[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2021251013A1 - 送信装置、受信装置及び送受信システム - Google Patents

送信装置、受信装置及び送受信システム Download PDF

Info

Publication number
WO2021251013A1
WO2021251013A1 PCT/JP2021/016501 JP2021016501W WO2021251013A1 WO 2021251013 A1 WO2021251013 A1 WO 2021251013A1 JP 2021016501 W JP2021016501 W JP 2021016501W WO 2021251013 A1 WO2021251013 A1 WO 2021251013A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
unit
transmission
signal
communication
Prior art date
Application number
PCT/JP2021/016501
Other languages
English (en)
French (fr)
Inventor
久美子 馬原
貴志 増田
亮太 篠田
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to US17/999,563 priority Critical patent/US20230217102A1/en
Priority to JP2022530050A priority patent/JPWO2021251013A1/ja
Publication of WO2021251013A1 publication Critical patent/WO2021251013A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/66Remote control of cameras or camera parts, e.g. by remote control devices
    • H04N23/661Transmitting camera control signals through networks, e.g. control via the Internet
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/555Constructional details for picking-up images in sites, inaccessible due to their dimensions or hazardous conditions, e.g. endoscopes or borescopes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/16Half-duplex systems; Simplex/duplex switching; Transmission of break signals non-automatically inverting the direction of transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • H04N13/239Image signal generators using stereoscopic image cameras using two 2D image sensors having a relative position equal to or related to the interocular distance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/69Control of means for changing angle of the field of view, e.g. optical zoom objectives or electronic zooming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/73Circuitry for compensating brightness variation in the scene by influencing the exposure time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • H04N7/183Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast for receiving images from a single remote source

Definitions

  • This disclosure relates to a transmitting device, a receiving device, and a transmitting / receiving system.
  • Patent Documents 1 and 2 A technique capable of bidirectional communication between a transmitting side device and a receiving side device is known (for example, Patent Documents 1 and 2). Due to the demand for miniaturization of the sensor device that executes bidirectional communication with the receiving side device, it is required to realize a sensor device that shares data output such as a bidirectional interface and communication control from the receiving side (that is, the host side). Has been done. It is also expected that the demand for bidirectional interfaces will increase in order to meet the demand for additional input / output terminals due to the increasing functionality of sensor devices. However, on the other hand, there is an increasing demand for data output at a high frame rate higher than a normal frame rate for a sensor device.
  • An object of the present disclosure is to provide a transmitting device, a receiving device, and a transmitting / receiving system capable of achieving miniaturization and communication at a high frame rate.
  • the transmission device includes a control signal receiving unit that receives a control signal input from an external device and contains predetermined information, and blanking within one frame period. Switching information indicating switching between the first communication that executes host communication in the period and the second communication that executes host communication in the blanking period and the data output period in one frame period is added to the predetermined information as necessary. It is included and includes a control unit that controls switching between the first communication and the second communication based on the switching information.
  • the transmission / reception system includes a transmission device for transmitting a predetermined signal and a reception device for receiving the predetermined signal transmitted from the transmission device.
  • the device includes a control signal receiving unit that receives a control signal input from the receiving device and contains predetermined information, a first communication that executes host communication in a blanking period of one frame period, and one frame. Switching information indicating switching between the second communication that executes host communication during the blanking period and the data output period of the period is included in the predetermined information as necessary, and the first communication and the second communication are included based on the switching information.
  • the receiving device has a control unit for controlling switching between the above and the control signal, and the receiving device includes a control signal transmitting unit that transmits a control signal including the predetermined information including the switching information to the transmitting device. It has a control unit that controls the transmission of the control signal to the control signal transmission unit.
  • the transmission device, the reception device, and the transmission / reception system according to the first embodiment of the present disclosure will be described with reference to FIGS. 1 to 7.
  • a schematic configuration of a transmission device, a reception device, and a transmission / reception system according to the present embodiment will be described with reference to FIG.
  • the transmission device, the reception device, and the transmission / reception system according to the present embodiment transmit and receive data for transmission, a clock signal for synchronization, and a control signal for controlling the operation of the transmission device by a clock embedded method.
  • the transmission / reception system 1 includes a transmission device 10A for transmitting a predetermined signal and a reception device 10B for receiving a predetermined signal transmitted from the transmission device 10A.
  • the transmission / reception system 1 can be applied to, for example, an endoscope system, and the transmission device 10A transmits the image pickup data captured by the transmission device 10A to the reception device 10B.
  • the receiving device 10B processes the image pickup data transmitted from the transmitting device 10A and transmits it to, for example, a display device (not shown). Therefore, the transmission device 10A is miniaturized so that it can enter a narrow area such as the inside of a human body. Further, the receiving device 10B has a configuration capable of receiving image pickup data from the miniaturized transmitting device 10A and controlling a clock signal for stable operation of the transmitting device 10A.
  • the transmitting device 10A operates with the receiving device 10B as a signal (data Ds for transmission, first clock signal CLK1 for synchronization, and transmission device 10A) according to the standard of SLVS-EC (Scalable Low Voltage Signaling with Embedded Clock).
  • the register signal Rs) for controlling the above is configured to communicate in both directions.
  • the receiving device 10B is a register for controlling the operation of signals (data Ds for transmission, first clock signal CLK1 for synchronization, and transmitting device 10A) according to the SLVS-EC standard with the transmitting device 10A.
  • the signal Rs) is configured to communicate in both directions.
  • the transmission / reception system 1 controls the operation of signals (data Ds for transmission, first clock signal CLK1 for synchronization, and transmission device 10A) between the transmission device 10A and the reception device 10B according to the SLVS-EC standard.
  • the register signal Rs) for the purpose is configured to communicate in both directions.
  • the transmission device 10A has a data source (an example of a data generation unit) 12 that generates data which is one of predetermined signals to be transmitted to the reception device 10B, and data input from the data source 12 to the oscillator 112. It is provided with a transmission unit 11 for transmission.
  • the transmission unit 11 and the data source 12 are formed and laminated on different semiconductor chips.
  • the transmission unit 11 and the data source 12 may be formed in the same semiconductor chip.
  • the data source 12 has, for example, a solid-state image sensor (not shown).
  • the data source 12 is adapted to output to the transmission unit 11 the imaging data obtained by photographing the external environment in which the transmission device 10A is arranged.
  • the transmission unit 11 provided in the transmission device 10A includes an oscillator 112 that oscillates the first clock signal CLK1 and a register signal (transmitted from the reception device 10B and controlled by the first clock signal CLK1).
  • An example of a control signal It has a register signal receiving unit (an example of a control signal receiving unit) 114 for receiving Rs.
  • the receiving device 10B corresponds to an example of an external device in the transmitting device 10A.
  • a register is described as "REG".
  • the oscillator 112 is configured so that the oscillation frequency can be changed. As a result, the oscillator 112 can output the first clock signal CLK1 whose frequency has been changed. Unlike the phase-locked loop (PLL), the oscillator 112 does not have a phase comparator, a loop filter, a voltage controlled oscillator, a frequency divider, and the like. Therefore, the transmission device 10A can be downsized as compared with the conventional transmission device having a PLL.
  • PLL phase-locked loop
  • the transmission unit 11 has a register 113 that stores a set value of the frequency of the first clock signal CLK1 oscillated by the oscillator 112.
  • the register 113 stores a plurality of set values associated with each frequency of the first clock signal CLK1.
  • the register 113 reads out the same set value as the set value included in the register signal Rs received by the register signal receiving unit 114 and outputs it to the oscillator 112.
  • the oscillator 112 sets the set value input from the register 113 in a predetermined area. As a result, the oscillator 112 oscillates the first clock signal CLK1 having a frequency corresponding to the set value input from the register 113.
  • the register 113 is configured so that the data source 12 stores the frame rate at which the external environment is photographed. Further, the register 113 is configured to store the number of frames (that is, the number of times of shooting) to be shot at a high frame rate higher than the normal frame rate. The numerical value of the high frame rate stored in the register 113 and the number of frames to be photographed at the high frame rate are included in the register signal Rs and transmitted from the receiving device 10B to the transmitting device 10A, for example. Further, the register 113 may store not only the set value of the first clock signal CLK1 and the number of frames, but also the set value of each component provided in the transmission device 10A.
  • the register signal receiving unit 114 When the register signal receiving unit 114 receives the register signal Rs transmitted from the receiving device 10B, the register signal receiving unit 114 acquires frequency height information included in the received register signal Rs.
  • the frequency high / low information is information indicating that the frequency of the first clock signal CLK1 is the optimum value, or information indicating whether the frequency of the first clock signal CLK1 is higher or lower than the frequency of the reference clock signal INCK.
  • the frequency difference between the first clock signal CLK1 and the reference clock signal INCK is detected by the receiving device 10B.
  • the register signal receiving unit 114 acquires frequency height information indicating that the frequency of the first clock signal CLK1 is higher than the frequency of the reference clock signal INCK, the register signal receiving unit 114 is for lowering the current frequency of the first clock signal CLK1.
  • the set value is output to the register 113.
  • the register signal receiving unit 114 acquires frequency height information indicating that the frequency of the first clock signal CLK1 is lower than the frequency of the reference clock signal INCK, the register signal receiving unit 114 raises the current frequency of the first clock signal CLK1. The set value for this is output to the register 113.
  • the register signal receiving unit 114 may receive the register signal Rs that is input from the receiving device 10B and includes predetermined information.
  • the predetermined information included in the register signals Rs is, for example, a value of one frame period at a normal frame rate, a value of one frame period at a high frame rate higher than the normal frame rate, and execution at a high frame rate. Information such as the number of consecutive frames is included as needed.
  • the predetermined information included in the register signals Rs includes, for example, the first communication for executing host communication in the blanking period in one frame period, and the host communication in the blanking period and data output period in one frame period. If necessary, switching information indicating switching to the second communication is included.
  • the switching information includes, for example, the timing of switching from the first communication to the second communication, the timing of switching from the second communication to the first communication, the start timing and end timing of the host communication in the first communication, and the start timing of the host communication in the second communication. And the end timing etc. are included.
  • the register signal receiving unit 114 stores the received predetermined information in the register 113.
  • the transmission unit 11 has a data transmission unit 115 that transmits data input from the data source 12 to the reception device 10B.
  • the data transmission unit 115 has a frequency divider 115a that divides the first clock signal CLK1 input from the oscillator 112 to generate a second clock signal CLK2 having a frequency lower than that of the first clock signal CLK1.
  • the frequency divider is described as "Div".
  • the frequency divider 115a outputs the second clock signal CLK2 to the data source 12 via the link unit 117 (details will be described later).
  • the data transmission unit 115 converts the data Dp input in parallel format from the data source 12 in synchronization with the second clock signal CLK2 into the serial format data Ds synchronized with the first clock signal CLK1. It has 115b.
  • the parallel series conversion part is described as "PS”.
  • the data transmission unit 115 has a driver 115c that embeds the first clock signal CLK1 in the series-type data Ds synchronized with the first clock signal CLK1 and transmits the clock embedding signal EB to the receiving device 10B.
  • the driver is described as "DRV".
  • the driver 115c converts the single-ended system first clock signal CLK1 and the single-ended system data Ds into a differential system signal, and embeds the first clock signal CLK1 in the data Ds to generate a clock embedded signal EB. Generate.
  • the transmission unit 11 increases the number of pins (number of terminals) used for input / output and the like as compared with the case of transmitting the single-ended clock embedded signal EB, but the clock embedded signal EB Can be transmitted to the receiving device 10B at a low voltage.
  • the transmitting device 10A can transmit the synchronized data Ds and the first clock signal CLK1 to the receiving device 10B as compared with the case where the data Ds and the first clock signal CLK1 are transmitted by the source synchronous method.
  • the transmission device 10A transmits the data Ds and the first clock signal CLK1 by the clock embedded method as compared with the source synchronous method, the wiring for transmitting the first clock signal CLK1 becomes unnecessary. As a result, the transmission / reception system 1 can reduce the number of wires between the transmission device 10A and the reception device 10B.
  • the driver 115c when the driver 115c has, for example, a voltage follower configuration, it can perform input / output impedance conversion. Therefore, the driver 115c has a low output impedance, so that the output current can be improved. As a result, in the wiring connecting the transmitting device 10A and the receiving device 10B, the transmission device 10A lowers the signal level of the clock embedded signal EB output from the driver 115c (that is, the signal waveform of the clock embedded signal EB). Can be prevented from malfunctioning due to (dullness).
  • the transmission unit 11 has a link unit 117 provided between the data source 12 and the data transmission unit 115.
  • the link unit 117 outputs the second clock signal CLK2 input from the data transmission unit 115 to the data source 12. Further, the link unit 117 performs predetermined processing on the data input from the data source 12 in synchronization with the second clock signal CLK2, and transmits the data Dp in parallel format in synchronization with the second clock signal CLK2. It is designed to output to unit 115.
  • the link unit 117 has a function of converting the number of bits of the data Dp input from the data source 12.
  • 8B10B coding in which a clock signal is embedded in an 8-bit signal is known.
  • the link unit 117 may be configured to be able to convert 8-bit data Dp into 10-bit data Dp so that 8B10B coding can be used in the present embodiment.
  • coding for embedding the clock signal in the data coding such as 64B66B, 128b130b or 128b132b other than 8B10B coding or a clock embedded method of another method may be used. In these cases, by having a configuration applicable to the clock embedded method in which the link unit 117 is used, it is possible to realize transmission / reception of data between the transmission device 10A and the reception device 10B.
  • the transmission device 10A has reproduction units 118 and 119 for reproducing the clock embedded signal EB and the register signal Rs transmitted and received by the common wiring.
  • the reproduction unit 118 is connected between a common wiring (hereinafter, referred to as “common wiring”) to which the clock embedded signal EB and the register signal Rs are transmitted and received and the output terminal of the data transmission unit 115.
  • the reproduction unit 119 is connected between the common wiring and the input terminal of the register signal reception unit 114.
  • the reproduction unit 118 is composed of, for example, a high frequency pass filter.
  • the reproduction unit 118 can pass through the high-frequency clock embedded signal EB output from the data transmission unit 115 and block the low-frequency register signal Rs transmitted by the common wiring.
  • the transmitting device 10A can transmit the clock embedded signal EB from the data transmitting unit 115 to the receiving device 10B, and the register signal Rs transmitted from the receiving device 10B affects the data transmitting unit 115. Can be prevented.
  • the reproduction unit 119 is composed of, for example, a low-pass filter.
  • the reproduction unit 119 can block the high-frequency clock embedded signal EB output from the data transmission unit 115 and pass the low-frequency register signal Rs transmitted by the common wiring.
  • the transmitting device 10A can prevent the clock embedded signal EB output from the data transmitting unit 115 from being input to the register signal receiving unit 114, and receives the register signal Rs transmitted from the receiving device 10B. It can be input to the unit 114.
  • the transmission device 10A has a buffer unit 110 between the reproduction unit 119 and the register signal reception unit 114.
  • the input terminal of the buffer unit 110 is connected to the output terminal of the reproduction unit 119, and the output terminal of the buffer unit 110 is connected to the input terminal of the register signal receiving unit 114.
  • the buffer unit 110 can output the register signal Rs output from the reproduction unit 119 to the register signal receiving unit 114.
  • the buffer unit 110 is composed of, for example, a voltage follower circuit. Therefore, the buffer unit 110 can prevent a decrease in the voltage level of the register signal Rs output from the reproduction unit 119 by performing impedance conversion.
  • the transmission unit 11 has a control unit 111.
  • the control unit 111 comprehensively controls the oscillator 112, the register 113, the register signal reception unit 114, the data transmission unit 115, the clock signal transmission unit 116, and the link unit 117.
  • the control unit 111 may be configured to also control the data source 12.
  • control unit 111 includes a first communication that executes host communication in the blanking period of one frame period and a second communication that executes host communication in the blanking period and data output period of one frame period. It is information indicating switching of the above, and is configured to be controlled based on the switching information included in the predetermined information as needed. That is, the control unit 111 is configured to switch from the first communication to the second communication when the frame rate is higher than the normal frame rate of the predetermined period in one frame period. That is, the control unit 111 executes the host communication in the blanking period of one frame period in the case of a normal frame rate, and the blanking period and data output in one frame period in the case of a high frame rate. Run in a period.
  • control unit 111 is configured to analyze the register signal Rs received by the register signal receiving unit 114 and acquire the information contained in the register signal Rs.
  • the control unit 111 controls the transmission of the first information to the receiving device 10B when switching from the first communication to the second communication. Further, the control unit 111 controls the transmission of the second information to the receiving device 10B when switching from the second communication to the first communication.
  • the first information is standby sequential information (details will be described later)
  • the second information is training sequential information (details will be described later).
  • control unit 111 executes the host communication in the blanking period after the second information is transmitted to the receiving device 10B until the first information is transmitted to the receiving device 10B. Further, the control unit 111 transmits the host communication in the blanking period and the data output period (that is, one frame period) after the first information is transmitted to the receiving device 10B until the second information is transmitted to the receiving device 10B. Run with. In this way, the transmitting device 10A and the receiving device 10B at the set frame rate without being rate-determined by the host communication even at a high frame rate by switching the period for executing the host communication according to the frame rate. You can send and receive data.
  • the receiving device 10B includes a receiving unit 13 that receives a predetermined signal transmitted from the transmitting device 10A, and a data processing unit 14 that performs predetermined processing on the data received by the receiving unit 13. There is.
  • the receiving unit 13 and the data processing unit 14 are formed and laminated on different semiconductor chips.
  • the receiving unit 13 and the data processing unit 14 may be formed in the same semiconductor chip.
  • the receiving unit 13 provided in the receiving device 10B receives the clock embedded signal EB transmitted from the transmitting device 10A and output from the reproducing unit 136 (details will be described later). have.
  • the transmitting device 10A corresponds to an example of an external device in the receiving device 10B.
  • the data receiving unit 133 has a driver 133a to which a clock embedded signal EB transmitted from the driver 115c provided in the data transmitting unit 115 of the transmitting device 10A and output from the reproducing unit 136 is input.
  • the driver 133a is configured to convert the differential data Ds input from the reproduction unit 136 into the single-ended data Ds and amplify the converted data Ds.
  • the data receiving unit 133 has a reproduction unit 133b that reproduces the first clock signal CLK1 from the data Ds input from the driver 133a.
  • the reproduction unit 133b is adapted to exhibit, for example, a clock data recovery (CDR) function.
  • CDR clock data recovery
  • the data receiving unit 133 has a frequency divider 133c that divides the frequency of the first clock signal CLK1 input from the reproducing unit 136 to generate a second clock signal CLK2 having a frequency lower than that of the first clock signal CLK. ing.
  • the frequency divider 133c has the same configuration as the frequency divider 115a provided in the data transmission unit 115 of the transmission device 10A.
  • the frequency divider 133c divides the first clock signal CLK1 and generates a second clock signal CLK2 having the same frequency as the second clock signal CLK2 generated by the frequency divider 115a.
  • the data receiving unit 133 has a series-parallel conversion unit 133d that converts data Ds input in series format from the driver 133a into parallel format data Dp synchronized with the second clock signal CLK2.
  • the series-parallel conversion part is described as "SP".
  • the data receiving unit 133 has a link unit 133e to which the parallel format data Dp output from the series-parallel conversion unit 133d is input.
  • the link unit 133e converts the data Dp output from the series-parallel conversion unit 133d into a data format that can be processed by the data processing unit 14 (details will be described later). Further, the link unit 133e changes the number of bits of the data Dp converted into the parallel format by the series-parallel conversion unit 133d.
  • the link unit 133e may be configured to convert the number of bits of the data Dp input from the series-parallel conversion unit 133d to the same number of bits as the data Dp output from the data source 12. Further, for example, the link unit 133e may be configured to convert the number of bits of the data Dp input from the series-parallel conversion unit 133d to a number of bits different from the data Dp output from the data source 12.
  • the data receiving unit 133 outputs the second clock signal CLK2 generated by dividing the first clock signal CLK1 and the parallel format data Dp synchronized with the second clock signal CLK2 to the data processing unit 14. can. Further, the data receiving unit 133 can output the second clock signal CLK2 to the signal generation unit 134.
  • the data Dp output from the data receiving unit 133 is a signal synchronized with the second clock signal CLK2 generated by the frequency divider 133c.
  • the data Dp input to the data transmission unit 115 is a signal synchronized with the second clock signal CLK2 generated by the frequency divider 115a.
  • the second clock signal CLK2 generated by the frequency divider 115a of the data transmission unit 115 and the second clock signal CLK2 generated by the frequency divider 133c of the data reception unit 133 have different phases and are strictly different. Does not have the same timing.
  • the second clock signal CLK2 generated by the frequency divider 115a and the second clock signal CLK2 generated by the frequency divider 133c are signals having the same frequency but different frequencies.
  • the data transmission unit 115 of the transmission unit 11 has a communication speed of 1 Gbps / 1 bit for data Dp input at a communication speed of 50 Mbps / 20 bit (the frequency of the second clock signal CLK2 generated by the frequency divider 115a is 50 MHz). It is assumed that it is configured to be converted into the data Ds of.
  • the data receiving unit 133 of the receiving unit 13 transmits the data Ds input at a communication speed of 1 Gbps / 1 bit at a communication speed of 100 Mbps / 10 bits (the frequency of the second clock signal CLK2 generated by the frequency divider 133c is 10 MHz). It may be configured to be converted into the data Dp of.
  • the receiving unit 13 compares the first clock signal CLK1 and the second clock signal CLK2 based on the first clock signal CLK1 transmitted from the transmitting device 10A with the reference clock signal INCK, and the first clock is the first clock. It has a signal generation unit 134 that generates a register signal (an example of a control signal) Rs that controls the signal CLK1.
  • the second clock signal CLK2 is a signal generated by dividing the first clock signal CLK1, it corresponds to a signal based on the first clock signal CLK1.
  • the signal generation part is described as "Fcnt".
  • the receiving unit 13 has a register signal transmitting unit (an example of a control signal transmitting unit) 135 that transmits the register signal Rs generated by the signal generating unit 134 to the transmitting device 10A.
  • the register signal transmission unit 135 has an input terminal connected to the output terminal of the signal generation unit 134.
  • the second clock signal CLK2 output from the frequency divider 133c and the reference clock signal INCK input from the outside of the receiving device 10B are input to the signal generation unit 134.
  • the signal generation unit 134 continues to sequentially compare the frequencies of the input second clock signal CLK2 and the reference clock signal INCK.
  • the signal generation unit 134 has, for example, a counter that operates with the second clock signal CLK2 and a counter that operates with the reference clock signal INCK.
  • the signal generation unit 134 compares the count values counted by the respective counters within a predetermined period, and acquires the frequency difference between the second clock signal CLK2 and the reference clock signal INCK.
  • the signal generation unit 134 outputs the register signal Rs to the register signal transmission unit 135 when the frequency difference between the second clock signal CLK2 and the reference clock signal INCK is out of a predetermined error range.
  • the register signal Rs includes frequency high / low information.
  • the register signal transmission unit 135 includes a first communication that executes host communication in the blanking period of one frame period and a second communication that executes host communication in the blanking period and data output period of one frame period.
  • a register signal (an example of a control signal) Rs including predetermined information including switching information indicating switching is transmitted to a transmission device (an example of an external device) 10A. Further, when it is determined that the first information has been transmitted from the transmission device 10A, the register signal transmission unit 135 is configured to transmit the register signal Rs to the transmission device 10A as needed. Further, when it is determined that the second information has been transmitted from the transmission device 10A, the register signal transmission unit 135 is configured to end the transmission of the register signal Rs to the transmission device 10A.
  • the first information is standby sequential information
  • the second information is training sequential information.
  • the first information and the second information are included in, for example, the clock embedded signal EB and transmitted from the transmitting device 10A to the receiving device 10B. Further, the control unit 131 determines whether or not the first information or the second information is transmitted from the transmission device 10A.
  • the receiving device 10B has reproduction units 136 and 137 for reproducing the clock embedded signal EB and the register signal Rs transmitted and received by the common wiring.
  • the reproduction unit 136 is connected between the common wiring and the input terminal of the data reception unit 133.
  • the reproduction unit 137 is connected between the common wiring and the output terminal of the register signal transmission unit 135.
  • the reproduction unit 136 is composed of, for example, a high frequency pass filter. Therefore, the reproduction unit 136 can pass through the high-frequency clock embedded signal EB transmitted from the transmission device 10A and block the low-frequency register signal Rs output from the register signal transmission unit 135. As a result, the receiving device 10B can receive the clock embedded signal EB transmitted from the data transmitting unit 115 via the reproducing unit 118, and the register signal Rs output from the register signal transmitting unit 135 receives the data. It is possible to prevent input to the unit 233.
  • the reproduction unit 137 is composed of, for example, a low-pass filter. As a result, the reproduction unit 137 can block the high-frequency clock embedded signal EB transmitted from the transmission device 10A and pass through the low-frequency register signal Rs output from the register signal transmission unit 135. As a result, the receiving device 10B can prevent the clock embedded signal EB transmitted from the transmitting device 10A from affecting the register signal transmitting unit 135, and is output from the register signal transmitting unit 135 via the common wiring.
  • the register signal Rs can be transmitted to the transmission device 10A.
  • the receiving device 10B has a buffer unit 138 between the register signal transmitting unit 135 and the reproducing unit 137.
  • the input terminal of the buffer unit 138 is connected to the output terminal of the register signal transmission unit 135, and the output terminal of the buffer unit 138 is connected to the input terminal of the reproduction unit 137.
  • the buffer unit 138 can output the register signal Rs output from the register signal transmission unit 135 to the reproduction unit 137.
  • the buffer unit 138 is composed of, for example, a voltage follower circuit. Therefore, the buffer unit 138 can prevent a decrease in the voltage level of the register signal Rs output from the register signal transmission unit 135 by performing impedance conversion.
  • the transmission device 10A, the reception device 10B, and the transmission / reception system 1 use a full duplex method for simultaneously transmitting / receiving a register signal Rs and a clock embedded signal EB as bidirectional communication.
  • the transmitting device 10A has reproduction units 118 and 119, and the receiving device 10B has reproduction units 136 and 137. Therefore, the transmission device 10A, the reception device 10B, and the transmission / reception system 1 can easily reproduce the register signal Rs and the clock embedded signal EB even if the full-duplex method is used.
  • the transmission device 10A, the reception device 10B, and the transmission / reception system 1 may use a half-duplex method in which the register signal Rs and the clock embedded signal EB are transmitted in a timely manner as bidirectional communication.
  • the half-duplex method when the data signal acquired by the data source 12 is, for example, image data, the register signal Rs and the clock embedded signal EB are temporally transmitted, for example, by transmitting the register signal Rs during a certain period of the blanking period. Can be played back.
  • the register signal Rs having a slow communication speed may be transmitted during the vertical blanking period.
  • the data Ds since the data Ds has a higher communication speed than the register signal Rs, the data Ds may be transmitted at least during the vertical blanking period and other predetermined periods.
  • the transmission device 10A and the reception device 10B can be miniaturized and simplified.
  • the receiving unit 13 has a control unit 131.
  • the control unit 131 comprehensively controls the data reception unit 133, the signal generation unit 134, and the register signal transmission unit 135.
  • control unit 131 is configured to control the transmission of the register signal Rs from the register signal transmission unit 135.
  • the control unit 131 sets a new normal frame rate or high frame rate value in order to change the normal frame rate or high frame rate
  • the register signal is included in the register signal Rs.
  • a setting by the user for example, there may be a case where there is an object to be photographed in slow motion and an object to be photographed at a high frame rate.
  • the register signal transmission unit 135 outputs a register signal Rs including information such as a new normal frame rate toward the transmission device 10A in host communication.
  • the data processing unit 14 provided in the receiving device 10B performs predetermined processing using the data Dp input from the data receiving unit 133, the second clock signal CLK2, and the reference clock signal INCK input from the outside of the receiving device 10B. It is designed to run. For example, the data processing unit 14 executes a data Dp rearrangement process, a correction process, or the like in order to display the image captured by the data source 12 on a display device (not shown).
  • the frame period FP is a period in which the blanking period VP and the data output period DP are combined.
  • One frame is configured in the order of "blanking period BP-> data output period DP-> blanking period BP" in synchronization with the frame synchronization signal VS.
  • the transmitting device 10A transmits standby sequential information to the receiving device 10B at each frame at a normal frame rate, for example, at the start of the blanking period VP. Further, the transmitting device 10A transmits training sequential information to the receiving device 10B at each frame at a normal frame rate, for example, before the end of the blanking period VP. As a result, in the transmission / reception system 1, host communication is executed in the blanking period VP at the normal frame rate.
  • the transmitting device 10A outputs a clock embedded signal EB (see FIG. 1) to the receiving device 10B during the data output period DP until the standby sequential information is transmitted to the receiving device 10B at a high frame rate.
  • the data Ds acquired by the data source 12 (see FIG. 1) is transmitted to the receiving device 10B.
  • the transmission device 10A transmits the standby sequential information SS as the first information to the reception device 10B immediately before, for example, the frame synchronization signal VS.
  • the transmission / reception system 1 executes host communication during the subsequent blanking period BP and data output period DP (that is, frame period FP).
  • the transmitting device 10A does not transmit the clock embedded signal EB to the receiving device 10B during the period during which the host communication is being executed.
  • the transmitting device 10A continuously executes the host communication until, for example, the training sequential information TS is transmitted to the receiving device 10B as the second information after the host communication is started. Further, at a high frame rate, the transmitting device 10A transmits the training sequential information TS as the second information to the receiving device 10B immediately before, for example, the frame synchronization signal VS. As a result, the transmission / reception system 1 ends the host communication and transmits the clock embedded signal EB to the receiving device 10B during the subsequent data output period DP.
  • FIG. 2 shows an example in which host communication is executed in one frame, but the present invention is not limited to this, and host communication may be continued for two or more frames.
  • the host communication in the conventional transmission device will be described with reference to FIGS. 3 and 4.
  • the blanking period VP In the case of a frame period FP at a normal frame rate (for example, 60 [fps]), the blanking period VP also becomes long. Therefore, as shown in FIG. 3, the conventional transmission device can secure the time for executing the host communication in the blanking period VP.
  • the conventional transmission device shortens the data transmission period by data compression or the like and lengthens the blanking period VP to increase the time for executing host communication. Secure.
  • a predetermined time is required to execute the host communication. For this reason, the conventional transmitting device that executes bidirectional communication with the receiving device cannot perform bidirectional communication at the high frame rate required by the receiving device because the rate is controlled by the host communication, and the frame rate is lowered. I have a problem.
  • the transmission device 10A is configured to use at least one frame period FP for host communication. Further, the transmission device 10A can use the FP for a frame period of 2 or more for host communication depending on the value of the frame rate. Therefore, the transmission device 10A can execute the host communication even at a high frame rate with a short frame period FP. As described above, the transmission device 10A, the reception device 10B, and the transmission / reception system 1 can execute bidirectional communication at a high frame rate without being rate-determined by the host communication.
  • the frame format according to the present embodiment is shown on the left side of FIG. 5, and the operation sequence of the transmission / reception system 1 is shown on the right side of FIG.
  • the frame format of one frame is composed of blanking data, embedded data, pixel data, and blanking data.
  • the blanking data before the embedded data in one frame period may be referred to as "first half blanking data”
  • the blanking data after the pixel data in the one frame period may be referred to as "second half blanking data”.
  • the transmission device 10A transmits a clock embedded signal EB in which the first clock signal CLK1 is embedded in the data Ds in which the blanking data, the embedded data, the pixel data, and the blanking data are arranged in this order. It transmits to the receiving device 10B.
  • the transmitting device 10A when switching from the normal frame rate to the high frame rate, transmits the standby sequential information to the receiving device 10B as the information of starting the execution of the standby sequence (step S1). , Start host communication.
  • the transmitting device 10A switches from a normal frame rate to a high frame rate or transmits standby sequential information to the receiving device 10B based on the information set in the register 113 (see FIG. 1).
  • Step S2 when the receiving device 10B receives the information on the start of execution of the standby sequence, the receiving device 10B outputs a standby detection signal indicating that the information has been received to a predetermined device operated by the user.
  • control unit 111 provided in the transmission device 10A determines that it is the end timing of the host communication based on the information set in the register 113, the control unit 111 determines that it is the end timing of the host communication, as shown in the sequence diagram in FIG.
  • the standby sequential information is transmitted to the receiving device 10B (step S3), and then the idle mode is entered. In this way, the transmitting device 10A, the receiving device 10B, and the transmission / reception system 1 switch from the state in which the second communication can be executed to the state in which the first communication can be executed.
  • the control unit 131 controls the data receiving unit 133 (see FIG. 1) and the like to receive the receiving device 10B. Is controlled so that data can be received.
  • the receiving device 10B outputs a ready signal to a predetermined device operated by the user (step S4). As a result, the user can determine that the transmitting device 10A has transmitted the data and the receiving device 10B has been set in a state in which the data can be received.
  • the transmitting device 10A transmits the clock embedded signal EB to the receiving device 10B by the operation based on the parameter set in the nth frame. ..
  • the transmission device, the reception device, and the transmission / reception system according to the first modification of the present embodiment will be described with reference to FIG.
  • the transmission device 10A, the reception device 10B, and the transmission / reception system 1 according to this modification are characterized in that the data source 12 has, for example, a solid-state image pickup element by a rolling shutter method.
  • “Frame synchronization” shown in FIG. 6 represents the output timing of the frame synchronization signal.
  • the “shutter / read” shown in FIG. 6 represents the timing of exposure (shutter) and data read (read) in the solid-state image sensor.
  • the “bidirectional IF” shown in FIG. 6 represents the state of data transmission from the transmitting device 10A to the receiving device 10B.
  • the exposure timing and the data read timing are different for each row in a plurality of pixels constituting the image pickup region of the solid-state image sensor. Therefore, as shown in FIG. 6, the exposure timing ST and the data read timing RD are shifted row by row in the frame period FP of each frame.
  • the transmitting device 10A transmits a register signal Rs including the standby sequential information SS to the receiving device 10B, and then executes host communication using the frame period FP. Further, when the standby sequential information SS is transmitted to the receiving device 10B, the transmitting device 10A stops reading the data at the first data reading timing RDs thereafter. On the other hand, when the standby sequential information SS is transmitted to the receiving device 10B, the transmitting device 10A exposes each row at the exposure timing without stopping the exposure in the solid-state image sensor.
  • the transmission device 10A stops reading data while the host communication is being executed, but the exposure continues.
  • the transmitting device 10A can execute data reading at the first data reading timing RDf thereafter. Therefore, the transmission device 10A, the reception device 10B, and the transmission / reception system 1 according to this modification can read out the data exposed at the exposure timing STs while the host communication is being executed as valid data.
  • Modification 2 The transmission device, the reception device, and the transmission / reception system according to the second modification of the present embodiment will be described with reference to FIG. 7.
  • the transmission device 10A, the reception device 10B, and the transmission / reception system 1 according to this modification are characterized in that they operate at a high frame rate for a certain period of time and then automatically return to the normal frame rate.
  • “Frame synchronization” shown in FIG. 7 represents the output timing of the frame synchronization signal.
  • the “bidirectional IF” shown in FIG. 7 represents the state of data transmission from the transmitting device 10A to the receiving device 10B.
  • the transmission device 10A has a high value included in the register signal Rs received at the time of starting the frame period FP or the transmission / reception system 1 in the first communication (that is, communication at the normal frame rate) in which the host communication is executed in the blanking period VP.
  • the number of data output processes at the frame rate and the switching information between the first communication and the second communication are stored in the register 113. Therefore, as shown in FIG. 7, the control unit 111 provided in the transmission device 10A transmits the standby sequential information SS to the reception device 10B based on the switching information stored in the register 113, and the standby sequential information SS. Host communication is executed in the first frame period FPf after transmitting.
  • the control unit 111 Based on the information stored in the register 113, the control unit 111 starts with the clock embedded signal for the frame period FP stored in the register 113 and the number of processing times (5 times in this example) from the frame following the frame in which the host communication is executed.
  • the data source 12, the data transmission unit 115, and the link unit 117 are controlled so as to transmit the EB to the receiving device 10B.
  • the transmitting device 10A transmits a predetermined number of clock embedded signals EB to the receiving device 10B at a high frame rate.
  • the control unit 111 causes the receiving device 10B to transmit the clock embedded signal EB for the number of processing times stored in the register 113. Further, the control unit 111 causes the receiving device 10B to include the training sequential information TS in the clock embedding signal EB at the end of the processing number of times. As a result, host communication is executed in the blanking period VPf of the frame next to the frame in which the last clock embedded signal EB of the processing number stored in the register 113 is transmitted. In this way, when the control unit 111 switches from the second communication to the first communication, the transmitting device 10A transmits the clock embedded signal EB to the receiving device 10B at a normal frame rate.
  • the transmission device 10A, the reception device 10B, and the transmission / reception system 1 according to this modification are configured so as not to transition to host communication at a high frame rate except for the first frame period FP in which the first communication is switched to the second communication. There is.
  • control unit 111 is configured to output data at a high frame rate in a plurality of frames and then switch to a normal frame rate.
  • the transmitting device, receiving device, and transmitting / receiving system according to this modification transition to processing at a high frame rate during processing at a normal frame rate, and after executing a predetermined number of frames at a high frame rate, the processing is automatically performed at the normal frame rate. It is configured to go back. Therefore, this modification can be applied to a transmission device, a reception device, and a transmission / reception system having a solid-state image pickup device set to take an image at high speed only for a certain fixed period. In this modification, the number of times of processing of data output at a high frame rate may be fixed or variable.
  • the transmitting device 10A and the receiving device 10B are configured to communicate in both directions by common wiring. Further, the clock embedded signal in which the first clock signal is embedded is transmitted from the transmitting device to the receiving device. Thereby, the transmission device, the reception device, and the transmission / reception system according to the present embodiment and the first and second modifications can achieve miniaturization and communication at a high frame rate. Further, the transmitting device, the receiving device, and the transmitting / receiving system according to the present embodiment and the first and second modifications can operate at a high frame rate without being rate-determined by the host communication in which the conditions of the two-way communication are changed.
  • the solid-state image sensor is required to have high frame rate operation and flexibility of control change by host communication.
  • the transmitting device, receiving device, and transmitting / receiving system according to the second embodiment and the third embodiment described below relate to the device and system capable of such an operation.
  • the transmitting device, receiving device, and transmitting / receiving system according to the second embodiment and the third embodiment for example, when the parameter changes depending on the environment (temperature, brightness, etc.) are in units of seconds to hours, or when the parameters are changed due to scene changes. Applicable when the change is from tens of milliseconds to seconds.
  • the transmission device, the reception device, and the transmission / reception system according to the second embodiment and the third embodiment can be applied, for example, when a predetermined number of frames is specified and a high-speed image is taken.
  • the transmitting device, receiving device, and transmitting / receiving system according to the second embodiment and the third embodiment transition to high frame rate processing during the normal frame rate, perform imaging of a predetermined number of frames at a high frame rate, and then perform normal frame rate. It can be applied when returning to automatically. Further, the transmission device, the reception device, and the transmission / reception system according to the second embodiment and the third embodiment can be applied, for example, in the case of capturing the moment when the object to be imaged arrives in factory automation.
  • the transmitting device, the receiving device, and the transmitting / receiving system according to the second embodiment and the third embodiment are, for example, in the medical field, when a high-speed operation or a fast-changing object (for example, a vocal cord, a pulse, an eye reflex, etc.) is imaged. Applicable. Further, the transmitting device, the receiving device, and the transmitting / receiving system according to the second embodiment and the third embodiment are, for example, objects that suddenly start moving in a general camera, such as the moment when a dolphin jumps, the moment when fireworks are launched, and the moment when an animal runs. It can be applied when imaging.
  • a fast-changing object for example, a vocal cord, a pulse, an eye reflex, etc.
  • the transmission device, the reception device, and the transmission / reception system according to the second embodiment of the present disclosure will be described with reference to FIGS. 8 and 9.
  • the transmitting device, the receiving device, and the transmitting / receiving system according to the present embodiment are characterized in that they include a plurality of data transmitting units and a plurality of data receiving units.
  • the components having the same functions and functions as the transmission device, the reception device, and the transmission / reception system according to the first embodiment are designated by the same reference numerals, and the description thereof will be omitted.
  • the transmission device, the reception device, and the transmission / reception system according to the present embodiment are adapted to transmit / receive data for transmission and a clock signal for synchronization by a clock embedded method. Further, in the transmission device, the reception device, and the transmission / reception system according to the present embodiment, the plurality of data transmission units and the plurality of data reception units each transmit / receive data by the clock embedded method.
  • the transmission / reception system 2 includes a transmission device 20A for transmitting a predetermined signal and a reception device 20B for receiving a predetermined signal transmitted from the transmission device 20A.
  • the transmission / reception system 2 can be applied to, for example, an endoscope system, and the transmission device 20A transmits the image pickup data captured by the transmission device 20A to the reception device 20B.
  • the receiving device 20B processes the image pickup data transmitted from the transmitting device 20A and transmits it to, for example, a display device (not shown). Therefore, the transmission device 20A is miniaturized so that it can enter a narrow area such as the inside of a human body. Further, the receiving device 20B has a configuration capable of receiving image pickup data from a miniaturized transmitting device 20A and controlling a clock signal for stable operation of the transmitting device 20A.
  • the first data transmission unit 115M provided in the transmission unit 21 of the transmission device 10A registers data Dp (an example of a data signal) input from a data source (an example of a data generation unit) 12.
  • a signal (an example of a control signal) Rs is configured to be transmitted to a receiving device 20B (an example of an external device) using a common wiring CLm (an example of a predetermined wiring) to which Rs is transmitted.
  • the second data transmission unit 115N provided in the transmission unit 21 of the transmission device 10A receives the data Dp input from the data source 12 by using a wiring CLn different from the common wiring CLm to which the register signal Rs is transmitted. It is configured to send to.
  • the receiving unit 23 provided in the receiving device 20B has a first data receiving unit 133M and a second data receiving unit 133N.
  • the first data receiving unit 133M and the second data receiving unit 133N each have the same configuration as the data receiving unit 133 in the first embodiment, and exhibit the same functions. Therefore, the description of the configuration of the first data receiving unit 133M and the second data receiving unit 133N will be omitted.
  • the receiving unit 23 has the same number of data receiving units as the data transmitting unit provided in the transmitting unit 21. In the present embodiment, since the transmission unit 21 has two data transmission units (first data transmission unit 115M and second data transmission unit 115N), the reception unit 23 also has two data reception units (first data reception unit 115N). It has a data receiving unit 133M and a second data receiving unit 133N).
  • the first data receiving unit 133M provided in the receiving unit 23 of the receiving device 20B is a clock embedded signal (an example of a data signal) EB transmitted from the transmitting device 20A (an example of an external device). Is configured to be received using a common wiring CLm to which a register signal (an example of a control signal) Rs is transmitted.
  • a reproduction unit 136 is connected to the input terminal of the first data reception unit 133M, and a reproduction unit 118 is connected to the output terminal of the first data transmission unit 115M.
  • the common wiring CLm connects the reproduction unit 118 and the reproduction unit 136. Therefore, the first data receiving unit 133M is connected to the first data transmitting unit 115M via the reproducing unit 136, the common wiring CLm, and the reproducing unit 118.
  • the second data receiving unit 133N provided in the receiving unit 23 of the receiving device 20B uses a wiring CLn different from the common wiring CLm to which the register signal Rs is transmitted for the clock embedded signal EB output from the transmitting device 20A. It is configured to receive.
  • a reproduction unit is not provided on the input side of the second data reception unit 133N.
  • the output side of the second data transmission unit 115N is not provided with a reproduction unit. Therefore, the second data receiving unit 133N is connected to the second data transmitting unit 115N via the wiring CLn. In this way, the data transmitting unit provided in the transmitting unit 21 and the data receiving unit provided in the receiving unit 23 are connected in a one-to-one relationship.
  • the signal generation unit 234 provided in the reception unit 23 is configured to input each second clock signal CLK2 output from the plurality of data reception units 233.
  • the signal generation unit 234 is adapted to compare the two second clock signals CLK2 input from each of the first data reception unit 133M and the second data reception unit 133N with the reference clock signal INCK.
  • the signal generation unit 234 fails to transmit the first clock signal CLK1 in any of the first data transmission unit 115M and the second data transmission unit 115N, and the first data reception unit 133M and the second data reception unit 133N. Even so, the first clock signal CLK1 can be controlled by comparing the second clock signal CLK2 with the reference clock signal INCK.
  • the signal generation unit 234 may be configured to compare any one of the plurality of second clock signals CLK2 with the reference clock signal INCK.
  • the wiring for transmitting and receiving the register signal Rs is not connected to the wiring CLn. Therefore, in the transmission / reception system 2 according to the present embodiment, the register signal Rs is transmitted from the reception device 20B to the transmission device 20A by the first data transmission unit 115M and the first data reception unit 133M. Further, the first data transmission unit 115M has the same configuration as the data transmission unit 115 in the first embodiment, and the first data reception unit 133M has the same configuration as the data reception unit 133 in the first embodiment. have. Therefore, the transmission / reception system 2 can transmit / receive the clock embedded signal EB including the data Dp acquired by the data source 12 by the first data transmission unit 115M and the first data reception unit 133M.
  • the transmission / reception system 2 transmits the clock embedded signal EB including the data Dp acquired by the data source 12 between the transmission device 20A and the reception device 20B by the second data transmission unit 115N and the second data reception unit 133N. You can send and receive.
  • the transmission device 20A, the reception device 20B, and the transmission / reception system 2 have two communication paths for data transmission / reception. Further, the communication path composed of the first data transmission unit 115M, the common wiring CLm, and the first data reception unit 133M, which is one of the communication paths, can transmit and receive not only data but also register signals Rs. Therefore, the transmission device 20A, the reception device 20B, and the transmission / reception system 2 according to the present embodiment have the number of terminals of the transmission device and the reception device, respectively, as compared with a system configured to transmit / receive data and a register signal separately. In addition, the number of wires between the transmitting device and the receiving device can be reduced.
  • FIG. 9 represents the output timing of the frame synchronization signal.
  • the “second communication path” shown in FIG. 9 represents a communication path using the second data transmission unit 115N and the second data reception unit 133N shown in FIG.
  • the “first communication path” shown in FIG. 9 represents a communication path using the first data transmission unit 115M and the first data reception unit 133M shown in FIG.
  • the clock embedded signal EB is transmitted from the transmitting device 20A to the receiving device 20B for each frame period FP by the second data transmitting unit 115N and the second data receiving unit 133N, respectively.
  • the clock embedded signal EB transmitted from the transmitting device 20A to the receiving device 20B by the second data transmitting unit 115N and the second data receiving unit 133N contains moving image data.
  • the communication path using the first data transmission unit 115M and the first data reception unit 133M is in a state in which host communication can be executed using at least one frame. In the present embodiment, the host communication is not executed every frame by using the first data transmission unit 115M and the first data reception unit 133M, and is necessary when changing the frame period FP or the frame rate. Will be executed.
  • the control unit 131 (see FIG. 8) provided in the receiving device 20B sets the register signal Rs including the information related to the operation to the register signal transmitting unit 135 (see FIG. 8).
  • the register signal transmission unit 135 transmits the register signal Rs to the transmission device 20A.
  • the control unit 111 When the control unit 111 provided with the transmission device 20A acquires information instructing shooting of a still image from the register signal Rs transmitted from the reception device 20B and received by the register signal reception unit 114, the control unit 111 stores the information in the register 113. do. Further, the control unit 111 transmits the training sequential information as the second information to the receiving device 20B, and switches the communication path in which the first data transmission unit 115M is used from the second communication to the first communication. As a result, as shown in FIG. 9, the first data transmission unit 115M has the data Dp acquired by the data source 12 (for example, in the data output period DP of the first frame period FP after transmitting the training sequential information TS). The clock embedded signal EB including the still image data) is transmitted to the first data receiving unit 133M.
  • the transmission device 20A is, for example, a clock embedded signal EB including data Dp (still image data) in a predetermined number of frames (three times in this example) based on the information instructing the shooting of the still image stored in the register 113. Is transmitted to the receiving device 20B. Further, in the last frame, the transmission device 20A transmits a clock embedded signal EB including the standby sequential information SS as the first information to the reception device 20B. As a result, the communication path in which the first data transmission unit 115M is used is switched from the first communication to the second communication.
  • the transmission device, the reception device, and the transmission / reception system according to the present embodiment are configured to communicate in both directions by common wiring. Further, the clock embedded signal in which the first clock signal is embedded is transmitted from the transmitting device to the receiving device. As a result, the transmitting device, the receiving device, and the transmitting / receiving system according to the present embodiment can achieve miniaturization and communication at a high frame rate. Further, the transmitting device, the receiving device, and the transmitting / receiving system according to the present embodiment can operate at a high frame rate without being rate-determined by the host communication in which the conditions of bidirectional communication are changed.
  • the transmitting device, the receiving device, and the transmitting / receiving system according to the present embodiment use data (for example, still image data) different from the data (for example, moving image data) transmitted / received by the second data transmitting unit and the second data receiving unit. (1) It can be transmitted and received by the data transmission unit and the first data reception unit.
  • the transmitting device, the receiving device, and the transmitting / receiving system according to the present embodiment can transmit / receive data and host communication in parallel during normal operation, and transmit / receive data instead of host communication as needed at high speed. -A large amount of data can be sent and received.
  • the transmission device, the reception device, and the transmission / reception system according to the third embodiment of the present disclosure will be described with reference to FIGS. 10 and 11.
  • the transmitting device, the receiving device, and the transmitting / receiving system according to the present embodiment are characterized in that they can exert a so-called always-on function.
  • the components having the same functions and functions as the transmission device, the reception device, and the transmission / reception system according to the second embodiment are designated by the same reference numerals, and the description thereof will be omitted.
  • the transmission device, the reception device, and the transmission / reception system according to the present embodiment are adapted to transmit / receive data for transmission and a clock signal for synchronization by a clock embedded method. Further, in the transmission device, the reception device, and the transmission / reception system according to the present embodiment, the plurality of data transmission units and the plurality of data reception units each transmit / receive data by the clock embedded method.
  • the transmission unit 31 provided in the transmission device 30A according to the present embodiment has a second data transmission unit 315 having a driver 315c capable of setting the output to a high impedance state.
  • the second data transmission unit 315 has the same configuration as the second data transmission unit 115N in the second embodiment except that the driver 315c is different, and exhibits the same function.
  • the transmission unit 31 provided in the transmission device 30A has a switch 312 provided between the oscillator 112 and the frequency divider 115a.
  • the switch 312 When the switch 312 is in the closed state (on state), the first clock signal CLK1 oscillated by the oscillator 112 is input to the frequency divider 115a.
  • the switch 312 when the switch 312 is in the open state (off state), the first clock signal CLK1 oscillated by the oscillator 112 is not input to the frequency divider 115a. Therefore, when the switch 312 is in the open state (off state), the frequency divider 115a does not output the second clock signal CLK2 to the link unit 117. As a result, the operation of the second data transmission unit 315 and the link unit 117 connected to the second data transmission unit 315 is stopped.
  • the control unit 111 controls the opening and closing of the switch 312. Although the details will be described later, in the normal operation, the control unit 111 controls the switch 312 to the open state (off state) and controls the output of the driver 315c to be in the high impedance state. As a result, the second data transmission unit 315, the link unit 117 connected to the second data transmission unit 315, and the second data reception unit 133N are stopped. On the other hand, the control unit 111 can control the switch 312 to the closed state (on state) and output the driver 315c in the operation at a high frame rate (that is, high-speed operation) in which the frame rate is higher than the normal frame rate. Control to state.
  • a high frame rate that is, high-speed operation
  • the second data transmission unit 315, the link unit 117 connected to the second data transmission unit 315, and the second data reception unit 133N are put into operation. Therefore, the transmission / reception system 3 can transmit a large amount of data from the transmission device 30A to the reception device 20B by the second data transmission unit 315 and the second data reception unit 133N.
  • control unit 111 stops the output of the clock embedded signal EB (an example of data) from the second data transmission unit 315 when the one frame period is the normal frame rate of a predetermined period, and the frame is higher than the normal frame. It is configured to output the clock embedded signal EB from the second data transmission unit 315 when the rate is high and the frame rate is high.
  • the clock embedded signal EB an example of data
  • the operation of the transmission device 30A, the reception device 20B, and the transmission / reception system 3 according to the present embodiment will be described with reference to FIG. 11 with reference to FIG. “Frame synchronization” shown in FIG. 11 represents the output timing of the frame synchronization signal.
  • the “second communication path” shown in FIG. 11 represents a communication path using the second data transmission unit 115N and the second data reception unit 133N shown in FIG. 10.
  • the "first communication path” shown in FIG. 11 represents a communication path using the first data transmission unit 115M and the first data reception unit 133M shown in FIG. 10.
  • the driver 315c (see FIG. 10) of the second data transmission unit 315 provided in the transmission unit 31 of the transmission device 30A is controlled so that the output state becomes a high impedance state. ing. Therefore, a high impedance (Hi-Z) state is established between the second data transmitting unit 315 and the second data receiving unit 133N provided in the receiving unit 23 of the receiving device 20B.
  • the clock embedded signal EB is transmitted from the transmitting device 30A to the receiving device 20B by the first data transmitting unit 115M and the first data receiving unit 133M during the data output period DP.
  • host communication is executed as needed during the blanking period VP.
  • the control unit 131 (see FIG. 10) provided in the receiving device 20B sets the register signal Rs including the information related to the operation to the register signal transmitting unit 135 (see FIG. 10).
  • the register signal transmission unit 135 transmits the register signal Rs to the transmission device 30A.
  • the control unit 111 When the control unit 111 provided with the transmission device 30A acquires information indicating high frame rate operation from the register signal Rs transmitted from the reception device 20B and received by the register signal reception unit 114, the control unit 111 stores the information in the register 113. At the same time, the standby sequential information SS as the first information is transmitted to the receiving device 30B. Further, the control unit 111 controls the switch 312 in a closed state (on state) and controls the driver 315c in a state in which output is possible. As a result, as shown in FIG. 11, the second data transmission unit 315 uses the data source 12 for the data output period DP (not shown in FIG. 11) of the first frame period FP after transmitting the standby sequential information SS. The clock embedded signal EB including the acquired data Dp is transmitted to the second data receiving unit 133N.
  • the transmitting device 30A transmits the clock embedded signal EB to the receiving device 30B at a high frame rate in a predetermined number of frames (7 times in this example) based on the information instructing the high frame rate operation stored in the register 113. do. Further, in the last frame, the transmission device 30A transmits a clock embedded signal EB including the training sequential information TS as the second information to the reception device 30B. Further, the control unit 111 controls the switch 312 to be in the open state (off state) and controls the output of the driver 315c to be in the high impedance state. As a result, the second data transmission unit 315, the link unit 117 connected to the second data transmission unit 315, and the second data reception unit 133N are stopped.
  • the transmission device 30A continues to transmit the clock embedded signal EB including the data Dp different from the data Dp transmitted by the second data transmission unit 315 from the first data transmission unit 115M to the reception device 20B.
  • the transmission device 30A, the reception device 20B, and the transmission / reception system 3 can transmit and receive a large amount of data when operating at a high frame rate as compared with the case where the transmission / reception system 3 operates at a normal frame rate.
  • the transmission device, the reception device, and the transmission / reception system according to the present embodiment are configured to communicate in both directions by common wiring. Further, the clock embedded signal in which the first clock signal is embedded is transmitted from the transmitting device to the receiving device. As a result, the transmitting device, the receiving device, and the transmitting / receiving system according to the present embodiment can achieve miniaturization and communication at a high frame rate. Further, the transmitting device, the receiving device, and the transmitting / receiving system according to the present embodiment can operate at a high frame rate without being rate-determined by the host communication in which the conditions of bidirectional communication are changed.
  • the transmission device the reception device and the transmission / reception system according to the present embodiment
  • the second data transmission unit and the second data reception unit are stopped, so that the power consumption can be reduced.
  • the transmitting device, the receiving device, and the transmitting / receiving system according to the present embodiment can be realized as, for example, a motion detecting device and a system that can operate with low power consumption when the data source is configured to be capable of performing motion detection.
  • the transmission device, the reception device, and the transmission / reception system transmit / receive low-resolution data by the first data transmission unit and the second data transmission unit, and stop the second data transmission unit and the second data reception unit.
  • the amount of data transmitted from the transmitting device to the receiving device increases.
  • the transmission device, the reception device, and the transmission / reception system transmit and receive data by the second data transmission unit and the second data reception unit in addition to the first data transmission unit and the second data transmission unit. , High resolution data transmission and reception can be achieved.
  • the technology according to the present disclosure (the present technology) can be applied to various products.
  • the techniques according to the present disclosure may be applied to an endoscopic surgery system.
  • FIG. 12 is a diagram showing an example of a schematic configuration of an endoscopic surgery system to which the technique according to the present disclosure (the present technique) can be applied.
  • FIG. 12 illustrates how the surgeon (doctor) 11131 is performing surgery on patient 11132 on patient bed 11133 using the endoscopic surgery system 11000.
  • the endoscopic surgery system 11000 includes an endoscope 11100, other surgical tools 11110 such as an abdominal tube 11111 and an energy treatment tool 11112, and a support arm device 11120 that supports the endoscope 11100.
  • a cart 11200 equipped with various devices for endoscopic surgery.
  • the endoscope 11100 is composed of a lens barrel 11101 in which a region having a predetermined length from the tip is inserted into the body cavity of the patient 11132, and a camera head 11102 connected to the base end of the lens barrel 11101.
  • the endoscope 11100 configured as a so-called rigid mirror having a rigid barrel 11101 is illustrated, but the endoscope 11100 may be configured as a so-called flexible mirror having a flexible barrel. good.
  • An opening in which an objective lens is fitted is provided at the tip of the lens barrel 11101.
  • a light source device 11203 is connected to the endoscope 11100, and the light generated by the light source device 11203 is guided to the tip of the lens barrel by a light guide extending inside the lens barrel 11101, and is an objective. It is irradiated toward the observation target in the body cavity of the patient 11132 through the lens.
  • the endoscope 11100 may be a direct endoscope, a perspective mirror, or a side endoscope.
  • An optical system and an image pickup element are provided inside the camera head 11102, and the reflected light (observation light) from the observation target is focused on the image pickup element by the optical system.
  • the observation light is photoelectrically converted by the image pickup device, and an electric signal corresponding to the observation light, that is, an image signal corresponding to the observation image is generated.
  • the image signal is transmitted to the camera control unit (CCU: Camera Control Unit) 11201 as RAW data.
  • the display device 11202 displays an image based on the image signal processed by the CCU 11201 under the control of the CCU 11201.
  • the light source device 11203 is composed of, for example, a light source such as an LED (light emission diode), and supplies the irradiation light for photographing the surgical site or the like to the endoscope 11100.
  • a light source such as an LED (light emission diode)
  • the input device 11204 is an input interface for the endoscopic surgery system 11000.
  • the user can input various information and input instructions to the endoscopic surgery system 11000 via the input device 11204.
  • the user inputs an instruction to change the imaging conditions (type of irradiation light, magnification, focal length, etc.) by the endoscope 11100.
  • the treatment tool control device 11205 controls the drive of the energy treatment tool 11112 for tissue cauterization, incision, blood vessel sealing, and the like.
  • the pneumoperitoneum device 11206 uses a gas in the pneumoperitoneum tube 11111 to inflate the body cavity of the patient 11132 for the purpose of securing the field of view by the endoscope 11100 and securing the work space of the operator. Is sent.
  • the recorder 11207 is a device capable of recording various information related to surgery.
  • the printer 11208 is a device capable of printing various information related to surgery in various formats such as text, images, and graphs.
  • the light source device 11203 that supplies the irradiation light to the endoscope 11100 when photographing the surgical site can be composed of, for example, an LED, a laser light source, or a white light source composed of a combination thereof.
  • a white light source is configured by a combination of RGB laser light sources, the output intensity and output timing of each color (each wavelength) can be controlled with high accuracy. Therefore, the light source device 11203 adjusts the white balance of the captured image. It can be carried out.
  • the laser light from each of the RGB laser light sources is irradiated to the observation target in a time-division manner, and the drive of the image sensor of the camera head 11102 is controlled in synchronization with the irradiation timing to correspond to each of RGB. It is also possible to capture the image in a time-division manner. According to this method, a color image can be obtained without providing a color filter in the image pickup device.
  • the drive of the light source device 11203 may be controlled so as to change the intensity of the output light at predetermined time intervals.
  • the drive of the image sensor of the camera head 11102 in synchronization with the timing of the change of the light intensity to acquire an image in time division and synthesizing the image, so-called high dynamic without blackout and overexposure. Range images can be generated.
  • the light source device 11203 may be configured to be able to supply light in a predetermined wavelength band corresponding to special light observation.
  • special light observation for example, by utilizing the wavelength dependence of light absorption in body tissue, the surface layer of the mucous membrane is irradiated with light in a narrower band than the irradiation light (that is, white light) during normal observation.
  • narrow band imaging in which a predetermined tissue such as a blood vessel is photographed with high contrast, is performed.
  • fluorescence observation may be performed in which an image is obtained by fluorescence generated by irradiating with excitation light.
  • the body tissue is irradiated with excitation light to observe the fluorescence from the body tissue (autofluorescence observation), or a reagent such as indocyanine green (ICG) is locally injected into the body tissue and the body tissue is injected. It is possible to obtain a fluorescence image by irradiating the excitation light corresponding to the fluorescence wavelength of the reagent.
  • the light source device 11203 may be configured to be capable of supplying narrowband light and / or excitation light corresponding to such special light observation.
  • FIG. 13 is a block diagram showing an example of the functional configuration of the camera head 11102 and CCU11201 shown in FIG.
  • the camera head 11102 includes a lens unit 11401, an image pickup unit 11402, a drive unit 11403, a communication unit 11404, and a camera head control unit 11405.
  • CCU11201 has a communication unit 11411, an image processing unit 11412, and a control unit 11413.
  • the camera head 11102 and CCU11201 are communicably connected to each other by a transmission cable 11400.
  • the lens unit 11401 is an optical system provided at a connection portion with the lens barrel 11101.
  • the observation light taken in from the tip of the lens barrel 11101 is guided to the camera head 11102 and incident on the lens unit 11401.
  • the lens unit 11401 is configured by combining a plurality of lenses including a zoom lens and a focus lens.
  • the image pickup element constituting the image pickup unit 11402 may be one (so-called single plate type) or a plurality (so-called multi-plate type).
  • each image pickup element may generate an image signal corresponding to each of RGB, and a color image may be obtained by synthesizing them.
  • the image pickup unit 11402 may be configured to have a pair of image pickup elements for acquiring image signals for the right eye and the left eye corresponding to the 3D (dimensional) display, respectively.
  • the 3D display enables the operator 11131 to more accurately grasp the depth of the living tissue in the surgical site.
  • a plurality of lens units 11401 may be provided corresponding to each image pickup element.
  • the image pickup unit 11402 does not necessarily have to be provided on the camera head 11102.
  • the image pickup unit 11402 may be provided inside the lens barrel 11101 immediately after the objective lens.
  • the drive unit 11403 is composed of an actuator, and the zoom lens and focus lens of the lens unit 11401 are moved by a predetermined distance along the optical axis under the control of the camera head control unit 11405. As a result, the magnification and focus of the image captured by the image pickup unit 11402 can be adjusted as appropriate.
  • the communication unit 11404 is configured by a communication device for transmitting and receiving various information to and from the CCU11201.
  • the communication unit 11404 transmits the image signal obtained from the image pickup unit 11402 as RAW data to the CCU 11201 via the transmission cable 11400.
  • the communication unit 11404 receives a control signal for controlling the drive of the camera head 11102 from the CCU 11201 and supplies the control signal to the camera head control unit 11405.
  • the control signal includes, for example, information to specify the frame rate of the captured image, information to specify the exposure value at the time of imaging, and / or information to specify the magnification and focus of the captured image. Contains information about the condition.
  • the image pickup conditions such as the frame rate, exposure value, magnification, and focus may be appropriately specified by the user, or may be automatically set by the control unit 11413 of CCU11201 based on the acquired image signal. good.
  • the endoscope 11100 is equipped with a so-called AE (Auto Exposure) function, AF (Auto Focus) function, and AWB (Auto White Balance) function.
  • the camera head control unit 11405 controls the drive of the camera head 11102 based on the control signal from the CCU 11201 received via the communication unit 11404.
  • the communication unit 11411 is configured by a communication device for transmitting and receiving various information to and from the camera head 11102.
  • the communication unit 11411 receives an image signal transmitted from the camera head 11102 via the transmission cable 11400.
  • the communication unit 11411 transmits a control signal for controlling the drive of the camera head 11102 to the camera head 11102.
  • Image signals and control signals can be transmitted by telecommunications, optical communication, or the like.
  • the image processing unit 11412 performs various image processing on the image signal which is the RAW data transmitted from the camera head 11102.
  • the control unit 11413 performs various controls related to the imaging of the surgical site and the like by the endoscope 11100 and the display of the captured image obtained by the imaging of the surgical site and the like. For example, the control unit 11413 generates a control signal for controlling the drive of the camera head 11102.
  • control unit 11413 causes the display device 11202 to display an image captured by the surgical unit or the like based on the image signal processed by the image processing unit 11412.
  • the control unit 11413 may recognize various objects in the captured image by using various image recognition techniques.
  • the control unit 11413 detects a surgical tool such as forceps, a specific biological part, bleeding, mist when using the energy treatment tool 11112, etc. by detecting the shape, color, etc. of the edge of the object included in the captured image. Can be recognized.
  • the control unit 11413 may superimpose and display various surgical support information on the image of the surgical unit by using the recognition result. By superimposing and displaying the surgical support information and presenting it to the surgeon 11131, the burden on the surgeon 11131 can be reduced and the surgeon 11131 can surely proceed with the surgery.
  • the transmission cable 11400 connecting the camera head 11102 and CCU11201 is an electric signal cable corresponding to electric signal communication, an optical fiber corresponding to optical communication, or a composite cable thereof.
  • the communication is performed by wire using the transmission cable 11400, but the communication between the camera head 11102 and the CCU11201 may be performed wirelessly.
  • the above is an example of an endoscopic surgery system to which the technology according to the present disclosure can be applied.
  • the technique according to the present disclosure can be used for the interface between the camera head 11102 and the CCU11201 in the configuration described above.
  • the data source 12 can be applied to the image pickup unit 11402.
  • the transmission units 11, 21, and 31 can be applied to the camera head control unit 11405 and the communication unit 11404.
  • the receiving units 13 and 23 can be applied to the communication unit 11411.
  • the technology according to the present disclosure to the interface between the camera head 11102 and the CCU11201, the camera head 11102 can be miniaturized, and data can be transmitted and received at a high frame rate without being rate-determined by the host communication. Become.
  • the technique according to the present disclosure may be applied to other, for example, a microscopic surgery system.
  • the technology according to the present disclosure can be applied to the above-mentioned transmitting device, receiving device and transmission / reception system.
  • this technology can also take the following configurations.
  • a control signal receiver that receives a control signal that is input from an external device and contains predetermined information, and Information indicating switching between the first communication that executes host communication during the blanking period of one frame period and the second communication that executes host communication during the blanking period and data output period of one frame period.
  • a transmission device including a control unit that controls based on the switching information included in the predetermined information as needed.
  • the control unit When switching from the first communication to the second communication, the transmission of the first information to the external device is controlled.
  • the transmission device according to (1) or (2) above which controls the transmission of the second information to the external device when switching from the second communication to the first communication.
  • the transmission device according to (4) above wherein the first information is standby sequential information and the second information is training sequential information.
  • the item (1) to (5) above includes a first data transmission unit that transmits a data signal input from the data generation unit to the external device using a predetermined wiring to which the control signal is transmitted. The transmitter described.
  • the transmission device comprising a second data transmission unit that transmits a data signal input from the data generation unit to the external device using a wiring different from the predetermined wiring to which the control signal is transmitted.
  • the control unit stops the output of the data signal from the second data transmission unit, and when the frame rate is higher than the normal frame rate, the control unit has a high frame rate.
  • the transmission device which outputs the data signal from the second data transmission unit.
  • the transmitter according to any one of (1) to (8) above, which communicates a signal bidirectionally with the external device according to the SLVS-EC (Scalable Low Voltage Signaling with Embedded Clock) standard.
  • a control signal transmission unit that transmits a control signal including predetermined information included as needed to an external device, and a control signal transmission unit.
  • a receiving device including a control unit that controls transmission of the control signal from the control signal transmission unit.
  • the receiving device (12) The receiving device according to (11) above, wherein the first information is standby sequential information and the second information is training sequential information. (13) The receiving device according to any one of (10) to (12) above, comprising a first data receiving unit that receives a data signal transmitted from the external device using a predetermined wiring to which the control signal is transmitted. .. (14) The receiving device according to (12) above, comprising a second data receiving unit that receives a data signal output from the external device using a wiring different from the predetermined wiring to which the control signal is transmitted. (15) The receiving device according to any one of (10) to (14) above, which communicates a signal in both directions with the external device according to the standard of SLVS-EC (Scalable Low Voltage Signaling with Embedded Clock).
  • SLVS-EC Scalable Low Voltage Signaling with Embedded Clock
  • a transmitter that transmits a predetermined signal and A receiving device for receiving the predetermined signal transmitted from the transmitting device is provided.
  • the transmitter is A control signal receiving unit that receives a control signal that is input from the receiving device and contains predetermined information, and Information indicating switching between the first communication that executes host communication during the blanking period of one frame period and the second communication that executes host communication during the blanking period and data output period of one frame period. It has a control unit that controls based on the switching information included in the predetermined information as needed.
  • the receiving device is A control signal transmission unit that transmits a control signal including the predetermined information to the transmission device, which includes the switching information as needed.
  • a transmission / reception system including a control unit that controls transmission of the control signal from the control signal transmission unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Dc Digital Transmission (AREA)
  • Communication Control (AREA)

Abstract

本開示は、小型化及び高フレームレートでの通信を達成することができる送信装置、受信装置及び送受信システムを提供することを目的とする。送信装置は、外部装置から入力されて所定情報が含まれている制御信号を受信する制御信号受信部と、1フレーム期間のうちのブランキング期間でホスト通信を実行する第一通信と、1フレーム期間のうちのブランキング期間及びデータ出力期間でホスト通信を実行する第二通信との切り替えを示す切替情報が必要に応じて所定情報に含まれ、切替情報に基づいて第一通信と第二通信との切り替えを制御する制御部とを備えている。

Description

送信装置、受信装置及び送受信システム
 本開示は、送信装置、受信装置及び送受信システムに関する。
 送信側装置と受信側装置との間で双方向通信が可能な技術が知られている(例えば特許文献1及び2)。受信側装置との間で双方通信を実行するセンサ装置の小型化の要求により、双方向インタフェースのようなデータ出力及び受信側(すなわちホスト側)からの通信制御を共用したセンサ装置の実現が要求されている。また、センサ装置の多機能化により、入出力端子の増設の要望に対応するため、双方向インタフェースの需要が増加していくことも想定されている。しかし一方で、センサ装置に対して通常のフレームレートよりも高い高フレームレートでのデータ出力の要望が増加している。
特許第2707006号公報 特許第4512599号公報
 しかしながら、双方向インタフェースのデータ出力時間、ホストの切り替え時間及びホストとの通信時間には所定の時間が必要であるため、これらの時間に律速されて高フレームレートを達成できないという問題がある。
 本開示の目的は、小型化及び高フレームレートでの通信を達成することができる送信装置、受信装置及び送受信システムを提供することにある。
 上記目的を達成するために、本開示の一態様による送信装置は、外部装置から入力されて所定情報が含まれている制御信号を受信する制御信号受信部と、1フレーム期間のうちのブランキング期間でホスト通信を実行する第一通信と、1フレーム期間のうちのブランキング期間及びデータ出力期間でホスト通信を実行する第二通信との切り替えを示す切替情報が必要に応じて前記所定情報に含まれ、切替情報に基づいて第一通信と第二通信との切り替えを制御する制御部とを備える。
 また、上記目的を達成するために、本開示の一態様による受信装置は、1フレーム期間のうちのブランキング期間でホスト通信を実行する第一通信と、1フレーム期間のうちのブランキング期間及びデータ出力期間でホスト通信を実行する第二通信との切り替えを示す切替情報が必要に応じて含まれている所定情報を含む制御信号を外部装置に送信する制御信号送信部と、前記制御信号送信部に対し前記制御信号の送信を制御する制御部とを備える。
 また、上記目的を達成するために、本開示の一態様による送受信システムは、所定信号を送信する送信装置と、前記送信装置から送信される前記所定信号を受信する受信装置とを備え、前記送信装置は、前記受信装置から入力されて所定情報が含まれている制御信号を受信する制御信号受信部と、1フレーム期間のうちのブランキング期間でホスト通信を実行する第一通信と、1フレーム期間のうちのブランキング期間及びデータ出力期間でホスト通信を実行する第二通信との切り替え示す切替情報が必要に応じて前記所定情報に含まれ、切替情報に基づいて第一通信と第二通信との切り替えを制御する制御部とを有し、前記受信装置は、前記切替情報が必要に応じて含まれている前記所定情報が含む制御信号を前記送信装置に送信する制御信号送信部と、前記制御信号送信部に対し該制御信号の送信を制御する制御部とを有する。
本開示の第1実施形態による送信装置、受信装置及び送受信システムの概略構成を示す機能ブロック図である。 本開示の第1実施形態による送信装置、受信装置及び送受信システムのタイミングチャートの一例を示す図である。 比較例としての送信装置、受信装置及び送受信システムのタイミングチャートの一例を示す図である。 比較例としての送信装置、受信装置及び送受信システムのタイミングチャートの他の例を示す図である。 本開示の第1実施形態による送信装置、受信装置及び送受信システムにおける双方向通信のシーケンス図の一例である。 本開示の第1実施形態の変形例1による送信装置、受信装置及び送受信システムのタイミングチャートの一例を示す図である。 本開示の第1実施形態の変形例2による送信装置、受信装置及び送受信システムのタイミングチャートの一例を示す図である。 本開示の第2実施形態による送信装置、受信装置及び送受信システムの概略構成を示す機能ブロック図である。 本開示の第2実施形態による送信装置、受信装置及び送受信システムのタイミングチャートの一例を示す図である。 本開示の第3実施形態による送信装置、受信装置及び送受信システムの概略構成を示す機能ブロック図である。 本開示の第3実施形態による送信装置、受信装置及び送受信システムのタイミングチャートの一例を示す図である。 内視鏡手術システムの概略的な構成の一例を示す図である。 カメラヘッド及びCCUの機能構成の一例を示すブロック図である。
〔第1実施形態〕
 本開示の第1実施形態による送信装置、受信装置及び送受信システムについて図1から図7を用いて説明する。まず、本実施形態による送信装置、受信装置及び送受信システムの概略構成について図1を用いて説明する。本実施形態による送信装置、受信装置及び送受信システムは、クロックエンベデッド方式によって送信用のデータ、同期用のクロック信号及び送信装置の動作を制御する制御信号を送受信するようになっている。
 図1に示すように、本実施形態による送受信システム1は、所定信号を送信する送信装置10Aと、送信装置10Aから送信される所定信号を受信する受信装置10Bとを備えている。送受信システム1は、例えば内視鏡システムに適用でき、送信装置10Aで撮像された撮像データを送信装置10Aが受信装置10Bに送信するようになっている。受信装置10Bは、送信装置10Aから送信された撮像データを処理して、例えば表示装置(不図示)に送信するようになっている。このため、送信装置10Aは、人体内部などの狭い領域にも進入できるように小型化が図られている。また、受信装置10Bは、小型化された送信装置10Aから撮像データを受信したり、送信装置10Aを安定動作させるためにクロック信号を制御したりできる構成を有している。
 送信装置10Aは、受信装置10Bとの間で、SLVS-EC(Scalable Low Voltage Signaling with Embedded Clock)の規格で信号(送信用のデータDs、同期用の第一クロック信号CLK1及び送信装置10Aの動作を制御するためのレジスタ信号Rs)を双方向に通信するように構成されている。換言すると、受信装置10Bは、送信装置10Aとの間で、SLVS-ECの規格で信号(送信用のデータDs、同期用の第一クロック信号CLK1及び送信装置10Aの動作を制御するためのレジスタ信号Rs)を双方向に通信するように構成されている。さらに換言すると、送受信システム1は、送信装置10A及び受信装置10Bの間でSLVS-ECの規格で信号(送信用のデータDs、同期用の第一クロック信号CLK1及び送信装置10Aの動作を制御するためのレジスタ信号Rs)を双方向に通信するように構成されている。
 本実施形態による送信装置10Aは、受信装置10Bに送信する所定信号の1つであるデータを生成するデータソース(データ生成部の一例)12と、データソース12から入力されるデータを発振器112に送信する送信部11とを備えている。本実施形態では、送信部11及びデータソース12は、異なる半導体チップに形成されて積層されている。なお、送信部11及びデータソース12は、同一の半導体チップ内に形成されていてもよい。
 データソース12は、例えば固体撮像素子(不図示)を有している。データソース12は、送信装置10Aが配置されている外部環境を撮影した撮像データを送信部11に出力するようになっている。
 図1に示すように、送信装置10Aに備えられた送信部11は、第一クロック信号CLK1を発振する発振器112と、受信装置10Bから送信されて第一クロック信号CLK1が制御されるレジスタ信号(制御信号の一例)Rsを受信するレジスタ信号受信部(制御信号受信部の一例)114とを有している。受信装置10Bは、送信装置10Aにおいて外部装置の一例に相当する。なお、図1及びその他の図において、レジスタは「REG」と表記されている。
 発振器112は、発振周波数を変更できるように構成されている。これにより、発振器112は、周波数を変更させた第一クロック信号CLK1を出力できる。発振器112は、位相同期回路(Phase Locked Loop:PLL)と異なり、位相比較器、ループフィルタ、電圧制御発振器及び分周器などを有していない。このため、送信装置10Aは、PLLを有する従来の送信装置と比較して、小型化を図ることができる。
 送信部11は、発振器112が発振する第一クロック信号CLK1の周波数の設定値などを記憶するレジスタ113を有している。レジスタ113は、第一クロック信号CLK1の周波数ごとに対応付けられた複数の設定値を記憶している。レジスタ113は、レジスタ信号受信部114が受信したレジスタ信号Rsに含まれる設定値と同一の設定値を読み出して発振器112に出力するようになっている。発振器112は、レジスタ113から入力される設定値を所定領域に設定する。これにより、発振器112は、レジスタ113から入力された設定値に対応する周波数の第一クロック信号CLK1を発振するようになる。
 レジスタ113は、データソース12が外部環境を撮影するフレームレートを記憶するように構成されている。また、レジスタ113は、通常フレームレートよりもフレームレートが高い高フレームレートで撮影するフレーム数(すなわち撮影回数)を記憶するように構成されている。レジスタ113に記憶される高フレームレートの数値及び高フレームレートで撮影するフレーム数は、例えばレジスタ信号Rsに含められて受信装置10Bから送信装置10Aに送信される。さらに、レジスタ113は、第一クロック信号CLK1の設定値やフレーム数などだけでなく、送信装置10Aに設けられた各構成要素の設定値を記憶していてもよい。
 レジスタ信号受信部114は、受信装置10Bから送信されたレジスタ信号Rsを受信すると、受信したレジスタ信号Rsに含まれる周波数高低情報を取得するようになっている。周波数高低情報は、第一クロック信号CLK1の周波数が最適値であることを示す情報、又は第一クロック信号CLK1の周波数が基準クロック信号INCKの周波数よりも高いか低いかを示す情報である。第一クロック信号CLK1と基準クロック信号INCKとの周波数差は、受信装置10Bにおいて検出される。レジスタ信号受信部114は、第一クロック信号CLK1の周波数が基準クロック信号INCKの周波数よりも高いことを示す周波数高低情報を取得した場合には、第一クロック信号CLK1の現在の周波数を下げるための設定値をレジスタ113に出力する。一方、レジスタ信号受信部114は、第一クロック信号CLK1の周波数が基準クロック信号INCKの周波数よりも低いことを示す周波数高低情報を取得した場合には、第一クロック信号CLK1の現在の周波数を上げるための設定値をレジスタ113に出力する。
 レジスタ信号受信部114は、受信装置10Bから入力されて所定情報が含まれているレジスタ信号Rsを受信する場合がある。レジスタ信号Rsに含まれる所定情報には例えば、通常フレームレートでの1フレーム期間の値、通常フレームレートよりもフレームレートが高い高フレームレートでの1フレーム期間の値、高フレームレートで実行されるフレームの連続回数などの情報が必要に応じて含まれる。また、レジスタ信号Rsに含まれる所定情報には例えば、1フレーム期間のうちのブランキング期間でホスト通信を実行する第一通信と、1フレーム期間のうちのブランキング期間及びデータ出力期間でホスト通信を実行する第二通信との切り替えを示す切替情報が必要に応じて含まれている。切替情報には例えば、第一通信から第二通信に切り替えるタイミング、第二通信から第一通信に切り替えるタイミング、第一通信におけるホスト通信の開始タイミング及び終了タイミング、第二通信におけるホスト通信の開始タイミング及び終了タイミングなどが含まれる。レジスタ信号受信部114は、受信した所定情報をレジスタ113に記憶するようになっている。
 送信部11は、データソース12から入力されるデータを受信装置10Bに送信するデータ送信部115を有している。データ送信部115は、発振器112から入力される第一クロック信号CLK1を分周して第一クロック信号CLK1よりも低周波の第二クロック信号CLK2を生成する分周器115aを有している。なお、図1及びその他の図において、分周器は「Div」と表記されている。分周器115aは、リンク部117(詳細は後述)を介して第二クロック信号CLK2をデータソース12に出力するようになっている。
 また、データ送信部115は、第二クロック信号CLK2に同期してデータソース12から並列形式で入力されるデータDpを第一クロック信号CLK1に同期する直列形式のデータDsに変換する並列直列変換部115bを有している。なお、図1及びその他の図において、並列直列変換部は「PS」と表記されている。さらに、データ送信部115は、第一クロック信号CLK1に同期する直列形式のデータDsに第一クロック信号CLK1を埋め込んで受信装置10Bにクロック埋込信号EBを送信するドライバ115cを有している。なお、図1及びその他の図において、ドライバは「DRV」と表記されている。ドライバ115cは、シングルエンド方式の第一クロック信号CLK1と、シングルエンド方式のデータDsとを差動方式の信号に変換するとともに、第一クロック信号CLK1をデータDsに埋め込んでクロック埋込信号EBを生成する。この場合、送信部11は、シングルエンド方式のクロック埋込信号EBを送信する場合と比較して、入出力などに用いられるピン数(端子数)が増加してしまうものの、クロック埋込信号EBを低電圧で受信装置10Bに送信できる。また、送信装置10Aは、ソースシンクロナス方式でデータDs及び第一クロック信号CLK1を送信する場合と比較して、同期の取れたデータDs及び第一クロック信号CLK1を受信装置10Bに送信できる。さらに、送信装置10Aは、ソースシンクロナス方式と比較して、クロックエンベデッド方式でデータDs及び第一クロック信号CLK1を送信した場合、第一クロック信号CLK1を送信するための配線が不要になる。これにより、送受信システム1は、送信装置10A及び受信装置10Bとの間の配線数の削減を図ることができる。
 また、ドライバ115cは、例えばボルテージフォロアの構成を有している場合、入出力のインピーダンス変換を行うことができる。このため、ドライバ115cは、出力インピーダンスが低くなるので、出力電流の向上を図ることができる。これにより、送信装置10Aは、送信装置10Aと受信装置10Bとを接続する配線において、ドライバ115cから出力されるクロック埋込信号EBの信号レベルが低下する(すなわち、クロック埋込信号EBの信号波形が鈍る)ことによる誤動作を防止できる。
 送信部11は、データソース12及びデータ送信部115の間に設けられたリンク部117を有している。リンク部117は、データ送信部115から入力される第二クロック信号CLK2をデータソース12に出力するようになっている。また、リンク部117は、第二クロック信号CLK2に同期してデータソース12から入力されるデータに対して所定の処理を施し、第二クロック信号CLK2に同期させて並列形式のデータDpをデータ送信部115に出力するようになっている。
 リンク部117は、データソース12から入力されるデータDpのビット数を変換する機能を発揮するようになっている。クロックエンベデッド方式の一例として8ビット信号にクロック信号を埋め込む8B10Bコーディングが知られている。例えば、本実施形態において8B10Bコーディングを用いることができるように、リンク部117は、8ビットのデータDpを10ビットのデータDpに変換できるように構成されていてもよい。また、本実施形態では、クロック信号をデータに埋め込むコーディングとして、8B10Bコーディング以外の64B66B、128b130b又は128b132bなどのコーディング又はその他の方法のクロックエンベデッド方式が使用されてもよい。これらの場合、リンク部117が使用されるクロックエンベデッド方式に適用可能な構成を有することにより、送信装置10A及び受信装置10Bの間でデータの送受信を実現できる。
 送信装置10Aは、共通の配線によって送受信されるクロック埋込信号EB及びレジスタ信号Rsを再生する再生部118,119を有している。再生部118は、クロック埋込信号EB及びレジスタ信号Rsが送受信される共通の配線(以下、「共通配線」と称する)とデータ送信部115の出力端子との間に接続されている。再生部119は、共通配線とレジスタ信号受信部114の入力端子との間に接続されている。
 再生部118は、例えば高域通過フィルタで構成されている。再生部118は、データ送信部115から出力される高周波のクロック埋込信号EBを通過し、共通配線によって送信される低周波のレジスタ信号Rsを遮断することができる。これにより、送信装置10Aは、データ送信部115から受信装置10Bにクロック埋込信号EBを送信することができ、かつ受信装置10Bから送信されるレジスタ信号Rsがデータ送信部115に影響を及ぼすことを防止できる。
 再生部119は、例えば低域通過フィルタで構成されている。再生部119は、データ送信部115から出力される高周波のクロック埋込信号EBを遮断し、共通配線によって送信される低周波のレジスタ信号Rsを通過することができる。これにより、送信装置10Aは、データ送信部115から出力されるクロック埋込信号EBがレジスタ信号受信部114に入力することを防止でき、かつ受信装置10Bから送信されるレジスタ信号Rsをレジスタ信号受信部114に入力できる。
 送信装置10Aは、再生部119とレジスタ信号受信部114との間にバッファ部110を有している。バッファ部110の入力端子は再生部119の出力端子に接続され、バッファ部110の出力端子はレジスタ信号受信部114の入力端子に接続されている。これにより、バッファ部110は、再生部119から出力されるレジスタ信号Rsをレジスタ信号受信部114に出力することができる。バッファ部110は、例えばボルテージフォロア回路で構成されている。このため、バッファ部110は、インピーダンス変換することによって再生部119から出力されるレジスタ信号Rsの電圧レベルの低下を防止できる。
 送信部11は、制御部111を有している。制御部111は、発振器112、レジスタ113、レジスタ信号受信部114、データ送信部115、クロック信号送信部116及びリンク部117を統括的に制御するようになっている。なお、制御部111は、データソース12も制御するように構成されていてもよい。
 さらに、制御部111は、1フレーム期間のうちのブランキング期間でホスト通信を実行する第一通信と、1フレーム期間のうちのブランキング期間及びデータ出力期間でホスト通信を実行する第二通信との切り替えを示す情報であって必要に応じて所定情報に含まれる切替情報に基づいて制御するように構成されている。すなわち、制御部111は、1フレーム期間が所定期間の通常フレームレートよりもフレームレートが高い高フレームレートの場合に第一通信から第二通信に切り替えるように構成されている。つまり、制御部111は、ホスト通信を、通常フレームレートの場合には1フレーム期間のうちのブランキング期間で実行し、高フレームレートの場合には1フレーム期間のうちのブランキング期間及びデータ出力期間で実行する。
 また、制御部111は、レジスタ信号受信部114で受信されたレジスタ信号Rsを解析し、レジスタ信号Rsに含まれている情報を取得するように構成されている。制御部111は、第一通信から第二通信に切り替える際に受信装置10Bへの第一情報の送信を制御する。また、制御部111は、第二通信から第一通信に切り替える際に受信装置10Bへの第二情報の送信を制御する。ここで例えば、第一情報はスタンバイシーケンシャル情報(詳細は後述)であり、第二情報はトレーニングシーケンシャル情報(詳細は後述)である。
 したがって、制御部111は、第二情報を受信装置10Bに送信した後であって第一情報を受信装置10Bに送信するまでは、ホスト通信をブランキング期間で実行する。また、制御部111は、第一情報を受信装置10Bに送信した後であって第二情報を受信装置10Bに送信するまでは、ホスト通信をブランキング期間及びデータ出力期間(すなわち1フレーム期間)で実行する。このように、送信装置10Aは、フレームレートに応じてホスト通信を実行する期間を切り替えることにより、高フレームレートであってもホスト通信に律速されずに、設定されたフレームレートで受信装置10Bとデータの送受信を実行することができる。
 本実施形態による受信装置10Bは、送信装置10Aから送信される所定信号を受信する受信部13と、受信部13で受信されたデータに対して所定の処理を施すデータ処理部14とを備えている。本実施形態では、受信部13及びデータ処理部14は、異なる半導体チップに形成されて積層されている。なお、受信部13及びデータ処理部14は、同一の半導体チップ内に形成されていてもよい。
 図1に示すように、受信装置10Bに備えられた受信部13は、送信装置10Aから送信されて再生部136(詳細は後述)から出力されるクロック埋込信号EBを受信するデータ受信部133を有している。送信装置10Aは、受信装置10Bにおいて外部装置の一例に相当する。
 データ受信部133は、送信装置10Aのデータ送信部115に設けられたドライバ115cから送信されて再生部136から出力されるクロック埋込信号EBが入力されるドライバ133aを有している。ドライバ133aは、再生部136から入力される差動方式のデータDsをシングルエンド方式のデータDsに変換し、変換後のデータDsを増幅するように構成されている。
 データ受信部133は、ドライバ133aから入力されるデータDsから第一クロック信号CLK1を再生する再生部133bを有している。再生部133bは、例えばクロック・データ・リカバリ (Clock Data Recovery:CDR)機能を発揮するようになっている。なお、図1及びその他の図において、CDRの機能を発揮する再生部は「CDR」と表記されている。
 データ受信部133は、再生部136から入力される第一クロック信号CLK1の周波数を分周して第一クロック信号CLKよりも低周波の第二クロック信号CLK2を生成する分周器133cを有している。分周器133cは、送信装置10Aのデータ送信部115に設けられた分周器115aと同じ構成を有している。分周器133cは、第一クロック信号CLK1を分周し、分周器115aで生成される第二クロック信号CLK2と同じ周波数の第二クロック信号CLK2を生成するようになっている。
 データ受信部133は、ドライバ133aから直列形式で入力されるデータDsを第二クロック信号CLK2に同期する並列形式のデータDpに変換する直列並列変換部133dを有している。なお、図1及びその他の図において、直列並列変換部は「SP」と表記されている。
 データ受信部133は、直列並列変換部133dから出力される並列形式のデータDpが入力するリンク部133eを有している。リンク部133eは、直列並列変換部133dから出力されるデータDpをデータ処理部14(詳細は後述)が処理可能なデータ形式に変換するようになっている。さらに、リンク部133eは、直列並列変換部133dが並列形式に変換したデータDpのビット数を変更するようになっている。例えば、リンク部133eは、直列並列変換部133dから入力されるデータDpのビット数をデータソース12から出力されるデータDpと同じビット数に変換するように構成されていてもよい。また例えば、リンク部133eは、直列並列変換部133dから入力されるデータDpのビット数をデータソース12から出力されるデータDpと異なるビット数に変換するように構成されていてもよい。
 このように、データ受信部133は、第一クロック信号CLK1を分周して生成した第二クロック信号CLK2と、第二クロック信号CLK2に同期し並列形式のデータDpとをデータ処理部14に出力できる。さらに、データ受信部133は、信号生成部134に第二クロック信号CLK2を出力できる。
 データ受信部133から出力されるデータDpは、分周器133cで生成される第二クロック信号CLK2に同期した信号である。また、データ送信部115に入力されるデータDpは、分周器115aで生成される第二クロック信号CLK2に同期した信号である。しかしながら、データ送信部115の分周器115aで生成される第二クロック信号CLK2と、データ受信部133の分周器133cで生成される第二クロック信号CLK2とは、位相が異なっており、厳密には同じタイミングにならない。本実施形態では、分周器115aで生成される第二クロック信号CLK2と、分周器133cで生成される第二クロック信号CLK2とは、同じ周波数の信号であるが、異なる周波数の信号とすることも可能である。例えば、送信部11のデータ送信部115は、通信速度が50Mbps/20bit(分周器115aで生成される第二クロック信号CLK2の周波数は50MHz)で入力されるデータDpを通信速度が1Gbps/1bitのデータDsに変換するように構成されていたとする。この場合、受信部13のデータ受信部133は、通信速度が1Gbps/1bitで入力されるデータDsを通信速度100Mbps/10bit(分周器133cで生成される第二クロック信号CLK2の周波数は10MHz)のデータDpに変換するように構成されていてもよい。
 受信部13は、送信装置10Aから送信される第一クロック信号CLK1及び第一クロック信号CLK1に基づく第二クロック信号CLK2の一方と、基準クロック信号INCKとを比較した比較結果に基づいて第一クロック信号CLK1を制御するレジスタ信号(制御信号の一例)Rsを生成する信号生成部134を有している。ここで、第二クロック信号CLK2は、第一クロック信号CLK1を分周して生成された信号であるため、第一クロック信号CLK1に基づく信号に相当する。なお、図1及びその他の図において、信号生成部は「Fcnt」と表記されている。また、受信部13は、信号生成部134で生成されたレジスタ信号Rsを送信装置10Aに送信するレジスタ信号送信部(制御信号送信部の一例)135を有している。レジスタ信号送信部135は、信号生成部134の出力端子に接続された入力端子を有している。
 信号生成部134には、分周器133cから出力された第二クロック信号CLK2と、受信装置10Bの外部から入力される基準クロック信号INCKが入力される。信号生成部134は、入力される第二クロック信号CLK2及び基準クロック信号INCKの周波数を逐次比較し続ける。信号生成部134は、例えば第二クロック信号CLK2で動作するカウンタと、基準クロック信号INCKで動作するカウンタとを有している。信号生成部134は、所定期間内にそれぞれのカウンタがカウントしたカウント値を比較して、第二クロック信号CLK2及び基準クロック信号INCKの周波数差を取得するようになっている。信号生成部134は、第二クロック信号CLK2及び基準クロック信号INCKの周波数差が所定の誤差範囲外になるとレジスタ信号Rsをレジスタ信号送信部135に出力するようになっている。レジスタ信号Rsには、周波数高低情報が含まれる。
 レジスタ信号送信部135は、1フレーム期間のうちのブランキング期間でホスト通信を実行する第一通信と、1フレーム期間のうちのブランキング期間及びデータ出力期間でホスト通信を実行する第二通信との切り替えを示す切替情報が必要に応じて含まれている所定情報を含むレジスタ信号(制御信号の一例)Rsを送信装置(外部装置の一例)10Aに送信するように構成されている。また、送信装置10Aから第一情報が送信されたと判定された場合には、レジスタ信号送信部135は、必要に応じてレジスタ信号Rsを送信装置10Aに送信するように構成されている。また、送信装置10Aから第二情報が送信されたと判定された場合には、レジスタ信号送信部135は、送信装置10Aへのレジスタ信号Rsの送信を終了するように構成されている。ここで、第一情報はスタンバイシーケンシャル情報であり、第二情報はトレーニングシーケンシャル情報である。第一情報や第二情報は、例えばクロック埋込信号EBに含められて送信装置10Aから受信装置10Bに送信される。また、第一情報又は第二情報が送信装置10Aから送信されたか否かは、制御部131が判定するようになっている。
 受信装置10Bは、共通配線によって送受信されるクロック埋込信号EB及びレジスタ信号Rsを再生する再生部136,137を有している。再生部136は、共通配線とデータ受信部133の入力端子との間に接続されている。再生部137は、共通配線とレジスタ信号送信部135の出力端子との間に接続されている。
 再生部136は、例えば高域通過フィルタで構成されている。このため、再生部136は、送信装置10Aから送信される高周波のクロック埋込信号EBを通過し、レジスタ信号送信部135から出力される低周波のレジスタ信号Rsを遮断することができる。これにより、受信装置10Bは、データ送信部115から再生部118を介して送信されるクロック埋込信号EBを受信することができ、かつレジスタ信号送信部135から出力されるレジスタ信号Rsがデータ受信部233に入力されることを防止できる。
 再生部137は、例えば低域通過フィルタで構成されている。これにより、再生部137は、送信装置10Aから送信される高周波のクロック埋込信号EBを遮断し、レジスタ信号送信部135から出力される低周波のレジスタ信号Rsを通過することができる。これにより、受信装置10Bは、送信装置10Aから送信されるクロック埋込信号EBがレジスタ信号送信部135に影響を及ぼすことを防止でき、かつ共通配線を介してレジスタ信号送信部135から出力されるレジスタ信号Rsを送信装置10Aに送信できる。
 受信装置10Bは、レジスタ信号送信部135と再生部137との間にバッファ部138を有している。バッファ部138の入力端子はレジスタ信号送信部135の出力端子に接続され、バッファ部138の出力端子は再生部137の入力端子に接続されている。これにより、バッファ部138は、レジスタ信号送信部135から出力されるレジスタ信号Rsを再生部137に出力することができる。バッファ部138は、例えばボルテージフォロア回路で構成されている。このため、バッファ部138は、インピーダンス変換することによってレジスタ信号送信部135から出力されるレジスタ信号Rsの電圧レベルの低下を防止できる。
 送信装置10A、受信装置10B及び送受信システム1は、双方向通信として、レジスタ信号Rs及びクロック埋込信号EBを同時に送受信するフルデュプレックス方式を用いている。送信装置10Aは再生部118,119を有し、受信装置10Bは再生部136,137を有している。このため、送信装置10A、受信装置10B及び送受信システム1は、フルデュプレックス方式を用いても、レジスタ信号Rs及びクロック埋込信号EBを容易に再生することができる。
 また、送信装置10A、受信装置10B及び送受信システム1は、双方向通信として、レジスタ信号Rs及びクロック埋込信号EBを時間的に分けて伝送するハーフデュプレックス方式を用いてもよい。ハーフデュプレックス方式では、データソース12で取得されるデータ信号が例えば画像データの場合、例えばブランキング期間のある期間にレジスタ信号Rsを送信することによって、レジスタ信号Rs及びクロック埋込信号EBを時間的に再生することができる。例えば、垂直ブランキング期間に通信速度が遅いレジスタ信号Rsを送信してもよい。また、データDsは、レジスタ信号Rsよりも通信速度が速いので、垂直ブランキング期間及びその他の所定期間の少なくとも一方で送信してもよい。これにより、レジスタ信号Rs及びクロック埋込信号EBを伝送するためのシステム効率の向上を図ることができる。また、ハーフデュプレックス方式では、再生部118,119,136,137を設ける必要がないので、送信装置10A及び受信装置10Bの小型化及び簡略化を図ることができる。
 受信部13は、制御部131を有している。制御部131は、データ受信部133、信号生成部134及びレジスタ信号送信部135を統括的に制御するようになっている。
 また、制御部131は、レジスタ信号送信部135からレジスタ信号Rsの送信を制御するように構成されている。制御部131は、通常フレームレートや高フレームレートを変更するために新たな通常フレームレートや高フレームレートの値などを設定した場合などには、これらの情報をレジスタ信号Rsに含めるようにレジスタ信号送信部135を制御する。レジスタ信号Rsにフレームレートなどの新たな値が設定される場合としては例えば、送受信システム1を使用している使用者による設定や画像データによる判定などが挙げられる。使用者による設定として例えば、スローモーションで撮影したい対象、高フレームレートで撮影したい対象が存在する場合が挙げられる。また、画像データによる判定として例えば、特定領域に動物体が入ったことを検出した場合が挙げられる。レジスタ信号送信部135は、新たな通常フレームレートなどの情報を含むレジスタ信号Rsをホスト通信において送信装置10Aに向けて出力する。
 受信装置10Bに備えられたデータ処理部14は、データ受信部133から入力されるデータDp、第二クロック信号CLK2及び受信装置10Bの外部から入力される基準クロック信号INCKを用いて所定の処理を実行するようになっている。例えば、データ処理部14は、データソース12で撮像された画像を表示装置(不図示)に表示するために、データDpの並び替え処理や補正処理などを実行する。
(送信装置、受信装置及び送受信システムの動作)
 本実施形態による送信装置10A、受信装置10B及び送受信システム1の動作について図1を参照しつつ図2から図5を用いて説明する。まず、本実施形態による送信装置10Aの動作を図2から図4を用いて説明する。図2中から図4中に示す「フレーム同期」は、フレーム同期信号の出力タイミングを表している。図2中から図4中に示す「双方向IF」は、送信装置10Aから受信装置10Bへのデータの送信状態を表している。
 図2に示すように、フレーム期間FPは、ブランキング期間VP及びデータ出力期間DPを合わせた期間である。1フレームは、フレーム同期信号VSに同期して「ブランキング期間BP→データ出力期間DP→ブランキング期間BP」という順序で構成されている。
 図示は省略するが、送信装置10Aは、通常フレームレートでは各フレームにおいて、例えばブランキング期間VPの開始とともにスタンバイシーケンシャル情報を受信装置10Bに送信する。また、送信装置10Aは、通常フレームレートでは各フレームにおいて、例えばブランキング期間VPの終了前にトレーニングシーケンシャル情報を受信装置10Bに送信する。これにより、送受信システム1では、通常フレームレートではブランキング期間VPでホスト通信が実行される。
 図2に示すように、送信装置10Aは、高フレームレートではスタンバイシーケンシャル情報を受信装置10Bに送信するまでは、データ出力期間DPにクロック埋込信号EB(図1参照)を受信装置10Bに出力することによって、データソース12(図1参照)で取得されたデータDsを受信装置10Bに送信する。また、送信装置10Aは、高フレームレートでは例えばフレーム同期信号VSの直前に第一情報としてスタンバイシーケンシャル情報SSを受信装置10Bに送信する。これにより、送受信システム1は、その後のブランキング期間BP及びデータ出力期間DP(すなわちにフレーム期間FP)にホスト通信を実行する。送信装置10Aは、ホスト通信を実行している期間にクロック埋込信号EBを受信装置10Bに送信しない。
 図2に示すように、送信装置10Aは、ホスト通信を開始した後に第二情報として例えばトレーニングシーケンシャル情報TSを受信装置10Bに送信するまでは、ホスト通信を継続して実行する。また、送信装置10Aは、高フレームレートでは例えばフレーム同期信号VSの直前に第二情報としてトレーニングシーケンシャル情報TSを受信装置10Bに送信する。これにより、送受信システム1は、ホスト通信を終了し、その後のデータ出力期間DPにクロック埋込信号EBを受信装置10Bに送信する。図2では、ホスト通信が1フレームで実行される例が図示されているが、これに限られず、ホスト通信は、2フレーム以上継続されてもよい。
 ここで、比較例として、従来の送信装置でのホスト通信について図3及び図4を用いて説明する。通常フレームレート(例えば60[fps])におけるフレーム期間FPの場合には、ブランキング期間VPも長くなる。このため、図3に示すように、従来の送信装置は、ホスト通信を実行するための時間をブランキング期間VPで確保できる。
 一方、通常よりもフレームレートが高い高フレームレート(例えば1000[fps])の場合には、ブランキング期間VP及びデータ出力期間DPが短くなる。図4に示すように、従来の送信装置は、高フレームレートの場合には、データ圧縮などによってデータの送信期間を短くするとともにブランキング期間VPを長くしてホスト通信を実行するための時間を確保する。しかしながら、データの送信期間の短縮化には限界がある。さらに、ホスト通信を実行するために所定時間が必要である。このため、受信装置と双方向通信を実行する従来の送信装置は、ホスト通信で律速されて受信装置から要求される高フレームレートでの双方向通信ができなくなり、フレームレートを低下させてしまうという問題を有している。
 これに対し、本実施形態による送信装置10Aは、ホスト通信のために少なくとも1つのフレーム期間FPを利用するように構成されている。また、送信装置10Aは、フレームレートの値によっては2以上のフレーム期間FPをホスト通信に利用することができる。このため、送信装置10Aは、フレーム期間FPの短い高フレームレートであってもホスト通信を実行することができる。このように、送信装置10A、受信装置10B及び送受信システム1は、高フレームレートでの双方向通信をホスト通信に律速されずに実行できる。
 次に、本実施形態による送受信システム1の動作について図5を用いて説明する。図5中の左側には、本実施形態におけるフレームフォーマットが図示され、図5中の右側には、送受信システム1の動作シーケンスが図示されている。
 図5に示すように、1フレームのフレームフォーマットは、ブランキングデータ、エンベデッドデータ、画素データ及びブランキングデータで構成されている。以下、1フレーム期間におけるエンベデッドデータの前のブランキングデータを「前半ブランキングデータ」と称し、当該1フレーム期間における画素データの後のブランキングデータを「後半ブランキングデータ」と称する場合がある。第n-1フレームで示すように、送信装置10Aは、ブランキングデータ、エンベデッドデータ、画素データ及びブランキングデータがこの順に並ぶデータDsに第一クロック信号CLK1が埋め込まれたクロック埋込信号EBを受信装置10Bに送信する。
 図5中のシーケンス図に示すように、送信装置10Aは、通常フレームレートから高フレームレートに切り替える際に、スタンバイシーケンスの実行開始の情報としてスタンバイシーケンシャル情報を受信装置10Bに送信し(ステップS1)、ホスト通信を開始する。送信装置10Aは、レジスタ113(図1参照)に設定された情報に基づいて、通常フレームレートから高フレームレートに切り替えたりスタンバイシーケンシャル情報を受信装置10Bに送信したりする。
 図5中の右側に示すように、受信装置10Bは、スタンバイシーケンスの実行開始の情報を受信すると、当該情報を受信したことを示すスタンバイ検出信号を使用者が操作している所定装置に出力する(ステップS2)。
 送信装置10Aに備えられた制御部111は、レジスタ113に設定された情報に基づいて、ホスト通信の終了タイミングであると判定すると、図5中のシーケンス図に示すように、制御部111は、スタンバイシーケンシャル情報を受信装置10Bに送信し(ステップS3)、その後にアイドルモードに移行する。こうして、送信装置10A、受信装置10B及び送受信システム1は、第二通信を実行可能な状態から第一通信を実行可能な状態に切り替わる。
 図5中のシーケンス図に示すように、受信装置10Bは、トレーニングシーケンシャル情報を受信すると、制御部131(図1参照)がデータ受信部133(図1参照)などを制御して、受信装置10Bをデータが受信可能な状態に制御する。受信装置10Bは、データを受信可能な状態に制御されると、レディ信号を使用者が操作している所定装置に出力する(ステップS4)。これにより、使用者は、送信装置10Aがデータを送信し、受信装置10Bがデータを受信可能な状態に設定されたことを判断できる。
 図5中のシーケンス図に示すように、第n+1フレームが開始されると、送信装置10Aは、第nフレームで設定されたパラメータに基づく動作によって、受信装置10Bにクロック埋込信号EBを送信する。
(変形例1)
 本実施形態の変形例1による送信装置、受信装置及び送受信システムについて図6を用いて説明する。本変形例による送信装置10A、受信装置10B及び送受信システム1は、データソース12が例えばローリングシャッタ方式による固体撮像素子を有している点に特徴を有している。図6中に示す「フレーム同期」は、フレーム同期信号の出力タイミングを表している。図6中に示す「シャッタ/リード」は、当該固体撮像素子における露光(シャッタ)及びデータ読出し(リード)のタイミングを表している。図6中に示す「双方向IF」は、送信装置10Aから受信装置10Bへのデータの送信状態を表している。
 ローリングシャッタ方式では、固体撮像素子の撮像領域を構成する複数の画素において行毎に露光タイミング及びデータ読出タイミングが異なる。このため、図6に示すように、露光タイミングST及びデータ読出タイミングRDは、各フレームのフレーム期間FPにおいて行毎にずれる。
 図6に示すように、送信装置10Aは、スタンバイシーケンシャル情報SSを含むレジスタ信号Rsを受信装置10Bに送信し、その後にフレーム期間FPを利用するホスト通信を実行する。また、送信装置10Aは、スタンバイシーケンシャル情報SSを受信装置10Bに送信した場合、その後の最初のデータ読出タイミングRDsにおいてデータの読み出しを停止する。一方、送信装置10Aは、スタンバイシーケンシャル情報SSを受信装置10Bに送信した場合、固体撮像素子における露光を停止せずに露光タイミングにおいて行毎に露光する。
 このように、送信装置10Aは、ホスト通信の実行中にはデータの読み出しは停止するものの、露光は継続する。これにより、送信装置10Aは、トレーニングシーケンシャル情報TSを受信装置10Bに送信した場合、その後の最初のデータ読出タイミングRDfにおいてデータの読み出しを実行できる。このため、本変形例による送信装置10A、受信装置10B及び送受信システム1は、ホスト通信を実行している間の露光タイミングSTsで露光したデータを有効なデータとして読み出すことができる。
(変形例2)
 本実施形態の変形例2による送信装置、受信装置及び送受信システムについて図7を用いて説明する。本変形例による送信装置10A、受信装置10B及び送受信システム1は、一定期間に高フレームレートで動作した後に自動で通常フレームレートに戻る点に特徴を有している。図7中に示す「フレーム同期」は、フレーム同期信号の出力タイミングを表している。図7中に示す「双方向IF」は、送信装置10Aから受信装置10Bへのデータの送信状態を表している。
 送信装置10Aは、ホスト通信をブランキング期間VPで実行する第一通信(すなわち通常フレームレートでの通信)でのフレーム期間FP又は送受信システム1の起動時において受信したレジスタ信号Rsに含まれた高フレームレートでのデータ出力の処理回数及び第一通信と第二通信との切替情報をレジスタ113に記憶している。このため、図7に示すように、送信装置10Aに備えられた制御部111は、レジスタ113に記憶した切替情報に基づいて、スタンバイシーケンシャル情報SSを受信装置10Bに送信し、当該スタンバイシーケンシャル情報SSを送信した後の最初のフレーム期間FPfにおいてホスト通信を実行する。制御部111は、レジスタ113に記憶した情報に基づいて、ホスト通信を実行したフレームの次のフレームから、レジスタ113に記憶したフレーム期間FPかつ処理回数(本例では5回)だけクロック埋込信号EBを受信装置10Bに送信するように、データソース12、データ送信部115及びリンク部117を制御する。このように、送信装置10Aは、所定数のクロック埋込信号EBを高フレームレートで受信装置10Bに送信する。
 制御部111は、レジスタ113に記憶された処理回数分だけクロック埋込信号EBを受信装置10Bに送信させる。また、制御部111は、当該処理回数の最後のクロック埋込信号EBにトレーニングシーケンシャル情報TSを含めて受信装置10Bに送信させる。これにより、レジスタ113に記憶された処理回数の最後のクロック埋込信号EBが送信されたフレームの次のフレームのブランキング期間VPfにおいてホスト通信を実行する。こうして、制御部111が第二通信から第一通信に切り替えることにより、送信装置10Aは通常フレームレートでクロック埋込信号EBを受信装置10Bに送信する。本変形例による送信装置10A、受信装置10B及び送受信システム1は、第一通信から第二通信に切り替わった最初のフレーム期間FPを除いて、高フレームレートではホスト通信に遷移しないように構成されている。
 このように、本変形例による受信装置10Bでは、制御部111は、複数のフレームにおいて高フレームレートでデータを出力した後に通常フレームレートに切り替えるように構成されている。
 本変形例による送信装置、受信装置及び送受信システムは、通常フレームレートでの処理中に高フレームレートでの処理に遷移し、所定数のフレームを高フレームレートで実行した後に通常フレームレートに自動で戻るように構成されている。このため、本変形例は、ある決まった期間のみ高速で撮像するように設定された固体撮像素子を有する送信装置、受信装置及び送受信システムに適用することができる。本変形例では、高フレームレートでのデータ出力の処理回数は、固定及び可変のいずれであってもよい。
 以上説明したように、本実施形態及び変形例1,2による送信装置、受信装置及び送受信システムは、送信装置10A及び受信装置10Bは、共通配線によって双方向に通信するように構成されている。さらに、第一クロック信号が埋め込まれたクロック埋込信号が送信装置から受信装置に送信される。これにより、本実施形態及び変形例1,2による送信装置、受信装置及び送受信システムは、小型化及び高フレームレートでの通信を達成することができる。また、本実施形態及び変形例1,2による送信装置、受信装置及び送受信システムは、双方向通信の条件が変更されるホスト通信に律速されずに高フレームレートで動作することができる。
 ところで、固体撮像素子に対して、高フレームレート動作やホスト通信による制御変更の柔軟性が求められている。しかしながら、必ずしも高フレームレートで毎回、ホスト通信によって固体撮像素子の動作を変更したいわけではない。シーン変化を見るために高速で撮像したいが毎回パラメータ変更をしたいわけではない。高フレームレートを維持し、数十から数千フレームあるいはそれ以上のフレーム数で1回だけパラメータを変更できればよい場合がある。すなわち、複数フレームに1回だけホスト通信を実行できればよい場合がある。以下に説明する第2実施形態及び第3実施形態による送信装置、受信装置及び送受信システムは、このような動作が可能な装置及びシステムに関する。
 第2実施形態及び第3実施形態による送信装置、受信装置及び送受信システムは例えば、環境(温度や明るさ等)依存のパラメータの変更が数秒から数時間単位である場合、又はシーン変化によるパラメータの変更が数十ミリ秒から数秒である場合に適用できる。また、第2実施形態及び第3実施形態による送信装置、受信装置及び送受信システムは例えば、所定シーンだけフレーム数を指定して高速で撮像する場合に適用できる。第2実施形態及び第3実施形態による送信装置、受信装置及び送受信システムは例えば、通常フレームレート中に高フレームレート処理に遷移し、高フレームレートで所定フレーム数の撮像を実行した後に通常フレームレートに自動で戻る場合に適用できる。また、第2実施形態及び第3実施形態による送信装置、受信装置及び送受信システムは例えば、ファクトリーオートメーションにおいて撮像対象の物体が来た瞬間を撮像する場合に適用できる。また、第2実施形態及び第3実施形態による送信装置、受信装置及び送受信システムは例えば、医療分野において、高速動作や高速変化する物体(例えば、声帯、脈、眼反射など)を撮像する場合に適用できる。さらに、第2実施形態及び第3実施形態による送信装置、受信装置及び送受信システムは例えば、一般のカメラにおいて、イルカがジャンプした瞬間、花火が打ち上げられた瞬間、動物が走る瞬間などの突然動き出す物体を撮像する場合に適用できる。
〔第2実施形態〕
 本開示の第2実施形態による送信装置、受信装置及び送受信システムについて図8及び図9を用いて説明する。本実施形態による送信装置、受信装置及び送受信システムは、複数のデータ送信部及び複数のデータ受信部を備えている点に特徴を有している。なお、上記第1実施形態による送信装置、受信装置及び送受信システムと同一の作用・機能を奏する構成要素には、同一の符号を付して説明は省略する。
 本実施形態による送信装置、受信装置及び送受信システムは、クロックエンベデッド方式によって送信用のデータと同期用のクロック信号とを送受信するようになっている。さらに、本実施形態による送信装置、受信装置及び送受信システムでは、複数のデータ送信部及び複数のデータ受信部がそれぞれクロックエンベデッド方式によってデータを送受信するようになっている。
 図8に示すように本実施形態による送受信システム2は、所定信号を送信する送信装置20Aと、送信装置20Aから送信される所定信号を受信する受信装置20Bとを備えている。送受信システム2は、例えば内視鏡システムに適用でき、送信装置20Aで撮像された撮像データを送信装置20Aが受信装置20Bに送信するようになっている。受信装置20Bは、送信装置20Aから送信された撮像データを処理して、例えば表示装置(不図示)に送信するようになっている。このため、送信装置20Aは、人体内部などの狭い領域にも進入できるように小型化が図られている。また、受信装置20Bは、小型化された送信装置20Aから撮像データを受信したり、送信装置20Aを安定動作させるためにクロック信号を制御したりできる構成を有している。
 送信装置20Aに備えられた送信部21は、第一データ送信部115M及び第二データ送信部115Nを有している。第一データ送信部115M及び第二データ送信部115Nはそれぞれ、上記第1実施形態におけるデータ送信部115と同じ構成を有し、同じ機能を発揮するようになっている。このため、第一データ送信部115M及び第二データ送信部115Nの構成の説明は省略する。
 図8に示すように、送信装置10Aの送信部21に備えられた第一データ送信部115Mは、データソース(データ生成部の一例)12から入力されるデータDp(データ信号の一例)をレジスタ信号(制御信号の一例)Rsが送信される共通配線CLm(所定配線の一例)を用いて受信装置20B(外部装置の一例)に送信するように構成されている。
 送信装置10Aの送信部21に備えられた第二データ送信部115Nは、データソース12から入力されるデータDpをレジスタ信号Rsが送信される共通配線CLmとは異なる配線CLnを用いて受信装置20Bに送信するように構成されている。
 受信装置20Bに備えられた受信部23は、第一データ受信部133M及び第二データ受信部133Nを有している。第一データ受信部133M及び第二データ受信部133Nはそれぞれ、上記第1実施形態におけるデータ受信部133と同じ構成を有し、同じ機能を発揮するようになっている。このため、第一データ受信部133M及び第二データ受信部133Nの構成の説明は省略する。受信部23は、送信部21に設けられたデータ送信部と同じ数のデータ受信部を有している。本実施形態では、送信部21が2個のデータ送信部(第一データ送信部115M及び第二データ送信部115N)を有しているため、受信部23も2個のデータ受信部(第一データ受信部133M及び第二データ受信部133N)を有している。
 図8に示すように、受信装置20Bの受信部23に備えられた第一データ受信部133Mは、送信装置20A(外部装置の一例)から送信されるクロック埋込信号(データ信号の一例)EBをレジスタ信号(制御信号の一例)Rsが送信される共通配線CLmを用いて受信するように構成されている。第一データ受信部133Mの入力端子には再生部136が接続され、第一データ送信部115Mの出力端子には再生部118が接続されている。共通配線CLmは、再生部118と再生部136とを接続している。このため、第一データ受信部133Mは、再生部136、共通配線CLm及び再生部118を介して第一データ送信部115Mに接続されている。
 受信装置20Bの受信部23に備えられた第二データ受信部133Nは、送信装置20Aから出力されるクロック埋込信号EBをレジスタ信号Rsが送信される共通配線CLmとは異なる配線CLnを用いて受信するように構成されている。第二データ受信部133Nの入力側には再生部が設けられていない。同様に、第二データ送信部115Nの出力側には再生部が設けられていない。このため、第二データ受信部133Nは、配線CLnを介して第二データ送信部115Nに接続されている。このように、送信部21に設けられたデータ送信部と、受信部23に設けられたデータ受信部とは、一対一の関係で接続されている。
 受信部23に備えられた信号生成部234は、複数のデータ受信部233から出力されるそれぞれの第二クロック信号CLK2が入力されるようになっている。信号生成部234は、第一データ受信部133M及び第二データ受信部133Nのそれぞれから入力される2つの第二クロック信号CLK2と基準クロック信号INCKとを比較するようになっている。これにより、信号生成部234は、第一データ送信部115M及び第二データ送信部115N並びに第一データ受信部133M及び第二データ受信部133Nのいずれかにおける第一クロック信号CLK1の送信が失敗していても、第二クロック信号CLK2と基準クロック信号INCKとを比較して第一クロック信号CLK1を制御することができる。また、信号生成部234は、複数の第二クロック信号CLK2のいずれかと、基準クロック信号INCKとを比較するように構成されていてもよい。
 図8に示すように、配線CLnには、レジスタ信号Rsが送受信される配線が接続されていない。このため、本実施形態による送受信システム2では、レジスタ信号Rsは、第一データ送信部115M及び第一データ受信部133Mによって受信装置20Bから送信装置20Aに送信される。また、第一データ送信部115Mは、上記第1実施形態におけるデータ送信部115と同様の構成を有し、第一データ受信部133Mは、上記第1実施形態におけるデータ受信部133と同様の構成を有している。このため、送受信システム2は、第一データ送信部115M及び第一データ受信部133Mによってデータソース12で取得されたデータDpを含むクロック埋込信号EBを送受信することができる。
 一方、送受信システム2は、データソース12で取得されたデータDpを含むクロック埋込信号EBを、第二データ送信部115N及び第二データ受信部133Nによって送信装置20A及び受信装置20Bとの間で送受信できる。
 このように、本実施形態による送信装置20A、受信装置20B及び送受信システム2は、データ送受信用の通信路を2つ有している。さらに、当該通信路のうちの1つである第一データ送信部115M、共通配線CLm及び第一データ受信部133Mによって構成される通信路は、データだけでなくレジスタ信号Rsも送受信できる。このため、本実施形態による送信装置20A、受信装置20B及び送受信システム2は、データ及びレジスタ信号を別々に送受信するように構成されたシステムと比較して、送信装置及び受信装置のそれぞれの端子数並びに送信装置及び受信装置の間の配線数の削減を図ることができる。
(送信装置、受信装置及び送受信システムの動作)
 本実施形態による送信装置20A、受信装置20B及び送受信システム2の動作について図8を参照しつつ図9を用いて説明する。図9中に示す「フレーム同期」は、フレーム同期信号の出力タイミングを表している。図9中に示す「第二通信路」は、図8中に示す第二データ送信部115N及び第二データ受信部133Nを用いる通信路を表している。図9中に示す「第一通信路」は、図8中に示す第一データ送信部115M及び第一データ受信部133Mを用いる通信路を表している。
 図9に示すように、通常動作では、第二データ送信部115N及び第二データ受信部133Nによってフレーム期間FPごとにそれぞれクロック埋込信号EBが送信装置20Aから受信装置20Bに送信される。図9に示す例では、第二データ送信部115N及び第二データ受信部133Nによって送信装置20Aから受信装置20Bに送信されるクロック埋込信号EBには、動画のデータが含まれている。一方、第一データ送信部115M及び第一データ受信部133Mを用いる通信路は、少なくとも1フレームを用いてホスト通信を実行可能な状態になっている。本実施形態では、ホスト通信は、第一データ送信部115M及び第一データ受信部133Mを用いて毎フレーム実行されているわけではなく、フレーム期間FPやフレームレートを変更する場合に必要に応じて実行される。
 例えば、送受信システム2を使用している使用者がデータソース12(図8参照)における動画の撮影中に静止画を撮影するための操作を実行したとする。そうすると、受信装置20Bに備えられた制御部131(図8参照)は、当該操作に関する情報を含むレジスタ信号Rsをレジスタ信号送信部135(図8参照)に設定する。レジスタ信号送信部135は、当該レジスタ信号Rsを送信装置20Aに送信する。
 送信装置20A備えられた制御部111は、受信装置20Bから送信されてレジスタ信号受信部114が受信した当該レジスタ信号Rsから静止画の撮影を指示する情報を取得すると、当該情報をレジスタ113に記憶する。さらに、制御部111は、第二情報としてのトレーニングシーケンシャル情報を受信装置20Bに送信し、第一データ送信部115Mが用いられる通信路を第二通信から第一通信に切り替える。これにより、図9に示すように、第一データ送信部115Mは、トレーニングシーケンシャル情報TSを送信した後の最初のフレーム期間FPのデータ出力期間DPに、データソース12で取得されたデータDp(例えば静止画のデータ)を含むクロック埋込信号EBを第一データ受信部133Mに送信する。
 送信装置20Aは例えば、レジスタ113に記憶した静止画の撮影を指示する情報に基づいて、所定回数(本例では3回)のフレームにおいてデータDp(静止画のデータ)を含むクロック埋込信号EBを受信装置20Bに送信する。また、送信装置20Aは、最後のフレームにおいて、第一情報としてのスタンバイシーケンシャル情報SSを含むクロック埋込信号EBを受信装置20Bに送信する。これにより、第一データ送信部115Mが用いられる通信路が第一通信から第二通信に切り替わる。
 一方、送信装置20Aは、データDp(例えば動画のデータ)を含むクロック埋込信号EBを第二データ送信部115Nから送信し続ける。これにより、本実施形態による送信装置20A、受信装置20B及び送受信システム2は、異なる種類のデータを並行して送受信できる。
 以上説明したように、本実施形態による送信装置、受信装置及び送受信システムは、共通配線によって双方向に通信するように構成されている。さらに、第一クロック信号が埋め込まれたクロック埋込信号が送信装置から受信装置に送信される。これにより、本実施形態による送信装置、受信装置及び送受信システムは、小型化及び高フレームレートでの通信を達成することができる。また、本実施形態による送信装置、受信装置及び送受信システムは、双方向通信の条件が変更されるホスト通信に律速されずに高フレームレートで動作することができる。
 また、本実施形態による送信装置、受信装置及び送受信システムは、通常動作では、第二データ送信部及び第二データ受信部によってデータを含むクロック埋込信号を送受信し、第一データ送信部及び第一データ受信部によってレジスタ信号を送受信するように構成されている。これにより、本実施形態による送信装置、受信装置及び送受信システムは、ホスト通信によりデータ通信が律速されることを防止できる。
 さらに、本実施形態による送信装置、受信装置及び送受信システムは、第二データ送信部及び第二データ受信部で送受信されているデータ(例えば動画データ)とは異なるデータ(例えば静止画データ)を第一データ送信部及び第一データ受信部によって送受信することができる。これにより、本実施形態による送信装置、受信装置及び送受信システムは、通常動作時にはデータ及びホスト通信を並列に送受信することができ、必要に応じてホスト通信に代えてデータを送受信することにより、高速・大容量のデータを送受信することができる。
〔第3実施形態〕
 本開示の第3実施形態による送信装置、受信装置及び送受信システムについて図10及び図11を用いて説明する。本実施形態による送信装置、受信装置及び送受信システムは、いわゆるオールウェイズオン(Always ON)の機能を発揮できる点に特徴を有している。なお、上記第2実施形態による送信装置、受信装置及び送受信システムと同一の作用・機能を奏する構成要素には、同一の符号を付して説明は省略する。
 本実施形態による送信装置、受信装置及び送受信システムは、クロックエンベデッド方式によって送信用のデータと同期用のクロック信号とを送受信するようになっている。さらに、本実施形態による送信装置、受信装置及び送受信システムでは、複数のデータ送信部及び複数のデータ受信部がそれぞれクロックエンベデッド方式によってデータを送受信するようになっている。
 図10に示すように、本実施形態による送信装置30Aに備えられた送信部31は、出力をハイインピーダンス状態にすることが可能なドライバ315cを有する第二データ送信部315を有している。第二データ送信部315は、ドライバ315cが異なる点を除いて、上記第2実施形態における第二データ送信部115Nと同様の構成を有し、同様の機能を発揮するようになっている。
 送信装置30Aに設けられた送信部31は、発振器112と分周器115aとの間に設けられたスイッチ312を有している。スイッチ312が閉状態(オン状態)の場合に、発振器112で発振された第一クロック信号CLK1が分周器115aに入力される。一方、スイッチ312が開状態(オフ状態)の場合に、発振器112で発振された第一クロック信号CLK1が分周器115aに入力されない。したがって、スイッチ312が開状態(オフ状態)であると、分周器115aが第二クロック信号CLK2をリンク部117に出力しなくなる。これにより、第二データ送信部315と、第二データ送信部315に接続されたリンク部117の動作が停止される。
 制御部111は、スイッチ312の開閉を制御するようになっている。詳細は後述するが、制御部111は、通常動作では、スイッチ312を開状態(オフ状態)に制御するとともに、ドライバ315cの出力がハイインピーダンス状態となるように制御する。これにより、第二データ送信部315、第二データ送信部315に接続されたリンク部117及び第二データ受信部133Nが停止状態となる。一方、制御部111は、通常フレームレートよりもフレームレートが高い高フレームレートでの動作(すなわち高速動作)では、スイッチ312を閉状態(オン状態)に制御するとともに、ドライバ315cを出力が可能な状態に制御する。これにより、第二データ送信部315、第二データ送信部315に接続されたリンク部117及び第二データ受信部133Nが動作状態となる。このため、送受信システム3は、第二データ送信部315及び第二データ受信部133Nによって送信装置30Aから受信装置20Bに大容量のデータを送信できる。
 このように、制御部111は、1フレーム期間が所定期間の通常フレームレートの場合に第二データ送信部315からクロック埋込信号EB(データの一例)の出力を停止し、通常フレームよりもフレームレートが高い高フレームレートの場合に第二データ送信部315からクロック埋込信号EBを出力するように構成されている。
(送信装置、受信装置及び送受信システムの動作)
 本実施形態による送信装置30A、受信装置20B及び送受信システム3の動作について図10を参照しつつ図11を用いて説明する。図11中に示す「フレーム同期」は、フレーム同期信号の出力タイミングを表している。図11中に示す「第二通信路」は、図10中に示す第二データ送信部115N及び第二データ受信部133Nを用いる通信路を表している。図11中に示す「第一通信路」は、図10中に示す第一データ送信部115M及び第一データ受信部133Mを用いる通信路を表している。
 図11に示すように、通常動作では、送信装置30Aの送信部31に設けられた第二データ送信部315のドライバ315c(図10参照)は、出力状態がハイインピーダンス状態となるように制御されている。このため、第二データ送信部315及び受信装置20Bの受信部23に設けられた第二データ受信部133Nとの間はハイインピーダンス(Hi-Z)状態となる。一方、通常状態ではデータ出力期間DPにおいて、第一データ送信部115M及び第一データ受信部133Mによってクロック埋込信号EBが送信装置30Aから受信装置20Bに送信される。また、通常動作ではブランキング期間VPにおいて、必要に応じてホスト通信が実行される。
 例えば、送受信システム3を使用している使用者が高フレームレートでの動作(すなわち高速動作)のための操作を実行したとする。そうすると、受信装置20Bに備えられた制御部131(図10参照)は、当該操作に関する情報を含むレジスタ信号Rsをレジスタ信号送信部135(図10参照)に設定する。レジスタ信号送信部135は、当該レジスタ信号Rsを送信装置30Aに送信する。
 送信装置30A備えられた制御部111は、受信装置20Bから送信されてレジスタ信号受信部114が受信した当該レジスタ信号Rsから高フレームレート動作を指示する情報を取得すると、当該情報をレジスタ113に記憶するとともに、第一情報としてのスタンバイシーケンシャル情報SSを受信装置30Bに送信する。さらに、制御部111は、スイッチ312を閉状態(オン状態)に制御するとともに、ドライバ315cを出力が可能な状態に制御する。これにより、図11に示すように、第二データ送信部315は、スタンバイシーケンシャル情報SSを送信した後の最初のフレーム期間FPのデータ出力期間DP(図11では不図示)に、データソース12で取得されたデータDpを含むクロック埋込信号EBを第二データ受信部133Nに送信する。
 送信装置30Aは例えば、レジスタ113に記憶した高フレームレート動作を指示する情報に基づいて、所定回数(本例では7回)のフレームにおいて高フレームレートでクロック埋込信号EBを受信装置30Bに送信する。また、送信装置30Aは、最後のフレームにおいて、第二情報としてのトレーニングシーケンシャル情報TSを含むクロック埋込信号EBを受信装置30Bに送信する。さらに、制御部111は、スイッチ312を開状態(オフ状態)に制御するとともに、ドライバ315cの出力がハイインピーダンス状態となるように制御する。これにより、第二データ送信部315、第二データ送信部315に接続されたリンク部117及び第二データ受信部133Nが停止状態となる。
 一方、送信装置30Aは、第二データ送信部315で送信されるデータDpとは異なるデータDpを含むクロック埋込信号EBを第一データ送信部115Mから受信装置20Bに送信し続ける。これにより、本実施形態による送信装置30A、受信装置20B及び送受信システム3は、通常フレームレートで動作する場合と比較して、高フレームレートで動作する場合に大容量のデータを送受信できる。
 以上説明したように、本実施形態による送信装置、受信装置及び送受信システムは、共通配線によって双方向に通信するように構成されている。さらに、第一クロック信号が埋め込まれたクロック埋込信号が送信装置から受信装置に送信される。これにより、本実施形態による送信装置、受信装置及び送受信システムは、小型化及び高フレームレートでの通信を達成することができる。また、本実施形態による送信装置、受信装置及び送受信システムは、双方向通信の条件が変更されるホスト通信に律速されずに高フレームレートで動作することができる。
 また、本実施形態による送信装置、受信装置及び送受信システムは、通常動作では、第二データ送信部及び第二データ受信部を停止状態とすることにより、低消費電力化を図ることできる。本実施形態による送信装置、受信装置及び送受信システムは例えば、データソースが動き検出を実行可能に構成されている場合に低消費電力で動作可能な動き検出装置及びシステムとして実現できる。
 例えば、データソースが所定物体の動きを検出していない場合には、送信装置から受信装置に送信するデータ量が少ない。このため、本実施形態による送信装置、受信装置及び送受信システムは、第一データ送信部及び第二データ送信部によって低解像度のデータを送受信し、第二データ送信部及び第二データ受信部を停止させることにより、低電力でのデータの送受信を達成できる。一方、データソースが所定物体の動きを検出している場合には、送信装置から受信装置に送信するデータ量が多くなる。このため、本実施形態による送信装置、受信装置及び送受信システムは、第一データ送信部及び第二データ送信部に加えて、第二データ送信部及び第二データ受信部によってデータを送受信することにより、高解像度のデータの送受信を達成できる。
 <内視鏡手術システムへの応用例>
 本開示に係る技術(本技術)は、様々な製品へ応用することができる。例えば、本開示に係る技術は、内視鏡手術システムに適用されてもよい。
 図12は、本開示に係る技術(本技術)が適用され得る内視鏡手術システムの概略的な構成の一例を示す図である。
 図12では、術者(医師)11131が、内視鏡手術システム11000を用いて、患者ベッド11133上の患者11132に手術を行っている様子が図示されている。図示するように、内視鏡手術システム11000は、内視鏡11100と、気腹チューブ11111やエネルギー処置具11112等の、その他の術具11110と、内視鏡11100を支持する支持アーム装置11120と、内視鏡下手術のための各種の装置が搭載されたカート11200と、から構成される。
 内視鏡11100は、先端から所定の長さの領域が患者11132の体腔内に挿入される鏡筒11101と、鏡筒11101の基端に接続されるカメラヘッド11102と、から構成される。図示する例では、硬性の鏡筒11101を有するいわゆる硬性鏡として構成される内視鏡11100を図示しているが、内視鏡11100は、軟性の鏡筒を有するいわゆる軟性鏡として構成されてもよい。
 鏡筒11101の先端には、対物レンズが嵌め込まれた開口部が設けられている。内視鏡11100には光源装置11203が接続されており、当該光源装置11203によって生成された光が、鏡筒11101の内部に延設されるライトガイドによって当該鏡筒の先端まで導光され、対物レンズを介して患者11132の体腔内の観察対象に向かって照射される。なお、内視鏡11100は、直視鏡であってもよいし、斜視鏡又は側視鏡であってもよい。
 カメラヘッド11102の内部には光学系及び撮像素子が設けられており、観察対象からの反射光(観察光)は当該光学系によって当該撮像素子に集光される。当該撮像素子によって観察光が光電変換され、観察光に対応する電気信号、すなわち観察像に対応する画像信号が生成される。当該画像信号は、RAWデータとしてカメラコントロールユニット(CCU: Camera Control Unit)11201に送信される。
 CCU11201は、CPU(Central Processing Unit)やGPU(Graphics Processing Unit)等によって構成され、内視鏡11100及び表示装置11202の動作を統括的に制御する。さらに、CCU11201は、カメラヘッド11102から画像信号を受け取り、その画像信号に対して、例えば現像処理(デモザイク処理)等の、当該画像信号に基づく画像を表示するための各種の画像処理を施す。
 表示装置11202は、CCU11201からの制御により、当該CCU11201によって画像処理が施された画像信号に基づく画像を表示する。
 光源装置11203は、例えばLED(light emitting diode)等の光源から構成され、術部等を撮影する際の照射光を内視鏡11100に供給する。
 入力装置11204は、内視鏡手術システム11000に対する入力インタフェースである。ユーザは、入力装置11204を介して、内視鏡手術システム11000に対して各種の情報の入力や指示入力を行うことができる。例えば、ユーザは、内視鏡11100による撮像条件(照射光の種類、倍率及び焦点距離等)を変更する旨の指示等を入力する。
 処置具制御装置11205は、組織の焼灼、切開又は血管の封止等のためのエネルギー処置具11112の駆動を制御する。気腹装置11206は、内視鏡11100による視野の確保及び術者の作業空間の確保の目的で、患者11132の体腔を膨らめるために、気腹チューブ11111を介して当該体腔内にガスを送り込む。レコーダ11207は、手術に関する各種の情報を記録可能な装置である。プリンタ11208は、手術に関する各種の情報を、テキスト、画像又はグラフ等各種の形式で印刷可能な装置である。
 なお、内視鏡11100に術部を撮影する際の照射光を供給する光源装置11203は、例えばLED、レーザ光源又はこれらの組み合わせによって構成される白色光源から構成することができる。RGBレーザ光源の組み合わせにより白色光源が構成される場合には、各色(各波長)の出力強度及び出力タイミングを高精度に制御することができるため、光源装置11203において撮像画像のホワイトバランスの調整を行うことができる。また、この場合には、RGBレーザ光源それぞれからのレーザ光を時分割で観察対象に照射し、その照射タイミングに同期してカメラヘッド11102の撮像素子の駆動を制御することにより、RGBそれぞれに対応した画像を時分割で撮像することも可能である。当該方法によれば、当該撮像素子にカラーフィルタを設けなくても、カラー画像を得ることができる。
 また、光源装置11203は、出力する光の強度を所定の時間ごとに変更するようにその駆動が制御されてもよい。その光の強度の変更のタイミングに同期してカメラヘッド11102の撮像素子の駆動を制御して時分割で画像を取得し、その画像を合成することにより、いわゆる黒つぶれ及び白とびのない高ダイナミックレンジの画像を生成することができる。
 また、光源装置11203は、特殊光観察に対応した所定の波長帯域の光を供給可能に構成されてもよい。特殊光観察では、例えば、体組織における光の吸収の波長依存性を利用して、通常の観察時における照射光(すなわち、白色光)に比べて狭帯域の光を照射することにより、粘膜表層の血管等の所定の組織を高コントラストで撮影する、いわゆる狭帯域光観察(Narrow Band Imaging)が行われる。あるいは、特殊光観察では、励起光を照射することにより発生する蛍光により画像を得る蛍光観察が行われてもよい。蛍光観察では、体組織に励起光を照射し当該体組織からの蛍光を観察すること(自家蛍光観察)、又はインドシアニングリーン(ICG)等の試薬を体組織に局注するとともに当該体組織にその試薬の蛍光波長に対応した励起光を照射し蛍光像を得ること等を行うことができる。光源装置11203は、このような特殊光観察に対応した狭帯域光及び/又は励起光を供給可能に構成され得る。
 図13は、図12に示すカメラヘッド11102及びCCU11201の機能構成の一例を示すブロック図である。
 カメラヘッド11102は、レンズユニット11401と、撮像部11402と、駆動部11403と、通信部11404と、カメラヘッド制御部11405と、を有する。CCU11201は、通信部11411と、画像処理部11412と、制御部11413と、を有する。カメラヘッド11102とCCU11201とは、伝送ケーブル11400によって互いに通信可能に接続されている。
 レンズユニット11401は、鏡筒11101との接続部に設けられる光学系である。鏡筒11101の先端から取り込まれた観察光は、カメラヘッド11102まで導光され、当該レンズユニット11401に入射する。レンズユニット11401は、ズームレンズ及びフォーカスレンズを含む複数のレンズが組み合わされて構成される。
 撮像部11402を構成する撮像素子は、1つ(いわゆる単板式)であってもよいし、複数(いわゆる多板式)であってもよい。撮像部11402が多板式で構成される場合には、例えば各撮像素子によってRGBそれぞれに対応する画像信号が生成され、それらが合成されることによりカラー画像が得られてもよい。あるいは、撮像部11402は、3D(dimensional)表示に対応する右目用及び左目用の画像信号をそれぞれ取得するための1対の撮像素子を有するように構成されてもよい。3D表示が行われることにより、術者11131は術部における生体組織の奥行きをより正確に把握することが可能になる。なお、撮像部11402が多板式で構成される場合には、各撮像素子に対応して、レンズユニット11401も複数系統設けられ得る。
 また、撮像部11402は、必ずしもカメラヘッド11102に設けられなくてもよい。例えば、撮像部11402は、鏡筒11101の内部に、対物レンズの直後に設けられてもよい。
 駆動部11403は、アクチュエータによって構成され、カメラヘッド制御部11405からの制御により、レンズユニット11401のズームレンズ及びフォーカスレンズを光軸に沿って所定の距離だけ移動させる。これにより、撮像部11402による撮像画像の倍率及び焦点が適宜調整され得る。
 通信部11404は、CCU11201との間で各種の情報を送受信するための通信装置によって構成される。通信部11404は、撮像部11402から得た画像信号をRAWデータとして伝送ケーブル11400を介してCCU11201に送信する。
 また、通信部11404は、CCU11201から、カメラヘッド11102の駆動を制御するための制御信号を受信し、カメラヘッド制御部11405に供給する。当該制御信号には、例えば、撮像画像のフレームレートを指定する旨の情報、撮像時の露出値を指定する旨の情報、並びに/又は撮像画像の倍率及び焦点を指定する旨の情報等、撮像条件に関する情報が含まれる。
 なお、上記のフレームレートや露出値、倍率、焦点等の撮像条件は、ユーザによって適宜指定されてもよいし、取得された画像信号に基づいてCCU11201の制御部11413によって自動的に設定されてもよい。後者の場合には、いわゆるAE(Auto Exposure)機能、AF(Auto Focus)機能及びAWB(Auto White Balance)機能が内視鏡11100に搭載されていることになる。
 カメラヘッド制御部11405は、通信部11404を介して受信したCCU11201からの制御信号に基づいて、カメラヘッド11102の駆動を制御する。
 通信部11411は、カメラヘッド11102との間で各種の情報を送受信するための通信装置によって構成される。通信部11411は、カメラヘッド11102から、伝送ケーブル11400を介して送信される画像信号を受信する。
 また、通信部11411は、カメラヘッド11102に対して、カメラヘッド11102の駆動を制御するための制御信号を送信する。画像信号や制御信号は、電気通信や光通信等によって送信することができる。
 画像処理部11412は、カメラヘッド11102から送信されたRAWデータである画像信号に対して各種の画像処理を施す。
 制御部11413は、内視鏡11100による術部等の撮像、及び、術部等の撮像により得られる撮像画像の表示に関する各種の制御を行う。例えば、制御部11413は、カメラヘッド11102の駆動を制御するための制御信号を生成する。
 また、制御部11413は、画像処理部11412によって画像処理が施された画像信号に基づいて、術部等が映った撮像画像を表示装置11202に表示させる。この際、制御部11413は、各種の画像認識技術を用いて撮像画像内における各種の物体を認識してもよい。例えば、制御部11413は、撮像画像に含まれる物体のエッジの形状や色等を検出することにより、鉗子等の術具、特定の生体部位、出血、エネルギー処置具11112の使用時のミスト等を認識することができる。制御部11413は、表示装置11202に撮像画像を表示させる際に、その認識結果を用いて、各種の手術支援情報を当該術部の画像に重畳表示させてもよい。手術支援情報が重畳表示され、術者11131に提示されることにより、術者11131の負担を軽減することや、術者11131が確実に手術を進めることが可能になる。
 カメラヘッド11102及びCCU11201を接続する伝送ケーブル11400は、電気信号の通信に対応した電気信号ケーブル、光通信に対応した光ファイバ、又はこれらの複合ケーブルである。
 ここで、図示する例では、伝送ケーブル11400を用いて有線で通信が行われていたが、カメラヘッド11102とCCU11201との間の通信は無線で行われてもよい。
 以上、本開示に係る技術が適用され得る内視鏡手術システムの一例について説明した。本開示に係る技術は、以上説明した構成のうち、カメラヘッド11102からCCU11201間のインタフェースに用いることができる。具体的には、データソース12は、撮像部11402に適用することができる。送信部11,21,31は、カメラヘッド制御部11405及び通信部11404に適用することができる。受信部13,23は、通信部11411に適用することができる。カメラヘッド11102からCCU11201間のインタフェースに本開示に係る技術を適用することにより、カメラヘッド11102の小型化を図ることができ、ホスト通信に律速されずに高フレームレートでのデータの送受信が可能になる。
 なお、ここでは、一例として内視鏡手術システムについて説明したが、本開示に係る技術は、その他、例えば、顕微鏡手術システム等に適用されてもよい。
 本開示に係る技術は、以上のような送信装置、受信装置及び送受信システムに適用することができる。
 なお、本技術の実施形態は、上述した実施形態に限定されるものではなく、本技術の要旨を逸脱しない範囲において種々の変更が可能である。また、本明細書に記載された効果はあくまでも例示であって限定されるものでは無く、また他の効果があってもよい。
 例えば、本技術は以下のような構成も取ることができる。
(1)
 外部装置から入力されて所定情報が含まれている制御信号を受信する制御信号受信部と、
 1フレーム期間のうちのブランキング期間でホスト通信を実行する第一通信と、1フレーム期間のうちのブランキング期間及びデータ出力期間でホスト通信を実行する第二通信との切り替えを示す情報であって必要に応じて前記所定情報に含まれる切替情報に基づいて制御する制御部と
 を備える送信装置。
(2)
 前記制御部は、前記1フレーム期間が所定期間の通常フレームレートよりもフレームレートが高い高フレームレートの場合に前記第一通信から前記第二通信に切り替える
 上記(1)に記載の送信装置。
(3)
 前記制御部は、複数のフレームにおいて前記高フレームレートでデータを出力した後に前記通常フレームレートに切り替える
 上記(2)に記載の送信装置。
(4)
 前記制御部は、
 前記第一通信から前記第二通信に切り替える際に前記外部装置への第一情報の送信を制御し、
 前記第二通信から前記第一通信に切り替える際に前記外部装置への第二情報の送信を制御する
 上記(1)又は(2)に記載の送信装置。
(5)
 前記第一情報はスタンバイシーケンシャル情報であり、前記第二情報はトレーニングシーケンシャル情報である
 上記(4)に記載の送信装置。
(6)
 データ生成部から入力されるデータ信号を前記制御信号が送信される所定配線を用いて前記外部装置に送信する第一データ送信部を備える
 上記(1)から(5)までのいずれか一項に記載の送信装置。
(7)
 前記データ生成部から入力されるデータ信号を前記制御信号が送信される所定配線とは異なる配線を用いて前記外部装置に送信する第二データ送信部を備える
 上記(6)に記載の送信装置。
(8)
 前記制御部は、前記1フレーム期間が所定期間の通常フレームレートの場合に前記第二データ送信部から前記データ信号の出力を停止し、前記通常フレームレートよりもフレームレートが高い高フレームレートの場合に前記第二データ送信部から前記データ信号を出力する
 上記(7)に記載の送信装置。
(9)
 前記外部装置との間で、SLVS-EC(Scalable Low Voltage Signaling with Embedded Clock)の規格で信号を双方向に通信する
 上記(1)から(8)までのいずれか一項に記載の送信装置。
(10)
 1フレーム期間のうちのブランキング期間でホスト通信を実行する第一通信と、1フレーム期間のうちのブランキング期間及びデータ出力期間でホスト通信を実行する第二通信との切り替えを示す切替情報が必要に応じて含まれている所定情報を含む制御信号を外部装置に送信する制御信号送信部と、
 前記制御信号送信部から前記制御信号の送信を制御する制御部と
 を備える受信装置。
(11)
 前記外部装置から第一情報が送信されたと判定された場合には、前記制御信号送信部は、必要に応じて前記制御信号を前記外部装置に送信し、
 前記外部装置から第二情報が送信されたと判定された場合には、前記制御信号送信部は、前記外部装置への前記制御信号の送信を終了する
 上記(10)に記載の受信装置。
(12)
 前記第一情報はスタンバイシーケンシャル情報であり、前記第二情報はトレーニングシーケンシャル情報である
 上記(11)に記載の受信装置。
(13)
 前記外部装置から送信されるデータ信号を前記制御信号が送信される所定配線を用いて受信する第一データ受信部を備える
 上記(10)から(12)までのいずれか一項に記載の受信装置。
(14)
 前記外部装置から出力されるデータ信号を前記制御信号が送信される所定配線とは異なる配線を用いて受信する第二データ受信部を備える
 上記(12)に記載の受信装置。
(15)
 前記外部装置との間で、SLVS-EC(Scalable Low Voltage Signaling with Embedded Clock)の規格で信号を双方向に通信する
 上記(10)から(14)までのいずれか一項に記載の受信装置。
(16)
 所定信号を送信する送信装置と、
 前記送信装置から送信される前記所定信号を受信する受信装置と
 を備え、
 前記送信装置は、
 前記受信装置から入力されて所定情報が含まれている制御信号を受信する制御信号受信部と、
 1フレーム期間のうちのブランキング期間でホスト通信を実行する第一通信と、1フレーム期間のうちのブランキング期間及びデータ出力期間でホスト通信を実行する第二通信との切り替え示す情報であって必要に応じて前記所定情報に含まれる切替情報に基づいて制御する制御部と
 を有し、
 前記受信装置は、
 前記切替情報が必要に応じて含まれている前記所定情報が含む制御信号を前記送信装置に送信する制御信号送信部と、
 前記制御信号送信部から該制御信号の送信を制御する制御部と
 を有する
 送受信システム。
(17)
 前記送信装置及び前記受信装置は、SLVS-EC(Scalable Low Voltage Signaling with Embedded Clock)の規格で信号を双方向に通信する
 上記(16)に記載の送受信システム。
1,2,3 送受信システム
10A,20A,30A 送信装置
10B,20B 受信装置
11,21,31 送信部
12 データソース
13,23 受信部
14 データ処理部
110,138 バッファ部
111,131 制御部
112 発振器
113 レジスタ
114 レジスタ信号受信部
115 データ送信部
115a,133c 分周器
115b 並列直列変換部
115c,133a ドライバ
115M 第一データ送信部
115N,315 第二データ送信部
116 クロック信号送信部
117 リンク部
118,119,133b,136,137 再生部
133,233 データ受信部
133d 直列並列変換部
133M 第一データ受信部
133N 第二データ受信部
134,234 信号生成部
135 レジスタ信号送信部
312 スイッチ
315c ドライバ

Claims (17)

  1.  外部装置から入力されて所定情報が含まれている制御信号を受信する制御信号受信部と、
     1フレーム期間のうちのブランキング期間でホスト通信を実行する第一通信と、1フレーム期間のうちのブランキング期間及びデータ出力期間でホスト通信を実行する第二通信との切り替えを示す切替情報が必要に応じて前記所定情報に含まれ、前記切替情報に基づいて前記第一通信と前記第二通信との切り替えを制御する制御部と
     を備える送信装置。
  2.  前記制御部は、前記1フレーム期間が所定期間の通常フレームレートよりもフレームレートが高い高フレームレートの場合に前記第一通信から前記第二通信に切り替える
     請求項1に記載の送信装置。
  3.  前記制御部は、複数のフレームにおいて前記高フレームレートでデータを出力した後に前記通常フレームレートに切り替える
     請求項2に記載の送信装置。
  4.  前記制御部は、
     前記第一通信から前記第二通信に切り替える際に前記外部装置への第一情報の送信を制御し、
     前記第二通信から前記第一通信に切り替える際に前記外部装置への第二情報の送信を制御する
     請求項1に記載の送信装置。
  5.  前記第一情報はスタンバイシーケンシャル情報であり、前記第二情報はトレーニングシーケンシャル情報である
     請求項4に記載の送信装置。
  6.  データ生成部から入力されるデータ信号を前記制御信号が送信される所定配線を用いて前記外部装置に送信する第一データ送信部を備える
     請求項1に記載の送信装置。
  7.  前記データ生成部から入力されるデータ信号を前記制御信号が送信される所定配線とは異なる配線を用いて前記外部装置に送信する第二データ送信部を備える
     請求項6に記載の送信装置。
  8.  前記制御部は、前記1フレーム期間が所定期間の通常フレームレートの場合に前記第二データ送信部から前記データ信号の出力を停止し、前記通常フレームレートよりもフレームレートが高い高フレームレートの場合に前記第二データ送信部から前記データ信号を出力する
     請求項7に記載の送信装置。
  9.  前記外部装置との間で、SLVS-EC(Scalable Low Voltage Signaling with Embedded Clock)の規格で信号を双方向に通信する
     請求項1に記載の送信装置。
  10.  1フレーム期間のうちのブランキング期間でホスト通信を実行する第一通信と、1フレーム期間のうちのブランキング期間及びデータ出力期間でホスト通信を実行する第二通信との切り替えを示す切替情報が必要に応じて含まれている所定情報を含む制御信号を外部装置に送信する制御信号送信部と、
     前記制御信号送信部に対し前記制御信号の送信を制御する制御部と
     を備える受信装置。
  11.  前記外部装置から第一情報が送信されたと判定された場合には、前記制御信号送信部は、必要に応じて前記制御信号を前記外部装置に送信し、
     前記外部装置から第二情報が送信されたと判定された場合には、前記制御信号送信部は、前記外部装置への前記制御信号の送信を終了する
     請求項10に記載の受信装置。
  12.  前記第一情報はスタンバイシーケンシャル情報であり、前記第二情報はトレーニングシーケンシャル情報である
     請求項11に記載の受信装置。
  13.  前記外部装置から送信されるデータ信号を前記制御信号が送信される所定配線を用いて受信する第一データ受信部を備える
     請求項11に記載の受信装置。
  14.  前記外部装置から出力されるデータ信号を前記制御信号が送信される所定配線とは異なる配線を用いて受信する第二データ受信部を備える
     請求項13に記載の受信装置。
  15.  前記外部装置との間で、SLVS-EC(Scalable Low Voltage Signaling with Embedded Clock)の規格で信号を双方向に通信する
     請求項10に記載の受信装置。
  16.  所定信号を送信する送信装置と、
     前記送信装置から送信される前記所定信号を受信する受信装置と
     を備え、
     前記送信装置は、
     前記受信装置から入力されて所定情報が含まれている制御信号を受信する制御信号受信部と、
     1フレーム期間のうちのブランキング期間でホスト通信を実行する第一通信と、1フレーム期間のうちのブランキング期間及びデータ出力期間でホスト通信を実行する第二通信との切り替え示す切替情報が必要に応じて前記所定情報に含まれ、前記切替情報に基づいて前記第一通信と前記第二通信との切り替えを制御する制御部と
     を有し、
     前記受信装置は、
     前記切替情報が必要に応じて含まれている前記所定情報が含む制御信号を前記送信装置に送信する制御信号送信部と、
     前記制御信号送信部に対し該制御信号の送信を制御する制御部と
     を有する
     送受信システム。
  17.  前記送信装置及び前記受信装置は、SLVS-EC(Scalable Low Voltage Signaling with Embedded Clock)の規格で信号を双方向に通信する
     請求項16に記載の送受信システム。
PCT/JP2021/016501 2020-06-10 2021-04-23 送信装置、受信装置及び送受信システム WO2021251013A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/999,563 US20230217102A1 (en) 2020-06-10 2021-04-23 Transmission device, reception device, and transmission-reception system
JP2022530050A JPWO2021251013A1 (ja) 2020-06-10 2021-04-23

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-100788 2020-06-10
JP2020100788 2020-06-10

Publications (1)

Publication Number Publication Date
WO2021251013A1 true WO2021251013A1 (ja) 2021-12-16

Family

ID=78845549

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/016501 WO2021251013A1 (ja) 2020-06-10 2021-04-23 送信装置、受信装置及び送受信システム

Country Status (3)

Country Link
US (1) US20230217102A1 (ja)
JP (1) JPWO2021251013A1 (ja)
WO (1) WO2021251013A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08102923A (ja) * 1994-10-03 1996-04-16 Sony Corp データ処理装置
WO2019031003A1 (ja) * 2017-08-08 2019-02-14 ソニーセミコンダクタソリューションズ株式会社 送信装置、および通信システム
WO2020070974A1 (ja) * 2018-10-02 2020-04-09 ソニーセミコンダクタソリューションズ株式会社 送信装置、受信装置及び送受信システム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9525852B2 (en) * 2013-08-02 2016-12-20 General Electric Company Systems and methods for embedded imaging clocking
JP5805725B2 (ja) * 2013-10-04 2015-11-04 ザインエレクトロニクス株式会社 送信装置、受信装置、送受信システムおよび画像表示システム
JP7050059B2 (ja) * 2017-06-09 2022-04-07 ソニーセミコンダクタソリューションズ株式会社 送信装置、受信装置、制御方法、プログラム、および送受信システム
WO2020170729A1 (ja) * 2019-02-20 2020-08-27 富士フイルム株式会社 撮像素子、撮像装置、撮像素子の作動方法、及びプログラム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08102923A (ja) * 1994-10-03 1996-04-16 Sony Corp データ処理装置
WO2019031003A1 (ja) * 2017-08-08 2019-02-14 ソニーセミコンダクタソリューションズ株式会社 送信装置、および通信システム
WO2020070974A1 (ja) * 2018-10-02 2020-04-09 ソニーセミコンダクタソリューションズ株式会社 送信装置、受信装置及び送受信システム

Also Published As

Publication number Publication date
JPWO2021251013A1 (ja) 2021-12-16
US20230217102A1 (en) 2023-07-06

Similar Documents

Publication Publication Date Title
US11323679B2 (en) Multi-camera system, camera, processing method of camera, confirmation apparatus, and processing method of confirmation apparatus
EP3534620B1 (en) Signal processing device and method, and program
JP7363767B2 (ja) 画像処理装置と画像処理方法およびプログラム
JP7050059B2 (ja) 送信装置、受信装置、制御方法、プログラム、および送受信システム
WO2018221041A1 (ja) 医療用観察システム及び医療用観察装置
JP2015509745A (ja) 内視鏡装置
US11394866B2 (en) Signal processing device, imaging device, signal processing meihod and program
JPWO2013121616A1 (ja) 内視鏡装置
US11022859B2 (en) Light emission control apparatus, light emission control method, light emission apparatus, and imaging apparatus
US11729519B2 (en) Video signal processing apparatus, video signal processing method, and image-capturing apparatus
WO2021251013A1 (ja) 送信装置、受信装置及び送受信システム
US20210258456A1 (en) Interchangeable lens, imaging apparatus, and rotation detection apparatus
JP7136093B2 (ja) 情報処理装置、情報処理方法および情報処理プログラム
US9232196B2 (en) Image capturing apparatus and endoscope system
US11910105B2 (en) Video processing using a blended tone curve characteristic
US11399699B2 (en) Endoscope including green light sensor with larger pixel number than pixel number of red and blue light sensors
US12126899B2 (en) Imaging device, imaging control device, and imaging method
US10917555B2 (en) Imaging apparatus, focus control method, and focus determination method
US11388387B2 (en) Imaging system and synchronization control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21822689

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022530050

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21822689

Country of ref document: EP

Kind code of ref document: A1