[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2021251742A1 - Quantum dot dispersion reactive cholesteric liquid crystal composition and optical film thereof - Google Patents

Quantum dot dispersion reactive cholesteric liquid crystal composition and optical film thereof Download PDF

Info

Publication number
WO2021251742A1
WO2021251742A1 PCT/KR2021/007187 KR2021007187W WO2021251742A1 WO 2021251742 A1 WO2021251742 A1 WO 2021251742A1 KR 2021007187 W KR2021007187 W KR 2021007187W WO 2021251742 A1 WO2021251742 A1 WO 2021251742A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
quantum dot
liquid crystal
optical film
Prior art date
Application number
PCT/KR2021/007187
Other languages
French (fr)
Korean (ko)
Inventor
강신웅
쿠마르아비나쉬
Original Assignee
전북대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전북대학교산학협력단 filed Critical 전북대학교산학협력단
Publication of WO2021251742A1 publication Critical patent/WO2021251742A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/58Dopants or charge transfer agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/58Dopants or charge transfer agents
    • C09K19/586Optically active dopants; chiral dopants

Definitions

  • the present invention relates to a quantum dot dispersion reactive cholesteric liquid crystal composition and an optical film thereof.
  • the core concept of QD color display technology is to make quantum dots photo-luminescence or electro-luminescence to enable high color purity and wide-gamut color expression.
  • the photoluminescence-based quantum dot color display can be easily applied to an existing flat panel display by using a color conversion technology that converts an absorption wavelength into an emission wavelength.
  • quantum dot patterns having different light emitting regions in addition to improving light emitting luminance.
  • Such a quantum dot pattern can reduce transmittance loss by emitting only desired light from a single color pixel. Due to this, it has the advantage of achieving higher transmittance and color purity because it is ultimately possible to implement color without a color filter.
  • the quantum dot pattern for photoluminescence must have a height of several micrometers in order to achieve high luminescence.
  • it is necessary to form a pattern with quantum dots of different sizes on a single substrate to realize the three primary colors there is a problem in that patterning is difficult and the process cost is high.
  • the matrix quantum dot pattern can be easily adjusted in height, and it is possible to fabricate a pattern with high luminance by controlling the concentration of quantum dots in the matrix.
  • the polymer matrix can be patterned through photo-lithography, two or more different types of matrix quantum dot patterns can be easily formed.
  • the matrix quantum dot pattern so far uses fine particles for inducing light scattering in order to improve luminous efficiency.
  • the addition of these fine particles caused problems in the processing process of the matrix quantum dot pattern.
  • a large amount of fine particles included in the ink for inducing light scattering causes an obstacle to the uniform dispersion or jetting process of the ink, thereby limiting the process. existed.
  • the present invention has been devised to solve the above prior art needs, and an object of the present invention is to provide a quantum dot dispersion reactive cholesteric liquid crystal composition and an optical film thereof.
  • the present invention provides a photoreactive cholesteric liquid crystal composition for manufacturing an optical film having a color conversion function, comprising a photopolymerizable liquid crystal monomer, a chiral dopant, a quantum dot, and a photoinitiator.
  • the photopolymerizable liquid crystal monomer may be a compound represented by the following Chemical Formula 1:
  • n and m are independently integers from 0 to 2
  • C A, C B , C c are each independently a cyclic group selected from an aryl, heteroaryl, or C 4 to C 10 cycloalkyl group, and a linear rigid-core (rigid- core) to form a group, and at least one hydrogen atom in each cyclic group may be substituted or unsubstituted with a C 1 to C 2 alkyl group, a C 1 fluorinated carbon group or a halogen group,
  • a phenyl group, a naphthyl group, an anthracenyl group, a phenanthrenyl group, a fluorene group, a carbazolyl group, or a dibenzothiophene group Contains (dibenzothiophenyl), and includes a pyridine group, a pyrimidine group, a pyrazine group, a quinoline group as a heteroaryl group, and a cyclobute group as a cycloalkyl group.
  • tetrahydropyran group it may include a dioxin group (dioxane).
  • the compound represented by Formula 1 may be at least one selected from the group consisting of the following compounds:
  • the chiral dopant may be a compound represented by the following formula, but is not necessarily limited thereto.
  • the present invention provides a quantum dot dispersion optical film formed by photopolymerization of the photoreactive cholesteric liquid crystal composition.
  • the quantum dot dispersion optical film may be formed by photopolymerizing a photoreactive cholesteric liquid crystal composition in a planar alignment or focal-conic alignment state.
  • the quantum dot dispersion optical film is characterized in that the resonance emission wavelength of the quantum dots is controlled by adjusting the photonic band gap.
  • the quantum dot dispersion optical film is characterized in that the light emission of the quantum dots is circularly polarized by adjusting the photonic band gap.
  • the present invention provides a color conversion technology-based information display device including the optical film.
  • the present invention provides an information display device including the color conversion technology-based information display element.
  • the present invention provides a quantum dot dispersion photoreactive cholesteric liquid crystal composition for photoresist or inkjet printing, comprising a photopolymerizable liquid crystal monomer, a chiral dopant, a quantum dot, and a photoinitiator.
  • the present invention provides a color filter substrate based on color conversion technology in which the photoresist or the composition for inkjet printing is patterned and formed into a thin film.
  • the photoreactive cholesteric liquid crystal composition of the present invention uses a photopolymerizable liquid crystal monomer that expresses a cholesteric liquid crystal phase instead of a non-liquid crystalline photocurable monomer used in a conventional quantum dot film, and through the liquid crystal composition of the present invention
  • the formed film forms a one-dimensional photonic bandgap structure, in which quantum dot particles are distributed in a one-dimensional photonic bandgap material, and thus has an efficiency that is increased by several hundred% compared to the conventional light emitting efficiency.
  • the film exhibits a resonance phenomenon that does not appear in the conventional quantum dot film due to the photonic bandgap characteristic, and thus the ability to tune the emission wavelength can also be expressed. also have
  • liquid crystal composition of the present invention is photocured in a focal conic state to induce strong scattering by itself without the addition of scattering particles, it can be usefully used in the inkjet printing process.
  • 1 is a view showing the results of confirming the absorption and emission characteristics of GQD and RGQ quantum dot samples dispersed in heptane.
  • FIG. 2 is a view showing the result of confirming the emission characteristics according to the excitation wavelength of the GQD quantum dot sample dispersed in PGMEA.
  • FIG. 3 is a view showing the results of confirming the emission characteristics according to the excitation wavelength of a GQD sample dispersed in a nematic liquid crystal that does not contain a chiral dopant.
  • FIG. 4 is a view showing comparison of luminescence characteristics according to a phase transition by temperature of a GQD sample dispersed in a nematic liquid crystal containing a chiral dopant at an excitation wavelength of 380 nm and luminescence characteristics in HDDA, an isotropic polymer matrix.
  • FIG. 5 is a view showing the results of confirming the light emission characteristics according to the excitation wavelength of the quantum dot sample dispersed in the solidified cholesteric liquid crystal film.
  • FIG. 6 is a view showing the result of comparing the light emission intensity according to the composition and liquid or solid state matrix of the quantum dot-dispersed cholesteric liquid crystal film.
  • FIG. 7 is a microscopic photograph showing the formation of a cholesteric liquid crystal phase of two types of quantum dot dispersion compositions with different amounts of chiral dopants (upper photo), photonic bandgap characteristics according to composition, and photonic bandgap according to photopolymerization It is a diagram showing the results by checking the change in characteristics (graph at the bottom).
  • FIG. 8 is a view showing a photograph confirming the cross-section of the quantum dot-dispersed cholesteric optical film through a scanning electron microscope.
  • FIG. 9 is a view showing the results of confirming the UV-vis transmission characteristics of the quantum dot-dispersed cholesteric optical film prepared in Example of the present invention and the light-emitting characteristic of the quantum dot-dispersed film according to irradiation of 380 nm excitation light.
  • a photonic bandgap characteristic (photonic bandgap of ⁇ 460nm, ⁇ 470nm, ⁇ 480nm, ⁇ 505nm, solid line graph) of quantum dot dispersion optical films prepared using a photopolymerizable cholesteric liquid crystal composition. It is a diagram showing the wavelength modulation as a graph. The LCP and RCP graphs show the characteristics of the emitted light according to the circularly polarized handedness of the excitation light.
  • FIG. 11 is a view showing the result of irradiating circularly polarized light to a quantum dot dispersion optical film prepared using a photopolymerizable cholesteric liquid crystal composition, and confirming the polarization state of the emitted light by placing a circularly polarized light analyzer.
  • FIG. 12 is a view showing the results of measuring the optical activity of light emitted by irradiating unpolarized excitation light to a quantum dot dispersion optical film prepared using a photopolymerizable cholesteric liquid crystal composition.
  • the present inventors paid attention to a photocurable composition that forms a cholesteric liquid crystal phase while researching on quantum dot-based color conversion in the manufacture of a high-performance information display device.
  • a film is formed using a composition containing a photopolymerizable liquid crystal monomer that forms a quantum dot and a cholesteric liquid crystal phase, or a photoresist or ink is used to form a thin film, the light conversion efficiency of the film or thin film is improved.
  • the present invention was completed by confirming that it exhibits a remarkably improved and tunable emission wavelength.
  • the present invention provides a photoreactive cholesteric liquid crystal composition
  • a photoreactive cholesteric liquid crystal composition comprising a photopolymerizable liquid crystal monomer, a chiral dopant, a quantum dot, and a photoinitiator.
  • the composition of the present invention uses a photocurable composition that expresses a cholesteric liquid crystal phase.
  • the composition of the present invention is photocured in a focal conic state and formed into a film, it is self-contained without scattering particles. It has a characteristic of inducing strong scattering, and when it is photocured in a planar state and formed into a film, it has excellent reflection and transmission characteristics.
  • the photopolymerizable liquid crystal monomer may be a compound represented by the following Chemical Formula 1:
  • n and m are independently integers from 0 to 2
  • C A, C B , C c are each independently a cyclic group selected from an aryl, heteroaryl, or C 4 to C 10 cycloalkyl group, and a linear rigid-core (rigid- core) to form a group, and at least one hydrogen atom in each cyclic group may be substituted or unsubstituted with a C 1 to C 2 alkyl group, a C 1 fluorinated carbon group or a halogen group,
  • a phenyl group, a naphthyl group, an anthracenyl group, a phenanthrenyl group, a fluorene group, a carbazolyl group, or a dibenzothiophene group Contains (dibenzothiophenyl), and includes a pyridine group, a pyrimidine group, a pyrazine group, a quinoline group as a heteroaryl group, and a cyclobute group as a cycloalkyl group.
  • tetrahydropyran group it may include a dioxin group (dioxane).
  • the compound represented by Formula 1 may be at least one selected from the group consisting of compounds represented by Formulas 2 to 16:
  • the chiral dopant may be one or more compounds selected from the group consisting of compounds represented by the following Chemical Formulas 17 to 23, but is not necessarily limited thereto.
  • the quantum dots may be quantum dots of various compositions, for example, ZnS, ZnSe, ZnTe, HgS, HgSe, HgTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeTe, HgSTe, HgZnS, HgZnSe, HgZnTe, HgZnSeS, HgZnSeTe and HgZnSTe, GaN, GaP, GaAs, AlN, AlP, AlAs, InN, InP, InSe, InZnP, InAs, GaNP, GaNAs, GaPAs, AlNP, AlNAs, AlPAs, InNP, InNAs, InPAs, GaAlNP, GaAlNAs, GaAlPAs, GaInNP, GaInNAs, GaInPAs, InAlNP, InAlNAs, and may include one or more selected from the group
  • the liquid crystal composition of the present invention includes a liquid crystal molecule, a chiral dopant, a quantum dot, and a photoinitiator. It is not available and can be used.
  • the present invention may provide an optical film formed by photopolymerizing the liquid crystal composition.
  • the optical film is formed by photopolymerization of a photoreactive cholesteric liquid crystal composition in a planar or focal-conic orientation, and adjusts the photonic band gap to control the resonance emission wavelength of the quantum dots, and to make the emission of the quantum dots circularly polarized there is a characteristic
  • the optical film can be used in display devices such as a liquid crystal device (LCD), an organic light emitting device (OLED), a quantum dot light emitting device (QDLED), and a micro LED device (Micro LED), and the present invention includes the information display device It is possible to provide an information display device.
  • LCD liquid crystal device
  • OLED organic light emitting device
  • QDLED quantum dot light emitting device
  • Micro LED micro LED device
  • the optical film as described above is not limited in the type of device, but is particularly applied as a QD color conversion film (QDEF), and may be used by attaching the optical film to the outside of a panel such as LCD, LED, or OLED.
  • QDEF QD color conversion film
  • the present invention provides a photoresist and a composition for inkjet printing comprising the photoreactive cholesteric liquid crystal composition, and a color conversion-based color filter substrate formed as a thin film by patterning the photoresist and the composition for inkjet printing. .
  • composition for photoresist and inkjet printing of the present invention is formed into a thin film by RGB patterning on the inside of the substrate constituting the panel to manufacture a color conversion-based QD color filter (QDCF).
  • QDCF color conversion-based QD color filter
  • the optical film as described above can perform a color conversion function by being located outside or inside the panel in the form of a QD color conversion film (QDEF) or a patterned color filter without limitation on the type of device, so it has high color purity and a wide area. It can be used for high-performance information display devices such as LCD, LED, OLED, QDLED, and Micro LED that require color expression.
  • QDEF QD color conversion film
  • a patterned color filter without limitation on the type of device, so it has high color purity and a wide area. It can be used for high-performance information display devices such as LCD, LED, OLED, QDLED, and Micro LED that require color expression.
  • the photopolymerizable monomer and chiral dopant used in this Example are shown in Tables 1 and 2 below, respectively.
  • the emission characteristics of quantum dots dispersed in various media were compared using DuPont's green light-emitting quantum dots (GQD) and red light-emitting quantum dots (RQD) having InP/InSe/ZnS composition.
  • GQD green light-emitting quantum dots
  • RQD red light-emitting quantum dots
  • PGMEA Propylene glycol methyl ether acetate, Sigma-Aldrich
  • Emission characteristics according to the excitation wavelength was observed and shown in FIG. 2 .
  • FIG. 2 it was confirmed that the emission intensity of the quantum dots was changed according to the wavelength of the excitation light, but the maximum emission wavelength did not change.
  • S811 S-(+)-2-Octyl 4-(4-hexyloxybenzoyloxy)benzoate
  • the quantum dot emission intensity in the cholesteric liquid crystal phase was significantly increased compared to that in the room temperature HDDA, which is an isotropic liquid medium.
  • the periodic electromagnetic properties of the cholesteric liquid crystal phase are related to the light emission properties of quantum dots, and a technology for improving the performance of the quantum dot film was developed using these properties.
  • a quantum dot composition dispersed in a reactive cholesteric liquid crystal was prepared.
  • the prepared quantum dot composition was injected between two glass substrates spaced at a distance of 10 ⁇ m, and a solid film was formed by irradiating 350 to 400 nm ultraviolet light with the cholesteric axis of rotation perpendicular to the substrate (planar arrangement).
  • Ciba's Irgacure 651 (2,2-Dimethoxy-2-phenylacetophenone) was used.
  • 5 shows the emission characteristics according to the excitation wavelength of the GQD-dispersed solid cholesteric film prepared above. As shown in FIG. 5 , it was confirmed that although the emission intensity of the quantum dots was changed according to the wavelength of the excitation light, the emission wavelength did not change.
  • the relative luminescence intensity of each sample was compared under the same conditions for the samples prepared using the quantum dot dispersion composition of Table 3 and is shown in FIG. .
  • a quantum dot sample dispersed in the solidified HDDA film (the 2A sample), the liquid cholesteric film (the 2C samples: MLC 6686 and MLC 15600-100) and the 2D solidified cholesteric liquid crystal film was used, and the film The thickness of all was maintained at 10 ⁇ m.
  • the reactive monomer liquid crystal mixture (RM mixture) used was uniformly mixed with the compounds of Chemical Formulas 1-1, 1-2, and 1-4 in Table 1 in a weight ratio of 15:15:70.
  • the luminous efficiency of quantum dots dispersed in a cholesteric liquid crystal medium was significantly higher than that in a conventional isotropic medium, and in particular, the quantum dot sample dispersed in the solidified cholesteric liquid crystal film was different showed a very high luminance compared to
  • a nematic liquid crystal mixture was prepared by mixing the photoreactive monomers of Table 1, and a chiral dopant and a photoinitiator of Table 2 were added to prepare an R-type or S-type cholesteric liquid crystal mixture.
  • the periodicity (ie, cholesteric pitch) of the cholesteric liquid crystal structure may be changed by adjusting the amount of the chiral dopant to be added.
  • a quantum dot dispersion photoreactive cholesteric liquid crystal composition was prepared by dispersing GQD or RQD quantum dots here. The quantum dot composition was injected between two glass substrates spaced apart by 10 ⁇ m, and the cholesteric liquid crystal was irradiated with 350 to 400 nm ultraviolet light in a planar arrangement or focalconic arrangement to form a solid film.
  • compositions (wt%) Composition-A Composition-B Composition-A composition-B ⁇ peak (525 nm) ⁇ peak (380 nm) Formula 1-1 12.45 10.50 Formula 1-2 12.45 10.50 Formula 1-7 58.1 49.03 S811 16.95 29.90 Quantum dot (GQD) InP/InSe/ZnS 0.05 0.05
  • the micromicrograph of the optical film prepared using the compositions A and B and the transmission characteristics in the ultraviolet-visible region are shown in FIG. 7 .
  • the optical micrograph of FIG. 7 is a photograph showing the fine texture before and after photopolymerization of the planar-arranged reactive cholesteric quantum dot composition. It can be seen that the A-composition reflects blue before polymerization and reflects purple after polymerization. In addition, in the case of B-composition, it can be seen that the reflection color of brown before polymerization is changed to blue after polymerization. The UV-vis transmission curve of FIG. 7 well explains the color change.
  • FIGS. 7 and 8 are cross-sectional scanning electron microscope photograph of the quantum dot dispersion cholesteric optical film. It can be seen that a structure having one-dimensional periodicity is formed in the vertical direction of the film plane.
  • the cholesteric liquid crystal phase has a one-dimensional photonic crystal structure having a periodicity corresponding to the pitch. Therefore, when the photoreactive cholesteric liquid crystal in which quantum dots are dispersed is thinned and photopolymerized to form a solid film, as shown in FIGS. 7 and 8, quantum dots are dispersed in a polymer having a solid filmed one-dimensional photonic bandgap structure.
  • An optical film can be manufactured.
  • the amount of chiral dopant is adjusted to provide various A quantum dot composition having one-dimensional periodicity (ie, photonic crystal structure, photonic bandgap) was prepared.
  • the reactive monomer liquid crystal mixture (RM mixture) used was uniformly mixed with the compounds of Chemical Formulas 1-1, 1-2, 1-3, and 1-5 in Table 1 in a weight ratio of 15:15:35:35.
  • S811 (Formula 2-2 in Table 2) was used as the chiral dopant.
  • ⁇ peak (nm) in Table 5 represents the maximum reflection wavelength (ie, minimum transmission wavelength) of the 10 ⁇ m thick film prepared with each quantum dot composition.
  • FIG. 9 shows the UV-vis transmission characteristics of the quantum dot-dispersed cholesteric optical film prepared above and the emission characteristics of the quantum dot-dispersed film according to irradiation with 380 nm excitation light.
  • the light emitting characteristics were compared with the conventional isotropic optical film and shown in the graph at the bottom. As shown in the graph at the bottom of FIG.
  • the three types of optical films show significantly improved properties than the HDDA polymer film and the quantum dot luminous efficiency in the isotropic phase. This can be said to show that the medium having photonic crystal properties greatly helps improve the properties of the quantum dot dispersion optical film.
  • the solid film produced using the photopolymerizable cholesteric monomer has a one-dimensional photonic crystal structure, it is thought to be able to play the role of a photonic bandgap. Therefore, if a resonance phenomenon occurs due to the emission of quantum dots dispersed in a photonic crystal, not only can the luminous efficiency be improved, but also the wavelength of light emitted from the film can be modulated by using the resonance phenomenon.
  • solid films having different photonic band gaps were prepared from four types of reactive cholesteric liquid crystal compositions.
  • compositions (wt%) ⁇ peak (505 nm) ⁇ peak (480 nm) ⁇ peak (470 nm) ⁇ peak (460 nm) Formula 1-1 12.345 12.225 12.03 11.805 Formula 1-2 12.345 12.225 12.03 11.805 Formula 1-3 57.61 12.225 56.14 55.09 S811 17.65 18.45 19.75 21.25 Quantum dot (GQD) InP/InSe/ZnS 0.05 0.05 0.05 0.05 0.05 PL peaks 465nm, 492nm 476 nm 463nm 455nm
  • the quantum dot dispersion optical film exhibited photonic band gaps of ⁇ 460nm, ⁇ 470nm, ⁇ 480nm, and ⁇ 505nm, respectively, as shown in FIG. 10 .
  • the quantum dot optical film thus prepared was irradiated with circularly polarized light having a wavelength of 380 nm to measure the emitted light emitted from the film, and is shown as a photonic bandgap graph of each film in FIG. 10 .
  • the same type of quantum dots and excitation light were used, it could be clearly confirmed that the wavelength of the emitted light was modulated as shown in FIG. 10 . It was found that the wavelength of the emitted light modulated by resonance coincided with the position slightly shifted to a shorter wavelength from the center of the photonic bandgap of each film.
  • this resonance phenomenon greatly depends on the optical activity type (handedness) of the cholesteric liquid crystal and the polarization state of the excitation light. It was found that the resonance phenomenon is maximized when the handedness of the cholesteric liquid crystal and the handedness of the circularly polarized excitation light match. When unpolarized excitation light was used, resonance did not occur, and a unique wavelength of ⁇ 530 nm was emitted. It was found that when the handedness of the cholesteric liquid crystal and the handedness of the circularly polarized excitation light were opposite, the resonance phenomenon was greatly weakened.
  • the reactive cholesteric liquid crystal composition for producing a quantum dot optical film provided in the present invention can easily form and control a photonic crystal structure, and a quantum dot optical film prepared using the same can greatly improve luminous efficiency, as well as resonance Since the wavelength of emitted light can be modulated using development, it can also be used as a color conversion film and a color filter based thereon, which is very useful for the development of high-performance display devices requiring a color conversion function.
  • a solid film prepared using a photopolymerizable cholesteric monomer not only has a one-dimensional photonic crystal structure, but also forms a one-dimensional helical photonic crystal in an optical isomer relationship with each other depending on the optical activity type of the chiral dopant. Therefore, it is considered that the above resonance light emission phenomenon may also exhibit optical activity.
  • the optical activity of emitted light was confirmed using the quantum dot-dispersed cholesteric film. As a result, it was confirmed that the optical film exhibited strong circular dichroic emission.
  • Table 7 shows the composition of the quantum dot dispersion cholesteric liquid crystal mixture for preparing the optical film.
  • photopolymerization was carried out in the same manner as in the above example to prepare a quantum dot dispersion optical film.
  • ⁇ peak (nm) represents the maximum reflection wavelength (ie, photonic bandgap) of a 10 ⁇ m thick film prepared with each quantum dot composition.
  • the prepared film was irradiated with circularly polarized light as in FIG. 10 (top), and an additional circularly polarized light was placed before the detector to confirm the polarization state of the emitted light. As a result of the confirmation, it was found that the light emitted from the film was circularly polarized as shown in FIG. 11 .
  • the solid line curve is the visible light transmission curve of the cholesteric matrix showing the photonic bandgap characteristic, respectively, and the LCP and RCP curves represent the optical activity of the emitted light.
  • the wavelength of light emitted from the same type of GQD is modulated according to the photonic bandgap characteristics of the cholesteric matrix. was found to be That is, in the modulated emission light, circularly polarized light having the same handedness as that of the cholesteric matrix was strongly detected, and polarized light having the opposite handedness was weakly detected.
  • ⁇ peak (nm) means the photonic bandgap center wavelength, and shows a film prepared using the corresponding composition in Table 7.
  • the LCP curve represents a circularly polarized component in which emitted light has the same optical activity as the cholesteric matrix, and the RCP curve represents a circularly polarized component having an optical activity opposite to that of the cholesteric matrix.
  • the dispersed cholesteric liquid crystal composition can be very usefully used in the manufacture of an optical film having a color conversion function.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Liquid Crystal Substances (AREA)
  • Polarising Elements (AREA)
  • Optical Filters (AREA)

Abstract

The present invention provides a photoreactive cholesteric liquid crystal composition comprising a photopolymerizable liquid crystal monomer, a chiral dopant, a quantum dot, and a photoinitiator, and an optical film formed from the composition.

Description

양자점 분산 반응성 콜레스테릭 액정 조성물 및 이의 광학필름Quantum dot dispersion reactive cholesteric liquid crystal composition and optical film thereof
본 발명은 양자점 분산 반응성 콜레스테릭 액정 조성물 및 이의 광학필름에 관한 것이다.The present invention relates to a quantum dot dispersion reactive cholesteric liquid crystal composition and an optical film thereof.
양자점 컬러 디스플레이(QD color display) 기술의 핵심 개념은 양자점을 광발광(photo-luminescence) 또는 전기발광(electro-luminescence)시켜 높은 색 순도와 넓은 영역의 색 표현을 가능하게 하는 것이다. 특히, 광발광 기반 양자점 컬러 디스플레이는 흡광 파장을 발광 파장으로 변환하는 색변환 기술을 이용하여 기존의 평판 디스플레이에 쉽게 적용이 가능하다.The core concept of QD color display technology is to make quantum dots photo-luminescence or electro-luminescence to enable high color purity and wide-gamut color expression. In particular, the photoluminescence-based quantum dot color display can be easily applied to an existing flat panel display by using a color conversion technology that converts an absorption wavelength into an emission wavelength.
하지만 현재 상용화된 양자점 액정 디스플레이의 경우 제한된 발광 휘도에 의해 색변환 효율이 낮은 문제점이 있어 이를 향상시키기 위한 기술의 개발이 요구되고 있다. 또한 현재 상용화된 양자점 액정 디스플레이의 경우 서로 다른 색을 발광하는 2가지 이상의 양자점이 무작위로 분포하는 양자점 필름(QD film)을 사용하기 때문에, 컬러필터를 투과할 때 투과도 손실이 발생하는 단점을 가지고 있다.However, in the case of the currently commercialized quantum dot liquid crystal display, there is a problem in that color conversion efficiency is low due to limited emission luminance, and development of a technology for improving this is required. In addition, in the case of a currently commercialized quantum dot liquid crystal display, since it uses a quantum dot film (QD film) in which two or more quantum dots emitting different colors are randomly distributed, there is a disadvantage in that transmittance loss occurs when passing through a color filter. .
지금까지 기존의 양자점 디스플레이의 단점을 극복하기 위해 발광 휘도를 향상시키는 것과 더불어 서로 다른 발광 영역을 갖는 양자점 패턴을 형성하려는 시도들이 이루어져 왔다. 이와 같은 양자점 패턴은 단일 색 화소에서 원하는 빛만을 발광시켜 투과도 손실을 줄일 수 있다. 이로 인해 궁극적으로 컬러필터 없이 색 구현이 가능하기 때문에 보다 높은 투과도와 색 순도를 달성할 수 있다는 장점을 가지고 있다. 그러나 광발광을 위한 양자점 패턴은 높은 발광도를 달성하기 위해 수 마이크로 수준의 높이를 가져야 한다. 또한 삼원색 구현을 위해 한 기판 위에 서로 다른 크기의 양자점으로 패턴을 형성해야 하므로, 패터닝이 어렵고 공정 단가가 높다는 문제점이 있다.In order to overcome the shortcomings of the conventional quantum dot display, attempts have been made to form quantum dot patterns having different light emitting regions in addition to improving light emitting luminance. Such a quantum dot pattern can reduce transmittance loss by emitting only desired light from a single color pixel. Due to this, it has the advantage of achieving higher transmittance and color purity because it is ultimately possible to implement color without a color filter. However, the quantum dot pattern for photoluminescence must have a height of several micrometers in order to achieve high luminescence. In addition, since it is necessary to form a pattern with quantum dots of different sizes on a single substrate to realize the three primary colors, there is a problem in that patterning is difficult and the process cost is high.
최근에는 이러한 문제를 해결하기 위해 고분자 매트릭스(polymer matrix) 내부에 양자점을 분산시키는 매트릭스 양자점 패터닝 기술이 개발되었다. 매트릭스 양자점 패턴은 높이 조절을 쉽게 할 수 있으며 매트릭스 내 양자점의 농도 조절을 통해 높은 발광도를 갖는 패턴 제작이 가능하다. 뿐만 아니라, 고분자 매트릭스는 광식각공정(photo-lithography)을 통해 패터닝이 가능하므로 2종류 이상의 서로 다른 매트릭스 양자점 패턴을 쉽게 형성할 수 있다.Recently, in order to solve this problem, a matrix quantum dot patterning technique in which quantum dots are dispersed in a polymer matrix has been developed. The matrix quantum dot pattern can be easily adjusted in height, and it is possible to fabricate a pattern with high luminance by controlling the concentration of quantum dots in the matrix. In addition, since the polymer matrix can be patterned through photo-lithography, two or more different types of matrix quantum dot patterns can be easily formed.
그러나 지금까지의 매트릭스 양자점 패턴은 발광 효율을 개선하기 위하여 광산란 유도를 위한 미세입자를 사용하고 있다. 이러한 미세입자의 첨가는 매트릭스 양자점 패턴의 가공 공정에 문제점을 초래하게 되었다. 특히, 잉크젯 프린팅 공정을 사용하여 매트릭스 양자점 패턴을 형성할 경우, 상기 광산란 유도를 위하여 잉크에 포함된 다량의 미세입자는 잉크의 균일한 분산이나 분사 공정에 장애를 초래하여, 이로 인한 공정의 한계점이 존재하였다.However, the matrix quantum dot pattern so far uses fine particles for inducing light scattering in order to improve luminous efficiency. The addition of these fine particles caused problems in the processing process of the matrix quantum dot pattern. In particular, when a matrix quantum dot pattern is formed using an inkjet printing process, a large amount of fine particles included in the ink for inducing light scattering causes an obstacle to the uniform dispersion or jetting process of the ink, thereby limiting the process. existed.
본 발명은 상기와 같은 종래 기술상의 필요성을 해결하기 위해 안출된 것으로, 양자점 분산 반응성 콜레스테릭 액정 조성물 및 이의 광학필름을 제공하는 것을 그 목적으로 한다.The present invention has been devised to solve the above prior art needs, and an object of the present invention is to provide a quantum dot dispersion reactive cholesteric liquid crystal composition and an optical film thereof.
그러나 본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.However, the technical problem to be achieved by the present invention is not limited to the above-mentioned problems, and other problems not mentioned will be clearly understood by those skilled in the art from the following description.
본 발명은 광중합성 액정 단량체, 카이랄 도펀트, 양자점 및 광개시제를 포함하는, 색변환 기능을 갖는 광학필름 제조용 광반응성 콜레스테릭 액정 조성물을 제공한다.The present invention provides a photoreactive cholesteric liquid crystal composition for manufacturing an optical film having a color conversion function, comprising a photopolymerizable liquid crystal monomer, a chiral dopant, a quantum dot, and a photoinitiator.
본 발명의 일구현 예로, 상기 광중합성 액정 단량체는 하기 화학식 1로 표시되는 화합물인 것일 수 있다:In one embodiment of the present invention, the photopolymerizable liquid crystal monomer may be a compound represented by the following Chemical Formula 1:
[화학식 1][Formula 1]
Figure PCTKR2021007187-appb-I000001
Figure PCTKR2021007187-appb-I000001
상기 화학식 1에서,In Formula 1,
R1, R2는 각각 독립적으로 R1 = P1-(CH2)m1O-, P1-(CH2)m1-, P1-(CH2)m1COO- 또는 P1-(CH2)m1OOC- 이고, R2 = P2-(CH2)m2O-, P2-(CH2)m2-, P2-(CH2)m2COO- 또는 P2-(CH2)m2OOC- 이며, m1, m2는 독립적으로 0 내지 12의 정수이고, 상기 P1, P2는 독립적으로 각각 아크릴기, 메타크릴기, 아크릴 아마이드기, 또는 메타크릴 아마이드기이고.R 1 , R 2 are each independently R 1 = P 1 -(CH 2 ) m1 O-, P 1 -(CH 2 ) m1 -, P 1 -(CH 2 ) m1 COO- or P 1 -(CH 2 ) ) m1 OOC-, and R 2 = P 2 -(CH 2 ) m2 O-, P 2 -(CH 2 ) m2 -, P 2 -(CH 2 ) m2 COO- or P 2 -(CH 2 ) m2 OOC - and m1 and m2 are independently integers from 0 to 12, and P 1 and P 2 are each independently an acryl group, a methacryl group, an acrylamide group, or a methacrylamide group.
X1, X2는 각각 독립적으로 CA, CB 및 Cc를 연결하는 연결기로서, 단일결합, 이중결합 (C=C), 삼중결합 (C≡-O-CO- 또는 -CO-O-에서 선택되는 에스테르기, -CO-, -O-, -CH2-, -CH2O-, -CF2-, -CF2O-, -CH2CH2-, -CH2CH2O-, -CF2CH2-, -CF2CF2-, -CO-C=C-, -O-CO-C=C- 중에서 선택되는 하나의 연결기이며, X1 and X2 are each independently selected from a linking group connecting C A, C B and C c , a single bond, a double bond (C=C), and a triple bond (C≡-O-CO- or -CO-O- ester group, -CO-, -O-, -CH 2 -, -CH 2 O-, -CF 2 -, -CF 2 O-, -CH 2 CH 2 -, -CH 2 CH 2 O-, - CF 2 CH 2 -, -CF 2 CF 2 -, -CO-C=C-, -O-CO-C=C- is one connecting group selected from,
n, m은 독립적으로 0 내지 2의 정수이고, n and m are independently integers from 0 to 2,
CA, CB, Cc 는 각각 독립적으로 아릴(aryl), 헤테로아릴(heteroaryl) 또는 C4 내지 C10의 사이클로알킬기에서 선택되는 환형기로서, 연결기 X를 통해 선형의 리지드-코어(rigid-core) 그룹을 형성하고, 각각의 환형기에서 하나 이상의 수소원자가 C1 내지 C2의 알킬기, C1의 불소화 탄소기 또는 할로겐기로 치환 또는 비치환될 수 있으며, C A, C B , C c are each independently a cyclic group selected from an aryl, heteroaryl, or C 4 to C 10 cycloalkyl group, and a linear rigid-core (rigid- core) to form a group, and at least one hydrogen atom in each cyclic group may be substituted or unsubstituted with a C 1 to C 2 alkyl group, a C 1 fluorinated carbon group or a halogen group,
상기 아릴기(aryl)로는 페닐기(phenyl), 나프틸기(naphthyl), 안트라센기(anthracenyl), 페난스렌기(Phenanthrenyl), 플루오렌기(fluorenyl), 카바졸기(carbazolyl), 또는 디벤조티오펜기(dibenzothiophenyl)를 포함하고, 헤테로아릴기(heteroaryl)로는 피리딘기(pyridine), 피리미딘기(pyrimidine), 피라진기(pyrazine), 퀴놀린기(quinoline)를 포함하고, 사이클로알킬기(cycloalkyl)로는 사이클로부테인기(cyclobutane), 사이클로헥세인기(cyclohexane), 바이사이클릭 사이클로헥세인기(bicyclic cyclohexane), 바이사이클릭 사이클로펜테인기(bicyclic cyclopentane), 콜레스테롤기(cholesterol)를 포함하고, 또한 헤테로사이클로알킬기(heterocycloalkyl)로는 테트라하이드로피란기(tetrahydropyran), 다이옥신기(dioxane)를 포함할 수 있다. As the aryl group, a phenyl group, a naphthyl group, an anthracenyl group, a phenanthrenyl group, a fluorene group, a carbazolyl group, or a dibenzothiophene group Contains (dibenzothiophenyl), and includes a pyridine group, a pyrimidine group, a pyrazine group, a quinoline group as a heteroaryl group, and a cyclobute group as a cycloalkyl group. cyclobutane, cyclohexane, bicyclic cyclohexane, bicyclic cyclopentane, cholesterol, and also heterocycloalkyl As the tetrahydropyran group (tetrahydropyran), it may include a dioxin group (dioxane).
본 발명의 다른 구현예로, 상기 화학식 1로 표시되는 화합물은 하기 화합물로 이루어진 군으로부터 선택되는 1종 이상인 것일 수 있다:In another embodiment of the present invention, the compound represented by Formula 1 may be at least one selected from the group consisting of the following compounds:
[화학식 2][Formula 2]
Figure PCTKR2021007187-appb-I000002
Figure PCTKR2021007187-appb-I000002
[화학식 3][Formula 3]
Figure PCTKR2021007187-appb-I000003
Figure PCTKR2021007187-appb-I000003
[화학식 4][Formula 4]
Figure PCTKR2021007187-appb-I000004
Figure PCTKR2021007187-appb-I000004
[화학식 5][Formula 5]
Figure PCTKR2021007187-appb-I000005
Figure PCTKR2021007187-appb-I000005
[화학식 6][Formula 6]
Figure PCTKR2021007187-appb-I000006
Figure PCTKR2021007187-appb-I000006
[화학식 7][Formula 7]
Figure PCTKR2021007187-appb-I000007
Figure PCTKR2021007187-appb-I000007
[화학식 8][Formula 8]
Figure PCTKR2021007187-appb-I000008
Figure PCTKR2021007187-appb-I000008
[화학식 9][Formula 9]
Figure PCTKR2021007187-appb-I000009
Figure PCTKR2021007187-appb-I000009
[화학식 10][Formula 10]
Figure PCTKR2021007187-appb-I000010
Figure PCTKR2021007187-appb-I000010
[화학식 11][Formula 11]
Figure PCTKR2021007187-appb-I000011
Figure PCTKR2021007187-appb-I000011
[화학식 12][Formula 12]
Figure PCTKR2021007187-appb-I000012
Figure PCTKR2021007187-appb-I000012
[화학식 13][Formula 13]
Figure PCTKR2021007187-appb-I000013
Figure PCTKR2021007187-appb-I000013
[화학식 14][Formula 14]
Figure PCTKR2021007187-appb-I000014
Figure PCTKR2021007187-appb-I000014
[화학식 15][Formula 15]
Figure PCTKR2021007187-appb-I000015
Figure PCTKR2021007187-appb-I000015
and
[화학식 16][Formula 16]
Figure PCTKR2021007187-appb-I000016
Figure PCTKR2021007187-appb-I000016
본 발명의 일구현 예로, 상기 카이랄 도펀트는 하기 화학식으로 표시되는 화합물인 것일 수 있으며, 반드시 이에 국한되지는 않는다.In one embodiment of the present invention, the chiral dopant may be a compound represented by the following formula, but is not necessarily limited thereto.
[화학식 17][Formula 17]
Figure PCTKR2021007187-appb-I000017
(카이랄 화합물 1, CB-15)
Figure PCTKR2021007187-appb-I000017
(chiral compound 1, CB-15)
[화학식 18][Formula 18]
Figure PCTKR2021007187-appb-I000018
(카이랄 화합물 2, ISO-(60BA)2)
Figure PCTKR2021007187-appb-I000018
(chiral compound 2, ISO-(60BA) 2 )
[화학식 19][Formula 19]
Figure PCTKR2021007187-appb-I000019
(카이랄 화합물 3, S1011 & R1011)
Figure PCTKR2021007187-appb-I000019
(chiral compound 3, S1011 & R1011)
[화학식 20][Formula 20]
Figure PCTKR2021007187-appb-I000020
(카이랄 화합물 4, ZLI 4572)
Figure PCTKR2021007187-appb-I000020
(chiral compound 4, ZLI 4572)
[화학식 21] [Formula 21]
Figure PCTKR2021007187-appb-I000021
(카이랄 화합물 5, S811 & R811)
Figure PCTKR2021007187-appb-I000021
(chiral compound 5, S811 & R811)
[화학식 22][Formula 22]
Figure PCTKR2021007187-appb-I000022
(카이랄 화합물 6)
Figure PCTKR2021007187-appb-I000022
(chiral compound 6)
and
[화학식 23][Formula 23]
Figure PCTKR2021007187-appb-I000023
(카이랄 화합물 7)
Figure PCTKR2021007187-appb-I000023
(chiral compound 7)
또한, 본 발명은 상기 광반응성 콜레스테릭 액정 조성물이 광중합하여 형성된 양자점 분산 광학필름을 제공한다.In addition, the present invention provides a quantum dot dispersion optical film formed by photopolymerization of the photoreactive cholesteric liquid crystal composition.
본 발명의 일구현예로, 상기 양자점 분산 광학필름은, 광반응성 콜레스테릭 액정 조성물이 플래너 배향 또는 포컬코닉 배향 상태에서 광중합하여 형성된 것일 수 있다.In one embodiment of the present invention, the quantum dot dispersion optical film may be formed by photopolymerizing a photoreactive cholesteric liquid crystal composition in a planar alignment or focal-conic alignment state.
본 발명의 다른 구현예로, 상기 양자점 분산 광학필름은, 포토닉 밴드갭을 조절하여 양자점의 공명발광 파장을 조절하는 것을 특징으로 한다.In another embodiment of the present invention, the quantum dot dispersion optical film is characterized in that the resonance emission wavelength of the quantum dots is controlled by adjusting the photonic band gap.
본 발명의 또 다른 구현예로, 상기 양자점 분산 광학필름은, 포토닉 밴드갭을 조절하여 양자점의 발광이 원편광 되는 것을 특징으로 한다.In another embodiment of the present invention, the quantum dot dispersion optical film is characterized in that the light emission of the quantum dots is circularly polarized by adjusting the photonic band gap.
또한, 본 발명은 상기 광학필름을 포함하는 색변환 기술 기반 정보 표시 소자를 제공한다. In addition, the present invention provides a color conversion technology-based information display device including the optical film.
또한, 본 발명은 상기 색변환 기술 기반 정보 표시 소자를 포함하는 정보 표시 장치를 제공한다.In addition, the present invention provides an information display device including the color conversion technology-based information display element.
또한, 본 발명은 광중합성 액정 단량체, 카이랄 도펀트, 양자점 및 광개시제를 포함하는, 포토레지스트 또는 잉크젯 프린팅용 양자점 분산 광반응성 콜레스테릭 액정 조성물을 제공한다.In addition, the present invention provides a quantum dot dispersion photoreactive cholesteric liquid crystal composition for photoresist or inkjet printing, comprising a photopolymerizable liquid crystal monomer, a chiral dopant, a quantum dot, and a photoinitiator.
아울러 본 발명은 상기 포토레지스트 또는 잉크젯 프린팅용 조성물이 패턴화되어 박막으로 형성된 색변환 기술 기반 컬러필터 기판을 제공한다.In addition, the present invention provides a color filter substrate based on color conversion technology in which the photoresist or the composition for inkjet printing is patterned and formed into a thin film.
본 발명의 광반응성 콜레스테릭 액정 조성물은, 종래 양자점 필름에 사용되었던 비액정성 광경화 모노머 대신, 콜레스테릭 액정상을 발현하는 광중합성 액정 단량체를 사용하는 것으로, 본 발명의 액정 조성물을 통해 형성된 필름은, 1차원 포토닉 밴드갭 구조를 형성하여, 양자점 입자가 1차원 포토닉 밴드갭 물질에 분포한 형태가 되어 종래의 발광 효율보다 수백% 증가한 효율을 가진다.The photoreactive cholesteric liquid crystal composition of the present invention uses a photopolymerizable liquid crystal monomer that expresses a cholesteric liquid crystal phase instead of a non-liquid crystalline photocurable monomer used in a conventional quantum dot film, and through the liquid crystal composition of the present invention The formed film forms a one-dimensional photonic bandgap structure, in which quantum dot particles are distributed in a one-dimensional photonic bandgap material, and thus has an efficiency that is increased by several hundred% compared to the conventional light emitting efficiency.
상기 필름은 포토닉밴드갭 특성에 의해 종래 양자점 필름에서 나타나지 않는 공명 현상을 보여, 발광 파장을 튜닝할 수 있는 특성 역시 발현될 수 있으며, 색변환 효율이 우수하여 고가의 양자점 첨가량을 줄일 수 있는 효과 역시 가진다.The film exhibits a resonance phenomenon that does not appear in the conventional quantum dot film due to the photonic bandgap characteristic, and thus the ability to tune the emission wavelength can also be expressed. also have
또한, 본 발명의 액정 조성물은 포컬코닉 상태에서 광경화하여 산란입자의 첨가 없이도 자체적으로 강한 산란을 유도하므로, 잉크젯 프린팅 공정에서도 유용하게 이용이 가능하다.In addition, since the liquid crystal composition of the present invention is photocured in a focal conic state to induce strong scattering by itself without the addition of scattering particles, it can be usefully used in the inkjet printing process.
도 1은 헵테인에 분산된 GQD 및 RGQ 양자점 시료의 흡광 및 발광 특성을 확인한 결과를 나타낸 도면이다.1 is a view showing the results of confirming the absorption and emission characteristics of GQD and RGQ quantum dot samples dispersed in heptane.
도 2는 PGMEA에 분산된 GQD 양자점 시료의 여기파장에 따른 발광 특성을 확인한 결과를 나타낸 도면이다.2 is a view showing the result of confirming the emission characteristics according to the excitation wavelength of the GQD quantum dot sample dispersed in PGMEA.
도 3은 카이랄 도펀트를 포함하지 않는 네마틱 액정에 분산된 GQD 시료의 여기파장에 따른 발광 특성을 확인한 결과를 나타낸 도면이다.3 is a view showing the results of confirming the emission characteristics according to the excitation wavelength of a GQD sample dispersed in a nematic liquid crystal that does not contain a chiral dopant.
도 4는 380nm 여기파장에서 카이랄 도펀트를 포함하는 네마틱 액정에 분산된 GQD시료의 온도에 의한 상전이에 따른 발광 특성 및 등방상 고분자 매트릭스인 HDDA에서의 발광 특성을 비교하여 나타낸 도면이다.FIG. 4 is a view showing comparison of luminescence characteristics according to a phase transition by temperature of a GQD sample dispersed in a nematic liquid crystal containing a chiral dopant at an excitation wavelength of 380 nm and luminescence characteristics in HDDA, an isotropic polymer matrix.
도 5는 고체화된 콜레스테릭 액정 필름에 분산된 양자점 시료의 여기파장에 따른 발광 특성을 확인한 결과를 나타낸 도면이다.5 is a view showing the results of confirming the light emission characteristics according to the excitation wavelength of the quantum dot sample dispersed in the solidified cholesteric liquid crystal film.
도 6은 양자점 분산 콜레스테릭 액정 필름의 조성 및 액체 또는 고체 상태 매트릭스에 따른 발광 세기를 비교한 결과를 나타낸 도면이다.6 is a view showing the result of comparing the light emission intensity according to the composition and liquid or solid state matrix of the quantum dot-dispersed cholesteric liquid crystal film.
도 7은 카이럴 도펀트 양을 달리한 2종의 양자점 분산 조성물의 콜레스테릭 액정상 형성을 나타내는 미세 현미경 사진(상단의 사진), 조성에 따른 포토닉 밴드갭 특성 및 광중합에 따른 포토닉 밴드갭 특성의 변화(하단의 그래프)를 확인하여 결과를 나타낸 도면이다.7 is a microscopic photograph showing the formation of a cholesteric liquid crystal phase of two types of quantum dot dispersion compositions with different amounts of chiral dopants (upper photo), photonic bandgap characteristics according to composition, and photonic bandgap according to photopolymerization It is a diagram showing the results by checking the change in characteristics (graph at the bottom).
도 8은 양자점 분산 콜레스테릭 광학 필름의 단면을 전자주사현미경을 통해 확인한 사진을 나타낸 도면이다.8 is a view showing a photograph confirming the cross-section of the quantum dot-dispersed cholesteric optical film through a scanning electron microscope.
도 9는 본 발명의 실시예에서 제조된 양자점 분산 콜레스테릭 광학필름의 UV-vis 투과특성 및 380nm 여기광의 조사에 따른 양자점 분산 필름의 발광 특성을 확인한 결과를 나타낸 도면이다.9 is a view showing the results of confirming the UV-vis transmission characteristics of the quantum dot-dispersed cholesteric optical film prepared in Example of the present invention and the light-emitting characteristic of the quantum dot-dispersed film according to irradiation of 380 nm excitation light.
도 10은 광중합성 콜레스테릭 액정 조성물을 이용하여 제조한 양자점 분산 광학필름들의 포토닉 밴드갭 특성(~460nm, ~470nm, ~480nm, ~505nm의 포토닉 밴드갭, 실선 그래프)에 따른 방출 광의 파장 변조를 그래프로 나타낸 도면이다. LCP 및 RCP 그래프는 여기광의 원편광 handedness에 따른 방출광의 특성을 나타낸다.10 is a photonic bandgap characteristic (photonic bandgap of ~460nm, ~470nm, ~480nm, ~505nm, solid line graph) of quantum dot dispersion optical films prepared using a photopolymerizable cholesteric liquid crystal composition. It is a diagram showing the wavelength modulation as a graph. The LCP and RCP graphs show the characteristics of the emitted light according to the circularly polarized handedness of the excitation light.
도 11은 광중합성 콜레스테릭 액정 조성물을 이용하여 제조한 양자점 분산광학 필름에 원편광을 조사하고, 원편광 검광자를 배치하여 방출되는 광의 편광 상태를 확인한 결과를 나타낸 도면이다.11 is a view showing the result of irradiating circularly polarized light to a quantum dot dispersion optical film prepared using a photopolymerizable cholesteric liquid crystal composition, and confirming the polarization state of the emitted light by placing a circularly polarized light analyzer.
도 12는 광중합성 콜레스테릭 액정 조성물을 이용하여 제조한 양자점 분산광학 필름에 비편광 여기광을 조사하여 방출되는 광의 광학 활성을 측정한 결과를 나타낸 도면이다.12 is a view showing the results of measuring the optical activity of light emitted by irradiating unpolarized excitation light to a quantum dot dispersion optical film prepared using a photopolymerizable cholesteric liquid crystal composition.
본 발명자들은 고성능 정보표시소자의 제작에 있어서 양자점 기반 색변환에 관하여 연구하던 중, 콜레스테릭 액정상을 형성하는 광경화성 조성물에 주목하였다. 그 결과 양자점 및 콜레스테릭 액정상을 형성하는 광중합성 액정 단량체를 포함하는 조성물을 사용하여 필름을 형성하거나, 포토레지스트 또는 잉크화하여 박막형태로 패터닝 하여 사용할 경우, 필름 또는 박막의 광변환 효율이 획기적으로 향상되고, 발광 파장을 튜닝할 수 있는 특성을 나타낸다는 것을 확인하여 본 발명을 완성하였다.The present inventors paid attention to a photocurable composition that forms a cholesteric liquid crystal phase while researching on quantum dot-based color conversion in the manufacture of a high-performance information display device. As a result, when a film is formed using a composition containing a photopolymerizable liquid crystal monomer that forms a quantum dot and a cholesteric liquid crystal phase, or a photoresist or ink is used to form a thin film, the light conversion efficiency of the film or thin film is improved. The present invention was completed by confirming that it exhibits a remarkably improved and tunable emission wavelength.
이에 본 발명은 광중합성 액정 단량체, 카이랄 도펀트, 양자점 및 광개시제를 포함하는, 광반응성 콜레스테릭 액정 조성물을 제공한다.Accordingly, the present invention provides a photoreactive cholesteric liquid crystal composition comprising a photopolymerizable liquid crystal monomer, a chiral dopant, a quantum dot, and a photoinitiator.
본 발명의 조성물은 종래 양자점 필름과 다르게, 콜레스테릭 액정상을 발현하는 광경화성 조성물을 사용하는 것으로, 본 발명의 조성물은 포컬코닉 상태에서 광경화하여 필름화되면, 산란입자를 포함하지 않아도 자체적으로 강한 산란을 유도할 수 있는 특징이 있고, 플래너 상태에서 광경화하여 필름화 되면 반사 및 투과 특성이 우수한 특징이 있다.Unlike the conventional quantum dot film, the composition of the present invention uses a photocurable composition that expresses a cholesteric liquid crystal phase. When the composition of the present invention is photocured in a focal conic state and formed into a film, it is self-contained without scattering particles. It has a characteristic of inducing strong scattering, and when it is photocured in a planar state and formed into a film, it has excellent reflection and transmission characteristics.
본 발명에서 상기 광중합성 액정 단량체는 하기 화학식 1로 표시되는 화합물인 것일 수 있다:In the present invention, the photopolymerizable liquid crystal monomer may be a compound represented by the following Chemical Formula 1:
[화학식 1][Formula 1]
Figure PCTKR2021007187-appb-I000024
Figure PCTKR2021007187-appb-I000024
상기 화학식 1에서,In Formula 1,
R1, R2는 각각 독립적으로 R1 = P1-(CH2)m1O-, P1-(CH2)m1-, P1-(CH2)m1COO- 또는 P1-(CH2)m1OOC- 이고, R2 = P2-(CH2)m2O-, P2-(CH2)m2-, P2-(CH2)m2COO- 또는 P2-(CH2)m2OOC- 이며, m1, m2는 독립적으로 0 내지 12의 정수이고, 상기 P1, P2는 독립적으로 각각 아크릴기, 메타크릴기, 아크릴 아마이드기, 또는 메타크릴 아마이드기이고.R 1 , R 2 are each independently R 1 = P 1 -(CH 2 ) m1 O-, P 1 -(CH 2 ) m1 -, P 1 -(CH 2 ) m1 COO- or P 1 -(CH 2 ) ) m1 OOC-, and R 2 = P 2 -(CH 2 ) m2 O-, P 2 -(CH 2 ) m2 -, P 2 -(CH 2 ) m2 COO- or P 2 -(CH 2 ) m2 OOC - and m1 and m2 are independently integers from 0 to 12, and P 1 and P 2 are each independently an acryl group, a methacryl group, an acrylamide group, or a methacrylamide group.
X1, X2는 각각 독립적으로 CA, CB 및 Cc를 연결하는 연결기로서, 단일결합, 이중결합 (-C=C-), 삼중결합 (-C≡-O-CO- 또는 -CO-O-에서 선택되는 에스테르기, -CO-, -O-, -CH2-, -CH2O-, -CF2-, -CF2O-, -CH2CH2-, -CH2CH2O-, -CF2CH2-, -CF2CF2-, -CO-C=C-, -O-CO-C=C- 중에서 선택되는 하나의 연결기이며, X1 and X2 are each independently a linking group connecting C A, C B and C c , a single bond, a double bond (-C=C-), a triple bond (-C≡-O-CO- or -CO-O -ester group selected from, -CO-, -O-, -CH 2 -, -CH 2 O-, -CF 2 -, -CF 2 O-, -CH 2 CH 2 -, -CH 2 CH 2 O -, -CF 2 CH 2 -, -CF 2 CF 2 -, -CO-C=C-, -O-CO-C=C- is one linking group selected from,
n, m은 독립적으로 0 내지 2의 정수이고, n and m are independently integers from 0 to 2,
CA, CB, Cc 는 각각 독립적으로 아릴(aryl), 헤테로아릴(heteroaryl) 또는 C4 내지 C10의 사이클로알킬기에서 선택되는 환형기로서, 연결기 X를 통해 선형의 리지드-코어(rigid-core) 그룹을 형성하고, 각각의 환형기에서 하나 이상의 수소원자가 C1 내지 C2의 알킬기, C1의 불소화 탄소기 또는 할로겐기로 치환 또는 비치환될 수 있으며, C A, C B , C c are each independently a cyclic group selected from an aryl, heteroaryl, or C 4 to C 10 cycloalkyl group, and a linear rigid-core (rigid- core) to form a group, and at least one hydrogen atom in each cyclic group may be substituted or unsubstituted with a C 1 to C 2 alkyl group, a C 1 fluorinated carbon group or a halogen group,
상기 아릴기(aryl)로는 페닐기(phenyl), 나프틸기(naphthyl), 안트라센기(anthracenyl), 페난스렌기(Phenanthrenyl), 플루오렌기(fluorenyl), 카바졸기(carbazolyl), 또는 디벤조티오펜기(dibenzothiophenyl)를 포함하고, 헤테로아릴기(heteroaryl)로는 피리딘기(pyridine), 피리미딘기(pyrimidine), 피라진기(pyrazine), 퀴놀린기(quinoline)를 포함하고, 사이클로알킬기(cycloalkyl)로는 사이클로부테인기(cyclobutane), 사이클로헥세인기(cyclohexane), 바이사이클릭 사이클로헥세인기(bicyclic cyclohexane), 바이사이클릭 사이클로펜테인기(bicyclic cyclopentane), 콜레스테롤기(cholesterol)를 포함하고, 또한 헤테로사이클로알킬기(heterocycloalkyl)로는 테트라하이드로피란기(tetrahydropyran), 다이옥신기(dioxane)를 포함할 수 있다. As the aryl group, a phenyl group, a naphthyl group, an anthracenyl group, a phenanthrenyl group, a fluorene group, a carbazolyl group, or a dibenzothiophene group Contains (dibenzothiophenyl), and includes a pyridine group, a pyrimidine group, a pyrazine group, a quinoline group as a heteroaryl group, and a cyclobute group as a cycloalkyl group. cyclobutane, cyclohexane, bicyclic cyclohexane, bicyclic cyclopentane, cholesterol, and also heterocycloalkyl As the tetrahydropyran group (tetrahydropyran), it may include a dioxin group (dioxane).
본 발명의 다른 구현예로, 상기 화학식 1로 표시되는 화합물은 하기 화학식2 내지 16의 화합물로 이루어지는 군으로부터 선택되는 1종 이상일 수 있다:In another embodiment of the present invention, the compound represented by Formula 1 may be at least one selected from the group consisting of compounds represented by Formulas 2 to 16:
[화학식 2][Formula 2]
Figure PCTKR2021007187-appb-I000025
Figure PCTKR2021007187-appb-I000025
[화학식 3][Formula 3]
Figure PCTKR2021007187-appb-I000026
Figure PCTKR2021007187-appb-I000026
[화학식 4][Formula 4]
Figure PCTKR2021007187-appb-I000027
Figure PCTKR2021007187-appb-I000027
[화학식 5][Formula 5]
Figure PCTKR2021007187-appb-I000028
Figure PCTKR2021007187-appb-I000028
[화학식 6][Formula 6]
Figure PCTKR2021007187-appb-I000029
Figure PCTKR2021007187-appb-I000029
[화학식 7][Formula 7]
Figure PCTKR2021007187-appb-I000030
Figure PCTKR2021007187-appb-I000030
[화학식 8][Formula 8]
Figure PCTKR2021007187-appb-I000031
Figure PCTKR2021007187-appb-I000031
[화학식 9][Formula 9]
Figure PCTKR2021007187-appb-I000032
Figure PCTKR2021007187-appb-I000032
[화학식 10][Formula 10]
Figure PCTKR2021007187-appb-I000033
Figure PCTKR2021007187-appb-I000033
[화학식 11][Formula 11]
Figure PCTKR2021007187-appb-I000034
Figure PCTKR2021007187-appb-I000034
[화학식 12][Formula 12]
Figure PCTKR2021007187-appb-I000035
Figure PCTKR2021007187-appb-I000035
[화학식 13][Formula 13]
Figure PCTKR2021007187-appb-I000036
Figure PCTKR2021007187-appb-I000036
[화학식 14][Formula 14]
Figure PCTKR2021007187-appb-I000037
Figure PCTKR2021007187-appb-I000037
[화학식 15][Formula 15]
Figure PCTKR2021007187-appb-I000038
Figure PCTKR2021007187-appb-I000038
and
[화학식 16][Formula 16]
Figure PCTKR2021007187-appb-I000039
Figure PCTKR2021007187-appb-I000039
본 발명의 일구현 예로, 상기 카이랄 도펀트는 하기 화학식 17 내지 23의화합물로 이루어지는 군으로부터 선택되는 1종 이상의 화합물인 것일 수 있으며, 반드시 이에 국한되지는 않는다.In one embodiment of the present invention, the chiral dopant may be one or more compounds selected from the group consisting of compounds represented by the following Chemical Formulas 17 to 23, but is not necessarily limited thereto.
[화학식 17][Formula 17]
Figure PCTKR2021007187-appb-I000040
(카이랄 화합물 1, CB-15)
Figure PCTKR2021007187-appb-I000040
(chiral compound 1, CB-15)
[화학식 18][Formula 18]
Figure PCTKR2021007187-appb-I000041
(카이랄 화합물 2, ISO-(60BA)2)
Figure PCTKR2021007187-appb-I000041
(chiral compound 2, ISO-(60BA) 2 )
[화학식 19][Formula 19]
Figure PCTKR2021007187-appb-I000042
(카이랄 화합물 3, S1011&R1011)
Figure PCTKR2021007187-appb-I000042
(Chiral compound 3, S1011&R1011)
[화학식 20][Formula 20]
Figure PCTKR2021007187-appb-I000043
(카이랄 화합물 4, ZLI 4572)
Figure PCTKR2021007187-appb-I000043
(chiral compound 4, ZLI 4572)
[화학식 21] [Formula 21]
Figure PCTKR2021007187-appb-I000044
(카이랄 화합물 5, S811 & R811)
Figure PCTKR2021007187-appb-I000044
(chiral compound 5, S811 & R811)
[화학식 22][Formula 22]
Figure PCTKR2021007187-appb-I000045
(카이랄 화합물 6)
Figure PCTKR2021007187-appb-I000045
(chiral compound 6)
and
[화학식 23][Formula 23]
Figure PCTKR2021007187-appb-I000046
(카이랄 화합물 7)
Figure PCTKR2021007187-appb-I000046
(chiral compound 7)
본 발명의 일구현 예로, 상기 양자점은 다양한 조성의 양자점일 수 있으며 예를 들어 ZnS, ZnSe, ZnTe, HgS, HgSe, HgTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeTe, HgSTe, HgZnS, HgZnSe, HgZnTe, HgZnSeS, HgZnSeTe 및 HgZnSTe, GaN, GaP, GaAs, AlN, AlP, AlAs, InN, InP, InSe, InZnP, InAs, GaNP, GaNAs, GaPAs, AlNP, AlNAs, AlPAs, InNP, InNAs, InPAs, GaAlNP, GaAlNAs, GaAlPAs, GaInNP, GaInNAs, GaInPAs, InAlNP, InAlNAs, 및 InAlPAs으로 이루어지는 군으로부터 선택되는 1종 이상을 포함할 수 있고, 예를 들어 InP/InSe/ZnS가 혼합된 조성을 이용할 수 있으나, 특정 조성에 국한되지는 않는다.In one embodiment of the present invention, the quantum dots may be quantum dots of various compositions, for example, ZnS, ZnSe, ZnTe, HgS, HgSe, HgTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeTe, HgSTe, HgZnS, HgZnSe, HgZnTe, HgZnSeS, HgZnSeTe and HgZnSTe, GaN, GaP, GaAs, AlN, AlP, AlAs, InN, InP, InSe, InZnP, InAs, GaNP, GaNAs, GaPAs, AlNP, AlNAs, AlPAs, InNP, InNAs, InPAs, GaAlNP, GaAlNAs, GaAlPAs, GaInNP, GaInNAs, GaInPAs, InAlNP, InAlNAs, and may include one or more selected from the group consisting of InAlPAs, for example, InP / InSe / ZnS A mixed composition may be used, but is not limited to a specific composition. does not
본 발명의 액정 조성물은 액정 분자, 카이랄 도펀트, 양자점 및 광개시제를 포함하는 것으로, 상기 액정 분자, 카이랄 도펀트, 양자점 및 광개시제의 종류는, 본 발명의 기술 분야에서 사용할 수 있는 재료라면 종류에 제한되지 않고 사용이 가능하다.The liquid crystal composition of the present invention includes a liquid crystal molecule, a chiral dopant, a quantum dot, and a photoinitiator. It is not available and can be used.
또한, 본 발명은 상기 액정 조성물을 광중합하여 형성된 광학필름을 제공할 수 있다. 상기 광학필름은 광반응성 콜레스테릭 액정 조성물이 플래너 배향 또는 포컬코닉 배향 상태에서 광중합하여 형성된 것으로, 포토닉 밴드갭을 조절하여 양자점의 공명발광 파장을 조절하고, 양자점의 발광이 원평광 되도록 할 수 있는 특징이 있다.In addition, the present invention may provide an optical film formed by photopolymerizing the liquid crystal composition. The optical film is formed by photopolymerization of a photoreactive cholesteric liquid crystal composition in a planar or focal-conic orientation, and adjusts the photonic band gap to control the resonance emission wavelength of the quantum dots, and to make the emission of the quantum dots circularly polarized there is a characteristic
따라서 상기 광학 필름은 액정 소자(LCD), 유기발광 소자(OLED), 양자점 발광 소자(QDLED), 마이크로 엘이디 소자(Micro LED) 등의 표시 소자에 사용될 수 있고, 본 발명은 상기 정보 표시 소자를 포함하는 정보 표시 장치를 제공할 수 있다.Therefore, the optical film can be used in display devices such as a liquid crystal device (LCD), an organic light emitting device (OLED), a quantum dot light emitting device (QDLED), and a micro LED device (Micro LED), and the present invention includes the information display device It is possible to provide an information display device.
상기와 같은 광학 필름은 소자의 종류에는 제한이 없으나, 특히 QD 색변환 필름(QDEF)으로 응용되는 것으로, LCD, LED, OLED 등의 패널의 외부에 상기 광학 필름을 부착하여 사용할 수 있다.The optical film as described above is not limited in the type of device, but is particularly applied as a QD color conversion film (QDEF), and may be used by attaching the optical film to the outside of a panel such as LCD, LED, or OLED.
아울러 본 발명은 상기 광반응성 콜레스테릭 액정 조성물을 포함하는 포토레지스트 및 잉크젯 프린팅용 조성물을 제공하고, 상기 포토레지스트 및 잉크젯 프린팅용 조성물이 패턴화되어 박막으로 형성된 색변환 기반 컬러필터 기판을 제공한다.In addition, the present invention provides a photoresist and a composition for inkjet printing comprising the photoreactive cholesteric liquid crystal composition, and a color conversion-based color filter substrate formed as a thin film by patterning the photoresist and the composition for inkjet printing. .
본 발명의 포토레지스트 및 잉크젯 프린팅용 조성물은 패널을 구성하는 기판의 내부에 RGB 패턴화하여 박막으로 형성되어 색변환 기반 QD 컬러필터(QDCF)를 제조할 수 있다. 본 발명의 포토레지스트 및 잉크젯 프린팅용 조성물은 광산란 입자가 포함되지 않아도 자체적으로 강한 산란을 유도할 수 있으므로, 산란 입자의 사용량을 줄여 고효율 발광 성능을 실현하고 유지할 수 있는 효과가 있다.The composition for photoresist and inkjet printing of the present invention is formed into a thin film by RGB patterning on the inside of the substrate constituting the panel to manufacture a color conversion-based QD color filter (QDCF). The composition for photoresist and inkjet printing of the present invention can induce strong scattering by itself even if light scattering particles are not included.
따라서 상기와 같은 광학 필름은 소자의 종류에는 제한 없이 QD 색변환 필름(QDEF) 또는 패턴화된 컬러필터의 형태로 패널의 외부 또는 내부에 위치하여 색변환 기능을 할 수 있으므로 높은 색 순도와 넓은 영역의 색 표현이 요구되는 LCD, LED, OLED, QDLED, Micro LED 등 고성능 정보표시 소자에 활용 가능하다.Therefore, the optical film as described above can perform a color conversion function by being located outside or inside the panel in the form of a QD color conversion film (QDEF) or a patterned color filter without limitation on the type of device, so it has high color purity and a wide area. It can be used for high-performance information display devices such as LCD, LED, OLED, QDLED, and Micro LED that require color expression.
이하 본 발명의 실시예에 의해 상세히 설명한다. 단, 하기의 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기의 실시예에 한정되는 것은 아니다.Hereinafter, an embodiment of the present invention will be described in detail. However, the following examples are merely illustrative of the present invention, and the content of the present invention is not limited to the following examples.
[실시예][Example]
1. 광중합성 모노머 및 카이럴 도펀트 준비1. Preparation of photopolymerizable monomers and chiral dopants
본 실시예에서 사용하는 광중합성 모노머와 카이럴 도펀트는 각각 하기 표 1 및 표 2에 나타내었다.The photopolymerizable monomer and chiral dopant used in this Example are shown in Tables 1 and 2 below, respectively.
화학식chemical formula
화학식 1-1Formula 1-1
Figure PCTKR2021007187-appb-I000047
Figure PCTKR2021007187-appb-I000047
화학식 1-2Formula 1-2
Figure PCTKR2021007187-appb-I000048
Figure PCTKR2021007187-appb-I000048
화학식 1-3Formula 1-3
Figure PCTKR2021007187-appb-I000049
Figure PCTKR2021007187-appb-I000049
화학식 1-4Formula 1-4
Figure PCTKR2021007187-appb-I000050
Figure PCTKR2021007187-appb-I000050
화학식 1-5Formula 1-5
Figure PCTKR2021007187-appb-I000051
Figure PCTKR2021007187-appb-I000051
화학식 1-6Formula 1-6
Figure PCTKR2021007187-appb-I000052
Figure PCTKR2021007187-appb-I000052
화학식 1-7Formula 1-7
Figure PCTKR2021007187-appb-I000053
Figure PCTKR2021007187-appb-I000053
화학식 1-8Formula 1-8
Figure PCTKR2021007187-appb-I000054
Figure PCTKR2021007187-appb-I000054
화학식 1-9Formula 1-9
Figure PCTKR2021007187-appb-I000055
Figure PCTKR2021007187-appb-I000055
화학식chemical formula
화학식 2-1Formula 2-1
Figure PCTKR2021007187-appb-I000056
Figure PCTKR2021007187-appb-I000056
화학식 2-2Formula 2-2
Figure PCTKR2021007187-appb-I000057
Figure PCTKR2021007187-appb-I000057
화학식 2-3Formula 2-3
Figure PCTKR2021007187-appb-I000058
Figure PCTKR2021007187-appb-I000058
화학식 2-4Formula 2-4
Figure PCTKR2021007187-appb-I000059
Figure PCTKR2021007187-appb-I000059
화학식 2-5Formula 2-5
Figure PCTKR2021007187-appb-I000060
Figure PCTKR2021007187-appb-I000060
화학식 2-6Formula 2-6
Figure PCTKR2021007187-appb-I000061
Figure PCTKR2021007187-appb-I000061
2. 양자점 분산 조성물 및 필름 제조2. Quantum Dot Dispersion Composition and Film Preparation
듀퐁사(DuPont)의 InP/InSe/ZnS 조성을 가지는 녹색발광 양자점(GQD) 및 적색 발광 양자점(RQD)을 이용하여 다양한 매질에 분산된 양자점의 발광 특성을 비교하였다. The emission characteristics of quantum dots dispersed in various media were compared using DuPont's green light-emitting quantum dots (GQD) and red light-emitting quantum dots (RQD) having InP/InSe/ZnS composition.
A. 등방성 액체 매질에 분산된 양자점 시료A. Sample of quantum dots dispersed in an isotropic liquid medium
헵테인(heptane)에 분산된 Green QD(GQD) 및 Red QD(RQD) 시료를 준비하고 흡광 및 발광 특성을 도 1에 나타내었다. PGMEA(Propylene glycol methyl ether acetate, 시그마알드리치사)에 0.05wt%의 GQD를 분산시킨 후, 10νm 간격을 유지한 2매의 유리기판 사이에 주입하여 여기 파장(excitation wavelength)에 따른 발광(emission) 특성을 관찰하고 도 2에 나타내었다. 도 2에서와 같이 여기광의 파장에 따라 양자점의 발광 세기는 변화하였으나 최대 발광 파장은 변하지 않음을 확인하였다. 또한, 분산 매질에 따른 발광 세기를 비교하기 위하여 HDDA(hexanediol diacrylate)에 0.05wt%의 GQD를 분산시킨 후, 10νm 간격을 유지한 2매의 유리기판 사이에 주입한 액상 시료 및 이를 350 ~ 400nm 자외선 광으로 경화하여 고체 필름화된 시료를 준비하였다.Green QD (GQD) and Red QD (RQD) samples dispersed in heptane were prepared, and absorption and emission characteristics are shown in FIG. 1 . After dispersing 0.05wt% of GQD in PGMEA (Propylene glycol methyl ether acetate, Sigma-Aldrich), it was injected between two glass substrates spaced 10νm apart. Emission characteristics according to the excitation wavelength was observed and shown in FIG. 2 . As shown in FIG. 2 , it was confirmed that the emission intensity of the quantum dots was changed according to the wavelength of the excitation light, but the maximum emission wavelength did not change. In addition, in order to compare the luminescence intensity according to the dispersion medium, after dispersing 0.05wt% of GQD in HDDA (hexanediol diacrylate), a liquid sample injected between two glass substrates spaced 10νm apart, and the 350 ~ 400nm UV light A solid filmed sample was prepared by curing with light.
B. 비등방성 액정에 분산된 양자점 시료B. Sample of quantum dots dispersed in anisotropic liquid crystal
카이랄 도펀트를 첨가하지 않은 네마틱 액정 MLC 6686(머크사)에 0.05wt%의 GQD를 분산시킨 후, 10νm 간격을 유지한 2매의 유리기판 사이에 주입하여 여기 파장(excitation wavelength)에 따른 발광(emission) 특성을 관찰하고 도 3에 나타내었다. 도 3에서와 같이 여기 광의 파장에 따라 양자점의 발광 세기는 변화하였으나 발광 파장은 변하지 않음을 확인하였다. After dispersing 0.05wt% of GQD in nematic liquid crystal MLC 6686 (Merck Co.) without chiral dopant addition, it is injected between two glass substrates spaced 10νm apart to emit light according to the excitation wavelength (emission) characteristics were observed and shown in FIG. 3 . As shown in FIG. 3 , it was confirmed that although the emission intensity of the quantum dots was changed according to the wavelength of the excitation light, the emission wavelength did not change.
C. 콜레스테릭 액정에 분산된 양자점 시료C. Sample of quantum dots dispersed in cholesteric liquid crystal
머크사의 네마틱 액정 MLC 15600-100 및 MLC 6686에 각각 카이랄 도펀트 S811(S-(+)-2-Octyl 4-(4-hexyloxybenzoyloxy)benzoate)을 30.0wt% 첨가하여 콜레스테릭 혼합물을 만들고, 혼합물에 0.05wt%의 GQD를 분산시킨 후, 10νm 간격을 유지한 2매의 유리기판 사이에 주입하여 여기 파장(μex = 380nm)에서 온도에 따른 발광(emission) 특성을 관찰하고 도 4에 나타내었다. 도 4에서와 같이 상온 콜레스테릭 액정상에서의 양자점 발광 세기가 혼합물의 등방상 온도에서보다 크게 증가함을 확인하였다. 또한 콜레스테릭 액정상에서의 양자점 발광 세기는 등방성 액체 매질인 상온 HDDA에서보다도 크게 증가함을 확인하였다. 이 결과를 통해 콜레스테릭 액정상의 주기적인 전자기적 특성이 양자점의 발광 특성과 관련이 있음을 알 수 있었으며, 이러한 특성을 이용하여 양자점 필름의 성능 향상을 위한 기술을 개발하였다.A cholesteric mixture was prepared by adding 30.0 wt% of a chiral dopant S811 (S-(+)-2-Octyl 4-(4-hexyloxybenzoyloxy)benzoate) to Merck's nematic liquid crystal MLC 15600-100 and MLC 6686, respectively, After dispersing 0.05wt% of GQD in the mixture, it was injected between two glass substrates spaced 10νm apart to observe the emission characteristics according to temperature at the excitation wavelength (μ ex = 380nm), and is shown in FIG. it was As shown in FIG. 4 , it was confirmed that the quantum dot emission intensity in the room temperature cholesteric liquid crystal phase was significantly increased than in the isotropic phase temperature of the mixture. In addition, it was confirmed that the quantum dot emission intensity in the cholesteric liquid crystal phase was significantly increased compared to that in the room temperature HDDA, which is an isotropic liquid medium. Through this result, it was found that the periodic electromagnetic properties of the cholesteric liquid crystal phase are related to the light emission properties of quantum dots, and a technology for improving the performance of the quantum dot film was developed using these properties.
D. 고체화된 콜레스테릭 액정 필름에 분산된 양자점 시료D. Sample of quantum dots dispersed in solidified cholesteric liquid crystal film
상기 [표 1]의 화학식 1-1과 1-2의 광반응성 액정 화합물이 50 : 50wt%로 섞여있는 혼합물에 대하여 30.0wt%의 S811, 1.0wt%의 광개시제 및 0.05wt%의 GRD를 첨가하여 반응성 콜레스테릭 액정에 분산된 양자점 조성물을 제조하였다. 준비된 양자점 조성물을 10νm 간격을 유지한 2매의 유리기판 사이에 주입하여, 콜레스테릭 회전 축이 기판에 수직으로 배열된(Planar 배열) 상태에서 350 ~ 400nm 자외선 광을 조사하여 고체 필름화 하였다. 광개시제는 Ciba사 Irgacure 651(2,2-Dimethoxy-2-phenylacetophenone)을 사용하였다. 도 5는 상기 제조된 GQD-분산 고체 콜레스테릭 필름의 여기 파장(excitation wavelength)에 따른 발광(emission) 특성을 보여준다. 도 5에서와 같이 여기 광의 파장에 따라 양자점의 발광 세기는 변화하였으나 발광 파장은 변하지 않음을 확인하였다.To the mixture in which the photoreactive liquid crystal compounds of Formulas 1-1 and 1-2 of [Table 1] are mixed at 50:50wt%, 30.0wt% of S811, 1.0wt% of a photoinitiator, and 0.05wt% of GRD were added. A quantum dot composition dispersed in a reactive cholesteric liquid crystal was prepared. The prepared quantum dot composition was injected between two glass substrates spaced at a distance of 10 μm, and a solid film was formed by irradiating 350 to 400 nm ultraviolet light with the cholesteric axis of rotation perpendicular to the substrate (planar arrangement). As a photoinitiator, Ciba's Irgacure 651 (2,2-Dimethoxy-2-phenylacetophenone) was used. 5 shows the emission characteristics according to the excitation wavelength of the GQD-dispersed solid cholesteric film prepared above. As shown in FIG. 5 , it was confirmed that although the emission intensity of the quantum dots was changed according to the wavelength of the excitation light, the emission wavelength did not change.
3. 양자점 분산 콜레스테릭 액정 필름의 광발광 효율 확인3. Confirmation of photoluminescence efficiency of quantum dot-dispersed cholesteric liquid crystal film
콜레스테릭 액정을 이용한 양자점 필름의 활용 가능성을 확인하기 위한 예비 실험으로서, 표 3의 양자점 분산 조성물을 사용하여 준비한 시료들을 대상으로 동일 조건에서 각 시료들의 상대적인 발광 세기를 비교하여 도 6에 도시하였다. 고체화된 HDDA 필름(상기 2A 시료), 액체상의 콜레스테릭 필름 (상기 2C 시료: MLC 6686 및 MLC 15600-100) 및 상기 2D의 고체화된 콜레스테릭 액정 필름에 분산된 양자점 시료를 사용하였으며, 필름의 두께는 모두 10νm 으로 유지하였다. 사용한 반응성 단량체 액정 혼합물(RM mixture)은 상기 표 1의 화학식 1-1, 1-2, 1-4 화합물을 15 : 15 : 70 중량비로 구성하여 균일하게 혼합하였다.As a preliminary experiment to confirm the applicability of the quantum dot film using the cholesteric liquid crystal, the relative luminescence intensity of each sample was compared under the same conditions for the samples prepared using the quantum dot dispersion composition of Table 3 and is shown in FIG. . A quantum dot sample dispersed in the solidified HDDA film (the 2A sample), the liquid cholesteric film (the 2C samples: MLC 6686 and MLC 15600-100) and the 2D solidified cholesteric liquid crystal film was used, and the film The thickness of all was maintained at 10νm. The reactive monomer liquid crystal mixture (RM mixture) used was uniformly mixed with the compounds of Chemical Formulas 1-1, 1-2, and 1-4 in Table 1 in a weight ratio of 15:15:70.
ChemicalsChemicals Compositions (wt%)Compositions (wt%)
RM mixture:
화합물 (1-1 : 1-2 : 1-4)
= [15 : 15 : 70] 중량비
RM mixture:
compound (1-1: 1-2: 1-4)
= [15:15:70] weight ratio
70.0570.05
MLC 15600-100
MLC 15600-100
69.9569.95
MLC 6686 MLC 6686 70.0570.05
HDDAHDDA 99.9599.95
Chiral dopant (S811)Chiral dopant (S811) 29.9029.90 30.0030.00 29.9029.90
Quantum dot
(GQD)
Quantum dot
(GQD)
0.050.05 0.050.05 0.050.05 0.050.05
도 6의 좌측 상단 그래프는 각 시료의 가시광 흡수 특성을 나타내며, 우측 하단의 그래프는 μex = 380nm에서의 발광 특성을 나타낸다. 도 6에 나타낸 바와 같이 콜레스테릭 액정 매질에 분산된 양자점의 발광 효율은 종래의 등방성 매질에서의 발광 효율보다 매우 높게 나타났으며, 특히 고체화된 콜레스테릭 액정 필름에 분산된 양자점 시료는 다른 시료에 비해 매우 높은 발광도를 나타내었다. The upper left graph of FIG. 6 shows the visible light absorption characteristics of each sample, and the lower right graph shows the emission characteristics at μ ex = 380 nm. As shown in FIG. 6, the luminous efficiency of quantum dots dispersed in a cholesteric liquid crystal medium was significantly higher than that in a conventional isotropic medium, and in particular, the quantum dot sample dispersed in the solidified cholesteric liquid crystal film was different showed a very high luminance compared to
고체화된 콜레스테릭 액정 필름에 분산된 양자점 시료의 발광 효율 향상을 이해하기 위하여 콜레스테릭 액정의 광중합 전과 후의 주기적인 광학 특성과, 이에 분산된 양자점의 발광 특성을 확인하였다. 이를 위하여 다양한 주기성을 가지는 콜레스테릭 액정 혼합물을 준비하여 동일 조건의 양자점을 분산한 시료들을 준비하였다.In order to understand the improvement of the luminous efficiency of the quantum dot sample dispersed in the solidified cholesteric liquid crystal film, the periodic optical properties before and after photopolymerization of the cholesteric liquid crystal and the light emitting properties of the quantum dots dispersed therein were confirmed. To this end, samples in which quantum dots under the same conditions were dispersed were prepared by preparing a cholesteric liquid crystal mixture having various periodicities.
먼저 표 1의 광반응성 단량체를 혼합하여 네마틱 액정 혼합물을 제조하고, 표 2의 카이럴 도펀트 및 광개시제를 첨가하여 R형 또는 S형의 콜레스테릭 액정 혼합물을 제조하였다. 이때 콜레스테릭 액정상 구조의 주기성(즉, 콜레스테릭 피치) 은 첨가하는 카이럴 도펀트의 양을 조절하여 변화시킬 수 있다. 여기에 GQD 또는 RQD 양자점을 분산하여 양자점 분산 광반응성 콜레스테릭 액정 조성물을 제조하였다. 양자점 조성물을 10νm 간격을 유지한 2매의 유리기판 사이에 주입하여, 콜레 스테릭 액정이 플래너 배열 또는 포컬코닉 배열 상태에서 350 ~ 400nm 자외선 광을 조사하여 고체 필름화 하였다.First, a nematic liquid crystal mixture was prepared by mixing the photoreactive monomers of Table 1, and a chiral dopant and a photoinitiator of Table 2 were added to prepare an R-type or S-type cholesteric liquid crystal mixture. In this case, the periodicity (ie, cholesteric pitch) of the cholesteric liquid crystal structure may be changed by adjusting the amount of the chiral dopant to be added. A quantum dot dispersion photoreactive cholesteric liquid crystal composition was prepared by dispersing GQD or RQD quantum dots here. The quantum dot composition was injected between two glass substrates spaced apart by 10 μm, and the cholesteric liquid crystal was irradiated with 350 to 400 nm ultraviolet light in a planar arrangement or focalconic arrangement to form a solid film.
대표적인 2종의 양자점 분산 콜레스테릭 액정 조성물 및 필름 특성을 표 4 및 도 7에 각각 나타내었다. 각 조성물은 상이 한 피치의 콜레스테릭 액정상이 잘 형성되었음을 확인하였고, 이를 광중합하여 고체 필름화할 수 있음을 확인할 수 있었다.Representative two types of quantum dot dispersion cholesteric liquid crystal compositions and film properties are shown in Table 4 and Figure 7, respectively. For each composition, it was confirmed that a cholesteric liquid crystal phase of a different pitch was well formed, and it was confirmed that it could be photopolymerized to form a solid film.
ComponentsComponents Chemical structuresChemical structures Compositions (wt%)


조성-A 조성-B
Compositions (wt%)


Composition-A Composition-B
조성-A Composition-A 조성-B composition-B
λpeak (525 nm)λ peak (525 nm) λpeak (380 nm)λ peak (380 nm)
화학식 1-1Formula 1-1
Figure PCTKR2021007187-appb-I000062
Figure PCTKR2021007187-appb-I000062
12.4512.45 10.5010.50
화학식 1-2Formula 1-2
Figure PCTKR2021007187-appb-I000063
Figure PCTKR2021007187-appb-I000063
12.4512.45 10.5010.50
화학식 1-7Formula 1-7
Figure PCTKR2021007187-appb-I000064
Figure PCTKR2021007187-appb-I000064
58.158.1 49.0349.03
S811S811
Figure PCTKR2021007187-appb-I000065
Figure PCTKR2021007187-appb-I000065
16.9516.95 29.9029.90
Quantum dot (GQD)Quantum dot (GQD) InP/InSe/ZnSInP/InSe/ZnS 0.050.05 0.050.05
상기 조성물 A와 B를 사용하여 제조한 광학 필름의 미세현미경 사진 및 자외선-가시광 영역의 투과 특성을 도 7에 도시하였다. 도 7의 광학 현미경 사진은 플래너 배열된 반응성 콜레스테릭 양자점 조성물의 광중합 전과 후의 미세 텍스쳐를 보여주는 사진이다. A-조성물은 중합전에는 청색을 반사하고, 중합 후에는 자색을 반사함을 알 수 있다. 또한 B-조성물의 경우 중합전 갈색의 반사색이 중합 후 청색으로 변화됨을 알 수 있다. 도 7의 UV-vis 투과 곡선은 상기의 색 변화를 잘 설명해 주고 있다. A와 B 조성물 모두에서 중합 전의 반치폭이 넓은 반사 밴드는 중합 후에 반치폭이 좁고 단파장 방향으로 이동한 반사 밴드가 형성됨을 알 수 있다 (도 7: A → A', B → B'). 이는 중합과정에서 1차원 콜레스테릭 주기가 짧아지고 분자들의 질서도가 증가하여 나타나는 현상이라고 할 수 있다.The micromicrograph of the optical film prepared using the compositions A and B and the transmission characteristics in the ultraviolet-visible region are shown in FIG. 7 . The optical micrograph of FIG. 7 is a photograph showing the fine texture before and after photopolymerization of the planar-arranged reactive cholesteric quantum dot composition. It can be seen that the A-composition reflects blue before polymerization and reflects purple after polymerization. In addition, in the case of B-composition, it can be seen that the reflection color of brown before polymerization is changed to blue after polymerization. The UV-vis transmission curve of FIG. 7 well explains the color change. It can be seen that in both compositions A and B, a reflection band having a wide half maximum width before polymerization has a narrow half maximum width after polymerization and a reflection band shifted in the short wavelength direction is formed (FIG. 7: A → A', B → B'). This can be said to be a phenomenon that occurs because the one-dimensional cholesteric cycle is shortened and the order of the molecules is increased during the polymerization process.
도 8은 상기 양자점 분산 콜레스테릭 광학 필름의 단면 전자주사현미경 사진이다. 필름 면의 수직방향으로 1차원 주기성을 가지는 구조체가 형성됨을 알 수 있다. 콜레스테릭 액정상은 피치에 해당하는 주기성을 가지는 1차원 광결정(photonic crystal)구조를 가지고 있다. 따라서 양자점이 분산된 광반응성 콜레스테릭 액정을 박막화하고, 광중합하여 고체 필름화 하면, 도 7 및 8에 나타낸 것과 같이 고체 필름화된 1차원 포토닉 밴드갭 구조를 가지는 고분자에 양자점이 분산되어 있는 광학필름을 제조할 수 있다.8 is a cross-sectional scanning electron microscope photograph of the quantum dot dispersion cholesteric optical film. It can be seen that a structure having one-dimensional periodicity is formed in the vertical direction of the film plane. The cholesteric liquid crystal phase has a one-dimensional photonic crystal structure having a periodicity corresponding to the pitch. Therefore, when the photoreactive cholesteric liquid crystal in which quantum dots are dispersed is thinned and photopolymerized to form a solid film, as shown in FIGS. 7 and 8, quantum dots are dispersed in a polymer having a solid filmed one-dimensional photonic bandgap structure. An optical film can be manufactured.
다양한 조합의 액정 조성물을 실험해 본 결과, 분산 양자점의 발광 특성은 콜레스테릭 상의 구조에 따라 크게 변함을 알 수 있었다. 즉, 콜레스테릭 액정상을 구성하는 단량 체의 종류보다는 콜레스테릭 액정상의 주기적 1차원 구조가 중요한 인자임을 알게 되었다. 따라서 이러한 콜레스테릭 액정상의 주기적 1차원 구조와 양자점 발광 특성의 상관관계를 연구하였다. As a result of experimenting with liquid crystal compositions of various combinations, it was found that the emission characteristics of the dispersed quantum dots were significantly changed according to the structure of the cholesteric phase. That is, it was found that the periodic one-dimensional structure of the cholesteric liquid crystal phase is an important factor rather than the type of monomer constituting the cholesteric liquid crystal phase. Therefore, the correlation between the periodic one-dimensional structure of the cholesteric liquid crystal phase and the quantum dot emission characteristics was studied.
다양한 단량체 조합에 의한 양자점 조성물에서 공통적으로 나타나는 콜레스테릭 액정상 의 주기적 1차원 광결정 구조와 양자점 발광 특성의 상관관계를 보여주는 대표적인 예를 보여주기 위하여 카이럴 도펀트 양을 조절하여 하기 표 5과 같이 다양한 1차원 주기성 (즉 광결정 구조, 포토닉 밴드갭)를 가지는 양자점 조성물을 제조하였다. 사용한 반응성 단량체 액정 혼합물(RM mixture)은 상기 표 1의 화학식 1-1, 1-2, 1-3, 1-5 화합물을 15 : 15 : 35 : 35 중량비로 구성하여 균일하게 혼합하였다. 카이럴 도펀트는 S811(상기 표 2의 화학식 2-2)를 사용하였다. 표 5의 λpeak(nm)는 각 양자점 조성물로 제조한 10μm 두께 필름의 최대 반사파장 (즉, 최소 투과 파장)을 나타낸다.In order to show a representative example showing the correlation between the periodic one-dimensional photonic crystal structure of the cholesteric liquid crystal phase and the quantum dot emission characteristic, which is commonly seen in quantum dot compositions by various monomer combinations, the amount of chiral dopant is adjusted to provide various A quantum dot composition having one-dimensional periodicity (ie, photonic crystal structure, photonic bandgap) was prepared. The reactive monomer liquid crystal mixture (RM mixture) used was uniformly mixed with the compounds of Chemical Formulas 1-1, 1-2, 1-3, and 1-5 in Table 1 in a weight ratio of 15:15:35:35. S811 (Formula 2-2 in Table 2) was used as the chiral dopant. λ peak (nm) in Table 5 represents the maximum reflection wavelength (ie, minimum transmission wavelength) of the 10 μm thick film prepared with each quantum dot composition.
ComponentsComponents Chemical structuresChemical structures Compositions (wt%)Compositions (wt%)
λpeak
(525 nm)
λ peak
(525 nm)
λpeak
(455 nm)
λ peak
(455 nm)
λpeak
(380 nm)
λ peak
(380 nm)
화학식 1-1Formula 1-1
Figure PCTKR2021007187-appb-I000066
Figure PCTKR2021007187-appb-I000066
12.512.5 11.611.6 10.510.5
화학식 1-2Formula 1-2
Figure PCTKR2021007187-appb-I000067
Figure PCTKR2021007187-appb-I000067
12.512.5 11.611.6 10.510.5
화학식 1-5Formula 1-5
Figure PCTKR2021007187-appb-I000068
Figure PCTKR2021007187-appb-I000068
29.029.0 27.127.1 24.524.5
화학식 1-3Formula 1-3
Figure PCTKR2021007187-appb-I000069
Figure PCTKR2021007187-appb-I000069
29.029.0 27.127.1 24.524.5
S811S811
Figure PCTKR2021007187-appb-I000070
Figure PCTKR2021007187-appb-I000070
17.017.0 22.522.5 29.929.9
Quantum dot(GQD)Quantum dot (GQD) InP/InSe/ZnSInP/InSe/ZnS 0.050.05 0.050.05 0.050.05
도 9는 상기 제조된 양자점 분산 콜레스테릭 광학필름의 UV-vis 투과특성 및 380nm 여기광의 조사에 따른 양자점 분산 필름의 발광 특성을 나타낸다. 도 9 상단의 그래프에서와 같이 콜레스테릭 액정 필름의 밴드갭 특성을 여기광 파장 (λex= ~380nm), 발광광 파장 (λem= ~525nm), 또는 ~455nm와 일치시킨 광학 필름의 양자점 발광특성을 종래의 등방성 광학필름과 비교하여 하단의 그래프로 나타내었다. 도 9 하단의 그래프에서 보는 바와 같이 상기 3종의 광학 필름은 HDDA 중합 필름과 등방상에서의 양자점 발광 효율보다 크게 향상된 특성을 보여주고 있다. 이는 광결정 특성을 가지는 매질은 양자점 분산 광학 필름의 특성 향상에 크게 도움이 된다는 것을 보여준다고 할 수 있다.9 shows the UV-vis transmission characteristics of the quantum dot-dispersed cholesteric optical film prepared above and the emission characteristics of the quantum dot-dispersed film according to irradiation with 380 nm excitation light. As shown in the upper graph of FIG. 9 , the quantum dots of the optical film in which the band gap characteristics of the cholesteric liquid crystal film are matched with the excitation light wavelength (λ ex = ~380 nm), the emission light wavelength (λ em = ~525 nm), or ~455 nm The light emitting characteristics were compared with the conventional isotropic optical film and shown in the graph at the bottom. As shown in the graph at the bottom of FIG. 9 , the three types of optical films show significantly improved properties than the HDDA polymer film and the quantum dot luminous efficiency in the isotropic phase. This can be said to show that the medium having photonic crystal properties greatly helps improve the properties of the quantum dot dispersion optical film.
또한, 상기 3종의 광학필름에서 필름의 포토닉 밴드갭이 양자점의 광발광 파장과 중첩되는 경우(CLCM2) 가장 큰 발광 효율을 나타내며 광여기 파장과 중첩되는 경우(CLCM1)에도 큰 발광 효율의 향상이 있음을 알 수 있다. In addition, in the three types of optical films, when the photonic bandgap of the film overlaps the photoluminescence wavelength of the quantum dot (CLCM2), the luminous efficiency is the greatest, and even when the photoexcitation wavelength overlaps (CLCM1), the luminous efficiency is greatly improved. It can be seen that this
4. 광결정 구조에 의한 공명 현상 확인 및 공명에 의한 발광 파장 변조4. Confirmation of resonance phenomenon by photonic crystal structure and modulation of emission wavelength by resonance
광중합성 콜레스테릭 단량체를 이용하여 제작한 고체 필름은 1차원 광결정 구조를 가지므로 포 토닉 밴드갭의 역할을 할 수 있을 것으로 생각된다. 따라서, 광결정에 분산된 양자점의 발광에 따른 공명 현상이 나타난다면 발광 효율을 향상시킬 수 있을 뿐만이 아니라 공명 현상을 이용하여 필름으로부터 방출되는 빛의 파장을 변조할 수도 있을 것이다. 이를 확인하기 위하여 하기 표 6에 나타낸 것과 같이 4종류의 반응성 콜레스테릭 액정 조성물로부터 서로 다른 포토닉 밴드갭을 가지는 고체 필름을 제작하였다.Since the solid film produced using the photopolymerizable cholesteric monomer has a one-dimensional photonic crystal structure, it is thought to be able to play the role of a photonic bandgap. Therefore, if a resonance phenomenon occurs due to the emission of quantum dots dispersed in a photonic crystal, not only can the luminous efficiency be improved, but also the wavelength of light emitted from the film can be modulated by using the resonance phenomenon. In order to confirm this, as shown in Table 6 below, solid films having different photonic band gaps were prepared from four types of reactive cholesteric liquid crystal compositions.
ComponentsComponents Chemical structuresChemical structures Compositions (wt%)Compositions (wt%)
λpeak
(505 nm)
λ peak
(505 nm)
λpeak
(480 nm)
λ peak
(480 nm)
λpeak
(470 nm)
λ peak
(470 nm)
λpeak
(460 nm)
λ peak
(460 nm)
화학식 1-1Formula 1-1
Figure PCTKR2021007187-appb-I000071
Figure PCTKR2021007187-appb-I000071
12.34512.345 12.22512.225 12.0312.03 11.80511.805
화학식 1-2Formula 1-2
Figure PCTKR2021007187-appb-I000072
Figure PCTKR2021007187-appb-I000072
12.34512.345 12.22512.225 12.0312.03 11.80511.805
화학식 1-3Formula 1-3
Figure PCTKR2021007187-appb-I000073
Figure PCTKR2021007187-appb-I000073
57.6157.61 12.22512.225 56.1456.14 55.0955.09
S811S811
Figure PCTKR2021007187-appb-I000074
Figure PCTKR2021007187-appb-I000074
17.6517.65 18.4518.45 19.7519.75 21.2521.25
Quantum dot(GQD)Quantum dot (GQD) InP/InSe/ZnSInP/InSe/ZnS 0.050.05 0.050.05 0.050.05 0.050.05
PL peaksPL peaks 465nm, 492nm465nm, 492nm 476 nm476 nm 463nm463nm 455nm455nm
상기 양자점 분산 광학 필름은 도 10에 나타낸 바와 같이 각각 ~460nm, ~470nm, ~480nm, ~505nm의 포토닉 밴드갭을 나타내었다. 이와 같이 제조된 양자점 광학 필름에 380 nm 파장의 원편광을 조사하여 필름으로부터 방출되는 발광광을 측정하고 도 10에 필름 각각의 포토닉 밴드갭 그래프와 같이 도시하였다. 동종의 양자점 및 여기광을 사용하였음에도 불구하고 도 10에서와 같이 발광광의 파장이 변조되었음을 명확하게 확인할 수 있었다. 공명에 의해 변조된 발광광의 파장은 각 필름의 포토닉 밴드갭 중심으로부터 약간 단파장으로 이동한 위치와 일치함을 알 수 있었다. The quantum dot dispersion optical film exhibited photonic band gaps of ~460nm, ~470nm, ~480nm, and ~505nm, respectively, as shown in FIG. 10 . The quantum dot optical film thus prepared was irradiated with circularly polarized light having a wavelength of 380 nm to measure the emitted light emitted from the film, and is shown as a photonic bandgap graph of each film in FIG. 10 . Although the same type of quantum dots and excitation light were used, it could be clearly confirmed that the wavelength of the emitted light was modulated as shown in FIG. 10 . It was found that the wavelength of the emitted light modulated by resonance coincided with the position slightly shifted to a shorter wavelength from the center of the photonic bandgap of each film.
또한, 이러한 공명 현상은 콜레스테릭 액정의 광학 활성 유형(handedness)과 여기광의 편광 상태에 크게 의존함을 확인하였다. 콜레스테릭 액정의 handedness와 원편광 여기광의 handedness가 일치할 때 공명 현상이 최대가 됨을 알 수 있었다. 비편광 여기광을 이용할 경우 공명 현상이 나타나지 않고, 양자점 고유의 ~530nm 파장을 방출하였다. 콜레스테릭 액정의 handedness와 원편광 여기광의 handedness가 반대일 경우 공명 현상이 크게 약화됨을 알 수 있었다.In addition, it was confirmed that this resonance phenomenon greatly depends on the optical activity type (handedness) of the cholesteric liquid crystal and the polarization state of the excitation light. It was found that the resonance phenomenon is maximized when the handedness of the cholesteric liquid crystal and the handedness of the circularly polarized excitation light match. When unpolarized excitation light was used, resonance did not occur, and a unique wavelength of ~530 nm was emitted. It was found that when the handedness of the cholesteric liquid crystal and the handedness of the circularly polarized excitation light were opposite, the resonance phenomenon was greatly weakened.
이와 같은 결과는 콜레스테릭 광결정에 분산된 양자점의 발광광이 공명 현상에 의해 파장 변조될 수 있음을 보여주고 있으므로 양자점 분산 고분자 색변환 필름에 매우 유용하게 활용될 수 있음 을 의미한다. This result shows that the emitted light of quantum dots dispersed in a cholesteric photonic crystal can be wavelength-modulated by resonance, meaning that it can be very usefully used in a quantum dot-dispersed polymer color conversion film.
따라서 본 발명에서 제공하는 양자점 광학 필름 제조를 위한 반응성 콜레스테릭 액정 조성물은 용이하게 광결정 구조를 형성 및 제어할 수 있고, 이를 사용하여 제조된 양자점 광학 필름은 발광 효율을 크게 향상시킬 뿐 아니라, 공명현상을 이용하여 방출 광의 파장 변조가 가능하므로 색변환 필름 및 이에 기반한 컬러 필터로도 활용될 수 있으므로 색변환 기능이 요구되는 고성능 표시 소자의 개발에 매우 유용하다. Therefore, the reactive cholesteric liquid crystal composition for producing a quantum dot optical film provided in the present invention can easily form and control a photonic crystal structure, and a quantum dot optical film prepared using the same can greatly improve luminous efficiency, as well as resonance Since the wavelength of emitted light can be modulated using development, it can also be used as a color conversion film and a color filter based thereon, which is very useful for the development of high-performance display devices requiring a color conversion function.
5. 광결정 구조에 의한 공명 및 원편광 발광 확인5. Confirmation of resonance and circularly polarized light emission by photonic crystal structure
광중합성 콜레스테릭 단량체를 이용하여 제작한 고체 필름은 1차원 광결정 구조를 가질 뿐만 아니라 카이럴 도펀트의 광학활성 유형에 따라 서로 광학적 이성질체 관계에 있는 1차원 나선형 광결정(helical photonic crystal)을 형성한다. 따라서, 상기의 공명 발광 현상도 광학 활성을 나타낼 수도 있을 것으로 생각된다. 이를 확인하기 위하여 상기의 양자점 분산 콜레스테릭 필름을 사용하여 발광광의 광학 활성을 확인하였다. 그 결과 상기 광학 필름은 강한 원편광 이색성 발광(circular dichroic emission)을 나타냄을 확인하였다. A solid film prepared using a photopolymerizable cholesteric monomer not only has a one-dimensional photonic crystal structure, but also forms a one-dimensional helical photonic crystal in an optical isomer relationship with each other depending on the optical activity type of the chiral dopant. Therefore, it is considered that the above resonance light emission phenomenon may also exhibit optical activity. In order to confirm this, the optical activity of emitted light was confirmed using the quantum dot-dispersed cholesteric film. As a result, it was confirmed that the optical film exhibited strong circular dichroic emission.
표 7은 광학 필름을 제조하기 위한 양자점 분산 콜레스테릭 액정 혼합물의 조성을 나타낸 것이다. 표 7의 조성을 사용하여 상기의 예에서와 같은 방법으로 광중합하여 양자점 분산 광학 필름을 제작하였다. λpeak(nm)는 각 양자점 조성물로 제조한 10μm 두께 필름의 최대 반사파장 (즉 포토닉 밴드갭)을 나타낸다. 제조된 필름에 도 10(상단)에서와 같이 원편광을 조사하고, 검출기 이전에 추가의 원편광 자를 배치하여 방출되는 광의 편광 상태를 확인하였다. 확인 결과 도 11에 나타낸 바와 같이 필름으로부터 방출되는 빛은 원편광되어 있음을 알 수 있었다. 대표 샘플의 결과를 도시한 도 11에서 실선 곡선은 각각 포토닉 밴드갭 특성을 나타내는 콜레스테릭 매트릭스의 가시광 투과 곡선이고, LCP 및 RCP 곡선은 방출되는 빛의 광학활성을 나타낸다. 동종의 GQD에서 발광한 빛의 파장은 콜레스테릭 매트릭스의 포토닉 밴드갭 특성에 따라 변조됨을 알 수 있고, 이와 더불어 변조된 발광광은 콜레스테릭 매트릭스의 광학 활성과 동일한 유형으로 강하게 원편광 되어 있음을 알 수 있었다. 즉, 변조된 발광광은 콜레스테릭 매트릭스와 동일한 handedness를 가지는 원편광이 강하게 검출되고, 반대의 handedness를 가지는 편광은 미약하게 검출되었다다. Table 7 shows the composition of the quantum dot dispersion cholesteric liquid crystal mixture for preparing the optical film. Using the composition of Table 7, photopolymerization was carried out in the same manner as in the above example to prepare a quantum dot dispersion optical film. λ peak (nm) represents the maximum reflection wavelength (ie, photonic bandgap) of a 10 μm thick film prepared with each quantum dot composition. The prepared film was irradiated with circularly polarized light as in FIG. 10 (top), and an additional circularly polarized light was placed before the detector to confirm the polarization state of the emitted light. As a result of the confirmation, it was found that the light emitted from the film was circularly polarized as shown in FIG. 11 . In FIG. 11 showing the results of the representative sample, the solid line curve is the visible light transmission curve of the cholesteric matrix showing the photonic bandgap characteristic, respectively, and the LCP and RCP curves represent the optical activity of the emitted light. It can be seen that the wavelength of light emitted from the same type of GQD is modulated according to the photonic bandgap characteristics of the cholesteric matrix. was found to be That is, in the modulated emission light, circularly polarized light having the same handedness as that of the cholesteric matrix was strongly detected, and polarized light having the opposite handedness was weakly detected.
ComponentsComponents Chemical structuresChemical structures Compositions (wt%)Compositions (wt%)
λpeak
535 nm
λ peak
535 nm
λpeak
500 nm
λ peak
500 nm
λpeak
485 nm
λ peak
485 nm
λpeak
475 nm
λ peak
475 nm
λpeak
455 nm
λ peak
455 nm
화학식 1-1Formula 1-1
Figure PCTKR2021007187-appb-I000075
Figure PCTKR2021007187-appb-I000075
12.4512.45 12.31512.315 12.22512.225 12.0312.03 11.62511.625
화학식 1-2Formula 1-2
Figure PCTKR2021007187-appb-I000076
Figure PCTKR2021007187-appb-I000076
12.4512.45 12.31512.315 12.22512.225 12.0312.03 11.62511.625
화학식 1-3Formula 1-3
Figure PCTKR2021007187-appb-I000077
Figure PCTKR2021007187-appb-I000077
58.158.1 57.4757.47 57.0557.05 56.1456.14 54.2554.25
S811S811
Figure PCTKR2021007187-appb-I000078
Figure PCTKR2021007187-appb-I000078
16.9516.95 17.8517.85 18.4518.45 19.7519.75 22.4522.45
Quantum dot(GQD)Quantum dot (GQD) InP/InSe/ZnSInP/InSe/ZnS 0.050.05 0.050.05 0.050.05 0.050.05 0.050.05
또한, 상기의 실시예에서 기술한 바와 같이 비편광 여기광의 조사에 의해 방출되는 광은 공명 현상에 의한 파장 변조가 일어나지 않고, 양자점 고유의 발광 파장을 방출한다. 이와 같이 비편광 여기광의 조사에 의해 방출되는 광의 광학 활성을 측정하여 본 결과 도 12에 나 타낸 바와 같이 부분적으로 원편광 되어 있음을 확인하였다. 도 12에 서 λpeak(nm)는 포토닉 밴드갭 중심 파장을 의미하며, 표 7의 해당 조성물을 사용하여 제조한 필름을 나타낸다. LCP 곡선은 방출광이 콜레스테릭 매트릭스와 같은 광학 활성을 가지는 원편광 성분이고, RCP 곡선은 콜레스테릭 매트릭스와 반대되는 광학 활성을 가지는 원편광 성분을 나타내는 것이다. In addition, as described in the above embodiment, light emitted by irradiation of unpolarized excitation light does not undergo wavelength modulation due to resonance, and emits a unique emission wavelength of quantum dots. As such, the optical activity of the light emitted by the irradiation of the unpolarized excitation light was measured, and as a result, it was confirmed that the light was partially circularly polarized as shown in FIG. 12 . In FIG. 12, λ peak (nm) means the photonic bandgap center wavelength, and shows a film prepared using the corresponding composition in Table 7. The LCP curve represents a circularly polarized component in which emitted light has the same optical activity as the cholesteric matrix, and the RCP curve represents a circularly polarized component having an optical activity opposite to that of the cholesteric matrix.
이와 같은 결과는 콜레스테릭 광결정에 분산된 양자점 분산 필름을 이용하여 발광광의 공명 현상을 이용하면 파장을 변조할 수 있을 뿐만 아니라, 발광광의 원편광상태를 제어할 수 있음을 보여주므로, 상기의 양자점 분산 콜레스테릭 액정 조성물은 색변환 기능을 하는 광학 필름의 제조에 매우 유용하게 사용될 수 있다. These results show that using the resonance phenomenon of emitted light using a quantum dot dispersion film dispersed in a cholesteric photonic crystal, not only can the wavelength be modulated, but also the circular polarization state of the emitted light can be controlled. The dispersed cholesteric liquid crystal composition can be very usefully used in the manufacture of an optical film having a color conversion function.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술 분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야 한다. The description of the present invention described above is for illustration, and those of ordinary skill in the art to which the present invention pertains can understand that it can be easily modified into other specific forms without changing the technical spirit or essential features of the present invention. will be. Therefore, it should be understood that the embodiments described above are illustrative in all respects and not restrictive.

Claims (15)

  1. 광중합성 액정 단량체, 카이랄 도펀트, 양자점 및 광개시제를 포함하는, 색변환 기능을 갖는 광학필름 제조용 양자점 분산 광반응성 콜레스테릭 액정 조성물.A quantum dot dispersion photoreactive cholesteric liquid crystal composition for manufacturing an optical film having a color conversion function, comprising a photopolymerizable liquid crystal monomer, a chiral dopant, a quantum dot, and a photoinitiator.
  2. 제1항에 있어서,According to claim 1,
    상기 광중합성 액정 단량체는 하기 화학식 1로 표시되는 화합물인 것인, 색변환 기능을 갖는 광학필름 제조용 광반응성 콜레스테릭 액정 조성물:The photopolymerizable liquid crystal monomer is a compound represented by the following formula (1), a photoreactive cholesteric liquid crystal composition for manufacturing an optical film having a color conversion function:
    [화학식 1][Formula 1]
    Figure PCTKR2021007187-appb-I000079
    Figure PCTKR2021007187-appb-I000079
    상기 화학식 1에서,In Formula 1,
    R1 및 R2는 각각 독립적으로 R1 = P1-(CH2)m1O-, P1-(CH2)m1-, P1-(CH2)m1COO- 또는 P1-(CH2)m1OOC- 이고, R2 = P2-(CH2)m2O-, P2-(CH2)m2-, P2-(CH2)m2COO- 또는 P2-(CH2)m2OOC- 이며, m1, m2는 독립적으로 0 내지 12의 정수이고, 상기 P1, P2는 독립적으로 각각 아크릴기, 메타크릴기, 아크릴 아마이드기, 또는 메타크릴 아마이드기이고,R 1 and R 2 are each independently R 1 =P 1 -(CH 2 ) m1 O-, P 1 -(CH 2 ) m1 -, P 1 -(CH 2 ) m1 COO- or P 1 -(CH 2 ) ) m1 OOC-, and R 2 = P 2 -(CH 2 ) m2 O-, P 2 -(CH 2 ) m2 -, P 2 -(CH 2 ) m2 COO- or P 2 -(CH 2 ) m2 OOC -, m1, m2 are independently integers from 0 to 12, wherein P 1 , P 2 are each independently an acryl group, a methacryl group, an acrylamide group, or a methacrylamide group,
    X1 및 X2는 각각 독립적으로 CA, CB 및 Cc를 연결하는 연결기로서, 단일결합, 이중결합 (C=C), 삼중결합 (C≡-O-CO- 또는 -CO-O-에서 선택되는 에스테르기, -CO-, -O-, -CH2-, -CH2O-, -CF2-, -CF2O-, -CH2CH2-, -CH2CH2O-, -CF2CH2-, -CF2CF2-, -CO-C=C-, -O-CO-C=C- 중에서 선택되는 하나의 연결기이며, X 1 and X 2 are each independently a linking group connecting C A, C B and C c , a single bond, a double bond (C=C), or a triple bond (C≡-O-CO- or -CO-O- ester group selected from, -CO-, -O-, -CH 2 -, -CH 2 O-, -CF 2 -, -CF 2 O-, -CH 2 CH 2 -, -CH 2 CH 2 O- , -CF 2 CH 2 -, -CF 2 CF 2 -, -CO-C=C-, -O-CO-C=C- is one connecting group selected from,
    n, m은 독립적으로 0 내지 2의 정수이고, n and m are independently integers from 0 to 2,
    CA, CB, Cc 는 각각 독립적으로 아릴(aryl), 헤테로아릴(heteroaryl) 또는 C4 내지 C10의 사이클로알킬기에서 선택되는 환형기로서, 연결기 X를 통해 선형의 리지드-코어(rigid-core) 그룹을 형성하고, 각각의 환형기에서 하나 이상의 수소원자가 C1 내지 C2의 알킬기, C1의 불소화 탄소기 또는 할로겐기로 치환 또는 비치환될 수 있으며, C A, C B , C c are each independently a cyclic group selected from an aryl, heteroaryl, or C 4 to C 10 cycloalkyl group, and a linear rigid-core (rigid- core) to form a group, and at least one hydrogen atom in each cyclic group may be substituted or unsubstituted with a C 1 to C 2 alkyl group, a C 1 fluorinated carbon group or a halogen group,
    상기 아릴기(aryl)는 페닐기(phenyl), 나프틸기(naphthyl), 안트라센기(anthracenyl), 페난스렌기(Phenanthrenyl), 플루오렌기(fluorenyl), 카바졸기(carbazolyl), 또는 디벤조티오펜기(dibenzothiophenyl)이고, 헤테로아릴기 (heteroaryl)는 피리딘기(pyridine), 피리미딘기(pyrimidine), 피라진기( pyrazine), 또는 퀴놀린기(quinoline)이며, 사이클로알킬기(cycloalkyl)는 사 이클로부테인기(cyclobutane), 사이클로헥세인기(cyclohexane), 바이사이클릭 사 이클로헥세인기(bicyclic cyclohexane), 바이사이클릭 사이클로펜테인기 (bicyclic cyclopentane), 또는 콜레스테롤기(cholesterol)이고, 헤테로사이클로 알킬기(heterocycloalkyl)는 테트라하이드로피란기(tetrahydropyran), 또는 다이옥신기(dioxane)임.The aryl group is a phenyl group, a naphthyl group, an anthracenyl group, a phenanthrenyl group, a fluorene group, a carbazolyl group, or a dibenzothiophene group. (dibenzothiophenyl), the heteroaryl group (heteroaryl) is a pyridine group (pyridine), pyrimidine group (pyrimidine), pyrazine group (pyrazine), or a quinoline group (quinoline), cycloalkyl group (cycloalkyl) is a cyclobutane group (cyclobutane), a cyclohexane group (cyclohexane), a bicyclic cyclohexane group (bicyclic cyclohexane), a bicyclic cyclopentane group (bicyclic cyclopentane), or a cholesterol group (cholesterol), a heterocycloalkyl group (heterocycloalkyl) is A tetrahydropyran group, or a dioxane group.
  3. 제2항에 있어서,3. The method of claim 2,
    상기 화학식 1로 표시되는 화합물은 하기 화학식 2 내지 16의 화합물로 이루어진 군으로부터 선택되는 1종 이상인 것인, 색변환 기능을 갖는 광학필름 제조용 광반응성 콜레스테릭 액정 조성물:The compound represented by Formula 1 is at least one selected from the group consisting of compounds of Formulas 2 to 16. A photoreactive cholesteric liquid crystal composition for manufacturing an optical film having a color conversion function:
    [화학식 2][Formula 2]
    Figure PCTKR2021007187-appb-I000080
    Figure PCTKR2021007187-appb-I000080
    [화학식 3][Formula 3]
    Figure PCTKR2021007187-appb-I000081
    Figure PCTKR2021007187-appb-I000081
    [화학식 4][Formula 4]
    Figure PCTKR2021007187-appb-I000082
    Figure PCTKR2021007187-appb-I000082
    [화학식 5][Formula 5]
    Figure PCTKR2021007187-appb-I000083
    Figure PCTKR2021007187-appb-I000083
    [화학식 6][Formula 6]
    Figure PCTKR2021007187-appb-I000084
    Figure PCTKR2021007187-appb-I000084
    [화학식 7][Formula 7]
    Figure PCTKR2021007187-appb-I000085
    Figure PCTKR2021007187-appb-I000085
    [화학식 8][Formula 8]
    Figure PCTKR2021007187-appb-I000086
    Figure PCTKR2021007187-appb-I000086
    [화학식 9][Formula 9]
    Figure PCTKR2021007187-appb-I000087
    Figure PCTKR2021007187-appb-I000087
    [화학식 10][Formula 10]
    Figure PCTKR2021007187-appb-I000088
    Figure PCTKR2021007187-appb-I000088
    [화학식 11][Formula 11]
    Figure PCTKR2021007187-appb-I000089
    Figure PCTKR2021007187-appb-I000089
    [화학식 12][Formula 12]
    Figure PCTKR2021007187-appb-I000090
    Figure PCTKR2021007187-appb-I000090
    [화학식 13][Formula 13]
    Figure PCTKR2021007187-appb-I000091
    Figure PCTKR2021007187-appb-I000091
    [화학식 14][Formula 14]
    Figure PCTKR2021007187-appb-I000092
    Figure PCTKR2021007187-appb-I000092
    [화학식 15][Formula 15]
    Figure PCTKR2021007187-appb-I000093
    Figure PCTKR2021007187-appb-I000093
    and
    [화학식 16][Formula 16]
    Figure PCTKR2021007187-appb-I000094
    Figure PCTKR2021007187-appb-I000094
  4. 제1항에 있어서,According to claim 1,
    상기 카이랄 도펀트는 하기 화학식 17 내지 23의 화합물로 이루어지는 군으로부터 선택되는 1종 이상인 것인, 색변환 기능을 갖는 광학필름 제조용 광반응성 콜레스테릭 액정 조성물:The chiral dopant is at least one selected from the group consisting of compounds of the following Chemical Formulas 17 to 23, a photoreactive cholesteric liquid crystal composition for manufacturing an optical film having a color conversion function:
    [화학식 17][Formula 17]
    Figure PCTKR2021007187-appb-I000095
    Figure PCTKR2021007187-appb-I000095
    [화학식 18][Formula 18]
    Figure PCTKR2021007187-appb-I000096
    Figure PCTKR2021007187-appb-I000096
    [화학식 19][Formula 19]
    Figure PCTKR2021007187-appb-I000097
    Figure PCTKR2021007187-appb-I000097
    [화학식 20][Formula 20]
    Figure PCTKR2021007187-appb-I000098
    Figure PCTKR2021007187-appb-I000098
    [화학식 21][Formula 21]
    Figure PCTKR2021007187-appb-I000099
    Figure PCTKR2021007187-appb-I000099
    [화학식 22][Formula 22]
    Figure PCTKR2021007187-appb-I000100
    Figure PCTKR2021007187-appb-I000100
    and
    [화학식 23][Formula 23]
    Figure PCTKR2021007187-appb-I000101
    .
    Figure PCTKR2021007187-appb-I000101
    .
  5. 제1항 내지 제4항 중 어느 한 항의 광반응성 콜레스테릭 액정 조성물이 광중합하여 형성된 양자점 분산 광학필름.A quantum dot dispersion optical film formed by photopolymerization of the photoreactive cholesteric liquid crystal composition of any one of claims 1 to 4.
  6. 제5항에 있어서,6. The method of claim 5,
    상기 양자점 분산 광학필름은, 광반응성 콜레스테릭 액정 조성물이 플래너 배향 또는 포컬코닉 배향 상태에서 광중합하여 형성된 것인, 양자점 분산 광학필름.The quantum dot dispersion optical film, the photoreactive cholesteric liquid crystal composition is formed by photopolymerization in a planar orientation or focal-conic orientation state, a quantum dot dispersion optical film.
  7. 제5항에 있어서,6. The method of claim 5,
    상기 양자점 분산 광학필름은, 포토닉 밴드갭을 조절하여 양자점의 공명발광 파장을 조절하는 것을 특징으로 하는, 양자점 분산 광학필름.The quantum dot dispersion optical film, characterized in that to control the resonance emission wavelength of the quantum dot by adjusting the photonic band gap, quantum dot dispersion optical film.
  8. 제5항에 있어서,6. The method of claim 5,
    상기 양자점 분산 광학필름은, 포토닉 밴드갭을 조절하여 양자점의 발광이 원편광되는 것을 특징으로 하는, 양자점 분산 광학필름.The quantum dot dispersion optical film, characterized in that the light emission of quantum dots is circularly polarized by adjusting the photonic band gap, quantum dot dispersion optical film.
  9. 제5항의 양자점 분산 광학필름을 포함하는 색변환 기술 기반 정보 표시 소자.A color conversion technology-based information display device comprising the quantum dot dispersion optical film of claim 5 .
  10. 제9항의 색변환 기술 기반 정보 표시 소자를 포함하는 정보 표시 장치.An information display device comprising the information display element based on the color conversion technology of claim 9 .
  11. 광중합성 액정 단량체, 카이랄 도펀트, 양자점 및 광개시제를 포함하는, 포토레지스트 또는 잉크젯 프린팅용 양자점 분산 광반응성 콜레스테릭 액정 조성물.A quantum dot dispersion photoreactive cholesteric liquid crystal composition for photoresist or inkjet printing, comprising a photopolymerizable liquid crystal monomer, a chiral dopant, a quantum dot, and a photoinitiator.
  12. 제11항에 있어서,12. The method of claim 11,
    상기 광중합성 액정 단량체는 하기 화학식 1로 표시되는 화합물인 것인, 포토레지스트 또는 잉크젯 프린팅용 양자점 분산 광반응성 콜레스테릭 액정 조성물:The photopolymerizable liquid crystal monomer is a compound represented by the following formula (1), photoresist or quantum dot dispersion photoreactive cholesteric liquid crystal composition for inkjet printing:
    [화학식 1][Formula 1]
    Figure PCTKR2021007187-appb-I000102
    Figure PCTKR2021007187-appb-I000102
    상기 화학식 1에서,In Formula 1,
    R1 및 R2는 각각 독립적으로 R1 = P1-(CH2)m1O-, P1-(CH2)m1-, P1-(CH2)m1COO- 또는 P1-(CH2)m1OOC- 이고, R2 = P2-(CH2)m2O-, P2-(CH2)m2-, P2-(CH2)m2COO- 또는 P2-(CH2)m2OOC- 이며, m1, m2는 독립적으로 0 내지 12의 정수이고, 상기 P1, P2는 독립적으로 각각 아크릴기, 메타크릴기, 아크릴 아마이드기, 또는 메타크릴 아마이드기이고.R 1 and R 2 are each independently R 1 =P 1 -(CH 2 ) m1 O-, P 1 -(CH 2 ) m1 -, P 1 -(CH 2 ) m1 COO- or P 1 -(CH 2 ) ) m1 OOC-, and R 2 = P 2 -(CH 2 ) m2 O-, P 2 -(CH 2 ) m2 -, P 2 -(CH 2 ) m2 COO- or P 2 -(CH 2 ) m2 OOC - and m1 and m2 are independently integers from 0 to 12, and P 1 and P 2 are each independently an acryl group, a methacryl group, an acrylamide group, or a methacrylamide group.
    X1 및 X2는 각각 독립적으로 CA, CB 및 Cc를 연결하는 연결기로서, 단일결합, 이중결합 (C=C), 삼중결합 (C≡-O-CO- 또는 -CO-O-에서 선택되는 에스테르기, -CO-, -O-, -CH2-, -CH2O-, -CF2-, -CF2O-, -CH2CH2-, -CH2CH2O-, -CF2CH2-, -CF2CF2-, -CO-C=C-, -O-CO-C=C- 중에서 선택되는 하나의 연결기이며, X 1 and X 2 are each independently a linking group connecting C A, C B and C c , a single bond, a double bond (C=C), a triple bond (C≡-O-CO- or -CO-O- ester group selected from, -CO-, -O-, -CH 2 -, -CH 2 O-, -CF 2 -, -CF 2 O-, -CH 2 CH 2 -, -CH 2 CH 2 O- , -CF 2 CH 2 -, -CF 2 CF 2 -, -CO-C=C-, -O-CO-C=C- is one linking group selected from,
    n, m은 독립적으로 0 내지 2의 정수이고, n and m are independently integers from 0 to 2,
    CA, CB, Cc 는 각각 독립적으로 아릴(aryl), 헤테로아릴(heteroaryl) 또는 C4 내지 C10의 사이클로알킬기에서 선택되는 환형기로서, 연결기 X를 통해 선형의 리지드-코어(rigid-core) 그룹을 형성하고, 각각의 환형기에서 하나 이상의 수소원자가 C1 내지 C2의 알킬기, C1의 불소화 탄소기 또는 할로겐기로 치환 또는 비치환될 수 있으며, C A, C B , C c are each independently a cyclic group selected from an aryl, heteroaryl, or C 4 to C 10 cycloalkyl group, and a linear rigid-core (rigid- core) forms a group, and at least one hydrogen atom in each cyclic group may be substituted or unsubstituted with a C 1 to C 2 alkyl group, a C 1 fluorinated carbon group or a halogen group,
    상기 아릴기(aryl)는 페닐기(phenyl), 나프틸기(naphthyl), 안트라센기(anthracenyl), 페난스렌기(Phenanthrenyl), 플루오렌기(fluorenyl), 카바졸기(carbazolyl), 또는 디벤조티오펜기(dibenzothiophenyl)이고, 헤테로아릴기(heteroaryl)는 피리딘기(pyridine), 피리미딘기(pyrimidine), 피라진기( pyrazine), 또는 퀴놀린기(quinoline)이며, 사이클로알킬기(cycloalkyl)는 사 이클로부테인기(cyclobutane), 사이클로헥세인기(cyclohexane), 바이사이클릭 사 이클로헥세인기(bicyclic cyclohexane), 바이사이클릭 사이클로펜테인기 (bicyclic cyclopentane), 또는 콜레스테롤기(cholesterol)이고, 헤테로사이클로 알킬기(heterocycloalkyl)는 테트라하이드로피란기(tetrahydropyran), 또는 다이옥신기(dioxane)임.The aryl group is a phenyl group, a naphthyl group, an anthracenyl group, a phenanthrenyl group, a fluorene group, a carbazolyl group, or a dibenzothiophene group. (dibenzothiophenyl), a heteroaryl group is a pyridine group, a pyrimidine group, a pyrazine group, or a quinoline group, and a cycloalkyl group is a cyclobutane group. (cyclobutane), a cyclohexane group (cyclohexane), a bicyclic cyclohexane group (bicyclic cyclohexane), a bicyclic cyclopentane group (bicyclic cyclopentane), or a cholesterol group (cholesterol), a heterocycloalkyl group (heterocycloalkyl) is A tetrahydropyran group, or a dioxane group.
  13. 제12항에 있어서,13. The method of claim 12,
    상기 화학식 1로 표시되는 화합물은 하기 화학식 2 내지 16의 화합물로 이루어진 군으로부터 선택되는 것인, 포토레지스트 또는 잉크젯 프린팅용 양자점 분산 광반응성 콜레스테릭 액정 조성물:The compound represented by Formula 1 is a quantum dot dispersion photoreactive cholesteric liquid crystal composition for photoresist or inkjet printing, which is selected from the group consisting of compounds of the following Formulas 2 to 16:
    [화학식 2][Formula 2]
    Figure PCTKR2021007187-appb-I000103
    Figure PCTKR2021007187-appb-I000103
    [화학식 3][Formula 3]
    Figure PCTKR2021007187-appb-I000104
    Figure PCTKR2021007187-appb-I000104
    [화학식 4][Formula 4]
    Figure PCTKR2021007187-appb-I000105
    Figure PCTKR2021007187-appb-I000105
    [화학식 5][Formula 5]
    Figure PCTKR2021007187-appb-I000106
    Figure PCTKR2021007187-appb-I000106
    [화학식 6][Formula 6]
    Figure PCTKR2021007187-appb-I000107
    Figure PCTKR2021007187-appb-I000107
    [화학식 7][Formula 7]
    Figure PCTKR2021007187-appb-I000108
    Figure PCTKR2021007187-appb-I000108
    [화학식 8][Formula 8]
    Figure PCTKR2021007187-appb-I000109
    Figure PCTKR2021007187-appb-I000109
    [화학식 9][Formula 9]
    Figure PCTKR2021007187-appb-I000110
    Figure PCTKR2021007187-appb-I000110
    [화학식 10][Formula 10]
    Figure PCTKR2021007187-appb-I000111
    Figure PCTKR2021007187-appb-I000111
    [화학식 11][Formula 11]
    Figure PCTKR2021007187-appb-I000112
    Figure PCTKR2021007187-appb-I000112
    [화학식 12][Formula 12]
    Figure PCTKR2021007187-appb-I000113
    Figure PCTKR2021007187-appb-I000113
    [화학식 13][Formula 13]
    Figure PCTKR2021007187-appb-I000114
    Figure PCTKR2021007187-appb-I000114
    [화학식 14][Formula 14]
    Figure PCTKR2021007187-appb-I000115
    Figure PCTKR2021007187-appb-I000115
    [화학식 15][Formula 15]
    Figure PCTKR2021007187-appb-I000116
    Figure PCTKR2021007187-appb-I000116
    and
    [화학식 16][Formula 16]
    Figure PCTKR2021007187-appb-I000117
    Figure PCTKR2021007187-appb-I000117
  14. 제11항에 있어서,12. The method of claim 11,
    상기 카이랄 도펀트는 하기 화학식 17 내지 23의 화합물로 이루어지는 군으로부터 선택되는 1종 이상인 것인, 포토레지스트 또는 잉크젯 프린팅용 양자점 분산 광반응성 콜레스테릭 액정 조성물:The chiral dopant is at least one selected from the group consisting of compounds of formulas 17 to 23 below, quantum dot dispersion photoreactive cholesteric liquid crystal composition for photoresist or inkjet printing:
    [화학식 17][Formula 17]
    Figure PCTKR2021007187-appb-I000118
    Figure PCTKR2021007187-appb-I000118
    [화학식 18][Formula 18]
    Figure PCTKR2021007187-appb-I000119
    Figure PCTKR2021007187-appb-I000119
    [화학식 19][Formula 19]
    Figure PCTKR2021007187-appb-I000120
    Figure PCTKR2021007187-appb-I000120
    [화학식 20][Formula 20]
    Figure PCTKR2021007187-appb-I000121
    Figure PCTKR2021007187-appb-I000121
    [화학식 21][Formula 21]
    Figure PCTKR2021007187-appb-I000122
    Figure PCTKR2021007187-appb-I000122
    [화학식 22][Formula 22]
    Figure PCTKR2021007187-appb-I000123
    Figure PCTKR2021007187-appb-I000123
    and
    [화학식 23][Formula 23]
    Figure PCTKR2021007187-appb-I000124
    .
    Figure PCTKR2021007187-appb-I000124
    .
  15. 제11항의 포토레지스트 또는 잉크젯 프린팅용 조성물이 패턴화되어 박막으로 형성된 색변환 기술 기반 컬러필터 기판.A color filter substrate based on color conversion technology, wherein the composition for photoresist or inkjet printing of claim 11 is patterned and formed into a thin film.
PCT/KR2021/007187 2020-06-12 2021-06-09 Quantum dot dispersion reactive cholesteric liquid crystal composition and optical film thereof WO2021251742A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200071524A KR102414880B1 (en) 2020-06-12 2020-06-12 Reactive cholesteric liquid crystal composition comprising dispersed quantum dots and the optical film thereof
KR10-2020-0071524 2020-06-12

Publications (1)

Publication Number Publication Date
WO2021251742A1 true WO2021251742A1 (en) 2021-12-16

Family

ID=78846348

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/007187 WO2021251742A1 (en) 2020-06-12 2021-06-09 Quantum dot dispersion reactive cholesteric liquid crystal composition and optical film thereof

Country Status (2)

Country Link
KR (1) KR102414880B1 (en)
WO (1) WO2021251742A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116410736A (en) * 2021-12-30 2023-07-11 财团法人工业技术研究院 Light-color conversion material and light-color conversion ink
TWI811933B (en) * 2021-12-30 2023-08-11 財團法人工業技術研究院 Light color conversion material and light color conversion ink

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190075705A (en) * 2017-12-21 2019-07-01 전북대학교산학협력단 Composition for preparing homogeneously aligned liquid crystal layer, manufacturing method of liquid crystal display using the same and liquid crystal display
KR20190090114A (en) * 2018-01-23 2019-08-01 삼성디스플레이 주식회사 Photoresist resin composition, a film made therefrom, color conversion element comprising the film, and electric device comprising the color conversion element
KR20190092799A (en) * 2018-01-31 2019-08-08 쌍용자동차 주식회사 Method for manufacturing cholesteric liquid crystal film and electronic vehicle sun visor device using the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109563405B (en) 2016-07-29 2022-06-17 株式会社Lg化学 Nitrogen-containing cyclic compound, color conversion film comprising same, and backlight unit and display device comprising same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190075705A (en) * 2017-12-21 2019-07-01 전북대학교산학협력단 Composition for preparing homogeneously aligned liquid crystal layer, manufacturing method of liquid crystal display using the same and liquid crystal display
KR20190090114A (en) * 2018-01-23 2019-08-01 삼성디스플레이 주식회사 Photoresist resin composition, a film made therefrom, color conversion element comprising the film, and electric device comprising the color conversion element
KR20190092799A (en) * 2018-01-31 2019-08-08 쌍용자동차 주식회사 Method for manufacturing cholesteric liquid crystal film and electronic vehicle sun visor device using the same

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
AVINASH, K. R. ET AL.: "Tunable and Amplified Emission of Quantum Dots in RM-based Cholesteric Liquid Crystal Film", THE 21ST KOREA LIQUID CRYSTAL CONFERENCE. MOKPO NATIONAL MARITIME UNIVERSITY, 20200116-17, pages 20 - 20 *
BOBROVSKY ALEXEY, KONSTANTIN MOCHALOV, VLADIMIR OLEINIKOV, ALYONA SUKHANOVA, ANATOL PRUDNIKAU, MIKHAIL ARTEMYEV, VALERY SHIBAEV, I: "Optically and Electrically Controlled Circularly Polarized Emission from Cholesteric Liquid Crystal Materials Doped with Semiconductor Quantum Dots", ADVANCED MATERIALS, vol. 24, no. 46, 4 December 2012 (2012-12-04), pages 6216 - 6222, XP055879360, DOI: 10.1002/adma.201202227 *
KIM TAE HYUN, YOUNG JIN LIM, SEONG JIN HWANG, MYONG-HOON LEE, WON-GUN JANG, SEUNG HEE LEE: "Improvement of Optical Characteristics in Viewing Directions in a Reflective Cholesteric Liquid Crystal Color Filter", POLYMER (KOREA), vol. 31, no. 2, 31 March 2007 (2007-03-31), pages 148 - 152, XP055879362 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116410736A (en) * 2021-12-30 2023-07-11 财团法人工业技术研究院 Light-color conversion material and light-color conversion ink
TWI811933B (en) * 2021-12-30 2023-08-11 財團法人工業技術研究院 Light color conversion material and light color conversion ink
US12006461B2 (en) 2021-12-30 2024-06-11 Industrial Technology Research Institute Light color conversion material and light color conversion ink

Also Published As

Publication number Publication date
KR102414880B1 (en) 2022-06-30
KR20210154479A (en) 2021-12-21

Similar Documents

Publication Publication Date Title
WO2021251742A1 (en) Quantum dot dispersion reactive cholesteric liquid crystal composition and optical film thereof
KR101983426B1 (en) Photosensitive resin composition and display device
WO2020004927A1 (en) Method for preparing quantum dot film, quantum dot film prepared thereby, and wavelength conversion sheet and display comprising same
WO2019098601A1 (en) Method for manufacturing quantum dot film, quantum dot film manufactured thereby and wavelength conversion sheet and display comprising same
EP3810719B1 (en) Photostable cyano-substituted boron-dipyrromethene dye as green emitter for display and illumination applications
WO2021034104A1 (en) Quantum dot film comprising quantum dot composite, and wavelength conversion sheet for display
WO2017164475A1 (en) Color filter, manufacturing method thereof, and display device comprising the same
WO2015064864A1 (en) Compensation film and organic dot for compensation film
WO2019139329A1 (en) Display device
WO2013147423A1 (en) Triarylmethane blue dye compound, blue resin composition comprising same for color filter, and color filter using same
WO2012008814A2 (en) Liquid crystal film
WO2018151457A1 (en) Color filter and image display device
WO2019216573A1 (en) Nitrogen-containing cyclic compound and color conversion film comprising same
WO2013115589A1 (en) Composition comprising quantum dot and device using same
WO2020096305A1 (en) Liquid crystal aligning agent composition, method for manufacturing liquid crystal alignment film using same, liquid crystal alignment film using same, and liquid crystal display device
WO2019216574A1 (en) Nitrogen-containing cyclic compound and color conversion film comprising same
WO2018110808A1 (en) Yellow curable resin composition, color filter manufactured using same and image display device
CN109917587A (en) Liquid crystal display device and preparation method thereof
WO2021177542A1 (en) Color conversion pixels, composition for color conversion pixels, and display apparatus comprising same
WO2022024743A1 (en) Display device
WO2017146420A1 (en) Led package comprising red organic-inorganic hybrid light-emitting material and backlight unit employing same
WO2018093090A1 (en) Photosensitive resin composition, color filter, and image display device
WO2018093021A1 (en) Yellow curable resin composition, and color filter and image display device comprising same
WO2019093806A2 (en) Compound and color conversion film comprising same
WO2015053505A1 (en) Fluorinated phenyl-thiophene-based polymerizable mesogenic compound with improved solubility in host liquid crystal, preparation method therefor, and polymerizable liquid crystal composition containing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21822154

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21822154

Country of ref document: EP

Kind code of ref document: A1