[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2021256200A1 - Cathepsin k inhibitor - Google Patents

Cathepsin k inhibitor Download PDF

Info

Publication number
WO2021256200A1
WO2021256200A1 PCT/JP2021/019927 JP2021019927W WO2021256200A1 WO 2021256200 A1 WO2021256200 A1 WO 2021256200A1 JP 2021019927 W JP2021019927 W JP 2021019927W WO 2021256200 A1 WO2021256200 A1 WO 2021256200A1
Authority
WO
WIPO (PCT)
Prior art keywords
cathepsin
vitronectin
hvn
collagen
fragment
Prior art date
Application number
PCT/JP2021/019927
Other languages
French (fr)
Japanese (ja)
Inventor
公恵 伊達
敬 由良
Original Assignee
国立大学法人お茶の水女子大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人お茶の水女子大学 filed Critical 国立大学法人お茶の水女子大学
Priority to JP2022532440A priority Critical patent/JPWO2021256200A1/ja
Publication of WO2021256200A1 publication Critical patent/WO2021256200A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/39Connective tissue peptides, e.g. collagen, elastin, laminin, fibronectin, vitronectin, cold insoluble globulin [CIG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • A61P19/10Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease for osteoporosis

Definitions

  • the present invention relates to a cathepsin K inhibitor comprising vitronectin or a fragment thereof that binds to cathepsin K.
  • Bone osteoporosis is a disease in which the balance between bone decomposition and resorption (bone resorption) by osteoblasts and bone formation by osteoblasts is lost, and bone resorption becomes excessive and the bone becomes brittle.
  • Bone resorption inhibitors for example, calcitonin preparations, estrogen preparations, vitamin K preparations, bisphosphonate preparations, etc.
  • bone resorption inhibitors also have the problem of inhibiting bone formation. Therefore, there is a need for the development of a drug that does not inhibit bone formation but inhibits only bone resorption.
  • Cathepsin K is one of the enzymes of the cysteine cathepsin family, which is part of the papain superfamily of cysteine proteases.
  • Cathepsin K is a protease that is secreted from osteoclasts as a precursor procatehepsin K, self-activates under acidic conditions, and decomposes type I collagen, which is the main component of bone.
  • Cathepsin K inhibitors are promising as therapeutic agents for osteoporosis because they inhibit only bone decomposition and hardly inhibit bone formation.
  • VN Vitronectin
  • Human VN has three complex N-type sugar chains, and the N-type sugar chain binding site is highly conserved among mammals (Non-Patent Documents 1 to 4). VN strongly interacts with collagen (Non-Patent Documents 5 and 6). Since the sugar chain of VN affects the adhesion progress of cells, it is considered that it affects the adhesion progress of osteoblasts and osteoclasts (Non-Patent Document 7), and VN plays an important role in osteoporosis. Conceivable.
  • Non-Patent Document 8 It has been reported that the VN peptide promotes the adhesion and extension of bone-forming cells and is effective in ovariectomized osteoporosis model rats. However, the effect of VN on cathepsins is unknown.
  • the present invention is a problem to be solved to provide a novel cathepsin K inhibitor.
  • vitronectin has a cathepsin K activity inhibitory action, a cathepsin K self-activation inhibitory action, and a collagen acid lysis promoting action, which are bones in osteoclasts. It has been found to have three actions of suppressing absorption. Furthermore, the present inventors have found that vitronectin has an action of promoting the fibrosis of collagen produced in bone-forming cells. Furthermore, we present that the binding site of vitronectin to cathepsin K is disordered regions (amino acid SEQ ID NOs: 100-130, 292-296, 364-397 of human vitronectin (hVN)) that do not normally have a fixed structure. I found that. The present invention has been completed based on the above findings.
  • a cathepsin K inhibitor comprising vitronectin or a fragment thereof that binds to cathepsin K.
  • a self-activation inhibitor of procaptesin K which comprises vitronectin or a fragment thereof that binds to cathepsin K.
  • a lysis promoter for fibrotic collagen which comprises vitronectin or a fragment thereof that binds to cathepsin K.
  • An agent for promoting collagen fibrosis which comprises a fragment thereof that binds to vitronectin or cathepsin K.
  • ⁇ 5> The agent according to any one of ⁇ 1> to ⁇ 3>, which is used for suppressing bone resorption of osteoclasts.
  • ⁇ 6> The agent according to any one of ⁇ 1> to ⁇ 5>, wherein the vitronectin is human vitronectin or porcine vitronectin.
  • ⁇ 7> The agent according to any one of ⁇ 1> to ⁇ 6>, wherein the vitronectin has an N-type sugar chain.
  • Methods of inhibiting cathepsin K comprising administering to the subject a fragment of vitronectin, or a fragment thereof that binds to cathepsin K; Methods of Inhibiting Self-Activation of Procaptesin K, Containing Administration of Vitronectin, or Fragments thereof that Bind Cathepsin K, to Subjects; Methods of promoting the lysis of fibrotic collagen, including administering to the subject a fragment of vitronectin, or a fragment thereof that binds to cathepsin K; Methods of promoting collagen fibrosis, comprising administering to the subject a fragment of vitronectin, or a fragment thereof that binds to cathepsin K; Is provided.
  • Vitronectin for use in treatments that inhibit cathepsin K, or a fragment thereof that binds to cathepsin K; Vitronectin, or a fragment thereof that binds to cathepsin K, for use in treatments that inhibit the self-activation of procaptesin K; Vitronectin or a fragment thereof that binds to cathepsin K for use in a procedure that promotes lysis of fibrotic collagen; and a fragment thereof that binds to vitronectin or cathepsin K for use in a procedure that promotes fibrosis of collagen; Is provided.
  • vitronectin, or a fragment thereof that binds to cathepsin K, for the production of cathepsin K inhibitors Use of vitronectin, or a fragment thereof that binds to cathepsin K, for the production of self-activation inhibitors of procaptesin K; Use of a fragment thereof that binds to vitronectin or cathepsin K for the production of a lysis promoter of fibrotic collagen; and a fragment thereof that binds to vitronectin or cathepsin K for the production of a promoter of collagen fibrosis. Use of; Is provided.
  • a novel cathepsin K inhibitor is provided.
  • the cathepsin K inhibitor of the present invention is useful as a therapeutic agent for osteoporosis.
  • FIG. 1 shows inhibition of VN cathepsin K activity at various pHs.
  • FIG. 2 shows inhibition of VN cathepsin K activity (pH,%) (data with a reaction time of 30 min).
  • FIG. 3 shows inhibition of VN cathepsin K activity (concentration-dependent) (data with a reaction time of 30 min).
  • FIG. 4 shows inhibition of cathepsin K activity (competitive inhibition) of pVN (data with a reaction time of 30 min).
  • FIG. 5 shows the inhibition of self-activation of hVN procathepsin K at various pHs.
  • FIG. 6 shows the effect of VN on collagen acid dissolution.
  • FIG. 1 shows inhibition of VN cathepsin K activity at various pHs.
  • FIG. 2 shows inhibition of VN cathepsin K activity (pH,%) (data with a reaction time of 30 min).
  • FIG. 3 shows inhibition of VN cathepsin K activity (concentration-dependent) (data with a
  • FIG. 7 shows the effect of pVN / hVN on collagen acid dissolution (data with a reaction time of 20 min).
  • FIG. 8 shows the effect of pVN / hVN on collagen acid dissolution (data with a reaction time of 20 min).
  • FIG. 9 shows the promotion of collagen fiber formation in VN (difference in collagen type (pig / bovine)).
  • FIG. 10 shows the promotion of collagen fiber formation (concentration dependence) of VN.
  • FIG. 11 shows a transmission electron micrograph of collagen fibers formed in the presence of VN.
  • FIG. 12 shows the effect of hVN sugar chains on cathepsin K activity.
  • FIG. 13 shows the effect of hVN sugar chains on the self-activation of procathepsin K.
  • FIG. 14 shows the degradation of VN by cathepsin K (effect of VN sugar chain).
  • FIG. 15 shows the acid dissolution promoting action of VN (effect of VN sugar chain).
  • FIG. 16 shows the promotion of collagen fiber formation in VN (effect of VN sugar chain).
  • FIG. 17 shows a diagram of disordered regions prediction that does not normally have a fixed structure with hVN.
  • FIG. 18 shows a multiple alignment of hVN and pVN.
  • the present invention relates to a cathepsin K inhibitor, a self-activation inhibitor of procaptesin K, a fibrotic collagen lysis promoter, and a collagen fibrosis promoter, which comprises a fragment thereof that binds to vitronectin or cathepsin K.
  • vitronectin has been demonstrated to have an inhibitory effect on cathepsin K, an inhibitory effect on self-activation of procapthecin K, and a lysis promoting effect on fibrotic collagen, and particularly selectively cathepsin K. Can be inhibited. Since vitronectin has these effects, the above-mentioned agent of the present invention can be used to suppress bone resorption of osteoclasts.
  • the origin of the vitronectin used in the present invention is not particularly limited, but a mammalian-derived vitronectin can be preferably used, and for example, human vitronectin or porcine vitronectin can be used.
  • Human vitronectin is composed of 478 amino acids, and is composed of 388 to 655 amino acids depending on the animal species.
  • the amino acid sequence of human vitronectin is registered in NCBI Reference Sequence: NP_000629.3
  • the amino acid sequence of porcine vitronectin is registered in NCBI Reference Sequence: NP_999269.1.
  • Natural vitronectin produced in a living body such as human is a glycoprotein in which a sugar chain (N-type sugar chain) is bound to a part of amino acids.
  • vitronectin it is preferable to use vitronectin to which an N-type sugar chain is bound. Further, it is preferable to use vitronectin to which a plurality of complex N-type sugar chains to which sialic acid is added at the end are bound.
  • Vitronectin is a protein consisting of 478 amino acid residues having adhesive activity to cells carrying the vitronectin receptor. Vitronectin may be a partial sequence deletion as long as it exhibits the effect of the present invention. Vitronectin is composed of a somatomedin B region, a connecting region, and a hemopexin region from the N-terminal, and may be a fragment consisting of any one or more of the regions or a peptide fragment as long as the effect of the present invention is exhibited (Yoneda A et). al., Biochemistry 1998, 37, 18, 6351-6360).
  • recombinant vitronectin in which the signal domain consisting of 20 amino acids on the N-terminal side is deleted recombinant vitronectin in which the C-terminal portion (the 399th amino acid to the 478th amino acid sequence portion) is deleted may be used.
  • the vitronectin may be either naturally-derived vitronectin, recombinant vitronectin produced by genetically modified technology, or chemically synthesized vitronectin.
  • vitronectin human plasma-derived (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.), synthemax (manufactured by Corning Inc.), Vitronectin (VTN-N) (manufactured by Thermo Fisher Scientific), and the like can also be used. can.
  • a fragment of vitronectin that binds to cathepsin K can also be used.
  • Fragments of vitronectin that bind to cathepsin K include, for example, in the case of human vitronectin (hVN), amino acid SEQ ID NOs: 100-130 (SEQ ID NO: 3), 292-296 (SEQ ID NO: 4), or 364 of hVN. Fragments containing at least one of 397 (SEQ ID NO: 5) can be mentioned.
  • the catepsin K inhibitor, the self-activation inhibitor of procaptesin K, the lysis promoter of fibrotic collagen, and the fibrosis promoter of collagen are, for example, locomotive syndrome (exercise). Treatment or prevention of organ syndrome), osteoporosis, osteoarthritis osteoarthritis, rheumatoid arthritis, bone Paget's disease, hypercalcemia, bone metastasis of cancer, bone pain, fibrous disease, arteriosclerosis, or cutaneous muscle inflammation Can be used for.
  • the agent of the present invention is a reagent composition or a pharmaceutical composition comprising the active ingredient vitronectin or a fragment thereof that binds to cathepsin K and one or more pharmaceutically acceptable pharmaceutical additives. It may be provided in the form.
  • the type of pharmaceutical additive used for producing the drug of the present invention is not particularly limited and can be appropriately selected by those skilled in the art.
  • Agents, tonicity agents, pH regulators, solubilizers, stabilizers and the like can be used, and the individual specific ingredients used for these purposes are well known to those skilled in the art.
  • the injectable or drip-form may be a solution in which a fragment thereof that binds to vitronectin or catepsin K is dissolved, suspended or emulsified in a solvent, or is frozen in which it is dissolved, suspended or emulsified in a solvent at the time of use.
  • the solvent which may be a solid agent such as a dry preparation, include distilled water for injection, physiological saline, vegetable oil, alcohols such as propylene glycol, polyethylene glycol, and ethanol, or a combination thereof. ..
  • the agent of the present invention can be administered in various forms, and suitable administration forms include oral administration and parenteral administration (for example, intravenous, intramuscular, subcutaneous or intradermal injection, intrarectal injection, etc.). Administration, transmucosal administration, etc.) may be used, but parenteral administration is preferable.
  • parenteral administration for example, intravenous, intramuscular, subcutaneous or intradermal injection, intrarectal injection, etc.
  • parenteral administration for example, intravenous, intramuscular, subcutaneous or intradermal injection, intrarectal injection, etc.
  • parenteral administration may be used, but parenteral administration is preferable.
  • Examples of the pharmaceutical composition suitable for oral administration include tablets, granules, capsules, powders, solutions, suspensions, syrups and the like, and examples of the pharmaceutical composition suitable for parenteral administration include tablets, granules, capsules, powders, solutions and syrups. , Injections, infusions, suppositories, transdermal absorbents and the like, but are not limited thereto.
  • the administration target of the agent of the present invention includes mammals, for example, humans and non-human animals such as monkeys, sheep, cows, horses, dogs, cats, rabbits, rats, and mice.
  • the administration target of the agent of the present invention is a human (preferably a patient).
  • the dose of the agent of the present invention should be appropriately increased or decreased according to conditions such as the age, sex, weight, symptoms, and route of administration of the patient, but generally, the amount of the active ingredient per adult day. It is in the range of about 1 ⁇ g / kg to about 1,000 mg / kg, preferably in the range of about 10 ⁇ g / kg to about 100 mg / kg.
  • the drug having the above dose may be administered once a day, or may be administered in several divided doses (for example, about 2 to 4 doses).
  • CatK Cathepsin K
  • hVN Human vitronectin (purified from plasma by heparin affinity chromatography)
  • Example 1 Assay for Cathepsin K Activity CatK activity was measured using a fluorescent substrate in a 96-well plate (Adeleke Het al., PNAS, 111 (49) 2014, 17474-79, Peter A., J. Biol Chem. 289 (31) 21562-21572). Z-Phe-Arg-AMC (Enzo Life Science) as a substrate was dissolved in DMSO at 2 mg / ml and stored at -80 ° C before use. Procathepsin K (5 ⁇ M) (Enzo Life Science) was self-activated in 100 mM acetate buffer (pH 4.0) containing 2.5 mM EDTA / DTT at 37 ° C.
  • FIG. 1 shows inhibition of VN cathepsin K activity at various pHs.
  • pVN (+) markedly inhibited cathepsin K activity at any pH.
  • (-) Indicates no pVN.
  • FIG. 2 shows inhibition of VN cathepsin K activity (pH,%) (data with a reaction time of 30 min).
  • pVN and hVN inhibited cathepsin K activity at pH 4-7.2.
  • FIG. 3 shows inhibition of VN cathepsin K activity (concentration-dependent) (data with a reaction time of 30 min). The VN concentration was measured at 0 to 2 nM (pH 5.5).
  • pVN and hVN inhibited cathepsin K activity at pH 5.5 in a concentration-dependent manner.
  • FIG. 4 shows inhibition of cathepsin K activity (competitive inhibition) of pVN (data with a reaction time of 30 min).
  • the VN concentration was measured at 15.63, 31.25, 62.5, 125, 250 nM (pH 5.5).
  • S indicates the Z-Phe-Arg-AMC concentration ( ⁇ M).
  • Inhibition of cathepsin K activity at pH 5.5 by pVN and hVN was shown to be competitive inhibition.
  • Example 2 Self-activation assay for proCatK ProCatK (3 ⁇ M) in 100 mM acetate buffer (pH 4.0-5.5) containing 2.5 mM EDTA / DTT at 37 ° C. in the presence or absence of VN. Incubated in. After incubation at 37 ° C. for 10 or 30 minutes, 2xSDS-PAGE sample buffer was immediately added and heated at 98 ° C. for 10 minutes. Protein samples were electrophoresed using a 15% Tris-glycine gel containing 2-mercaptoethanol and stained with EzStain Silver (AE-1360, ATTO). The total band intensities of both proCatK and CatK were quantified by ImageJ (NIH).
  • FIG. 5 shows the inhibition of self-activation of hVN procathepsin K at various pH.
  • cathepsin K Pro-CatK (inactive form)
  • cathepsin K Melt (active form)
  • hVN inhibited self-activation from procathepsin K to cathepsin K (+ hVN lane).
  • Example 3 Collagen Acid Solubilization Assay In an Iwaki 96-well assay plate (AGC TECHNO GLASS co., Ltd), solubilized type I collagen in the presence or absence of 0.1 mg / ml VN in 100 ⁇ l TBS. The solution (1 mg / ml) (Nippi Co., Ltd.) was treated at 37 ° C. for 2 hours to form collagen fibers. 1 M pH buffer (1 M acetate buffer (pH 4.0-6.0) or Tris-HCl buffer (pH 7.2), 10 ⁇ l) was added to the formed collagen fibers. Immediately, the turbidity of the sample in each well was measured by Cytation 3 (BioTek) at 37 ° C. every minute at 350 nm (Glycobiology, Tatara et al., 2017).
  • FIG. 6 shows the effect of VN on collagen acid dissolution. Fibrotic collagen was lysed at pH 4-4.5 (Control). hVN promoted the dissolution of fibrotic collagen at pH 4.5-5.5 (hVN).
  • FIG. 7 shows the effect of pVN / hVN on collagen acid dissolution (data with a reaction time of 20 min). Both hVN and pVN promoted the dissolution of fibrotic collagen at pH 4.5-5.5.
  • FIG. 8 shows the effect of pVN / hVN on collagen acid dissolution (data with a reaction time of 20 min). The VN concentration was measured at 0-100 ⁇ g / ml at pH 5.0. hVN and pVN promoted acid dissolution of fibrotic collagen in a concentration-dependent manner.
  • Example 4 Collagen Fibrosis Assay
  • Collagen (2 mg / ml, 50 ⁇ l) and VN (0.1 mg / ml, 50 ⁇ l) in TBS were added to the wells of the Iwaki 96-well assay plate. After stirring, the collagen solution in the presence or absence of VN was incubated at 37 ° C. for 2 hours to form collagen fibers. The turbidity of each well was measured every 5 minutes at 350 nm by Cytation3 (BioTek).
  • FIG. 9 shows the promotion of collagen fiber formation in VN (difference in collagen type (pig / bovine)).
  • hVN promoted the fibrosis of type I collagen derived from pigs and cattle
  • pVN promoted the fibrosis of type I collagen derived from pigs but suppressed the fibrosis of type I collagen derived from cattle.
  • FIG. 10 shows the promotion of collagen fiber formation (concentration dependence) of VN. The VN concentration was 0-100 ⁇ g / ml. Both hVN and pVN promoted the fibrosis of type I collagen derived from pigs in a concentration-dependent manner.
  • Example 5 Transmission electron micrograph of collagen fibers Collagen (2 mg / ml, 50 ⁇ l) in TBS and 0.1 mg / ml VN (labeled concentration, 50 ⁇ l) were added to the wells of the Iwaki 96-well assay plate. After stirring, the collagen solution in the presence or absence of VN was incubated at 37 ° C. for 2 hours to form fibril.
  • Collagen samples were fixed overnight at 4 ° C. with 2% paraformaldehyde (PFA) and 2% glutaraldehyde (GA) in 0.1 M cacodylic acid buffer (pH 7.4). Samples were fixed at 4 ° C. for an additional 2 hours with 1% tannic acid in 0.1 M cacodylic acid buffer (pH 7.4). After fixation, the sample was washed 4 times with 0.1 M cacodylic acid buffer for 30 minutes each, and post-fixed with 2% osmium tetroxide (OsO4) in 0.1 M cacodylic acid buffer at 4 ° C. for 3 hours.
  • PFA paraformaldehyde
  • GA glutaraldehyde
  • OsO4 osmium tetroxide
  • Samples were sampled once at 4 ° C for 30 minutes with 50% ethanol, once at 4 ° C for 30 minutes with 70% ethanol, once at room temperature for 30 minutes with 90% ethanol, and then 4 times at room temperature for 30 minutes with 100% ethanol. Dehydrated. After these dehydration operations, the samples were continuously dehydrated overnight at room temperature with 100% ethanol. The sample was replaced with 50% tert-butyl alcohol / ethanol for 1 hour and 100% tert-butyl alcohol at room temperature for 1 hour 3 times. After the replacement, the sample was frozen at 4 ° C. and vacuum dried.
  • Samples were coated with a thin layer of osmium (30 nm) using an osmium plasma coater (NL-OPC80A; Nippon Laser & Electricals Laboratory, Nagoya, Japan). Samples were observed at an acceleration voltage of 3.0 kV using a scanning electron microscope (SEM) (JSM-7500F; JEOL Ltd., Tokyo, Japan).
  • SEM scanning electron microscope
  • FIG. 11 shows a transmission electron microscope image of collagen fibers formed in the presence of VN. hVN promoted the formation of collagen fibers with few gaps in which the fibers were closely adjacent to each other.
  • Example 6 Effect of hVN sugar chains on cathepsin K activity VN was purified from human and porcine plasma by two-step heparin affinity chromatography before and after urea treatment (Yatohgo et al, Cell Struct Funct, 13, 281-). 92, 1998). Heparin-Sepharose 6B columns were prepared by reductive amination (Date et al., Methods Mol Biol. 1200: 53-67, 2014).
  • VN (500 ⁇ g) in 20 mM citric acid-phosphate buffer (pH 6.0) containing 1 mM CaCl2 and 0.5 mM PMSF with N-glucosidase (3.3 units) or Neuirainidase (16.7 units) at 37 ° C. Processed for 48 hours. After glycosidase treatment of the VN, the VN was dialyzed against 20 mM Tris-HCl buffered saline (TBS, pH 7.2). De-N-glycosylation or desialylation was confirmed by a decrease in VN molecular weight by SDS-PAGE. N-gly indicates hVN treated with N-glycosidase F. Neu indicates hVN treated with Neuirainidase. Controls were incubated without glycosidases at 37 ° C. for 48 hours.
  • the cathepsin K activity was assayed in the same manner as in Example 1.
  • the reaction time was 60 min, the VN concentration was 1 ⁇ M, and the pH was 5.5.
  • FIG. 12 shows the effect of hVN sugar chains on cathepsin K activity.
  • hVN also had a cathepsin K inhibitory effect by N-type sugar chain removal (N-gly) and sialic acid removal (Neu).
  • N-gly N-type sugar chain removal
  • Neu sialic acid removal
  • Example 7 Effect of hVN sugar chain on self-activation of procathepsin K
  • a self-activation assay of proCatK was performed in the same manner as in Example 2. The measurement was carried out at a reaction time of 10 min and a VN concentration of 2 ⁇ M (pH 4.0).
  • FIG. 13 shows the effect of hVN sugar chains on the self-activation of procathepsin K.
  • Pro-cathepsin K Pro-CatK (inactive form)
  • cathepsin K CatK (active form)
  • self-activation pre-reaction lane without VN 1, post-reaction lane 2 without VN.
  • Control-hVN inhibited self-activation of procathepsin K to cathepsin K (lane 3).
  • N-gly-hVN (lane 4) and Neu-hVN (lane 5) inhibited self-activation from procathepsin K to cathepsin K, but the effect was weaker than that of Control-hVN (lane 3).
  • Example 8 Degradation of VN by cathepsin K (effect of VN sugar chain) Cathepsin K was self-activated from procatehepsin K (5 ⁇ M) by incubation at 37 ° C. for 10 minutes in 100 mM acetate buffer (pH 4.0) containing 2.5 mM EDTA / DTT. Cathepsin K was diluted to 2, 20, 60, 200 nM in ice-cold 200 mM acetate buffer (pH 5.5) containing 2.5 mM EDTA / DTT and mixed with 4 ⁇ M VN in a 1: 1 ratio. The mixed solution was incubated at 37 ° C.
  • FIG. 14 shows the degradation of VN by cathepsin K (effect of VN sugar chain).
  • Example 9 Acid dissolution promoting action of VN (effect of VN sugar chain) Similar to Example 3, an acid solubilization assay for collagen was performed. The VN concentration was measured at 0.1 mg / ml.
  • FIG. 15 shows the acid dissolution promoting action of VN (effect of VN sugar chain). There was no difference between Control-hVN, N-glycy-hVN, and Neu-hVN in the acid dissolution promoting action of VN. From this, it was shown that there is no influence of the sugar chain of VN on the acid dissolution promoting action of VN.
  • Example 10 Promotion of collagen fiber formation in VN (effect of VN sugar chain) An assay for collagen fibrosis was performed as in Example 4. The VN concentration was measured at 0.1 mg / ml.
  • FIG. 16 shows the promotion of collagen fiber formation in VN (effect of VN sugar chain). There was no difference between Control-hVN, N-gly-hVN, and Neu-hVN in the collagen fiber formation promoting action of VN. From this, it was shown that there is no influence of the sugar chain of VN on the collagen fiber formation promoting action of VN.
  • Example 11 Prediction of VN cathepsin K binding site by data analysis
  • the three-dimensional structure of VN has been partially determined, and the total length has not been elucidated. This indicates that the VN has parts that do not have a fixed three-dimensional structure (disordered regions that do not usually have a fixed structure, hereinafter also referred to as disordered regions).
  • the disordered region stabilizes from a non-structured structure to an ordered and fixed structure by binding to other molecules (Yura, K. & Hayward, S. The interwinding nature of protein-protein interfaces and its implication for protein complex formation. Bioinformatics 25, 3108-3113, doi: 10.1093 / bioinformatics / btp563 (2009).).
  • the binding site of VN to cathepsin K exists in the disordered region.
  • Disordered regions were calculated by four methods: PONDR, DisEMBL, PrDOS, and FolderIndex to determine the binding site of VN to cathepsin K.
  • PrDOS Protein DisOrder prediction System http://prdos.hgc.jp/cgi-bin/top.cgi Ishida, T. & Kinoshita, K. PrDOS: prediction of disordered protein regions from amino acid sequence. Nucleic Acids Res 35, W460-464, doi: 10.1093 / nar / gkm363 (2007).
  • FoldIndex https://fold.weizmann.ac.il/ Prilusky, J. et al. FoldIndex: a simple tool to predict whether a given protein sequence is intrinsically unfolded. Bioinformatics 21, 3435-3438, doi: 10.1093 / bioinformatics / bti537 (2005).
  • NCBI protein sequence EAW510821.1 SEQ ID NO: 1
  • the disordered region of hVN was amino acid SEQ ID NOs: 100 to 130 and 292 to 296 to 364 to 397 shown by the broken line in FIG.
  • the area of the broken line is drawn based on UniProt entry P04004 (UniProt Consortium, T. UniProt: the universal protein knowledgebase. Nucleic Acids Res 46, 2699, doi: 10.1093 / nar / gky092 (2016)).
  • the black line is Protein Databank (Kinjo, A. R. et al. Protein Data Bank Japan (PDBj): updated user interfaces, resource description framework, analysis tools for large structures.
  • Nucleic Acids Res 45, D282- It is a region with a three-dimensional structure known in nar / gkw962 (2017)).
  • the N-type sugar chain binding sites located at Asn86, 169, and 242 show a schematic but most abundant N-type sugar chain structure in hVN.
  • the cathepsin K binding site of VN is the amino acid sequence preservation region of hVN and pVN.
  • HVN and pVN amino acids by ClustalW (ver. 2.1) (Larkin, M.A. et al. Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947-2948, doi: 10.1093 / bioinformatics / btm404 (2007))
  • ClustalW ver. 2.1
  • the broken line in FIG. 18 points to the same amino acid sequence as the broken line in FIG. 17, and is a calculated disordered region.
  • the amino acid sequence number of hVN shown by the broken line in FIG. 18 was also conserved in the amino acid sequence of pVN. From these results, it was shown that the disordered region corresponding to the binding site of VN to cathepsin K is amino acid SEQ ID NOs: 100 to 130 and 292 to 296 to 364 to 397 of hVN.
  • the black line in FIG. 18 points to the same amino acid sequence as the black line in FIG. 17, and is a region having a three-dimensional structure known in Protein Databank. Amino acid SEQ ID NOs: 100 to 130 and 292 to 296 to 396 to 397 of hVN are shown in SEQ ID NOs: 3 to 5, respectively.
  • the accuracy of the calculation of the disordered region is 95% or more.
  • the false positive rate of the four methods PONDR, DisEMBL, PrDOS, and FoundIndex (False positive rate. In this case, the percentage of residues that were calculated as the disturbed region but not actually the disturbed region) is as follows: It's a street. PONDR 22% DisEMBL 19% PrDOS 5% FolderIndex 10%
  • the binding site of vitronectin to cathepsin K is amino acid SEQ ID NOs: 100-130, 292-296, 364-397 of human vitronectin (hVN), which is a disordered region that does not normally have a fixed structure. It was expected to be.
  • the amino acid sequence numbers (100-130, 292-296, 364-397) of these human vitronectins (hVN) are also conserved in pig VN (pVN) and are considered to be active sites that inhibit cathepsin K. Be done.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • Rheumatology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Immunology (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

The present invention addresses the problem of providing a novel cathepsin K inhibitor. According to the present invention, provided are: a cathepsin K inhibitor including vitronectin, or a fragment thereof that binds to cathepsin K; an inhibitor of procathepsin K self-activation; an agent for accelerating fibrotic collagen dissolution; and an agent for accelerating collagen fiber formation.

Description

カテプシンK阻害剤Cathepsin K inhibitor
 本発明は、ビトロネクチン、又はカテプシンKと結合するその断片を含むカテプシンK阻害剤に関する。 The present invention relates to a cathepsin K inhibitor comprising vitronectin or a fragment thereof that binds to cathepsin K.
 高齢化に伴い骨粗鬆症の患者が増加している。骨粗鬆症は、破骨細胞による骨の分解と吸収(骨吸収)と、骨芽細胞による骨形成とのバランスが崩れ、骨吸収が過剰になり、骨がもろくなる疾患である。骨粗鬆症に対する薬物療法に際しては骨吸収阻害薬(例えば、カルシトニン製剤、エストロゲン製剤、ビタミンK製剤、ビスホスホネート製剤等)を用いるのが主流である。しかし、骨吸収阻害薬は、骨形成も阻害するという問題がある。そのため、骨形成を阻害せず骨吸収のみを阻害する薬の開発が求められている。 The number of patients with osteoporosis is increasing with the aging of the population. Bone osteoporosis is a disease in which the balance between bone decomposition and resorption (bone resorption) by osteoblasts and bone formation by osteoblasts is lost, and bone resorption becomes excessive and the bone becomes brittle. Bone resorption inhibitors (for example, calcitonin preparations, estrogen preparations, vitamin K preparations, bisphosphonate preparations, etc.) are mainly used for drug therapy for osteoporosis. However, bone resorption inhibitors also have the problem of inhibiting bone formation. Therefore, there is a need for the development of a drug that does not inhibit bone formation but inhibits only bone resorption.
  カテプシンKは、システインプロテアーゼのパパインスーパーファミリーの一部であるシステインカテプシンファミリーの酵素の1つである。カテプシンKは、破骨細胞から前駆体プロカテプシンKとして分泌され、酸性下で自己活性化し、骨の主成分であるI型コラーゲンを分解するプロテアーゼである。カテプシンK阻害剤は、骨の分解のみを阻害し、骨形成をほとんど阻害しないため、骨粗鬆症治療薬として有望である。 Cathepsin K is one of the enzymes of the cysteine cathepsin family, which is part of the papain superfamily of cysteine proteases. Cathepsin K is a protease that is secreted from osteoclasts as a precursor procatehepsin K, self-activates under acidic conditions, and decomposes type I collagen, which is the main component of bone. Cathepsin K inhibitors are promising as therapeutic agents for osteoporosis because they inhibit only bone decomposition and hardly inhibit bone formation.
 ビトロネクチン(VN)は、主に肝臓で産生され、細胞外マトリックスや血液中に存在し、複数のリガンド結合部位をもつ多機能な接着性糖タンパク質である。ヒトVNは3本の複合型N-型糖鎖をもち、哺乳類間でN-型糖鎖結合部位は高く保存されている(非特許文献1~4)。VNは、コラーゲンと強く相互作用する(非特許文献5及び6)。VNの糖鎖は細胞の接着進展に影響を与えるため、骨芽細胞や破骨細胞の接着進展に影響を与えることが考えられ(非特許文献7)、VNは骨粗鬆症において重要な役割を担うと考えられる。VNペプチドが骨形成細胞の接着・伸展を促進し、卵巣摘出の骨粗鬆症モデルラットで有効であることなどが報告されている(非特許文献8)。しかしながら、VNのカテプシンへの影響については不明である。 Vitronectin (VN) is a multifunctional adhesive glycoprotein that is mainly produced in the liver, is present in the extracellular matrix and blood, and has multiple ligand binding sites. Human VN has three complex N-type sugar chains, and the N-type sugar chain binding site is highly conserved among mammals (Non-Patent Documents 1 to 4). VN strongly interacts with collagen (Non-Patent Documents 5 and 6). Since the sugar chain of VN affects the adhesion progress of cells, it is considered that it affects the adhesion progress of osteoblasts and osteoclasts (Non-Patent Document 7), and VN plays an important role in osteoporosis. Conceivable. It has been reported that the VN peptide promotes the adhesion and extension of bone-forming cells and is effective in ovariectomized osteoporosis model rats (Non-Patent Document 8). However, the effect of VN on cathepsins is unknown.
 本発明は、新規なカテプシンK阻害剤を提供することを解決すべき課題とする。 The present invention is a problem to be solved to provide a novel cathepsin K inhibitor.
 本発明者らは、上記課題を解決するために鋭意検討した結果、ビトロネクチンが、カテプシンK活性阻害作用、プロカテプシンK自己活性化阻害作用、並びにコラーゲン酸溶解促進作用という、破骨細胞での骨吸収を抑制する3つの作用を有することを見出した。さらに本発明者らは、ビトロネクチンが、骨形成細胞において産生されるコラーゲンの線維形成を促進する作用を有することを見出した。さらに本発明者らは、ビトロネクチンのカテプシンKへの結合部位は、普段定まった構造を取らないdisordered regions(ヒトビトロネクチン(hVN)のアミノ酸配列番号100-130、292-296、364-397)であることを見出した。本発明は上記の知見に基づいて完成したものである。 As a result of diligent studies to solve the above problems, the present inventors have found that vitronectin has a cathepsin K activity inhibitory action, a cathepsin K self-activation inhibitory action, and a collagen acid lysis promoting action, which are bones in osteoclasts. It has been found to have three actions of suppressing absorption. Furthermore, the present inventors have found that vitronectin has an action of promoting the fibrosis of collagen produced in bone-forming cells. Furthermore, we present that the binding site of vitronectin to cathepsin K is disordered regions (amino acid SEQ ID NOs: 100-130, 292-296, 364-397 of human vitronectin (hVN)) that do not normally have a fixed structure. I found that. The present invention has been completed based on the above findings.
 すなわち、本発明によれば、以下の発明が提供される。
<1> ビトロネクチン、又はカテプシンKと結合するその断片を含む、カテプシンK阻害剤。
<2> ビトロネクチン、又はカテプシンKと結合するその断片を含む、プロカプテシンKの自己活性化阻害剤。
<3> ビトロネクチン、又はカテプシンKと結合するその断片を含む、線維化コラーゲンの溶解促進剤。
<4> ビトロネクチン、又はカテプシンKと結合するその断片を含む、コラーゲンの線維形成の促進剤。
<5> 破骨細胞の骨吸収を抑制するために使用する、<1>から<3>の何れか一に記載の剤。
<6> ビトロネクチンがヒトビトロネクチン又はブタビトロネクチンである、<1>から<5>の何れか一に記載の剤。
<7> ビトロネクチンが、N-型糖鎖を有している、<1>から<6>の何れか一に記載の剤。
That is, according to the present invention, the following invention is provided.
<1> A cathepsin K inhibitor comprising vitronectin or a fragment thereof that binds to cathepsin K.
<2> A self-activation inhibitor of procaptesin K, which comprises vitronectin or a fragment thereof that binds to cathepsin K.
<3> A lysis promoter for fibrotic collagen, which comprises vitronectin or a fragment thereof that binds to cathepsin K.
<4> An agent for promoting collagen fibrosis, which comprises a fragment thereof that binds to vitronectin or cathepsin K.
<5> The agent according to any one of <1> to <3>, which is used for suppressing bone resorption of osteoclasts.
<6> The agent according to any one of <1> to <5>, wherein the vitronectin is human vitronectin or porcine vitronectin.
<7> The agent according to any one of <1> to <6>, wherein the vitronectin has an N-type sugar chain.
 本発明によればさらに、
 ビトロネクチン、又はカテプシンKと結合するその断片を対象に投与することを含む、カテプシンKを阻害する方法;
 ビトロネクチン、又はカテプシンKと結合するその断片を対象に投与することを含む、プロカプテシンKの自己活性化を阻害する方法;
 ビトロネクチン、又はカテプシンKと結合するその断片を対象に投与することを含む、線維化コラーゲンの溶解を促進する方法;並びに、
 ビトロネクチン、又はカテプシンKと結合するその断片を対象に投与することを含む、コラーゲンの線維形成を促進する方法;
が提供される。
Further according to the present invention
Methods of inhibiting cathepsin K, comprising administering to the subject a fragment of vitronectin, or a fragment thereof that binds to cathepsin K;
Methods of Inhibiting Self-Activation of Procaptesin K, Containing Administration of Vitronectin, or Fragments thereof that Bind Cathepsin K, to Subjects;
Methods of promoting the lysis of fibrotic collagen, including administering to the subject a fragment of vitronectin, or a fragment thereof that binds to cathepsin K;
Methods of promoting collagen fibrosis, comprising administering to the subject a fragment of vitronectin, or a fragment thereof that binds to cathepsin K;
Is provided.
 本発明によればさらに、
 カテプシンKを阻害する処置において使用するためのビトロネクチン、又はカテプシンKと結合するその断片;
 プロカプテシンKの自己活性化を阻害する処置において使用するためのビトロネクチン、又はカテプシンKと結合するその断片;
 線維化コラーゲンの溶解を促進する処置において使用するためのビトロネクチン、又はカテプシンKと結合するその断片;並びに
 コラーゲンの線維形成を促進する処置において使用するためのビトロネクチン、又はカテプシンKと結合するその断片;
が提供される。
Further according to the present invention
Vitronectin for use in treatments that inhibit cathepsin K, or a fragment thereof that binds to cathepsin K;
Vitronectin, or a fragment thereof that binds to cathepsin K, for use in treatments that inhibit the self-activation of procaptesin K;
Vitronectin or a fragment thereof that binds to cathepsin K for use in a procedure that promotes lysis of fibrotic collagen; and a fragment thereof that binds to vitronectin or cathepsin K for use in a procedure that promotes fibrosis of collagen;
Is provided.
 本発明によればさらに、
 カテプシンK阻害剤の製造のための、ビトロネクチン、又はカテプシンKと結合するその断片の使用;
 プロカプテシンKの自己活性化阻害剤の製造のための、ビトロネクチン、又はカテプシンKと結合するその断片の使用;
 線維化コラーゲンの溶解促進剤の製造のための、ビトロネクチン、又はカテプシンKと結合するその断片の使用;並びに
 コラーゲンの線維形成の促進剤の製造のための、ビトロネクチン、又はカテプシンKと結合するその断片の使用;
が提供される。
Further according to the present invention
Use of vitronectin, or a fragment thereof that binds to cathepsin K, for the production of cathepsin K inhibitors;
Use of vitronectin, or a fragment thereof that binds to cathepsin K, for the production of self-activation inhibitors of procaptesin K;
Use of a fragment thereof that binds to vitronectin or cathepsin K for the production of a lysis promoter of fibrotic collagen; and a fragment thereof that binds to vitronectin or cathepsin K for the production of a promoter of collagen fibrosis. Use of;
Is provided.
 本発明によれば、新規なカテプシンK阻害剤が提供される。本発明のカテプシンK阻害剤は、骨粗鬆症治療薬として有用である。 According to the present invention, a novel cathepsin K inhibitor is provided. The cathepsin K inhibitor of the present invention is useful as a therapeutic agent for osteoporosis.
図1は、様々なpHにおけるVNのカテプシンK活性阻害を示す。FIG. 1 shows inhibition of VN cathepsin K activity at various pHs. 図2は、VNのカテプシンK活性阻害(pH,%)(反応時間30minのデータ)を示す。FIG. 2 shows inhibition of VN cathepsin K activity (pH,%) (data with a reaction time of 30 min). 図3は、VNのカテプシンK活性阻害(濃度依存性)(反応時間30minのデータ)を示す。FIG. 3 shows inhibition of VN cathepsin K activity (concentration-dependent) (data with a reaction time of 30 min). 図4は、pVNのカテプシンK活性阻害(拮抗阻害)(反応時間30minのデータ)を示す。FIG. 4 shows inhibition of cathepsin K activity (competitive inhibition) of pVN (data with a reaction time of 30 min). 図5は、様々なpHにおけるhVNのプロカテプシンKの自己活性化阻害を示す。FIG. 5 shows the inhibition of self-activation of hVN procathepsin K at various pHs. 図6は、コラーゲン酸溶解におけるVNの影響を示す。FIG. 6 shows the effect of VN on collagen acid dissolution. 図7は、コラーゲン酸溶解におけるpVN/hVNの影響(反応時間20minのデータ)を示す。FIG. 7 shows the effect of pVN / hVN on collagen acid dissolution (data with a reaction time of 20 min). 図8は、コラーゲン酸溶解におけるpVN/hVNの影響(反応時間20minのデータ)を示す。FIG. 8 shows the effect of pVN / hVN on collagen acid dissolution (data with a reaction time of 20 min). 図9は、VNのコラーゲン線維形成促進(コラーゲンの種類(ブタ・ウシ)の差)を示す。FIG. 9 shows the promotion of collagen fiber formation in VN (difference in collagen type (pig / bovine)). 図10は、VNのコラーゲン線維形成促進(濃度依存性)を示す。FIG. 10 shows the promotion of collagen fiber formation (concentration dependence) of VN. 図11は、VN存在下で形成されたコラーゲン線維の透過型電子顕微鏡画像を示す。FIG. 11 shows a transmission electron micrograph of collagen fibers formed in the presence of VN. 図12は、カテプシンK活性におけるhVN糖鎖の影響を示す。FIG. 12 shows the effect of hVN sugar chains on cathepsin K activity. 図13は、プロカテプシンKの自己活性化におけるhVN糖鎖の影響を示す。FIG. 13 shows the effect of hVN sugar chains on the self-activation of procathepsin K. 図14は、カテプシンKによるVNの分解(VN糖鎖の影響)を示す。FIG. 14 shows the degradation of VN by cathepsin K (effect of VN sugar chain). 図15は、VNの酸溶解促進作用(VN糖鎖の影響)を示す。FIG. 15 shows the acid dissolution promoting action of VN (effect of VN sugar chain). 図16は、VNのコラーゲン線維形成促進(VN糖鎖の影響)を示す。FIG. 16 shows the promotion of collagen fiber formation in VN (effect of VN sugar chain). 図17は、hVNと普段定まった構造を取らないdisordered regions予測の図を示す。FIG. 17 shows a diagram of disordered regions prediction that does not normally have a fixed structure with hVN. 図18は、hVNとpVNの多重整列を示す。FIG. 18 shows a multiple alignment of hVN and pVN.
 以下、本発明について更に具体的に説明する。
 本発明は、ビトロネクチン、又はカテプシンKと結合するその断片を含む、カテプシンK阻害剤、プロカプテシンKの自己活性化阻害剤、線維化コラーゲンの溶解促進剤、並びにコラーゲンの線維形成の促進剤に関する。
 本明細書の実施例に示す通り、ビトロネクチンは、カテプシンKの阻害作用、プロカプテシンKの自己活性化阻害作用、及び線維化コラーゲンの溶解促進作用を有することが実証され、特にカテプシンKを選択的に阻害することができる。ビトロネクチンは、これらの作用を有することから、本発明の上記剤は、破骨細胞の骨吸収を抑制するために使用することができる。
Hereinafter, the present invention will be described in more detail.
The present invention relates to a cathepsin K inhibitor, a self-activation inhibitor of procaptesin K, a fibrotic collagen lysis promoter, and a collagen fibrosis promoter, which comprises a fragment thereof that binds to vitronectin or cathepsin K.
As shown in the examples of the present specification, vitronectin has been demonstrated to have an inhibitory effect on cathepsin K, an inhibitory effect on self-activation of procapthecin K, and a lysis promoting effect on fibrotic collagen, and particularly selectively cathepsin K. Can be inhibited. Since vitronectin has these effects, the above-mentioned agent of the present invention can be used to suppress bone resorption of osteoclasts.
 本発明で用いるビトロネクチンの由来は特に限定されないが、好ましくは哺乳動物由来のビトロネクチンを使用することができ、例えば、ヒトビトロネクチン又はブタビトロネクチンを使用することができる。ヒトビトロネクチンは478アミノ酸から構成され、動物種の違いにより、388~655アミノ酸から構成されている。ヒトビトロネクチンのアミノ酸配列は、NCBI Reference Sequence: NP_000629.3に登録されており、ブタビトロネクチンのアミノ酸配列は、NCBI Reference Sequence: NP_999269.1に登録されている。
 ヒト等の生体内で生産される天然ビトロネクチンは、アミノ酸の一部に糖鎖(N-型糖鎖)が結合した糖タンパク質である。本発明においては、N-型糖鎖が結合しているビトロネクチンを使用することが好ましい。さらに、末端にシアル酸が付加した複合型N-型糖鎖が複数結合しているビトロネクチンを使用することが好ましい。
The origin of the vitronectin used in the present invention is not particularly limited, but a mammalian-derived vitronectin can be preferably used, and for example, human vitronectin or porcine vitronectin can be used. Human vitronectin is composed of 478 amino acids, and is composed of 388 to 655 amino acids depending on the animal species. The amino acid sequence of human vitronectin is registered in NCBI Reference Sequence: NP_000629.3, and the amino acid sequence of porcine vitronectin is registered in NCBI Reference Sequence: NP_999269.1.
Natural vitronectin produced in a living body such as human is a glycoprotein in which a sugar chain (N-type sugar chain) is bound to a part of amino acids. In the present invention, it is preferable to use vitronectin to which an N-type sugar chain is bound. Further, it is preferable to use vitronectin to which a plurality of complex N-type sugar chains to which sialic acid is added at the end are bound.
 ビトロネクチンとは、ビトロネクチンレセプターを保有する細胞に対して接着活性を持つ478アミノ酸残基からなるタンパク質である。ビトロネクチンは、本発明の効果を奏する限り、部分配列を欠失したものであってもよい。ビトロネクチンは、N末端からソマトメジンB領域、コネクティング領域、ヘモペキシン領域から成り、本発明の効果を奏する限り、そのうちの何れか1以上の領域からなる断片、又はペプチド断片であってもよい(Yoneda A et al., Biochemistry 1998, 37, 18, 6351-6360)。具体的には、N末端側にある20アミノ酸からなるシグナルドメインが欠失した組み換えビトロネクチン;C末端部分(399番目のアミノ酸~478番目のアミノ酸配列部分)が欠失した組み換えビトロネクチンなどでもよい。 Vitronectin is a protein consisting of 478 amino acid residues having adhesive activity to cells carrying the vitronectin receptor. Vitronectin may be a partial sequence deletion as long as it exhibits the effect of the present invention. Vitronectin is composed of a somatomedin B region, a connecting region, and a hemopexin region from the N-terminal, and may be a fragment consisting of any one or more of the regions or a peptide fragment as long as the effect of the present invention is exhibited (Yoneda A et). al., Biochemistry 1998, 37, 18, 6351-6360). Specifically, recombinant vitronectin in which the signal domain consisting of 20 amino acids on the N-terminal side is deleted; recombinant vitronectin in which the C-terminal portion (the 399th amino acid to the 478th amino acid sequence portion) is deleted may be used.
 ビトロネクチンは、天然由来のビトロネクチン、遺伝子組み換え技術で作製した組み換えビトロネクチン、又は化学合成したビトロネクチンの何れでもよい。市販品としては、例えば、ビトロネクチン,ヒト血漿由来(富士フイルム和光純薬工業(株)製)、synthemax(Corning  Incorporated製)、Vitronectin(VTN-N)(Thermo  Fisher  Scientific製)などを使用することもできる。 The vitronectin may be either naturally-derived vitronectin, recombinant vitronectin produced by genetically modified technology, or chemically synthesized vitronectin. As commercially available products, for example, vitronectin, human plasma-derived (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.), synthemax (manufactured by Corning Inc.), Vitronectin (VTN-N) (manufactured by Thermo Fisher Scientific), and the like can also be used. can.
 本発明においては、カテプシンKと結合する、ビトロネクチンの断片を使用することもできる。カテプシンKと結合する、ビトロネクチンの断片としては、例えば、ヒトビトロネクチン(hVN)の場合には、hVNのアミノ酸配列番号100-130(配列番号3)、292-296(配列番号4)、または364-397(配列番号5)のうちの何れか少なくとも1以上を含む断片を挙げることができる。 In the present invention, a fragment of vitronectin that binds to cathepsin K can also be used. Fragments of vitronectin that bind to cathepsin K include, for example, in the case of human vitronectin (hVN), amino acid SEQ ID NOs: 100-130 (SEQ ID NO: 3), 292-296 (SEQ ID NO: 4), or 364 of hVN. Fragments containing at least one of 397 (SEQ ID NO: 5) can be mentioned.
 本発明によるカテプシンK阻害剤、プロカプテシンKの自己活性化阻害剤、線維化コラーゲンの溶解促進剤、及びコラーゲンの線維形成の促進剤(以下、本発明の薬剤という)は、例えば、ロコモティブシンドローム(運動器症候群)、骨粗鬆症、変形性骨関節症、慢性関節リウマチ、骨パジェット病、高カルシウム血症、癌の骨転移、骨痛、線維性疾患、動脈硬化症、又は皮膚筋炎症の治療又は予防のために使用することができる。 The catepsin K inhibitor, the self-activation inhibitor of procaptesin K, the lysis promoter of fibrotic collagen, and the fibrosis promoter of collagen (hereinafter referred to as the agent of the present invention) according to the present invention are, for example, locomotive syndrome (exercise). Treatment or prevention of organ syndrome), osteoporosis, osteoarthritis osteoarthritis, rheumatoid arthritis, bone Paget's disease, hypercalcemia, bone metastasis of cancer, bone pain, fibrous disease, arteriosclerosis, or cutaneous muscle inflammation Can be used for.
 本発明の薬剤は、有効成分であるビトロネクチン、又はカテプシンKと結合するその断片と、1又は2以上の製剤学的に許容される製剤用添加物とを含む、試薬組成物又は医薬組成物の形態で提供されてもよい。 The agent of the present invention is a reagent composition or a pharmaceutical composition comprising the active ingredient vitronectin or a fragment thereof that binds to cathepsin K and one or more pharmaceutically acceptable pharmaceutical additives. It may be provided in the form.
 本発明の薬剤の製造に用いられる製剤用添加物の種類は特に限定されず、当業者が適宜選択可能である。例えば、賦形剤、崩壊剤又は崩壊補助剤、結合剤、滑沢剤、コーティング剤、基剤、溶解剤又は溶解補助剤、分散剤、懸濁剤、乳化剤、緩衝剤、抗酸化剤、防腐剤、等張化剤、pH調節剤、溶解剤、安定化剤などを用いることができ、これらの目的で使用される個々の具体的成分は当業者に周知されている。 The type of pharmaceutical additive used for producing the drug of the present invention is not particularly limited and can be appropriately selected by those skilled in the art. For example, excipients, disintegrants or disintegrant aids, binders, lubricants, coating agents, bases, solubilizers or solubilizers, dispersants, suspensions, emulsifiers, buffers, antioxidants, preservatives. Agents, tonicity agents, pH regulators, solubilizers, stabilizers and the like can be used, and the individual specific ingredients used for these purposes are well known to those skilled in the art.
  注射剤又は点滴用製剤は、ビトロネクチン、又はカテプシンKと結合するその断片が溶剤に溶解、懸濁または乳化された液剤であってもよく、あるいは使用時に溶剤に溶解、懸濁または乳化される凍結乾燥製剤などの固形剤であってもよい、溶剤としては、注射用蒸留水、生理食塩水、植物油、プロピレングリコール、ポリエチレングリコール、エタノールのようなアルコール類等、またはこれらの組み合わせなどが例示される。 The injectable or drip-form may be a solution in which a fragment thereof that binds to vitronectin or catepsin K is dissolved, suspended or emulsified in a solvent, or is frozen in which it is dissolved, suspended or emulsified in a solvent at the time of use. Examples of the solvent, which may be a solid agent such as a dry preparation, include distilled water for injection, physiological saline, vegetable oil, alcohols such as propylene glycol, polyethylene glycol, and ethanol, or a combination thereof. ..
 本発明の薬剤は、種々の形態で投与することができるが、好適な投与形態としては、経口投与でも非経口投与(例えば、静脈内、筋肉内、皮下又は皮内等への注射、直腸内投与、経粘膜投与など)でもよいが、非経口投与が好ましい。 The agent of the present invention can be administered in various forms, and suitable administration forms include oral administration and parenteral administration (for example, intravenous, intramuscular, subcutaneous or intradermal injection, intrarectal injection, etc.). Administration, transmucosal administration, etc.) may be used, but parenteral administration is preferable.
 経口投与に適する医薬組成物としては、例えば、錠剤、顆粒剤、カプセル剤、散剤、溶液剤、懸濁剤、シロップ剤などを挙げることができ、非経口投与に適する医薬組成物としては、例えば、注射剤、点滴剤、坐剤、経皮吸収剤などを挙げることができるが、これらに限定されることはない。 Examples of the pharmaceutical composition suitable for oral administration include tablets, granules, capsules, powders, solutions, suspensions, syrups and the like, and examples of the pharmaceutical composition suitable for parenteral administration include tablets, granules, capsules, powders, solutions and syrups. , Injections, infusions, suppositories, transdermal absorbents and the like, but are not limited thereto.
  本発明の薬剤の投与対象としては、哺乳動物、例えば、ヒト、およびサル、ヒツジ、ウシ、ウマ、イヌ、ネコ、ウサギ、ラット、マウス等の非ヒト動物が挙げられる。本発明の薬剤の投与対象はヒト(好ましくは患者)である。 The administration target of the agent of the present invention includes mammals, for example, humans and non-human animals such as monkeys, sheep, cows, horses, dogs, cats, rabbits, rats, and mice. The administration target of the agent of the present invention is a human (preferably a patient).
 本発明の薬剤の投与量は患者の年齢、性別、体重、症状、及び投与経路などの条件に応じて適宜増減されるべきであるが、一般的には、成人一日あたりの有効成分の量として1μg/kgから1,000mg/kg程度の範囲であり、好ましくは10μg/kgから100mg/kg程度の範囲である。上記投与量の薬剤は一日一回に投与してもよいし、数回(例えば、2~4回程度)に分けて投与してもよい。 The dose of the agent of the present invention should be appropriately increased or decreased according to conditions such as the age, sex, weight, symptoms, and route of administration of the patient, but generally, the amount of the active ingredient per adult day. It is in the range of about 1 μg / kg to about 1,000 mg / kg, preferably in the range of about 10 μg / kg to about 100 mg / kg. The drug having the above dose may be administered once a day, or may be administered in several divided doses (for example, about 2 to 4 doses).
 以下の実施例により本発明を具体的に説明するが、本発明は実施例によって限定されることはない。 The present invention will be specifically described with reference to the following examples, but the present invention is not limited to the examples.
 実施例における表記の意味を以下に示す。
CatK:カテプシンK
VN:ビトロネクチン
pVN:ブタビトロネクチン(血漿からヘパリンアフィニティークロマトグラフィーによって精製したもの)
hVN:ヒトビトロネクチン(血漿からヘパリンアフィニティークロマトグラフィーによって精製したもの)
The meanings of the notations in the examples are shown below.
CatK: Cathepsin K
VN: Vitronectin pVN: Buta Vitronectin (purified from plasma by heparin affinity chromatography)
hVN: Human vitronectin (purified from plasma by heparin affinity chromatography)
実施例1:カテプシンK活性のアッセイ
 CatK活性は、96ウエルプレート中で蛍光基質を使用して測定した(Adeleke H et al。、PNAS、111(49)2014、17474-79、Peter A.、J Biol Chem。、289(31)21562-21572)。基質としてのZ-Phe-Arg-AMC(Enzo Life Science)は2mg/mlでDMSOに溶解し、使用前は-80℃で保存した。プロカテプシンK(5μM)(Enzo Life Science)は、2.5mM EDTA/DTTを含む100mM酢酸緩衝液(pH4.0)で37℃で30分間自己活性化してカテプシンKにした後に、5mM EDTA/DTTで4nMに希釈した。反応混合物100μl(2.5mM EDTA/DTTを含む酢酸バッファー(pH4.0-6.0)またはTris-HClバッファー(pH7.2)中の2μM VN、10μM Z-Phe-Arg-AMCおよび0.5nM CatK)を96ウエルアッセイプレートに添加し、37℃で180分間インキュベートした。Cytation3(BioTek)を使用して380nmで励起し、460nmで蛍光発光測定を行った。
Example 1: Assay for Cathepsin K Activity CatK activity was measured using a fluorescent substrate in a 96-well plate (Adeleke Het al., PNAS, 111 (49) 2014, 17474-79, Peter A., J. Biol Chem. 289 (31) 21562-21572). Z-Phe-Arg-AMC (Enzo Life Science) as a substrate was dissolved in DMSO at 2 mg / ml and stored at -80 ° C before use. Procathepsin K (5 μM) (Enzo Life Science) was self-activated in 100 mM acetate buffer (pH 4.0) containing 2.5 mM EDTA / DTT at 37 ° C. for 30 minutes to cathepsin K, followed by 5 mM EDTA / DTT. Diluted to 4 nM. 2 μM VN, 10 μM Z-Phe-Arg-AMC and 0.5 nM in 100 μl of the reaction mixture (acetic acid buffer (pH 4.0-6.0) containing 2.5 mM EDTA / DTT) or Tris-HCl buffer (pH 7.2). CatK) was added to the 96-well assay plate and incubated at 37 ° C. for 180 minutes. Excitation was performed at 380 nm using Cytation3 (BioTek) and fluorescence emission measurements were performed at 460 nm.
 図1は、様々なpHにおけるVNのカテプシンK活性阻害を示す。pVN(+)はどのpHにおいてもカテプシンK活性を著しく阻害した。(-)はpVNなしを示す。
 図2は、VNのカテプシンK活性阻害(pH,%)(反応時間30minのデータ)を示す。pVN、hVNは、pH4-7.2においてカテプシンK活性を阻害した。
 図3は、VNのカテプシンK活性阻害(濃度依存性)(反応時間30minのデータ)を示す。VN濃度は0~2nM(pH5.5)で測定した。pVN、hVNは、pH5.5においてカテプシンK活性を濃度依存的に阻害した。IC50値がpVNの方が小さいことから、pVNの方がhVNよりも、カテプシンK阻害作用が少し高い結果となった。
 図4は、pVNのカテプシンK活性阻害(拮抗阻害)(反応時間30minのデータ)を示す。VN濃度は15.63、31.25、62.5、125、250nM(pH5.5)で測定した。SはZ-Phe-Arg-AMC濃度(μM)を示す。pVN、hVNによるpH5.5におけるカテプシンK活性阻害は、拮抗阻害であることが示された。
FIG. 1 shows inhibition of VN cathepsin K activity at various pHs. pVN (+) markedly inhibited cathepsin K activity at any pH. (-) Indicates no pVN.
FIG. 2 shows inhibition of VN cathepsin K activity (pH,%) (data with a reaction time of 30 min). pVN and hVN inhibited cathepsin K activity at pH 4-7.2.
FIG. 3 shows inhibition of VN cathepsin K activity (concentration-dependent) (data with a reaction time of 30 min). The VN concentration was measured at 0 to 2 nM (pH 5.5). pVN and hVN inhibited cathepsin K activity at pH 5.5 in a concentration-dependent manner. Since the IC50 value was smaller in pVN, the result was that pVN had a slightly higher cathepsin K inhibitory effect than hVN.
FIG. 4 shows inhibition of cathepsin K activity (competitive inhibition) of pVN (data with a reaction time of 30 min). The VN concentration was measured at 15.63, 31.25, 62.5, 125, 250 nM (pH 5.5). S indicates the Z-Phe-Arg-AMC concentration (μM). Inhibition of cathepsin K activity at pH 5.5 by pVN and hVN was shown to be competitive inhibition.
実施例2:proCatKの自己活性化アッセイ
 2.5mM EDTA/DTTを含む100mM酢酸緩衝液(pH4.0-5.5)中のProCatK(3μM)を、VNの存在下又は非存在下において37℃でインキュベートした。37℃で10分間または30分間のインキュベーション後、2xSDS-PAGEサンプルバッファーをすぐに添加し、98℃で10分間加熱した。タンパク質サンプルを、2-メルカプトエタノールを含む15%Tris-グリシンゲルを使用して電気泳動し、EzStain Silve(AE-1360、ATTO)で染色した。proCatKとCatKの両方の総バンド強度は、ImageJ(NIH)によって定量化した。
Example 2: Self-activation assay for proCatK ProCatK (3 μM) in 100 mM acetate buffer (pH 4.0-5.5) containing 2.5 mM EDTA / DTT at 37 ° C. in the presence or absence of VN. Incubated in. After incubation at 37 ° C. for 10 or 30 minutes, 2xSDS-PAGE sample buffer was immediately added and heated at 98 ° C. for 10 minutes. Protein samples were electrophoresed using a 15% Tris-glycine gel containing 2-mercaptoethanol and stained with EzStain Silver (AE-1360, ATTO). The total band intensities of both proCatK and CatK were quantified by ImageJ (NIH).
 図5は、様々なpHにおけるhVNのプロカテプシンKの自己活性化阻害を示す。pH4-4.5においてプロカテプシンK(Pro-CatK(不活性型))はカテプシンK(Mature(活性型))自己活性化に活性化される(-hVNのレーン)。hVNはプロカテプシンKからカテプシンKへの自己活性化を阻害した(+hVNのレーン)。 FIG. 5 shows the inhibition of self-activation of hVN procathepsin K at various pH. At pH 4-4.5, cathepsin K (Pro-CatK (inactive form)) is activated by cathepsin K (Mature (active form)) self-activation (-hVN lane). hVN inhibited self-activation from procathepsin K to cathepsin K (+ hVN lane).
実施例3:コラーゲンの酸可溶化アッセイ
 Iwaki96ウエルアッセイプレート(AGC TECHNO GLASS co.,ltd)において、100μlのTBS中に0.1mg/ml VNの存在下又は非存在下で、可溶化I型コラーゲン溶液(1mg/ml)(株式会社ニッピ)を37℃で2時間処理し、コラーゲン線維を形成させた。1MのpHバッファー(1M酢酸バッファー(pH4.0-6.0)またはTris-HClバッファー(pH7.2)、10μl)を形成させたコラーゲン線維に添加した。直ちに、各ウエルのサンプルの濁度をCytation3(BioTek)によって37℃で1分ごとに350nmで測定した(Glycobiology、Tatara et al.,2017)。
Example 3: Collagen Acid Solubilization Assay In an Iwaki 96-well assay plate (AGC TECHNO GLASS co., Ltd), solubilized type I collagen in the presence or absence of 0.1 mg / ml VN in 100 μl TBS. The solution (1 mg / ml) (Nippi Co., Ltd.) was treated at 37 ° C. for 2 hours to form collagen fibers. 1 M pH buffer (1 M acetate buffer (pH 4.0-6.0) or Tris-HCl buffer (pH 7.2), 10 μl) was added to the formed collagen fibers. Immediately, the turbidity of the sample in each well was measured by Cytation 3 (BioTek) at 37 ° C. every minute at 350 nm (Glycobiology, Tatara et al., 2017).
 図6は、コラーゲン酸溶解におけるVNの影響を示す。線維化コラーゲンはpH4-4.5で溶解した(Control)。hVNは、pH4.5-5.5での線維化コラーゲンの溶解を促進した(hVN)。
 図7は、コラーゲン酸溶解におけるpVN/hVNの影響(反応時間20minのデータ)を示す。hVN,pVNともに、pH4.5-5.5での線維化コラーゲンの溶解を促進した。
 図8は、コラーゲン酸溶解におけるpVN/hVNの影響(反応時間20minのデータ)を示す。VN濃度は0-100μg/mlでpH5.0で測定した。hVN,pVNは濃度依存的に線維化コラーゲンの酸溶解を促進した。
FIG. 6 shows the effect of VN on collagen acid dissolution. Fibrotic collagen was lysed at pH 4-4.5 (Control). hVN promoted the dissolution of fibrotic collagen at pH 4.5-5.5 (hVN).
FIG. 7 shows the effect of pVN / hVN on collagen acid dissolution (data with a reaction time of 20 min). Both hVN and pVN promoted the dissolution of fibrotic collagen at pH 4.5-5.5.
FIG. 8 shows the effect of pVN / hVN on collagen acid dissolution (data with a reaction time of 20 min). The VN concentration was measured at 0-100 μg / ml at pH 5.0. hVN and pVN promoted acid dissolution of fibrotic collagen in a concentration-dependent manner.
実施例4:コラーゲン線維形成のアッセイ
 TBS中のコラーゲン(2mg/ml、50μl)とVN(0.1mg/ml、50μl)をIwaki96ウエルアッセイプレートのウエルに添加した。攪拌後、VNの存在下又は非存在下のコラーゲン溶液を37℃で2時間インキュベートして、コラーゲン線維を形成させた。各ウエルの濁度を、Cytation3(BioTek)によって5分ごとに350nmで測定した。
Example 4: Collagen Fibrosis Assay Collagen (2 mg / ml, 50 μl) and VN (0.1 mg / ml, 50 μl) in TBS were added to the wells of the Iwaki 96-well assay plate. After stirring, the collagen solution in the presence or absence of VN was incubated at 37 ° C. for 2 hours to form collagen fibers. The turbidity of each well was measured every 5 minutes at 350 nm by Cytation3 (BioTek).
 図9は、VNのコラーゲン線維形成促進(コラーゲンの種類(ブタ・ウシ)の差)を示す。hVNはブタ、ウシ由来のI型コラーゲンの線維化を促進したが、pVNはブタ由来のI型コラーゲンの線維化を促進するが、ウシ由来のI型コラーゲンの線維化を抑制した。
 図10は、VNのコラーゲン線維形成促進(濃度依存性)を示す。VN濃度は0-100μg/mlとした。hVN、pVNはともにブタ由来のI型コラーゲンの線維化を濃度依存的に促進した。
FIG. 9 shows the promotion of collagen fiber formation in VN (difference in collagen type (pig / bovine)). hVN promoted the fibrosis of type I collagen derived from pigs and cattle, while pVN promoted the fibrosis of type I collagen derived from pigs but suppressed the fibrosis of type I collagen derived from cattle.
FIG. 10 shows the promotion of collagen fiber formation (concentration dependence) of VN. The VN concentration was 0-100 μg / ml. Both hVN and pVN promoted the fibrosis of type I collagen derived from pigs in a concentration-dependent manner.
実施例5:コラーゲン線維の透過型電子顕微鏡画像
 TBS中のコラーゲン(2mg/ml、50μl)と0.1mg/mlのVN(表示濃度、50μl)をIwaki96ウエルアッセイプレートのウエルに添加した。攪拌後、VNの存在下又は非存在下のコラーゲン溶液を37℃で2時間インキュベートして、フィブリルを形成させた。
Example 5: Transmission electron micrograph of collagen fibers Collagen (2 mg / ml, 50 μl) in TBS and 0.1 mg / ml VN (labeled concentration, 50 μl) were added to the wells of the Iwaki 96-well assay plate. After stirring, the collagen solution in the presence or absence of VN was incubated at 37 ° C. for 2 hours to form fibril.
 コラーゲンサンプルを、0.1Mカコジル酸バッファー(pH7.4)中の2%パラホルムアルデヒド(PFA)および2%グルタルアルデヒド(GA)で4℃で一晩固定した。サンプルは、0.1Mカコジル酸バッファー(pH7.4)中の1%タンニン酸で、4℃でさらに2時間固定した。固定後、サンプルを0.1Mカコジル酸緩衝液で30分間ずつ4回洗浄し、0.1Mカコジル酸緩衝液中2%四酸化オスミウム(OsO4)で4℃で3時間、後固定した。サンプルは、50%エタノールで30分間4℃で1回、70%エタノールで30分間4℃で1回、90%エタノールで30分間室温で1回、その後、100%エタノールで30分間室温で4回脱水した。これらの脱水操作後に、サンプルを100%エタノールで室温で一晩連続して脱水した。サンプルを50%tert-ブチルアルコール/エタノールに1時間置換し、100%tert-ブチルアルコールに室温で1時間、3回置換した。置換後、サンプルを4℃で凍結し、真空乾燥した。オスミウムプラズマコーター(NL-OPC80A; Nippon Laser&Electronics Laboratory、Nagoya、Japan)を使用して、サンプルをオスミウムの薄層(30nm)でコートした。サンプルを、走査型電子顕微鏡(SEM))(JSM-7500F; JEOL Ltd.、Tokyo、Japan)を用いて加速電圧3.0kVで観察した。 Collagen samples were fixed overnight at 4 ° C. with 2% paraformaldehyde (PFA) and 2% glutaraldehyde (GA) in 0.1 M cacodylic acid buffer (pH 7.4). Samples were fixed at 4 ° C. for an additional 2 hours with 1% tannic acid in 0.1 M cacodylic acid buffer (pH 7.4). After fixation, the sample was washed 4 times with 0.1 M cacodylic acid buffer for 30 minutes each, and post-fixed with 2% osmium tetroxide (OsO4) in 0.1 M cacodylic acid buffer at 4 ° C. for 3 hours. Samples were sampled once at 4 ° C for 30 minutes with 50% ethanol, once at 4 ° C for 30 minutes with 70% ethanol, once at room temperature for 30 minutes with 90% ethanol, and then 4 times at room temperature for 30 minutes with 100% ethanol. Dehydrated. After these dehydration operations, the samples were continuously dehydrated overnight at room temperature with 100% ethanol. The sample was replaced with 50% tert-butyl alcohol / ethanol for 1 hour and 100% tert-butyl alcohol at room temperature for 1 hour 3 times. After the replacement, the sample was frozen at 4 ° C. and vacuum dried. Samples were coated with a thin layer of osmium (30 nm) using an osmium plasma coater (NL-OPC80A; Nippon Laser & Electricals Laboratory, Nagoya, Japan). Samples were observed at an acceleration voltage of 3.0 kV using a scanning electron microscope (SEM) (JSM-7500F; JEOL Ltd., Tokyo, Japan).
 図11は、VN存在下で形成されたコラーゲン線維の透過型電子顕微鏡画像を示す。hVNは、線維同士が密に隣り合った隙間の少ないコラーゲン線維の形成を促した。 FIG. 11 shows a transmission electron microscope image of collagen fibers formed in the presence of VN. hVN promoted the formation of collagen fibers with few gaps in which the fibers were closely adjacent to each other.
実施例6:カテプシンK活性におけるhVN糖鎖の影響
 VNは、尿素処理の前後に2段階のヘパリンアフィニティークロマトグラフィーによってヒトとブタの血漿から精製した(Yatohgo et al、Cell Struct Funct、13、281-92、1998)。ヘパリン-セファロース6Bカラムは、還元アミノ化法によって作製した(Date et al.,Methods Mol Biol。1200:53-67、2014)。VN(500μg)を、1mM CaCl2および0.5mM PMSFを含む20mMクエン酸-リン酸バッファー(pH6.0)において、N-グルコシダーゼ(3.3ユニット)又はNeuirainidase(16.7ユニット)により37℃で48時間処理した。VNのグリコシダーゼ処理後、VNを20 mM Tris-HCl緩衝生理食塩水(TBS、pH7.2)に対して透析した。脱N-グリコシル化または脱シアリル化は、SDS-PAGEによるVNの分子量の減少により確認した。
 N-glyは、N-グリコシダーゼFで処理したhVNを示す。
 Neuは、Neuirainidaseで処理したhVNを示す。
 対照は、グリコシダーゼなしで37℃48時間インキュベートした。
Example 6: Effect of hVN sugar chains on cathepsin K activity VN was purified from human and porcine plasma by two-step heparin affinity chromatography before and after urea treatment (Yatohgo et al, Cell Struct Funct, 13, 281-). 92, 1998). Heparin-Sepharose 6B columns were prepared by reductive amination (Date et al., Methods Mol Biol. 1200: 53-67, 2014). VN (500 μg) in 20 mM citric acid-phosphate buffer (pH 6.0) containing 1 mM CaCl2 and 0.5 mM PMSF with N-glucosidase (3.3 units) or Neuirainidase (16.7 units) at 37 ° C. Processed for 48 hours. After glycosidase treatment of the VN, the VN was dialyzed against 20 mM Tris-HCl buffered saline (TBS, pH 7.2). De-N-glycosylation or desialylation was confirmed by a decrease in VN molecular weight by SDS-PAGE.
N-gly indicates hVN treated with N-glycosidase F.
Neu indicates hVN treated with Neuirainidase.
Controls were incubated without glycosidases at 37 ° C. for 48 hours.
 実施例1と同様に、カテプシンK活性のアッセイを行った。反応時間は60minであり、VN濃度は1μM、pH5.5で測定した。 The cathepsin K activity was assayed in the same manner as in Example 1. The reaction time was 60 min, the VN concentration was 1 μM, and the pH was 5.5.
 図12は、カテプシンK活性におけるhVN糖鎖の影響を示す。hVNは、N-型糖鎖除去(N-gly)やシアル酸除去(Neu)によっても、カテプシンK阻害作用を持っていた。Control-hVNに比べて、N-glyやNeu-hVNではカテプシンK阻害効果が減弱した。 FIG. 12 shows the effect of hVN sugar chains on cathepsin K activity. hVN also had a cathepsin K inhibitory effect by N-type sugar chain removal (N-gly) and sialic acid removal (Neu). Compared with Control-hVN, the cathepsin K inhibitory effect was attenuated in N-glycy and Neu-hVN.
実施例7:プロカテプシンKの自己活性化におけるhVN糖鎖の影響
 実施例2と同様にして、proCatKの自己活性化アッセイを行った。反応時間10min、VN濃度2μMで測定(pH4.0)を行った。
Example 7: Effect of hVN sugar chain on self-activation of procathepsin K A self-activation assay of proCatK was performed in the same manner as in Example 2. The measurement was carried out at a reaction time of 10 min and a VN concentration of 2 μM (pH 4.0).
 図13は、プロカテプシンKの自己活性化におけるhVN糖鎖の影響を示す。
 プロカテプシンK(Pro-CatK(不活性型))はカテプシンK(CatK(活性型))自己活性化に活性化された(VNなしでの反応前レーン1,VNなしでの反応後レーン2)。Control-hVNは、プロカテプシンKからカテプシンKへの自己活性化を阻害した(レーン3)。N-gly-hVN(レーン4)、Neu-hVN(レーン5)は、プロカテプシンKからカテプシンKへの自己活性化を阻害するが、その効果はControl-hVN(レーン3)よりも弱かった。
レーン6;Control-hVNのみ(カテプシンKなし)
レーン7;N-gly-hVNのみ(カテプシンKなし)
レーン8;Neu-hVNのみ(カテプシンKなし)
FIG. 13 shows the effect of hVN sugar chains on the self-activation of procathepsin K.
Pro-cathepsin K (Pro-CatK (inactive form)) was activated by cathepsin K (CatK (active form)) self-activation (pre-reaction lane without VN 1, post-reaction lane 2 without VN). .. Control-hVN inhibited self-activation of procathepsin K to cathepsin K (lane 3). N-gly-hVN (lane 4) and Neu-hVN (lane 5) inhibited self-activation from procathepsin K to cathepsin K, but the effect was weaker than that of Control-hVN (lane 3).
Lane 6; Control-hVN only (without cathepsin K)
Lane 7; N-gly-hVN only (without cathepsin K)
Lane 8; Neu-hVN only (without cathepsin K)
実施例8:カテプシンKによるVNの分解(VN糖鎖の影響)
 カテプシンKは、2.5mM EDTA/DTTを含む100mM酢酸緩衝液(pH4.0)中での37℃10分間のインキュベーションにより、プロカテプシンK(5μM)から自己活性化した。カテプシンKを、2.5mM EDTA/DTTを含む氷冷200mM酢酸バッファー(pH5.5)で2、20、60、200nMに希釈し、4μM VNと1:1の比率で混合した。混合溶液を37℃で0、10、30、60、120分間インキュベートして、カテプシンKによりVNを分解した。インキュベーション後、氷冷2μM E-64(カテプシンKを含むプロテイナーゼの阻害剤、最終濃度1μM)および2xSDS-PAGEサンプルバッファーを混合溶液に添加した。サンプルは直ちに98℃で10分間加熱した。サンプルを、2-メルカプトエタノールを含む7%Tris-グリシンゲルを使用して電気泳動し、SyproRuby染色により染色した。タンパク質のバンドはImageQuant LAS 4000(GE Healthcare)で検出した。ImageJ(NIH)により、インキュベーション時間0分の未分解VNバンドの分子量に対応するVNバンドの強度を定量化した。
Example 8: Degradation of VN by cathepsin K (effect of VN sugar chain)
Cathepsin K was self-activated from procatehepsin K (5 μM) by incubation at 37 ° C. for 10 minutes in 100 mM acetate buffer (pH 4.0) containing 2.5 mM EDTA / DTT. Cathepsin K was diluted to 2, 20, 60, 200 nM in ice-cold 200 mM acetate buffer (pH 5.5) containing 2.5 mM EDTA / DTT and mixed with 4 μM VN in a 1: 1 ratio. The mixed solution was incubated at 37 ° C. for 0, 10, 30, 60 and 120 minutes to degrade the VN with cathepsin K. After incubation, ice-cold 2 μM E-64 (inhibitor of proteinase containing cathepsin K, final concentration 1 μM) and 2xSDS-PAGE sample buffer were added to the mixed solution. The sample was immediately heated at 98 ° C. for 10 minutes. Samples were electrophoresed using a 7% Tris-glycine gel containing 2-mercaptoethanol and stained by SyproRuby staining. Protein bands were detected with ImageQuant LAS 4000 (GE Healthcare). ImageJ (NIH) quantified the intensity of the VN band corresponding to the molecular weight of the undegraded VN band at 0 minutes incubation time.
 図14は、カテプシンKによるVNの分解(VN糖鎖の影響)を示す。
 カテプシンK(最終濃度10nM)とhVNを120分間反応させたところ、VN分子量が低下し、カテプシンKによりVNが分解されることがわかった。Control-hVNは、N-gly-hVNやNeu-hVN に比べて、VNの全長を示すバンドが多く残っていたことから、hVNの糖鎖はカテプシンKに対する分解抵抗性を示すのに役立つことが示された。
FIG. 14 shows the degradation of VN by cathepsin K (effect of VN sugar chain).
When cathepsin K (final concentration 10 nM) was reacted with hVN for 120 minutes, it was found that the VN molecular weight decreased and cathepsin K decomposed VN. Since Control-hVN had more bands indicating the total length of VN than N-glycy-hVN and Neu-hVN, the sugar chain of hVN may be useful for showing degradation resistance to cathepsin K. Shown.
実施例9:VNの酸溶解促進作用(VN糖鎖の影響)
 実施例3と同様に、コラーゲンの酸可溶化アッセイを行った。VN濃度は0.1mg/mlで測定した。
 図15は、VNの酸溶解促進作用(VN糖鎖の影響)を示す。VNの酸溶解促進作用において、Control-hVN、N-gly-hVN、Neu-hVNは差がなかった。このことから、VNの酸溶解促進作用において、VNの糖鎖の影響はないことが示された。
Example 9: Acid dissolution promoting action of VN (effect of VN sugar chain)
Similar to Example 3, an acid solubilization assay for collagen was performed. The VN concentration was measured at 0.1 mg / ml.
FIG. 15 shows the acid dissolution promoting action of VN (effect of VN sugar chain). There was no difference between Control-hVN, N-glycy-hVN, and Neu-hVN in the acid dissolution promoting action of VN. From this, it was shown that there is no influence of the sugar chain of VN on the acid dissolution promoting action of VN.
実施例10:VNのコラーゲン線維形成促進(VN糖鎖の影響)
 実施例4と同様に、コラーゲン線維形成のアッセイを行った。VN濃度は0.1mg/mlで測定した。
 図16は、VNのコラーゲン線維形成促進(VN糖鎖の影響)を示す。VNのコラーゲン線維形成促進作用において、Control-hVN、N-gly-hVN、Neu-hVNは差がなかった。このことから、VNのコラーゲン線維形成促進作用において、VNの糖鎖の影響はないことが示された。
Example 10: Promotion of collagen fiber formation in VN (effect of VN sugar chain)
An assay for collagen fibrosis was performed as in Example 4. The VN concentration was measured at 0.1 mg / ml.
FIG. 16 shows the promotion of collagen fiber formation in VN (effect of VN sugar chain). There was no difference between Control-hVN, N-gly-hVN, and Neu-hVN in the collagen fiber formation promoting action of VN. From this, it was shown that there is no influence of the sugar chain of VN on the collagen fiber formation promoting action of VN.
実施例11:データ解析によるVNのカテプシンK結合部位の予測
 VNの三次元構造は部分的にしか決定されておらず、全長は解明されていない。これは、VNに一定の立体構造を取らない部分(普段定まった構造を取らないdisordered regions、以下disordered領域とも呼ぶ)が存在することを示している。disordered領域は、他の分子と結合することで、まった構造を取らない構造から秩序のある定まった構造に安定化する(Yura, K. & Hayward, S. The interwinding nature of protein-protein interfaces and its implication for protein complex formation. Bioinformatics 25, 3108-3113, doi:10.1093/bioinformatics/btp563 (2009).)。つまり、VNのカテプシンKへの結合部位は、disordered領域に存在する。VNのカテプシンKへの結合部位を決定するために、PONDR、DisEMBL、PrDOS、およびFoldIndexの4つの方法によりdisordered領域を算出した。
Example 11: Prediction of VN cathepsin K binding site by data analysis The three-dimensional structure of VN has been partially determined, and the total length has not been elucidated. This indicates that the VN has parts that do not have a fixed three-dimensional structure (disordered regions that do not usually have a fixed structure, hereinafter also referred to as disordered regions). The disordered region stabilizes from a non-structured structure to an ordered and fixed structure by binding to other molecules (Yura, K. & Hayward, S. The interwinding nature of protein-protein interfaces and its implication for protein complex formation. Bioinformatics 25, 3108-3113, doi: 10.1093 / bioinformatics / btp563 (2009).). That is, the binding site of VN to cathepsin K exists in the disordered region. Disordered regions were calculated by four methods: PONDR, DisEMBL, PrDOS, and FolderIndex to determine the binding site of VN to cathepsin K.
PONDR:
Predictors of Natural Disordered Regions http://www.pondr.com/pondr-tut.html
Romero, P. et al. Sequence complexity of disordered protein. Proteins 42, 38-48, doi:10.1002/1097-0134(20010101)42:1<38::aid-prot50>3.0.co;2-3 (2001)、
PONDR:
Predictors of Natural Disordered Regions http://www.pondr.com/pondr-tut.html
Romero, P. et al. Sequence complexity of disordered protein. Proteins 42, 38-48, doi: 10.1002 / 1097-0134 (20010101) 42: 1 <38 :: aid-prot50>3.0.co; 2-3 (2001) ),
DisEMBL:
Intrinsic Protein Disorder Prediction 1.5 http://dis.embl.de/
Linding, R. et al. Protein disorder prediction: implications for structural proteomics. Structure 11, 1453-1459, doi:10.1016/j.str.2003.10.002 (2003).
DisEMBL:
Intrinsic Protein Disorder Prediction 1.5 http://dis.embl.de/
Linding, R. et al. Protein disorder prediction: implications for structural proteomics. Structure 11, 1453-1459, doi: 10.1016 / j.str. 2003.10.002 (2003).
PrDOS:
Protein DisOrder prediction System http://prdos.hgc.jp/cgi-bin/top.cgi
Ishida, T. & Kinoshita, K. PrDOS: prediction of disordered protein regions from amino acid sequence. Nucleic Acids Res 35, W460-464, doi:10.1093/nar/gkm363 (2007).
PrDOS:
Protein DisOrder prediction System http://prdos.hgc.jp/cgi-bin/top.cgi
Ishida, T. & Kinoshita, K. PrDOS: prediction of disordered protein regions from amino acid sequence. Nucleic Acids Res 35, W460-464, doi: 10.1093 / nar / gkm363 (2007).
FoldIndex:
https://fold.weizmann.ac.il/
Prilusky, J. et al. FoldIndex: a simple tool to predict whether a given protein sequence is intrinsically unfolded. Bioinformatics 21, 3435-3438, doi:10.1093/bioinformatics/bti537 (2005).
FoldIndex:
https://fold.weizmann.ac.il/
Prilusky, J. et al. FoldIndex: a simple tool to predict whether a given protein sequence is intrinsically unfolded. Bioinformatics 21, 3435-3438, doi: 10.1093 / bioinformatics / bti537 (2005).
 hVNのアミノ酸配列は、NCBI protein sequence EAW510821.1(配列番号1)を使用した。結果を図17に示す。 As the amino acid sequence of hVN, NCBI protein sequence EAW510821.1 (SEQ ID NO: 1) was used. The results are shown in FIG.
 hVNのdisordered領域は、図17の破線で示したアミノ酸配列番号100から130、292から296、364から397であった。破線の領域はUniprotエントリP04004(UniProt Consortium, T. UniProt: the universal protein knowledgebase. Nucleic Acids Res 46, 2699, doi:10.1093/nar/gky092 (2018))に基づいて描いた。黒線はProtein Databank(Kinjo, A. R. et al. Protein Data Bank Japan (PDBj): updated user interfaces, resource description framework, analysis tools for large structures. Nucleic Acids Res 45, D282-D288, doi:10.1093/nar/gkw962 (2017))で既知の3次元構造を持つ領域である。Asn86、169、および242に位置するN-型糖鎖結合部位は、概略的であるがhVNに最も多く存在するN-型糖鎖構造が示されている。 The disordered region of hVN was amino acid SEQ ID NOs: 100 to 130 and 292 to 296 to 364 to 397 shown by the broken line in FIG. The area of the broken line is drawn based on UniProt entry P04004 (UniProt Consortium, T. UniProt: the universal protein knowledgebase. Nucleic Acids Res 46, 2699, doi: 10.1093 / nar / gky092 (2018)). The black line is Protein Databank (Kinjo, A. R. et al. Protein Data Bank Japan (PDBj): updated user interfaces, resource description framework, analysis tools for large structures. Nucleic Acids Res 45, D282- It is a region with a three-dimensional structure known in nar / gkw962 (2017)). The N-type sugar chain binding sites located at Asn86, 169, and 242 show a schematic but most abundant N-type sugar chain structure in hVN.
 hVNとpVNはカテプシンK活性を阻害することから、VNのカテプシンK結合部位は、hVNとpVNとのアミノ酸配列保存領域である。ClustalW(ver.2.1)(Larkin, M. A. et al. Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947-2948, doi:10.1093/bioinformatics/btm404 (2007))によってhVNとpVNのアミノ酸配列の多重整列を行った。hVNとpVNのアミノ酸配列は、それぞれNCBI protein sequence EAW510821.1(配列番号1)とBAA09616.1(配列番号2)を使用した。結果を図18に示す。 Since hVN and pVN inhibit cathepsin K activity, the cathepsin K binding site of VN is the amino acid sequence preservation region of hVN and pVN. HVN and pVN amino acids by ClustalW (ver. 2.1) (Larkin, M.A. et al. Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947-2948, doi: 10.1093 / bioinformatics / btm404 (2007)) Multiple alignment of the sequence was performed. For the amino acid sequences of hVN and pVN, NCBI protein sequence EAW510821.1 (SEQ ID NO: 1) and BAA09616.1 (SEQ ID NO: 2) were used, respectively. The results are shown in FIG.
<配列番号1>

EAW51082.1 vitronectin [Homo sapiens]
MAPLRPLLILALLAWVALADQESCKGRCTEGFNVDKKCQCDELCSYYQSCCTDYTAECKPQVTRGDVFTMPEDEYTVYDDGEEKNNATVHEQVGGPSLTSDLQAQSKGNPEQTPVLKPEEEAPAPEVGASKPEGIDSRPETLHPGRPQPPAEEELCSGKPFDAFTDLKNGSLFAFRGQYCYELDEKAVRPGYPKLIRDVWGIEGPIDAAFTRINCQGKTYLFKGSQYWRFEDGVLDPDYPRNISDGFDGIPDNVDAALALPAHSYSGRERVYFFKGKQYWEYQFQHQPSQEECEGSSLSAVFEHFAMMQRDSWEDIFELLFWGRTSAGTRQPQFISRDWHGVPGQVDAAMAGRIYISGMAPRPSLAKKQRFRHRNRKGYRSQRGHSRGRNQNSRRPSRAMWLSLFSSEESNLGANNYDDYRMDWLVPATCEPIQSVFFFSGDKYYRVNLRTRRVDTVDPPYPRSIAQYWLGCPAPGHL
<SEQ ID NO: 1>

EAW51082.1 vitronectin [Homo sapiens]
MAPLRPLLILALLAWVALADQESCKGRCTEGFNVDKKCQCDELCSYYQSCCTDYTAECKPQVTRGDVFTMPEDEYTVYDDGEEKNNATVHEQVGGPSLTSDLQAQSKGNPEQTPVLKPEEEAPAPEVGASKPEGIDSRPETLHPGRPQPPAEEELCSGKPFDAFTDLKNGSLFAFRGQYCYELDEKAVRPGYPKLIRDVWGIEGPIDAAFTRINCQGKTYLFKGSQYWRFEDGVLDPDYPRNISDGFDGIPDNVDAALALPAHSYSGRERVYFFKGKQYWEYQFQHQPSQEECEGSSLSAVFEHFAMMQRDSWEDIFELLFWGRTSAGTRQPQFISRDWHGVPGQVDAAMAGRIYISGMAPRPSLAKKQRFRHRNRKGYRSQRGHSRGRNQNSRRPSRAMWLSLFSSEESNLGANNYDDYRMDWLVPATCEPIQSVFFFSGDKYYRVNLRTRRVDTVDPPYPRSIAQYWLGCPAPGHL
<配列番号2>

BAA09616.1 vitronectin [Sus scrofa]
MAPLRPLLMLALLAWVALADQESCKGRCTDGFIAERKCQCDELCSYYQSCCTDYVAECKPQVTRGDVFLQPDDEYRAYDYHEETRHNTSVQEEQRIPVLLAKTEETPVLKPEEEAPPPGPQTDDLGVPEEELCSGKPFDAFTNLKNGSVFAFRGLYCYELDEKAVRPGYPKLIQDVWGIKGPIDAAFTRINCQGKTYLFKGSQYWRFDDGVLDPNYPREISEGFKGIPDDVDAALALPAHSYSGRERVYFFKGKQYWEYVFQQQPSREECEGSSPSDVFAHFALMQRDSWEDIFRLLFWSHSFGGAIEPRVISQDWLGLPEQVDAAMAGQIYISGSALKPSQPKMTKSARRSGKRYRSRRGRGRGRGHKPQPEVPPAVSFNLAALVLQ
<SEQ ID NO: 2>

BAA09616.1 vitronectin [Sus scrofa]
MAPLRPLLMLALLAWVALADQESCKGRCTDGFIAERKCQCDELCSYYQSCCTDYVAECKPQVTRGDVFLQPDDEYRAYDYHEETRHNTSVQEEQRIPVLLAKTEETPVLKPEEEAPPPGPQTDDLGVPEEELCSGKPFDAFTNLKNGSVFAFRGLYCYELDEKAVRPGYPKLIQDVWGIKGPIDAAFTRINCQGKTYLFKGSQYWRFDDGVLDPNYPREISEGFKGIPDDVDAALALPAHSYSGRERVYFFKGKQYWEYVFQQQPSREECEGSSPSDVFAHFALMQRDSWEDIFRLLFWSHSFGGAIEPRVISQDWLGLPEQVDAAMAGQIYISGSALKPSQPKMTKSARRSGKRYRSRRGRGRGRGHKPQPEVPPAVSFNLAALVLQ
 図18の破線は、図17の破線と同じアミノ酸配列を指しており、算出されたdisordered領域である。図18の破線で示したhVNのアミノ酸配列番号はpVNのアミノ酸配列でも保存されていた。これらの結果から、VNのカテプシンKへの結合部位に相当するdisordered領域は、hVNのアミノ酸配列番号100から130、292から296、364から397であることが示された。なお、図18の黒線は、図17の黒線と同じアミノ酸配列を指しており、Protein Databankで既知の3次元構造を持つ領域である。hVNのアミノ酸配列番号100から130、292から296、364から397をそれぞれ配列番号3から5に示す。 The broken line in FIG. 18 points to the same amino acid sequence as the broken line in FIG. 17, and is a calculated disordered region. The amino acid sequence number of hVN shown by the broken line in FIG. 18 was also conserved in the amino acid sequence of pVN. From these results, it was shown that the disordered region corresponding to the binding site of VN to cathepsin K is amino acid SEQ ID NOs: 100 to 130 and 292 to 296 to 364 to 397 of hVN. The black line in FIG. 18 points to the same amino acid sequence as the black line in FIG. 17, and is a region having a three-dimensional structure known in Protein Databank. Amino acid SEQ ID NOs: 100 to 130 and 292 to 296 to 396 to 397 of hVN are shown in SEQ ID NOs: 3 to 5, respectively.
<配列番号3>
SDLQAQSKGNPEQTPVLKPEEEAPAPEVGAS
<配列番号4>
ECEGS
<配列番号5>
SLAKKQRFRHRNRKGYRSQRGHSRGRNQNSRRPS
<SEQ ID NO: 3>
SDLQAQSKGNPEQTPVLKPEEEAPAPEVGAS
<SEQ ID NO: 4>
ECEGS
<SEQ ID NO: 5>
SLAKKQRFRHRNRKGYRSQRGHSRGRNQNSRRPS
 前記disordered領域の算出の精度は、95%以上である。PONDR、DisEMBL、PrDOS、およびFoldIndexの4つの方法の偽正算出率(False positive rate。この場合、disordered領域と算出したが、実際にはdisordered領域ではない残基の割合。)は、一般に次の通りである。
PONDR 22%
DisEMBL 19%
PrDOS 5%
FoldIndex 10%
The accuracy of the calculation of the disordered region is 95% or more. The false positive rate of the four methods PONDR, DisEMBL, PrDOS, and FoundIndex (False positive rate. In this case, the percentage of residues that were calculated as the disturbed region but not actually the disturbed region) is as follows: It's a street.
PONDR 22%
DisEMBL 19%
PrDOS 5%
FolderIndex 10%
 今回の算出はこれらのコンセンサスに基づくため、一番精度が高い予測に寄ることになる。よって偽正算出率は5%となり、算出の精度は95%になる。または、すべての方法で間違って算出する確率は0.02%(0.22×0.19×0.05×0.10=0.0002)であり、完全コンセンサス予測で間違える可能性は0.02%である。したがって、本法においては極めて高確率でdisordered領域の算出ができている。 Since this calculation is based on these consensus, it depends on the most accurate prediction. Therefore, the false correct calculation rate is 5%, and the accuracy of the calculation is 95%. Alternatively, the probability of incorrect calculation by all methods is 0.02% (0.22 x 0.19 x 0.05 x 0.10 = 0.0002), and the possibility of making a mistake in the complete consensus prediction is 0. It is 02%. Therefore, in this method, the disordered region can be calculated with an extremely high probability.
 上記の通り、ビトロネクチンのカテプシンKへの結合部位は、普段定まった構造を取らないdisordered領域(disordered regions)であるヒトビトロネクチン(hVN)のアミノ酸配列番号100-130、292-296、364-397であると予想された。また、これらのヒトビトロネクチン(hVN)のアミノ酸配列番号(100-130、292-296、364-397)は、ブタVN(pVN)でも保存されており、カテプシンKを阻害する活性部位であると考えられる。 As described above, the binding site of vitronectin to cathepsin K is amino acid SEQ ID NOs: 100-130, 292-296, 364-397 of human vitronectin (hVN), which is a disordered region that does not normally have a fixed structure. It was expected to be. In addition, the amino acid sequence numbers (100-130, 292-296, 364-397) of these human vitronectins (hVN) are also conserved in pig VN (pVN) and are considered to be active sites that inhibit cathepsin K. Be done.

Claims (7)

  1. ビトロネクチン、又はカテプシンKと結合するその断片を含む、カテプシンK阻害剤。 A cathepsin K inhibitor comprising vitronectin, or a fragment thereof that binds to cathepsin K.
  2. ビトロネクチン、又はカテプシンKと結合するその断片を含む、プロカプテシンKの自己活性化阻害剤。 A self-activation inhibitor of procaptesin K, comprising a fragment thereof that binds to vitronectin, or cathepsin K.
  3. ビトロネクチン、又はカテプシンKと結合するその断片を含む、線維化コラーゲンの溶解促進剤。 A lysis promoter for fibrotic collagen, comprising a fragment thereof that binds to vitronectin, or cathepsin K.
  4. ビトロネクチン、又はカテプシンKと結合するその断片を含む、コラーゲンの線維形成の促進剤。 A promoter of collagen fibrosis, comprising a fragment thereof that binds to vitronectin, or cathepsin K.
  5. 破骨細胞の骨吸収を抑制するために使用する、請求項1から3の何れか一項に記載の剤。 The agent according to any one of claims 1 to 3, which is used for suppressing bone resorption of osteoclasts.
  6. ビトロネクチンがヒトビトロネクチン又はブタビトロネクチンである、請求項1から5の何れか一項に記載の剤。 The agent according to any one of claims 1 to 5, wherein the vitronectin is human vitronectin or porcine vitronectin.
  7. ビトロネクチンが、N-型糖鎖を有している、請求項1から6の何れか一項に記載の剤。 The agent according to any one of claims 1 to 6, wherein the vitronectin has an N-type sugar chain.
PCT/JP2021/019927 2020-06-19 2021-05-26 Cathepsin k inhibitor WO2021256200A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022532440A JPWO2021256200A1 (en) 2020-06-19 2021-05-26

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020106224 2020-06-19
JP2020-106224 2020-06-19

Publications (1)

Publication Number Publication Date
WO2021256200A1 true WO2021256200A1 (en) 2021-12-23

Family

ID=79267892

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/019927 WO2021256200A1 (en) 2020-06-19 2021-05-26 Cathepsin k inhibitor

Country Status (2)

Country Link
JP (1) JPWO2021256200A1 (en)
WO (1) WO2021256200A1 (en)

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
DATE, KIMIE ET AL.: "Discovery of cathepsin K inhibitory activity by glycoprotein vitronectin and role of glycosylation of VN", ABSTRACTS OF THE 39TH ANNUAL MEETING OF THE JAPANESE SOCIETY OF CARBOHYDRATE RESEARCH, 21 November 2020 (2020-11-21), pages 182 *
KIMIE, SAKAGAMI: "Inhibitory effect of extracellular matrix glycoprotein vitronectin on collagen degradation", THE 93RD ANNUAL MEETING OF THE JAPANESE BIOCHEMICAL SOCIETY (WEB, SUMMARIES, September 2020 (2020-09-01) *
MIN, S. K. ET AL.: "A vitronectin-derived peptide reverses ovariectomy-induced bone loss via regulation of osteoblast and osteoclast differentiation", CELL DEATH AND DIFFERENTIATION, vol. 25, 2018, pages 268 - 281, XP055895654 *
NOVINEC, M. ET AL.: "Cathepsin K exists in two functionally distinct conformations at neutral pH.", FEBS JOURNAL, vol. 276, 2009, pages 379 - 380 *
UEMURA, T. ET AL.: "mRNA expression of MT1-MMP, MMP-9, cathepsin K, and TRAP in highly enriched osteoclasts cultured on several matrix proteins and ivory surfaces", BIOSCIENCE, BIOTECHNOLOGY, AND BIOCHEMISTRY, vol. 64, no. 8, 2000, pages 1771 - 1773, XP055895660 *

Also Published As

Publication number Publication date
JPWO2021256200A1 (en) 2021-12-23

Similar Documents

Publication Publication Date Title
JP7497381B2 (en) FGF21 mutants
Schaefer et al. Small proteoglycans in human diabetic nephropathy: discrepancy between glomerular expression and protein accumulation of decorin, biglycan, lumican, and fibromodulin
JP5743898B2 (en) Neuregulin peptide and use thereof
Plöger et al. Brachydactyly type A2 associated with a defect in proGDF5 processing
WO2006097682A1 (en) Mechano growth factor peptides and their use
JP2023088982A (en) Collagen-binding agent compositions and methods of using the same
EP2941270B1 (en) Methods for treating inflammation
WO2021256200A1 (en) Cathepsin k inhibitor
Ambort et al. Specific processing of tenascin-C by the metalloprotease meprinβ neutralizes its inhibition of cell spreading
KR20080021588A (en) Mechano growth factor peptides and their use
US20180221462A1 (en) Use of elafin for disorders associated with elastase independent increase in troponin
US10398752B2 (en) Dermatopontin as a therapeutic for metabolic disorders
US20230272045A1 (en) Il-1 receptor antagonist (il-1 ra) fusion proteins binding to the extracellular matrix
CA2368937A1 (en) Prevention of brain damage in stroke
US11541101B1 (en) LEMD3 antagonizes TGF-beta-driven Smad2/3 transcription in a stiffness-dependent fashion in both the nucleus and cytosol
CN111701021B (en) Application of NIPA2 as drug target in preparation of drug for treating type 2 diabetes osteoporosis
WO2021052277A1 (en) Recombinant human neuregulin derivatives and use thereof
KR20240138585A (en) Composition for improving, preventing or treating inflammatory bowel disease comprising NAMPT-derived peptide as an active ingredient
Hang et al. HSPB7 Protected the Osteogenic Differentiation of Mesenchymal Stem Cells From TNF-α Through Chaperone-mediated Autophagy/beta-catenin Pathway
KR20230068866A (en) Peptide for treating sepsis derived from rv3364c protein of mycobacterium tuberculosis
Hang et al. HSPB7 Protects Bone Formation from TNF-α via Chaperone Mediated Autophagy Through PI3K/AKT/GSK3β/Β-Catenin Pathway
Plöger et al. HMG Advance Access published January 18, 2008
JPWO2005065704A1 (en) Preventive and therapeutic agents for bone diseases

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21826639

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022532440

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21826639

Country of ref document: EP

Kind code of ref document: A1