WO2021249425A1 - 一种通信方法及相关装置 - Google Patents
一种通信方法及相关装置 Download PDFInfo
- Publication number
- WO2021249425A1 WO2021249425A1 PCT/CN2021/099106 CN2021099106W WO2021249425A1 WO 2021249425 A1 WO2021249425 A1 WO 2021249425A1 CN 2021099106 W CN2021099106 W CN 2021099106W WO 2021249425 A1 WO2021249425 A1 WO 2021249425A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- link
- relay
- terminal
- terminal device
- access network
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 162
- 238000004891 communication Methods 0.000 title claims abstract description 94
- 230000005540 biological transmission Effects 0.000 claims abstract description 327
- 230000011664 signaling Effects 0.000 claims description 40
- 230000015654 memory Effects 0.000 claims description 38
- 238000012545 processing Methods 0.000 claims description 31
- 238000004590 computer program Methods 0.000 claims description 10
- 230000002776 aggregation Effects 0.000 claims description 8
- 238000004220 aggregation Methods 0.000 claims description 8
- 230000008569 process Effects 0.000 description 45
- 238000010586 diagram Methods 0.000 description 14
- 230000006870 function Effects 0.000 description 14
- 238000005516 engineering process Methods 0.000 description 11
- 239000000969 carrier Substances 0.000 description 9
- 238000012546 transfer Methods 0.000 description 7
- 230000006978 adaptation Effects 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000013461 design Methods 0.000 description 3
- 238000013507 mapping Methods 0.000 description 3
- 230000003213 activating effect Effects 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 230000003252 repetitive effect Effects 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 230000005641 tunneling Effects 0.000 description 2
- 241000156302 Porcine hemagglutinating encephalomyelitis virus Species 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000012958 reprocessing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W40/00—Communication routing or communication path finding
- H04W40/02—Communication route or path selection, e.g. power-based or shortest path routing
- H04W40/22—Communication route or path selection, e.g. power-based or shortest path routing using selective relaying for reaching a BTS [Base Transceiver Station] or an access point
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
- H04W28/0231—Traffic management, e.g. flow control or congestion control based on communication conditions
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
- H04W28/0205—Traffic management, e.g. flow control or congestion control at the air interface
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W36/00—Hand-off or reselection arrangements
- H04W36/0005—Control or signalling for completing the hand-off
- H04W36/0055—Transmission or use of information for re-establishing the radio link
- H04W36/0069—Transmission or use of information for re-establishing the radio link in case of dual connectivity, e.g. decoupled uplink/downlink
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W76/00—Connection management
- H04W76/10—Connection setup
- H04W76/15—Setup of multiple wireless link connections
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W88/00—Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
- H04W88/02—Terminal devices
- H04W88/04—Terminal devices adapted for relaying to or from another terminal or user
Definitions
- This application relates to the field of communication technology, and in particular to a communication method and related devices.
- CA carrier aggregation
- DC dual connectivity
- the CA repeated transmission technology cannot meet the reliability requirements of service transmission. Specifically, when there is an obstruction between the base station and the user equipment, even if there are multiple carriers between the base station and the user equipment, there is a high probability that all the carriers will not work, so the reliability of communication cannot be guaranteed.
- the DC repeated transmission technology can solve the problem of occlusion due to the different locations of the two base stations communicating with the user equipment. However, in many scenarios, it is difficult to deploy DC due to deployment costs or environmental constraints. Therefore, the DC repeated transmission technology is used to solve the problem.
- the occlusion problem also has certain limitations. Therefore, the problem of how to improve the reliability of data transmission in the presence of obstructions needs to be solved urgently.
- This application provides a communication method and related devices, and implementing the embodiments of the present application reduces the problem of unreliable data transmission caused by obstructions.
- this application provides a communication method applied to terminal equipment, including:
- the sending the M data packets to the access network device through repeated transmission includes:
- N is an integer greater than 0 and less than M
- the first relay link includes a first link and a second link
- the first relay link A link is a link between the terminal device and a first relay terminal
- the second link is a link between the first relay terminal and the access network device
- the link quality of the first link is less than or equal to the first preset threshold, sending request information to the access network device, where the request information is used to request that the first relay link be updated to A second relay link, the second relay link includes a third link and a fourth link, the third link is the link between the terminal device and the second relay terminal, so The fourth link is a link between the second relay terminal and the access network device.
- the data packet is copied, at least one data packet obtained by the copy is transmitted through the air interface, and at least one data packet obtained by the copy is transmitted through the first relay link, so that the same data is transmitted. Packets are copied and transmitted through different paths, reducing the problem of unreliable data transmission caused by obstructions.
- the dynamic update of the relay link avoids the problem that the repeated transmission of the relay link cannot be carried out due to the poor link quality in the presence of obstructions. , It also avoids the problem of unreliable data transmission caused by repeated transmission on the relay link.
- the first data packet belongs to a first service, and the method further includes:
- the first indication information includes at least one of the following: the type identifier of the first service, the quality of service QoS requirement of the first service, the type of the terminal device, the location information of the terminal device, and the location information of the terminal device. State the link quality of the first link.
- the terminal device sends instruction information to the access network device, so that the access network device can determine according to the instruction information that it needs to use the corresponding transmission method to transmit the service data corresponding to the service, such as air interface and relay
- the link performs data transmission in a transmission mode of repeated transmission.
- this application provides a communication method applied to terminal equipment, including:
- the receiving J data packets sent by the access network device through repeated transmission includes:
- JK data packets of the J data packets are received through a first relay link, the first relay link includes a first link and a second link, and the first link is the terminal A link between a device and a first relay terminal, where the second link is a link between the first relay terminal and the access network device;
- the link quality of the first link is less than or equal to the first preset threshold, sending request information to the access network device, where the request information is used to request that the first relay link be updated to A second relay link, the second relay link includes a third link and a fourth link, the third link is the link between the terminal device and the second relay terminal, so The fourth link is a link between the second relay terminal and the access network device.
- At least one data packet is transmitted through the air interface, and at least one data packet is transmitted through the first relay link, so that the same data packet can be copied and transmitted through different paths, which reduces The problem of unreliable data transmission caused by objects.
- the dynamic update of the relay link avoids the problem that the repeated transmission of the relay link cannot be carried out due to the poor link quality in the presence of obstructions. , It also avoids the problem of unreliable data transmission caused by repeated transmission on the relay link.
- the request information includes at least one of the following: an identifier of the second relay terminal, the terminal device and the second relay terminal The identifier of the PC5 interface, the link identifier of the third link, and the link quality of the third link.
- the relay link with poor link quality can be dynamically updated to avoid the failure of repeated transmission of the relay link due to poor link quality in the presence of obstructions.
- the problem also avoids the problem of unreliable data transmission caused when repeated transmission on the relay link fails.
- the method further includes:
- the terminal device supports communication with the access network device through a relay link
- the terminal device supports first repeated transmission, and at least one link of the first repeated transmission is a relay link;
- the terminal device supports a second repeated transmission, and the second repeated transmission includes at least two links for carrier aggregation repeated transmission and at least one relay link;
- the maximum number of relay links for repeated transmission supported by the terminal device is the maximum number of relay links for repeated transmission supported by the terminal device
- the maximum number of relay terminals for repeated transmission supported by the terminal device is the maximum number of relay terminals for repeated transmission supported by the terminal device.
- the reporting of terminal device capability information is implemented, so that the access network device can determine which transmission mode the terminal device supports according to the terminal device’s capabilities, and then decide which transmission mode to use to communicate with the terminal device. Communication.
- the method further includes:
- the second indication information is used to indicate at least one of the following: the identification of at least one relay terminal capable of establishing a relay link with the terminal device,
- the terminal device establishes the PC5 interface identifier of the at least one relay terminal of the relay link, the relay link identifier of the at least one relay terminal that can establish the relay link with the terminal device, and can establish the relay link with the terminal device
- the link quality of at least one relay link is used to indicate at least one of the following: the identification of at least one relay terminal capable of establishing a relay link with the terminal device,
- the terminal device establishes the PC5 interface identifier of the at least one relay terminal of the relay link, the relay link identifier of the at least one relay terminal that can establish the relay link with the terminal device, and can establish the relay link with the terminal device
- the link quality of at least one relay link is used to indicate at least one of the following: the identification of at least one relay terminal capable of establishing a relay link with the terminal device,
- the terminal device establishes the PC
- the terminal device reports the candidate relay terminal that meets the conditions to the access network device, so that the access network device can select a suitable relay terminal for the terminal device based on the indication information reported by the terminal device. Repeat transmission.
- the method further includes:
- the access network device sends the selected relay terminal or relay link related information to the terminal device, and the terminal device can know which relay terminal or relay link is used for repeated transmission. .
- the method further includes:
- the relay terminal by sending instruction information to the relay terminal, the relay terminal can establish a second link with the access network device according to the instruction information.
- the method further includes:
- the terminal device can learn the correspondence between the links according to the configuration information, so as to complete the repeated transmission of the relay link in the subsequent process.
- the method further includes:
- control signaling sent by the access network device, where the control signaling is used to activate or deactivate at least one link for repeated transmission;
- the access network device can send signaling to control whether the status of each link for repeated transmission is activated or deactivated, including relay links and non-relay links.
- the method further includes:
- the first preset condition includes at least one of the following:
- the link quality of the first link is less than or equal to the first preset quality threshold; or,
- the link quality of the second link is less than or equal to a second preset quality threshold; or,
- the bit error rate of the first data packet transmission is greater than or equal to a preset bit error rate threshold; or,
- the number of retransmissions of the first data packet is greater than or equal to the preset number of retransmissions.
- the terminal device can decide by itself whether to activate at least one link for repeated transmission according to preset conditions.
- a communication method is provided, which is applied to an access network device, including:
- the receiving of the M data packets sent by the terminal device through repeated transmission includes:
- the M data packets are sent by repeated transmission, and the N is an integer greater than 0 and less than the M;
- the request information being used to request to update the first relay link to a second relay link, the second relay link including a third link and a fourth link, the The third link is a link between the terminal device and a second relay terminal, and the fourth link is a link between the second relay terminal and the access network device.
- At least one data packet is transmitted through the air interface, and at least one data packet is transmitted through the first relay link, so that the same data packet can be copied and transmitted through different paths, which reduces Obstructions cause unreliable data transmission problems.
- the dynamic update of the relay link avoids the problem that the repeated transmission of the relay link cannot be carried out due to the poor link quality in the presence of obstructions.
- the M data packets belong to the first service, and the method further includes:
- the first indication information includes at least one of the following: the type identifier of the first service, the quality of service QoS requirement of the first service, the type of the terminal device, the location information of the terminal device, and the location information of the terminal device. State the link quality of the first link.
- the terminal device sends instruction information to the access network device, so that the access network device can determine according to the instruction information that it needs to use the corresponding transmission method to transmit the service data corresponding to the service, such as air interface and relay
- the link performs data transmission in a transmission mode of repeated transmission.
- this application provides a communication method applied to access network equipment, including:
- the sending of J data packets includes:
- the JK data packets among the J data packets are sent to the terminal device through a first relay link.
- the first relay link includes a first link and a second link.
- a link is a link between the terminal device and a first relay terminal, and the second link is a link between the first relay terminal and the access network device;
- the request information being used to request to update the first relay link to a second relay link, the second relay link including a third link and a fourth link, the The third link is a link between the terminal device and a second relay terminal, and the fourth link is a link between the second relay terminal and the access network device.
- At least one data packet is transmitted through the air interface, and at least one data packet is transmitted through the first relay link, so that the same data packet can be copied and transmitted through different paths, which reduces The problem of unreliable data transmission caused by objects.
- the dynamic update of the relay link avoids the problem that the repeated transmission of the relay link cannot be carried out due to the poor link quality in the presence of obstructions. , It also avoids the problem of unreliable data transmission caused by repeated transmission on the relay link.
- the request information includes at least one of the following: an identifier of the second relay terminal, the terminal device and the second relay terminal The identifier of the PC5 interface, the link identifier of the third link, and the link quality of the third link.
- the relay link with poor link quality can be dynamically updated to avoid the failure of repeated transmission of the relay link due to poor link quality in the presence of obstructions.
- the problem also avoids the problem of unreliable data transmission caused when repeated transmission on the relay link fails.
- the J data packets belong to the second service, and the method further includes:
- the sixth indication information includes at least one of the following: a type identifier of the second service and a quality of service QoS requirement of the second service.
- the access network device can determine that the corresponding transmission mode needs to be used to transmit the service data corresponding to the service, for example, the air interface and the relay link are used for repeated transmission for data transmission.
- the method further includes:
- the terminal device supports communication with the access network device through a relay link
- the terminal device supports first repeated transmission, and at least one link of the first repeated transmission is a relay link;
- the terminal device supports a second repeated transmission, and the second repeated transmission includes at least two links for carrier aggregation repeated transmission and at least one relay link;
- the maximum number of relay links for repeated transmission supported by the terminal device is the maximum number of relay links for repeated transmission supported by the terminal device
- the maximum number of relay terminals for repeated transmission supported by the terminal device is the maximum number of relay terminals for repeated transmission supported by the terminal device.
- the reporting of terminal device capability information is realized, so that the access network device can determine which transmission mode the terminal device supports according to the terminal device’s capabilities, and then decide which transmission mode to use to communicate with the terminal device. Communication.
- the method further includes:
- Receive second indication information sent by the terminal device where the second indication information is used to indicate at least one of the following: the identity of at least one relay terminal that can establish a relay link with the terminal device, and the The PC5 interface identifier of at least one relay terminal that the terminal device establishes a relay link, the relay link identifier of at least one relay terminal that can establish a relay link with the terminal device, and the terminal device can establish at least The link quality of a relay link.
- the terminal device reports the candidate relay terminal that meets the conditions to the access network device, so that the access network device can select a suitable relay terminal for the terminal device based on the indication information reported by the terminal device. Repeat transmission.
- the method further includes:
- Send third instruction information to the terminal device where the third instruction information is used to indicate the PC5 interface identifier of the first relay terminal or the first relay terminal that establishes the first relay link with the terminal device A link identifier.
- the access network device sends the selected relay terminal or relay link related information to the terminal device, and the terminal device can know which relay terminal or relay link is used for repeated transmission. .
- the method further includes:
- the relay terminal by sending instruction information to the relay terminal, the relay terminal can establish a second link with the access network device according to the instruction information.
- the method further includes:
- the terminal device can learn the correspondence between the links according to the configuration information, so as to complete the repeated transmission of the relay link in the subsequent process.
- the method further includes:
- control signaling Sending control signaling to the terminal device, where the control signaling is used to activate or deactivate at least one link for repeated transmission; or,
- the access network device can send signaling to control whether the status of each link for repeated transmission is activated or deactivated, including relay links and non-relay links.
- a terminal device is provided, the terminal device processing module and the transceiver module,
- the processing module is configured to determine a first data packet, and copy the first data packet to obtain M data packets, where M is an integer greater than 1;
- the transceiver module is configured to send the M data packets to the access network device in a repeated transmission manner
- the transceiver module when the M data packets are sent to the access network device through repeated transmission, the transceiver module is configured to
- N is an integer greater than 0 and less than M
- the first relay link includes a first link and a second link
- the first relay link A link is a link between the terminal device and a first relay terminal
- the second link is a link between the first relay terminal and the access network device
- the transceiver module is configured to send request information to the access network device, and the request information is used to request that the second A relay link is updated to a second relay link, the second relay link includes a third link and a fourth link, and the third link is the terminal device and the second relay terminal The fourth link is a link between the second relay terminal and the access network device.
- the first data packet belongs to a first service, and the transceiver module is further configured to send first indication information to the access network device;
- the first indication information includes at least one of the following: the type identifier of the first service, the quality of service QoS requirement of the first service, the type of the terminal device, the location information of the terminal device, and the location information of the terminal device. State the link quality of the first link.
- the present application provides a terminal device, the terminal device includes a transceiver module,
- the transceiver module is configured to receive J data packets sent by an access network device through repeated transmission, where J is an integer greater than 1;
- the transceiver module when receiving J data packets sent by the access network device through repeated transmission, the transceiver module is used for
- JK data packets of the J data packets are received through a first relay link, the first relay link includes a first link and a second link, and the first link is the terminal A link between a device and a first relay terminal, where the second link is a link between the first relay terminal and the access network device;
- the transceiver module is configured to send request information to the access network device, and the request information is used to request that the second A relay link is updated to a second relay link, the second relay link includes a third link and a fourth link, and the third link is the terminal device and the second relay terminal The fourth link is a link between the second relay terminal and the access network device.
- the request information includes at least one of the following: the identifier of the second relay terminal, the terminal device and the second relay terminal The identifier of the PC5 interface, the link identifier of the third link, and the link quality of the third link.
- the transceiver module is further configured to send capability information to the access network device, where the capability information is used to indicate at least one of the following ability:
- the terminal device supports communication with the access network device through a relay link
- the terminal device supports first repeated transmission, and at least one link of the first repeated transmission is a relay link;
- the terminal device supports a second repeated transmission, and the second repeated transmission includes at least two links for carrier aggregation repeated transmission and at least one relay link;
- the maximum number of relay links for repeated transmission supported by the terminal device is the maximum number of relay links for repeated transmission supported by the terminal device
- the maximum number of relay terminals for repeated transmission supported by the terminal device is the maximum number of relay terminals for repeated transmission supported by the terminal device.
- the transceiver module is further configured to send second indication information to the access network device, where the second indication information is used to indicate at least the following One: the identification of at least one relay terminal that can establish a relay link with the terminal device, the identification of the PC5 interface of at least one relay terminal that can establish a relay link with the terminal device, and the identification of the PC5 interface of at least one relay terminal that can establish a relay link with the terminal device.
- the transceiver module is further configured to receive third indication information sent by the access network device, where the third indication information is used to indicate The identification of the first relay terminal or the PC5 interface identification or the first link identification of the first relay link established by the terminal device.
- the transceiver module is further configured to send fourth indication information to the first relay terminal, and the fourth indication information is used to indicate The first relay terminal establishes the second link with the access network device.
- the transceiver module is further configured to receive configuration information, where the configuration information is used to configure the first link and the second link Correspondence between.
- the transceiver module is further used for
- control signaling sent by the access network device, where the control signaling is used to activate or deactivate at least one link for repeated transmission;
- the terminal device further includes a processing module, and the processing module is configured to
- the first preset condition includes at least one of the following:
- the link quality of the first link is less than or equal to the first preset quality threshold; or,
- the link quality of the second link is less than or equal to a second preset quality threshold; or,
- the bit error rate of the first data packet transmission is greater than or equal to a preset bit error rate threshold; or,
- the number of retransmissions of the first data packet is greater than or equal to the preset number of retransmissions.
- an access network device in a seventh aspect, includes a transceiver module, and the transceiver module is configured to receive M data packets sent by a terminal device through repeated transmission, where M is greater than 1. Integer
- the transceiver module when receiving M data packets sent by the terminal device in a repeated transmission manner, the transceiver module is used for
- the M data packets are sent by repeated transmission, and the N is an integer greater than 0 and less than the M;
- the transceiver module is configured to receive request information, where the request information is used to request that the first relay link be updated to a second relay link, and the second relay link includes a third link and The fourth link, the third link is the link between the terminal device and the second relay terminal, and the fourth link is the link between the second relay terminal and the access network device The link between.
- the M data packets belong to the first service, and the transceiver module is further configured to receive first indication information sent by the terminal device;
- the first indication information includes at least one of the following: the type identifier of the first service, the quality of service QoS requirement of the first service, the type of the terminal device, the location information of the terminal device, and the location information of the terminal device. State the link quality of the first link.
- the present application provides an access network device.
- the access network device includes a transceiving module, and the transceiving module is configured to send J data packets to a terminal device by repeated transmission, where J is greater than An integer of 1;
- the transceiver module when J data packets are sent to the terminal device by means of repeated transmission, the transceiver module is used for
- the JK data packets among the J data packets are sent to the terminal device through a first relay link.
- the first relay link includes a first link and a second link.
- a link is a link between the terminal device and a first relay terminal, and the second link is a link between the first relay terminal and the access network device;
- the transceiver module is configured to receive request information, where the request information is used to request that the first relay link be updated to a second relay link, and the second relay link includes a third link and The fourth link, the third link is the link between the terminal device and the second relay terminal, and the fourth link is the link between the second relay terminal and the access network device The link between.
- the request information includes at least one of the following: an identifier of the second relay terminal, the terminal device and the second relay terminal The identifier of the PC5 interface, the link identifier of the third link, and the link quality of the third link.
- the access network device further includes a processing module
- the transceiver module is further configured to receive the sixth indication information sent by the core network device;
- the processing module is configured to determine, according to the protocol data unit session established by the terminal device and the core network device, to send the service data of the second service by means of repeated transmission;
- the sixth indication information includes at least one of the following: a type identifier of the second service and a quality of service QoS requirement of the second service.
- the transceiver module is further configured to receive capability information sent by the terminal device, where the capability information is used to indicate at least one of the following:
- the terminal device supports communication with the access network device through a relay link
- the terminal device supports first repeated transmission, and at least one link of the first repeated transmission is a relay link;
- the terminal device supports a second repeated transmission, and the second repeated transmission includes at least two links for carrier aggregation repeated transmission and at least one relay link;
- the maximum number of relay links for repeated transmission supported by the terminal device is the maximum number of relay links for repeated transmission supported by the terminal device
- the maximum number of relay terminals for repeated transmission supported by the terminal device is the maximum number of relay terminals for repeated transmission supported by the terminal device.
- the transceiver module is further configured to receive second indication information sent by the terminal device, where the second indication information is used to indicate at least one of the following Types: the identification of at least one relay terminal capable of establishing a relay link with the terminal device, the identification of the PC5 interface of at least one relay terminal capable of establishing a relay link with the terminal device, and the identification of the PC5 interface of the at least one relay terminal capable of establishing a relay link with the terminal device.
- the transceiver module is further configured to send third instruction information to the terminal device, and the third instruction information is used to indicate communication with the terminal device.
- the transceiver module is further configured to send fourth instruction information to the first relay terminal through the terminal device, and the fourth instruction The information is used to instruct the first relay terminal to establish the second link with the access network device.
- the transceiver module is further configured to send configuration information, and the configuration information is used to configure the first link and the second link Correspondence between.
- the transceiver module is further used for
- control signaling Sending control signaling to the terminal device, where the control signaling is used to activate or deactivate at least one link for repeated transmission; or,
- a terminal device including a processor, a memory, an input interface, and an output interface.
- the input interface is used to receive information from other communication devices other than the terminal device, and the output interface is used to The communication device other than the terminal device outputs information, and the processor invokes the computer program stored in the memory to implement the method in any possible implementation manner of the first aspect or the second aspect.
- the terminal device may be a chip that implements the method in the first aspect or the second aspect or a user equipment that includes devices such as a chip and an antenna.
- an access network device including a processor, a memory, an input interface, and an output interface.
- the input interface is used to receive information from communication devices other than the access network device.
- the output is used to output information to other communication devices other than the access network equipment, and the processor invokes the computer program stored in the memory to implement any one of the possible implementation manners of the third aspect or the fourth aspect method.
- the access network device may be a chip that implements the method in the third aspect or the fourth aspect or a device that includes devices such as a chip and an antenna.
- a computer-readable storage medium is provided, and a computer program is stored in the computer-readable storage medium.
- the computer program When executed, it can achieve any possible The method in the implementation manner, or the method in any possible implementation manner such as the third aspect or the fourth aspect.
- FIG. 1 is an architecture for improving the reliability of data transmission provided by an embodiment of the present application
- Figure 2 is a basic architecture of a communication system provided by an embodiment of the present application.
- FIG. 3 is a schematic diagram of a communication method provided by an embodiment of the present application.
- FIG. 4 is a schematic diagram of a data packet transmission provided by an embodiment of the present application.
- FIG. 5 is a schematic diagram of activating or deactivating at least one link for repeated transmission according to an embodiment of the present application
- FIG. 6 is a schematic diagram of another communication method provided by an embodiment of the present application.
- Fig. 7 The embodiment of the present application provides yet another communication architecture
- FIG. 8 is a schematic diagram of the structure of the terminal device 70, the first relay terminal 71, and the access network device 72 in FIG. 7;
- FIG. 9 is a schematic structural diagram of a simplified terminal device provided by an embodiment of the present application.
- FIG. 10 is a schematic structural diagram of a simplified access network device provided by an embodiment of the present application.
- LTE long term evolution
- 5G fifth generation mobile networks
- WLAN wireless local area networks
- D2D device-to-device
- V2X vehicle to everything
- ADS autonomous driving Automated driving
- ADAS driver assistance
- intelligent driving intelligent network driving
- car sharing etc.
- V2V vehicle-to-vehicle
- V2I vehicle-to-infrastructure
- V2P vehicle-to-pedestrian communication
- V2P vehicle-to-vehicle
- V2N network
- V2X vehicle-to-vehicle
- a typical application scenario of side link communication is V2X.
- each vehicle is a terminal device or relay terminal.
- the terminal device or the relay terminal may also be other devices, which is not limited in this application.
- the communication types include broadcast communication, multicast communication and unicast communication.
- broadcast communication is supported on the sidelink.
- NR system broadcast communication, multicast communication and unicast communication are supported on the sidelink.
- Broadcast communication is similar to the access network equipment broadcasting system information, that is, the terminal device does not encrypt the broadcast service data, and any other terminal device within the effective receiving range can receive the broadcast service data if it is interested in the broadcast service. .
- Multicast communication refers to communication between all terminals in a communication group, and any terminal device in the group can send and receive data of the multicast service.
- Unicast communication is similar to data communication after a radio resource control (RRC) connection is established between a terminal device and an access network device, and a unicast connection is required between the terminal device and the relay terminal.
- RRC radio resource control
- the terminal device and the relay terminal can perform data communication based on the negotiated identifier, and the data can be encrypted or unencrypted.
- the unicast communication can only be carried out between a terminal device that has established a unicast connection and a relay terminal.
- the method provided in the embodiment of the present application can be used in a unicast communication scenario on a side link.
- L3 relay L3 relay
- L2 relay L3relay
- the relay terminal performs relay based on the Internet Protocol (IP) layer.
- IP Internet Protocol
- the access network equipment cannot see the terminal equipment, but can only see the relay terminal, that is, the terminal equipment
- the access network device does not parse it and directly forwards it to the core network device.
- the terminal device communicates with the core network device through a relay terminal. Therefore, in the following description of this application, if it is described that "the terminal device communicates with the core network device through the relay terminal", it means that the UE-to-Network relay system is an L3 relay system.
- the relay terminal can be based on the packet data convergence protocol (PDCP) layer or the protocol layer below the PDCP layer (for example, the backhaul adaptation protocol (BAP) layer (also It can be called adaptation layer), radio link control (RLC) layer) for relaying.
- PDCP packet data convergence protocol
- BAP backhaul adaptation protocol
- RLC radio link control
- the access network device and the terminal device may have an equivalent PDCP layer, a service data adaptation protocol (service data adaptation protocol, SDAP) layer, etc.
- service data adaptation protocol service data adaptation protocol, SDAP
- the terminal device communicates with the access network device through the relay terminal. Therefore, in the following description of this application, if it is described that "the terminal device communicates with the access network device through the relay terminal", it means that the UE-to-Network relay system is an L2 relay system.
- CA repeated transmission involves an access network device 10A and a terminal device 11 using different carriers as different paths to transmit the same data packet.
- DC repeated transmission involves two access network equipment and terminal equipment 11 using different connections as different paths to transmit the same data packet.
- the access network device 10B can transmit data packets with the terminal device 11
- the access network device 10C can transmit data packets with the terminal device 11
- the access network device 10B and the terminal device 11 The transmitted data packet and the data packet transmitted by the access network device 10C and the terminal device 11 are all the same data packet. It is understandable that in this solution, CA repeated transmissions are for a single access network device and terminal equipment using different carriers as different paths to transmit the same data packet, and DC repeated transmissions are for two access network equipment and terminal equipment. Different connections are used as different paths to transmit the same data packet.
- repeated transmission refers to high-level repeated transmission, which can be repeated transmission at the PDCP layer or repeated transmission at the MAC layer.
- Different paths are used for transmission to obtain diversity transmission gain and improve transmission reliability.
- the transmission time of multiple data packets on different paths may be simultaneous transmission or sequential transmission according to time, which is not limited.
- the repeated transmission in the embodiment of the present application mainly refers to the repeated transmission of the relay link, that is, among the multiple links in the repeated transmission, at least one of the links is implemented through the relay link.
- the CA repeated transmission technology cannot meet the reliability requirements of service transmission. Specifically, when there is an obstruction between the base station and the user equipment, even if there are multiple carriers between the base station and the user equipment, there is a high probability that all the carriers will not work, so the reliability of communication cannot be guaranteed.
- the DC repeated transmission technology can solve the problem of occlusion due to the different locations of the two base stations communicating with the user equipment. However, in many scenarios, it is difficult to deploy DC due to deployment costs or environmental constraints. Therefore, the DC repeated transmission technology is used to solve the problem.
- the occlusion problem also has certain limitations. Therefore, the problem of how to improve the reliability of data transmission in the presence of obstructions needs to be solved urgently.
- an embodiment of the present application proposes a communication method to solve the above-mentioned problem.
- the following describes the embodiment of the present application in detail.
- the communication system may include a terminal device 20, an access network device 21, at least one relay terminal 22, and a core network device 23.
- the terminal device 20 can communicate with the relay terminal 22, and the access network device 21 can communicate with the terminal device 20, the relay terminal 22, and the core network device 23, respectively.
- the at least one relay terminal 22 may include a relay terminal 1 to a relay terminal n, and the n may be an integer greater than zero.
- the relay terminal 22 and the terminal device 20 are two independent devices in the service area covered by the access network device 21 or the antenna of the access network device 21, or the relay terminal 22 and the terminal device 20 are access network devices. Two independent devices in the cell or beam coverage of the device 21.
- the terminal device 20 or the relay terminal 22 may be a chip, or a user equipment including a chip.
- the terminal device 20 or the relay terminal 22 is an entity on the user side for receiving signals, or sending signals, or receiving signals and sending signals.
- the terminal device 20 or the relay terminal 22 is used to provide users with one or more of voice services and data connectivity services. It can be understood that when the terminal device 20 or the relay terminal 22 is a chip, the chip may include a processor and an interface.
- the terminal device 20 or the relay terminal 22 may be a device that includes a wireless transceiver function and can cooperate with an access network device to provide communication services for users.
- the terminal device 20 or the relay terminal 22 may refer to user equipment (UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile equipment, terminal, wireless Communication equipment, user agent or user device.
- the terminal device 20 or the relay terminal 22 can also be a vehicle to everything (V2X) device, for example, a smart car (smart car or intelligent car), a digital car (digital car), an unmanned car (unmanned car or driverless car).
- V2X vehicle to everything
- the terminal device 20 or the relay terminal 22 may also be a device-to-device (D2D) device, such as an electric meter, a water meter, and so on.
- D2D device-to-device
- the terminal device 20 or the relay terminal 22 may also be a drone, an Internet of Things (IoT) device, a station (ST) in a WLAN, a cellular phone (cellular phone), a smart phone (smart phone), Cordless phones, wireless data cards, tablet computers, session initiation protocol (SIP) phones, wireless local loop (WLL) stations, personal digital assistant (PDA) equipment, laptops Laptop computers, machine type communication (MTC) terminals, handheld devices with wireless communication functions, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices (also called Wearable smart devices).
- the terminal device 20 or the relay terminal 22 may also be a terminal in a 5G system, or a terminal in a next-generation communication system, which is not limited in the embodiment of the present application.
- the access network device 21 may be a chip used to communicate with the terminal device 20, the relay terminal 22, and the core network device 23, or it may be used to communicate with the terminal device 20, the relay terminal 22, and the core network device 23.
- the access network device 21 is an entity on the network side that is used to send signals, or receive signals, or send signals and receive signals. It can be understood that when the access network device 21 is a chip, the chip may include a processor and an interface.
- the access network device 21 may be a device that is deployed in a radio access network (RAN) to provide wireless communication functions for the terminal device 20 and the relay terminal 22
- RAN radio access network
- the access network equipment may be various forms of macro base stations, micro base stations (also referred to as small stations), relay stations, access points (access points, AP), etc., and may also be antenna panels of base stations.
- the control node can connect to multiple base stations and configure resources for multiple terminals under the coverage of multiple base stations.
- the names of devices with base station functions may be different.
- it can be an evolved base station (evolutional node B, eNB or eNodeB) in an LTE system, a radio controller in a cloud radio access network (cloud radio access network, CRAN) scenario, or a radio controller in 5G (new radio nodeB, gNB), or the access network device 21 can be a relay station, an access point, an in-vehicle device, a wearable device, a network side device in a network after 5G, or a network device in a future evolved PLMN network, etc.
- This application does not limit the specific name of the base station.
- the core network equipment 23 corresponds to different equipment in different communication systems, for example, in a 3G system, it corresponds to a serving GPRS support node (serving GPRS support node, SGSN) and/or a gateway GPRS support node (gateway GPRS Support Node, GGSN), Corresponding to MME or S-GW in 4G system, corresponding to access and mobility management function (AMF), session management function (SMF) or mobile management entity (user plane function) in 5G system , UPF) and so on.
- serving GPRS support node serving GPRS support node
- gateway GPRS support node gateway GPRS support node
- MME access and mobility management function
- SMF session management function
- UPF mobile management entity
- the access network device 21 and the terminal device 20 can be regarded as a communication system.
- the access network device 21 can send downlink data to the terminal device 20.
- the terminal device 20 is also Uplink data can be sent to the access network device 21.
- the access network device 21, the terminal device 20, and the relay terminal 1 can also be regarded as a communication system.
- the access network device 21 can also send downlink data to the relay terminal 1, and the relay terminal 1 Then the downlink data is sent to the terminal device 20.
- the terminal device 20 can also send uplink data to the relay terminal 1, and the relay terminal 1 sends the uplink data to the access network device 21.
- FIG. 3 is a schematic diagram of a communication method provided by an embodiment of the present application.
- the terminal device in FIG. 3 is the terminal device 20 in FIG. 2
- the access network device in FIG. 3 is the access network device 21 in FIG. 2
- the relay terminal 22 in FIG. 2 the second relay terminal in FIG. 3 may be the relay terminal 22 in FIG. 2
- the core network device in FIG. 3 may be the core network device 23 in FIG.
- the method includes but is not limited to the following steps:
- the terminal device determines a first data packet, copies the first data packet to obtain M data packets, and sends the M data packets to an access network device in a repeated transmission manner.
- M is an integer greater than 1.
- the first data packet can be a packet data convergence protocol (packet data convergence protocol, PDCP) layer data packet, it can also be a radio link control (radio link control, RLC) layer data packet, it can also be media access
- the data packet of the control (media access control, MAC) layer can also be a transmission control protocol/internet protocol (TCP/IP) data packet.
- the terminal device can copy the first data packet on the PDCP layer of the terminal device; when the first data packet is an RLC layer data packet, the terminal device can Copy the first data packet on the RLC layer of the terminal device; when the first data packet is a MAC layer data packet, the terminal device can copy the first data packet on the MAC layer of the terminal device; the first data packet is In the case of TCP/IP data packets, the terminal device can copy the first data packet at the transmission layer of the terminal device.
- the terminal device sends M data packets to the access network device through repeated transmission, including: the terminal device sends N data packets out of the M data packets to the access network device through the air interface, where N is greater than 0 and An integer less than M; the terminal device sends MN data packets among the M data packets to the access network device through the first relay link.
- the first relay link includes the first link and the second link. The link is the link between the terminal device and the first relay terminal, and the second link is the link between the first relay terminal and the access network device.
- the air interface is a name, and the air interface may be a communication interface between the access network device and the terminal device.
- the air interface is called a new radio (NR).
- the terminal device sending N data packets of the M data packets to the access network device through the air interface includes: the terminal device sends N data packets to the access network device through the P links on the air interface.
- P links correspond to P carriers, that is, the terminal device sends N data packets to the access network device through the P carriers.
- the P can be the N, or it can be an integer greater than the N, which is not limited here.
- the link between the terminal device and the first relay terminal may be connected through a PC5 interface, and may also be referred to as a side link (sidelink, SL).
- the interface between the first relay terminal and the access network device may be referred to as an air interface.
- the air interface, PC5 interface, and sidelink are all names or codes, which may change in different communication systems, but their roles and functions are similar. Therefore, the present invention uses these names as description examples instead of the names. Make a limit.
- the terminal device may establish links other than the first link with the first relay terminal.
- the first relay terminal may be at least one first relay terminal, and the first relay link may be at least one first relay link. That is, the terminal device can establish multiple first links with the same relay terminal for repeated transmission, and can also establish multiple first links with different relay terminals for repeated transmission, which is not limited here.
- the terminal device may communicate with the access network device through multiple links, and the multiple links may include at least one relay link.
- the M data packets are M PDCP layer data packets.
- the terminal device may send M data packets of the PDCP layer to the access network device through repeated transmission.
- FIG. 4 is a schematic diagram of a data packet transmission provided by an embodiment of the present application.
- the protocol stack involved includes a PDCP layer, a radio link control protocol (radio link control, RLC) layer, a MAC layer, and a physical (physical, PHY) layer.
- the protocol stack corresponding to the terminal device may also include other layers above the PDCP layer, which is not limited here.
- the protocol stack corresponding to the terminal device may also include the transmission layer and the application layer; in 5G, the protocol stack corresponding to the terminal device may also include the service data adaptation protocol (SDAP) layer, transmission Layer and application layer.
- SDAP service data adaptation protocol
- the protocol stack involved may include the RLC layer, the MAC layer, and the PHY layer.
- the protocol stack involved includes the PDCP layer, the RLC layer, the MAC layer, and the PHY layer.
- the protocol stack corresponding to the access network device may also include other layers located above the PDCP layer, which is not limited here.
- the protocol stack corresponding to the access network device can also include the transport layer and the application layer; in 5G, the protocol stack corresponding to the access network device can also include the service data adaptation protocol (SDAP). ) Layer, transport layer and application layer.
- SDAP service data adaptation protocol
- the terminal device can process the N PDCP layer data packets of the M PDCP layer data packets through the RLC layer, MAC layer, and PHY layer of the terminal device, respectively, to obtain N PHY layer data packets, and pass the air interface Send the N PHY layer data packets to the access network device.
- the terminal device may also forward the M-N PDCP layer data packets among the M PDCP layer data packets to the access network device through the first relay terminal. Specifically, the terminal device may send M-N PDCP layer data packets to the first relay terminal through the first link.
- the protocol stack corresponding to the first link may include an RLC layer, a MAC layer, and a PHY layer, and the protocol stack corresponding to the first link may also be a transport layer protocol stack.
- the transport layer protocol stack may include a general packet radio service (GPRS) tunneling protocol (GPRS tunneling protocol) layer, a TCP/IP layer, a user datagram protocol (user datagram protocol, UDP) layer, and so on.
- GPRS general packet radio service
- UDP user datagram protocol
- the protocol stack corresponding to the first link includes an RLC layer, a MAC layer, and a PHY layer.
- the terminal device may process the M-N PDCP layer data packets through the protocol stack corresponding to the first link to obtain M-N PHY layer data packets corresponding to the first link.
- the MN PHY layer data packets corresponding to the first link can be processed through the protocol stack corresponding to the first link to obtain MN RLC layer data Bag.
- the first relay terminal may process the M-N RLC layer data packets through the MAC layer and the PHY layer of the first relay terminal to obtain M-N PHY layer data packets corresponding to the first relay terminal. Then, the first relay terminal sends the M-N PHY layer data packets corresponding to the first relay terminal to the access network device through the second link.
- the access network device may receive N PHY layer data packets and M-N PHY layer data packets corresponding to the first relay terminal.
- the access network device can process the data packets of the N PHY layers through the PHY layer, the MAC layer, and the RLC layer of the access network device to obtain the data packets of the N RLC layers corresponding to the access network device.
- the access network device can also process the data packets of the MN PHY layers corresponding to the first relay terminal through the PHY layer, MAC layer, and RLC layer of the access network device to obtain the MN RLC layer data packets corresponding to the access network device. data pack.
- the access network device can sort and/or remove the N RLC layer data packets corresponding to the access network device and the MN RLC layer data packets corresponding to the access network device at the PDCP layer of the access network device. After reprocessing, it is further submitted to the upper layer of the PDCP layer of the access network device.
- the access network device receives the request information sent by the terminal device.
- the request information is used to request to update the first relay link to the second relay link
- the second relay link includes the third link and the fourth link
- the third link is the terminal device and the second relay link.
- the link between the relay terminals, and the fourth link is the link between the second relay terminal and the access network device.
- the terminal device may send the request information to the access network device.
- the first preset quality threshold may be predetermined in the protocol, or may be carried in configuration information sent by the access network device to the terminal device.
- the link quality may be reference signal received power (RSRP) or reference signal received quality (RSRQ), etc.
- the request information may also be used to request to update the first relay terminal to the second relay terminal.
- the link between the terminal device and the second relay terminal may be connected through a PC5 interface, which may also be called a sidelink.
- the interface between the second relay terminal and the access network device may be an air interface interface.
- the terminal device may establish links other than the third link with the second relay terminal.
- the second relay terminal may be at least one relay terminal, and the second relay link may be at least one relay link.
- the second relay terminal is a device different from the first relay terminal, and the second relay terminal, the first relay terminal, and the terminal device are all covered by the access network device or the access network device antenna In the service area, or, the second relay terminal, the first relay terminal, and the terminal device are all in the cell of the access network device or within the beam coverage.
- the request information includes at least one of the following: the identification of the second relay terminal, the identification of the PC5 interface between the terminal device and the second relay terminal, the link identification of the third link, and the link of the third link quality.
- the access network device can measure the link quality between the terminal device and the access network device.
- the access network The device may update the first relay link to the second relay link, and may also update the first relay terminal to the second relay terminal.
- the access network device can also measure the link quality of the second link.
- the access network device can update the first relay link to The second relay link may also update the first relay terminal to the second relay terminal.
- the first relay terminal can also measure the link quality of the first link.
- the first relay terminal can report to the access network device Send the request information. It is understandable that the first relay terminal can also measure the link quality of the second link. When the link quality of the second link is greater than or less than the second preset quality threshold, the first relay terminal can access The network device sends the request information. Further, the access network device may send a release message to the first relay terminal, and send a message for establishing the fourth link to the second relay terminal.
- the third preset quality threshold may be predetermined in the protocol, or may be carried in the configuration information sent by the access network device to the terminal device. The second preset quality threshold and the third preset quality threshold may be predetermined in the agreement, or may be determined by the access network device.
- the second preset quality threshold may also be carried in the configuration information sent by the access network device to the terminal device.
- the data packet is copied, at least one data packet obtained by the copy is transmitted through the air interface, and at least one data packet obtained by the copy is transmitted through the first relay link, so that the same data is transmitted. Packets are copied and transmitted through different paths, reducing the problem of unreliable data transmission caused by obstructions.
- the dynamic update of the relay link avoids the problem that the repeated transmission of the relay link cannot be carried out due to the poor link quality in the presence of obstructions. , It also avoids the problem of unreliable data transmission caused by repeated transmission on the relay link.
- the first data packet belongs to the first service, and the method further includes: the terminal device sends the first indication information to the access network device.
- the first indication information includes at least one of the following: the type identifier of the first service, the quality of service (QoS) requirements of the first service, the type of the terminal device, the location information of the terminal device, the information of the first link Link quality.
- QoS quality of service
- the access network device can receive the first indication information. Further, the access network device may determine, based on the first indication information, that the transmission of the first service needs to be performed in a manner of repeated transmission through the relay link. It is understandable that when the location of the terminal device is in a vulnerable area, the access network device may determine, based on the location information of the terminal device, that the transmission of the first service needs to be performed through repeated transmission through the relay link. In addition, the access network device may also determine, based on the preset content and the first indication information, that the transmission of the first service needs to be performed in a manner of repeated transmission through the relay link.
- the preset content may specify at least one of the following: a preset device type, a type identifier of a preset service, a QoS requirement of a preset service, and a preset link quality between the terminal device and the relay terminal.
- the access network device may determine that it needs to perform the transmission of the first service through repeated transmission through the relay link.
- the preset device type is a type of a device that requires high data transmission reliability.
- the device belonging to the preset device type may be, for example, a device in an industrial park, or a device that performs high-frequency transmission.
- the type identification of the preset service is a type identification of a service that requires high data transmission reliability.
- the preset service may be, for example, a service that needs to be transmitted in a scene vulnerable to obstruction.
- the terminal device sends instruction information to the access network device, so that the access network device can determine according to the instruction information that it needs to use the corresponding transmission method to transmit the service data corresponding to the service, such as air interface and relay
- the link performs data transmission in a transmission mode of repeated transmission.
- the method further includes:
- the terminal device sends capability information to the access network device, where the capability information is used to indicate at least one of the following capabilities:
- the terminal equipment supports communication with the access network equipment through the relay link;
- the terminal device supports the first repeated transmission, and at least one link of the first repeated transmission is a relay link;
- the terminal device supports second repeated transmission, and the second repeated transmission includes at least two links and at least one relay link for performing carrier aggregation repeated transmission;
- the maximum number of relay terminals supported by the terminal device for repeated transmission is the maximum number of relay terminals supported by the terminal device for repeated transmission.
- the first repeated transmission refers to the repeated transmission including the repeated transmission mode of the relay link
- the second repeated transmission refers to the repeated transmission including the repeated transmission mode of the CA and the repeated transmission mode of the relay link
- the terminal device only reports the support The maximum number of relay links used for repeated transmission means that the terminal capacity does not limit the maximum number of relay terminals. For example, if the maximum number of relay links is 4, it means that it can be implemented by 1 to 4 relay terminals. ; If the terminal device only reports the maximum number of relay terminals supported for repeated transmission, it means that the terminal capability does not limit the maximum number of relay links.
- the maximum number of relay terminals is 4, it means that the maximum number of relay terminals can pass 4
- Each relay terminal transmits, but it does not limit the maximum number of relay links for each relay terminal; in addition, it is also possible to report both the maximum number of relay links and the maximum number of relay terminals, or report each The maximum number of relay links used for repeated transmission on a relay terminal, thus limiting the maximum number of relay terminals supported, and the maximum number of relay links.
- the terminal device may receive a message requesting capability information sent by the access network device.
- the relay link may be at least one relay link corresponding to one relay terminal, or at least two relay links corresponding to different relay terminals. Further, the relay link includes a link between the terminal device and the relay terminal, and a link between the relay terminal and the access network device.
- the access network device can receive the capability information, so as to determine the communication mode that the terminal device can support based on the capability information.
- the reporting of terminal device capability information is implemented, so that the access network device can determine which transmission mode the terminal device supports according to the terminal device’s capabilities, and then decide which transmission mode to use to communicate with the terminal device. Communication.
- the method further includes: the terminal device sends second indication information to the access network device, where the second indication information is used to indicate at least one of the following: at least one that can establish a relay link with the terminal device
- the at least one relay terminal may or may not include the first relay terminal.
- the terminal device can determine the identity of the first relay terminal, the PC5 interface identity of the first relay terminal, or the identity of the first relay terminal.
- the relay link identifier can also determine the link quality of the first relay link.
- the terminal device reports the candidate relay terminal that meets the conditions to the access network device, so that the access network device can select a suitable relay terminal for the terminal device based on the indication information reported by the terminal device. Repeat transmission.
- the method further includes:
- the terminal device receives the third indication information sent by the access network device, where the third indication information is used to indicate the identity of the first relay terminal or the PC5 interface identity or the first link identity that establishes the first relay link with the terminal device.
- the access network device selects the relay terminal, it may not be limited to the relay terminal in the second indication information, but in the service area or service area covered by the access network device or the antenna of the access network device. In the cell of the access network device or within the beam coverage of the access network device, at least one terminal device other than the terminal device is used as the first relay terminal.
- the access network device sends the selected relay terminal or relay link related information to the terminal device, and the terminal device can know which relay terminal or relay link is used for repeated transmission. .
- the method further includes: the terminal device sends fourth indication information to the first relay terminal, where the fourth indication information is used to instruct the first relay terminal to establish a second link with the access network device .
- the first relay terminal is in an idle state or an inactive state. That is, the terminal device sends the fourth indication information to the first relay terminal in the idle state or the inactive state.
- the second link is an RRC connection.
- the access network device may send fourth indication information to the terminal device, and then the terminal device sends the fourth indication information to the first relay terminal in an idle state or in an inactive state.
- the access network device may also send a paging message to the first relay terminal in an idle state or in an inactive state.
- the access network device may also send instruction information to the core network device, and the core network device sends a paging message to the first relay terminal in the idle state according to the instruction information.
- the relay terminal by sending instruction information to the relay terminal, the relay terminal can establish a second link with the access network device according to the instruction information.
- the method further includes: the terminal device and/or the first relay terminal receive configuration information, the configuration information is used to configure the correspondence between the first link and the second link, or For configuring the association relationship between the PDCP entity located on the terminal device and the RLC entity located on the first relay terminal.
- the terminal device can receive the configuration information sent by the access network device through the air interface, or it can receive the configuration information sent by the access network device through the first relay link, that is, the configuration information is first sent to the relay terminal, and then The relay terminal forwards to the terminal device, which is not limited here.
- the configuration information can be used to configure the first link, and the configuration information includes at least one of the following: the identifier of the second link, the RLC identifier at the first relay terminal, the logical channel identifier, the terminal device identifier, and the second link identifier.
- the identifier of the second link includes at least one of the following: the identifier of the second link, the RLC identifier at the first relay terminal, the logical channel identifier, the terminal device identifier, and the second link identifier.
- the configuration information can also be used to configure a mapping relationship, the mapping relationship includes the identifier of the first link and the second link identifier; or, the identifier of the first relay terminal and the second link identifier; or, the first link
- the PC5 interface identifier of the subsequent terminal and the second link identifier are used to characterize the mapping relationship between the identifiers of the two links.
- the configuration information may also include at least one of the following: configuration information of the first radio bearer, configuration information of the PDCP entity, configuration information of the RLC entity located on the terminal device, and information of the RLC entity located on the first relay terminal.
- Configuration information may include the configuration information of the PDCP entity, the configuration information of the RLC entity located on the terminal device, the radio bearer identifier corresponding to the second link, the radio bearer type corresponding to the second link, and so on.
- the configuration information of the PDCP entity may include the PDCP sequence number, encryption parameters, header compression parameters, and so on.
- the configuration information of the RLC entity located on the terminal device or the configuration information of the RLC entity located on the first relay terminal may include radio bearer identification, logical channel number, RLC sequence number, RLC mode, etc.
- the RLC mode may be an acknowledgement mode (acknowledge mode).
- the mode, AM) mode may also be an unacknowledged mode (UM) mode, or a transparent mode (TM) mode.
- the radio bearer type corresponding to the second link is the radio bearer type corresponding to the second link used for repeated transmission. Further, the radio bearer type corresponding to the second link is used to indicate that the PDCP entity corresponding to the radio bearer is located on the terminal device, and the RLC entity corresponding to the radio bearer is located on the first relay terminal.
- the configuration information may also be used to configure the second link, where the configuration information may be second radio bearer configuration information.
- the second radio bearer configuration information may include a radio bearer identifier corresponding to the second link or a radio bearer type corresponding to the second link.
- the second radio bearer configuration information may also include the PC5 interface identifier or the first link identifier.
- the PC5 interface identifier or the first link identifier can be used to indicate which first link the corresponding RLC entity corresponds to. Further, the corresponding relationship between the first link and the PDCP entity on the terminal device has been established through other configuration information, Therefore, the corresponding relationship between the PDCP entity and the RLC is established.
- the first relay terminal can receive the configuration information sent by the access network device through the air interface, and can also receive the configuration information sent by the access network device through the terminal device, that is, the configuration information is first sent to the terminal device, and then the terminal device forwards it to the relay
- the terminal is not limited here.
- the access network device may send the configuration information of the RLC entity located on the first relay terminal to the terminal device, and the terminal device sends the configuration information of the RLC entity located on the first relay terminal to the first relay terminal in the idle state or in the inactive state.
- the configuration information of the RLC entity on the The access network device may also send fourth indication information to the terminal device, and then the terminal device sends the fourth indication information to the first relay terminal in the idle state or in the inactive state. After the first relay terminal enters the connected state from the idle state or the inactive state, the access network device may also send the configuration information of the RLC entity located on the first relay terminal to the first relay terminal in the connected state.
- the idle state, the inactive state and the connected state are all used to describe the state of the first relay terminal.
- the first relay terminal in the idle state, the user plane bearer and control plane bearer of the air interface, and the user plane bearer between the RAN-CN have been released.
- the first relay terminal initiates a call or service request, it needs to first establish the control plane bearer of the air interface, and then establish the user plane bearer between RAN-CN, and configure it while establishing the user plane bearer between RAN-CN
- the user plane of the air interface bears.
- the user plane bearer of the air interface has been suspended, and the user plane bearer and the control plane bearer between the RAN-CN are still maintained.
- the first relay terminal When the first relay terminal initiates a call or service request, it needs to activate the user plane bearer of the air interface, and reuse the existing user plane bearer and control plane bearer between the RAN-CN.
- the control plane bearer of the air interface For the first relay terminal in the connected state, the control plane bearer of the air interface has been established, and the default user plane bearer (including the user plane bearer of the air interface and the user plane bearer between the RAN-CN) has been established. If the default user plane bearer cannot meet the QoS requirements of the service, a dedicated user plane bearer (including the user plane bearer of the air interface and the user plane bearer between the RAN-CN) is established.
- the terminal device can send M data packets to the access network device in a repeated transmission manner according to the configuration information.
- configuration information may further include seventh indication information, where the seventh indication information is used to indicate the initial state of the first relay link used for repeated transmission and other links.
- the seventh indication information can indicate that the initial state of some links is the active state, and the initial state of another part of the links is the inactive state, or that the initial state of all links is the active state, or that all links The initial state of is inactive.
- the terminal device can perform repeated transmission with the access network device on the link.
- the state of the first relay link is the active state, and the PDCP entity of the terminal device may send a data packet to the RLC entity of the first relay terminal.
- the state of the first relay link is an inactive state, and the PDCP entity of the terminal device does not send data packets to the RLC entity of the first relay terminal.
- the terminal device can be in the inactive state with the access network device. Communicate on the link of the air interface. If the state of the first relay link is in the active state, and the state of the link on the air interface between the access network device and the terminal device is in the inactive state, then the terminal device can communicate with the access via the first relay link. Network equipment to communicate.
- the terminal device can learn the correspondence between the links according to the configuration information, so as to complete the repeated transmission of the relay link in the subsequent process.
- the method further includes: the terminal device receives control signaling sent by the access network device, the control signaling is used to activate or deactivate at least one link for repeated transmission; or, the terminal device receives The fifth instruction information sent by the first relay terminal, where the fifth instruction information is used to activate or deactivate at least one link for repeated transmission.
- the control signaling or the fifth indication information may include PDCP control protocol data unit (protocol data unit, PDU), RLC control PDU, MAC control element (CE), RRC signaling, or downlink control information (downlink control information). , DCI).
- PDU protocol data unit
- RLC control PDU RLC control PDU
- CE MAC control element
- RRC signaling or downlink control information (downlink control information).
- DCI downlink control information
- the access network device may send control signaling to the terminal device through the air interface, or the access network device may send control signaling to the terminal device through the first relay link. For example, if the link quality between the terminal device and the access network device is greater than the fourth preset quality threshold, the access network device may send control signaling to the terminal device through the air interface. If the link quality between the terminal device and the access network device is less than the fourth preset quality threshold, the access network device may send control signaling to the terminal device through the first relay link. In addition, the access network device may also send control signaling to the first relay terminal, and the first relay terminal sends fifth indication information to the terminal device based on the control signaling. The fifth indication information may be the aforementioned control signaling or It may also be the interface signaling between the first relay terminal and the terminal device.
- the fourth preset quality threshold may be preset by the protocol, or determined by the access network device.
- the access network device decides to pass according to the comparison result of the downlink quality reported by the terminal and the fourth preset quality threshold.
- the air interface sends control signaling to the terminal device or sends control signaling to the terminal device through the first relay link.
- the terminal device may also implement switching between different transmission modes based on the control signaling or the fifth indication information.
- the transmission mode includes: CA repeated transmission, repeated transmission including one relay terminal, repeated transmission including multiple relay terminals, and repeated transmission including both relay terminal and CA repeated transmission.
- CA repeated transmission refers to repeated transmission of terminal equipment and access network equipment through at least two links of the air interface; repeated transmission including a relay terminal means that at least one link for repeated transmission is a relay link, And only one relay terminal is involved in repeated transmission; repeated transmission including multiple relay terminals means that at least one link for repeated transmission is a relay link, and multiple relay terminals are involved in repeated transmission, of which, at least A relay link can be distributed on multiple relay terminals; the repeated transmission that includes both the relay terminal and the CA repeated transmission means that at least two links for repeated transmission are transmitted through the air interface, and at least one of the links is in the middle. Following the link.
- control signaling or the fifth indication information can indicate that the status of part of the link for repeated transmission is the active state, and the status of the other part of the link is the inactive state, or it can indicate that the status of all the links for repeated transmission is
- the active state can also indicate that the state of all links performing repeated transmissions is the inactive state.
- FIG. 5 is a schematic diagram of activating or deactivating at least one link for repeated transmission according to an embodiment of the present application. Assuming that the three relay links on the relay terminal 1 are all in the active state, the relay link 4 on the relay terminal 2 is in the deactivated state, and the relay link 5 on the relay terminal 2 is in the active state. Among the links between the terminal equipment and the access network equipment, link 6 is in a deactivated state, and link 7 is in an activated state.
- control signaling or the fifth indication information is used to activate the relay link 4 and deactivate the three relay links on the relay terminal 1. Then, when the terminal device receives the control signaling or the fifth indication information, the terminal device can activate the relay link 4 and deactivate the three relay links on the relay terminal 1.
- the access network device can send signaling to control whether the status of each link for repeated transmission is activated or deactivated, including relay links and non-relay links.
- the method further includes: when the first preset condition is satisfied, the terminal device activates at least one link for repeated transmission;
- the first preset condition includes at least one of the following: the link quality of the first link is less than or equal to the first preset quality threshold; or, the link quality of the second link is less than or equal to the second preset quality threshold; or, The bit error rate of the first data packet transmission is greater than or equal to the preset bit error rate threshold; or, the number of repetitions of the first data packet is greater than or equal to the preset number of retransmissions.
- the second preset quality threshold may be preset in the protocol, or may be carried in the configuration information sent by the access network device to the terminal device.
- the terminal device may deactivate at least one link for repeated transmission;
- the second preset condition includes at least one of the following: the link quality of the first link is greater than or equal to the first preset Quality threshold; or, the link quality of the second link is greater than or equal to the second preset quality threshold; or, the bit error rate of the first data packet transmission is less than or equal to the preset bit error rate threshold; or, the first data packet
- the number of retransmissions is less than or equal to the preset number of retransmissions.
- the terminal device can decide by itself whether to activate or deactivate at least one link for repeated transmission according to preset conditions.
- FIG. 6 is a schematic diagram of another communication method provided by an embodiment of the present application.
- the terminal device in FIG. 6 is the terminal device 20 in FIG. 2
- the access network device in FIG. 6 is the access network device 21 in FIG. 2
- the relay terminal 22 in FIG. 2 the second relay terminal in FIG. 6 may be the relay terminal 22 in FIG. 2
- the core network device in FIG. 6 may be the core network device 23 in FIG.
- the method includes but is not limited to the following steps:
- the terminal device receives J data packets sent by the access network device in a repeated transmission manner.
- J is an integer greater than 1.
- the access network device may determine the second data packet, copy the second data packet to obtain J data packets, and send the J data packets to the terminal device through repeated transmission.
- the second data packet may be a PDCP layer data packet, a RLC layer data packet, or a MAC layer data packet. Further, the second data packet may be a TCP/IP data packet.
- the access network device can copy the second data packet at the PDCP layer of the access network device; when the second data packet is an RLC layer data packet , The access network device can copy the second data packet at the RLC layer of the access network device; when the second data packet is a MAC layer data packet, the access network device can copy the second data packet at the MAC layer of the access network device The second data packet is copied; when the second data packet is a TCP/IP data packet, the access network device may copy the second data packet at the transmission layer of the access network device.
- the terminal device receives J data packets sent by the access network device through repeated transmission, including:
- the terminal device receives K data packets among the J data packets sent by the access network device through the air interface, where K is an integer greater than 0 and less than J;
- the terminal device receives JK data packets among the J data packets through the first relay link.
- the first relay link includes a first link and a second link.
- the first link is the terminal device and the first relay.
- the second link is the link between the first relay terminal and the access network device.
- K can be 2, 3, 4, 5, 6, 13, 14 and other values, for example.
- the terminal device receives K data packets among the J data packets sent by the access network device through the air interface, including: the terminal device receives K data packets sent by the access network device through P links on the air interface. That is, the terminal device receives K data packets sent by the access network device through P carriers.
- the P can also be the K, or it can be an integer greater than the K, which is not limited here.
- the access network device can send J PDCP layer data packets through repeated transmission.
- the content of the protocol stack involved in the terminal device in step 301 in FIG. 3 may be omitted here.
- the content of the protocol stack involved in the first relay terminal may be omitted here.
- the content of the protocol stack involved in the access network device in step 301 in FIG. 3 may be omitted here.
- the access network device may process the K PDCP layer data packets of the J PDCP layer data packets through the RLC layer, MAC layer, and PHY layer of the access network device, respectively, to obtain K PHY layer data packets, And send K PHY layer data packets to the terminal device through the air interface.
- the terminal device receives K data packets of the PHY layer, the terminal device can obtain K data packets of the RLC layer through processing of the PHY layer, MAC layer, and RLC layer of the terminal device.
- the access network device may also send J-K PDCP layer data packets among the J PDCP layer data packets to the terminal device through the first relay terminal.
- the access network device can process JK PDCP layer data packets through the RLC layer, MAC layer, and PHY layer of the access network device to obtain JK PHY layer data packets, and combine the JK PHY layer data The packet is sent to the first relay terminal.
- the first relay terminal may process JK PHY layer data packets through the RLC layer, MAC layer, and PHY layer of the first relay terminal to obtain JK RLC layer data packets corresponding to the first relay terminal .
- the first relay terminal may process the J-K RLC layer data packets corresponding to the first relay terminal through the protocol stack corresponding to the first link to obtain J-K PHY layer data packets corresponding to the first link.
- the protocol stack corresponding to the first link the content of the protocol stack corresponding to the first link in step 301 in FIG. 3 may be described, which will not be repeated here. It is understandable that when the protocol stack corresponding to the first link includes the RLC layer, the MAC layer, and the PHY layer, at this time, the first relay terminal can communicate with the first relay terminal through the protocol stack corresponding to the first link. JK data packets of the RLC layer are processed to obtain JK data packets of the PHY layer corresponding to the first link.
- the first relay terminal may send J-K PHY layer data packets corresponding to the first link to the terminal device.
- the terminal device receives the JK PHY layer data packets corresponding to the first link, it can process the JK PHY layer data packets corresponding to the first link through the protocol stack corresponding to the first link to obtain JK RLCs Layer of data packets.
- the terminal device can sort and/or de-duplicate the K RLC layer data packets and the JK RLC layer data packets at the PDCP layer of the terminal device, and then submit them to the PDCP layer of the terminal device. upper layer.
- the access network device receives the request information sent by the terminal device.
- request information please refer to the content of the request information in step 301 in FIG. 3, which will not be repeated here.
- At least one data packet is transmitted through the air interface, and at least one data packet is transmitted through the first relay link, so that the same data packet can be copied and transmitted through different paths, which solves the problem of How to improve the reliability of data transmission in the case of obstructions.
- the dynamic update of the relay link avoids the problem that the repeated transmission of the relay link cannot be carried out due to the poor link quality in the presence of obstructions.
- the J data packets belong to the second service
- the method further includes: the access network device receives the sixth instruction information sent by the core network device; or, the access network device according to the protocol data established by the terminal device and the core network device Unit session, determining to send the service data of the second service by repeated transmission;
- the sixth indication information includes at least one of the following: the type identifier of the second service, the quality of service QoS parameter of the second service, the type of the QoS flow, and the session type of the protocol data unit.
- the quality of service QoS parameters of the second service include QOS classification identifier (QoS classification identifier, QCI), allocation and retention priority (ARP), etc.
- QOS classification identifier QoS classification identifier
- ARP allocation and retention priority
- the type of QoS flow is used to indicate that the QoS flow carries the second service, and the type of the QoS flow is used to instruct the base station to transmit the second service carried by the QoS flow by repeating the relay transmission
- the protocol data unit session type It is used to indicate that the protocol data unit session is used to carry the second service, and the protocol data unit session type is used to instruct the base station to transmit the second service carried by the protocol data unit session by means of relay repeated transmission.
- the access network device may determine to send the service data of the second service through repeated transmission based on the sixth indication information. Further, the access network device may determine to send the service data of the second service through repeated transmission based on the protocol preset rule and the sixth indication information.
- the access network device can determine that the corresponding transmission mode needs to be used to transmit the service data corresponding to the service, for example, the air interface and the relay link are used for repeated transmission for data transmission.
- the method further includes:
- the terminal device sends capability information to the access network device.
- the reporting of terminal device capability information is implemented, so that the access network device can determine which transmission mode the terminal device supports according to the terminal device’s capabilities, and then decide which transmission mode to use to communicate with the terminal device. Communication.
- the method further includes: the terminal device sends second indication information to the access network device.
- the terminal device reports the candidate relay terminal that meets the conditions to the access network device, so that the access network device can select a suitable relay terminal for the terminal device based on the indication information reported by the terminal device. Repeat transmission.
- the method further includes: the terminal device receives the third indication information sent by the access network device.
- the access network device sends the selected relay terminal or relay link related information to the terminal device, and the terminal device can know which relay terminal or relay link is used for repeated transmission. .
- the method further includes: the terminal device sends fourth indication information to the first relay terminal.
- the relay terminal by sending instruction information to the relay terminal, the relay terminal can establish a second link with the access network device according to the instruction information.
- the method further includes: the terminal device receives configuration information.
- the terminal device can learn the correspondence between the links according to the configuration information, so as to complete the repeated transmission of the relay link in the subsequent process.
- the method further includes: the terminal device receives the control signaling sent by the access network device; or, the terminal device receives the fifth indication information sent by the first relay terminal.
- control signaling please refer to step 302 in FIG. 3 for the content of the control signaling, which will not be repeated here.
- the fifth indication information reference may be made to the content of the fifth indication information in step 302 in FIG. 3, which will not be repeated here.
- the access network device can send signaling to control whether the status of each link for repeated transmission is activated or deactivated, including relay links and non-relay links.
- the method further includes: when the first preset condition is satisfied, the terminal device activates at least one link for repeated transmission.
- the terminal device may deactivate at least one link for repeated transmission.
- the terminal device can decide by itself whether to activate/deactivate at least one link for repeated transmission according to preset conditions.
- the communication architecture includes a terminal device 70, a first relay terminal 71, and an access network device 72.
- the terminal device 70 can be applied to the methods shown in Figs. 3 to 6
- the first relay terminal 71 can be applied to the methods shown in Figs. 3 to 6
- the access network device 72 can be applied to the methods shown in Figs. In the method shown in Figures 3 to 6.
- the terminal device includes a processing module 701 and a transceiver module 702; the first relay terminal 71 includes a transceiver module 711; and the access network device 72 includes a transceiver module 721.
- the processing module 701 is configured to determine the first data packet, copy the first data packet to obtain M data packets, where M is an integer greater than 1, and the transceiver module 702 sends the M data packets to Access network equipment;
- the transceiver module 702 when M data packets are sent to the access network device by repeated transmission, the transceiver module 702 is used to send N data packets out of the M data packets to the access network device through the air interface, where N is greater than 0 and an integer less than M; MN data packets out of M data packets are sent to the access network device through the first relay link.
- the first relay link includes the first link and the second link. The link is the link between the terminal device and the first relay terminal, and the second link is the link between the first relay terminal and the access network device;
- the transceiver module 702 is configured to send request information to the access network device, and the request information is used to request to update the first relay link to the second relay link.
- Relay link the second relay link includes a third link and a fourth link, the third link is the link between the terminal device and the second relay terminal, and the fourth link is the second relay The link between the terminal and the access network equipment.
- the first data packet reference may be made to the content of the first data packet in step 301 in FIG. 3, which will not be repeated here.
- the air interface you can refer to the content of the air interface in step 301 in FIG. 3, which will not be repeated here.
- the link between the terminal device and the first relay terminal reference may be made to step 301 in FIG. 3 for the content of the link between the terminal device and the first relay terminal, which will not be repeated here.
- the request information please refer to step 302 in FIG. 3 for the content of the request information, which is not repeated here.
- the first preset threshold reference may be made to the content of the first preset threshold in step 302 in FIG. 3, which will not be repeated here.
- the data packet is copied, at least one data packet obtained by the copy is transmitted through the air interface, and at least one data packet obtained by the copy is transmitted through the first relay link, so that the same data is transmitted. Packets are copied and transmitted through different paths, reducing the problem of unreliable data transmission caused by obstructions.
- the dynamic update of the relay link avoids the problem that the repeated transmission of the relay link cannot be carried out due to the poor link quality in the presence of obstructions. , It also avoids the problem of unreliable data transmission caused by repeated transmission on the relay link.
- the transceiver module 702 is configured to receive J data packets sent by the access network device through repeated transmission, where J is an integer greater than 1;
- the transceiver module 702 when receiving J data packets sent by the access network device through repeated transmission, is configured to receive K data packets out of the J data packets sent by the access network device through the air interface, and K is An integer greater than 0 and less than J; JK data packets out of J data packets are received through the first relay link, the first relay link includes the first link and the second link, and the first link is the terminal The link between the device and the first relay terminal, and the second link is the link between the first relay terminal and the access network device;
- the transceiver module 702 is configured to send request information to the access network device, and the request information is used to request to update the first relay link to the second relay link.
- Relay link the second relay link includes a third link and a fourth link, the third link is the link between the terminal device and the second relay terminal, and the fourth link is the second relay The link between the terminal and the access network equipment.
- the J data packets please refer to the content of the J data packets in step 601 in FIG. 6, which will not be repeated here.
- repeated transmission please refer to step 601 in FIG. 6 for the content of repeated transmission, which is not repeated here.
- the air interface reference may be made to the content of the air interface in step 601 in FIG. 6, which will not be repeated here.
- the link between the terminal device and the first relay terminal reference may be made to step 601 in FIG. 6 for the content of the link between the terminal device and the first relay terminal, which is not repeated here.
- the request information please refer to step 602 in FIG. 6 for the content of the request information, which will not be repeated here.
- the first preset threshold reference may be made to the content of the first preset threshold in step 302 in FIG. 3, which will not be repeated here.
- At least one data packet is transmitted through the air interface, and at least one data packet is transmitted through the first relay link, so that the same data packet can be copied and transmitted through different paths, which reduces The problem of unreliable data transmission caused by objects.
- the dynamic update of the relay link avoids the problem that the repeated transmission of the relay link cannot be carried out due to the poor link quality in the presence of obstructions. , It also avoids the problem of unreliable data transmission caused by repeated transmission on the relay link.
- transceiver module 701 and processing module 702 for a more detailed description of the foregoing transceiver module 701 and processing module 702, reference may be made to the relevant description in the foregoing method embodiment, which will not be described here.
- the transceiver module 721 is configured to receive M data packets sent by the terminal device through repeated transmission, where M is an integer greater than 1;
- the transceiver module 721 when receiving the M data packets sent by the terminal device through repeated transmission, is configured to receive N data packets out of the M data packets sent by the terminal device through the air interface, and the M data packets are repeated through the air interface.
- the transmission mode is sent, N is an integer greater than 0 and less than M;
- MN data packets out of M data packets are received through the first relay link, and the first relay link includes the first link and the second link ,
- the first link is a link between the terminal device and the first relay terminal, and the second link is a link between the first relay terminal and the access network device;
- the transceiver module 721 is configured to receive request information.
- the request information is used to request to update the first relay link to the second relay link.
- the second relay link includes the third link and the fourth link.
- the link is the link between the terminal device and the second relay terminal, and the fourth link is the link between the second relay terminal and the access network device.
- the first data packet reference may be made to the content of the first data packet in step 301 in FIG. 3, which will not be repeated here.
- the air interface you can refer to the content of the air interface in step 301 in FIG. 3, which will not be repeated here.
- the link between the terminal device and the first relay terminal reference may be made to step 301 in FIG. 3 for the content of the link between the terminal device and the first relay terminal, which will not be repeated here.
- the request information please refer to step 302 in FIG. 3 for the content of the request information, which is not repeated here.
- the first preset threshold reference may be made to the content of the first preset threshold in step 302 in FIG. 3, which will not be repeated here.
- At least one data packet is transmitted through the air interface, and at least one data packet is transmitted through the first relay link, so that the same data packet can be copied and transmitted through different paths, which reduces The problem of unreliable data transmission caused by objects.
- the dynamic update of the relay link avoids the problem that the repeated transmission of the relay link cannot be carried out due to the poor link quality in the presence of obstructions. , It also avoids the problem of unreliable data transmission caused by repeated transmission on the relay link.
- the transceiver module 721 is configured to send J data packets to the terminal device through repeated transmission, where J is an integer greater than 1;
- the transceiver module 721 is used to send K data packets out of the J data packets to the terminal device through the air interface, and the J data packets are transmitted through repeated transmission.
- J is an integer greater than 1
- K is an integer greater than 0 and less than J
- JK data packets out of J data packets are sent to the terminal device through the first relay link
- the first relay link includes The first link and the second link, the first link is the link between the terminal device and the first relay terminal, and the second link is the link between the first relay terminal and the access network device;
- the transceiver module 721 is configured to receive request information.
- the request information is used to request to update the first relay link to the second relay link.
- the second relay link includes the third link and the fourth link.
- the link is the link between the terminal device and the second relay terminal, and the fourth link is the link between the second relay terminal and the access network device.
- the J data packets please refer to the content of the J data packets in step 601 in FIG. 6, which will not be repeated here.
- the air interface reference may be made to the content of the air interface in step 601 in FIG. 6, which will not be repeated here.
- the link between the terminal device and the first relay terminal reference may be made to step 601 in FIG. 6 for the content of the link between the terminal device and the first relay terminal, which is not repeated here.
- the request information please refer to step 602 in FIG. 6 for the content of the request information, which will not be repeated here.
- the first preset threshold reference may be made to the content of the first preset threshold in step 302 in FIG. 3, which will not be repeated here.
- At least one data packet is transmitted through the air interface, and at least one data packet is transmitted through the first relay link, so that the same data packet can be copied and transmitted through different paths, which reduces The problem of unreliable data transmission caused by objects.
- the dynamic update of the relay link avoids the problem that the repeated transmission of the relay link cannot be carried out due to the poor link quality in the presence of obstructions. , It also avoids the problem of unreliable data transmission caused by repeated transmission on the relay link.
- transceiver module 721 For a more detailed description of the foregoing transceiver module 721, reference may be made to the relevant description in the foregoing method embodiment, which is not described herein again.
- FIG. 8 is a schematic structural diagram of the terminal device 70, the first relay terminal 71, and the access network device 72 in FIG. 7.
- the terminal device 70 may include a first PDCP entity 8011.
- the first PDCP entity 8011 is connected with the first RLC entity 8012
- the first RLC entity 8012 is connected with the first MAC entity 8014
- the first MAC entity 8014 is connected with the first PHY entity 8016.
- the second RLC entity 8013 is connected to the second MAC entity 8015, and the second MAC entity 8015 is connected to the second PHY entity 8017. It is understandable that the second RLC entity 8013 may include at least one second RLC entity, the second MAC entity 8015 may include at least one second MAC entity, and the second PHY entity 8017 may include at least one second PHY entity.
- the first relay terminal 71 may include a third RLC entity 8111, a fourth RLC entity 8112, a third MAC entity 8113, a fourth MAC entity 8114, a third PHY entity 8115, and a fourth PHY entity 8116.
- the third RLC entity 8111 is connected to the third MAC entity 8113, and the third MAC entity 8113 is connected to the third PHY entity 8115.
- the fourth RLC entity 8112 is connected to the fourth MAC entity 8114, and the fourth MAC entity 8114 is connected to the fourth PHY entity 8116.
- the third RLC entity 8111 may include at least one third RLC entity
- the third MAC entity 8113 may include at least one third MAC entity
- the third PHY entity 8115 may include at least one third PHY entity.
- the access network device 72 may include a second PDCP entity 8211, a fifth RLC entity 8212, a sixth RLC entity 8213, a fifth MAC entity 8214, a sixth MAC entity 8215, a fifth PHY entity 8216, and a sixth PHY entity 8217.
- the second PDCP entity 8211 is connected to the fifth RLC entity 8212
- the fifth RLC entity 8212 is connected to the fifth MAC entity 8214
- the fifth MAC entity 8214 is connected to the fifth PHY entity 8216.
- the sixth RLC entity 8213 is connected to the sixth MAC entity 8215, and the sixth MAC entity 8215 is connected to the sixth PHY entity 8217. It is understandable that the sixth RLC entity 8213 may include at least one sixth RLC entity, the sixth MAC entity 8215 may include at least one sixth MAC entity, and the sixth PHY entity 8217 may include at least one sixth PHY entity.
- the M data packets are M PDCP layer data packets.
- the first PDCP entity 8011 is used to deliver N PDCP layer data packets among the M PDCP layer data packets to the first RLC entity 8012, and deliver the MN PDCP layer data packets among the M PDCP layer data packets to the second RLC entity 8013.
- the first RLC entity 8012 is used to process N PDCP layer data packets to obtain N RLC layer data packets, and deliver the N RLC layer data packets to the first MAC entity 8014; the first MAC The entity 8014 is used to process the data packets of the N RLC layers to obtain the data packets of the N MAC layers, and submit the data packets of the N MAC layers to the first PHY entity 8016; the first PHY entity 8016 is used to The data packets of the MAC layer are processed, and N data packets of the PHY layer are obtained. Further, the transceiver module 702 is configured to send N PHY layer data packets to the access network device 72 through the air interface.
- the transceiver module 721 of the access network device 72 is configured to receive N PHY layer data packets. Further, the fifth PHY entity 8216 is used to deliver N PHY layer data packets to the fifth MAC entity 8214; the fifth MAC entity 8214 is used to process N PHY layer data packets to obtain N MAC layer data packets Data packets, and deliver N MAC-layer data packets to the fifth RLC entity 8212; the fifth RLC entity 8212 is used to process N MAC-layer data packets to obtain N RLC-layer data packets, and transfer N Data packets of the RLC layer are delivered to the second PDCP entity 8211.
- the second RLC entity 8013 is used to process MN PDCP layer data packets to obtain MN RLC layer data packets, and deliver the MN RLC layer data packets to the second MAC entity 8015; the second MAC The entity 8015 is used to process the data packets of the MN RLC layers to obtain the data packets of the MN MAC layers, and the second PHY entity 8017 of the data packets of the MN MAC layer; the second PHY entity 8017 is used for the MN MAC layer Layer data packets are processed to obtain MN PHY layer data packets. Further, the transceiver module 702 is configured to send M-N PHY layer data packets to the first relay terminal 71.
- the transceiver module 711 of the first relay terminal 71 is configured to receive M-N PHY layer data packets. Further, the third PHY entity 8115 is used to deliver MN PHY layer data packets to the third MAC entity 8113; the third MAC entity 8113 is used to process MN PHY layer data packets to obtain MN MAC layer data packets Data packets, and MN MAC layer data packets are delivered to the third RLC entity 8111; because there is an association relationship between the third RLC entity 8111 and the fourth RLC entity 8112, therefore, the third RLC entity will process the MN data packets The data packet is delivered to the fourth RLC entity 8112.
- the fourth RLC entity 8112 is used to process MN data packets to obtain MN RLC layer data packets, and deliver the MN RLC layer data packets to the fourth MAC entity 8114 ;
- the fourth MAC entity 8114 is used to process the data packets of the MN RLC layers to obtain the data packets of the MN MAC layers, and submit the data packets of the MN MAC layers to the fourth PHY entity 8116; the fourth PHY entity 8116 Used to process MN MAC layer data packets to obtain MN PHY layer data packets.
- the transceiver module 711 is configured to send M-N PHY layer data packets to the access network device 72.
- the transceiver module 721 of the access network device 72 is configured to receive M-N PHY layer data packets. Further, the sixth PHY entity 8217 is used to deliver MN PHY layer data packets to the sixth MAC entity 8215; the sixth MAC entity 8215 is used to process MN PHY layer data packets to obtain MN MAC layer data packets Data packets, and deliver MN MAC layer data packets to the sixth RLC entity 8213; the sixth RLC entity 8213 is used to process MN MAC layer data packets to obtain MN RLC layer data packets, and send MN Data packets of the RLC layer are delivered to the second PDCP entity 8211.
- the second PDCP entity 8211 may sort and/or de-duplicate the data packets of the N RLC layers and the data packets of the M-N RLC layers, and then submit them to the corresponding entity of the upper layer of the PDCP layer.
- the transceiver module 702 is configured to send J PDCP layer data packets through repeated transmission.
- the second PDCP entity 8211 of the access network device is used to deliver K PDCP layer data packets among J PDCP layer data packets to the fifth RLC entity 8212, and transfer J PDCP layer data packets JK PDCP layer data packets are delivered to the sixth RLC entity 8213.
- the fifth RLC entity 8212 is used to process K data packets of the PDCP layer to obtain K data packets of the RLC layer, and submit the K data packets of the RLC layer to the fifth MAC entity 8214; the fifth MAC The entity 8214 is used to process the data packets of the K RLC layers to obtain the data packets of the K MAC layers, and submit the data packets of the K MAC layers to the fifth PHY entity 8216; the fifth PHY entity 8216 is used for the K The data packets of the MAC layer are processed to obtain K data packets of the PHY layer. Further, the transceiver module 721 is configured to send to the terminal device 70 through an air interface.
- the transceiver module 702 of the terminal device 70 is used to receive K PHY layer data packets. Further, the first PHY entity 8016 is used to deliver K PHY layer data packets to the first MAC entity 8014; the first MAC entity 8014 is used to process K PHY layer data packets to obtain K MAC layer data packets Data packets, and deliver K MAC layer data packets to the first RLC entity 8012; the first RLC entity 8012 is used to process K MAC layer data packets to obtain K RLC layer data packets, and K Data packets of the RLC layer are delivered to the first PDCP entity 8011.
- the sixth RLC entity 8213 is used to process JK PDCP layer data packets to obtain JK RLC layer data packets, and deliver JK RLC layer data packets to the sixth MAC entity 8215; the sixth MAC The entity 8215 is used to process JK RLC layer data packets to obtain JK MAC layer data packets, and submit the JK MAC layer data packets to the sixth PHY entity 8217; the sixth PHY entity 8217 is used to The data packets of the MAC layer are processed, and JK data packets of the PHY layer are obtained. Further, the transceiver module 721 is configured to send J-K PHY layer data packets to the first relay terminal 71.
- the transceiver module 711 of the first relay terminal 71 is configured to receive J-K PHY layer data packets. Further, the fourth PHY entity 8116 is used to deliver JK PHY layer data packets to the fourth MAC entity 8114; the fourth MAC entity 8112 is used to process JK PHY layer data packets to obtain JK MAC layer data packets Data packets, and JK MAC layer data packets are delivered to the fourth RLC entity 8112; Because there is an association relationship between the third RLC entity 8111 and the fourth RLC entity 8112, the fourth RLC entity will process the JK data packets The data packet is delivered to the third RLC entity 8111.
- the third RLC entity 8111 is used to process JK data packets to obtain JK RLC layer data packets, and transfer JK RLC layer data packets to the third MAC entity 8113 ;
- the third MAC entity 8113 is used to process JK RLC layer data packets to obtain JK MAC layer data packets, and transfer the JK MAC layer data packets to the third PHY entity 8115;
- the third PHY entity 8115 It is used to process JK MAC layer data packets to obtain JK PHY layer data packets.
- the transceiver module 711 is configured to send J-K PHY layer data packets to the terminal device 70.
- the transceiver module 702 of the terminal device 70 is used to receive J-K PHY layer data packets.
- the second PHY entity 8017 is used to transfer JK PHY layer data packets to the second MAC entity 8015; the second MAC entity 8015 is used to process JK PHY layer data packets to obtain JK MAC layer data packets Data packets, and transfer JK MAC layer data packets to the second RLC entity 8013; the second RLC entity 8013 is used to process JK MAC layer data packets to obtain JK RLC layer data packets, and transfer JK The data packets of the RLC layer are delivered to the first PDCP entity 8011.
- the first PDCP entity 8011 is used to sort and/or de-duplicate the K data packets of the RLC layer and the J-K data packets of the RLC layer, and then submit them to the corresponding entity of the upper layer of the PDCP layer.
- the transceiver module 701 or the transceiver module 721 may be an interface, a pin, a circuit, or the like.
- the interface can be used to input the data to be processed to the processor, and can output the processing result of the processor.
- the interface can be a general purpose input output (GPIO) interface, which can be connected to multiple peripheral devices (such as a display (LCD), a camera (camara), a radio frequency (RF) module, an antenna, etc.) )connect.
- the interface is connected to the processor through the bus.
- the interface can be used to send M data packets to the access network device through repeated transmission.
- the processing module 702 may be a processor, and the processor may execute a computer-executable instruction stored in a storage module, so that the chip executes the methods involved in the embodiments in FIGS. 3 to 6.
- the processor may include a controller, an arithmetic unit, and a register.
- the controller is mainly responsible for instruction decoding, and sends control signals for operations corresponding to the instructions.
- the arithmetic unit is mainly responsible for performing fixed-point or floating-point arithmetic operations, shift operations and logic operations, etc., and can also perform address operations and conversions.
- the register is mainly responsible for storing the register operands and intermediate operation results temporarily stored during the execution of the instruction.
- the hardware architecture of the processor can be an application specific integrated circuit (ASIC) architecture, a microprocessor without interlocked pipeline stage architecture (microprocessor without interlocked piped stages architecture, MIPS) architecture, and advanced simplified instructions Set machine (advanced RISC machines, ARM) architecture or network processor (network processor, NP) architecture, etc.
- ASIC application specific integrated circuit
- MIPS microprocessor without interlocked piped stages architecture
- ARM advanced simplified instructions Set machine
- network processor network processor
- NP network processor
- the storage module may be a storage module in the chip, such as a register, a cache, and so on.
- the storage module can also be a storage module located outside the chip, such as Read Only Memory (ROM) or other types of static storage devices that can store static information and instructions, Random Access Memory (RAM), etc. .
- ROM Read Only Memory
- RAM Random Access Memory
- processors and the interface can be implemented either through hardware design, through software design, or through a combination of software and hardware, which is not limited here.
- FIG. 9 is a schematic structural diagram of a simplified terminal device provided by an embodiment of the present application. It is easy to understand and easy to illustrate.
- the terminal device uses a mobile phone as an example.
- the terminal device includes at least one processor, and may also include a radio frequency circuit, an antenna, and an input/output device.
- the processor can be used to process the communication protocol and communication data, and can also be used to control the terminal device, execute the software program, and process the data of the software program.
- the terminal device may also include a memory.
- the memory is mainly used to store software programs and data. These related programs can be loaded into the memory when the communication device leaves the factory, or can be loaded into the memory when needed later.
- the radio frequency circuit is mainly used for the conversion of baseband signal and radio frequency signal and the processing of radio frequency signal.
- the antenna is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
- Input and output devices such as touch screens, display screens, keyboards, etc., are mainly used to receive data input by users and output data to users. It should be noted that some types of terminal devices may not have input and output devices.
- the processor When data needs to be sent, the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
- the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal to the outside in the form of electromagnetic waves through the antenna.
- the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
- FIG. 9 only one memory and processor are shown in FIG. 9. In an actual terminal device product, there may be one or more processors and one or more memories.
- the memory may also be referred to as a storage medium or storage device.
- the memory may be set independently of the processor, or may be integrated with the processor, which is not limited in the embodiment of the present application.
- the antenna and radio frequency circuit with the transceiver function can be regarded as the receiving unit and the transmitting unit (also collectively referred to as the transceiver unit) of the terminal device, and the processor with the processing function can be regarded as the processing unit of the terminal device .
- the terminal device includes a receiving module 31, a processing module 32 and a sending module 33.
- the receiving module 31 may also be called a receiver, a receiver, a receiving circuit, etc.
- the sending module 33 may also be called a transmitter, a transmitter, a transmitting circuit, etc.
- the processing module 32 may also be referred to as a processor, a processing board, a processing device, and the like.
- the processing module 32 is configured to perform the function of the terminal device in step 301 in the embodiment shown in FIG. 3.
- FIG. 10 is a schematic structural diagram of a simplified access network device provided by an embodiment of the present application.
- the access network equipment includes a radio frequency signal transceiving and converting part and a 42 part.
- the radio frequency signal transceiving and converting part includes a receiving module 41 and a sending module 43 (also collectively referred to as a transceiver module).
- the radio frequency signal transceiver and conversion part is mainly used for the transceiver of radio frequency signals and the conversion of radio frequency signals and baseband signals; part 42 is mainly used for baseband processing and control of access network equipment.
- the receiving module 41 may also be called a receiver, a receiver, a receiving circuit, etc.
- the sending module 43 may also be called a transmitter, a transmitter, a transmitter, a transmitting circuit, etc.
- Part 42 is usually the control center of the access network equipment, and can usually be referred to as a processing module, which is used to control the access network equipment to execute the steps performed by the access network equipment in FIGS. 3 to 6 above. For details, please refer to the description of the relevant part above.
- the 42 part can include one or more single boards, and each single board can include one or more processors and one or more memories.
- the processor is used to read and execute programs in the memory to realize baseband processing functions and Control of network equipment. If there are multiple boards, each board can be interconnected to increase processing capacity. As an optional implementation, multiple single boards may share one or more processors, or multiple single boards may share one or more memories, or multiple single boards may share one or more processing at the same time. Device.
- the receiving module 41 is configured to perform the function of the access network device in step 302 in the embodiment shown in FIG. 3.
- the embodiment of the present application also provides a terminal device/access network device, and the terminal device/access network device is used to execute the above-mentioned communication method. Part or all of the above communication can be realized by hardware or software.
- the terminal device/access network device may be a chip or an integrated circuit in specific implementation.
- the terminal device/access network device when part or all of the communication method in the foregoing embodiment is implemented by software, includes: at least one processor for executing a program, and when the program is executed, the terminal device /Access network equipment can implement the communication method provided in the above embodiments.
- the terminal equipment/access network equipment may also include a memory for storing necessary programs. These related programs can be shipped from the terminal equipment/access network equipment. It can be loaded into the memory at any time, or it can be loaded into the memory when needed later.
- the foregoing memory may be a physically independent unit, or may be integrated with the processor.
- the terminal device/access network device may also only include at least one processor.
- the memory used to store the program is located outside the terminal device/access network device, and the processor is connected to the memory through a circuit/wire for reading and executing the program stored in the memory.
- Each processor can be a central processing unit (CPU), a network processor (NP), or a combination of a CPU and an NP.
- CPU central processing unit
- NP network processor
- each processor may include a hardware chip.
- the aforementioned hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD), or a combination thereof.
- ASIC application-specific integrated circuit
- PLD programmable logic device
- the above-mentioned PLD may be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a generic array logic (GAL), or any combination thereof.
- CPLD complex programmable logic device
- FPGA field-programmable gate array
- GAL generic array logic
- the memory may include a volatile memory (volatile memory), such as random-access memory (RAM); the memory may also include a non-volatile memory (non-volatile memory), such as flash memory (flash memory) , A hard disk drive (HDD) or a solid-state drive (solid-state drive, SSD); the memory may also include a combination of the foregoing types of memory.
- volatile memory such as random-access memory (RAM)
- non-volatile memory such as flash memory (flash memory)
- flash memory flash memory
- HDD hard disk drive
- solid-state drive solid-state drive
- the present application also provides a computer-readable storage medium in which a computer program is stored, and when the computer program is executed, the method in any one of the possible implementation manners shown in FIGS. 3 to 6 is implemented.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本申请提供一种通信方法及相关装置,该方法包括:通过空中接口向接入网设备发送M个数据包中的N个数据包;通过第一中继链路向接入网设备发送M个数据包中的M-N个数据包,第一中继链路包括第一链路和第二链路,第一链路为终端设备与第一中继终端之间的链路,第二链路为第一中继终端与接入网设备之间的链路;当第一链路的链路质量小于或等于第一预设门限时向接入网设备发送请求信息,请求信息用于请求将第一中继链路更新为第二中继链路,第二中继链路包括第三链路和第四链路,第三链路为终端设备与第二中继终端之间的链路,第四链路为第二中继终端与接入网设备之间的链路。实施本申请实施例,减少了由于遮挡物而造成数据传输不可靠问题的产生。
Description
本申请要求于2020年06月10日提交中国专利局、申请号为202010525277.1、申请名称为“一种通信方法及相关装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及通信技术领域,尤其涉及一种通信方法及相关装置。
目前,一般采用载波聚合(carrier aggregation,CA)重复传输技术或双连接(dual connectivity,DC)重复传输技术提高数据传输的可靠性。
然而,由于容易受遮挡影响,在某些复杂的环境中,CA重复传输技术无法满足业务传输的可靠性需求。具体来说,当基站和用户设备之间存在遮挡物的时候,即使基站和用户设备之间存在多个载波,也存在很大概率所有载波都无法工作,所以通信的可靠性便无法得到保证。另外,DC重复传输技术由于和用户设备通信的两个基站位置不同,在一定程度上虽然能解决遮挡的问题,但是很多场景中由于部署成本或者环境限制难以部署DC,所以利用DC重复传输技术解决遮挡问题也会有一定的局限性。因此,在有遮挡物的情况下如何提高数据传输可靠性的问题亟待解决。
发明内容
本申请提供了一种通信方法及相关装置,实施本申请实施例,减少了由于遮挡物而造成数据传输不可靠问题的产生。
第一方面,本申请提供一种通信方法,应用于终端设备,包括:
确定第一数据包,将所述第一数据包复制得到M个数据包,将所述M个数据包通过重复传输的方式发送给接入网设备,所述M为大于1的整数;
其中,所述将所述M个数据包通过重复传输的方式发送给接入网设备,包括:
通过空中接口向所述接入网设备发送所述M个数据包中的N个数据包,所述N为大于0且小于所述M的整数;
通过第一中继链路向所述接入网设备发送所述M个数据包中的M-N个数据包,所述第一中继链路包括第一链路和第二链路,所述第一链路为所述终端设备与第一中继终端之间的链路,所述第二链路为所述第一中继终端与所述接入网设备之间的链路;
当所述第一链路的链路质量小于或等于第一预设门限时,向所述接入网设备发送请求信息,所述请求信息用于请求将所述第一中继链路更新为第二中继链路,所述第二中继链路包括第三链路和第四链路,所述第三链路为所述终端设备与第二中继终端之间的链路,所述第四链路为所述第二中继终端与所述接入网设备之间的链路。
可以看出,上述技术方案中,对数据包进行复制,将复制得到的至少一个数据包通过空中接口传输,以及将复制得到的至少一个数据包通过第一中继链路传输,实现将同一数据包复制并通过不同的路径传输,减少了由于遮挡物而造成数据传输不可靠问题的产生。另外,在已有中继链路质量较差的时,通过中继链路的动态更新,避免了在有遮挡物的情 况下由于链路质量差导致的中继链路重复传输无法进行的问题,也避免了在中继链路重复传输无法进行时导致的数据传输不可靠的问题。
结合第一方面,在一种可能的实施方式中,所述第一数据包属于第一业务,所述方法还包括:
向所述接入网设备发送第一指示信息;
其中,所述第一指示信息包括以下至少一种:所述第一业务的类型标识、所述第一业务的服务质量QoS需求、所述终端设备的类型、所述终端设备的位置信息、所述第一链路的链路质量。
可以看出,上述技术方案中,终端设备向接入网设备发送指示信息,从而使得接入网设备可以根据指示信息判断需要采用相应传输方式传输业务对应的业务数据,例如采用空中接口和中继链路进行重复传输的传输方式进行数据传输。
第二方面,本申请提供一种通信方法,应用于终端设备,包括:
接收接入网设备通过重复传输的方式发送的J个数据包,所述J为大于1的整数;
其中,所述接收接入网设备通过重复传输的方式发送的J个数据包,包括:
通过空中接口接收所述接入网设备发送的所述J个数据包中的K个数据包,所述K为大于0且小于所述J的整数;
通过第一中继链路接收所述J个数据包中的J-K个数据包,所述第一中继链路包括第一链路和第二链路,所述第一链路为所述终端设备与第一中继终端之间的链路,所述第二链路为所述第一中继终端与所述接入网设备之间的链路;
当所述第一链路的链路质量小于或等于第一预设门限时,向所述接入网设备发送请求信息,所述请求信息用于请求将所述第一中继链路更新为第二中继链路,所述第二中继链路包括第三链路和第四链路,所述第三链路为所述终端设备与第二中继终端之间的链路,所述第四链路为所述第二中继终端与所述接入网设备之间的链路。
可以看出,上述技术方案中,通过空中接口传输至少一个数据包,以及通过第一中继链路传输至少一个数据包,实现了将同一数据包复制并通过不同的路径传输,减少了由于遮挡物而造成数据传输不可靠问题的产生。另外,在已有中继链路质量较差的时,通过中继链路的动态更新,避免了在有遮挡物的情况下由于链路质量差导致的中继链路重复传输无法进行的问题,也避免了在中继链路重复传输无法进行时导致的数据传输不可靠的问题。
结合第一方面或第二方面,在一种可能的实施方式中,所述请求信息包括以下至少一种:所述第二中继终端的标识、所述终端设备与所述第二中继终端之间的PC5接口标识、所述第三链路的链路标识、所述第三链路的链路质量。
可以看出,上述技术方案中,可以通过动态更新链路质量较差的中继链路,避免了在有遮挡物的情况下由于链路质量差而导致的中继链路重复传输无法进行的问题,也避免了在中继链路重复传输无法进行时导致的数据传输不可靠的问题。
结合第一方面或第二方面,在一种可能的实施方式中,所述方法还包括:
向所述接入网设备发送能力信息,其中,所述能力信息用于指示以下至少一种能力:
所述终端设备支持通过中继链路与所述接入网设备进行通信;
所述终端设备支持第一重复传输,所述第一重复传输的至少有一条链路为中继链路;
所述终端设备支持第二重复传输,所述第二重复传输包括进行载波聚合重复传输的至少两条链路以及至少一条中继链路;
所述终端设备支持的用于重复传输的中继链路的最大数量;
所述终端设备支持的用于重复传输的中继终端的最大数量。
可以看出,上述技术方案中,实现了终端设备能力信息的上报,使得接入网设备可以根据终端设备的能力判断该终端设备支持何种传输方式,进而决定采用何种传输方式与终端设备进行通信。
结合第一方面或第二方面,在一种可能的实施方式中,所述方法还包括:
向所述接入网设备发送第二指示信息,所述第二指示信息用于指示以下至少一种:能够与所述终端设备建立中继链路的至少一个中继终端的标识、能够与所述终端设备建立中继链路的至少一个中继终端的PC5接口标识、能够与所述终端设备建立中继链路的至少一个中继终端的中继链路标识、能够与所述终端设备建立至少一个中继链路的链路质量。
可以看出,上述技术方案中,终端设备将满足条件的候选中继终端上报给接入网设备,使得接入网设备可以基于终端设备上报的指示信息为终端设备选择合适的中继终端来进行重复传输。
结合第一方面或第二方面,在一种可能的实施方式中,所述方法还包括:
接收所述接入网设备发送的第三指示信息,所述第三指示信息用于指示与所述终端设备建立所述第一中继链路的所述第一中继终端的标识或PC5接口标识或所述第一链路标识。
可以看出,上述技术方案中,接入网设备将选好的中继终端或者中继链路的相关信息发送给终端设备,终端设备可以知道通过哪个中继终端或者中继链路进行重复传输。
结合第一方面或第二方面,在一种可能的实施方式中,所述方法还包括:
向所述第一中继终端发送第四指示信息,所述第四指示信息用于指示所述第一中继终端与所述接入网设备建立所述第二链路。
可以看出,上述技术方案中,通过向中继终端发送指示信息,让中继终端可以根据指示信息与接入网设备建立第二链路。
结合第一方面或第二方面,在一种可能的实施方式中,所述方法还包括:
接收配置信息,所述配置信息用于配置所述第一链路与所述第二链路之间的对应关系。
可以看出,上述技术方案中,终端设备可以根据配置信息获知链路之间的对应关系,从而在后续过程中完成中继链路重复传输。
结合第一方面或第二方面,在一种可能的实施方式中,所述方法还包括:
接收所述接入网设备发送的控制信令,所述控制信令用于激活或去激活进行重复传输的至少一条链路;或,
接收所述第一中继终端发送的第五指示信息,所述第五指示信息用于激活或去激活进行重复传输的至少一条链路。
可以看出,上述技术方案中,接入网设备可以发送信令,来控制进行重复传输的每一条链路的状态是激活还是去激活,包括中继链路和非中继链路。
结合第一方面或第二方面,在一种可能的实施方式中,所述方法还包括:
在满足第一预设条件时,激活进行重复传输的至少一条链路;
所述第一预设条件包括以下至少一个:
所述第一链路的链路质量小于或等于所述第一预设质量门限;或,
所述第二链路的链路质量小于或等于第二预设质量门限;或,
所述第一数据包传输的误码率大于或等于预设误码率门限;或,
所述第一数据包的重传次数大于或等于预设重传次数。
可以看出,上述技术方案中,终端设备可以根据预设条件自行决定是否激活进行重复传输的至少一条链路。
第三方面,提供一种通信方法,应用于接入网设备,包括:
接收终端设备通过重复传输的方式发送的M个数据包,所述M为大于1的整数;
其中,所述接收终端设备通过重复传输的方式发送的M个数据包,包括:
通过空中接口接收所述终端设备发送的所述M个数据包中的N个数据包,所述M个数据包通过重复传输的方式发送,所述N为大于0且小于所述M的整数;
通过第一中继链路接收所述M个数据包中的M-N个数据包,所述第一中继链路包括第一链路和第二链路,所述第一链路为所述终端设备与第一中继终端之间的链路,所述第二链路为所述第一中继终端与所述接入网设备之间的链路;
接收请求信息,所述请求信息用于请求将所述第一中继链路更新为第二中继链路,所述第二中继链路包括第三链路和第四链路,所述第三链路为所述终端设备与第二中继终端之间的链路,所述第四链路为所述第二中继终端与所述接入网设备之间的链路。
可以看出,上述技术方案中,通过空中接口传输至少一个数据包,以及通过第一中继链路传输至少一个数据包,从而实现了将同一数据包复制并通过不同的路径传输,减少了由于遮挡物而造成数据传输不可靠问题的产生。另外,在已有中继链路质量较差的时,通过中继链路的动态更新,避免了在有遮挡物的情况下由于链路质量差导致的中继链路重复传输无法进行的问题,也避免了在中继链路重复传输无法进行时导致的数据传输不可靠的问题。
结合第三方面,在一种可能的实施方式中,所述M个数据包属于第一业务,所述方法还包括:
接收所述终端设备发送的第一指示信息;
其中,所述第一指示信息包括以下至少一种:所述第一业务的类型标识、所述第一业务的服务质量QoS需求、所述终端设备的类型、所述终端设备的位置信息、所述第一链路的链路质量。
可以看出,上述技术方案中,终端设备向接入网设备发送指示信息,从而使得接入网设备可以根据指示信息判断需要采用相应传输方式传输业务对应的业务数据,例如采用空中接口和中继链路进行重复传输的传输方式进行数据传输。
第四方面,本申请提供一种通信方法,应用于接入网设备,包括:
通过重复传输的方式向终端设备发送J个数据包,所述J为大于1的整数;
其中,所述发送J个数据包,包括:
通过空中接口向所述终端设备发送J个数据包中的K个数据包,所述J个数据包通过重复传输的方式发送,所述J为大于1的整数,所述K为大于0且小于所述J的整数;
通过第一中继链路将所述J个数据包中的J-K个数据包发送给所述终端设备,所述第一中继链路包括第一链路和第二链路,所述第一链路为所述终端设备与第一中继终端之间的链路,所述第二链路为所述第一中继终端与所述接入网设备之间的链路;
接收请求信息,所述请求信息用于请求将所述第一中继链路更新为第二中继链路,所述第二中继链路包括第三链路和第四链路,所述第三链路为所述终端设备与第二中继终端 之间的链路,所述第四链路为所述第二中继终端与所述接入网设备之间的链路。
可以看出,上述技术方案中,通过空中接口传输至少一个数据包,以及通过第一中继链路传输至少一个数据包,实现了将同一数据包复制并通过不同的路径传输,减少了由于遮挡物而造成数据传输不可靠问题的产生。另外,在已有中继链路质量较差的时,通过中继链路的动态更新,避免了在有遮挡物的情况下由于链路质量差导致的中继链路重复传输无法进行的问题,也避免了在中继链路重复传输无法进行时导致的数据传输不可靠的问题。
结合第三方面或第四方面,在一种可能的实施方式中,所述请求信息包括以下至少一种:所述第二中继终端的标识、所述终端设备与所述第二中继终端之间的PC5接口标识、所述第三链路的链路标识、所述第三链路的链路质量。
可以看出,上述技术方案中,可以通过动态更新链路质量较差的中继链路,避免了在有遮挡物的情况下由于链路质量差而导致的中继链路重复传输无法进行的问题,也避免了在中继链路重复传输无法进行时导致的数据传输不可靠的问题。
结合第四方面,在一种可能的实施方式中,所述J个数据包属于第二业务,所述方法还包括:
接收核心网设备发送的第六指示信息;或,
根据所述终端设备与所述核心网设备建立的协议数据单元会话,确定通过重复传输的方式发送所述第二业务的业务数据;
其中,所述第六指示信息包括以下至少一种:所述第二业务的类型标识和所述第二业务的服务质量QoS需求。
可以看出,上述技术方案中,实现了接入网设备可以判断需要采用相应传输方式传输业务对应的业务数据,例如采用空中接口和中继链路进行重复传输的传输方式进行数据传输。
结合第三方面或第四方面,在一种可能的实施方式中,所述方法还包括:
接收所述终端设备发送的能力信息,其中,所述能力信息用于指示以下至少一种:
所述终端设备支持通过中继链路与所述接入网设备进行通信;
所述终端设备支持第一重复传输,所述第一重复传输的至少有一条链路为中继链路;
所述终端设备支持第二重复传输,所述第二重复传输包括进行载波聚合重复传输的至少两条链路以及至少一条中继链路;
所述终端设备支持的用于重复传输的中继链路的最大数量;
所述终端设备支持的用于重复传输的中继终端的最大数量。
可以看出,上述技术方案中,实现了终端设备能力信息的上报,使得接入网设备可以根据终端设备的能力判断该终端设备支持何种传输方式,进而决定采用何种传输方式与终端设备进行通信。
结合第三方面或第四方面,在一种可能的实施方式中,所述方法还包括:
接收所述终端设备发送的第二指示信息,所述第二指示信息用于指示以下至少一种:能够与所述终端设备建立中继链路的至少一个中继终端的标识、能够与所述终端设备建立中继链路的至少一个中继终端的PC5接口标识、能够与所述终端设备建立中继链路的至少一个中继终端的中继链路标识、能够与所述终端设备建立至少一个中继链路的链路质量。
可以看出,上述技术方案中,终端设备将满足条件的候选中继终端上报给接入网设备,使得接入网设备可以基于终端设备上报的指示信息为终端设备选择合适的中继终端来进 行重复传输。
结合第三方面或第四方面,在一种可能的实施方式中,所述方法还包括:
向所述终端设备发送第三指示信息,所述第三指示信息用于指示与所述终端设备建立所述第一中继链路的所述第一中继终端的PC5接口标识或所述第一链路标识。
可以看出,上述技术方案中,接入网设备将选好的中继终端或者中继链路的相关信息发送给终端设备,终端设备可以知道通过哪个中继终端或者中继链路进行重复传输。
结合第三方面或第四方面,在一种可能的实施方式中,所述方法还包括:
通过所述终端设备向所述第一中继终端发送第四指示信息,所述第四指示信息用于指示所述第一中继终端与所述接入网设备建立所述第二链路。
可以看出,上述技术方案中,通过向中继终端发送指示信息,让中继终端可以根据指示信息与接入网设备建立第二链路。
结合第三方面或第四方面,在一种可能的实施方式中,所述方法还包括:
发送配置信息,所述配置信息用于配置所述第一链路与所述第二链路之间的对应关系。
可以看出,上述技术方案中,终端设备可以根据配置信息获知链路之间的对应关系,从而在后续过程中完成中继链路重复传输。
结合第三方面或第四方面,在一种可能的实施方式中,所述方法还包括:
向所述终端设备发送控制信令,所述控制信令用于激活或去激活进行重复传输的至少一条链路;或,
向所述第一中继终端发送所述控制信令。
可以看出,上述技术方案中,接入网设备可以发送信令,来控制进行重复传输的每一条链路的状态是激活还是去激活,包括中继链路和非中继链路。
第五方面,提供一种终端设备,所述终端设备处理模块和收发模块,
所述处理模块,用于确定第一数据包,将所述第一数据包复制得到M个数据包,所述M为大于1的整数;
所述收发模块,用于将所述M个数据包通过重复传输的方式发送给接入网设备;
其中,在将所述M个数据包通过重复传输的方式发送给接入网设备时,所述收发模块,用于
通过空中接口向所述接入网设备发送所述M个数据包中的N个数据包,所述N为大于0且小于所述M的整数;
通过第一中继链路向所述接入网设备发送所述M个数据包中的M-N个数据包,所述第一中继链路包括第一链路和第二链路,所述第一链路为所述终端设备与第一中继终端之间的链路,所述第二链路为所述第一中继终端与所述接入网设备之间的链路;
当所述第一链路的链路质量小于或等于第一预设门限时,所述收发模块,用于向所述接入网设备发送请求信息,所述请求信息用于请求将所述第一中继链路更新为第二中继链路,所述第二中继链路包括第三链路和第四链路,所述第三链路为所述终端设备与第二中继终端之间的链路,所述第四链路为所述第二中继终端与所述接入网设备之间的链路。
结合第五方面,在一种可能的实施方式中,所述第一数据包属于第一业务,所述收发模块,还用于向所述接入网设备发送第一指示信息;
其中,所述第一指示信息包括以下至少一种:所述第一业务的类型标识、所述第一业 务的服务质量QoS需求、所述终端设备的类型、所述终端设备的位置信息、所述第一链路的链路质量。
第六方面,本申请提供一种终端设备,所述终端设备包括收发模块,
所述收发模块,用于接收接入网设备通过重复传输的方式发送的J个数据包,所述J为大于1的整数;
其中,在接收接入网设备通过重复传输的方式发送的J个数据包时,所述收发模块,用于
通过空中接口接收所述接入网设备发送的所述J个数据包中的K个数据包,所述K为大于0且小于所述J的整数;
通过第一中继链路接收所述J个数据包中的J-K个数据包,所述第一中继链路包括第一链路和第二链路,所述第一链路为所述终端设备与第一中继终端之间的链路,所述第二链路为所述第一中继终端与所述接入网设备之间的链路;
当所述第一链路的链路质量小于或等于第一预设门限时,所述收发模块,用于向所述接入网设备发送请求信息,所述请求信息用于请求将所述第一中继链路更新为第二中继链路,所述第二中继链路包括第三链路和第四链路,所述第三链路为所述终端设备与第二中继终端之间的链路,所述第四链路为所述第二中继终端与所述接入网设备之间的链路。
结合第五方面或第六方面,在一种可能的实施方式中,所述请求信息包括以下至少一种:所述第二中继终端的标识、所述终端设备与所述第二中继终端之间的PC5接口标识、所述第三链路的链路标识、所述第三链路的链路质量。
结合第五方面或第六方面,在一种可能的实施方式中,所述收发模块,还用于向所述接入网设备发送能力信息,其中,所述能力信息用于指示以下至少一种能力:
所述终端设备支持通过中继链路与所述接入网设备进行通信;
所述终端设备支持第一重复传输,所述第一重复传输的至少有一条链路为中继链路;
所述终端设备支持第二重复传输,所述第二重复传输包括进行载波聚合重复传输的至少两条链路以及至少一条中继链路;
所述终端设备支持的用于重复传输的中继链路的最大数量;
所述终端设备支持的用于重复传输的中继终端的最大数量。
结合第五方面或第六方面,在一种可能的实施方式中,所述收发模块,还用于向所述接入网设备发送第二指示信息,所述第二指示信息用于指示以下至少一种:能够与所述终端设备建立中继链路的至少一个中继终端的标识、能够与所述终端设备建立中继链路的至少一个中继终端的PC5接口标识、能够与所述终端设备建立中继链路的至少一个中继终端的中继链路标识、能够与所述终端设备建立至少一个中继链路的链路质量。
结合第五方面或第六方面,在一种可能的实施方式中,所述收发模块,还用于接收所述接入网设备发送的第三指示信息,所述第三指示信息用于指示与所述终端设备建立所述第一中继链路的所述第一中继终端的标识或PC5接口标识或所述第一链路标识。
结合第五方面或第六方面,在一种可能的实施方式中,所述收发模块,还用于向所述第一中继终端发送第四指示信息,所述第四指示信息用于指示所述第一中继终端与所述接入网设备建立所述第二链路。
结合第五方面或第六方面,在一种可能的实施方式中,所述收发模块,还用于接收配置信息,所述配置信息用于配置所述第一链路与所述第二链路之间的对应关系。
结合第五方面或第六方面,在一种可能的实施方式中,所述收发模块,还用于
接收所述接入网设备发送的控制信令,所述控制信令用于激活或去激活进行重复传输的至少一条链路;或,
接收所述第一中继终端发送的第五指示信息,所述第五指示信息用于激活或去激活进行重复传输的至少一条链路。
结合第五方面或第六方面,在一种可能的实施方式中,所述终端设备还包括处理模块,所述处理模块用于
在满足第一预设条件时,激活进行重复传输的至少一条链路;
所述第一预设条件包括以下至少一个:
所述第一链路的链路质量小于或等于所述第一预设质量门限;或,
所述第二链路的链路质量小于或等于第二预设质量门限;或,
所述第一数据包传输的误码率大于或等于预设误码率门限;或,
所述第一数据包的重传次数大于或等于预设重传次数。
第七方面,提供一种接入网设备,所述接入网设备包括收发模块,所述收发模块,用于接收终端设备通过重复传输的方式发送的M个数据包,所述M为大于1的整数;
其中,在接收终端设备通过重复传输的方式发送的M个数据包时,所述收发模块,用于
通过空中接口接收所述终端设备发送的所述M个数据包中的N个数据包,所述M个数据包通过重复传输的方式发送,所述N为大于0且小于所述M的整数;
通过第一中继链路接收所述M个数据包中的M-N个数据包,所述第一中继链路包括第一链路和第二链路,所述第一链路为所述终端设备与第一中继终端之间的链路,所述第二链路为所述第一中继终端与所述接入网设备之间的链路;
所述收发模块,用于接收请求信息,所述请求信息用于请求将所述第一中继链路更新为第二中继链路,所述第二中继链路包括第三链路和第四链路,所述第三链路为所述终端设备与第二中继终端之间的链路,所述第四链路为所述第二中继终端与所述接入网设备之间的链路。
结合第七方面,在一种可能的实施方式中,所述M个数据包属于第一业务,所述收发模块,还用于接收所述终端设备发送的第一指示信息;
其中,所述第一指示信息包括以下至少一种:所述第一业务的类型标识、所述第一业务的服务质量QoS需求、所述终端设备的类型、所述终端设备的位置信息、所述第一链路的链路质量。
第八方面,本申请提供一种接入网设备,所述接入网设备包括收发模块,所述收发模块,用于通过重复传输的方式向终端设备发送J个数据包,所述J为大于1的整数;
其中,在通过重复传输的方式向终端设备发送J个数据包时,所述收发模块,用于
通过空中接口向所述终端设备发送J个数据包中的K个数据包,所述J个数据包通过重复传输的方式发送,所述J为大于1的整数,所述K为大于0且小于所述J的整数;
通过第一中继链路将所述J个数据包中的J-K个数据包发送给所述终端设备,所述第一中继链路包括第一链路和第二链路,所述第一链路为所述终端设备与第一中继终端之间的链路,所述第二链路为所述第一中继终端与所述接入网设备之间的链路;
所述收发模块,用于接收请求信息,所述请求信息用于请求将所述第一中继链路更新为第二中继链路,所述第二中继链路包括第三链路和第四链路,所述第三链路为所述终端设备与第二中继终端之间的链路,所述第四链路为所述第二中继终端与所述接入网设备之间的链路。
结合第七方面或第八方面,在一种可能的实施方式中,所述请求信息包括以下至少一种:所述第二中继终端的标识、所述终端设备与所述第二中继终端之间的PC5接口标识、所述第三链路的链路标识、所述第三链路的链路质量。
结合第八方面,在一种可能的实施方式中,所述接入网设备还包括处理模块,
所述收发模块,还用于接收核心网设备发送的第六指示信息;
所述处理模块,用于根据所述终端设备与所述核心网设备建立的协议数据单元会话,确定通过重复传输的方式发送所述第二业务的业务数据;
其中,所述第六指示信息包括以下至少一种:所述第二业务的类型标识和所述第二业务的服务质量QoS需求。
结合第七方面或第八方面,在一种可能的实施方式中,所述收发模块,还用于接收所述终端设备发送的能力信息,其中,所述能力信息用于指示以下至少一种:
所述终端设备支持通过中继链路与所述接入网设备进行通信;
所述终端设备支持第一重复传输,所述第一重复传输的至少有一条链路为中继链路;
所述终端设备支持第二重复传输,所述第二重复传输包括进行载波聚合重复传输的至少两条链路以及至少一条中继链路;
所述终端设备支持的用于重复传输的中继链路的最大数量;
所述终端设备支持的用于重复传输的中继终端的最大数量。
结合第七方面或第八方面,在一种可能的实施方式中,所述收发模块,还用于接收所述终端设备发送的第二指示信息,所述第二指示信息用于指示以下至少一种:能够与所述终端设备建立中继链路的至少一个中继终端的标识、能够与所述终端设备建立中继链路的至少一个中继终端的PC5接口标识、能够与所述终端设备建立中继链路的至少一个中继终端的中继链路标识、能够与所述终端设备建立至少一个中继链路的链路质量。
结合第七方面或第八方面,在一种可能的实施方式中,所述收发模块,还用于向所述终端设备发送第三指示信息,所述第三指示信息用于指示与所述终端设备建立所述第一中继链路的所述第一中继终端的标识或PC5接口标识或所述第一链路标识。
结合第七方面或第八方面,在一种可能的实施方式中,所述收发模块,还用于通过所述终端设备向所述第一中继终端发送第四指示信息,所述第四指示信息用于指示所述第一中继终端与所述接入网设备建立所述第二链路。
结合第七方面或第八方面,在一种可能的实施方式中,所述收发模块,还用于发送配置信息,所述配置信息用于配置所述第一链路与所述第二链路之间的对应关系。
结合第七方面或第八方面,在一种可能的实施方式中,所述收发模块,还用于
向所述终端设备发送控制信令,所述控制信令用于激活或去激活进行重复传输的至少一条链路;或,
向所述第一中继终端发送所述控制信令。
第九方面,提供一种终端设备,包括处理器、存储器、输入接口和输出接口,所述输 入接口用于接收来自所述终端设备之外的其它通信装置的信息,所述输出接口用于向所述终端设备之外的其它通信装置输出信息,所述处理器调用所述存储器中存储的计算机程序实现如第一方面或第二方面的任一可能的实现方式中的方法。
在一种可能的设计中,该终端设备可以是实现第一方面或第二方面中方法的芯片或者包含芯片和天线等装置的用户设备。
第十方面,提供一种接入网设备,包括处理器、存储器、输入接口和输出接口,所述输入接口用于接收来自所述接入网设备之外的其它通信装置的信息,所述输出接口用于向所述接入网设备之外的其它通信装置输出信息,所述处理器调用所述存储器中存储的计算机程序实现如第三方面或第四方面的任一可能的实现方式中的方法。
在一种可能的设计中,该接入网设备可以是实现第三方面或第四方面中方法的芯片或者包含芯片和天线等装置的设备。
第十一方面,提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机程序,当所述计算机程序被运行时,实现如第一方面或第二方面的任一可能的实现方式中的方法、或实现如第三方面或第四方面的任一可能的实现方式中的方法。
下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍。
其中:
图1是本申请实施例提供的一种用于提高数据可靠性传输的架构;
图2是本申请实施例提供的通信系统的基础架构;
图3是本申请实施例提供的一种通信方法的示意图;
图4是本申请实施例提供的一种数据包传输的示意图;
图5是本申请实施例提供的一种激活或去激活进行重复传输的至少一条链路的示意图;
图6是本申请实施例提供的又一种通信方法的示意图;
图7本申请实施例提供又一种通信架构;
图8是图7中终端设备70、第一中继终端71、接入网设备72的结构示意图;
图9是本申请实施例提供的一种简化的终端设备的结构示意图;
图10是本申请实施例提供的一种简化的接入网设备的结构示意图。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。
首先,本申请实施例的技术方案可以应用于长期演进(long term evolution,LTE)架构、第五代移动通信技术(5th generation mobile networks,5G)、无线局域网(wireless local area networks,WLAN)系统等等。
本申请实施例提供的方法可适用但不限于如下领域:设备到设备(device-to-device,D2D)设备、车联网(vehicle to everything,V2X)设备、无人驾驶(unmanned driving)、自 动驾驶(automated driving,ADS)、辅助驾驶(driver assistance,ADAS)、智能驾驶(intelligent driving)、网联驾驶(connected driving)、智能网联驾驶(intelligent network driving)、汽车共享(car sharing)等。
其中,车辆通过车辆与车辆(vehicle to vehicle,V2V)、车辆与路边基础设施(vehicle to infrastructure,V2I)、车辆与行人之间的通信(vehicle to pedestrian,V2P)或者车辆与网络(vehicle to network,V2N)等通信方式来及时获取路况信息或接收信息服务,这些通信方式可以统称为V2X通信。侧行链路通信的一个典型应用场景即V2X。在V2X中,每个车辆即一个终端设备或中继终端。终端设备或中继终端还可以为其他设备,本申请不作限制。
为了使得本申请实施例更加的清楚,在此对本申请实施例中的部分概念或内容作简单介绍。
1、侧行链路sidelink上支持的通信类型
其中,通信类型包括广播通信、组播通信和单播通信。在LTE系统中,sidelink上支持广播通信。在NR系统中,sidelink上支持广播通信、组播通信和单播通信。
广播通信类似于接入网设备广播系统信息,即终端设备不做加密对外发送广播业务数据,任何在有效接收范围内的其他终端设备,如果对该广播业务感兴趣都可以接收该广播业务的数据。
组播通信是指一个通信组内所有终端之间的通信,组内任一终端设备都可以收发该组播业务的数据。
单播通信类似于终端设备与接入网设备之间建立无线资源控制(radio resource control,RRC)连接之后进行的数据通信,需要终端设备与中继终端之间在先建立单播连接。在建立单播连接之后,终端设备与中继终端可以基于协商的标识进行数据通信,该数据可以是加密的,也可以是不加密的。相比于广播,在单播通信中,只能是建立了单播连接的终端设备与中继终端之间才能进行该单播通信。
本申请实施例提供的方法可用于侧行链路上的单播通信场景。
2、UE-to-Network relay系统中的协议栈
从协议栈看,UE-to-Network relay分两种,一种是L3中继(L3relay),另一种是L2中继(L2relay)。
在L3中继中,中继终端基于互联网协议(internet protocol,IP)层进行中继。在用户面和控制面,接入网设备和终端设备之间均没有对等的协议层,因此,接入网设备看不到终端设备,只能看到中继终端,也就是说,终端设备发送的信息到达接入网设备时,接入网设备不解析,直接转发给核心网设备,该情况下,可以认为终端设备通过中继终端和核心网设备通信。因此,在本申请下文中的描述中,若描述到“终端设备通过中继终端与核心网设备通信”时,则表示UE-to-Network relay系统为一个L3中继的系统。
在L2中继中,中继终端可以基于分组数据汇聚协议(packet data convergence protocol,PDCP)层或PDCP层之下的协议层(例如,回传适配协议(backhaul adaptation protocol,BAP)层(也可以称为适配层)、无线链路控制(radio link control,RLC)层)进行中继。在用户面,接入网设备和终端设备可以有对等的PDCP层、服务数据适配协议(service data adaptation protocol,SDAP)层等。在控制面,接入网设备和终端设备之间可以有对等的RRC层、PDCP层等。也就是说,终端设备和接入网设备之间建立了RRC连接,可以通 过中继终端交互RRC消息。该情况下,可以认为终端设备通过中继终端和接入网设备通信。因此,在本申请下文中的描述中,若描述到“终端设备通过中继终端与接入网设备通信”时,则表示UE-to-Network relay系统为一个L2中继的系统。
3、重复传输
现有方案中,在提高数据传输可靠性方面,提出了两种架构。一种是CA重复传输,另一种是DC重复传输。具体的,可以参见图1,图1是本申请实施例提供的一种用于提高数据可靠性传输的架构。如图1所示,可以看出,CA重复传输涉及到一个接入网设备10A与终端设备11以不同载波作为不同的路径传输同一数据包。DC重复传输涉及到两个接入网设备与终端设备11以不同的连接作为不同的路径传输同一数据包。具体的,在DC技术中,接入网设备10B可以与终端设备11之间传输数据包,接入网设备10C可以与终端设备11之间传输数据包,且接入网设备10B与终端设备11传输的数据包、接入网设备10C与终端设备11传输的数据包均是同一数据包。可以理解的,在本方案中,CA重复传输均为单个接入网设备与终端设备之间以不同载波作为不同的路径传输同一数据包,DC重复传输均为两个接入网设备与终端设备之间以不同的连接作为不同的路径传输同一数据包。
在本申请实施例中,重复传输是指高层的重复传输,可以是PDCP层重复传输或者MAC层重复传输,可以理解为建立多条传输路径,将数据包复制成多份,每一份分别通过不同的路径进行传输,来获得分集传输增益,提高传输可靠性。其中,多份数据包在不同路径传输的时间可以是同时传输或者按照时间先后传输,不做限定。当按照时间先后传输时,也可以是数据包先在其中一条路径上传输,然后再缓冲中存储一份数据包,接着缓冲的数据包再在另一条路径上进行传输。另外本申请实施例中的重复传输,主要是指中继链路重复传输,即在进行重复传输中的多条链路中,有至少一条链路是通过中继链路实现的。
进一步的,结合图1,由于容易受遮挡影响,在某些复杂的环境中,CA重复传输技术无法满足业务传输的可靠性需求。具体来说,当基站和用户设备之间存在遮挡物的时候,即使基站和用户设备之间存在多个载波,也存在很大概率所有载波都无法工作,所以通信的可靠性便无法得到保证。另外,DC重复传输技术由于和用户设备通信的两个基站位置不同,在一定程度上虽然能解决遮挡的问题,但是很多场景中由于部署成本或者环境限制难以部署DC,所以利用DC重复传输技术解决遮挡问题也会有一定的局限性。因此,在有遮挡物的情况下如何提高数据传输可靠性的问题亟待解决。
基于此,本申请实施例提出一种通信方法以解决上述问题,下面对本申请实施例进行详细介绍。
参见图2,图2是本申请实施例提供的通信系统的基础架构。如图2所示,该通信系统可以包括终端设备20、接入网设备21、至少一个中继终端22和核心网设备23。其中,终端设备20可以与该中继终端22进行通信,接入网设备21可以分别与终端设备20、该中继终端22、核心网设备23进行通信。至少一个中继终端22可以包括中继终端1至中继终端n,该n可以为大于0的整数。
其中,中继终端22与终端设备20为接入网设备21或接入网设备21的天线覆盖的服务区域内的两个独立的设备,或者,中继终端22与终端设备20为接入网设备21的小区 内或者波束覆盖范围内的两个独立的设备。进一步的,终端设备20或中继终端22可以是芯片,也可以是包括芯片的用户设备。进一步的,终端设备20或中继终端22是用户侧的一种用于接收信号,或者,发送信号,或者,接收信号和发送信号的实体。终端设备20或中继终端22用于向用户提供语音服务和数据连通性服务中的一种或多种。可以理解的,当终端设备20或中继终端22为芯片时,该芯片可以包括处理器和接口。当终端设备20或中继终端22为包括芯片的用户设备时,终端设备20或中继终端22可以为包含无线收发功能、且可以与接入网设备配合为用户提供通讯服务的设备。具体地,终端设备20或中继终端22可以指用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、终端、无线通信设备、用户代理或用户装置。终端设备20或中继终端22还可以是车联网(vehicle to everything,V2X)设备,例如,智能汽车(smart car或intelligent car)、数字汽车(digital car)、无人汽车(unmanned car或driverless car或pilotless car或automobile)、自动汽车(self-driving car或autonomous car)、纯电动汽车(pure EV或Battery EV)、混合动力汽车(hybrid electric vehicle,HEV)、增程式电动汽车(range extended EV,REEV)、插电式混合动力汽车(plug-in HEV,PHEV)、新能源汽车(new energy vehicle)等。终端设备20或中继终端22也可以是设备到设备(device to device,D2D)设备,例如,电表、水表等。终端设备20或中继终端22也可以是无人机、物联网(internet of things,IoT)设备、WLAN中的站点(station,ST)、蜂窝电话(cellular phone)、智能电话(smart phone)、无绳电话、无线数据卡、平板型电脑、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)设备、膝上型电脑(laptop computer)、机器类型通信(machine type communication,MTC)终端、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备(也可以称为穿戴式智能设备)。终端设备20或中继终端22还可以为5G系统中的终端,也可以为下一代通信系统中的终端,本申请实施例对此不作限定。
接入网设备21可以是用于与终端设备20、该中继终端22、核心网设备23进行通信的芯片,也可以是用于与终端设备20、该中继终端22、核心网设备23进行通信的包括芯片的设备。接入网设备21为网络侧的一种用于发送信号,或者,接收信号,或者,发送信号和接收信号的实体。可以理解的,当接入网设备21为芯片时,该芯片可以包括处理器和接口。当接入网设备21为包括芯片的设备时,接入网设备21可以为部署在无线接入网(radio access network,RAN)中为终端设备20、该中继终端22提供无线通信功能的装置,例如可以为传输接收点(transmission reception point,TRP)、基站、各种形式的控制节点。例如,网络控制器、无线控制器、云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器等。具体的,接入网设备可以为各种形式的宏基站,微基站(也称为小站),中继站,接入点(access point,AP)等,也可以为基站的天线面板。控制节点可以连接多个基站,并为多个基站覆盖下的多个终端配置资源。在采用不同的无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同。例如,可以是LTE系统中的演进型基站(evolutional node B,eNB或eNodeB),还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器,还可以是5G中的(new radio nodeB,gNB),或者该接入网设备21可以为中继站、接入点、车载设备、可穿戴设备以及5G之后的网络中的网络侧设备或未来演进的PLMN网络中的网络设备等,本申请对基站的具体名称不作限 定。
核心网设备23在不同的通信系统中对应不同的设备,例如,在3G系统中对应服务GPRS支持节点(serving GPRS support node,SGSN)和/或网关GPRS支持节点(gateway GPRS Support Node,GGSN),在4G系统中对应MME或S-GW,在5G系统中对应接入和移动管理功能(access and mobility management function,AMF)、会话管理功能(session management function,SMF)或移动管理实体(user plane function,UPF)等。
进一步的,举例来说,可以将接入网设备21与终端设备20看成一个通信系统,在该通信系统中,接入网设备21可以向终端设备20发送下行数据,当然,终端设备20也可以向接入网设备21发送上行数据。另外,也可以将接入网设备21、终端设备20和中继终端1看成一个通信系统,在该通信系统中,接入网设备21也可以向中继终端1发送下行数据,中继终端1再将该下行数据发送给终端设备20,当然,终端设备20也可以向中继终端1发送上行数据,中继终端1再将该上行数据发送给接入网设备21。
下面介绍终端设备与接入网设备之间传输上行数据的过程。具体的,参见图3,图3是本申请实施例提供的一种通信方法的示意图。结合图2,图3中的终端设备为图2中的终端设备20,图3中的接入网设备为图2中的接入网设备21,图3中的第一中继终端可以为图2中的中继终端22,图3中的第二中继终端可以为图2中的中继终端22,图3中的核心网设备可以为图2中的核心网设备23。如图3所示,该方法包括但不限于以下步骤:
301、终端设备确定第一数据包,将第一数据包复制得到M个数据包,将M个数据包通过重复传输的方式发送给接入网设备。
其中,M为大于1的整数。
其中,第一数据包可以为分组数据汇聚协议(packet data convergence protocol,PDCP)层的数据包,也可以为无线链路控制(radio link control,RLC)层的数据包,还可以为媒体接入控制(media access control,MAC)层的数据包,还可以为传输控制协议/网际协议(transmission control protocol/internet protocol,TCP/IP)数据包。可以理解的,在第一数据包为PDCP层的数据包时,终端设备可以在终端设备的PDCP层将第一数据包进行复制;在第一数据包为RLC层的数据包时,终端设备可以在终端设备的RLC层将第一数据包进行复制;在第一数据包为MAC层的数据包时,终端设备可以在终端设备的MAC层对第一数据包进行复制;在第一数据包为TCP/IP数据包时,终端设备可以在终端设备的传输层对第一数据包进行复制。
其中,终端设备将M个数据包通过重复传输的方式发送给接入网设备,包括:终端设备通过空中接口向接入网设备发送M个数据包中的N个数据包,N为大于0且小于M的整数;终端设备通过第一中继链路向接入网设备发送M个数据包中的M-N个数据包,第一中继链路包括第一链路和第二链路,第一链路为终端设备与第一中继终端之间的链路,第二链路为第一中继终端与接入网设备之间的链路。
其中,空中接口为一个名称,该空中接口可以为接入网设备与终端设备之间的通信接口。比如,在5G中,空中接口称为新空口(new radio,NR)。
其中,终端设备通过空中接口向接入网设备发送M个数据包中的N个数据包,包括:终端设备通过该空中接口上的P条链路向接入网设备发送N个数据包。进一步的,P条链路对应P个载波,即终端设备通过P个载波向接入网设备发送N个数据包。其中,该P 可以为该N,也可以为大于该N的整数,在此不做限制。
其中,终端设备与第一中继终端之间的链路可以通过PC5接口连接,也可以称为侧链路(sidelink,SL)。另外,第一中继终端与接入网设备之间的接口可以称为空中接口。在本申请中,空中接口、PC5接口和sidelink均为名称或代号,在不同通信系统中可能会发生变化,但是其作用和功能是相似的,因此本发明使用这些名称作为描述示例,而不对名称做限定。
需要说明的,终端设备可以与第一中继终端建立除第一链路之外的其他链路。另外,第一中继终端可以为至少一个第一中继终端,第一中继链路可以为至少一条第一中继链路。即终端设备可以与同一个中继终端建立多条第一链路用于重复传输,也可以与不同的中继终端建立多条第一链路用于重复传输,在此不做限制。
可以理解的,终端设备可以通过多条链路与接入网设备进行通信,该多条链路中可以包括至少一条中继链路。
其中,在第一数据包为PDCP层的数据包时,M个数据包即M个PDCP层的数据包。进一步的,终端设备可以将M个PDCP层的数据包通过重复传输的方式发送给接入网设备,具体的,可以参见图4,图4是本申请实施例提供的一种数据包传输的示意图。如图4所示,针对终端设备,其涉及的协议栈包括PDCP层、无线链路层控制协议(radio link control,RLC)层、MAC层、物理(physical,PHY)层。另外,终端设备对应的协议栈还可以包括位于PDCP层之上的其他层,在此不做限制。比如,在LTE中,终端设备对应的协议栈还可以包括传输层和应用层;在5G中,终端设备对应的协议栈还可以包括服务数据适配协议(service data adaptation protocol,SDAP)层、传输层和应用层。
针对第一中继终端,其涉及的协议栈可以包括RLC层、MAC层、PHY层。
针对接入网设备,其涉及的协议栈包括PDCP层、RLC层、MAC层、PHY层。另外,接入网设备对应的协议栈还可以包括位于PDCP层之上的其他层,在此不做限制。比如,在LTE中,接入网设备对应的协议栈还可以包括传输层和应用层;在5G中,接入网设备对应的协议栈还可以包括服务数据适配协议(service data adaptation protocol,SDAP)层、传输层和应用层。
进一步的,终端设备可以将M个PDCP层的数据包中N个PDCP层的数据包分别通过终端设备的RLC层、MAC层、PHY层处理,得到N个PHY层的数据包,并通过空中接口将N个PHY层的数据包发送给接入网设备。
另外,终端设备还可以通过第一中继终端将M个PDCP层的数据包中M-N个PDCP层的数据包转发给接入网设备。具体的,终端设备可以通过第一链路将M-N个PDCP层的数据包发送给第一中继终端。进一步的,第一链路对应的协议栈可以包括RLC层、MAC层和PHY层,第一链路对应的协议栈也可以为传输层协议栈。具体的,传输层协议栈可以包括通用分组无线业务(general packet radio service,GPRS)隧道协议(GPRS tunneling protocol)层、TCP/IP层、用户数据报协议(user datagram protocol,UDP)层等。
进一步的,结合图4,在第一数据包为PDCP层的数据包时,第一链路对应的协议栈包括RLC层、MAC层和PHY层。此时,终端设备可以通过第一链路对应的协议栈对M-N个PDCP层的数据包进行处理,得到第一链路对应的M-N个PHY层的数据包。在第一中继终端接收M-N个PHY层的数据包时,可以通过第一链路对应的协议栈对第一链路对应的M-N个PHY层的数据包进行处理,得到M-N个RLC层的数据包。进一步的,第 一中继终端可以将M-N个RLC层的数据包通过第一中继终端的MAC层、PHY层处理,得到第一中继终端对应的M-N个PHY层的数据包。接着,第一中继终端将第一中继终端对应的M-N个PHY层的数据包通过第二链路发送给接入网设备。
进一步的,接入网设备可以接收N个PHY层的数据包和第一中继终端对应的M-N个PHY层的数据包。结合图4,接入网设备可以通过接入网设备的PHY层、MAC层、RLC层对N个PHY层的数据包进行处理,得到接入网设备对应的N个RLC层的数据包。接入网设备也可以通过接入网设备的PHY层、MAC层、RLC层对第一中继终端对应的M-N个PHY层的数据包进行处理,得到接入网设备对应的M-N个RLC层的数据包。进一步的,接入网设备可以在接入网设备的PDCP层对接入网设备对应的N个RLC层的数据包和接入网设备对应的M-N个RLC层的数据包进行排序和/或去重处理后,进一步递交给接入网设备的PDCP层的上层。
302、接入网设备接收终端设备发送的请求信息。
其中,请求信息用于请求将第一中继链路更新为第二中继链路,第二中继链路包括第三链路和第四链路,第三链路为终端设备与第二中继终端之间的链路,第四链路为第二中继终端与接入网设备之间的链路。
其中,当第一链路的链路质量小于或等于第一预设门限时,终端设备可以向接入网设备发送请求信息。其中,第一预设质量门限可以是协议中预定的,也可以是由接入网设备向终端设备发送的配置信息中携带的。可以理解的,在本申请中,链路质量可以为参考信号接收功率(reference signal received power,RSRP)或参考信号接收质量(reference signal received quality,RSRQ)等。另外,该请求信息还可以用于请求将第一中继终端更新为第二中继终端。
其中,终端设备与第二中继终端之间的链路可以通过PC5接口连接,也可以称为sidelink。第二中继终端与接入网设备之间的接口可以为空口接口。
需要说明的,终端设备可以与第二中继终端建立除第三链路之外的其他链路。另外,第二中继终端可以为至少一个中继终端,第二中继链路可以为至少一条中继链路。进一步的,第二中继终端为不同于第一中继终端的设备,且第二中继终端、第一中继终端与终端设备均在该接入网设备或该接入网设备天线覆盖的服务区域内,或,第二中继终端、第一中继终端与终端设备均在该接入网设备小区内或者波束覆盖范围内。
另外,该请求信息包括以下至少一种:第二中继终端的标识、终端设备与第二中继终端之间的PC5接口标识、第三链路的链路标识、第三链路的链路质量。
另外,接入网设备可以测量终端设备与接入网设备之间的链路质量,在终端设备与接入网设备之间的链路质量大于或小于第三预设质量门限时,接入网设备可以将第一中继链路更新为第二中继链路,也可以将第一中继终端更新为第二中继终端。接入网设备也可以测量第二链路的链路质量,在第二链路的链路质量大于或小于第二预设质量门限时,接入网设备可以将第一中继链路更新为第二中继链路,也可以将第一中继终端更新为第二中继终端。当然,第一中继终端也可以测量第一链路的链路质量,在第一链路的链路质量大于或小于第一预设质量门限时,第一中继终端可以向接入网设备发送该请求信息。可以理解的,第一中继终端也可以测量第二链路的链路质量,在第二链路的链路质量大于或小于第二预设质量门限时,第一中继终端可以向接入网设备发送该请求信息。进一步的,接入网设备可以向第一中继终端发送释放消息,并向第二中继终端发送建立第四链路的消息。其 中,第三预设质量门限可以是协议中预定的,也可以是接入网设备向终端设备发送的配置信息中携带的。第二预设质量门限、第三预设质量门限可以是协议中预定的,也可以是在接入网设备决定的。
可以理解的,第二预设质量门限还可以是接入网设备向终端设备发送的配置信息中携带的。
可以看出,上述技术方案中,对数据包进行复制,将复制得到的至少一个数据包通过空中接口传输,以及将复制得到的至少一个数据包通过第一中继链路传输,实现将同一数据包复制并通过不同的路径传输,减少了由于遮挡物而造成数据传输不可靠问题的产生。另外,在已有中继链路质量较差的时,通过中继链路的动态更新,避免了在有遮挡物的情况下由于链路质量差导致的中继链路重复传输无法进行的问题,也避免了在中继链路重复传输无法进行时导致的数据传输不可靠的问题。
在一种可能的实施方式中,该第一数据包属于第一业务,该方法还包括:终端设备向接入网设备发送第一指示信息。
其中,第一指示信息包括以下至少一种:第一业务的类型标识、第一业务的服务质量(quality of service,QoS)需求、终端设备的类型、终端设备的位置信息、第一链路的链路质量。
可以理解的,接入网设备可以接收第一指示信息。进一步的,接入网设备可以基于第一指示信息确定需要通过中继链路重复传输的方式进行第一业务的传输。可以理解的,在终端设备的位置位于易受遮挡的区域时,接入网设备可以基于终端设备的位置信息确定需要通过中继链路重复传输的方式进行第一业务的传输。另外,接入网设备还可以基于预设内容和第一指示信息确定需要通过中继链路重复传输的方式进行第一业务的传输。其中,预设内容可以规定以下至少一种:预设设备类型、预设业务的类型标识、预设业务的QoS需求、终端设备与中继终端之间预设的链路质量。当预设内容满足一定条件的时候,接入网设备可以决定需要通过中继链路重复传输的方式进行第一业务的传输。
其中,预设设备类型为对数据传输可靠性要求高的设备的类型。举例来说,属于预设设备类型的设备例如可以为在工业园区的设备,也可以为进行高频传输的设备。预设业务的类型标识为对数据传输可靠性要求高的业务的类型标识。举例来说,预设业务例如可以为易受遮挡场景下需要传输的业务。
可以看出,上述技术方案中,终端设备向接入网设备发送指示信息,从而使得接入网设备可以根据指示信息判断需要采用相应传输方式传输业务对应的业务数据,例如采用空中接口和中继链路进行重复传输的传输方式进行数据传输。
在一种可能的实施方式中,该方法还包括:
终端设备向接入网设备发送能力信息,其中,能力信息用于指示以下至少一种能力:
终端设备支持通过中继链路与接入网设备进行通信;
终端设备支持第一重复传输,第一重复传输的至少有一条链路为中继链路;
终端设备支持第二重复传输,第二重复传输包括进行载波聚合重复传输的至少两条链路以及至少一条中继链路;
终端设备支持的用于重复传输的中继链路的最大数量;
终端设备支持的用于重复传输的中继终端的最大数量。
其中,第一重复传输是指包含中继链路重复传输模式的重复传输;第二重复传输是指 包括CA重复传输模式和中继链路重复传输模式的重复传输;如果终端设备仅上报支持的用于重复传输的中继链路的最大数量,则表示终端能力不对中继终端的最大数量做限定,例如中继链路最大数量为4,则表示可以通过1个到4个中继终端实现;如果终端设备仅上报支持的用于重复传输的中继终端的最大数量,则表示终端能力不对中继链路的最大数量做限定,例如中继终端最大数量为4,则表示最多可以通过4个中继终端进行传输,但是并不限定每个中继终端的最大中继链路的数量;另外也可以既上报中继链路的最大数量,又上报中继终端的最大数量,或者上报每个中继终端上用于重复传输的中继链路的最大数量,从而即限定了支持的中继终端的最大数量,又限定了中继链路的最大数量。
另外,在终端设备向接入网设备发送能力信息之前,终端设备可以接收接入网设备发送的请求能力信息的消息。
需要说明的,该中继链路可以为一个中继终端所对应的至少一条中继链路,也可以为不同中继终端所对应的至少两条中继链路。进一步的,该中继链路包括终端设备与中继终端之间的链路,以及中继终端与接入网设备之间的链路。
另外,接入网设备可以接收该能力信息,从而基于该能力信息确定终端设备可以支持的通信方式。
可以看出,上述技术方案中,实现了终端设备能力信息的上报,使得接入网设备可以根据终端设备的能力判断该终端设备支持何种传输方式,进而决定采用何种传输方式与终端设备进行通信。
在一种可能的实施方式中,该方法还包括:终端设备向接入网设备发送第二指示信息,第二指示信息用于指示以下至少一种:能够与终端设备建立中继链路的至少一个中继终端的标识、能够与终端设备建立中继链路的至少一个中继终端的PC5接口标识、能够与终端设备建立中继链路的至少一个中继终端的中继链路标识、能够与终端设备建立至少一个中继链路的链路质量。
其中,该至少一个中继终端可以包括第一中继终端,也可以不包括第一中继终端。在该至少一个中继终端不包括第一中继终端时,终端设备可以确定第一中继终端的标识,也可以确定第一中继终端的PC5接口标识,也可以确定第一中继终端的中继链路标识,还可以确定第一中继链路的链路质量。
可以看出,上述技术方案中,终端设备将满足条件的候选中继终端上报给接入网设备,使得接入网设备可以基于终端设备上报的指示信息为终端设备选择合适的中继终端来进行重复传输。
在一种可能的实施方式中,该方法还包括:
终端设备接收接入网设备发送的第三指示信息,第三指示信息用于指示与终端设备建立第一中继链路的第一中继终端的标识或PC5接口标识或第一链路标识。
可以理解的,接入网设备在选择中继终端的时候也可以不局限于第二指示信息中的中继终端,而是在接入网设备或接入网设备的天线覆盖的服务区域内或在接入网设备的小区内或在接入网设备波束覆盖范围内,将除终端设备之外的至少一个终端设备作为第一中继终端。
可以看出,上述技术方案中,接入网设备将选好的中继终端或者中继链路的相关信息发送给终端设备,终端设备可以知道通过哪个中继终端或者中继链路进行重复传输。
在一种可能的实施方式中,该方法还包括:终端设备向第一中继终端发送第四指示信 息,第四指示信息用于指示第一中继终端与接入网设备建立第二链路。
可以理解的,第一中继终端处于空闲态或非激活态。即,终端设备向处于空闲态或非激活态的第一中继终端发送第四指示信息。进一步的,第二链路为RRC连接。
需要说明的,接入网设备可以向终端设备发送第四指示信息,然后终端设备再向处于空闲态或非激活态的第一中继终端发送第四指示信息。接入网设备也可以向处于空闲态或非激活态的第一中继终端发送寻呼消息。接入网设备还可以向核心网设备发送指示信息,核心网设备根据该指示信息,向处于空闲态的第一中继终端发送寻呼消息。
可以看出,上述技术方案中,通过向中继终端发送指示信息,让中继终端可以根据指示信息与接入网设备建立第二链路。
在一种可能的实施方式中,该方法还包括:终端设备和/或第一中继终端接收配置信息,配置信息用于配置第一链路与第二链路之间的对应关系或者,用于配置位于终端设备上的PDCP实体与位于第一中继终端上的RLC实体的关联关系。
需要说明的,终端设备可以通过空中接口接收接入网设备发送的配置信息,也可以通过第一中继链路接收接入网设备发送的配置信息,即配置信息先发给中继终端,然后中继终端转发给终端设备,在此不做限定。
其中,该配置信息可以用于配置第一链路,该配置信息包括以下至少一种:第二链路的标识、位于第一中继终端的RLC标识、逻辑信道标识、终端设备的标识、第一中继终端的标识、位于终端设备上的PDCP实体标识或第二链路对应的无线承载标识。该配置信息还可以用于配置一个映射关系,该映射关系包括第一链路的标识与第二链路标识;或,第一中继终端的标识与第二链路标识;或,第一中继终端的PC5接口标识与第二链路标识,用来表征两个链路的标识构成映射关系。
进一步的,该配置信息还可以包括以下至少之一种:第一无线承载配置信息、PDCP实体的配置信息、位于终端设备上的RLC实体的配置信息和位于第一中继终端上的RLC实体的配置信息。其中,第一无线承载配置信息可以包括PDCP实体的配置信息、位于终端设备上的RLC实体的配置信息、第二链路对应的无线承载标识、第二链路对应的无线承载类型等。PDCP实体的配置信息可以包括PDCP序列号、加密参数、头压缩参数等。位于终端设备上的RLC实体的配置信息或位于第一中继终端上的RLC实体的配置信息可以包括无线承载标识、逻辑信道号、RLC序列号、RLC模式等,RLC模式可以为确认模式(acknowledge mode,AM)模式,也可以为非确认(un acknowledge mode,UM)模式,还可以为透明(transparent mode,TM)模式。该第二链路对应的无线承载类型是用于进行重复传输的第二链路对应的无线承载的类型。进一步的,该第二链路对应的无线承载类型用于指示无线承载对应的PDCP实体位于终端设备上,且无线承载对应的RLC实体位于第一中继终端上。
在另外一种可能的实施方式中,该配置信息也可以用于配置第二链路,其中,该配置信息可以是第二无线承载配置信息。第二无线承载配置信息可以包括第二链路对应的无线承载标识或第二链路对应的无线承载类型。进一步,该第二无线承载配置信息还可以包括PC5接口标识或者第一链路标识。PC5接口标识或者第一链路标识可以用于指示对应的RLC实体与哪个第一链路对应,进一步的,第一链路和终端设备上的PDCP实体的对应关系已经通过其他配置信息建立好,所以相应的PDCP实体和RLC的对应关系也就建立好了。
第一中继终端可以通过空中接口接收接入网设备发送的配置信息,也可以通过终端设 备接收接入网设备发送的配置信息,即配置信息先发给终端设备,然后终端设备转发给中继终端,在此不做限定。进一步的,接入网设备可以向终端设备发送位于第一中继终端上的RLC实体的配置信息,终端设备再向处于空闲态或非激活态的第一中继终端发送位于第一中继终端上的RLC实体的配置信息。接入网设备也可以向终端设备发送第四指示信息,然后终端设备再向处于空闲态或非激活态的第一中继终端发送第四指示信息。在第一中继终端从空闲态或非激活态进入连接态后,接入网设备也可以向处于连接态的第一中继终端发送位于第一中继终端上的RLC实体的配置信息。
其中,空闲态、非激活态和连接态均用于描述第一中继终端的状态。处于空闲态的第一中继终端,空口的用户面承载和控制面承载,以及RAN-CN之间的用户面承载已被释放(release)。当第一中继终端发起呼叫或业务请求时,需要先建立空口的控制面承载,然后,建立RAN-CN之间的用户面承载,并在建立RAN-CN之间的用户面承载的同时配置空口的用户面承载。处于非激活态的第一中继终端,空口的用户面承载已被暂停(suspend),RAN-CN之间的用户面承载和控制面承载仍被维护。当第一中继终端发起呼叫或业务请求时,需要激活空口的用户面承载,并重用已有的RAN-CN之间的用户面承载和控制面承载。处于连接态的第一中继终端,空口的控制面承载已被建立,且已建立默认的用户面承载(包括空口的用户面承载和RAN-CN之间的用户面承载)。如果默认的用户面承载不能满足业务的QoS需求,则建立专用的用户面承载(包括空口的用户面承载和RAN-CN之间的用户面承载)。
终端设备可以根据该配置信息,将M个数据包通过重复传输的方式发送给接入网设备。
需要说明的,该配置信息还可以包括第七指示信息,第七指示信息用于指示用于重复传输的第一中继链路以及其他链路的初始状态。
可以理解的,第七指示信息可以指示部分链路的初始状态是激活态,另一部分链路的初始状态是非激活态,也可以指示全部链路的初始状态是激活态,还可以指示全部链路的初始状态是非激活态。
进一步的,在链路的状态是激活态时,终端设备可以在该链路上与接入网设备进行重复传输。比如,第一中继链路的状态是激活态,终端设备的PDCP实体可以向第一中继终端的RLC实体发送数据包。第一中继链路的状态是非激活态,终端设备的PDCP实体则不向第一中继终端的RLC实体发送数据包。
举例来说,若第一中继链路的状态是非激活态,接入网设备与终端设备之间的空中接口上的链路的状态是激活态,那么,终端设备可以与接入网设备在空中接口的链路上进行通信。若第一中继链路的状态是激活态,接入网设备与终端设备之间的空中接口上的链路的状态是非激活态,那么,终端设备可以通过第一中继链路与接入网设备进行通信。
可以看出,上述技术方案中,终端设备可以根据配置信息获知链路之间的对应关系,从而在后续过程中完成中继链路重复传输。
在一种可能的实施方式中,该方法还包括:终端设备接收接入网设备发送的控制信令,控制信令用于激活或去激活进行重复传输的至少一条链路;或,终端设备接收第一中继终端发送的第五指示信息,第五指示信息用于激活或去激活进行重复传输的至少一条链路。
其中,控制信令或第五指示信息可以包括PDCP控制协议数据单元(protocol data unit,PDU)、RLC控制PDU、MAC控制单元(control element,CE)、RRC信令或下行控制信息(downlink control information,DCI)。
具体来说,接入网设备可以通过空中接口向终端设备发送控制信令也可以接入网设备可以通过第一中继链路向终端设备发送控制信令。例如,若终端设备与接入网设备之间的链路质量大于第四预设质量门限,接入网设备可以通过空中接口向终端设备发送控制信令。若终端设备与接入网设备之间的链路质量小于第四预设质量门限,接入网设备可以通过第一中继链路向终端设备发送控制信令。另外,接入网设备还可以向第一中继终端发送控制信令,第一中继终端再基于控制信令向终端设备发送第五指示信息,第五指示信息可以是上述的控制信令或者也可以是第一中继终端和终端设备之间的接口信令。
其中,第四预设质量门限可以是协议预设的,也可以接入网设备实现决定的,接入网设备根据终端上报的下行链路质量和第四预设质量门限的比较结果,决定通过空中接口向终端设备发送控制信令或者通过第一中继链路向终端设备发送控制信令。
进一步的,终端设备还可以基于控制信令或第五指示信息,实现在不同传输模式上的切换。可以理解的,在本申请中,该传输模式包括:CA重复传输、包含一个中继终端的重复传输、包含多个中继终端的重复传输以及同时包含中继终端和CA重复传输的重复传输。其中CA重复传输是指终端设备和接入网设备通过空中接口的至少两条链路进行重复传输;包含一个中继终端的重复传输是指进行重复传输的至少一条链路是中继链路,且重复传输中只涉及一个中继终端;包含多个中继终端的重复传输是指进行重复传输的至少一条链路是中继链路,且重复传输中涉及多个中继终端,其中,至少一条中继链路可以分布在多个中继终端上;同时包含中继终端和CA重复传输的重复传输是指进行重复传输的至少两条链路通过空中接口传输,另外至少一条链路为中继链路。
可以理解的,控制信令或第五指示信息可以指示进行重复传输的部分链路的状态是激活态,另一部分链路的状态是非激活态,也可以指示进行重复传输的全部链路的状态是激活态,还可以指示进行重复传输的全部链路的状态是非激活态。
举例来说,终端设备与中继终端1有3条中继链路,终端设备与中继终端2有2条中继链路,终端设备与接入网设备有2条链路。具体的,参见图5,图5是本申请实施例提供的一种激活或去激活进行重复传输的至少一条链路的示意图。假设,中继终端1上的3条中继链路均处于激活状态,中继终端2上的中继链路4处于去激活状态,中继终端2上的中继链路5处于激活状态,终端设备与接入网设备的链路中,链路6处于去激活状态、链路7处于激活状态。假设控制信令或第五指示信息用于激活中继链路4、去激活中继终端1上的3条中继链路。那么,在终端设备接收控制信令或第五指示信息时,终端设备可以激活中继链路4、去激活中继终端1上的3条中继链路。
可以看出,上述技术方案中,接入网设备可以发送信令,来控制进行重复传输的每一条链路的状态是激活还是去激活,包括中继链路和非中继链路。
在一种可能的实施方式中,该方法还包括:在满足第一预设条件时,终端设备激活进行重复传输的至少一条链路;
第一预设条件包括以下至少一个:第一链路的链路质量小于或等于第一预设质量门限;或,第二链路的链路质量小于或等于第二预设质量门限;或,第一数据包传输的误码率大于或等于预设误码率门限;或,第一数据包的重传(repetition)次数大于或等于预设重传次数。
其中,第二预设质量门限可以是协议中预设的,也可以是接入网设备发送给终端设备的配置信息中携带的。
另外,在满足第二预设条件时,终端设备可以去激活进行重复传输的至少一条链路;第二预设条件包括以下至少一个:第一链路的链路质量大于或等于第一预设质量门限;或,第二链路的链路质量大于或等于第二预设质量门限;或,第一数据包传输的误码率小于或等于预设误码率门限;或,第一数据包的重传次数小于或等于预设重传次数。
可以看出,上述技术方案中,终端设备可以根据预设条件自行决定是否激活或去激活进行重复传输的至少一条链路。
下面介绍终端设备与接入网设备之间传输下行数据的过程。具体的,参见图6,图6是本申请实施例提供的又一种通信方法的示意图。结合图2,图6中的终端设备为图2中的终端设备20,图6中的接入网设备为图2中的接入网设备21,图6中的第一中继终端可以为图2中的中继终端22,图6中的第二中继终端可以为图2中的中继终端22,图6中的核心网设备可以为图2中的核心网设备23。如图6所示,该方法包括但不限于以下步骤:
601、终端设备接收接入网设备通过重复传输的方式发送的J个数据包。
其中,J为大于1的整数。
可以理解的,接入网设备可以确定第二数据包,将第二数据包复制得到J个数据包,将J个数据包通过重复传输的方式发送给终端设备。其中,该第二数据包可以为PDCP层的数据包,也可以为RLC层的数据包,还可以为MAC层的数据包。进一步的,第二数据包可以为TCP/IP数据包。可以理解的,在第二数据包为PDCP层的数据包时,接入网设备可以在接入网设备的PDCP层将第二数据包进行复制;在第二数据包为RLC层的数据包时,接入网设备可以在接入网设备的RLC层将第二数据包进行复制;在第二数据包为MAC层的数据包时,接入网设备可以在接入网设备的MAC层对第二数据包进行复制;在第二数据包为TCP/IP数据包时,接入网设备可以在接入网设备的传输层对第二数据包进行复制。
其中,终端设备接收接入网设备通过重复传输的方式发送的J个数据包,包括:
终端设备通过空中接口接收接入网设备发送的J个数据包中的K个数据包,K为大于0且小于J的整数;
终端设备通过第一中继链路接收J个数据包中的J-K个数据包,第一中继链路包括第一链路和第二链路,第一链路为终端设备与第一中继终端之间的链路,第二链路为第一中继终端与接入网设备之间的链路。
其中,K例如可以为2、3、4、5、6、13、14等数值。
其中,关于空中接口,可以参考图3中的步骤301关于空中接口的内容,在此不加赘述。
其中,终端设备通过空中接口接收接入网设备发送的J个数据包中的K个数据包,包括:终端设备通过空中接口上的P条链路接收接入网设备发送的K个数据包。即,终端设备通过P个载波接收接入网设备发送的K个数据包。进一步的,该P还可以为该K,也可以为大于该K的整数,在此不做限制。
其中,关于终端设备与第一中继终端之间的链路,可以参考图3中的步骤301关于终端设备与第一中继终端之间的链路的内容,在此不加赘述。
其中,在该J个数据包为J个PDCP层的数据包时,接入网设备可以通过重复传输的 方式发送J个PDCP层的数据包。具体的,结合图4,关于终端设备涉及的协议栈,可以图3中的步骤301关于终端设备涉及的协议栈的内容,在此不加赘述。关于第一中继终端涉及的协议栈,可以图3中的步骤301关于第一中继终端涉及的协议栈的内容,在此不加赘述。关于接入网设备涉及的协议栈,可以图3中的步骤301关于接入网设备涉及的协议栈的内容,在此不加赘述。
进一步的,接入网设备可以将J个PDCP层的数据包中K个PDCP层的数据包分别通过接入网设备的RLC层、MAC层、PHY层处理,得到K个PHY层的数据包,并通过空中接口将K个PHY层的数据包发送给终端设备。在终端设备接收K个PHY层的数据包时,终端设备可以通过终端设备的PHY层、MAC层、RLC层处理,得到K个RLC层的数据包。
另外,接入网设备还可以通过第一中继终端向终端设备发送J个PDCP层的数据包中的J-K个PDCP层的数据包。具体的,接入网设备可以将J-K个PDCP层的数据包分别通过接入网设备的RLC层、MAC层、PHY层处理,得到J-K个PHY层的数据包,并将J-K个PHY层的数据包发送给第一中继终端。进一步的,第一中继终端可以通过第一中继终端的RLC层、MAC层、PHY层对J-K个PHY层的数据包进行处理,得到第一中继终端对应的J-K个RLC层的数据包。接着,第一中继终端可以通过第一链路对应的协议栈对第一中继终端对应的J-K个RLC层的数据包进行处理,得到第一链路对应的J-K个PHY层的数据包。其中,关于第一链路对应的协议栈,可以图3中的步骤301关于第一链路对应的协议栈的内容,在此不加赘述。可以理解的,在第一链路对应的协议栈包括RLC层、MAC层和PHY层时,此时,第一中继终端可以通过第一链路对应的协议栈对第一中继终端对应的J-K个RLC层的数据包进行处理,得到第一链路对应的J-K个PHY层的数据包。进一步的,第一中继终端可以将第一链路对应的J-K个PHY层的数据包发送给终端设备。在终端设备接收第一链路对应的J-K个PHY层的数据包时,可以通过第一链路对应的协议栈对第一链路对应的J-K个PHY层的数据包进行处理,得到J-K个RLC层的数据包。
进一步的,结合图4,终端设备可以在终端设备的PDCP层对K个RLC层的数据包以及J-K个RLC层的数据包进行排序和/或去重后,进一步递交给终端设备的PDCP层的上层。
602、接入网设备接收终端设备发送的请求信息。
其中,关于请求信息,可以参考图3中的步骤301关于请求信息的内容,在此不加赘述。
可以看出,上述技术方案中,通过空中接口传输至少一个数据包,以及通过第一中继链路传输至少一个数据包,实现了将同一数据包复制并通过不同的路径传输,解决了在有遮挡物的情况下如何提高数据传输的可靠性的问题。另外,在已有中继链路质量较差的时,通过中继链路的动态更新,避免了在有遮挡物的情况下由于链路质量差导致的中继链路重复传输无法进行的问题,也避免了在中继链路重复传输无法进行时导致的数据传输不可靠的问题。
可选的,J个数据包属于第二业务,该方法还包括:接入网设备接收核心网设备发送的第六指示信息;或,接入网设备根据终端设备与核心网设备建立的协议数据单元会话,确定通过重复传输的方式发送第二业务的业务数据;
其中,第六指示信息包括以下至少一种:第二业务的类型标识、第二业务的服务质量 QoS参数,QoS流的类型和协议数据单元会话类型。
其中,第二业务的服务质量QoS参数包括QOS分类标识(QoS classification identifier,QCI),分配和保持优先级(ARP)等。与QOS参数不同,QoS流的类型用于指示QoS流承载第二业务,该QoS流的类型用于指示基站通过中继重复传输的方式传输该QoS流承载的第二业务;协议数据单元会话类型用于指示协议数据单元会话用于承载第二业务,该协议数据单元会话类型用于指示基站通过中继重复传输的方式传输该协议数据单元会话承载的第二业务。
可以理解的,接入网设备可以基于第六指示信息确定通过重复传输的方式发送第二业务的业务数据。进一步的,接入网设备可以基于协议预设规则和第六指示信息确定通过重复传输的方式发送第二业务的业务数据。
可以看出,上述技术方案中,实现了接入网设备可以判断需要采用相应传输方式传输业务对应的业务数据,例如采用空中接口和中继链路进行重复传输的传输方式进行数据传输。
在一种可能的实施方式中,该方法还包括:
终端设备向接入网设备发送能力信息。
其中,关于能力信息,可以参考图3中的步骤302关于能力信息的内容,在此不加赘述。
可以看出,上述技术方案中,实现了终端设备能力信息的上报,使得接入网设备可以根据终端设备的能力判断该终端设备支持何种传输方式,进而决定采用何种传输方式与终端设备进行通信。
在一种可能的实施方式中,该方法还包括:终端设备向接入网设备发送第二指示信息。
其中,关于第二指示信息,可以参考图3中的步骤302关于第二指示信息的内容,在此不加赘述。
可以看出,上述技术方案中,终端设备将满足条件的候选中继终端上报给接入网设备,使得接入网设备可以基于终端设备上报的指示信息为终端设备选择合适的中继终端来进行重复传输。
在一种可能的实施方式中,该方法还包括:终端设备接收接入网设备发送的第三指示信息。
其中,关于第三指示信息,可以参考图3中的步骤302关于第三指示信息的内容,在此不加赘述。
可以看出,上述技术方案中,接入网设备将选好的中继终端或者中继链路的相关信息发送给终端设备,终端设备可以知道通过哪个中继终端或者中继链路进行重复传输。
在一种可能的实施方式中,该方法还包括:终端设备向第一中继终端发送第四指示信息。
其中,关于第四指示信息,可以参考图3中的步骤302关于第四指示信息的内容,在此不加赘述。
可以看出,上述技术方案中,通过向中继终端发送指示信息,让中继终端可以根据指示信息与接入网设备建立第二链路。
在一种可能的实施方式中,该方法还包括:终端设备接收配置信息。
其中,关于配置信息,可以参考图3中的步骤302关于配置信息的内容,在此不加赘 述。
可以看出,上述技术方案中,终端设备可以根据配置信息获知链路之间的对应关系,从而在后续过程中完成中继链路重复传输。
在一种可能的实施方式中,该方法还包括:终端设备接收接入网设备发送的控制信令;或,终端设备接收第一中继终端发送的第五指示信息。
其中,关于控制信令,可以参考图3中的步骤302关于控制信令的内容,在此不加赘述。关于第五指示信息,可以参考图3中的步骤302关于第五指示信息的内容,在此不加赘述。
可以看出,上述技术方案中,接入网设备可以发送信令,来控制进行重复传输的每一条链路的状态是激活还是去激活,包括中继链路和非中继链路。
在一种可能的实施方式中,该方法还包括:在满足第一预设条件时,终端设备激活进行重复传输的至少一条链路。
其中,关于第一预设条件,可以参考图3中的步骤302关于第一预设条件的内容,在此不加赘述。
另外,在满足第二预设条件时,终端设备可以去激活进行重复传输的至少一条链路。
其中,关于第二预设条件,可以参考图3中的步骤302关于第二预设条件的内容,在此不加赘述。
可以看出,上述技术方案中,终端设备可以根据预设条件自行决定是否激活/去激活进行重复传输的至少一条链路。
下面介绍又一种通信架构。参见图7,图7本申请实施例提供又一种通信架构。该通信架构包括终端设备70、第一中继终端71和接入网设备72。其中,终端设备70可应用于上述图3至图6所示的方法中,第一中继终端71可应用于上述图3至图6所示的方法中,接入网设备72可应用于上述图3至图6所示的方法中。
如图7所示,该终端设备包括处理模块701和收发模块702;该第一中继终端71包括收发模块711;该接入网设备72包括收发模块721。
第一方面,处理模块701,用于确定第一数据包,将第一数据包复制得到M个数据包,M为大于1的整数;收发模块702将M个数据包通过重复传输的方式发送给接入网设备;
其中,在将M个数据包通过重复传输的方式发送给接入网设备时,收发模块702,用于通过空中接口向接入网设备发送M个数据包中的N个数据包,N为大于0且小于M的整数;通过第一中继链路向接入网设备发送M个数据包中的M-N个数据包,第一中继链路包括第一链路和第二链路,第一链路为终端设备与第一中继终端之间的链路,第二链路为第一中继终端与接入网设备之间的链路;
当第一链路的链路质量小于或等于第一预设门限时,收发模块702,用于向接入网设备发送请求信息,请求信息用于请求将第一中继链路更新为第二中继链路,第二中继链路包括第三链路和第四链路,第三链路为终端设备与第二中继终端之间的链路,第四链路为第二中继终端与接入网设备之间的链路。
其中,关于第一数据包,可以参考图3中的步骤301关于第一数据包的内容,在此不加赘述。关于空中接口,可以参考图3中的步骤301关于空中接口的内容,在此不加赘述。关于终端设备与第一中继终端之间的链路,可以参考图3中的步骤301关于终端设备与第 一中继终端之间的链路的内容,在此不加赘述。关于请求信息,可以参考图3中的步骤302关于请求信息的内容,在此不加赘述。关于第一预设门限,可以参考图3中的步骤302关于第一预设门限的内容,在此不加赘述。
可以看出,上述技术方案中,对数据包进行复制,将复制得到的至少一个数据包通过空中接口传输,以及将复制得到的至少一个数据包通过第一中继链路传输,实现将同一数据包复制并通过不同的路径传输,减少了由于遮挡物而造成数据传输不可靠问题的产生。另外,在已有中继链路质量较差的时,通过中继链路的动态更新,避免了在有遮挡物的情况下由于链路质量差导致的中继链路重复传输无法进行的问题,也避免了在中继链路重复传输无法进行时导致的数据传输不可靠的问题。
第二方面,收发模块702,用于接收接入网设备通过重复传输的方式发送的J个数据包,J为大于1的整数;
其中,在接收接入网设备通过重复传输的方式发送的J个数据包时,收发模块702,用于通过空中接口接收接入网设备发送的J个数据包中的K个数据包,K为大于0且小于J的整数;通过第一中继链路接收J个数据包中的J-K个数据包,第一中继链路包括第一链路和第二链路,第一链路为终端设备与第一中继终端之间的链路,第二链路为第一中继终端与接入网设备之间的链路;
当第一链路的链路质量小于或等于第一预设门限时,收发模块702,用于向接入网设备发送请求信息,请求信息用于请求将第一中继链路更新为第二中继链路,第二中继链路包括第三链路和第四链路,第三链路为终端设备与第二中继终端之间的链路,第四链路为第二中继终端与接入网设备之间的链路。
其中,关于J个数据包,可以参考图6中的步骤601关于J个数据包的内容,在此不加赘述。关于重复传输,可以参考图6中的步骤601关于重复传输的内容,在此不加赘述。关于空中接口,可以参考图6中的步骤601关于空中接口的内容,在此不加赘述。关于终端设备与第一中继终端之间的链路,可以参考图6中的步骤601关于终端设备与第一中继终端之间的链路的内容,在此不加赘述。关于请求信息,可以参考图6中的步骤602关于请求信息的内容,在此不加赘述。关于第一预设门限,可以参考图3中的步骤302关于第一预设门限的内容,在此不加赘述。
可以看出,上述技术方案中,通过空中接口传输至少一个数据包,以及通过第一中继链路传输至少一个数据包,实现了将同一数据包复制并通过不同的路径传输,减少了由于遮挡物而造成数据传输不可靠问题的产生。另外,在已有中继链路质量较差的时,通过中继链路的动态更新,避免了在有遮挡物的情况下由于链路质量差导致的中继链路重复传输无法进行的问题,也避免了在中继链路重复传输无法进行时导致的数据传输不可靠的问题。
进一步的,关于上述收发模块701和处理模块702更详细的描述,可参考上述方法实施例中的相关描述,在此不再说明。
第三方面,收发模块721,用于接收终端设备通过重复传输的方式发送的M个数据包,M为大于1的整数;
其中,在接收终端设备通过重复传输的方式发送的M个数据包时,收发模块721,用于通过空中接口接收终端设备发送的M个数据包中的N个数据包,M个数据包通过重复传输的方式发送,N为大于0且小于M的整数;通过第一中继链路接收M个数据包中的M-N个数据包,第一中继链路包括第一链路和第二链路,第一链路为终端设备与第一中继 终端之间的链路,第二链路为第一中继终端与接入网设备之间的链路;
收发模块721,用于接收请求信息,请求信息用于请求将第一中继链路更新为第二中继链路,第二中继链路包括第三链路和第四链路,第三链路为终端设备与第二中继终端之间的链路,第四链路为第二中继终端与接入网设备之间的链路。
其中,关于第一数据包,可以参考图3中的步骤301关于第一数据包的内容,在此不加赘述。关于空中接口,可以参考图3中的步骤301关于空中接口的内容,在此不加赘述。关于终端设备与第一中继终端之间的链路,可以参考图3中的步骤301关于终端设备与第一中继终端之间的链路的内容,在此不加赘述。关于请求信息,可以参考图3中的步骤302关于请求信息的内容,在此不加赘述。关于第一预设门限,可以参考图3中的步骤302关于第一预设门限的内容,在此不加赘述。
可以看出,上述技术方案中,通过空中接口传输至少一个数据包,以及通过第一中继链路传输至少一个数据包,实现了将同一数据包复制并通过不同的路径传输,减少了由于遮挡物而造成数据传输不可靠问题的产生。另外,在已有中继链路质量较差的时,通过中继链路的动态更新,避免了在有遮挡物的情况下由于链路质量差导致的中继链路重复传输无法进行的问题,也避免了在中继链路重复传输无法进行时导致的数据传输不可靠的问题。
第四方面,收发模块721,用于通过重复传输的方式向终端设备发送J个数据包,J为大于1的整数;
其中,在通过重复传输的方式向终端设备发送J个数据包时,收发模块721,用于通过空中接口向终端设备发送J个数据包中的K个数据包,J个数据包通过重复传输的方式发送,J为大于1的整数,K为大于0且小于J的整数;通过第一中继链路将J个数据包中的J-K个数据包发送给终端设备,第一中继链路包括第一链路和第二链路,第一链路为终端设备与第一中继终端之间的链路,第二链路为第一中继终端与接入网设备之间的链路;
收发模块721,用于接收请求信息,请求信息用于请求将第一中继链路更新为第二中继链路,第二中继链路包括第三链路和第四链路,第三链路为终端设备与第二中继终端之间的链路,第四链路为第二中继终端与接入网设备之间的链路。
其中,关于J个数据包,可以参考图6中的步骤601关于J个数据包的内容,在此不加赘述。关于空中接口,可以参考图6中的步骤601关于空中接口的内容,在此不加赘述。关于终端设备与第一中继终端之间的链路,可以参考图6中的步骤601关于终端设备与第一中继终端之间的链路的内容,在此不加赘述。关于请求信息,可以参考图6中的步骤602关于请求信息的内容,在此不加赘述。关于第一预设门限,可以参考图3中的步骤302关于第一预设门限的内容,在此不加赘述。
可以看出,上述技术方案中,通过空中接口传输至少一个数据包,以及通过第一中继链路传输至少一个数据包,实现了将同一数据包复制并通过不同的路径传输,减少了由于遮挡物而造成数据传输不可靠问题的产生。另外,在已有中继链路质量较差的时,通过中继链路的动态更新,避免了在有遮挡物的情况下由于链路质量差导致的中继链路重复传输无法进行的问题,也避免了在中继链路重复传输无法进行时导致的数据传输不可靠的问题。
进一步的,关于上述收发模块721更详细的描述,可参考上述方法实施例中的相关描述,在此不再说明。
进一步的,参见图8,图8是图7中终端设备70、第一中继终端71、接入网设备72 的结构示意图,如图8所示,终端设备70可以包括第一PDCP实体8011、第一RLC实体8012、第二RLC实体8013、第一MAC实体8014、第二MAC实体8015、第一PHY实体8016、第二PHY实体8017。其中,第一PDCP实体8011与第一RLC实体8012连接,第一RLC实体8012与第一MAC实体8014连接、第一MAC实体8014与第一PHY实体8016连接。第一PDCP实体8011与第二RLC实体8013之间有关联关系。第二RLC实体8013与第二MAC实体8015连接,第二MAC实体8015与第二PHY实体8017连接。可以理解的,第二RLC实体8013可以包括至少一个第二RLC实体,第二MAC实体8015可以包括至少一个第二MAC实体,第二PHY实体8017可以包括至少一个第二PHY实体。
进一步的,结合图8,该第一中继终端71可以包括第三RLC实体8111、第四RLC实体8112、第三MAC实体8113、第四MAC实体8114、第三PHY实体8115和第四PHY实体8116。其中,第一PDCP实体7011与第三RLC实体8111之间有关联关系,第三RLC实体8111与第四RLC实体8112之间有关联关系。第三RLC实体8111与第三MAC实体8113连接,第三MAC实体8113与第三PHY实体8115连接。第四RLC实体8112与第四MAC实体8114连接,第四MAC实体8114与第四PHY实体8116连接。可以理解的,第三RLC实体8111可以包括至少一个第三RLC实体,第三MAC实体8113可以包括至少一个第三MAC实体,第三PHY实体8115可以包括至少一个第三PHY实体。
接入网设备72可以包括第二PDCP实体8211、第五RLC实体8212、第六RLC实体8213、第五MAC实体8214、第六MAC实体8215、第五PHY实体8216、第六PHY实体8217。其中,第二PDCP实体8211与第五RLC实体8212连接,第五RLC实体8212与第五MAC实体8214连接、第五MAC实体8214与第五PHY实体8216连接。第二PDCP实体8211与第六RLC实体8213之间有关联关系。第六RLC实体8213与第六MAC实体8215连接,第六MAC实体8215与第六PHY实体8217连接。可以理解的,第六RLC实体8213可以包括至少一个第六RLC实体,第六MAC实体8215可以包括至少一个第六MAC实体,第六PHY实体8217可以包括至少一个第六PHY实体。
进一步的,结合图8,在第一数据包为PDCP层的数据包时,M个数据包即M个PDCP层的数据包。在将M个数据包通过重复传输的方式发送给接入网设备时,第一PDCP实体8011,用于将M个PDCP层的数据包中的N个PDCP层的数据包递交给第一RLC实体8012,以及将M个PDCP层的数据包中的M-N个PDCP层的数据包递交给第二RLC实体8013。
进一步的,第一RLC实体8012用于对N个PDCP层的数据包进行处理,得到N个RLC层的数据包,并将N个RLC层的数据包递交给第一MAC实体8014;第一MAC实体8014用于对N个RLC层的数据包进行处理,得到N个MAC层的数据包,并将N个MAC层的数据包递交给第一PHY实体8016;第一PHY实体8016用于对N个MAC层的数据包进行处理,得到N个PHY层的数据包。进一步的,收发模块702用于将N个PHY层的数据包通过空中接口发送给接入网设备72。接入网设备72的收发模块721用于接收N个PHY层的数据包。进一步的,第五PHY实体8216用于将N个PHY层的数据包递交给第五MAC实体8214;第五MAC实体8214用于对N个PHY层的数据包进行处理,得到N个MAC层的数据包,并将N个MAC层的数据包递交给第五RLC实体8212;第五RLC实体8212用于对N个MAC层的数据包进行处理,得到N个RLC层的数据包,并将N个RLC层的数据包递交给第二PDCP实体8211。
进一步的,第二RLC实体8013用于对M-N个PDCP层的数据包进行处理,得到M-N 个RLC层的数据包,并将M-N个RLC层的数据包递交给第二MAC实体8015;第二MAC实体8015用于对M-N个RLC层的数据包进行处理,得到M-N个MAC层的数据包,并将M-N个MAC层的数据包第二PHY实体8017;第二PHY实体8017用于对M-N个MAC层的数据包进行处理,得到M-N个PHY层的数据包。进一步的,收发模块702用于并将M-N个PHY层的数据包发送给第一中继终端71。第一中继终端71的收发模块711用于接收M-N个PHY层的数据包。进一步的,第三PHY实体8115用于将M-N个PHY层的数据包递交给第三MAC实体8113;第三MAC实体8113用于对M-N个PHY层的数据包进行处理,得到M-N个MAC层的数据包,并将M-N个MAC层的数据包递交给第三RLC实体8111;由于第三RLC实体8111与第四RLC实体8112之间有关联关系,因此,第三RLC实体将处理后的M-N个数据包递交给第四RLC实体8112,第四RLC实体8112用于对M-N个数据包进行处理,得到M-N个RLC层的数据包,并将M-N个RLC层的数据包递交给第四MAC实体8114;第四MAC实体8114用于对M-N个RLC层的数据包进行处理,得到M-N个MAC层的数据包,并将M-N个MAC层的数据包递交给第四PHY实体8116;第四PHY实体8116用于对M-N个MAC层的数据包进行处理,得到M-N个PHY层的数据包。进一步的,收发模块711用于将M-N个PHY层的数据包发送给接入网设备72。接入网设备72的收发模块721用于接收M-N个PHY层的数据包。进一步的,第六PHY实体8217用于将M-N个PHY层的数据包递交给第六MAC实体8215;第六MAC实体8215用于对M-N个PHY层的数据包进行处理,得到M-N个MAC层的数据包,并将M-N个MAC层的数据包递交给第六RLC实体8213;第六RLC实体8213用于对M-N个MAC层的数据包进行处理,得到M-N个RLC层的数据包,并将M-N个RLC层的数据包递交给第二PDCP实体8211。
进一步的,第二PDCP实体8211可以对N个RLC层的数据包、M-N个RLC层的数据包进行排序和/或去重处理后,进一步递交给PDCP层的上层对应的实体。
需要说明的,在该J个数据包为J个PDCP层的数据包时,收发模块702用于通过重复传输的方式发送J个PDCP层的数据包。具体的,接入网设备的第二PDCP实体8211,用于将J个PDCP层的数据包中K个PDCP层的数据包递交给第五RLC实体8212,以及将J个PDCP层的数据包中J-K个PDCP层的数据包递交给第六RLC实体8213。
进一步的,第五RLC实体8212用于对K个PDCP层的数据包进行处理,得到K个RLC层的数据包,并将K个RLC层的数据包递交给第五MAC实体8214;第五MAC实体8214用于对K个RLC层的数据包进行处理,得到K个MAC层的数据包,并将K个MAC层的数据包递交给第五PHY实体8216;第五PHY实体8216用于对K个MAC层的数据包进行处理,得到K个PHY层的数据包。进一步的,收发模块721用于通过空中接口发送给终端设备70。终端设备70的收发模块702用于接收K个PHY层的数据包。进一步的,第一PHY实体8016用于将K个PHY层的数据包递交给第一MAC实体8014;第一MAC实体8014用于对K个PHY层的数据包进行处理,得到K个MAC层的数据包,并将K个MAC层的数据包递交给第一RLC实体8012;第一RLC实体8012用于对K个MAC层的数据包进行处理,得到K个RLC层的数据包,并将K个RLC层的数据包递交给第一PDCP实体8011。
进一步的,第六RLC实体8213用于对J-K个PDCP层的数据包进行处理,得到J-K个RLC层的数据包,并将J-K个RLC层的数据包递交给第六MAC实体8215;第六MAC 实体8215用于对J-K个RLC层的数据包进行处理,得到J-K个MAC层的数据包,并将J-K个MAC层的数据包递交给第六PHY实体8217;第六PHY实体8217用于对J-K个MAC层的数据包进行处理,得到J-K个PHY层的数据包。进一步的,收发模块721用于将J-K个PHY层的数据包发送给第一中继终端71。第一中继终端71的收发模块711用于接收J-K个PHY层的数据包。进一步的,第四PHY实体8116用于将J-K个PHY层的数据包递交给第四MAC实体8114;第四MAC实体8112用于对J-K个PHY层的数据包进行处理,得到J-K个MAC层的数据包,并将J-K个MAC层的数据包递交给第四RLC实体8112;由于第三RLC实体8111与第四RLC实体8112之间有关联关系,因此,第四RLC实体将处理后的J-K个数据包递交给第三RLC实体8111,第三RLC实体8111用于对J-K个数据包进行处理,得到J-K个RLC层的数据包,并将J-K个RLC层的数据包传递给第三MAC实体8113;第三MAC实体8113用于对J-K个RLC层的数据包进行处理,得到J-K个MAC层的数据包,并将J-K个MAC层的数据包传递给第三PHY实体8115;第三PHY实体8115用于对J-K个MAC层的数据包进行处理,得到J-K个PHY层的数据包。进一步的,收发模块711用于将J-K个PHY层的数据包发送给终端设备70。终端设备70的收发模块702用于接收J-K个PHY层的数据包。进一步的,第二PHY实体8017用于将J-K个PHY层的数据包传递给第二MAC实体8015;第二MAC实体8015用于对J-K个PHY层的数据包进行处理,得到J-K个MAC层的数据包,并将J-K个MAC层的数据包传递给第二RLC实体8013;第二RLC实体8013用于对J-K个MAC层的数据包进行处理,得到J-K个RLC层的数据包,并将J-K个RLC层的数据包传递给第一PDCP实体8011。
进一步的,第一PDCP实体8011用于对K个RLC层的数据包以及J-K个RLC层的数据包进行排序和/或去重处理后,进一步递交给PDCP层的上层对应的实体。
在一种可能的实施方式中,当终端设备或接入网设备为芯片时,收发模块701或收发模块721可以是接口、管脚或电路等。接口可用于输入待处理的数据至处理器,并可以向外输出处理器的处理结果。具体实现中,接口可以是通用输入输出(general purpose input output,GPIO)接口,可以和多个外围设备(如显示器(LCD)、摄像头(camara)、射频(radio frequency,RF)模块、天线等等)连接。接口通过总线与处理器相连。比如,接口可以用于将M个数据包通过重复传输的方式发送给接入网设备。
处理模块702可以是处理器,该处理器可以执行存储模块存储的计算机执行指令,以使该芯片执行图3至图6实施例涉及的方法。
进一步的,处理器可以包括控制器、运算器和寄存器。示例性的,控制器主要负责指令译码,并为指令对应的操作发出控制信号。运算器主要负责执行定点或浮点算数运算操作、移位操作以及逻辑操作等,也可以执行地址运算和转换。寄存器主要负责保存指令执行过程中临时存放的寄存器操作数和中间操作结果等。具体实现中,处理器的硬件架构可以是专用集成电路(application specific integrated circuits,ASIC)架构、无互锁管道阶段架构的微处理器(microprocessor without interlocked piped stages architecture,MIPS)架构、进阶精简指令集机器(advanced RISC machines,ARM)架构或者网络处理器(network processor,NP)架构等等。处理器可以是单核的,也可以是多核的。
该存储模块可以为该芯片内的存储模块,如寄存器、缓存等。存储模块也可以是位于芯片外部的存储模块,如只读存储器(Read Only Memory,ROM)或可存储静态信息和指 令的其他类型的静态存储设备,随机存取存储器(Random Access Memory,RAM)等。
需要说明的,处理器、接口各自对应的功能既可以通过硬件设计实现,也可以通过软件设计来实现,还可以通过软硬件结合的方式来实现,这里不作限制。
图9是本申请实施例提供的一种简化的终端设备的结构示意图。便于理解和图示方便,图9中,终端设备以手机作为例子。如图9所示,终端设备包括至少一个处理器,还可以包括射频电路、天线以及输入输出装置。其中,处理器可用于对通信协议以及通信数据进行处理,还可以用于对终端设备进行控制,执行软件程序,处理软件程序的数据等。该终端设备还可以包括存储器,存储器主要用于存储软件程序和数据,这些涉及的程序可以在该通信装置出厂时即装载再存储器中,也可以在后期需要的时候再装载入存储器。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图9中仅示出了一个存储器和处理器。在实际的终端设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端设备的接收单元和发送单元(也可以统称为收发单元),将具有处理功能的处理器视为终端设备的处理单元。如图9所示,终端设备包括接收模块31、处理模块32和发送模块33。接收模块31也可以称为接收器、接收机、接收电路等,发送模块33也可以称为发送器、发射器、发射机、发射电路等。处理模块32也可以称为处理器、处理单板、处理装置等。
例如,处理模块32用于执行图3所示实施例中的步骤301中终端设备的功能。
图10是本申请实施例提供的一种简化的接入网设备的结构示意图。接入网设备包括射频信号收发及转换部分以及42部分,该射频信号收发及转换部分又包括接收模块41部分和发送模块43部分(也可以统称为收发模块)。射频信号收发及转换部分主要用于射频信号的收发以及射频信号与基带信号的转换;42部分主要用于基带处理,对接入网设备进行控制等。接收模块41也可以称为接收器、接收机、接收电路等,发送模块43也可以称为发送器、发射器、发射机、发射电路等。42部分通常是接入网设备的控制中心,通常可以称为处理模块,用于控制接入网设备执行上述图3至图6中关于接入网设备所执行的步骤。具体可参见上述相关部分的描述。
42部分可以包括一个或多个单板,每个单板可以包括一个或多个处理器和一个或多个存储器,处理器用于读取和执行存储器中的程序以实现基带处理功能以及对接入网设备的控制。若存在多个单板,各个单板之间可以互联以增加处理能力。作为一中可选的实施方式,也可以是多个单板共用一个或多个处理器,或者是多个单板共用一个或多个存储器, 或者是多个单板同时共用一个或多个处理器。
例如,接收模块41用于执行图3所示实施例中的步骤302中接入网设备的功能。
本申请实施例还提供一种终端设备/接入网设备,该终端设备/接入网设备用于执行上述通信方法。上述通信中的部分或全部可以通过硬件来实现也可以通过软件来实现。
可选的,该终端设备/接入网设备在具体实现时可以是芯片或者集成电路。
可选的,当上述实施例的通信方法中的部分或全部通过软件来实现时,终端设备/接入网设备包括:至少一个处理器,用于执行程序,当程序被执行时,使得终端设备/接入网设备可以实现上述实施例提供的通信方法,该终端设备/接入网设备还可以包括存储器,用于存储必要的程序,这些涉及的程序可以在该终端设备/接入网设备出厂时即装载再存储器中,也可以在后期需要的时候再装载入存储器。
可选的,上述存储器可以是物理上独立的单元,也可以与处理器集成在一起。
可选的,当上述实施例的通信方法中的部分或全部通过软件实现时,终端设备/接入网设备也可以只包括至少一个处理器。用于存储程序的存储器位于终端设备/接入网设备之外,处理器通过电路/电线与存储器连接,用于读取并执行存储器中存储的程序。
每个处理器可以是中央处理器(central processing unit,CPU),网络处理器(network processor,NP)或者CPU和NP的组合。
可选的,每个处理器可以包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。
存储器可以包括易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM);存储器也可以包括非易失性存储器(non-volatile memory),例如快闪存储器(flash memory),硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD);存储器还可以包括上述种类的存储器的组合。
本申请还提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序,当该计算机程序被运行时,实现如图3至图6任一可能的实现方式中的方法。
以上的具体实施方式,对本申请的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上仅为本申请的具体实施方式而已,并不用于限定本申请的保护范围,凡在本申请的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本申请的保护范围之内。
Claims (29)
- 一种通信方法,其特征在于,应用于终端设备,包括:确定第一数据包,将所述第一数据包复制得到M个数据包,将所述M个数据包通过重复传输的方式发送给接入网设备,所述M为大于1的整数;其中,所述将所述M个数据包通过重复传输的方式发送给接入网设备,包括:通过空中接口向所述接入网设备发送所述M个数据包中的N个数据包,所述N为大于0且小于所述M的整数;通过第一中继链路向所述接入网设备发送所述M个数据包中的M-N个数据包,所述第一中继链路包括第一链路和第二链路,所述第一链路为所述终端设备与第一中继终端之间的链路,所述第二链路为所述第一中继终端与所述接入网设备之间的链路;当所述第一链路的链路质量小于或等于第一预设门限时,向所述接入网设备发送请求信息,所述请求信息用于请求将所述第一中继链路更新为第二中继链路,所述第二中继链路包括第三链路和第四链路,所述第三链路为所述终端设备与第二中继终端之间的链路,所述第四链路为所述第二中继终端与所述接入网设备之间的链路。
- 根据权利要求1所述的方法,其特征在于,所述第一数据包属于第一业务,所述方法还包括:向所述接入网设备发送第一指示信息;其中,所述第一指示信息包括以下至少一种:所述第一业务的类型标识、所述第一业务的服务质量QoS需求、所述终端设备的类型、所述终端设备的位置信息、所述第一链路的链路质量。
- 一种通信方法,其特征在于,应用于终端设备,包括:接收接入网设备通过重复传输的方式发送的J个数据包,所述J为大于1的整数;其中,所述接收接入网设备通过重复传输的方式发送的J个数据包,包括:通过空中接口接收所述接入网设备发送的所述J个数据包中的K个数据包,所述K为大于0且小于所述J的整数;通过第一中继链路接收所述J个数据包中的J-K个数据包,所述第一中继链路包括第一链路和第二链路,所述第一链路为所述终端设备与第一中继终端之间的链路,所述第二链路为所述第一中继终端与所述接入网设备之间的链路;当所述第一链路的链路质量小于或等于第一预设门限时,向所述接入网设备发送请求信息,所述请求信息用于请求将所述第一中继链路更新为第二中继链路,所述第二中继链路包括第三链路和第四链路,所述第三链路为所述终端设备与第二中继终端之间的链路,所述第四链路为所述第二中继终端与所述接入网设备之间的链路。
- 根据权利要求1或3所述的方法,其特征在于,所述请求信息包括以下至少一种:所述第二中继终端的标识、所述终端设备与所述第二中继终端之间的PC5接口标识、所述第三链路的链路标识、所述第三链路的链路质量。
- 根据权利要求1或3所述的方法,其特征在于,所述方法还包括:向所述接入网设备发送能力信息,其中,所述能力信息用于指示以下至少一种能力:所述终端设备支持通过中继链路与所述接入网设备进行通信;所述终端设备支持第一重复传输,所述第一重复传输的至少有一条链路为中继链路;所述终端设备支持第二重复传输,所述第二重复传输包括进行载波聚合重复传输的至少两条链路以及至少一条中继链路;所述终端设备支持的用于重复传输的中继链路的最大数量;所述终端设备支持的用于重复传输的中继终端的最大数量。
- 根据权利要求1或3所述的方法,其特征在于,所述方法还包括:向所述接入网设备发送第二指示信息,所述第二指示信息用于指示以下至少一种:能够与所述终端设备建立中继链路的至少一个中继终端的标识、能够与所述终端设备建立中继链路的至少一个中继终端的PC5接口标识、能够与所述终端设备建立中继链路的至少一个中继终端的中继链路标识、能够与所述终端设备建立至少一个中继链路的链路质量。
- 根据权利要求1或3所述的方法,其特征在于,所述方法还包括:接收所述接入网设备发送的第三指示信息,所述第三指示信息用于指示与所述终端设备建立所述第一中继链路的所述第一中继终端的标识或PC5接口标识或所述第一链路标识。
- 根据权利要求7所述的方法,其特征在于,所述方法还包括:向所述第一中继终端发送第四指示信息,所述第四指示信息用于指示所述第一中继终端与所述接入网设备建立所述第二链路。
- 根据权利要求8所述的方法,其特征在于,所述方法还包括:接收配置信息,所述配置信息用于配置所述第一链路与所述第二链路之间的对应关系。
- 根据权利要求1或3所述的方法,其特征在于,所述方法还包括:接收所述接入网设备发送的控制信令,所述控制信令用于激活或去激活进行重复传输的至少一条链路;或,接收所述第一中继终端发送的第五指示信息,所述第五指示信息用于激活或去激活进行重复传输的至少一条链路。
- 根据权利要求1或3所述的方法,其特征在于,所述方法还包括:在满足第一预设条件时,激活进行重复传输的至少一条链路;所述第一预设条件包括以下至少一个:所述第一链路的链路质量小于或等于所述第一预设质量门限;或,所述第二链路的链路质量小于或等于第二预设质量门限;或,所述第一数据包传输的误码率大于或等于预设误码率门限;或,所述第一数据包的重传次数大于或等于预设重传次数。
- 一种通信方法,其特征在于,应用于接入网设备,包括:接收终端设备通过重复传输的方式发送的M个数据包,所述M为大于1的整数;其中,所述接收终端设备通过重复传输的方式发送的M个数据包,包括:通过空中接口接收所述终端设备发送的所述M个数据包中的N个数据包,所述M个数据包通过重复传输的方式发送,所述N为大于0且小于所述M的整数;通过第一中继链路接收所述M个数据包中的M-N个数据包,所述第一中继链路包括第一链路和第二链路,所述第一链路为所述终端设备与第一中继终端之间的链路,所述第二链路为所述第一中继终端与所述接入网设备之间的链路;接收请求信息,所述请求信息用于请求将所述第一中继链路更新为第二中继链路,所述第二中继链路包括第三链路和第四链路,所述第三链路为所述终端设备与第二中继终端之间的链路,所述第四链路为所述第二中继终端与所述接入网设备之间的链路。
- 根据权利要求12所述的方法,其特征在于,所述M个数据包属于第一业务,所述方法还包括:接收所述终端设备发送的第一指示信息;其中,所述第一指示信息包括以下至少一种:所述第一业务的类型标识、所述第一业务的服务质量QoS需求、所述终端设备的类型、所述终端设备的位置信息、所述第一链路的链路质量。
- 一种通信方法,其特征在于,应用于接入网设备,包括:通过重复传输的方式向终端设备发送J个数据包,所述J为大于1的整数;其中,所述通过重复传输的方式向终端设备发送J个数据包,包括:通过空中接口向所述终端设备发送J个数据包中的K个数据包,所述J个数据包通过重复传输的方式发送,所述J为大于1的整数,所述K为大于0且小于所述J的整数;通过第一中继链路将所述J个数据包中的J-K个数据包发送给所述终端设备,所述第一中继链路包括第一链路和第二链路,所述第一链路为所述终端设备与第一中继终端之间的链路,所述第二链路为所述第一中继终端与所述接入网设备之间的链路;接收请求信息,所述请求信息用于请求将所述第一中继链路更新为第二中继链路,所述第二中继链路包括第三链路和第四链路,所述第三链路为所述终端设备与第二中继终端之间的链路,所述第四链路为所述第二中继终端与所述接入网设备之间的链路。
- 根据权利要求12或14所述的方法,其特征在于,所述请求信息包括以下至少一种:所述第二中继终端的标识、所述终端设备与所述第二中继终端之间的PC5接口标识、所述第三链路的链路标识、所述第三链路的链路质量。
- 根据权利要求15所述的方法,其特征在于,所述J个数据包属于第二业务,所述方法还包括:接收核心网设备发送的第六指示信息;或,根据所述终端设备与所述核心网设备建立的协议数据单元会话,确定通过重复传输的方式发送所述第二业务的业务数据;其中,所述第六指示信息包括以下至少一种:所述第二业务的类型标识和所述第二业 务的服务质量QoS需求。
- 根据权利要求12或14所述的方法,其特征在于,所述方法还包括:接收所述终端设备发送的能力信息,其中,所述能力信息用于指示以下至少一种:所述终端设备支持通过中继链路与所述接入网设备进行通信;所述终端设备支持第一重复传输,所述第一重复传输的至少有一条链路为中继链路;所述终端设备支持第二重复传输,所述第二重复传输包括进行载波聚合重复传输的至少两条链路以及至少一条中继链路;所述终端设备支持的用于重复传输的中继链路的最大数量;所述终端设备支持的用于重复传输的中继终端的最大数量。
- 根据权利要求12或14所述的方法,其特征在于,所述方法还包括:接收所述终端设备发送的第二指示信息,所述第二指示信息用于指示以下至少一种:能够与所述终端设备建立中继链路的至少一个中继终端的标识、能够与所述终端设备建立中继链路的至少一个中继终端的PC5接口标识、能够与所述终端设备建立中继链路的至少一个中继终端的中继链路标识、能够与所述终端设备建立至少一个中继链路的链路质量。
- 根据权利要求12或14所述的方法,其特征在于,所述方法还包括:向所述终端设备发送第三指示信息,所述第三指示信息用于指示与所述终端设备建立所述第一中继链路的所述第一中继终端的标识或PC5接口标识或所述第一链路标识。
- 根据权利要求19所述的方法,其特征在于,所述方法还包括:通过所述终端设备向所述第一中继终端发送第四指示信息,所述第四指示信息用于指示所述第一中继终端与所述接入网设备建立所述第二链路。
- 根据权利要求20所述的方法,其特征在于,所述方法还包括:发送配置信息,所述配置信息用于配置所述第一链路与所述第二链路之间的对应关系。
- 根据权利要求12或14所述的方法,其特征在于,所述方法还包括:向所述终端设备发送控制信令,所述控制信令用于激活或去激活进行重复传输的至少一条链路;或,向所述第一中继终端发送所述控制信令。
- 一种终端设备,其特征在于,所述终端设备包括处理模块和收发模块,所述处理模块,用于确定第一数据包,将所述第一数据包复制得到M个数据包,所述M为大于1的整数;所述收发模块,用于将所述M个数据包通过重复传输的方式发送给接入网设备;其中,在将所述M个数据包通过重复传输的方式发送给接入网设备时,所述收发模块,用于通过空中接口向所述接入网设备发送所述M个数据包中的N个数据包,所述N为大 于0且小于所述M的整数;通过第一中继链路向所述接入网设备发送所述M个数据包中的M-N个数据包,所述第一中继链路包括第一链路和第二链路,所述第一链路为所述终端设备与第一中继终端之间的链路,所述第二链路为所述第一中继终端与所述接入网设备之间的链路;当所述第一链路的链路质量小于或等于第一预设门限时,所述收发模块,用于向所述接入网设备发送请求信息,所述请求信息用于请求将所述第一中继链路更新为第二中继链路,所述第二中继链路包括第三链路和第四链路,所述第三链路为所述终端设备与第二中继终端之间的链路,所述第四链路为所述第二中继终端与所述接入网设备之间的链路。
- 一种终端设备,其特征在于,所述终端设备包括收发模块,所述收发模块,用于接收接入网设备通过重复传输的方式发送的J个数据包,所述J为大于1的整数;其中,在接收接入网设备通过重复传输的方式发送的J个数据包时,所述收发模块,用于通过空中接口接收所述接入网设备发送的所述J个数据包中的K个数据包,所述K为大于0且小于所述J的整数;通过第一中继链路接收所述J个数据包中的J-K个数据包,所述第一中继链路包括第一链路和第二链路,所述第一链路为所述终端设备与第一中继终端之间的链路,所述第二链路为所述第一中继终端与所述接入网设备之间的链路;当所述第一链路的链路质量小于或等于第一预设门限时,所述收发模块,用于向所述接入网设备发送请求信息,所述请求信息用于请求将所述第一中继链路更新为第二中继链路,所述第二中继链路包括第三链路和第四链路,所述第三链路为所述终端设备与第二中继终端之间的链路,所述第四链路为所述第二中继终端与所述接入网设备之间的链路。
- 一种接入网设备,其特征在于,所述接入网设备包括收发模块,所述收发模块,用于接收终端设备通过重复传输的方式发送的M个数据包,所述M为大于1的整数;其中,在接收终端设备通过重复传输的方式发送的M个数据包时,所述收发模块,用于通过空中接口接收所述终端设备发送的所述M个数据包中的N个数据包,所述M个数据包通过重复传输的方式发送,所述N为大于0且小于所述M的整数;通过第一中继链路接收所述M个数据包中的M-N个数据包,所述第一中继链路包括第一链路和第二链路,所述第一链路为所述终端设备与第一中继终端之间的链路,所述第二链路为所述第一中继终端与所述接入网设备之间的链路;所述收发模块,用于接收请求信息,所述请求信息用于请求将所述第一中继链路更新为第二中继链路,所述第二中继链路包括第三链路和第四链路,所述第三链路为所述终端设备与第二中继终端之间的链路,所述第四链路为所述第二中继终端与所述接入网设备之间的链路。
- 一种接入网设备,其特征在于,所述接入网设备包括收发模块,所述收发模块,用于通过重复传输的方式向终端设备发送J个数据包,所述J为大于1的整数;其中,在通过重复传输的方式向终端设备发送J个数据包时,所述收发模块,用于通过空中接口向所述终端设备发送J个数据包中的K个数据包,所述J个数据包通过重复传输的方式发送,所述J为大于1的整数,所述K为大于0且小于所述J的整数;通过第一 中继链路将所述J个数据包中的J-K个数据包发送给所述终端设备,所述第一中继链路包括第一链路和第二链路,所述第一链路为所述终端设备与第一中继终端之间的链路,所述第二链路为所述第一中继终端与所述接入网设备之间的链路;所述收发模块,用于接收请求信息,所述请求信息用于请求将所述第一中继链路更新为第二中继链路,所述第二中继链路包括第三链路和第四链路,所述第三链路为所述终端设备与第二中继终端之间的链路,所述第四链路为所述第二中继终端与所述接入网设备之间的链路。
- 一种终端设备,其特征在于,包括处理器和存储器,所述处理器调用所述存储器中存储的计算机程序实现如权利要求1-11任一项所述的方法。
- 一种接入网设备,其特征在于,包括处理器和存储器,所述处理器调用所述存储器中存储的计算机程序实现如权利要求12-20任一项所述的方法。
- 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机程序,当所述计算机程序被运行时,实现如权利要求1-11任一项所述的方法、或实现如权利要求12-20任一项所述的方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP21820827.0A EP4152805A4 (en) | 2020-06-10 | 2021-06-09 | COMMUNICATION METHOD AND ASSOCIATED APPARATUS |
US18/076,515 US20230099586A1 (en) | 2020-06-10 | 2022-12-07 | Communication method and related apparatus |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010525277.1 | 2020-06-10 | ||
CN202010525277.1A CN113784385A (zh) | 2020-06-10 | 2020-06-10 | 一种通信方法及相关装置 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/076,515 Continuation US20230099586A1 (en) | 2020-06-10 | 2022-12-07 | Communication method and related apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021249425A1 true WO2021249425A1 (zh) | 2021-12-16 |
Family
ID=78834835
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/099106 WO2021249425A1 (zh) | 2020-06-10 | 2021-06-09 | 一种通信方法及相关装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20230099586A1 (zh) |
EP (1) | EP4152805A4 (zh) |
CN (1) | CN113784385A (zh) |
WO (1) | WO2021249425A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023142758A1 (en) * | 2022-01-29 | 2023-08-03 | Telefonaktiebolaget Lm Ericsson (Publ) | Separate link quality evaluation for relayed and non-relayed traffic |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110351024A (zh) * | 2018-04-04 | 2019-10-18 | 华为技术有限公司 | 数据传输方法和装置 |
CN110913434A (zh) * | 2019-11-19 | 2020-03-24 | RealMe重庆移动通信有限公司 | 一种数据传输方法、终端及存储介质 |
CN110912655A (zh) * | 2019-12-24 | 2020-03-24 | 瑞斯康达科技发展股份有限公司 | 一种数据冗余备份方法、装置、设备及介质 |
WO2020067242A1 (ja) * | 2018-09-28 | 2020-04-02 | パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ | 通信システム、端末、及び、制御方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106576390B (zh) * | 2015-05-15 | 2021-07-20 | 华为技术有限公司 | 设备到设备通信中用于选择中继的方法和装置 |
-
2020
- 2020-06-10 CN CN202010525277.1A patent/CN113784385A/zh active Pending
-
2021
- 2021-06-09 WO PCT/CN2021/099106 patent/WO2021249425A1/zh active Application Filing
- 2021-06-09 EP EP21820827.0A patent/EP4152805A4/en active Pending
-
2022
- 2022-12-07 US US18/076,515 patent/US20230099586A1/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110351024A (zh) * | 2018-04-04 | 2019-10-18 | 华为技术有限公司 | 数据传输方法和装置 |
WO2020067242A1 (ja) * | 2018-09-28 | 2020-04-02 | パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ | 通信システム、端末、及び、制御方法 |
CN110913434A (zh) * | 2019-11-19 | 2020-03-24 | RealMe重庆移动通信有限公司 | 一种数据传输方法、终端及存储介质 |
CN110912655A (zh) * | 2019-12-24 | 2020-03-24 | 瑞斯康达科技发展股份有限公司 | 一种数据冗余备份方法、装置、设备及介质 |
Non-Patent Citations (1)
Title |
---|
OPPO: "Discussion on redundant connectivity support in IAB", 3GPP DRAFT; R2-1800157 - DISCUSSION ON REDUNDANT CONNECTIVITY SUPPORT IN IAB, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Vancouver, Canada; 20180122 - 20180126, 12 January 2018 (2018-01-12), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051386044 * |
Also Published As
Publication number | Publication date |
---|---|
EP4152805A4 (en) | 2023-11-15 |
EP4152805A1 (en) | 2023-03-22 |
CN113784385A (zh) | 2021-12-10 |
US20230099586A1 (en) | 2023-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019019133A1 (zh) | 命令指示方法及装置、信息交互方法及装置 | |
WO2017193766A1 (zh) | 一种下行数据传输的方法及设备 | |
CN111684856B (zh) | 5g nr系统中上行链路传输的方法 | |
WO2022110168A1 (zh) | 通信配置的方法和通信装置 | |
WO2022036555A1 (zh) | 中继传输的方法、中继终端和远端终端 | |
WO2014166053A1 (zh) | 一种通讯方法和终端 | |
WO2019072170A1 (zh) | 通信方法和通信装置 | |
WO2020143834A1 (zh) | 一种旁链路中的反馈资源确定方法及设备 | |
WO2019141371A1 (en) | Multi-connectivity based on a first sidelink connection and a second connection via base station for wireless networks | |
US20220322078A1 (en) | Split Bearer Communications | |
CN112351460B (zh) | 数据传输方法及相关设备 | |
WO2021249425A1 (zh) | 一种通信方法及相关装置 | |
WO2022205070A1 (en) | Radio link failure handling in sidelink relay | |
WO2021189235A1 (zh) | 一种数据传输方法及装置、通信设备 | |
WO2022057892A1 (zh) | 业务数据传输方法及装置、终端和基站 | |
WO2022120541A1 (zh) | 数据传输的方法和装置 | |
WO2022141332A1 (zh) | 一种通信方法及装置 | |
WO2022027523A1 (zh) | 一种辅助信息的配置方法及通信装置 | |
WO2021163832A1 (zh) | 数据传输的方法和装置 | |
WO2021128218A1 (zh) | 一种侧行链路通信方法及装置 | |
CN116347545A (zh) | 无线通信方法与装置、终端和存储介质 | |
WO2018228545A1 (zh) | 信息处理方法以及相关装置 | |
WO2024046294A1 (zh) | 通信方法和装置 | |
WO2022252180A1 (zh) | 业务控制方法、装置、设备及存储介质 | |
WO2023093364A1 (zh) | 一种通信方法和装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21820827 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202217073664 Country of ref document: IN |
|
ENP | Entry into the national phase |
Ref document number: 2021820827 Country of ref document: EP Effective date: 20221213 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |