrating an example process 400 performed, for example, by a UE, in accordance with various aspects of the present disclosure. Example process 400 is an example where the UE (e.g., UE 120 and/or the like) performs operations associated with allocating frequency domain resources for multiple component carrier communication.
As shown in Fig. 4, in some aspects, process 400 may include receiving an indication of an FDRA that configures a plurality of CCs for the UE (block 410) . For example, the UE (e.g., using receive processor 258, transmit processor 264, controller/processor 280, memory 282, and/or the like) may receive an indication of an FDRA that configures a plurality of CCs for the UE, as described above.
As further shown in Fig. 4, in some aspects, process 400 may include at least one of receiving a first transmission across the plurality of CCs or transmitting a second transmission across the plurality of CCs (block 420) . For example, the UE (e.g., using receive processor 258, transmit processor 264, controller/processor 280, memory 282, and/or the like) may perform at least one of receiving a first transmission across the plurality of CCs or transmitting a second transmission across the plurality of CCs, as described above.
Process 400 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
In a first aspect, the indication of the FDRA is included in an RRC communication. In a second aspect, alone or in combination with the first aspect, the FDRA includes a bitmap indicating sets of RBGs allocated to the UE for respective CCs of the plurality of CCs, and each bit in the bitmap indicates whether an associated RBG, for the plurality of the CCs, is allocated to the UE. In a third aspect, alone or in combination with one or more of the first and second aspects, the FDRA includes a bitmap indicating sets of RBGs allocated to the UE for respective CCs of the plurality of CCs, and each bit in the bitmap indicates an RBG configuration for an associated CC of the plurality of the CCs.
In a fourth aspect, alone or in combination with one or more of the first through third aspects, at least one of receiving the first transmission across the plurality of CCs comprises receiving at least a portion of the first transmission in a guard band region between adjacent CCs of the plurality of CCs, or transmitting the second transmission across the plurality of CCs comprises transmitting at least a portion of the second transmission in a guard band region between adjacent CCs of the plurality of CCs. In a fifth aspect, alone or in combination with one or more of the first through fourth aspects, the FDRA includes an RIV that identifies a starting resource block for a same set of contiguous RBGs that is used for each of the plurality of CCs.
In a sixth aspect, alone or in combination with one or more of the first through fifth aspects, the FDRA includes an RIV that identifies a starting resource block for a set of contiguous RBGs that spans across the plurality of the CCs. In a seventh aspect, alone or in combination with one or more of the first through sixth aspects, process 400 includes receiving an indication of an MCS; and determining an aggregation level of the plurality of CCs based at least in part on the MCS. In an eighth aspect, alone or in combination with one or more of the first through seventh aspects, the indication of the MCS is included in a DCI communication, and determining the aggregation level of the plurality of CCs comprises determining the aggregation level based at least in part on a configured relationship between the MCS and the aggregation level in an RRC configuration.
In a ninth aspect, alone or in combination with one or more of the first through eighth aspects, the indication of the MCS is included in a downlink control information communication, and determining the aggregation level of the plurality of CCs comprises determining that the aggregation level is associated with the MCS based at least in part on an MCS table. In a tenth aspect, alone or in combination with one or more of the first through ninth aspects, process 400 includes determining an aggregation level pattern for the aggregation level and the plurality of CCs based at least in part on the MCS and a target code rate for the MCS. In an eleventh aspect, alone or in combination with one or more of the first through tenth aspects, an association between the aggregation level pattern, the MCS, and the target code rate is indicated in a table, and the table includes a plurality of different combinations of MCSs, target code rates, and aggregation level patterns for the target code rate.
In a twelfth aspect, alone or in combination with one or more of the first through eleventh aspects, process 400 includes determining an aggregation level pattern  for the aggregation level and the plurality of CCs based at least in part on an RV and the aggregation level. In a thirteenth aspect, alone or in combination with one or more of the first through twelfth aspects, least one of receiving the first transmission across the plurality of CCs comprises receiving the first transmission across the plurality of CCs from a base station operating in an LPI mode, or transmitting the second transmission across the plurality of CCs comprises transmitting the second transmission across the plurality of CCs from the base station operating in the LPI mode.
Although Fig. 4 shows example blocks of process 400, in some aspects, process 400 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 4. Additionally, or alternatively, two or more of the blocks of process 400 may be performed in parallel.
Fig. 5 is a diagram illustrating an example process 500 performed, for example, by a base station, in accordance with various aspects of the present disclosure. Example process 500 is an example where the base station (e.g., base station 110 and/or the like) performs operations associated with allocating frequency domain resources for multiple component carrier communication.
As shown in Fig. 5, in some aspects, process 500 may include transmitting an indication of an FDRA that configures a plurality of CCs for a UE (block 510) . For example, the base station (e.g., using transmit processor 220, receive processor 238, controller/processor 240, memory 242, and/or the like) may transmit an indication of an FDRA that configures a plurality of CCs for a UE, as described above.
As further shown in Fig. 5, in some aspects, process 500 may include at least one of receiving, from the UE, a first transmission across the plurality of CCs or transmitting a second transmission, to the UE, across the plurality of CCs (block 520) . For example, the base station (e.g., using transmit processor 220, receive processor 238, controller/processor 240, memory 242, and/or the like) may perform at least one of receiving, from the UE, a first transmission across the plurality of CCs or transmitting a second transmission, to the UE, across the plurality of CCs, as described above.
Process 500 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
In a first aspect, transmitting the indication of the FDRA comprises: transmitting the indication of the FDRA in a RRC communication. In a second aspect, alone or in combination with the first aspect, the FDRA includes a bitmap indicating  sets of RBGs allocated to the UE for respective CCs of the plurality of CCs, and each bit in the bitmap indicates whether an associated RBG, for the plurality of the CCs, is allocated to the UE. In a third aspect, alone or in combination with one or more of the first and second aspects, the FDRA includes a bitmap indicating sets of RBGs allocated to the UE for respective CCs of the plurality of CCs, and each bit in the bitmap indicates an RBG configuration for an associated CC of the plurality of the CCs.
In a fourth aspect, alone or in combination with one or more of the first through third aspects, at least one of: receiving the first transmission across the plurality of CCs comprises: receiving at least a portion of the first transmission in a guard band region between adjacent CCs of the plurality of CCs, or transmitting the second transmission across the plurality of CCs comprises: transmitting at least a portion of the second transmission in a guard band region between adjacent CCs of the plurality of CCs. In a fifth aspect, alone or in combination with one or more of the first through fourth aspects, the FDRA includes an RIV that identifies a starting resource block for a same set of contiguous RBGs that is used for each of the plurality of CCs.
In a sixth aspect, alone or in combination with one or more of the first through fifth aspects, the FDRA includes an RIV that identifies a starting resource block for a set of contiguous RBGs that spans across the plurality of the CCs. In a seventh aspect, alone or in combination with one or more of the first through sixth aspects, process 500 includes transmitting an indication of an MCS, wherein an aggregation level of the plurality of CCs is being based at least in part on the MCS.
In an eighth aspect, alone or in combination with one or more of the first through seventh aspects, transmitting the indication of the MCS comprises: transmitting the indication of the MCS in a DCI communication, and the aggregation level based at least in part on a configured relationship between the MCS and the aggregation level in an RRC configuration. In a ninth aspect, alone or in combination with one or more of the first through eighth aspects, transmitting the indication of the MCS comprises: transmitting the indication of the MCS in a DCI communication, and the aggregation level is associated with the MCS in an MCS table.
In a tenth aspect, alone or in combination with one or more of the first through ninth aspects, an aggregation level pattern for the aggregation level and the plurality of CCs based at least in part on the MCS and a target code rate for the MCS. In an eleventh aspect, alone or in combination with one or more of the first through tenth aspects, an association between the aggregation level pattern, the MCS, and the target  code rate is indicated in a table, and the table includes a plurality of different combinations of MCSs, target code rates, and aggregation level patterns for the target code rate.
In a twelfth aspect, alone or in combination with one or more of the first through eleventh aspects, an aggregation level pattern for the aggregation level and the plurality of CCs is based at least in part on an RV and the aggregation level. In a thirteenth aspect, alone or in combination with one or more of the first through twelfth aspects, the base station is operating in a low-power indoor (LPI) mode.
Although Fig. 5 shows example blocks of process 500, in some aspects, process 500 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 5. Additionally, or alternatively, two or more of the blocks of process 500 may be performed in parallel.
The foregoing disclosure provides illustration and description, but is not intended to be exhaustive or to limit the aspects to the precise form disclosed. Modifications and variations may be made in light of the above disclosure or may be acquired from practice of the aspects.
As used herein, the term “component” is intended to be broadly construed as hardware, firmware, and/or a combination of hardware and software. As used herein, a processor is implemented in hardware, firmware, and/or a combination of hardware and software. It will be apparent that systems and/or methods described herein may be implemented in different forms of hardware, firmware, and/or a combination of hardware and software. The actual specialized control hardware or software code used to implement these systems and/or methods is not limiting of the aspects. Thus, the operation and behavior of the systems and/or methods were described herein without reference to specific software code-it being understood that software and hardware can be designed to implement the systems and/or methods based, at least in part, on the description herein.
As used herein, satisfying a threshold may, depending on the context, refer to a value being greater than the threshold, greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, not equal to the threshold, and/or the like.
Even though particular combinations of features are recited in the claims and/or disclosed in the specification, these combinations are not intended to limit the disclosure of various aspects. In fact, many of these features may be combined in ways  not specifically recited in the claims and/or disclosed in the specification. Although each dependent claim listed below may directly depend on only one claim, the disclosure of various aspects includes each dependent claim in combination with every other claim in the claim set. A phrase referring to “at least one of” a list of items refers to any combination of those items, including single members. As an example, “at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c) .
No element, act, or instruction used herein should be construed as critical or essential unless explicitly described as such. Also, as used herein, the articles “a” and “an” are intended to include one or more items and may be used interchangeably with “one or more. ” Further, as used herein, the article “the” is intended to include one or more items referenced in connection with the article “the” and may be used interchangeably with “the one or more. ” Furthermore, as used herein, the terms “set” and “group” are intended to include one or more items (e.g., related items, unrelated items, a combination of related and unrelated items, and/or the like) , and may be used interchangeably with “one or more. ” Where only one item is intended, the phrase “only one” or similar language is used. Also, as used herein, the terms “has, ” “have, ” “having, ” and/or the like are intended to be open-ended terms. Further, the phrase “based on” is intended to mean “based, at least in part, on” unless explicitly stated otherwise. Also, as used herein, the term “or” is intended to be inclusive when used in a series and may be used interchangeably with “and/or, ” unless explicitly stated otherwise (e.g., if used in combination with “either” or “only one of” ) .

Claims (30)

  1. A method of wireless communication performed by a user equipment (UE) , comprising:
    receiving an indication of a frequency domain resource allocation (FDRA) that configures a plurality of component carriers (CCs) for the UE; and
    at least one of:
    receiving a first transmission across the plurality of CCs, or
    transmitting a second transmission across the plurality of CCs.
  2. The method of claim 1, wherein the indication of the FDRA is included in a radio resource control (RRC) communication.
  3. The method of claim 1, wherein the FDRA includes a bitmap indicating sets of resource block groups (RBGs) allocated to the UE for respective CCs of the plurality of CCs; and
    wherein each bit in the bitmap indicates whether an associated RBG, for the plurality of CCs, is allocated to the UE.
  4. The method of claim 1, wherein the FDRA includes a bitmap indicating sets of resource block groups (RBGs) allocated to the UE for respective CCs of the plurality of CCs; and
    wherein each bit in the bitmap indicates an RBG configuration for an associated CC of the plurality of CCs.
  5. The method of claim 4, wherein at least one of:
    receiving the first transmission across the plurality of CCs comprises:
    receiving at least a portion of the first transmission in a guard band region between adjacent CCs of the plurality of CCs, or
    transmitting the second transmission across the plurality of CCs comprises:
    transmitting at least a portion of the second transmission in a guard band region between adjacent CCs of the plurality of CCs.
  6. The method of claim 1, wherein the FDRA includes a resource indicator value (RIV) that identifies a starting resource block for a same set of contiguous resource block groups (RBGs) that is used for each of the plurality of CCs.
  7. The method of claim 1, wherein the FDRA includes a resource indicator value (RIV) that identifies a starting resource block for a set of contiguous resource block groups (RBGs) that spans across the plurality of CCs.
  8. The method of claim 1, further comprising:
    receiving an indication of a modulation coding scheme (MCS) ; and
    determining an aggregation level of the plurality of CCs based at least in part on the MCS.
  9. The method of claim 8, wherein the indication of the MCS is included in a downlink control information (DCI) communication; and
    wherein determining the aggregation level of the plurality of CCs comprises:
    determining the aggregation level based at least in part on a configured relationship between the MCS and the aggregation level in a radio resource control (RRC) configuration.
  10. The method of claim 8, wherein the indication of the MCS is included in a downlink control information communication; and
    wherein determining the aggregation level of the plurality of CCs comprises:
    determining that the aggregation level is associated with the MCS based at least in part on an MCS table.
  11. The method of claim 8, further comprising:
    determining an aggregation level pattern for the aggregation level and the plurality of CCs based at least in part on the MCS and a target code rate for the MCS.
  12. The method of claim 11, wherein an association between the aggregation level pattern, the MCS, and the target code rate is indicated in a table; and
    wherein the table includes a plurality of different combinations of MCSs, target code rates, and aggregation level patterns for the target code rate.
  13. The method of claim 8, further comprising:
    determining an aggregation level pattern for the aggregation level and the plurality of CCs based at least in part on a redundancy version (RV) and the aggregation level.
  14. The method of claim 1, wherein least one of:
    receiving the first transmission across the plurality of CCs comprises:
    receiving the first transmission across the plurality of CCs from a base station operating in a low-power indoor (LPI) mode, or
    transmitting the second transmission across the plurality of CCs comprises:
    transmitting the second transmission across the plurality of CCs from the base station operating in the LPI mode.
  15. A method of wireless communication performed by a base station, comprising:
    transmitting an indication of a frequency domain resource allocation (FDRA) that configures a plurality of component carriers (CCs) for a user equipment (UE) ; and
    at least one of:
    receiving, from the UE, a first transmission across the plurality of CCs, or
    transmitting a second transmission, to the UE, across the plurality of CCs.
  16. The method of claim 15, wherein transmitting the indication of the FDRA comprises:
    transmitting the indication of the FDRA in a radio resource control (RRC) communication.
  17. The method of claim 15, wherein the FDRA includes a bitmap indicating sets of resource block groups (RBGs) allocated to the UE for respective CCs of the plurality of CCs; and
    wherein each bit in the bitmap indicates whether an associated RBG, for the plurality of CCs, is allocated to the UE.
  18. The method of claim 15, wherein the FDRA includes a bitmap indicating sets of resource block groups (RBGs) allocated to the UE for respective CCs of the plurality of CCs; and
    wherein each bit in the bitmap indicates an RBG configuration for an associated CC of the plurality of CCs.
  19. The method of claim 18, wherein at least one of:
    receiving the first transmission across the plurality of CCs comprises:
    receiving at least a portion of the first transmission in a guard band region between adjacent CCs of the plurality of CCs, or
    transmitting the second transmission across the plurality of CCs comprises:
    transmitting at least a portion of the second transmission in a guard band region between adjacent CCs of the plurality of CCs.
  20. The method of claim 15, wherein the FDRA includes a resource indicator value (RIV) that identifies a starting resource block for a same set of contiguous resource block groups (RBGs) that is used for each of the plurality of CCs.
  21. The method of claim 15, wherein the FDRA includes a resource indicator value (RIV) that identifies a starting resource block for a set of contiguous resource block groups (RBGs) that spans across the plurality of the CCs.
  22. The method of claim 15, further comprising:
    transmitting an indication of a modulation coding scheme (MCS) ,
    wherein an aggregation level of the plurality of CCs is based at least in part on the MCS.
  23. The method of claim 22, wherein transmitting the indication of the MCS comprises:
    transmitting the indication of the MCS in a downlink control information (DCI) communication; and
    wherein the aggregation level based at least in part on a configured relationship between the MCS and the aggregation level in a radio resource control (RRC) configuration.
  24. The method of claim 22, wherein transmitting the indication of the MCS comprises:
    transmitting the indication of the MCS in a downlink control information (DCI) communication; and
    wherein the aggregation level is associated with the MCS in an MCS table.
  25. The method of claim 22, wherein an aggregation level pattern for the aggregation level and the plurality of CCs based at least in part on the MCS and a target code rate for the MCS.
  26. The method of claim 25, wherein an association between the aggregation level pattern, the MCS, and the target code rate is indicated in a table; and
    wherein the table includes a plurality of different combinations of MCSs, target code rates, and aggregation level patterns for the target code rate.
  27. The method of claim 22, wherein an aggregation level pattern for the aggregation level and the plurality of CCs is based at least in part on a redundancy version (RV) and the aggregation level.
  28. The method of claim 15, wherein the base station is operating in a low-power indoor (LPI) mode.
  29. A user equipment (UE) for wireless communication, comprising:
    a memory; and
    one or more processors operatively coupled to the memory, the memory and the one or more processors configured to:
    receive an indication of a frequency domain resource allocation (FDRA) that configures a plurality of component carriers (CCs) for the UE; and
    at least one of:
    receive a first transmission across the plurality of CCs, or
    transmit a second transmission across the plurality of CCs.
  30. A base station for wireless communication, comprising:
    a memory; and
    one or more processors operatively coupled to the memory, the memory and the one or more processors configured to:
    transmit an indication of a frequency domain resource allocation (FDRA) that configures a plurality of component carriers (CCs) for a user equipment (UE) ; and
    at least one of:
    receive, from the UE, a first transmission across the plurality of CCs, or
    transmit a second transmission, to the UE, across the plurality of CCs.
PCT/CN2020/098297 2020-06-25 2020-06-25 Allocating frequency domain resources for multiple component carrier communication WO2021258380A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/098297 WO2021258380A1 (en) 2020-06-25 2020-06-25 Allocating frequency domain resources for multiple component carrier communication

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/098297 WO2021258380A1 (en) 2020-06-25 2020-06-25 Allocating frequency domain resources for multiple component carrier communication

Publications (1)

Publication Number Publication Date
WO2021258380A1 true WO2021258380A1 (en) 2021-12-30

Family

ID=79282714

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/098297 WO2021258380A1 (en) 2020-06-25 2020-06-25 Allocating frequency domain resources for multiple component carrier communication

Country Status (1)

Country Link
WO (1) WO2021258380A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108964852A (en) * 2017-05-18 2018-12-07 华为技术有限公司 The processing method of frequency domain resource, apparatus and system
WO2020030253A1 (en) * 2018-08-07 2020-02-13 Huawei Technologies Co., Ltd. Reducing dci payload
US10651906B1 (en) * 2019-02-15 2020-05-12 At&T Intellectual Property I, L.P. Indicating frequency and time domain resources in communication systems with multiple transmission points
CN111278127A (en) * 2019-04-03 2020-06-12 维沃移动通信有限公司 Frequency domain resource allocation method, terminal and network equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108964852A (en) * 2017-05-18 2018-12-07 华为技术有限公司 The processing method of frequency domain resource, apparatus and system
WO2020030253A1 (en) * 2018-08-07 2020-02-13 Huawei Technologies Co., Ltd. Reducing dci payload
US10651906B1 (en) * 2019-02-15 2020-05-12 At&T Intellectual Property I, L.P. Indicating frequency and time domain resources in communication systems with multiple transmission points
CN111278127A (en) * 2019-04-03 2020-06-12 维沃移动通信有限公司 Frequency domain resource allocation method, terminal and network equipment

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NOKIA, NOKIA SHANGHAI BELL: "UL inter-UE eMBB and URLLC multiplexing enhancements", 3GPP DRAFT; R1-1910868_NR_URLLC_INTER_UE_MUX_CHONGQING_FINAL, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Chongqing, China; 20191014 - 20191020, 7 October 2019 (2019-10-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , pages 1 - 16, XP051789650 *

Similar Documents

Publication Publication Date Title
US11812440B2 (en) Bandwidth part operation for single downlink control information multi-cell scheduling
WO2022052015A1 (en) Uplink transmit switching for two frequency bands
US20210184809A1 (en) Downlink control information based beam and pathloss reference signal configuration activation
WO2021188245A1 (en) Signalling of candidate positions for a ssb blocks in a drs window based on a wraparound scheme
US11871422B2 (en) Frequency allocation for channel state information reference signals
WO2022056664A1 (en) Determining size for downlink control information
EP4179676A1 (en) Indications of physical downlink control channel monitoring occasion aggregation via demodulation reference signal parameters
EP4097869A1 (en) Techniques for indicating a user equipment capability for simultaneous beam update across multiple component carriers
WO2021258092A1 (en) Configuring listen before talk bandwidth monitoring
WO2021119646A1 (en) Techniques for reporting rank capability for multi transmit-receive point configuration
WO2021120083A1 (en) Beam indication for downlink control information scheduled sidelink transmission
WO2021258379A1 (en) Component carrier combination
WO2022021061A1 (en) Downlink control information signaling with a resource repetition factor
WO2021243670A1 (en) Techniques for updating default beams and pathloss reference signals in multi-component carrier communication link
WO2021159692A1 (en) Multi-slot aperiodic sounding reference signal
WO2021217166A1 (en) User equipment initiated communication with tone reservation on one or more subchannels allocated for phase tracking reference signals
WO2021189293A1 (en) Techniques for uplink beam management reporting
WO2021092610A1 (en) Signaling for multi-transmit-receive point (multi-trp) schemes
WO2021168477A1 (en) Uplink duplex configuration for uplink switch
WO2021258380A1 (en) Allocating frequency domain resources for multiple component carrier communication
WO2021030839A1 (en) Rate matching at a ue for multi-transmitter communication based on indicated tci states
WO2022160150A1 (en) Uplink control information cooperation
WO2022099536A1 (en) Indication of sub-physical resource block with frequency domain resource allocation field
WO2022133707A1 (en) Dynamic reconfiguration associated with transmitting sounding reference signal (srs) information
WO2022036663A1 (en) Network slicing registration using requested nssai and quality of service assistance message

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20942144

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20942144

Country of ref document: EP

Kind code of ref document: A1