[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2021255856A1 - Box column - Google Patents

Box column Download PDF

Info

Publication number
WO2021255856A1
WO2021255856A1 PCT/JP2020/023750 JP2020023750W WO2021255856A1 WO 2021255856 A1 WO2021255856 A1 WO 2021255856A1 JP 2020023750 W JP2020023750 W JP 2020023750W WO 2021255856 A1 WO2021255856 A1 WO 2021255856A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
content
steel plate
steel
box
Prior art date
Application number
PCT/JP2020/023750
Other languages
French (fr)
Japanese (ja)
Inventor
竜一 本間
智樹 浦川
駿 田中
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to JP2022531168A priority Critical patent/JP7372577B2/en
Priority to PCT/JP2020/023750 priority patent/WO2021255856A1/en
Publication of WO2021255856A1 publication Critical patent/WO2021255856A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K25/00Slag welding, i.e. using a heated layer or mass of powder, slag, or the like in contact with the material to be joined
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/30Columns; Pillars; Struts
    • E04C3/32Columns; Pillars; Struts of metal

Definitions

  • the present invention relates to a box pillar (BOX pillar).
  • a four-sided box pillar is a pillar trunk made by welding (square welding) four thick steel plates so that the cross section is square or rectangular.
  • a reinforcing member diaphragm
  • it is a pillar member manufactured by attaching another thick steel plate in a rectangular shape of bamboo.
  • Non-Patent Document 1 and Non-Patent Document 2 show the HAZ toughness of an electroslag welded portion in a 780 MPa class thick steel sheet with a tensile strength.
  • Charpy when the melt line (Fusion Line, FL), FL to 1 mm (HAZ1), FL to 3 mm (HAZ3), and FL to 5 mm (HAZ5) are notch positions.
  • the average value of absorbed energy is 40 J or less.
  • the average value of Charpy absorption energy when FL is set to the notch position is 50 J or less.
  • Patent Documents 1 to 3 suppress the grain growth of austenite (heated ⁇ ) heated by welding heat input by the pinning effect of fine particles containing Mg.
  • austenite heated by welding heat input by the pinning effect of fine particles containing Mg.
  • the countermeasures against other factors of the decrease in toughness are not sufficient.
  • Patent Document 4 discloses a high-strength thick steel plate with a low yield ratio and excellent toughness in the heat-affected zone of large heat input, and in a welded joint having a plate thickness of 65 mm manufactured by electroslag welding (welding heat input amount ⁇ 400 kJ / cm). It is disclosed that the charpy absorption energy of the bond portion at 0 ° C. is 70 J. Patent Document 4 discloses that MA can be reduced by optimizing the amounts of Si, Mn, and P. However, measures are insufficient to suppress the formation of MA that remarkably embrittles the large heat-affected zone, and it has not been shown that sufficient toughness of the large heat-affected zone HAZ can be obtained with a plate thickness of more than 65 mm.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a box column formed by using a high-strength thick steel plate and having excellent toughness of a large heat-affected zone HAZ. do.
  • the weld heat-affected zone (HAZ) formed by the large heat input welding may be referred to as a large heat input welding HAZ or a large heat input HAZ.
  • the main causes of deterioration of the high heat-affected zone HAZ toughness of high-strength thick steel plates are (1) the embrittled phase (Martensite-Austenite constitut) due to the increase in the content of alloying elements. It was found that MA) was formed and (2) HAZ crystal grains were coarsened. Therefore, the present inventors have increased the strength of the steel plate (base material) and ensured the toughness of the large heat-affected zone HAZ from the viewpoint of suppressing the formation of MA that significantly embrittles the large heat-affected zone of the high-strength steel plate. We conducted a study to achieve both.
  • the formation of MA was caused by the microsegregation part formed by locally thickening alloying elements such as Mn and Ni contained in the steel sheet. Specifically, it was found that when the microsegregated zone is heated and cooled by the influence of welding heat, a part of the metal structure becomes MA due to the phase transformation and causes a decrease in toughness. As a result of further studies by the present inventors, it is caused by microsegregation that the Mn / Ni, which is the ratio of the Mn content to the Ni content, is controlled to 0.80 or less in the steel component (chemical composition). It was found that it is effective in suppressing the production of MA.
  • Ti, Mg, and B are utilized to control the carbon equivalent CEWES to suppress the coarsening of the old ⁇ and the coarsening of the crystal grains of HAZ.
  • the present invention was made in view of the above findings.
  • the gist of the present invention is as follows.
  • a diaphragm made of a second steel plate is fixed to the inside of a box-shaped cross-section pillar made of a skin plate made of a first steel plate via a welded portion.
  • the first steel plate which is a box pillar, has a chemical composition of C: 0.03% or more, 0.18% or less, Mn: 0.3% or more, less than 1.4%, Ni in mass%.
  • the carbon equivalent CEWES calculated by the following equation (1) is 0.430% or more and 0.900% or less
  • the tensile strength of the first steel plate is 780 MPa or more and 930 MPa or less
  • the yield is 630 MPa or more and 750 MPa or less
  • the yield ratio is 85% or less
  • the plate thickness of the first steel plate is 40 mm or more and 120 mm or less
  • the welded portion is an electroslag welded portion.
  • the average of the charpy absorption energy at 0 ° C. is 27 J or more.
  • CEWES C + Mn / 6 + Si / 24 + Ni / 40 + Cr / 5 + Mo / 4 + V / 14 ...
  • C, Mn, Si, Ni, Cr, Mo, and V in the formula (1) are the content [mass%] of each element, and 0 is substituted for the term of the element not contained.
  • the average crystal grain size measured by EBSD in the microstructure of the welded portion of the first steel plate is 250 ⁇ m or less, and the area ratio of MA is It may be 3.0% or less.
  • the box pillar according to the above [1] or [2] may have an average Charpy absorption energy of 70 J or more.
  • the box pillar according to the present embodiment is a box in which a diaphragm made of a second steel plate is fixed via a welded portion inside a box-shaped cross-section pillar (pillar trunk) made of a skin plate made of a first steel plate. It is a pillar.
  • the first steel sheet has a predetermined chemical composition, a predetermined plate thickness, and a predetermined mechanical property.
  • the welded portion is a portion that has been once melted and solidified by welding (welded metal portion) and a portion that has not been melted by welding but whose structure has changed due to the heat of welding (heat).
  • the base metal portion refers to a portion (a portion excluding the welded portion) that is not affected by the heat of welding (the structure has not changed from that before welding).
  • C 0.03% or more and 0.18% or less C is an element that enhances the hardenability of steel and contributes to high strength. In order to obtain this effect, the C content is 0.03% or more. On the other hand, from the viewpoint of preventing excessive formation of cementite and ensuring toughness, the C content is set to 0.18% or less. The C content is preferably 0.17% or less, more preferably 0.16% or less.
  • Mn 0.3% or more and less than 1.4%
  • Mn is an element that enhances the hardenability of steel and contributes to high strength. In order to obtain this effect, the Mn content is set to 0.3% or more. On the other hand, if the Mn content is excessively increased, the MA of the large heat-affected zone HAZ increases, and the toughness is significantly deteriorated. Therefore, the Mn content is set to less than 1.4%.
  • the Mn content is preferably 1.3% or less, more preferably 1.2% or less, still more preferably 1.1% or less.
  • Ni 1.0% or more, 7.0% or less
  • Ni is an element that enhances the hardenability of steel and contributes to high strength, and at the same time, it is also an element that enhances the toughness of high heat input HAZ. From the viewpoint of ensuring strength and toughness, the Ni content is 1.0% or more. The Ni content is preferably 1.2% or more, more preferably 1.4% or more, still more preferably 1.5% or more. On the other hand, Ni is an expensive element, and the Ni content is 7.0% or less from the viewpoint of suppressing an increase in manufacturing cost.
  • Mn / Ni 0.80 or less, which is the ratio of the contents of Mn and Ni. Both Mn and Ni are elements that contribute to increasing the strength of steel. Easy to accelerate production. Therefore, the Mn content is preferably smaller than the Ni content. From the viewpoint of ensuring toughness while increasing the strength of the large heat-affected zone HAZ, it is the ratio obtained by dividing the Mn content in the steel by the Ni content in the first steel plate provided in the box column according to the present embodiment. Mn / Ni is 0.80 or less. Mn / Ni is preferably 0.70 or less, more preferably 0.60 or less. The lower limit of Mn / Ni may be the ratio obtained by dividing the lower limit of the Mn content by the upper limit of the Ni content, that is, it may be 0.17 or more. Mn / Ni may be 0.20 or more.
  • Al 0.005% or more and 0.20% or less
  • Al is important as a deoxidizing element. Further, when adding B, Al is contained in order to suppress the precipitation of BN and secure a solid solution B effective for hardenability of steel by forming AlN and fixing N. It is an important element. In order to exert this effect, the Al content is 0.005% or more in this embodiment. It is preferably 0.01% or more. On the other hand, when the Al content becomes excessive, a coarse aluminum oxide that becomes a fracture starting point and lowers toughness is produced. From the viewpoint of suppressing the formation of such a coarse aluminum oxide, the Al content is 0.20% or less. The Al content is preferably 0.18% or less, more preferably 0.16% or less, still more preferably 0.15% or less.
  • Si 0.30% or less Si may be contained in steel for deoxidation and ensuring strength, but it is also an element that promotes the formation of MA.
  • the Si content is set to 0.30% or less.
  • the Si content is preferably 0.25% or less, more preferably 0.20% or less, still more preferably 0.15% or less. Since the lower limit of the Si content is not particularly limited, it may be 0%, but the Si content may be 0.01% or more from the viewpoint of manufacturing cost.
  • the chemical composition of the first steel plate of the box column according to the present embodiment may contain the above elements and the balance may be iron (Fe) and impurities, but in order to improve strength and toughness, it may be necessary.
  • Fe iron
  • B selective elements
  • Ti Ti, Cu, Cr, Mo, W, Co, Nb, V, Ca, Mg, REM, Zr
  • Two or more kinds may be contained.
  • the lower limit is 0%. Further, even if these elements are mixed into the steel sheet as impurities from raw materials, scraps, etc., there is no significant adverse effect as long as they are within the range described later.
  • B 0% or more and 0.0050% or less B is an element that significantly improves the hardenability of steel even if it is contained in a small amount, and when the hardenability of steel is ensured while limiting the carbon equivalent CEWES. It is an effective element for. In order to obtain the above effect, the B content may be 0.0003% or more. On the other hand, if the B content is excessive, the toughness and weldability of the large heat-affected zone HAZ deteriorate. Therefore, even when it is contained, the B content is 0.0050% or less.
  • Ti 0% or more, 0.035% or less
  • Ti is an element effective for increasing the strength of the base metal and granulating it.
  • the Ti content may be 0%, but in order to obtain the above effect, the Ti content may be 0.005% or more.
  • the Ti content is excessive, there is a concern that the coarse TiN adversely affects the toughness. Therefore, even when it is contained, the Ti content is 0.035% or less.
  • Cu 0% or more, 2.0% or less
  • the Cu content may be 0%, but in order to obtain the above effect, the Cu content may be 0.1% or more.
  • the Cu content becomes excessive, Cu cracks occur during hot rolling of the steel sheet, and the toughness and weldability of the large heat-affected zone HAZ deteriorate. Therefore, even when it is contained, the Cu content is set to 2.0% or less.
  • Cr 0% or more, 2.0% or less Cr is an element that improves the strength of the base metal.
  • the Cr content may be 0%, but in order to obtain the above effect, the Cr content may be 0.1% or more.
  • the Cr content if the Cr content becomes excessive, the toughness and weldability of the large heat-affected zone HAZ deteriorate. Therefore, even when it is contained, the Cr content is set to 2.0% or less.
  • Mo 0% or more, 2.0% or less Mo is an element that improves the strength and toughness of the base metal.
  • the Mo content may be 0%, but in order to obtain the above effect, the Mo content may be 0.1% or more.
  • the Mo content becomes excessive, the toughness and weldability of the large heat-affected zone HAZ deteriorate, and the alloy cost increases. Therefore, even when it is contained, the Mo content is set to 2.0% or less.
  • W 0% or more, 1.0% or less W is an element that improves the strength and toughness of the base metal.
  • the W content may be 0%, but in order to obtain the above effect, the W content may be 0.1% or more.
  • the W content is 1.0% or less.
  • the W content is preferably 0.5% or less.
  • Co 0% or more, 1.0% or less Co is an element that has little adverse effect on weldability and toughness of HAZ and improves the strength and toughness of the base metal.
  • the Co content may be 0%, but the Co content may be 0.1% or more in order to obtain the above effects. On the other hand, when the Co content becomes excessive, the above effects are saturated and the alloy cost increases. Therefore, even when it is contained, the Co content is 1.0% or less.
  • the Co content is preferably 0.5% or less.
  • Nb 0% or more and 0.10% or less Nb is also an element that improves the strength and toughness of the base metal.
  • the Nb content may be 0%, but in order to obtain the above effect, the Nb content may be 0.005% or more, or 0.01% or more.
  • the Nb content is set to 0.10% or less.
  • the Nb content is preferably 0.05% or less, more preferably 0.03% or less.
  • V 0% or more, 0.10% or less
  • V is an element that improves the strength of the base metal part of the steel.
  • the V content may be 0%, but in order to obtain the above effect, the V content may be 0.005% or more, or 0.01% or more.
  • the V content is 0.10% or less even when it is contained.
  • the V content is preferably 0.08% or less, more preferably 0.06% or less.
  • Ca 0% or more, 0.005% or less
  • Ca is an element that forms oxides, sulfides, and acid sulfides to suppress the formation of coarse inclusions and enhance the toughness of the base material and HAZ.
  • the Ca content may be 0%, but in order to obtain the above effect, the Ca content may be 0.0001% or more or 0.001% or more.
  • the Ca content becomes excessive, Ca-based inclusions that may act as a starting point for brittle fracture increase. Therefore, even when it is contained, the Ca content is 0.005% or less.
  • the Ca content is preferably 0.004% or less.
  • Mg 0% or more, 0.005% or less Mg is an element that forms oxides, sulfides, and acid sulfides like Ca to suppress the formation of coarse inclusions and enhance the toughness of the base metal and HAZ. be.
  • the Mg content may be 0%, but in order to obtain the above effect, the Mg content may be 0.0001% or more or 0.001% or more.
  • the Mg content becomes excessive, the amount of Mg-based inclusions that may act as a starting point for brittle fracture increases. Therefore, even when it is contained, the Mg content is set to 0.005% or less.
  • the Mg content is preferably 0.003% or less.
  • REM 0% or more, 0.005% or less REM, like Ca and Mg, forms oxides, sulfides, and acid sulfides to suppress the formation of coarse inclusions, and improves the toughness of the base metal and HAZ. It is an element that enhances.
  • the REM content may be 0%, but in order to obtain the above effects, the REM content may be 0.0001% or more or 0.001% or more.
  • the REM content becomes excessive, the amount of REM-based inclusions that may act as a starting point for brittle fracture increases. Therefore, even when it is contained, the REM content is 0.005% or less.
  • the REM content is preferably 0.003% or less.
  • REM (rare earth element) is a general term for two elements, Sc and Y, and 15 lanthanoid elements such as La, Ce and Nd.
  • the REM referred to in the present embodiment is composed of one or more selected from these rare earth elements, and the REM content described below is the total amount of the rare earth elements.
  • Zr 0% or more, 0.005% or less Zr, like Ca, Mg and REM, forms oxides, sulfides and acid sulfides to suppress the formation of coarse inclusions, and the base material and HAZ. It is an element that enhances toughness.
  • the Zr content may be 0%, but in order to obtain the above effect, the Zr content may be 0.0001% or more.
  • the Zr content when the Zr content becomes excessive, the amount of Zr-based inclusions that may act as a starting point for brittle fracture increases. Therefore, even when it is contained, the Zr content is set to 0.005% or less.
  • the Zr content is preferably 0.003% or less.
  • the balance of the chemical composition of the first steel plate of the box pillar according to the present embodiment is iron (Fe) and impurities.
  • Impurities are components that are mixed in by raw materials such as ore and scrap and other factors when steel materials are industrially manufactured, and are allowed as long as they do not adversely affect the characteristics of the box pillars according to the present embodiment. Means something. However, among impurities, especially for P, S, O, and N, the upper limit of the content is limited as described later.
  • P 0.015% or less
  • the P content needs to be limited in order to stably secure the toughness of the large heat-affected zone, and is 0.015% or less in this embodiment.
  • the P content is preferably 0.010% or less, more preferably 0.008% or less.
  • the lower limit of the P content is not limited, but the P content may be 0.001% or more from the viewpoint of manufacturing cost.
  • P is an impurity harmful to toughness, it has the effect of enhancing the hardenability of the large heat-affected zone HAZ, making the crystal grain size finer, and improving the toughness of the large heat-affected zone HAZ. From the viewpoint of obtaining the effect, the P content may be 0.003% or more.
  • S 0.005% or less
  • S is an impurity, and if it is contained in a large amount, it may form coarse inclusions and reduce toughness. Therefore, in order to stably secure the toughness of the large heat-affected zone HAZ, the S content is limited to 0.005% or less.
  • the lower limit of the S content is not particularly limited and may be 0%, but the S content may be 0.0001% or more or 0.001% or more from the viewpoint of manufacturing cost.
  • O 0.0060% or less
  • O is an impurity and an element forming an oxide.
  • the O content is set to 0.0060% or less. It is desirable that the O content is low, and it may be 0%, but from the viewpoint of manufacturing cost, the O content may be 0.0001% or more in this embodiment.
  • N 0.0100% or less
  • N is an element that forms a nitride.
  • the N content becomes excessive, BN is generated and the amount of solid solution B that contributes to the improvement of hardenability is significantly reduced, or coarse nitrides are formed and the toughness is lowered.
  • the N content is 0.0100% or less.
  • the N content is preferably 0.0080% or less, more preferably 0.0060% or less. It is desirable that the N content is low, but from the viewpoint of manufacturing cost, the N content may be 0.0001% or more, or 0.0020% or more.
  • Carbon equivalent CEWES is 0.430% or more and 0.900% or less
  • the carbon equivalent CEWES is an index of hardenability that affects the strength of the steel sheet (base material) and the hardness of HAZ.
  • the carbon equivalent CEWES is 0.430% or more in this embodiment.
  • the carbon equivalent CEWES is preferably 0.440% or more, more preferably 0.450% or more, still more preferably 0.500% or more.
  • CEWES is set to 0.900% or less.
  • the carbon equivalent CEWES is preferably 0.800% or less, more preferably 0.700% or less.
  • the carbon equivalent CEWES is calculated by the following equation (1) using the content of alloying elements.
  • CEWES C + Mn / 6 + Si / 24 + Ni / 40 + Cr / 5 + Mo / 4 + V / 14 ...
  • C, Mn, Si, Ni, Cr, Mo, and V in the formula (1) are the content [mass%] of each element, and 0 is substituted for the term of the element not contained.
  • the average particle size measured by EBSD is preferably 250 ⁇ m or less.
  • the toughness of the welded portion of the first steel sheet is improved.
  • the average particle size of the welded portion of the first steel sheet can be achieved by suppressing crystal grain growth by the pinning effect of TiN, adjusting the hardenability by adjusting CEWES, and the like.
  • the average crystal grain size of the welded portion is in the range from FL to HAZ side 0.5 mm (FL to FL + 0.5 mm range) in the L cross section of the electroslag welded joint, using an EBSD (electron backscatter diffraction device).
  • the grain boundary is defined as a 15 ° large-angle grain boundary (a large-angle grain boundary with a crystal orientation difference of 15 ° or more)
  • it is equivalent to a circle among crystal grains with a circle-equivalent diameter of more than 1.0 ⁇ m.
  • the average value is the circle-equivalent diameter of the crystal grains whose diameter is within the upper 0.2%.
  • the measurement area is 0.5 mm ⁇ 0.5 mm, and the measurement pitch is 1.0 ⁇ m at the maximum.
  • the area ratio of MA is small, and the area ratio of MA is preferably 3.0% or less.
  • the structure other than MA is not limited, but from the viewpoint of ensuring strength and toughness, a mixed structure mainly composed of bainite structure and partially containing ferrite and martensite is preferable.
  • the MA area ratio can be achieved by adjusting Mn / Ni or the like.
  • the area ratio of MA (Martensite-Austenite Constant) is the same cross section as the sample for which the average crystal grain size was measured, MA is revealed by repeater etching, an optical microscope image with a magnification of 500 times is taken, and then image analysis, etc. It is obtained by the method of.
  • a method of measuring the area ratio for example, there is a method of separating the part that looks white from the other part by image processing of the captured optical microscope image and measuring the area ratio of the part that looks white as the area ratio of MA. ..
  • the plate thickness of the first steel plate is 40 mm or more and 120 mm or less
  • the yield strength is 630 MPa or more and 750 MPa or less
  • the tensile strength is 780 MPa or more and 930 MPa or less.
  • the yield ratio of the first steel plate of the box pillar according to the present embodiment is 85% or less.
  • the lower limit of the yield ratio is not limited, but for example, the yield ratio may be 70% or more.
  • JIS No. 4 tensile test pieces taken from the surface of the steel sheet at a position of 1/4 of the plate thickness were prepared, and JIS Z 2241: 2011 was applied to these two test pieces. Obtained by conducting a tensile test in accordance with this.
  • the yield strength YS (0.2% yield strength) and the tensile strength TS are the average values of the two test pieces, respectively.
  • YR (yield ratio) is the ratio of YS to TS and is expressed as a percentage, that is, 100 ⁇ (YS / TS). The unit of YR (yield ratio) is%.
  • the second steel plate fixed inside the box-shaped cross-section column (column trunk) as the diaphragm as a reinforcing member is not limited, but usually a YP440 class steel plate is used, the plate thickness is 40 mm to 70 mm, and the TS is. It is preferably 440 to 600 MPa.
  • the welding of the first steel plate (skin plate) and the second steel plate (diaphragm) is electroslag welding, which is a large heat input welding. It is assumed that (ESW) is applied. That is, the first steel plate and the second steel plate are joined via a welded portion (electroslag welded portion) formed by electroslag welding.
  • the average value of the Charpy absorption energy (test temperature: 0 ° C.) in the HAZ of the electroslag weld is 27J or more.
  • the average value of the charpy absorption energy (test temperature: 0 ° C.) in the HAZ of the electroslag weld is 70 J or more
  • electroslag welding it is characteristic of electroslag welding on the skin plate.
  • the Charpy absorption energy in the HAZ of the weld is measured by the following method.
  • the second steel plate (diaphragm 2) is vertically fixed to the first steel plate (skin plate 1) via a welded portion, and is a T-shaped joint. Will be. Therefore, the test piece 4 passes from the weld metal portion 3 along the plate thickness center line of the second steel plate, crosses the melt line (FL), passes through the HAZ on the first steel plate side, and passes through the HAZ on the first steel plate side to the inner side of the first steel plate. It is collected from the part leading to.
  • the position of the notch is the position of FL, which tends to have the lowest toughness in HAZ, and three test pieces are collected.
  • the test piece 4 and the skin plate 1 are collected in the direction perpendicular to each other as shown in FIG. 1A, or the test piece 4 is the skin plate 1 as shown in FIG. 1B.
  • the test piece may be collected so as to be slanted with respect to the subject. That is, as shown in FIG. 1B, the test piece may be collected so that the intersection of the line 6 mm in the plate thickness direction from the surface of the skin plate 1 and the FL is at the center of the notch.
  • the Charpy impact test conforms to JIS Z 2242: 2018, and the test temperature is 0 ° C. If necessary, the test may be performed at ⁇ 20 ° C.
  • the absorbed energy (KV2 (0 ° C.)) is the average value (arithmetic mean) of the absorbed energies of the three measured pieces.
  • the box pillar according to this embodiment is (I) A process (preparation process) for preparing the first steel sheet and the second steel sheet to be welded, and (II) Includes a step of assembling the first steel plate and the second steel plate into a box pillar (assembly step).
  • each step will be described.
  • a first steel plate to be a skin plate for a box pillar and a second steel plate to be a diaphragm are prepared.
  • the first steel sheet is not limited as long as it has the above-mentioned chemical composition and mechanical properties, and for example, a steel sheet manufactured by the following manufacturing method can be used.
  • This piece of steel is once cooled to 400 ° C. or lower, then heated to a temperature range of 900 ° C. or higher and 1250 ° C. or lower, and subjected to hot rolling to produce a steel sheet having a plate thickness of 40 mm or higher and 120 mm or lower. Will be done.
  • the steel sheet is subjected to various heat treatments as needed.
  • the steel pieces after continuous casting are charged into a heating furnace by hot charging without being cooled to 400 ° C. or lower, the coarse ⁇ structure generated during casting remains in the steel pieces after heating, and the structure of the steel sheet. However, it may not be sufficiently refined and the low temperature toughness may deteriorate. Therefore, it is preferable that the steel pieces after continuous casting are once cooled to 400 ° C. or lower.
  • the heating temperature of the steel piece is preferably 900 ° C. or higher in order to dissolve the BN deposited on the steel piece after casting and promote the formation of TiN in hot rolling. N in the heated steel pieces forms TiN during hot rolling, and the formation of BN is suppressed. As a result, in the steel sheet, the solid solution B that improves the hardenability of the steel and the TiN that suppresses the grain growth are sufficiently secured.
  • the heating temperature of the steel pieces is 1250 ° C. or lower from the viewpoint of suppressing the coarsening of ⁇ grains, refining the metal structure after hot rolling, and suppressing the deterioration of low temperature toughness. preferable.
  • the heating temperature is more preferably 1200 ° C. or lower.
  • the steel sheet after hot rolling is directly quenched or once air-cooled, and then reheated to the ⁇ single phase region and subsequently quenched ( ⁇ reheat quenching).
  • the end temperature (finishing temperature) of hot rolling is preferably the austenite ( ⁇ ) single phase region, that is, the Ar 3 transformation point or higher at which the ferrite transformation starts.
  • the end temperature of hot rolling may be 750 ° C. or higher.
  • the end temperature of hot rolling is preferably 900 ° C. or lower from the viewpoint of miniaturization of the metal structure.
  • the Ar 3 transformation point can be obtained by the following equation (4).
  • Ar 3 transformation point 868-396 ⁇ C + 24.6 ⁇ Si-68.1 ⁇ Mn-36.1 ⁇ Ni-20.7 ⁇ Cu-24.8 ⁇ Cr + 29.1 ⁇ Mo... (4)
  • C, Si, Mn, Ni, Cu, Cr, and Mo in the above equation (4) are the contents of each element expressed in mass% in the steel sheet, and 0 is substituted for the term of the element not contained. do.
  • the steel sheet that has been directly quenched or ⁇ -reheat-quenched is subjected to various heat treatments in order to adjust the material. Specifically, the steel sheets subjected to these quenching treatments (direct quenching or ⁇ reheating quenching) are moved to the two-phase region where austenite ( ⁇ ) and ferrite ( ⁇ ) coexist in order to reduce the yield ratio. Reheating and subsequent quenching (two-phase region quenching) are performed.
  • the two-phase region is the Ac 1 transformation point or more and less than the Ac 3 transformation point, and the Ac 1 transformation point and the Ac 3 transformation point can be obtained by the following equations (5) and (6), respectively. ..
  • C, Si, Mn, Cu, Ni, Cr, Mo, V, Ti, Nb, Al, B, W, and P in the above equations (5) and (6) are expressed in% by mass. It is the content of the element in the steel plate, and 0 is substituted for the term of the element that does not contain.
  • the steel sheet may be tempered in order to finally adjust the strength, yield ratio, and toughness of the steel sheet.
  • the tempering temperature is preferably 350 ° C. or higher and 600 ° C. or lower.
  • the above-mentioned hot rolling finish temperature, ⁇ reheating quenching temperature, two-phase region quenching temperature, and tempering temperature all refer to the temperature at the center in the plate thickness direction.
  • the temperature of the central portion in the plate thickness direction can be obtained by heat transfer calculation from the temperature of the steel plate surface measured by a radiation thermometer.
  • the first steel sheet can be manufactured by the above manufacturing method (manufacturing method including direct quenching or ⁇ reheating quenching + two-phase region quenching + tempering).
  • the method for manufacturing the second steel sheet is not limited, and a steel sheet manufactured by a known manufacturing method can be used.
  • a steel sheet manufactured by the same manufacturing method as the first steel sheet can also be used.
  • the box pillars are assembled by welding so that the first steel plate becomes a skin plate and the second steel plate becomes a diaphragm.
  • the welding and assembling methods known conditions may be adopted, but at least the welding between the first steel plate and the second steel plate is electroslag welding.
  • electroslag welding For welding of other parts, shielded metal arc welding, carbon dioxide shielded arc welding, and submerged arc welding may be used.
  • the diaphragm is welded to the column flange of the skin plate by electroslag welding, and the column flange and the column web are welded (square welding) so that the skin plate has four sides in a box shape, and then the diaphragm and the skin plate are welded.
  • a first steel plate and a second steel plate used for assembling the box pillar were prepared.
  • steel plates of steel 1-1 to steel 2-14 having the chemical composition, plate thickness and mechanical properties shown in Tables 1A to 1D were prepared.
  • second steel plate used as the diaphragm known 440 MPa class steels A to D having the chemical composition and plate thickness shown in Table 2 were prepared.
  • the mechanical properties of the first steel sheet were evaluated by performing a tensile test in accordance with JIS Z 2241: 2011 as described above.
  • Steel 1-1 to Steel 2-14 were produced by the following methods. Steel pieces with a thickness of 200 to 300 mm manufactured by the continuous casting method are once cooled to 400 ° C. or lower, then heated to a temperature range of 900 ° C. or higher and 1250 ° C. or lower, and hot-rolled to a plate thickness of 40 to 120 mm. It was made into a steel plate. Some steel sheets were directly quenched from temperatures above the Ar 3 transformation point. For the steel sheets that were not directly quenched, after air cooling, reheating to the ⁇ single phase region and subsequent quenching ( ⁇ reheating quenching) were carried out.
  • the steel sheet that had been directly quenched or ⁇ -reheated and quenched was reheated to the two-phase region and subsequently quenched (two-phase region quenching). Further, the steel sheet after quenching in the two-phase region was tempered at 350 ° C. or higher and 600 ° C. or lower.
  • the box columns were assembled by welding so that the first steel plate became a skin plate and the second steel plate became a diaphragm.
  • the diaphragm is welded to the column flange of the skin plate by electroslag welding, and the column flange and the column web are welded by carbon dioxide gas shield arc welding so that the skin plate has four sides of a box shape (square welding). ), Then the diaphragm and the skin plate (pillar flange and pillar web) were electroslag welded to obtain a four-sided box pillar of 1000 mm ⁇ 1000 mm (cross section) ⁇ 13000 mm (length).
  • welding is performed by using JIS standard products or welding materials certified by the Minister of Land, Infrastructure, Transport and Tourism, setting the current to 380 A and the voltage to 52 V, and changing the speed according to the thickness of each plate.
  • the heat input was 55 to 130 kJ / mm.
  • the BOX column No. 1 using steel 1-1 to steel 1-16 as the skin plate As shown in Tables 1A to 3, the BOX column No. 1 using steel 1-1 to steel 1-16 as the skin plate. In 1 to 16, the HAZ toughness (average value of Charpy absorption energy) of the electroslag welded portion was 27J or more. On the other hand, the BOX pillar No. which is a comparative example. At 17 to 30, HAZ toughness was inferior.
  • the yield strength of the first steel plate is 630 MPa or more, the tensile strength is 780 MPa or more, the yield ratio is 85% or less, the plate thickness is 40 to 120 mm, and the electroslag welded portion.
  • the average value of Charpy absorption energy (test temperature 0 ° C.) in HAZ is 27J or more. Therefore, the box columns of the present invention are suitable for building steel frames, and by applying the box columns of the present invention, it is possible to promote the progress of high-rise buildings and large spans, and further improve construction efficiency and seismic safety. Can be enhanced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Architecture (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

Provided is a box column in which a diaphragm comprising a second steel plate is fixed, via a welding section, to the interior of a box-shaped section column (column trunk) formed of a skin plate comprising a first steel plate, wherein: the first steel plate has a prescribed chemical composition in which Mn/Ni, which is the content ratio of manganese and nickel, is 0.80 or less and the carbon equivalent CEWES is 0.430%–0.900%; the first steel plate has a tensile strength of 780 MPa–930 MPa, a yield strength of 630 MPa–750 MPa, and a yield ratio of 85% or less; the plate thickness of the first steel plate is 40 mm–120 mm; the welding section is an electroslag welding section; and the mean Charpy absorbed energy in the heat-affected zone of the welding section at 0°C is at least 27 J.

Description

ボックス柱Box pillar
 本発明は、ボックス柱(BOX柱)に関する。 The present invention relates to a box pillar (BOX pillar).
 大型の建築物の鉄骨として、溶接組立箱形断面柱(いわゆる四面ボックス柱)が用いられている。四面ボックス柱とは、4枚の厚鋼板を断面が正方形または長方形となるように溶接(角溶接)して柱幹とし、強い応力を受ける部分には、中空となっている柱の内部に、補強部材(ダイアフラム)として、さらに別の厚鋼板を竹の節状に取り付けることによって製造される柱部材である。
 近年、建築物の更なる大型化が進んでおり、四面ボックス柱の高強度化、厚手化が求められている。一方で、鋼板が厚手化すると、小入熱溶接では生産効率が低下する。そのため、建造効率化の観点からは、そのダイアフラム溶接や角溶接にはエレクトロスラグ溶接やサブマージアーク溶接などの高能率な大入熱溶接の適用が求められる。
 地震時の破壊に対する安全性向上の観点から、ボックス柱には、低降伏比や優れた靭性も求められる。しかしながら、従来、高強度厚鋼板に上述の大入熱溶接を適用した場合、HAZにおいて良好な靱性を確保することは困難であった。
Welded assembly box-shaped cross-section columns (so-called four-sided box columns) are used as steel frames for large buildings. A four-sided box pillar is a pillar trunk made by welding (square welding) four thick steel plates so that the cross section is square or rectangular. As a reinforcing member (diaphragm), it is a pillar member manufactured by attaching another thick steel plate in a rectangular shape of bamboo.
In recent years, the size of buildings has been further increased, and there is a demand for higher strength and thicker four-sided box pillars. On the other hand, if the steel sheet becomes thicker, the production efficiency of small heat input welding decreases. Therefore, from the viewpoint of improving construction efficiency, it is required to apply highly efficient large heat input welding such as electroslag welding and submerged arc welding to the diaphragm welding and square welding.
From the viewpoint of improving safety against rupture during an earthquake, box columns are also required to have a low yield ratio and excellent toughness. However, conventionally, when the above-mentioned large heat input welding is applied to a high-strength thick steel sheet, it has been difficult to secure good toughness in HAZ.
 例えば、非特許文献1及び非特許文献2には、引張強度780MPa級厚鋼板におけるエレクトロスラグ溶接部のHAZ靱性が示されている。しかしながら、非特許文献1の図6によれば、溶融線(Fusion Line、FL)、FLから1mm(HAZ1)、FLから3mm(HAZ3)、FLから5mm(HAZ5)をノッチ位置とした場合のシャルピー吸収エネルギーの平均値は40J以下である。また、非特許文献2の図3及び図5によれば、FLをノッチ位置とした場合のシャルピー吸収エネルギーの平均値は50J以下である。 For example, Non-Patent Document 1 and Non-Patent Document 2 show the HAZ toughness of an electroslag welded portion in a 780 MPa class thick steel sheet with a tensile strength. However, according to FIG. 6 of Non-Patent Document 1, Charpy when the melt line (Fusion Line, FL), FL to 1 mm (HAZ1), FL to 3 mm (HAZ3), and FL to 5 mm (HAZ5) are notch positions. The average value of absorbed energy is 40 J or less. Further, according to FIGS. 3 and 5 of Non-Patent Document 2, the average value of Charpy absorption energy when FL is set to the notch position is 50 J or less.
 大入熱溶接HAZ(大入熱溶接を適用して形成されたHAZ)では、溶接入熱によって高温に加熱された際にオーステナイト(γ)が粒成長する。また、高強度鋼板は合金元素を多く含むので、大入熱溶接HAZでは、冷却後は旧γ粒径が粗大化したベイナイト主体の組織となる。その結果、大入熱溶接HAZの靭性が低下する。
 このような結晶粒の粗大化に起因する靭性の低下を抑制するために、例えば、特許文献1~3には、溶接入熱によって加熱されたオーステナイト(γ)の粒界をピン止めする微細な粒子を厚鋼板(母材)に生成させる技術が提案されている。特許文献1~3で提案されている技術は、Mgを含む微細な粒子のピン止め効果によって、溶接入熱によって加熱されたオーステナイト(加熱γ)の粒成長を抑制するものである。
 しかしながら、特許文献1~3の技術では、オーステナイトの粒成長を抑制することはできるものの、その他の靭性低下の要因に対しては、対策が十分ではなかった。
In the large heat input welding HAZ (HAZ formed by applying the large heat input welding), austenite (γ) grows in grains when heated to a high temperature by the welding heat input. Further, since the high-strength steel plate contains a large amount of alloying elements, the large heat-affected zone HAZ has a bainite-based structure in which the old γ grain size is coarsened after cooling. As a result, the toughness of the large heat-affected zone HAZ decreases.
In order to suppress the decrease in toughness caused by such coarsening of crystal grains, for example, Patent Documents 1 to 3 describe fine particles that pin the grain boundaries of austenite (γ) heated by welding heat input. A technique for generating particles on a thick steel plate (base material) has been proposed. The techniques proposed in Patent Documents 1 to 3 suppress the grain growth of austenite (heated γ) heated by welding heat input by the pinning effect of fine particles containing Mg.
However, although the techniques of Patent Documents 1 to 3 can suppress the grain growth of austenite, the countermeasures against other factors of the decrease in toughness are not sufficient.
 特許文献4には、大入熱溶接熱影響部靭性に優れた低降伏比高強度厚鋼板が開示され、エレクトロスラグ溶接(溶接入熱量≧400kJ/cm)により作製した板厚65mmの溶接継手において、0℃でのボンド部のシャルピー吸収エネルギーが70Jであることが開示されている。特許文献4では、Si、Mn、P量の適正化によりMAを低減可能であることが開示されている。しかしながら、大入熱HAZを著しく脆化させるMAの生成を抑制するには対策が不十分であり、65mm超の板厚で十分な大入熱HAZの靭性が得られることは示されていない。 Patent Document 4 discloses a high-strength thick steel plate with a low yield ratio and excellent toughness in the heat-affected zone of large heat input, and in a welded joint having a plate thickness of 65 mm manufactured by electroslag welding (welding heat input amount ≥ 400 kJ / cm). It is disclosed that the charpy absorption energy of the bond portion at 0 ° C. is 70 J. Patent Document 4 discloses that MA can be reduced by optimizing the amounts of Si, Mn, and P. However, measures are insufficient to suppress the formation of MA that remarkably embrittles the large heat-affected zone, and it has not been shown that sufficient toughness of the large heat-affected zone HAZ can be obtained with a plate thickness of more than 65 mm.
日本国特開2006-28627号公報Japanese Patent Application Laid-Open No. 2006-28827 日本国特開平11-236645号公報Japanese Patent Application Laid-Open No. 11-236645 日本国特開平10-298708号公報Japanese Patent Application Laid-Open No. 10-298708 日本国特開2017-155333号公報Japanese Patent Application Laid-Open No. 2017-155333
 本発明は、このような実情に鑑みなされたものであり、高強度厚鋼板を用いて形成されたボックス柱であって、大入熱溶接HAZの靭性に優れるボックス柱を提供することを課題とする。
 本発明では、大入熱溶接によって形成された溶接熱影響部(Heat Affected Zone、HAZ)を大入熱溶接HAZ又は大入熱HAZという場合がある。
The present invention has been made in view of such circumstances, and an object of the present invention is to provide a box column formed by using a high-strength thick steel plate and having excellent toughness of a large heat-affected zone HAZ. do.
In the present invention, the weld heat-affected zone (HAZ) formed by the large heat input welding may be referred to as a large heat input welding HAZ or a large heat input HAZ.
 本発明者らが検討した結果、高強度厚鋼板の大入熱溶接HAZ靱性が劣化する主な原因は、(1)合金元素の含有量の増加に起因する脆化相(Martensite - Austenite constituent、MA)の形成、及び(2)HAZの結晶粒の粗大化であることが分かった。
 そこで、本発明者らは、高強度鋼板の大入熱HAZを著しく脆化させるMAの生成を抑制するという視点から、鋼板(母材)の高強度化と大入熱溶接HAZの靭性の確保とを両立させるために検討を行った。その結果、MAの生成は、鋼板に含まれるMnやNiなどの合金元素が局所的に濃化して形成されるミクロ偏析部に起因することがわかった。具体的には、ミクロ偏析部が溶接熱影響によって加熱され、冷却されると、相変態によって金属組織の一部がMAとなって靭性の低下の原因となることが分かった。本発明者らがさらに検討を行った結果、鋼成分(化学組成)において、Mn含有量とNi含有量との比であるMn/Niを0.80以下に制御することが、ミクロ偏析に起因するMAの生成の抑制に有効であるという知見を得た。
 また、上述の方法でMAの生成を抑制した上で、Ti、Mg、Bを活用し、炭素当量CEWESを制御して、旧γの粗大化及びHAZの結晶粒粗大化を抑制することによって、母材の強度及び大入熱溶接HAZの靭性の確保の両立が可能となる、という新たな知見を得た。
As a result of the study by the present inventors, the main causes of deterioration of the high heat-affected zone HAZ toughness of high-strength thick steel plates are (1) the embrittled phase (Martensite-Austenite constitut) due to the increase in the content of alloying elements. It was found that MA) was formed and (2) HAZ crystal grains were coarsened.
Therefore, the present inventors have increased the strength of the steel plate (base material) and ensured the toughness of the large heat-affected zone HAZ from the viewpoint of suppressing the formation of MA that significantly embrittles the large heat-affected zone of the high-strength steel plate. We conducted a study to achieve both. As a result, it was found that the formation of MA was caused by the microsegregation part formed by locally thickening alloying elements such as Mn and Ni contained in the steel sheet. Specifically, it was found that when the microsegregated zone is heated and cooled by the influence of welding heat, a part of the metal structure becomes MA due to the phase transformation and causes a decrease in toughness. As a result of further studies by the present inventors, it is caused by microsegregation that the Mn / Ni, which is the ratio of the Mn content to the Ni content, is controlled to 0.80 or less in the steel component (chemical composition). It was found that it is effective in suppressing the production of MA.
Further, after suppressing the formation of MA by the above-mentioned method, Ti, Mg, and B are utilized to control the carbon equivalent CEWES to suppress the coarsening of the old γ and the coarsening of the crystal grains of HAZ. We have obtained a new finding that it is possible to secure both the strength of the base metal and the toughness of the large heat-affected zone HAZ.
 本発明は上記の知見に鑑みてなされた。本発明の要旨は以下の通りである。 The present invention was made in view of the above findings. The gist of the present invention is as follows.
[1]本発明の一態様に係るボックス柱は、第1の鋼板からなるスキンプレートで構成される箱形断面柱の内部に、第2の鋼板からなるダイアフラムが溶接部を介して固定されたボックス柱であって、前記第1の鋼板が、化学組成として、質量%で、C :0.03%以上、0.18%以下、Mn:0.3%以上、1.4%未満、Ni:1.0%以上、7.0%以下、Al:0.005%以上、0.20%以下、B :0%以上、0.0050%以下、Ti:0%以上、0.035%以下、Cu:0%以上、2.0%以下、Cr:0%以上、2.0%以下、Mo:0%以上、2.0%以下、W :0%以上、1.0%以下、Co:0%以上、1.0%以下、Nb:0%以上、0.10%以下、V :0%以上、0.10%以下、Ca:0%以上、0.005%以下、Mg:0%以上、0.005%以下、REM:0%以上、0.005%以下、Zr:0%以上、0.005%以下、Si:0.30%以下、P :0.015%以下、S :0.005%以下、O :0.0060%以下、N :0.0100%以下を含有し、残部がFe及び不純物からなり、Mn及びNiの含有量の比であるMn/Niが0.80以下であり、下記(1)式で計算される炭素当量CEWESが0.430%以上、0.900%以下であり、前記第1の鋼板の引張強度が780MPa以上、930MPa以下であり、降伏強度が630MPa以上、750MPa以下であり、降伏比が85%以下であり、前記第1の鋼板の板厚が、40mm以上、120mm以下であり、前記溶接部がエレクトロスラグ溶接部であって、前記溶接部のHAZにおいて、0℃でのシャルピー吸収エネルギーの平均が27J以上である。
 CEWES=C+Mn/6+Si/24+Ni/40+Cr/5+Mo/4+V/14・・・(1)
 ここで、(1)式中の、C、Mn、Si、Ni、Cr、Mo、Vは各元素の含有量[質量%]であり、含有しない元素の項には0を代入する。
[2]上記[1]に記載のボックス柱は、前記第1の鋼板の、前記溶接部のミクロ組織において、EBSDによって測定される平均結晶粒径が250μm以下であって、MAの面積率が3.0%以下であってもよい。
[3]上記[1]または[2]に記載のボックス柱は、前記シャルピー吸収エネルギーの平均が70J以上であってもよい。
[1] In the box pillar according to one aspect of the present invention, a diaphragm made of a second steel plate is fixed to the inside of a box-shaped cross-section pillar made of a skin plate made of a first steel plate via a welded portion. The first steel plate, which is a box pillar, has a chemical composition of C: 0.03% or more, 0.18% or less, Mn: 0.3% or more, less than 1.4%, Ni in mass%. : 1.0% or more, 7.0% or less, Al: 0.005% or more, 0.20% or less, B: 0% or more, 0.0050% or less, Ti: 0% or more, 0.035% or less , Cu: 0% or more, 2.0% or less, Cr: 0% or more, 2.0% or less, Mo: 0% or more, 2.0% or less, W: 0% or more, 1.0% or less, Co : 0% or more, 1.0% or less, Nb: 0% or more, 0.10% or less, V: 0% or more, 0.10% or less, Ca: 0% or more, 0.005% or less, Mg: 0 % Or more, 0.005% or less, REM: 0% or more, 0.005% or less, Zr: 0% or more, 0.005% or less, Si: 0.30% or less, P: 0.015% or less, S : 0.005% or less, O: 0.0060% or less, N: 0.0100% or less, the balance consists of Fe and impurities, and Mn / Ni, which is the ratio of Mn and Ni contents, is 0. It is 80 or less, the carbon equivalent CEWES calculated by the following equation (1) is 0.430% or more and 0.900% or less, the tensile strength of the first steel plate is 780 MPa or more and 930 MPa or less, and the yield. The strength is 630 MPa or more and 750 MPa or less, the yield ratio is 85% or less, the plate thickness of the first steel plate is 40 mm or more and 120 mm or less, and the welded portion is an electroslag welded portion. In the HAZ of the welded portion, the average of the charpy absorption energy at 0 ° C. is 27 J or more.
CEWES = C + Mn / 6 + Si / 24 + Ni / 40 + Cr / 5 + Mo / 4 + V / 14 ... (1)
Here, C, Mn, Si, Ni, Cr, Mo, and V in the formula (1) are the content [mass%] of each element, and 0 is substituted for the term of the element not contained.
[2] In the box column according to the above [1], the average crystal grain size measured by EBSD in the microstructure of the welded portion of the first steel plate is 250 μm or less, and the area ratio of MA is It may be 3.0% or less.
[3] The box pillar according to the above [1] or [2] may have an average Charpy absorption energy of 70 J or more.
 本発明の上記態様によれば、高強度厚鋼板を用いて形成されたボックス柱であって、大入熱溶接HAZの靭性に優れるボックス柱を提供することができる。 According to the above aspect of the present invention, it is possible to provide a box column formed by using a high-strength thick steel plate and having excellent toughness of high heat-affected zone HAZ.
エレクトロスラグ溶接T字継手におけるシャルピー試験片の採取要領を示す図である。It is a figure which shows the collecting procedure of the Charpy test piece in the electroslag welded T-shaped joint. エレクトロスラグ溶接T字継手におけるシャルピー試験片の採取要領を示す図である。It is a figure which shows the collecting procedure of the Charpy test piece in the electroslag welded T-shaped joint.
 以下、本発明の一実施形態に係るボックス柱(本実施形態に係るボックス柱)について説明する。
 本実施形態に係るボックス柱は、第1の鋼板からなるスキンプレートで構成される箱形断面柱(柱幹)の内部に、第2の鋼板からなるダイアフラムが溶接部を介して固定されたボックス柱である。
 また、第1の鋼板は、後述するように、所定の化学組成を有し、所定の板厚かつ、所定の機械的特性を有する。
 本実施形態におけるボックス柱において、溶接部とは、溶接によって一旦溶融して凝固した部分(溶接金属部)及び溶接によって溶融はしなかったものの、溶接の熱影響を受け組織が変化した部分(熱影響部:HAZ)を指し、母材部とは、溶接の熱影響を受けていない(溶接前と組織が変化していない)部分(溶接部を除く部分)を指す。
Hereinafter, a box pillar according to an embodiment of the present invention (a box pillar according to the present embodiment) will be described.
The box pillar according to the present embodiment is a box in which a diaphragm made of a second steel plate is fixed via a welded portion inside a box-shaped cross-section pillar (pillar trunk) made of a skin plate made of a first steel plate. It is a pillar.
Further, as will be described later, the first steel sheet has a predetermined chemical composition, a predetermined plate thickness, and a predetermined mechanical property.
In the box column in the present embodiment, the welded portion is a portion that has been once melted and solidified by welding (welded metal portion) and a portion that has not been melted by welding but whose structure has changed due to the heat of welding (heat). Affected zone: HAZ), and the base metal portion refers to a portion (a portion excluding the welded portion) that is not affected by the heat of welding (the structure has not changed from that before welding).
<第1の鋼板>
(化学組成)
 第1の鋼板の化学組成(母材部の化学組成)について説明する。
 以下、化学組成に関する%は、断りがない限り質量%である。
<First steel plate>
(Chemical composition)
The chemical composition of the first steel sheet (chemical composition of the base material portion) will be described.
Hereinafter,% regarding the chemical composition is mass% unless otherwise specified.
 C :0.03%以上、0.18%以下
 Cは、鋼の焼入れ性を高めて高強度化に寄与する元素である。この効果を得るため、C含有量は0.03%以上とする。
 一方、セメンタイトの過度な生成を防止して靱性を確保するという観点から、C含有量は0.18%以下とする。C含有量は、好ましくは0.17%以下であり、より好ましくは0.16%以下である。
C: 0.03% or more and 0.18% or less C is an element that enhances the hardenability of steel and contributes to high strength. In order to obtain this effect, the C content is 0.03% or more.
On the other hand, from the viewpoint of preventing excessive formation of cementite and ensuring toughness, the C content is set to 0.18% or less. The C content is preferably 0.17% or less, more preferably 0.16% or less.
 Mn:0.3%以上、1.4%未満
 Mnは、鋼の焼入れ性を高めて高強度化に寄与する元素である。この効果を得るため、Mn含有量は0.3%以上とする。
 一方、Mn含有量が過度に増加すると、大入熱HAZのMAが増加し、靱性が著しく劣化する。そのため、Mn含有量は1.4%未満とする。Mn含有量は、好ましくは1.3%以下であり、より好ましくは1.2%以下であり、さらに好ましくは1.1%以下である。
Mn: 0.3% or more and less than 1.4% Mn is an element that enhances the hardenability of steel and contributes to high strength. In order to obtain this effect, the Mn content is set to 0.3% or more.
On the other hand, if the Mn content is excessively increased, the MA of the large heat-affected zone HAZ increases, and the toughness is significantly deteriorated. Therefore, the Mn content is set to less than 1.4%. The Mn content is preferably 1.3% or less, more preferably 1.2% or less, still more preferably 1.1% or less.
 Ni:1.0%以上、7.0%以下
 Niは、鋼の焼入れ性を高めて高強度化に寄与する元素であり、同時に、大入熱HAZの靱性を高める元素でもある。強度および靭性を確保するという観点から、Ni含有量は1.0%以上とする。Ni含有量は、好ましくは1.2%以上であり、より好ましくは1.4%以上であり、さらに好ましくは1.5%以上である。
 一方、Niは高価な元素であり、製造コストの上昇を抑制するという観点から、Ni含有量は7.0%以下とする。
Ni: 1.0% or more, 7.0% or less Ni is an element that enhances the hardenability of steel and contributes to high strength, and at the same time, it is also an element that enhances the toughness of high heat input HAZ. From the viewpoint of ensuring strength and toughness, the Ni content is 1.0% or more. The Ni content is preferably 1.2% or more, more preferably 1.4% or more, still more preferably 1.5% or more.
On the other hand, Ni is an expensive element, and the Ni content is 7.0% or less from the viewpoint of suppressing an increase in manufacturing cost.
 Mn及びNiの含有量の比であるMn/Ni:0.80以下
 Mn及びNiはともに鋼の高強度化に寄与する元素であるが、大入熱HAZにおいて、MnはNiに比べてMAの生成を促進しやすい。そのため、Mn含有量はNi含有量よりも少ないことが好ましい。大入熱HAZの高強度化を図りつつ靱性を確保するという観点から、本実施形態に係るボックス柱が備える第1の鋼板において、鋼中のMn含有量をNi含有量で除した比であるMn/Niは0.80以下とする。Mn/Niは、好ましくは0.70以下であり、より好ましくは0.60以下である。Mn/Niは、Mn含有量の下限をNi含有量の上限で除した比を下限としてもよく、すなわち、0.17以上であってもよい。Mn/Niは0.20以上であってもよい。
Mn / Ni: 0.80 or less, which is the ratio of the contents of Mn and Ni. Both Mn and Ni are elements that contribute to increasing the strength of steel. Easy to accelerate production. Therefore, the Mn content is preferably smaller than the Ni content. From the viewpoint of ensuring toughness while increasing the strength of the large heat-affected zone HAZ, it is the ratio obtained by dividing the Mn content in the steel by the Ni content in the first steel plate provided in the box column according to the present embodiment. Mn / Ni is 0.80 or less. Mn / Ni is preferably 0.70 or less, more preferably 0.60 or less. The lower limit of Mn / Ni may be the ratio obtained by dividing the lower limit of the Mn content by the upper limit of the Ni content, that is, it may be 0.17 or more. Mn / Ni may be 0.20 or more.
 Al:0.005%以上、0.20%以下
 Alは、脱酸元素として重要である。また、Alは、Bを添加する際は、AlNを形成してNを固定することで、BNの析出を抑制して、鋼の焼入れ性に有効な固溶Bを確保するために含有させる、重要な元素である。この効果を発揮させるため、本実施形態においてAl含有量は0.005%以上とする。好ましくは0.01%以上である。
 一方、Al含有量が過剰になると、破壊起点となり靭性を低下させる粗大なアルミ系酸化物が生成する。このような粗大なアルミ系酸化物の生成を抑制するという観点から、Al含有量は0.20%以下とする。Al含有量は、好ましくは0.18%以下であり、より好ましくは0.16%以下であり、さらに好ましくは0.15%以下である。
Al: 0.005% or more and 0.20% or less Al is important as a deoxidizing element. Further, when adding B, Al is contained in order to suppress the precipitation of BN and secure a solid solution B effective for hardenability of steel by forming AlN and fixing N. It is an important element. In order to exert this effect, the Al content is 0.005% or more in this embodiment. It is preferably 0.01% or more.
On the other hand, when the Al content becomes excessive, a coarse aluminum oxide that becomes a fracture starting point and lowers toughness is produced. From the viewpoint of suppressing the formation of such a coarse aluminum oxide, the Al content is 0.20% or less. The Al content is preferably 0.18% or less, more preferably 0.16% or less, still more preferably 0.15% or less.
 Si:0.30%以下
 Siは、脱酸や強度確保のために鋼に含有される場合があるが、MAの生成を促進させる元素でもある。本発明者らが、MAに及ぼすSiの有害性について検討した結果、大入熱HAZのミクロ偏析部におけるMA生成にSiが極めて大きな影響を及ぼすことを確認した。したがって、大入熱HAZの靭性を確保するため、Si含有量は0.30%以下とする。Si含有量は、好ましくは0.25%以下であり、より好ましくは0.20%以下であり、さらに好ましくは0.15%以下である。Si含有量の下限は特に限定されないので0%でもよいが、製造コストの観点からSi含有量は0.01%以上としてもよい。
Si: 0.30% or less Si may be contained in steel for deoxidation and ensuring strength, but it is also an element that promotes the formation of MA. As a result of investigating the harmfulness of Si on MA, the present inventors confirmed that Si has an extremely large effect on MA formation in the microsegregated portion of the large heat input HAZ. Therefore, in order to secure the toughness of the large heat-affected zone HAZ, the Si content is set to 0.30% or less. The Si content is preferably 0.25% or less, more preferably 0.20% or less, still more preferably 0.15% or less. Since the lower limit of the Si content is not particularly limited, it may be 0%, but the Si content may be 0.01% or more from the viewpoint of manufacturing cost.
 本実施形態に係るボックス柱の第1の鋼板の化学組成は、上記の元素を含み、残部が鉄(Fe)及び不純物であってもよいが、強度や靭性を向上させるため、必要に応じて、Feの一部に替えて、下記に示す選択元素、B、Ti、Cu、Cr、Mo、W、Co、Nb、V、Ca、Mg、REM、Zrからなる群から選択される1種又は2種以上、を含有させてもよい。しかしながら、これらの元素は、必ずしも含む必要がないので、下限は0%である。また、これらの元素が、原料やスクラップ等から不純物として鋼板に混入したとしても、後述する範囲であれば、顕著な悪影響はない。 The chemical composition of the first steel plate of the box column according to the present embodiment may contain the above elements and the balance may be iron (Fe) and impurities, but in order to improve strength and toughness, it may be necessary. , One selected from the group consisting of the following selective elements, B, Ti, Cu, Cr, Mo, W, Co, Nb, V, Ca, Mg, REM, Zr, instead of a part of Fe. Two or more kinds may be contained. However, since these elements do not necessarily have to be contained, the lower limit is 0%. Further, even if these elements are mixed into the steel sheet as impurities from raw materials, scraps, etc., there is no significant adverse effect as long as they are within the range described later.
 B :0%以上、0.0050%以下
 Bは、微量の含有であっても鋼の焼入れ性を顕著に向上させる元素であり、炭素当量CEWESを制限しつつ、鋼の焼入れ性を確保する場合に有効な元素である。上記効果を得るために、B含有量を0.0003%以上としてもよい。
 一方、B含有量が過剰であると、大入熱HAZの靱性や溶接性が劣化する。そのため、含有させる場合でも、B含有量は0.0050%以下とする。
B: 0% or more and 0.0050% or less B is an element that significantly improves the hardenability of steel even if it is contained in a small amount, and when the hardenability of steel is ensured while limiting the carbon equivalent CEWES. It is an effective element for. In order to obtain the above effect, the B content may be 0.0003% or more.
On the other hand, if the B content is excessive, the toughness and weldability of the large heat-affected zone HAZ deteriorate. Therefore, even when it is contained, the B content is 0.0050% or less.
 Ti:0%以上、0.035%以下
 Tiは、母材の強度上昇や細粒化に有効な元素である。Ti含有量は0%であってもよいが、上記効果を得るため、Ti含有量を0.005%以上としてもよい。
 一方、Ti含有量が過剰であると、粗大なTiNが靱性に悪影響を及ぼすことが懸念される。そのため、含有させる場合でも、Ti含有量は0.035%以下とする。
Ti: 0% or more, 0.035% or less Ti is an element effective for increasing the strength of the base metal and granulating it. The Ti content may be 0%, but in order to obtain the above effect, the Ti content may be 0.005% or more.
On the other hand, if the Ti content is excessive, there is a concern that the coarse TiN adversely affects the toughness. Therefore, even when it is contained, the Ti content is 0.035% or less.
 Cu:0%以上、2.0%以下
 Cuは、溶接性やHAZの靱性に対する悪影響が小さく、母材の強度や靱性を向上させる元素でもある。Cu含有量は0%であってもよいが、上記効果を得るため、Cu含有量を0.1%以上としてもよい。
 一方、Cu含有量が過剰になると、鋼板の熱間圧延時におけるCuクラックが発生したり、大入熱HAZの靱性や溶接性が劣化したりする。そのため、含有させる場合でも、Cu含有量は2.0%以下とする。
Cu: 0% or more, 2.0% or less Cu has a small adverse effect on weldability and HAZ toughness, and is also an element that improves the strength and toughness of the base metal. The Cu content may be 0%, but in order to obtain the above effect, the Cu content may be 0.1% or more.
On the other hand, when the Cu content becomes excessive, Cu cracks occur during hot rolling of the steel sheet, and the toughness and weldability of the large heat-affected zone HAZ deteriorate. Therefore, even when it is contained, the Cu content is set to 2.0% or less.
 Cr:0%以上、2.0%以下
 Crは、母材の強度を向上させる元素である。Cr含有量は0%であってもよいが、上記効果を得るため、Cr含有量を0.1%以上としてもよい。
 一方、Cr含有量が過剰になると、大入熱HAZの靱性や溶接性が劣化する。そのため、含有させる場合でも、Cr含有量は2.0%以下とする。
Cr: 0% or more, 2.0% or less Cr is an element that improves the strength of the base metal. The Cr content may be 0%, but in order to obtain the above effect, the Cr content may be 0.1% or more.
On the other hand, if the Cr content becomes excessive, the toughness and weldability of the large heat-affected zone HAZ deteriorate. Therefore, even when it is contained, the Cr content is set to 2.0% or less.
 Mo:0%以上、2.0%以下
 Moは、母材の強度及び靱性を向上させる元素である。Mo含有量は0%であってもよいが、上記効果を得るため、Mo含有量を0.1%以上としてもよい。
 一方、Mo含有量が過剰になると、大入熱HAZの靱性や溶接性が劣化したり、合金コストが上昇したりする。そのため、含有させる場合でも、Mo含有量は2.0%以下とする。
Mo: 0% or more, 2.0% or less Mo is an element that improves the strength and toughness of the base metal. The Mo content may be 0%, but in order to obtain the above effect, the Mo content may be 0.1% or more.
On the other hand, when the Mo content becomes excessive, the toughness and weldability of the large heat-affected zone HAZ deteriorate, and the alloy cost increases. Therefore, even when it is contained, the Mo content is set to 2.0% or less.
 W :0%以上、1.0%以下
 Wは、母材の強度及び靱性を向上させる元素である。W含有量は0%であってもよいが、上記効果を得るため、W含有量を0.1%以上としてもよい。
 一方、W含有量が過剰になると、大入熱HAZの靱性や溶接性が劣化したり、合金コストが上昇したりする。そのため、含有させる場合でも、W含有量は1.0%以下とする。W含有量は、好ましくは0.5%以下である。
W: 0% or more, 1.0% or less W is an element that improves the strength and toughness of the base metal. The W content may be 0%, but in order to obtain the above effect, the W content may be 0.1% or more.
On the other hand, when the W content becomes excessive, the toughness and weldability of the large heat-affected zone HAZ deteriorate, and the alloy cost increases. Therefore, even when it is contained, the W content is 1.0% or less. The W content is preferably 0.5% or less.
 Co:0%以上、1.0%以下
 Coは、溶接性やHAZの靱性に対する悪影響が小さく、母材の強度や靱性を向上させる元素である。Co含有量は0%であってもよいが、上記効果を得るため、Co含有量を0.1%以上としてもよい。
 一方で、Co含有量が過剰になると、上記効果が飽和する上、合金コストが上昇する。そのため、含有させる場合でも、Co含有量は1.0%以下とする。Co含有量は、好ましくは0.5%以下である。
Co: 0% or more, 1.0% or less Co is an element that has little adverse effect on weldability and toughness of HAZ and improves the strength and toughness of the base metal. The Co content may be 0%, but the Co content may be 0.1% or more in order to obtain the above effects.
On the other hand, when the Co content becomes excessive, the above effects are saturated and the alloy cost increases. Therefore, even when it is contained, the Co content is 1.0% or less. The Co content is preferably 0.5% or less.
 Nb:0%以上、0.10%以下
 Nbは、母材の強度、靱性を向上させる元素でもある。Nb含有量は0%であってもよいが、上記効果を得るため、Nb含有量を0.005%以上、または0.01%以上としてもよい。
 一方、Nb含有量が過剰になると、大入熱HAZの靱性や溶接性が劣化する。そのため、含有させる場合でも、Nb含有量は0.10%以下とする。Nb含有量は、好ましくは0.05%以下であり、より好ましくは0.03%以下である。
Nb: 0% or more and 0.10% or less Nb is also an element that improves the strength and toughness of the base metal. The Nb content may be 0%, but in order to obtain the above effect, the Nb content may be 0.005% or more, or 0.01% or more.
On the other hand, if the Nb content becomes excessive, the toughness and weldability of the large heat-affected zone HAZ deteriorate. Therefore, even when it is contained, the Nb content is set to 0.10% or less. The Nb content is preferably 0.05% or less, more preferably 0.03% or less.
 V :0%以上、0.10%以下
 Vは、鋼の母材部の強度を向上させる元素である。V含有量は0%であってもよいが、上記効果を得るため、V含有量を0.005%以上、または0.01%以上としてもよい。
 一方、V含有量が過剰になると、大入熱HAZの靱性や溶接性が劣化する。そのため、含有させる場合でもV含有量は0.10%以下とする。V含有量は、好ましくは0.08%以下であり、より好ましくは0.06%以下である。
V: 0% or more, 0.10% or less V is an element that improves the strength of the base metal part of the steel. The V content may be 0%, but in order to obtain the above effect, the V content may be 0.005% or more, or 0.01% or more.
On the other hand, when the V content becomes excessive, the toughness and weldability of the large heat-affected zone HAZ deteriorate. Therefore, the V content is 0.10% or less even when it is contained. The V content is preferably 0.08% or less, more preferably 0.06% or less.
 Ca:0%以上、0.005%以下
 Caは、酸化物や硫化物、酸硫化物を形成して粗大介在物の生成を抑制し、母材及びHAZの靱性を高める元素である。Ca含有量は0%であってもよいが、上記効果を得るため、Ca含有量を0.0001%以上または0.001%以上としてもよい。
 一方、Ca含有量が過剰になると、脆性破壊の発生起点として作用する恐れがあるCa系介在物が増加する。そのため、含有させる場合でも、Ca含有量は0.005%以下とする。Ca含有量は、好ましくは0.004%以下である。
Ca: 0% or more, 0.005% or less Ca is an element that forms oxides, sulfides, and acid sulfides to suppress the formation of coarse inclusions and enhance the toughness of the base material and HAZ. The Ca content may be 0%, but in order to obtain the above effect, the Ca content may be 0.0001% or more or 0.001% or more.
On the other hand, when the Ca content becomes excessive, Ca-based inclusions that may act as a starting point for brittle fracture increase. Therefore, even when it is contained, the Ca content is 0.005% or less. The Ca content is preferably 0.004% or less.
 Mg:0%以上、0.005%以下
 Mgは、Caと同様に酸化物や硫化物、酸硫化物を形成して粗大介在物の生成を抑制し、母材及びHAZの靱性を高める元素である。Mg含有量は0%であってもよいが、上記効果を得るため、Mg含有量を0.0001%以上または0.001%以上としてもよい。
 一方、Mg含有量が過剰になると、脆性破壊の発生起点として作用する恐れがあるMg系介在物が増加する。そのため、含有させる場合でも、Mg含有量は0.005%以下とする。Mg含有量は、好ましくは0.003%以下である。
Mg: 0% or more, 0.005% or less Mg is an element that forms oxides, sulfides, and acid sulfides like Ca to suppress the formation of coarse inclusions and enhance the toughness of the base metal and HAZ. be. The Mg content may be 0%, but in order to obtain the above effect, the Mg content may be 0.0001% or more or 0.001% or more.
On the other hand, when the Mg content becomes excessive, the amount of Mg-based inclusions that may act as a starting point for brittle fracture increases. Therefore, even when it is contained, the Mg content is set to 0.005% or less. The Mg content is preferably 0.003% or less.
 REM:0%以上、0.005%以下
 REMは、CaやMgと同様に、酸化物、硫化物、酸硫化物を形成して粗大介在物の生成を抑制し、母材及びHAZの靱性を高める元素である。REM含有量は0%であってもよいが、上記効果を得るため、REM含有量を0.0001%以上または0.001%以上としてもよい。
 一方、REM含有量が過剰になると、脆性破壊の発生起点として作用する恐れがあるREM系介在物が増加する。そのため、含有させる場合でも、REM含有量は0.005%以下とする。REM含有量は、好ましくは0.003%以下である。
 REM(希土類元素)とは、Sc、Yの2元素と、La、CeやNdなどのランタノイド15元素との総称を意味する。本実施形態でいうREMとは、これら希土類元素から選択される1種以上で構成されるものであり、以下に説明するREM含有量とは、希土類元素の含有量の合計量である。
REM: 0% or more, 0.005% or less REM, like Ca and Mg, forms oxides, sulfides, and acid sulfides to suppress the formation of coarse inclusions, and improves the toughness of the base metal and HAZ. It is an element that enhances. The REM content may be 0%, but in order to obtain the above effects, the REM content may be 0.0001% or more or 0.001% or more.
On the other hand, when the REM content becomes excessive, the amount of REM-based inclusions that may act as a starting point for brittle fracture increases. Therefore, even when it is contained, the REM content is 0.005% or less. The REM content is preferably 0.003% or less.
REM (rare earth element) is a general term for two elements, Sc and Y, and 15 lanthanoid elements such as La, Ce and Nd. The REM referred to in the present embodiment is composed of one or more selected from these rare earth elements, and the REM content described below is the total amount of the rare earth elements.
 Zr:0%以上、0.005%以下
 Zrは、CaやMgやREMと同様に、酸化物、硫化物、酸硫化物を形成して粗大介在物の生成を抑制し、母材及びHAZの靱性を高める元素である。Zr含有量は0%であってもよいが、上記効果を得るため、Zr含有量を0.0001%以上としてもよい。
 一方、Zr含有量が過剰になると、脆性破壊の発生起点として作用する恐れがあるZr系介在物が増加する。そのため、含有させる場合でも、Zr含有量を0.005%以下とする。Zr含有量は、好ましくは0.003%以下である。
Zr: 0% or more, 0.005% or less Zr, like Ca, Mg and REM, forms oxides, sulfides and acid sulfides to suppress the formation of coarse inclusions, and the base material and HAZ. It is an element that enhances toughness. The Zr content may be 0%, but in order to obtain the above effect, the Zr content may be 0.0001% or more.
On the other hand, when the Zr content becomes excessive, the amount of Zr-based inclusions that may act as a starting point for brittle fracture increases. Therefore, even when it is contained, the Zr content is set to 0.005% or less. The Zr content is preferably 0.003% or less.
 本実施形態に係るボックス柱の第1の鋼板の化学組成の残部は、鉄(Fe)及び不純物である。不純物とは、鋼材を工業的に製造する際に、鉱石、スクラップ等の原料やその他の要因により混入する成分であって、本実施形態に係るボックス柱の特性に悪影響を与えない範囲で許容されるものを意味する。
 ただし、不純物のうち、特にP、S、O、Nについては後述のように含有量の上限が制限される。
The balance of the chemical composition of the first steel plate of the box pillar according to the present embodiment is iron (Fe) and impurities. Impurities are components that are mixed in by raw materials such as ore and scrap and other factors when steel materials are industrially manufactured, and are allowed as long as they do not adversely affect the characteristics of the box pillars according to the present embodiment. Means something.
However, among impurities, especially for P, S, O, and N, the upper limit of the content is limited as described later.
 P :0.015%以下
 Pは、靭性に有害な不純物である。P含有量は、大入熱HAZの靱性を安定的に確保するために制限する必要があり、本実施形態では、0.015%以下である。P含有量は、好ましくは0.010%以下であり、より好ましくは0.008%以下である。P含有量の下限は限定されないが、製造コストの観点から、P含有量は0.001%以上であってもよい。また、Pは、靭性に有害な不純物であるが、大入熱HAZの焼入れ性を高めて、結晶粒径を細粒化させ、大入熱HAZの靭性を向上させる効果がある。該効果を得る観点から、P含有量を0.003%以上としてもよい。
P: 0.015% or less P is an impurity harmful to toughness. The P content needs to be limited in order to stably secure the toughness of the large heat-affected zone, and is 0.015% or less in this embodiment. The P content is preferably 0.010% or less, more preferably 0.008% or less. The lower limit of the P content is not limited, but the P content may be 0.001% or more from the viewpoint of manufacturing cost. Further, although P is an impurity harmful to toughness, it has the effect of enhancing the hardenability of the large heat-affected zone HAZ, making the crystal grain size finer, and improving the toughness of the large heat-affected zone HAZ. From the viewpoint of obtaining the effect, the P content may be 0.003% or more.
 S :0.005%以下
 Sは、不純物であり、多量に含有すると粗大な介在物を形成して靭性を低下させる場合がある。したがって、大入熱HAZの靱性を安定的に確保するために、S含有量は0.005%以下に制限する。S含有量の下限は特に限定されず0%でもよいが、製造コストの観点からS含有量は0.0001%以上または0.001%以上であってもよい。
S: 0.005% or less S is an impurity, and if it is contained in a large amount, it may form coarse inclusions and reduce toughness. Therefore, in order to stably secure the toughness of the large heat-affected zone HAZ, the S content is limited to 0.005% or less. The lower limit of the S content is not particularly limited and may be 0%, but the S content may be 0.0001% or more or 0.001% or more from the viewpoint of manufacturing cost.
 O :0.0060%以下
 Oは、不純物であり、酸化物を形成する元素である。OとAlとが結合して生成する粗大なアルミ系酸化物が大入熱HAZのミクロ偏析部に重畳して存在すると、破壊起点として作用し、靭性が極めて低くなる。そのため、O含有量は0.0060%以下とする。O含有量は少ない方が望ましく、0%であってもよいが、製造コストの観点から、本実施形態では、O含有量は0.0001%以上であってもよい。
O: 0.0060% or less O is an impurity and an element forming an oxide. When a coarse aluminum oxide generated by combining O and Al is superimposed on the microsegregated zone of the large heat-affected zone, it acts as a fracture starting point and the toughness becomes extremely low. Therefore, the O content is set to 0.0060% or less. It is desirable that the O content is low, and it may be 0%, but from the viewpoint of manufacturing cost, the O content may be 0.0001% or more in this embodiment.
 N :0.0100%以下
 Nは、窒化物を形成する元素である。N含有量が過剰になるとBNが生成して焼入れ性向上に寄与する固溶B量が大幅に低下したり、粗大な窒化物が形成されて靭性が低下する。粗大な窒化物の形成の抑制、及び、BNの形成を抑制して焼入れ性を確保するという観点から、N含有量は0.0100%以下とする。N含有量は、好ましくは0.0080%以下であり、より好ましくは0.0060%以下である。
 N含有量は少ないほうが望ましいが、製造コストの観点から、N含有量は0.0001%以上であってもよく、0.0020%以上であってもよい。
N: 0.0100% or less N is an element that forms a nitride. When the N content becomes excessive, BN is generated and the amount of solid solution B that contributes to the improvement of hardenability is significantly reduced, or coarse nitrides are formed and the toughness is lowered. From the viewpoint of suppressing the formation of coarse nitrides and suppressing the formation of BN to ensure hardenability, the N content is 0.0100% or less. The N content is preferably 0.0080% or less, more preferably 0.0060% or less.
It is desirable that the N content is low, but from the viewpoint of manufacturing cost, the N content may be 0.0001% or more, or 0.0020% or more.
 炭素当量CEWESが0.430%以上、0.900%以下
 本実施形態に係るボックス柱の第1の鋼板では、各元素の含有量を上記の通りに制御した上で、さらに、炭素当量CEWESを0.430%以上、0.900%以下とする。炭素当量CEWESは、鋼板(母材)の強度及びHAZの硬さに影響を及ぼす焼入れ性の指標である。第1の鋼板の強度を確保するために、本実施形態では、炭素当量CEWESは0.430%以上とする。炭素当量CEWESは、好ましくは0.440%以上であり、より好ましくは0.450%以上、さらに好ましくは0.500%以上である。
 一方、炭素当量CEWESが0.900%を超えると大入熱HAZがマルテンサイトとなり、大入熱HAZの靱性が低下する。そのため、CEWESは0.900%以下とする。炭素当量CEWESは、好ましくは0.800%以下であり、より好ましくは0.700%以下である。
 炭素当量CEWESは、合金元素の含有量を用いて下記の(1)式で計算される。
 CEWES=C+Mn/6+Si/24+Ni/40+Cr/5+Mo/4+V/14・・・(1)
 ここで、(1)式中の、C、Mn、Si、Ni、Cr、Mo、Vは各元素の含有量[質量%]であり、含有しない元素の項には0を代入する。
Carbon equivalent CEWES is 0.430% or more and 0.900% or less In the first steel plate of the box column according to the present embodiment, the content of each element is controlled as described above, and then the carbon equivalent CEWES is further applied. It shall be 0.430% or more and 0.900% or less. The carbon equivalent CEWES is an index of hardenability that affects the strength of the steel sheet (base material) and the hardness of HAZ. In order to secure the strength of the first steel sheet, the carbon equivalent CEWES is 0.430% or more in this embodiment. The carbon equivalent CEWES is preferably 0.440% or more, more preferably 0.450% or more, still more preferably 0.500% or more.
On the other hand, when the carbon equivalent CEWES exceeds 0.900%, the large heat-affected zone becomes martensite, and the toughness of the large heat-affected zone decreases. Therefore, CEWES is set to 0.900% or less. The carbon equivalent CEWES is preferably 0.800% or less, more preferably 0.700% or less.
The carbon equivalent CEWES is calculated by the following equation (1) using the content of alloying elements.
CEWES = C + Mn / 6 + Si / 24 + Ni / 40 + Cr / 5 + Mo / 4 + V / 14 ... (1)
Here, C, Mn, Si, Ni, Cr, Mo, and V in the formula (1) are the content [mass%] of each element, and 0 is substituted for the term of the element not contained.
(ミクロ組織)
 本実施形態に係るボックス柱の第1の鋼板の溶接部では、EBSDによって測定される平均粒径が250μm以下であることが好ましい。
 上記平均粒径が、250μm以下であることで、第1の鋼板の溶接部の靭性が向上する。
 第1の鋼板の溶接部の平均粒径は、TiNのピンニング効果による結晶粒成長の抑制や、CEWESの調整による焼入れ性の調整等によって達成することができる。
(Micro organization)
In the welded portion of the first steel plate of the box column according to the present embodiment, the average particle size measured by EBSD is preferably 250 μm or less.
When the average particle size is 250 μm or less, the toughness of the welded portion of the first steel sheet is improved.
The average particle size of the welded portion of the first steel sheet can be achieved by suppressing crystal grain growth by the pinning effect of TiN, adjusting the hardenability by adjusting CEWES, and the like.
 溶接部の平均結晶粒径は、エレクトロスラグ溶接継手のL断面において、FLからHAZ側0.5mmまでの範囲(FL~FL+0.5mmの範囲)を、EBSD(電子線後方散乱回折装置)を用いて結晶方位を測定し、結晶粒界を15°大角粒界(結晶方位差が15°以上の大角粒界)と定義したとき、円相当直径1.0μm超の結晶粒の中で、円相当直径が上位0.2%以内の結晶粒の円相当直径を平均した値とする。その際、測定エリアは0.5mm×0.5mm、測定ピッチは最大で1.0μmとする。 The average crystal grain size of the welded portion is in the range from FL to HAZ side 0.5 mm (FL to FL + 0.5 mm range) in the L cross section of the electroslag welded joint, using an EBSD (electron backscatter diffraction device). When the crystal orientation is measured and the grain boundary is defined as a 15 ° large-angle grain boundary (a large-angle grain boundary with a crystal orientation difference of 15 ° or more), it is equivalent to a circle among crystal grains with a circle-equivalent diameter of more than 1.0 μm. The average value is the circle-equivalent diameter of the crystal grains whose diameter is within the upper 0.2%. At that time, the measurement area is 0.5 mm × 0.5 mm, and the measurement pitch is 1.0 μm at the maximum.
 また、本実施形態に係るボックス柱の溶接部では、靭性確保の点から、MAの面積率が小さい方が好ましく、MAの面積率が3.0%以下であることが好ましい。
 MA以外の組織については限定されないが、強度、靭性を確保する点から、ベイナイト組織主体で一部にフェライトやマルテンサイトが存在する混合組織であることが好ましい。
 MA面積率は、Mn/Niの調整等によって達成することができる。
Further, in the welded portion of the box column according to the present embodiment, from the viewpoint of ensuring toughness, it is preferable that the area ratio of MA is small, and the area ratio of MA is preferably 3.0% or less.
The structure other than MA is not limited, but from the viewpoint of ensuring strength and toughness, a mixed structure mainly composed of bainite structure and partially containing ferrite and martensite is preferable.
The MA area ratio can be achieved by adjusting Mn / Ni or the like.
 MA(Martensite-Austenite Constituent)の面積率は、平均結晶粒径を測定した試料と同じ断面で、レペラーエッチングによってMAを現出させ、倍率500倍の光学顕微鏡像を撮影した後、画像解析などの手法により求める。面積率を測定する方法として、例えば、撮影した光学顕微鏡像を画像処理により、白く見える部分とそれ以外の部分とを分離し、白く見える部分の面積率をMAの面積率として測定する方法がある。 The area ratio of MA (Martensite-Austenite Constant) is the same cross section as the sample for which the average crystal grain size was measured, MA is revealed by repeater etching, an optical microscope image with a magnification of 500 times is taken, and then image analysis, etc. It is obtained by the method of. As a method of measuring the area ratio, for example, there is a method of separating the part that looks white from the other part by image processing of the captured optical microscope image and measuring the area ratio of the part that looks white as the area ratio of MA. ..
(機械的特性、板厚)
 引張強度:780MPa以上、930MPa以下
 降伏強度:630MPa以上、750MPa以下
 降伏比:85%以下
 板厚:40mm以上、120mm以下
 建築物の大型化、建造の高能率化、安全性の向上に伴い、溶接構造物用の厚鋼板及びその厚鋼板を用いて製造されるボックス柱に対する要求が高度化している。本実施形態に係るボックス柱では、これらの要求に応えるため、第1の鋼板において、板厚は40mm以上、120mm以下、降伏強度は630MPa以上、750MPa以下、引張強度は780MPa以上、930MPa以下とする。また、耐震性の観点から、本実施形態に係るボックス柱の第1の鋼板の降伏比は85%以下とする。降伏比の下限は限定されないが、例えば、降伏比は70%以上であってもよい。
(Mechanical characteristics, plate thickness)
Tensile strength: 780 MPa or more, 930 MPa or less Yield strength: 630 MPa or more, 750 MPa or less Yield ratio: 85% or less Plate thickness: 40 mm or more, 120 mm or less With the increase in size of buildings, higher efficiency of construction, and improvement of safety, welding The demand for thick steel plates for structures and box columns manufactured using the thick steel plates is increasing. In the box column according to the present embodiment, in order to meet these requirements, the plate thickness of the first steel plate is 40 mm or more and 120 mm or less, the yield strength is 630 MPa or more and 750 MPa or less, and the tensile strength is 780 MPa or more and 930 MPa or less. .. Further, from the viewpoint of earthquake resistance, the yield ratio of the first steel plate of the box pillar according to the present embodiment is 85% or less. The lower limit of the yield ratio is not limited, but for example, the yield ratio may be 70% or more.
 第1の鋼板の機械的特性は、鋼板の表面から板厚の1/4の位置から採取したJIS4号の引張試験片を準備し、この2本の試験片に対し、JIS Z 2241:2011に準拠して、引張試験を行うことで得られる。降伏強度YS(0.2%降伏強度)及び引張強度TSは、それぞれ、2本の試験片の平均値である。YR(降伏比)は、TSに対するYSの割合であり、百分率、すなわち、100×(YS/TS)で表される。YR(降伏比)の単位は%である。 For the mechanical properties of the first steel sheet, JIS No. 4 tensile test pieces taken from the surface of the steel sheet at a position of 1/4 of the plate thickness were prepared, and JIS Z 2241: 2011 was applied to these two test pieces. Obtained by conducting a tensile test in accordance with this. The yield strength YS (0.2% yield strength) and the tensile strength TS are the average values of the two test pieces, respectively. YR (yield ratio) is the ratio of YS to TS and is expressed as a percentage, that is, 100 × (YS / TS). The unit of YR (yield ratio) is%.
<第2の鋼板>
 補強部材であるダイアフラムとして箱形断面柱(柱幹)の内部に固定される第2の鋼板については限定しないが、通常はYP440クラスの鋼板が用いられ、板厚が、40mm~70mm、TSが440~600MPaであることが好ましい。
<Second steel plate>
The second steel plate fixed inside the box-shaped cross-section column (column trunk) as the diaphragm as a reinforcing member is not limited, but usually a YP440 class steel plate is used, the plate thickness is 40 mm to 70 mm, and the TS is. It is preferably 440 to 600 MPa.
<溶接部>
 本実施形態に係るボックス柱では、建造の高能率化の観点から、少なくとも第1の鋼板(スキンプレート)と第2の鋼板(ダイアフラム)との溶接については、大入熱溶接であるエレクトロスラグ溶接(ESW)を適用することを前提とする。
 すなわち、第1の鋼板と第2の鋼板とは、エレクトロスラグ溶接によって形成された溶接部(エレクトロスラグ溶接部)を介して接合されている。
 本実施形態に係るボックス柱では、建造物の安全性の観点から、エレクトロスラグ溶接部のHAZにおけるシャルピー吸収エネルギー(試験温度:0℃)の平均値が27J以上である。
 好ましくは、エレクトロスラグ溶接部のHAZにおけるシャルピー吸収エネルギー(試験温度:0℃)の平均値が70J以上である
 ボックス柱において、エレクトロスラグ溶接を適用しない場合は、スキンプレートにエレクトロスラグ溶接に特徴的なスタート部とクレータ部の始終端処理が存在せず、ダイアフラム付近のスキンプレートに柱と柱を接合したときの溶接線が存在する。すなわち、エレクトロスラグ溶接を適用したかどうか(溶接部がエレクトロスラグ溶接部であるかどうか)は、スキンプレート表面の溶接線によって判断することができる。
<Welded part>
In the box column according to the present embodiment, from the viewpoint of high efficiency of construction, at least the welding of the first steel plate (skin plate) and the second steel plate (diaphragm) is electroslag welding, which is a large heat input welding. It is assumed that (ESW) is applied.
That is, the first steel plate and the second steel plate are joined via a welded portion (electroslag welded portion) formed by electroslag welding.
In the box pillar according to the present embodiment, from the viewpoint of the safety of the building, the average value of the Charpy absorption energy (test temperature: 0 ° C.) in the HAZ of the electroslag weld is 27J or more.
Preferably, in a box column in which the average value of the charpy absorption energy (test temperature: 0 ° C.) in the HAZ of the electroslag weld is 70 J or more, if electroslag welding is not applied, it is characteristic of electroslag welding on the skin plate. There is no start / end treatment for the start part and crater part, and there is a weld line when the pillars are joined to the skin plate near the diaphragm. That is, whether or not electroslag welding is applied (whether or not the welded portion is an electroslag welded portion) can be determined by the weld line on the surface of the skin plate.
 また、溶接部のHAZにおけるシャルピー吸収エネルギーは、以下の方法で測定する。
 ボックス柱において、図1A、図1Bに示すように、第2の鋼板(ダイアフラム2)は第1の鋼板(スキンプレート1)に対し溶接部を介して垂直方向に固定され、T字状の継手となる。そのため、試験片4は、第2の鋼板の板厚中心線に沿って溶接金属部3から溶融線(FL)を超えて第1の鋼板側のHAZを通過して第1の鋼板の内部側に至る部位から採取される。ノッチの位置は、HAZの中で最も靭性が低くなりやすい、FLの位置とし、3本の試験片を採取する。例えばノッチ位置をFLの位置とする場合、図1Aに示すように、試験片4とスキンプレート1とが直行する方向で採取する、または、図1Bに示すように、試験片4がスキンプレート1に対して斜めになるように試験片を採取してもよい。すなわち、図1Bのようにスキンプレート1の表面から板厚方向に6mmの線とFLとの交点がノッチの中央となるように試験片を採取してもよい。
 シャルピー衝撃試験は、JIS Z 2242:2018に準拠し、試験温度は0℃で行う。必要に応じて、-20℃で試験を行ってもよい。吸収エネルギー(KV2(0℃))は、測定された3本の試験片の吸収エネルギーの平均値(相加平均)とする。
The Charpy absorption energy in the HAZ of the weld is measured by the following method.
In the box column, as shown in FIGS. 1A and 1B, the second steel plate (diaphragm 2) is vertically fixed to the first steel plate (skin plate 1) via a welded portion, and is a T-shaped joint. Will be. Therefore, the test piece 4 passes from the weld metal portion 3 along the plate thickness center line of the second steel plate, crosses the melt line (FL), passes through the HAZ on the first steel plate side, and passes through the HAZ on the first steel plate side to the inner side of the first steel plate. It is collected from the part leading to. The position of the notch is the position of FL, which tends to have the lowest toughness in HAZ, and three test pieces are collected. For example, when the notch position is the FL position, the test piece 4 and the skin plate 1 are collected in the direction perpendicular to each other as shown in FIG. 1A, or the test piece 4 is the skin plate 1 as shown in FIG. 1B. The test piece may be collected so as to be slanted with respect to the subject. That is, as shown in FIG. 1B, the test piece may be collected so that the intersection of the line 6 mm in the plate thickness direction from the surface of the skin plate 1 and the FL is at the center of the notch.
The Charpy impact test conforms to JIS Z 2242: 2018, and the test temperature is 0 ° C. If necessary, the test may be performed at −20 ° C. The absorbed energy (KV2 (0 ° C.)) is the average value (arithmetic mean) of the absorbed energies of the three measured pieces.
<製造方法>
 次に本実施形態に係るボックス柱の製造方法について説明する。
 本実施形態に係るボックス柱は、
(I)溶接に供する第1の鋼板と第2の鋼板とを準備する工程(準備工程)と、
(II)第1の鋼板と第2の鋼板とをボックス柱に組み立てる工程(組立工程)と、を含む。
 以下、各工程について説明する。
<Manufacturing method>
Next, a method of manufacturing a box pillar according to the present embodiment will be described.
The box pillar according to this embodiment is
(I) A process (preparation process) for preparing the first steel sheet and the second steel sheet to be welded, and
(II) Includes a step of assembling the first steel plate and the second steel plate into a box pillar (assembly step).
Hereinafter, each step will be described.
(I)準備工程
 まず、ボックス柱のスキンプレートとなる第1の鋼板と、ダイアフラムとなる第2の鋼板とを準備する。
 第1の鋼板は、上述した化学組成、機械的特性を有していれば、限定されないが、例えば、以下の製造方法によって製造された鋼板を用いることができる。
(I) Preparation step First, a first steel plate to be a skin plate for a box pillar and a second steel plate to be a diaphragm are prepared.
The first steel sheet is not limited as long as it has the above-mentioned chemical composition and mechanical properties, and for example, a steel sheet manufactured by the following manufacturing method can be used.
(第1の鋼板の好ましい製造方法)
 上述した化学組成から構成され、連続鋳造法によって製造された厚み200mm以上の鋼片を製造する。この鋼片は、一旦、400℃以下に冷却された後、900℃以上、1250℃以下の温度域に加熱され、熱間圧延を施されて、板厚が40mm以上、120mm以下の鋼板が製造される。鋼板は、必要に応じて各種の熱処理が施される。
(Preferable manufacturing method of the first steel sheet)
A steel piece having a thickness of 200 mm or more, which is composed of the above-mentioned chemical composition and is manufactured by a continuous casting method, is manufactured. This piece of steel is once cooled to 400 ° C. or lower, then heated to a temperature range of 900 ° C. or higher and 1250 ° C. or lower, and subjected to hot rolling to produce a steel sheet having a plate thickness of 40 mm or higher and 120 mm or lower. Will be done. The steel sheet is subjected to various heat treatments as needed.
 連続鋳造後の鋼片は、400℃以下に冷却されずにホットチャージで加熱炉に装入されると、鋳造時に生成した粗大なγ組織が加熱後の鋼片にも残存し、鋼板の組織が十分に微細化せず低温靱性が劣化する場合がある。そのため、連続鋳造後の鋼片は、一旦、400℃以下まで冷却されることが好ましい。 When the steel pieces after continuous casting are charged into a heating furnace by hot charging without being cooled to 400 ° C. or lower, the coarse γ structure generated during casting remains in the steel pieces after heating, and the structure of the steel sheet. However, it may not be sufficiently refined and the low temperature toughness may deteriorate. Therefore, it is preferable that the steel pieces after continuous casting are once cooled to 400 ° C. or lower.
 鋼片の加熱温度は、鋳造後の鋼片に析出したBNを溶体化し、熱間圧延におけるTiNの形成を促進するために、好ましくは900℃以上である。加熱された鋼片中のNは、熱間圧延時にTiNを形成し、BNの生成が抑制される。その結果、鋼板において、鋼の焼入れ性を向上させる固溶B及び粒成長を抑制するTiNが十分に確保される。
 一方、鋼片の加熱温度は、γ粒の粗大化を抑制して、熱間圧延後の金属組織を微細化させて、低温靱性の劣化を抑制するという観点から、1250℃以下であることが好ましい。加熱温度は、より好ましくは1200℃以下である。
The heating temperature of the steel piece is preferably 900 ° C. or higher in order to dissolve the BN deposited on the steel piece after casting and promote the formation of TiN in hot rolling. N in the heated steel pieces forms TiN during hot rolling, and the formation of BN is suppressed. As a result, in the steel sheet, the solid solution B that improves the hardenability of the steel and the TiN that suppresses the grain growth are sufficiently secured.
On the other hand, the heating temperature of the steel pieces is 1250 ° C. or lower from the viewpoint of suppressing the coarsening of γ grains, refining the metal structure after hot rolling, and suppressing the deterioration of low temperature toughness. preferable. The heating temperature is more preferably 1200 ° C. or lower.
 熱間圧延後の鋼板は、直接焼入れ、または一旦空冷された後に、γ単相域への再加熱とこれに続く焼入れ(γ再加熱焼入れ)が施される。 The steel sheet after hot rolling is directly quenched or once air-cooled, and then reheated to the γ single phase region and subsequently quenched (γ reheat quenching).
 熱間圧延後に直接焼入れする場合は、熱間圧延の終了温度(仕上げ温度)は、オーステナイト(γ)単相域、すなわちフェライト変態が開始するAr変態点以上であることが好ましい。このとき、熱間圧延終了時に鋼板の表層部の温度がオーステナイト(γ)/フェライト(α)の二相域であっても、板厚方向中心部の温度がγ単相域であれば問題はない。熱間圧延の終了温度は、750℃以上であってもよい。熱間圧延の終了温度は、金属組織の微細化とういう観点から、好ましくは900℃以下である。本実施形態においては、Ar変態点は以下の(4)式によって求めることができる。 In the case of direct quenching after hot rolling, the end temperature (finishing temperature) of hot rolling is preferably the austenite (γ) single phase region, that is, the Ar 3 transformation point or higher at which the ferrite transformation starts. At this time, even if the temperature of the surface layer portion of the steel sheet is in the two-phase region of austenite (γ) / ferrite (α) at the end of hot rolling, there is no problem if the temperature of the central portion in the plate thickness direction is in the γ single phase region. No. The end temperature of hot rolling may be 750 ° C. or higher. The end temperature of hot rolling is preferably 900 ° C. or lower from the viewpoint of miniaturization of the metal structure. In the present embodiment, the Ar 3 transformation point can be obtained by the following equation (4).
 Ar変態点=868-396×C+24.6×Si-68.1×Mn-36.1×Ni-20.7×Cu-24.8×Cr+29.1×Mo … (4) Ar 3 transformation point = 868-396 × C + 24.6 × Si-68.1 × Mn-36.1 × Ni-20.7 × Cu-24.8 × Cr + 29.1 × Mo… (4)
 ここで、上記(4)式中のC、Si、Mn、Ni、Cu、Cr、Moは質量%で表した各元素の鋼板中の含有量であり、含有しない元素の項には0を代入する。 Here, C, Si, Mn, Ni, Cu, Cr, and Mo in the above equation (4) are the contents of each element expressed in mass% in the steel sheet, and 0 is substituted for the term of the element not contained. do.
 熱間圧延後に直接焼入れする場合は、熱間圧延をγ単相域で終え、鋼板の材質を調整するために、引き続き、水冷が施される。
 一方、熱間圧延後に空冷される場合、鋼板は、γ単相域への再加熱とこれに続く焼入れ(γ再加熱焼入れ)が施される。
In the case of direct quenching after hot rolling, hot rolling is finished in the γ single-phase region, and water cooling is continued in order to adjust the material of the steel sheet.
On the other hand, when the steel sheet is air-cooled after hot rolling, the steel sheet is reheated to the γ single phase region and subsequently quenched (γ reheat quenching).
 熱間圧延後、直接焼入れまたはγ再加熱焼入れが施された鋼板は、材質を調整するために、各種の熱処理が施される。具体的には、これらの焼入れ処理(直接焼入れまたはγ再加熱焼入れ)が施された鋼板は、降伏比を低下させるために、オーステナイト(γ)とフェライト(α)とが共存する二相域への再加熱とこれに続く焼入れ(二相域焼入れ)が施される。
 ここで、二相域とはAc変態点以上Ac変態点未満であり、Ac変態点及びAc変態点は、それぞれ、以下の(5)式及び(6)式によって求めることができる。
After hot rolling, the steel sheet that has been directly quenched or γ-reheat-quenched is subjected to various heat treatments in order to adjust the material. Specifically, the steel sheets subjected to these quenching treatments (direct quenching or γ reheating quenching) are moved to the two-phase region where austenite (γ) and ferrite (α) coexist in order to reduce the yield ratio. Reheating and subsequent quenching (two-phase region quenching) are performed.
Here, the two-phase region is the Ac 1 transformation point or more and less than the Ac 3 transformation point, and the Ac 1 transformation point and the Ac 3 transformation point can be obtained by the following equations (5) and (6), respectively. ..
 Ac変態点=750.8-26.6×C+17.6×Si-11.6×Mn-22.9×Cu-23.0×Ni+24.1×Cr+22.5×Mo-39.7×V-5.7×Ti+232.4×Nb-169.4×Al-894.7×B … (5)
 Ac変態点=910-203×√C+44.7×Si-30×Mn-400×Al-15.2×Ni+104×V+31.5×Mo+13.1×W+11×Cr+20×Cu-700×P-400×Ti … (6)
Ac 1 transformation point = 750.8-26.6 x C + 17.6 x Si-11.6 x Mn-22.9 x Cu-23.0 x Ni + 24.1 x Cr + 22.5 x Mo-39.7 x V -5.7 x Ti + 232.4 x Nb-169.4 x Al-894.7 x B ... (5)
Ac 3 transformation point = 910-203 x √C + 44.7 x Si-30 x Mn-400 x Al-15.2 x Ni + 104 x V + 31.5 x Mo + 13.1 x W + 11 x Cr + 20 x Cu-700 x P-400 x Ti ... (6)
 ここで、上記(5)式及び(6)式中のC、Si、Mn、Cu、Ni、Cr、Mo、V、Ti、Nb、Al、B、W、Pは、質量%で表した各元素の鋼板中の含有量であり、含有しない元素の項には0を代入する。 Here, C, Si, Mn, Cu, Ni, Cr, Mo, V, Ti, Nb, Al, B, W, and P in the above equations (5) and (6) are expressed in% by mass. It is the content of the element in the steel plate, and 0 is substituted for the term of the element that does not contain.
 さらに、鋼板の強度、降伏比、靱性を最終的に調整するために、鋼板は、焼戻しが施されてもよい。焼戻しを行う場合、焼戻し温度は350℃以上、600℃以下であることが好ましい。 Furthermore, the steel sheet may be tempered in order to finally adjust the strength, yield ratio, and toughness of the steel sheet. When tempering is performed, the tempering temperature is preferably 350 ° C. or higher and 600 ° C. or lower.
 ここで、上述した熱間圧延の仕上げ温度、γ再加熱焼入れ温度、二相域焼入れ温度、および焼戻し温度はすべて、板厚方向中心部での温度を指す。板厚方向中心部の温度は、放射温度計で測定した鋼板表面の温度から、伝熱計算によって求めることができる。 Here, the above-mentioned hot rolling finish temperature, γ reheating quenching temperature, two-phase region quenching temperature, and tempering temperature all refer to the temperature at the center in the plate thickness direction. The temperature of the central portion in the plate thickness direction can be obtained by heat transfer calculation from the temperature of the steel plate surface measured by a radiation thermometer.
 以上の製法(直接焼入れまたはγ再加熱焼入れ+二相域焼入れ+焼戻しを含む製法)によって第1の鋼板を製造することができる。 The first steel sheet can be manufactured by the above manufacturing method (manufacturing method including direct quenching or γ reheating quenching + two-phase region quenching + tempering).
 第2の鋼板の製造方法については限定されず、公知の製造方法で製造された鋼板を用いることができる。または、第2の鋼板として、第1の鋼板と同じ製造方法で製造された鋼板を用いることもできる。 The method for manufacturing the second steel sheet is not limited, and a steel sheet manufactured by a known manufacturing method can be used. Alternatively, as the second steel sheet, a steel sheet manufactured by the same manufacturing method as the first steel sheet can also be used.
(II)組立工程
 組立工程では、第1の鋼板がスキンプレート、第2の鋼板がダイアフラムとなるように溶接によってボックス柱を組み立てる。溶接や組立の方法は、公知の条件を採用すればよいが、少なくとも、第1の鋼板と第2の鋼板との溶接は、エレクトロスラグ溶接とする。それ以外の部分の溶接は、被覆アーク溶接、炭酸ガスシールドアーク溶接、サブマージアーク溶接を用いてもよい。
 例えば、ダイアフラムをスキンプレートの柱フランジにエレクトロスラグ溶接によって溶接し、スキンプレートが箱形の4面となるように、柱フランジと柱ウェブとを溶接する(角溶接)、その後、ダイアフラムとスキンプレート(柱フランジと柱ウェブ)とをエレクトロスラグ溶接によって製造することで、効率よく四面ボックス柱を製造することができる。溶接に際しては適切な溶接材料、溶接条件を選択して行うことができるが、溶接材料は原則として、溶接施工条件などに応じ、JIS規格品若しくは国土交通大臣認定品から選定することが好ましい。
 また、スキンプレートとダイアフラムとの強度が異なる異種継手においては、低強度側の規格値を満足する溶接材料を使用することができる。
 ボックス柱の製造方法に関して、その他の事項については、建築鉄骨工事に共通な事項および標準仕様書を参照することができる。例えば日本建築学会の建築工事標準仕様書 JASS6鉄骨工事、鉄骨工事技術指針・工場製作編、鉄骨工事技術指針・工事現場施工編などが挙げられる。
(II) Assembly process In the assembly process, the box pillars are assembled by welding so that the first steel plate becomes a skin plate and the second steel plate becomes a diaphragm. As the welding and assembling methods, known conditions may be adopted, but at least the welding between the first steel plate and the second steel plate is electroslag welding. For welding of other parts, shielded metal arc welding, carbon dioxide shielded arc welding, and submerged arc welding may be used.
For example, the diaphragm is welded to the column flange of the skin plate by electroslag welding, and the column flange and the column web are welded (square welding) so that the skin plate has four sides in a box shape, and then the diaphragm and the skin plate are welded. By manufacturing (pillar flange and pillar web) by electroslag welding, it is possible to efficiently manufacture a four-sided box pillar. Welding can be performed by selecting appropriate welding materials and welding conditions, but in principle, it is preferable to select welding materials from JIS standard products or products certified by the Minister of Land, Infrastructure, Transport and Tourism according to the welding construction conditions and the like.
Further, in a different type joint having different strengths between the skin plate and the diaphragm, a welding material satisfying the standard value on the low strength side can be used.
Regarding other matters regarding the manufacturing method of box columns, matters common to building steel frame construction and standard specifications can be referred to. For example, JASS6 steel frame construction, steel frame construction technical guideline / factory production edition, steel frame construction technical guideline / construction site construction edition, etc. of the Architectural Institute of Japan.
 ボックス柱の組立に用いる第1の鋼板と、第2の鋼板とを準備した。
 スキンプレートとして用いる第1の鋼板として、表1A~表1Dに示す化学組成、板厚及び機械的特性を有する鋼1-1~鋼2-14の鋼板を準備した。また、ダイアフラムとして用いる第2の鋼板として、表2に示す化学組成及び板厚を有する公知の440MPa級の鋼A~鋼Dを準備した。
 第1の鋼板の機械的特性は、上述の要領でJIS Z 2241:2011に準拠して、引張試験を行って評価した。
A first steel plate and a second steel plate used for assembling the box pillar were prepared.
As the first steel plate used as the skin plate, steel plates of steel 1-1 to steel 2-14 having the chemical composition, plate thickness and mechanical properties shown in Tables 1A to 1D were prepared. Further, as the second steel plate used as the diaphragm, known 440 MPa class steels A to D having the chemical composition and plate thickness shown in Table 2 were prepared.
The mechanical properties of the first steel sheet were evaluated by performing a tensile test in accordance with JIS Z 2241: 2011 as described above.
 また、鋼1-1~鋼2-14は、以下の方法で製造した。
 連続鋳造法によって製造された厚み200~300mmの鋼片を、一旦、400℃以下に冷却した後、900℃以上、1250℃以下の温度域に加熱し、熱間圧延によって40~120mmの板厚の鋼板とした。一部の鋼板については、Ar変態点以上の温度から直接焼入れを行った。また、直接焼入れを行わなかった鋼板については、一旦空冷した後に、γ単相域への再加熱とこれに続く焼入れ(γ再加熱焼入れ)を実施した。
 熱間圧延後、直接焼入れまたはγ再加熱焼入れが施された鋼板に対し、二相域への再加熱とこれに続く焼入れ(二相域焼入れ)を実施した。さらに、二相域焼入れ後の鋼板に対し350℃以上、600℃以下で焼戻しを実施した。
Further, Steel 1-1 to Steel 2-14 were produced by the following methods.
Steel pieces with a thickness of 200 to 300 mm manufactured by the continuous casting method are once cooled to 400 ° C. or lower, then heated to a temperature range of 900 ° C. or higher and 1250 ° C. or lower, and hot-rolled to a plate thickness of 40 to 120 mm. It was made into a steel plate. Some steel sheets were directly quenched from temperatures above the Ar 3 transformation point. For the steel sheets that were not directly quenched, after air cooling, reheating to the γ single phase region and subsequent quenching (γ reheating quenching) were carried out.
After hot rolling, the steel sheet that had been directly quenched or γ-reheated and quenched was reheated to the two-phase region and subsequently quenched (two-phase region quenching). Further, the steel sheet after quenching in the two-phase region was tempered at 350 ° C. or higher and 600 ° C. or lower.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 続いて、第1の鋼板がスキンプレート、第2の鋼板がダイアフラムとなるように溶接によってボックス柱を組み立てた。組み立てに際しては、ダイアフラムをスキンプレートの柱フランジにエレクトロスラグ溶接によって溶接し、スキンプレートが箱型の4面となるように、柱フランジと柱ウェブとを炭酸ガスシールドアーク溶接によって溶接し(角溶接)、その後、ダイアフラムとスキンプレート(柱フランジと柱ウェブ)とをエレクトロスラグ溶接して、1000mm×1000mm(断面)×13000mm(長さ)の四面ボックス柱を得た。
 溶接に際し、エレクトロスラグ溶接については、JIS規格品若しくは国土交通大臣認定品の溶接材料を用いて、それぞれの板厚に応じて、電流を380A、電圧を52Vとし、速度を変化させることで、溶接入熱が55~130kJ/mmとなるように実施した。
Subsequently, the box columns were assembled by welding so that the first steel plate became a skin plate and the second steel plate became a diaphragm. When assembling, the diaphragm is welded to the column flange of the skin plate by electroslag welding, and the column flange and the column web are welded by carbon dioxide gas shield arc welding so that the skin plate has four sides of a box shape (square welding). ), Then the diaphragm and the skin plate (pillar flange and pillar web) were electroslag welded to obtain a four-sided box pillar of 1000 mm × 1000 mm (cross section) × 13000 mm (length).
For electroslag welding, welding is performed by using JIS standard products or welding materials certified by the Minister of Land, Infrastructure, Transport and Tourism, setting the current to 380 A and the voltage to 52 V, and changing the speed according to the thickness of each plate. The heat input was 55 to 130 kJ / mm.
 得られたボックス柱の第1の鋼板(スキンプレート)と第2の鋼板(ダイアフラム)との継手部分から、溶接線と垂直な面が観察できるように試料を採取し、FLからHAZ側0.5mmまでの範囲(FL~FL+0.5mmの範囲)を、EBSDを用いて結晶方位を測定し、結晶粒界を15°大角粒界と定義したときの円相当直径が1μm超の結晶粒の中で、円相当直径が上位0.2%以内の結晶粒の円相当直径を求め、こられを平均して平均結晶粒径とした。
 また、同じ断面でレペラーエッチングによってMAを現出させ、倍率500倍の光学顕微鏡像を撮影した後、画像解析によってMAの面積率を求めた。
 結果を表3に示す。
A sample was taken from the joint portion between the first steel plate (skin plate) and the second steel plate (diaphragm) of the obtained box column so that the plane perpendicular to the weld line could be observed, and the HAZ side from FL 0. In a crystal grain with a circle-equivalent diameter of more than 1 μm when the crystal orientation is measured using EBSD in the range up to 5 mm (FL to FL + 0.5 mm range) and the grain boundary is defined as a 15 ° large-angle grain boundary. Then, the circle-equivalent diameters of the crystal grains whose circle-equivalent diameters were within the upper 0.2% were obtained, and these were averaged to obtain the average crystal grain size.
Further, MA was revealed by repeater etching on the same cross section, an optical microscope image at a magnification of 500 times was taken, and then the area ratio of MA was obtained by image analysis.
The results are shown in Table 3.
 また、ノッチの位置が、FLの位置となるように、図1Aの位置から3本の試験片を採取し、シャルピー衝撃試験を、試験温度は0℃として、JIS Z 2242:2018に準拠して行い、測定された3本の試験片の吸収エネルギーの平均値(相加平均)を、0℃でのHAZ靭性とした。
 結果を表3に示す。
In addition, three test pieces were collected from the position shown in FIG. 1A so that the notch position was the FL position, and the Charpy impact test was performed, the test temperature was 0 ° C., and the test temperature was 0 ° C., in accordance with JIS Z 2242: 2018. The average value (arithmetic mean) of the absorbed energies of the three measured pieces was taken as the HAZ toughness at 0 ° C.
The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表1A~表3に示すように、スキンプレートとして、鋼1-1~鋼1-16を用いたBOX柱No.1~16では、エレクトロスラグ溶接部のHAZ靭性(シャルピー吸収エネルギーの平均値)が27J以上であった。
 これに対し、比較例であるBOX柱No.17~30では、HAZ靭性に劣っていた。
As shown in Tables 1A to 3, the BOX column No. 1 using steel 1-1 to steel 1-16 as the skin plate. In 1 to 16, the HAZ toughness (average value of Charpy absorption energy) of the electroslag welded portion was 27J or more.
On the other hand, the BOX pillar No. which is a comparative example. At 17 to 30, HAZ toughness was inferior.
 本発明のボックス柱は、第1の鋼板の降伏強度が630MPa以上、引張強度が780MPa以上であり、降伏比が85%以下であり、板厚が40~120mmであり、かつ、エレクトロスラグ溶接部のHAZにおけるシャルピー吸収エネルギー(試験温度0℃)の平均値が27J以上となる。そのため、本発明のボックス柱は建築鉄骨に好適であり、本発明のボックス柱の適用によって、建築物の高層化や大スパン化の進行を促進させることができ、さらに建設効率と耐震安全性を高めることができる。 In the box column of the present invention, the yield strength of the first steel plate is 630 MPa or more, the tensile strength is 780 MPa or more, the yield ratio is 85% or less, the plate thickness is 40 to 120 mm, and the electroslag welded portion. The average value of Charpy absorption energy (test temperature 0 ° C.) in HAZ is 27J or more. Therefore, the box columns of the present invention are suitable for building steel frames, and by applying the box columns of the present invention, it is possible to promote the progress of high-rise buildings and large spans, and further improve construction efficiency and seismic safety. Can be enhanced.
 1  スキンプレート
 2  ダイアフラム
 3  溶接金属部
 4  試験片
 5  当金
1 skin plate 2 diaphragm 3 weld metal part 4 test piece 5 winnings

Claims (3)

  1.  第1の鋼板からなるスキンプレートで構成される箱形断面柱の内部に、第2の鋼板からなるダイアフラムが溶接部を介して固定されたボックス柱であって、
     前記第1の鋼板が、化学組成として、質量%で、
      C :0.03%以上、0.18%以下、
      Mn:0.3%以上、1.4%未満、
      Ni:1.0%以上、7.0%以下、
      Al:0.005%以上、0.20%以下、
      B :0%以上、0.0050%以下、
      Ti:0%以上、0.035%以下、
      Cu:0%以上、2.0%以下、
      Cr:0%以上、2.0%以下、
      Mo:0%以上、2.0%以下、
      W :0%以上、1.0%以下、
      Co:0%以上、1.0%以下、
      Nb:0%以上、0.10%以下、
      V :0%以上、0.10%以下、
      Ca:0%以上、0.005%以下、
      Mg:0%以上、0.005%以下、
      REM:0%以上、0.005%以下、
      Zr:0%以上、0.005%以下、
      Si:0.30%以下、
      P :0.015%以下、
      S :0.005%以下、
      O :0.0060%以下、
      N :0.0100%以下
    を含有し、
     残部がFe及び不純物からなり、
      Mn及びNiの含有量の比であるMn/Niが0.80以下であり、
      下記(1)式で計算される炭素当量CEWESが0.430%以上、0.900%以下であり、
     前記第1の鋼板の引張強度が780MPa以上、930MPa以下であり、降伏強度が630MPa以上、750MPa以下であり、降伏比が85%以下であり、
     前記第1の鋼板の板厚が、40mm以上、120mm以下であり、
     前記溶接部がエレクトロスラグ溶接部であって、前記溶接部のHAZにおいて、0℃でのシャルピー吸収エネルギーの平均が27J以上である、
    ことを特徴とするボックス柱。
     CEWES=C+Mn/6+Si/24+Ni/40+Cr/5+Mo/4+V/14・・・(1)
     ここで、(1)式中の、C、Mn、Si、Ni、Cr、Mo、Vは各元素の質量%での含有量であり、含有しない元素の項には0を代入する。
    A box column in which a diaphragm made of a second steel plate is fixed via a welded portion inside a box-shaped cross-section column made of a skin plate made of a first steel plate.
    The first steel sheet has a chemical composition of% by mass.
    C: 0.03% or more, 0.18% or less,
    Mn: 0.3% or more, less than 1.4%,
    Ni: 1.0% or more, 7.0% or less,
    Al: 0.005% or more, 0.20% or less,
    B: 0% or more, 0.0050% or less,
    Ti: 0% or more, 0.035% or less,
    Cu: 0% or more, 2.0% or less,
    Cr: 0% or more, 2.0% or less,
    Mo: 0% or more, 2.0% or less,
    W: 0% or more, 1.0% or less,
    Co: 0% or more, 1.0% or less,
    Nb: 0% or more, 0.10% or less,
    V: 0% or more, 0.10% or less,
    Ca: 0% or more, 0.005% or less,
    Mg: 0% or more, 0.005% or less,
    REM: 0% or more, 0.005% or less,
    Zr: 0% or more, 0.005% or less,
    Si: 0.30% or less,
    P: 0.015% or less,
    S: 0.005% or less,
    O: 0.0060% or less,
    N: Contains 0.0100% or less,
    The rest consists of Fe and impurities
    Mn / Ni, which is the ratio of the contents of Mn and Ni, is 0.80 or less.
    The carbon equivalent CEWES calculated by the following equation (1) is 0.430% or more and 0.900% or less.
    The tensile strength of the first steel sheet is 780 MPa or more and 930 MPa or less, the yield strength is 630 MPa or more and 750 MPa or less, and the yield ratio is 85% or less.
    The thickness of the first steel plate is 40 mm or more and 120 mm or less.
    The welded portion is an electroslag welded portion, and the average Charpy absorption energy at 0 ° C. in the HAZ of the welded portion is 27 J or more.
    A box pillar that features that.
    CEWES = C + Mn / 6 + Si / 24 + Ni / 40 + Cr / 5 + Mo / 4 + V / 14 ... (1)
    Here, C, Mn, Si, Ni, Cr, Mo, and V in the formula (1) are the contents in mass% of each element, and 0 is substituted for the term of the element not contained.
  2.  前記第1の鋼板の、前記溶接部のミクロ組織において、
     EBSDによって測定される平均結晶粒径が250μm以下であって、
     MAの面積率が3.0%以下である、
     請求項1に記載のボックス柱。
    In the microstructure of the welded portion of the first steel sheet,
    The average crystal grain size measured by EBSD is 250 μm or less.
    The area ratio of MA is 3.0% or less,
    The box pillar according to claim 1.
  3.  前記シャルピー吸収エネルギーの平均が70J以上である、
     請求項1または2に記載のボックス柱。
    The average of the Charpy absorbed energy is 70 J or more.
    The box pillar according to claim 1 or 2.
PCT/JP2020/023750 2020-06-17 2020-06-17 Box column WO2021255856A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022531168A JP7372577B2 (en) 2020-06-17 2020-06-17 box pillar
PCT/JP2020/023750 WO2021255856A1 (en) 2020-06-17 2020-06-17 Box column

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/023750 WO2021255856A1 (en) 2020-06-17 2020-06-17 Box column

Publications (1)

Publication Number Publication Date
WO2021255856A1 true WO2021255856A1 (en) 2021-12-23

Family

ID=79267660

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/023750 WO2021255856A1 (en) 2020-06-17 2020-06-17 Box column

Country Status (2)

Country Link
JP (1) JP7372577B2 (en)
WO (1) WO2021255856A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08283836A (en) * 1995-04-13 1996-10-29 Nkk Corp Production of steel excellent in weldability and acoustic anisotropy
JPH0913123A (en) * 1995-06-28 1997-01-14 Nkk Corp Production of high tensile strength steel
JP2010280976A (en) * 2009-06-08 2010-12-16 Jfe Steel Corp Low yield ratio high tensile strength thick steel plate having excellent toughness in super-large heat input weld heat-affected zone and method for producing the same
WO2013190975A1 (en) * 2012-06-19 2013-12-27 株式会社神戸製鋼所 Steel material having excellent toughness in weld-heat-affected zone

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08283836A (en) * 1995-04-13 1996-10-29 Nkk Corp Production of steel excellent in weldability and acoustic anisotropy
JPH0913123A (en) * 1995-06-28 1997-01-14 Nkk Corp Production of high tensile strength steel
JP2010280976A (en) * 2009-06-08 2010-12-16 Jfe Steel Corp Low yield ratio high tensile strength thick steel plate having excellent toughness in super-large heat input weld heat-affected zone and method for producing the same
WO2013190975A1 (en) * 2012-06-19 2013-12-27 株式会社神戸製鋼所 Steel material having excellent toughness in weld-heat-affected zone

Also Published As

Publication number Publication date
JPWO2021255856A1 (en) 2021-12-23
JP7372577B2 (en) 2023-11-01

Similar Documents

Publication Publication Date Title
WO2013145771A1 (en) Low yield ratio high-strength steel plate having superior strain aging resistance, production method therefor, and high-strength welded steel pipe using same
JP5509685B2 (en) Ultra-high heat input welded heat-affected zone toughness low yield ratio high-tensile thick steel plate and its manufacturing method
JP5760519B2 (en) Rolled H-section steel with excellent toughness and method for producing the same
JP6645107B2 (en) H-section steel and manufacturing method thereof
WO2014175122A1 (en) H-shaped steel and method for producing same
JP4120531B2 (en) Manufacturing method of high strength thick steel plate for building structure with excellent super tough heat input welding heat affected zone toughness
JP5136156B2 (en) Ultra-high heat input welded heat-affected zone toughness low yield ratio high-tensile thick steel plate and its manufacturing method
JP7243826B2 (en) steel plate
US20190352749A1 (en) Steel material for high heat input welding
WO2013088715A1 (en) Steel material for high-heat-input welding
JP6086090B2 (en) Non-tempered low yield ratio high tensile thick steel plate with excellent weld heat affected zone toughness and method for producing the same
JP2016117945A (en) Rolling h-shaped steel and manufacturing method therefor, and flange weld joint of rolling h-shaped steel
JP6354571B2 (en) Rolled H-section steel and its manufacturing method
JP6421907B1 (en) Rolled H-section steel and its manufacturing method
JP2005187853A (en) Method for producing high strength thick steel plate excellent in toughness in extra-high heat input welded-heat affected part
JP2009235549A (en) Method for producing low yield ratio high tension thick steel plate excellent in toughness at super-high heat input welding affected part
JP2005068478A (en) Method for manufacturing thick steel plate with low yield ratio and high tension superior in toughness at heat-affected zone in super heavy-heat-input welding
JP7410438B2 (en) steel plate
WO2021255856A1 (en) Box column
JP7260780B2 (en) High strength steel plate for high heat input welding
JP2020204091A (en) High strength steel sheet for high heat input welding
TWI733497B (en) Box column
JP2017186594A (en) H-shaped steel for low temperature and manufacturing method therefor
WO2016068094A1 (en) High-tensile steel sheet having excellent low-temperature toughness in weld heat-affected zone, and method for manufacturing same
JP6327186B2 (en) Non-tempered low-yield ratio high-tensile steel plate and method for producing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20940714

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022531168

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20940714

Country of ref document: EP

Kind code of ref document: A1