[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2021246305A1 - Container ship bow structure, container ship, and design method for container ship bow structure - Google Patents

Container ship bow structure, container ship, and design method for container ship bow structure Download PDF

Info

Publication number
WO2021246305A1
WO2021246305A1 PCT/JP2021/020366 JP2021020366W WO2021246305A1 WO 2021246305 A1 WO2021246305 A1 WO 2021246305A1 JP 2021020366 W JP2021020366 W JP 2021020366W WO 2021246305 A1 WO2021246305 A1 WO 2021246305A1
Authority
WO
WIPO (PCT)
Prior art keywords
container
height
container ship
windshield
bow structure
Prior art date
Application number
PCT/JP2021/020366
Other languages
French (fr)
Japanese (ja)
Inventor
智文 井上
拓郎 吉川
Original Assignee
ジャパンマリンユナイテッド株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=76464551&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2021246305(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by ジャパンマリンユナイテッド株式会社 filed Critical ジャパンマリンユナイテッド株式会社
Priority to KR1020227046006A priority Critical patent/KR20230017291A/en
Priority to CN202180041291.7A priority patent/CN115697830A/en
Publication of WO2021246305A1 publication Critical patent/WO2021246305A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/32Other means for varying the inherent hydrodynamic characteristics of hulls
    • B63B1/322Other means for varying the inherent hydrodynamic characteristics of hulls using aerodynamic elements, e.g. aerofoils producing a lifting force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B15/00Superstructures, deckhouses, wheelhouses or the like; Arrangements or adaptations of masts or spars, e.g. bowsprits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/002Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for goods other than bulk goods
    • B63B25/004Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for goods other than bulk goods for containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B71/00Designing vessels; Predicting their performance
    • B63B71/10Designing vessels; Predicting their performance using computer simulation, e.g. finite element method [FEM] or computational fluid dynamics [CFD]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/15Vehicle, aircraft or watercraft design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/10Measures concerning design or construction of watercraft hulls

Definitions

  • the present invention relates to a bow structure of a container ship, a container ship, and a method of designing a bow structure of a container ship. Regarding the design method of the bow structure.
  • Patent Document 1 describes a windshield disposed on a bulwark of a container ship, which has a peripheral side wall that rises vertically from the top of the bulwark and has an upper edge extending diagonally upward from the front end to the rear end.
  • a container ship comprising: a top wall having a predetermined width extending along the upper edge of the peripheral wall surface and inside the upper edge of the peripheral wall surface over the entire length of the upper edge of the peripheral wall surface in a top view.
  • the bow windshield is disclosed.
  • the windshield structure when the windshield structure is formed so as to cover the entire front surface of the container loaded in the front row as in the invention described in Patent Document 1, the windshield structure tends to be large and heavy, and the container is loaded. It will induce a decrease in efficiency and fuel efficiency.
  • the present invention has been devised in view of the above problems, and is capable of reducing the size and weight of the windshield structure while reducing the wind pressure resistance.
  • the purpose is to provide a design method.
  • the bow structure of a container ship is provided with a windshield body arranged substantially vertically on the edge of the upper deck, and the height of the windshield body is set in the range of 5 to 18 m.
  • the bow structure of a container ship characterized by that is provided.
  • the height of the windshield may be set in the range of 10 to 15 m.
  • the bow structure of a container ship is provided with a windshield body arranged substantially vertically on the edge of the upper deck, and the height of the windshield body is the average container loading height of the container ship.
  • a bow structure of a container ship characterized in that the ratio to the height is set in the range of 0.18 to 0.65.
  • the height of the windshield may be set in the range of 0.35 to 0.55 as a ratio to the average container loading height of the container ship.
  • the windshield may be provided with an opening through which the cord of the mooring device can be inserted.
  • the windshield may have a substantially constant height from the port side to the starboard side.
  • a support portion capable of loading an additional container may be provided in a portion of the upper deck surrounded by the windshield.
  • the loading height of the additional container may be set so as not to exceed the loading height of the frontmost container arranged in the cargo area.
  • the loading height of the additional container may be set to 1.7 or less as a ratio to the height of the windshield.
  • a container ship characterized by having the above-mentioned bow structure is provided.
  • the container ship is provided with a windshield body arranged substantially perpendicular to the edge of the upper deck, and the wind direction is ⁇ with respect to the traveling direction. It was set in the range of 10 to ⁇ 60 °, the reduction rate of the wind pressure resistance in the fully loaded state and the half-mounted state of the container ship was calculated, and the height of the windshield was set with reference to the reduction rate.
  • a method of designing the bow structure of a container ship is provided.
  • the average container loading height of the container ship may be calculated, and the height of the windshield may be set by the ratio to the average container loading height.
  • the wind pressure is set by setting the height of the windshield in consideration of the loading state and the wind direction of the container. It is possible to reduce the size and weight of the windshield structure while reducing the resistance.
  • FIG. 1 It is a side view which shows a part of the container ship which concerns on 1st Embodiment of this invention. It is a figure which shows the bow part of the container ship shown in FIG. 1, (A) is a side view, (B) is a plan view. It is a distribution map which shows the analysis result of the wind pressure resistance, (A) shows the case where the wind direction is 0 °, and (B) shows the case where the wind direction is 30 °. It is a figure which shows the analysis result about the height of a windshield, (A) is the relationship between the height of a windshield and the reduction rate of wind pressure resistance, and (B) is the relationship between Hw / Hc and the reduction rate of wind pressure resistance. Shows.
  • FIG. 5 is a view showing the bow of the container ship shown in FIG. 5, in which FIG. 5A is a side view, FIG. 5B is a cross-sectional view taken along the line B in FIG. 6A, and FIG. It is a cross-sectional view taken along the arrow. It is a figure which shows the modification of the container ship shown in FIG. 5, (A) is a side view, (B) is a plan view.
  • FIG. 1 is a side view showing a part of the container ship according to the first embodiment of the present invention.
  • 2A and 2B are views showing the bow portion of the container ship shown in FIG. 1, in which FIG. 2A is a side view and FIG. 2B is a plan view.
  • the container ship 1 As shown in FIG. 1, the container ship 1 according to the first embodiment of the present invention has a bow portion 2 which is a tip portion of a hull, a cargo area 3 capable of loading a plurality of containers 31, and an upper deck 4. It is provided with a windshield 5 arranged substantially vertically on the edge portion.
  • the alternate long and short dash line M means the central portion of the hull, and for convenience of explanation, the figure on the rear side of the central portion of the hull is omitted.
  • a residential area 32 may be located in a part of the cargo area 3.
  • the residential area 32 may be arranged on the rear side of the center of the hull.
  • the container 31 shown in FIG. 1 shows a fully loaded state.
  • the maximum container loading height measured from the upper deck 4 is Ha
  • the frontmost container loading height is Hb
  • a fore mast 21, a mooring device 22, and the like are arranged on the upper deck 4 in front of the cargo area 3 in the bow portion 2. ..
  • the mooring device 22 is intended to include, for example, a mooring winch, a windlass, and the like.
  • FIG. 2A for convenience of explanation, the figure of the mooring device 22 in the windshield 5 is omitted.
  • the windshield 5 is a steel plate arranged from the port side to the starboard side of the bow portion 2. As shown in FIG. 2A, for example, the windshield 5 has a substantially constant height in front of the container 31 in the front row or the lashing bridge 33 in the front row. Both ends of the windshield 5 may be formed so as to gradually decrease to the height of the upper deck 4.
  • the tapering portion may be curved or linear. Further, the height of the windshield 5 from the upper deck 4 is defined as Hw.
  • the material of the windshield 5 is not limited to the steel plate, and may be another metal plate or a resin plywood.
  • the windshield 5 is provided with the rope of the mooring device 22.
  • An insertable opening 51 may be formed.
  • the figure of the opening 51 is omitted in FIG. 2A.
  • FIG. 3 is a distribution diagram showing the analysis result of the wind pressure resistance, where (A) shows the case where the wind direction is 0 ° and (B) shows the case where the wind direction is 30 °.
  • the traveling direction of the container ship 1 is defined as 0 °
  • the angle from the traveling direction to the port side is defined as positive (plus)
  • the angle from the traveling direction to the starboard direction is defined as negative (minus).
  • FIGS. 3 (A) and 3 (B) show the results of simulation under the conditions of no windshield 5, full load, and wind speed (relative velocity) of 10 m / s.
  • FIG. 3B the case where the container ship 1 receives the wind from an oblique direction is shown in the case where the wind direction is + 30 °, but the same applies in the range of the wind direction ⁇ 10 to ⁇ 60 °. It is considered to show a tendency.
  • the windshield structure of the conventional container ship assumes the case where the container ship 1 receives the wind from the front, that is, the wind direction is 0 °, the wind pressure at the upper part of the front surface of the container 31 loaded in the front row. Focusing on reducing resistance. Therefore, in a conventional container ship, the windshield structure is often formed high or is formed in a cowl shape in order to rectify the wind. In such a conventional container ship, the windshield structure tends to be large and heavy, which leads to a decrease in container loading efficiency and fuel efficiency.
  • the ratio of the container ship 1 receiving the wind from the diagonal direction is higher than the ratio of the container ship 1 receiving the wind from the front while sailing.
  • the container ship 1 is not always in a fully loaded state during navigation, and is often in a loaded state (for example, a semi-loaded state) less than that. Then, it is clear that the windshield structure is over-designed when the windshield is designed assuming a full load and a wind direction of 0 °.
  • the wind direction is set in the range of ⁇ 10 to ⁇ 60 ° with respect to the traveling direction, and the reduction rate of the wind pressure resistance in the fully loaded state and the half-mounted state of the container ship 1 is calculated.
  • the height of the windshield 5 is set with reference to the calculated reduction rate.
  • the "half-mounted state” means the average container loading height in the fully loaded state, which is the average container loading height measured from the upper deck 4 of the containers 31 loaded on the front side from the center of the hull. It is about half the value of Hc, and means that the containers 31 loaded on the front side of the center of the hull are loaded substantially evenly within a range close to the average container loading height Hc.
  • FIG. 4 is a diagram showing the analysis results regarding the height of the windshield
  • (A) is the relationship between the height of the windshield and the reduction rate of the wind pressure resistance
  • (B) is Hw / Hc and the wind pressure resistance. The relationship with the reduction rate is shown.
  • the numerical value of the wind pressure resistance shown in Table 1 is a relative value when the height of the windshield 5 is 1 m and the wind pressure resistance is 100. Further, the reduction rate of the wind pressure resistance shown in Table 1 is calculated by calculating the rate of reduction of the wind pressure resistance based on the wind pressure resistance when the height Hw of the windshield body 5 is 1 m. Further, the case where the wind pressure resistance is reduced is expressed by a negative value (minus value), and the case where the wind pressure resistance is increased is expressed by a positive value (plus value).
  • the reduction rate of the wind pressure resistance in the fully loaded state was -6%. Further, when the height Hw of the windshield body 5 is 10 m, the reduction rate of the wind pressure resistance in the fully loaded state is -11%, and when the height Hw of the windshield body 5 is 15 m, the reduction rate of the wind pressure resistance in the fully loaded state is -11%. %, And when the height Hw of the windshield body 5 was 20 m, the reduction rate of the wind pressure resistance in the fully loaded state was -9%.
  • the reduction rate of the wind pressure resistance in the semi-mounted state is -9%
  • the reduction rate of the wind pressure resistance in the semi-mounted state is -9%
  • the reduction rate of the wind pressure resistance in the semi-mounted state is -10% when the height Hw of the windshield body 5 is 15 m
  • the reduction rate of the wind pressure resistance in the semi-mounted state when the height Hw of the windshield body 5 is 20 m. The rate was -2%.
  • FIG. 4A illustrates the analysis result
  • the analysis result in the full load state is shown by a solid line
  • the analysis result in the semi-mounted state is shown by a dotted line.
  • the height Hw of the windshield body 5 can be set in the range of 5 to 18 m. Further, if the case where the reduction rate of the wind pressure resistance is ⁇ 10% is taken as one index, the height Hw of the windshield body 5 can be set in the range of 10 to 15 m.
  • the height Hw of the windshield 5 can be set based on the loading height of the container 31.
  • the average container loading height Hc of the container ship 1 is calculated, and the height Hw of the windshield 5 is set by the ratio to the average container loading height Hc.
  • FIG. 4B is a rewrite of FIG. 4A using the ratio (Hw / Hc) of the height Hw of the windshield body 5 to the average container loading height Hc.
  • the average container loading height Hc in this analysis is 27.6 m.
  • Hw / Hc can be set in the range of 0.18 to 0.65. Further, if the case where the reduction rate of the wind pressure resistance is ⁇ 10% is taken as one index, Hw / Hc can be set in the range of 0.35 to 0.55.
  • the height of the windshield body 5 is set in consideration of the loading state and the wind direction of the container 31, so that the windshield structure is reduced while reducing the wind pressure resistance. It is possible to reduce the size and weight of the product.
  • FIG. 5 is a side view showing a part of the container ship according to the second embodiment of the present invention.
  • 6A and 6B are views showing the bow of the container ship shown in FIG. 5, where FIG. 6A is a side view, FIG. 6B is a cross-sectional view taken along the line B in FIG. 6A, and FIG. 6C is FIG. 6 (C). It is a cross-sectional view taken along the line C in A).
  • the same components as those in the first embodiment described above are designated by the same reference numerals, and duplicated description will be omitted.
  • a support portion 7 capable of loading an additional container 6 is arranged in a portion of the upper deck 4 surrounded by the windshield body 5. Since the mooring device 22 is arranged on the upper deck 4 of the bow portion 2, it is necessary to avoid interference with the mooring device 22 in order to load the additional container 6.
  • the additional deck 71 is arranged as the support portion 7 in the portion of the upper deck 4 surrounded by the windshield body 5.
  • the additional deck 71 is, for example, a steel plate welded to the inside of the windshield 5.
  • the additional deck 71 may be composed of a leg portion and a top plate portion, and the windshield 5 may be welded on the top plate portion.
  • the height Hw of the windshield 5 includes the length of the legs of the additional deck 71.
  • the fore mast 21 is arranged on the additional deck 71.
  • the mooring device 22 is arranged under the additional deck 71.
  • a device or the like for loading and fixing the additional container 6 is arranged on the additional deck 71.
  • a space in which the additional container 6 can be loaded can be formed on the additional deck 71, and the loading efficiency of the container ship 1 can be improved. Further, since the windshield body 5 has the same structure as that of the first embodiment described above, it is possible to reduce the size and weight of the windshield structure while reducing the wind pressure resistance.
  • FIG. 7 is a view showing a modified example of the container ship shown in FIG. 5, in which FIG. 7A is a side view and FIG. 7B is a plan view.
  • FIG. 7B illustrates a case where the position of the mooring device 22 is shifted.
  • FIG. 8 is a diagram showing the analysis result regarding the loading height of the additional container, (A) is the relationship between the loading height of the additional container and the reduction rate of the wind pressure resistance, and (B) is Hx / Hb and the wind pressure. The relationship with the reduction rate of resistance and (C) show the relationship between Hx / Hw and the reduction rate of wind pressure resistance.
  • the loading height of the additional container 6 from the upper deck 4 is defined as Hx.
  • the wind pressure resistance in the fully loaded state and the half-mounted state was calculated while changing the loading height (number of stages) of the additional container 6 under the conditions of the wind direction + 30 °, the wind speed (relative speed) 10 m / s, and the height Hw 10 m of the windshield body 5.
  • the results are shown in Table 2, FIGS. 8 (A) to 8 (C).
  • the fully loaded state and the semi-loaded state indicate the loaded state of the container 31 loaded in the cargo area 3.
  • Hx / Hw shown in Table 2 shows the relative numerical values of the loading height Hx of the additional container 6 with respect to the height Hw (10 m) of the windshield body 5. Therefore, when Hx / Hw> 1, it means that the loading height Hx of the additional container 6 exceeds the height Hw (10 m) of the windshield body 5.
  • the height when the loading height Hx of the additional container 6 is 0 is the height from the upper deck 4 of the mounting surface of the additional container 6 in the support portion 7.
  • Hx / Hb shown in Table 2 shows the relative numerical values of the loading height Hx of the additional container 6 with respect to the container loading height Hb at the foremost part. Therefore, when Hx / Hb> 1, it means that the loading height Hx of the additional container 6 exceeds the container loading height Hb at the frontmost portion.
  • the frontmost container loading height Hb in the fully loaded state is 24 m
  • the frontmost container loading height Hb in the semi-loaded state is 16.17 m.
  • the reduction rate of the wind pressure resistance in the fully loaded state is -10% when the loading height Hx of the additional container 6 is two stages, and the loading height Hx of the additional container 6 is three stages.
  • the reduction rate of the wind pressure resistance in the state is -11%
  • the reduction rate of the wind pressure resistance in the full load state is -12% when the loading height Hx of the additional container 6 is 4 stages
  • the loading height Hx of the additional container 6 is 5 stages.
  • the reduction rate of the wind pressure resistance in the fully loaded state is -12%
  • the reduction rate of the wind pressure resistance in the fully loaded state is -10% when the loading height Hx of the additional container 6 is 6 stages
  • the loading height of the additional container 6 is
  • the reduction rate of the wind pressure resistance in the fully loaded state was -7%
  • the loading height Hx of the additional container 6 was 8 stages
  • the reduction rate of the wind pressure resistance in the fully loaded state was -3%. ..
  • the reduction rate of the wind pressure resistance in the semi-mounted state when the loading height Hx of the additional container 6 is 3 stages is -9%
  • the wind pressure resistance in the semi-mounted state when the loading height Hx of the additional container 6 is 4 stages The reduction rate is -8%
  • the reduction rate of the wind pressure resistance in the semi-mounted state is -1% when the loading height Hx of the additional container 6 is 5 stages
  • the loading height Hx of the additional container 6 is 7 stages.
  • the reduction rate of the wind pressure resistance in the semi-state was + 8%.
  • the calculation of the wind pressure resistance and its reduction rate when the loading height Hx of the additional container 6 is 2, 6, and 8 is omitted.
  • FIGS. 8 (A) and 8 (B) The analysis results are shown in FIGS. 8 (A) and 8 (B).
  • the analysis results in the fully loaded state are shown by solid lines, and the analysis results in the semi-mounted state are shown by dotted lines.
  • FIG. 8A shows the loading height (number of stages) of the additional container 6 on the horizontal axis and the reduction rate of wind pressure resistance on the vertical axis.
  • FIG. 8B is a rewrite of FIG. 8A with Hx / Hb as the horizontal axis and the wind pressure resistance reduction rate as the vertical axis.
  • the reduction value of the wind pressure resistance is obtained by the load height Hx of the additional container 6 exceeding the container load height Hb at the front (Hx / Hb> 1) in both the fully loaded state and the semi-mounted state. It turns out that becomes worse.
  • the loading height Hx of the additional container 6 is set so as not to exceed the container loading height Hb at the front of the cargo area 3. can do.
  • the loading height Hx of the additional container 6 differs depending on the size of the additional container 6, the height Hw of the windshield 5, and the like, the loading height Hx (number of stages) of the additional container 6 is the height of the windshield 5. It can also be set based on Hw.
  • FIG. 8C is a rewrite of FIG. 8A using the ratio (Hx / Hw) of the loading height Hx of the additional container 6 to the height Hw of the windshield body 5.
  • Hx / Hw can be set to 1.7 or less.
  • the support portion 7 is composed of the additional deck 71 or the support column 72 has been described, but the present invention is not limited to these configurations.
  • the support portion 7 may have a configuration other than the one shown in the figure as long as it can be loaded with the additional container 6 and is configured to avoid interference with the mooring device 22.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • Computer Hardware Design (AREA)
  • Automation & Control Theory (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Ship Loading And Unloading (AREA)

Abstract

Provided are a container ship bow structure, a container ship, and a container ship bow structure design method, whereby the size and weight of a windbreak structure can be reduced while reducing wind pressure resistance. The container ship 1 comprises: a bow section 2 which is the tip section of the hull; a cargo zone 3 into which a plurality of containers 31 can be loaded; and a windbreak 5 disposed substantially vertically upon an edge of an upper deck 4. In addition, the container ship 1 has wind direction set within the range of ±10° – ±60° relative to the direction of travel; the rate of reduction in wind pressure resistance when the container ship 1 is fully loaded and half loaded is calculated; and the height of the windbreak 5 is set with reference to the calculated rate of reduction. The height Hw of the windbreak 5 is set within a range of, e.g., 5–18 m or 0.18–0.65 times the average container loading height Hc.

Description

コンテナ船の船首構造、コンテナ船及びコンテナ船の船首構造の設計方法How to design the bow structure of container ships, container ships and the bow structure of container ships
 本発明は、コンテナ船の船首構造、コンテナ船及びコンテナ船の船首構造の設計方法に関し、特に、コンテナ船の風圧抵抗の低減を図ることができる、コンテナ船の船首構造、コンテナ船及びコンテナ船の船首構造の設計方法に関する。 The present invention relates to a bow structure of a container ship, a container ship, and a method of designing a bow structure of a container ship. Regarding the design method of the bow structure.
 コンテナ船は、上甲板よりも上方に複数のコンテナが積載されることから、積層されたコンテナにより壁が形成され、他の船舶と比較して航行時における風圧抵抗が高くなりやすい。そこで、コンテナ船の船首部に風防構造を配置して、風圧抵抗を低減するための方法が種々提案されている。 Since a plurality of containers are loaded above the upper deck of a container ship, a wall is formed by the stacked containers, and the wind pressure resistance during navigation tends to be higher than that of other ships. Therefore, various methods for arranging a windshield structure on the bow of a container ship to reduce wind pressure resistance have been proposed.
 例えば、特許文献1には、コンテナ船のブルワーク上に配設する風防であって、ブルワークの頂部から垂直に立ち上がると共に上縁が前端から後端へ向けて斜め上方に延在する周側壁と、前記周側壁上縁に沿って且つ上面視で前記周側壁上縁の内側で前記周側壁上縁の全長に亙って延在する所定幅の頂壁と、を備えることを特徴とするコンテナ船の船首部風防が開示されている。 For example, Patent Document 1 describes a windshield disposed on a bulwark of a container ship, which has a peripheral side wall that rises vertically from the top of the bulwark and has an upper edge extending diagonally upward from the front end to the rear end. A container ship comprising: a top wall having a predetermined width extending along the upper edge of the peripheral wall surface and inside the upper edge of the peripheral wall surface over the entire length of the upper edge of the peripheral wall surface in a top view. The bow windshield is disclosed.
特開2015-145214号公報JP-A-2015-145214
 しかしながら、特許文献1に記載された発明のように、最前列に積載されたコンテナの前面の全体を覆うように風防構造を形成した場合には、風防構造が大型化及び重量化しやすく、コンテナ積載効率及び燃費の低下を誘引することとなる。 However, when the windshield structure is formed so as to cover the entire front surface of the container loaded in the front row as in the invention described in Patent Document 1, the windshield structure tends to be large and heavy, and the container is loaded. It will induce a decrease in efficiency and fuel efficiency.
 本発明はかかる問題点に鑑み創案されたものであり、風圧抵抗を低減しつつ風防構造の小型化及び軽量化を図ることができる、コンテナ船の船首構造、コンテナ船及びコンテナ船の船首構造の設計方法を提供することを目的とする。 The present invention has been devised in view of the above problems, and is capable of reducing the size and weight of the windshield structure while reducing the wind pressure resistance. The purpose is to provide a design method.
 本発明によれば、コンテナ船の船首構造であって、上甲板の縁部に略垂直に配置された風防体を備え、前記風防体の高さは、5~18mの範囲に設定されている、ことを特徴とするコンテナ船の船首構造が提供される。 According to the present invention, the bow structure of a container ship is provided with a windshield body arranged substantially vertically on the edge of the upper deck, and the height of the windshield body is set in the range of 5 to 18 m. , The bow structure of a container ship characterized by that is provided.
 前記風防体の高さは、10~15mの範囲に設定されていてもよい。 The height of the windshield may be set in the range of 10 to 15 m.
 また、本発明によれば、コンテナ船の船首構造であって、上甲板の縁部に略垂直に配置された風防体を備え、前記風防体の高さは、前記コンテナ船の平均コンテナ積載高さに対する比率が0.18~0.65の範囲に設定されている、ことを特徴とするコンテナ船の船首構造が提供される。 Further, according to the present invention, the bow structure of a container ship is provided with a windshield body arranged substantially vertically on the edge of the upper deck, and the height of the windshield body is the average container loading height of the container ship. Provided is a bow structure of a container ship, characterized in that the ratio to the height is set in the range of 0.18 to 0.65.
 前記風防体の高さは、前記コンテナ船の平均コンテナ積載高さに対する比率が0.35~0.55の範囲に設定されていてもよい。 The height of the windshield may be set in the range of 0.35 to 0.55 as a ratio to the average container loading height of the container ship.
 前記風防体は、係船装置の索体を挿通可能な開口部を備えていてもよい。 The windshield may be provided with an opening through which the cord of the mooring device can be inserted.
 前記風防体は、左舷側から右舷側に渡って略一定の高さを有していてもよい。 The windshield may have a substantially constant height from the port side to the starboard side.
 前記上甲板の前記風防体により囲まれた部分に追加コンテナを積載可能な支持部を備えていてもよい。 A support portion capable of loading an additional container may be provided in a portion of the upper deck surrounded by the windshield.
 また、前記追加コンテナの積載高さは、貨物区に配置された最前部のコンテナ積載高さを超えないように設定されていてもよい。 Further, the loading height of the additional container may be set so as not to exceed the loading height of the frontmost container arranged in the cargo area.
 また、前記追加コンテナの積載高さは、前記風防体の高さに対する比率が1.7以下に設定されていてもよい。 Further, the loading height of the additional container may be set to 1.7 or less as a ratio to the height of the windshield.
 また、本発明によれば、上述した船首構造を備えたことを特徴とするコンテナ船が提供される。 Further, according to the present invention, a container ship characterized by having the above-mentioned bow structure is provided.
 また、本発明によれば、コンテナ船の船首構造の設計方法であって、前記コンテナ船は、上甲板の縁部に略垂直に配置された風防体を備え、風向を進行方向に対して±10~±60°の範囲に設定し、前記コンテナ船の満載状態及び半載状態の風圧抵抗の低減率を計算し、前記低減率を参照して前記風防体の高さを設定するようにした、ことを特徴とするコンテナ船の船首構造の設計方法が提供される。 Further, according to the present invention, there is a method for designing the bow structure of a container ship, wherein the container ship is provided with a windshield body arranged substantially perpendicular to the edge of the upper deck, and the wind direction is ± with respect to the traveling direction. It was set in the range of 10 to ± 60 °, the reduction rate of the wind pressure resistance in the fully loaded state and the half-mounted state of the container ship was calculated, and the height of the windshield was set with reference to the reduction rate. , A method of designing the bow structure of a container ship is provided.
 前記設計方法は、前記コンテナ船の平均コンテナ積載高さを算出し、前記風防体の高さを前記平均コンテナ積載高さに対する比率により設定するようにしてもよい。 In the design method, the average container loading height of the container ship may be calculated, and the height of the windshield may be set by the ratio to the average container loading height.
 上述した本発明に係るコンテナ船の船首構造、コンテナ船及びコンテナ船の船首構造の設計方法によれば、コンテナの積載状態及び風向を考慮して、風防体の高さを設定したことにより、風圧抵抗を低減しつつ風防構造の小型化及び軽量化を図ることができる。 According to the above-mentioned design method of the bow structure of the container ship and the bow structure of the container ship and the container ship according to the present invention, the wind pressure is set by setting the height of the windshield in consideration of the loading state and the wind direction of the container. It is possible to reduce the size and weight of the windshield structure while reducing the resistance.
本発明の第一実施形態に係るコンテナ船の一部を示す側面図である。It is a side view which shows a part of the container ship which concerns on 1st Embodiment of this invention. 図1に示したコンテナ船の船首部を示す図であり、(A)は側面図、(B)は平面図、である。It is a figure which shows the bow part of the container ship shown in FIG. 1, (A) is a side view, (B) is a plan view. 風圧抵抗の解析結果を示す分布図であり、(A)は風向0°の場合、(B)は風向30°の場合、を示している。It is a distribution map which shows the analysis result of the wind pressure resistance, (A) shows the case where the wind direction is 0 °, and (B) shows the case where the wind direction is 30 °. 風防体の高さに関する解析結果を示す図であり、(A)は風防体の高さと風圧抵抗の低減率との関係、(B)はHw/Hcと風圧抵抗の低減率との関係、を示している。It is a figure which shows the analysis result about the height of a windshield, (A) is the relationship between the height of a windshield and the reduction rate of wind pressure resistance, and (B) is the relationship between Hw / Hc and the reduction rate of wind pressure resistance. Shows. 本発明の第二実施形態に係るコンテナ船の一部を示す側面図である。It is a side view which shows a part of the container ship which concerns on 2nd Embodiment of this invention. 図5に示したコンテナ船の船首部を示す図であり、(A)は側面図、(B)は図6(A)におけるB矢視断面図、(C)は図6(A)におけるC矢視断面図、である。5 is a view showing the bow of the container ship shown in FIG. 5, in which FIG. 5A is a side view, FIG. 5B is a cross-sectional view taken along the line B in FIG. 6A, and FIG. It is a cross-sectional view taken along the arrow. 図5に示したコンテナ船の変形例を示す図であり、(A)は側面図、(B)は平面図、である。It is a figure which shows the modification of the container ship shown in FIG. 5, (A) is a side view, (B) is a plan view. 追加コンテナの積載高さに関する解析結果を示す図であり、(A)は追加コンテナの積載高さと風圧抵抗の低減率との関係、(B)はHx/Hbと風圧抵抗の低減率との関係、(C)はHx/Hwと風圧抵抗の低減率との関係、を示している。It is a figure which shows the analysis result about the loading height of an additional container, (A) is the relationship between the loading height of an additional container and the reduction rate of wind pressure resistance, and (B) is the relationship between Hx / Hb and the reduction rate of wind pressure resistance. , (C) show the relationship between Hx / Hw and the reduction rate of wind pressure resistance.
 以下、本発明の実施形態について図1~図8(C)を用いて説明する。ここで、図1は、本発明の第一実施形態に係るコンテナ船の一部を示す側面図である。図2は、図1に示したコンテナ船の船首部を示す図であり、(A)は側面図、(B)は平面図、である。 Hereinafter, embodiments of the present invention will be described with reference to FIGS. 1 to 8 (C). Here, FIG. 1 is a side view showing a part of the container ship according to the first embodiment of the present invention. 2A and 2B are views showing the bow portion of the container ship shown in FIG. 1, in which FIG. 2A is a side view and FIG. 2B is a plan view.
 本発明の第一実施形態に係るコンテナ船1は、図1に示したように、船体の先端部分である船首部2と、複数のコンテナ31を積載可能な貨物区3と、上甲板4の縁部に略垂直に配置された風防体5と、を備えている。なお、図1において、一点鎖線Mは船体中央部を意味しており、説明の便宜上、船体中央部より後方側の図は省略してある。 As shown in FIG. 1, the container ship 1 according to the first embodiment of the present invention has a bow portion 2 which is a tip portion of a hull, a cargo area 3 capable of loading a plurality of containers 31, and an upper deck 4. It is provided with a windshield 5 arranged substantially vertically on the edge portion. In FIG. 1, the alternate long and short dash line M means the central portion of the hull, and for convenience of explanation, the figure on the rear side of the central portion of the hull is omitted.
 貨物区3の一部には居住区32が配置されていてもよい。なお、居住区32は、船体中央部より後方側に配置されていてもよい。図1に示したコンテナ31は、満載状態を示している。ここで、貨物区3の船体中央部より前方側に積載されたコンテナ31のうち、上甲板4から計測した最大コンテナ積載高さをHa、最前部のコンテナ積載高さをHb、平均コンテナ積載高さをHcと定義する。すなわち、Hc=(Ha+Hb)/2である。 A residential area 32 may be located in a part of the cargo area 3. The residential area 32 may be arranged on the rear side of the center of the hull. The container 31 shown in FIG. 1 shows a fully loaded state. Here, among the containers 31 loaded on the front side of the center of the hull of the cargo area 3, the maximum container loading height measured from the upper deck 4 is Ha, the frontmost container loading height is Hb, and the average container loading height. Is defined as Hc. That is, Hc = (Ha + Hb) / 2.
 船首部2における貨物区3よりも前方の上甲板4上には、例えば、図2(A)及び図2(B)に示したように、フォアマスト21、係船装置22等が配置されている。係船装置22は、例えば、ムアリングウィンチ、ウィンドラス等を含む趣旨である。なお、図2(A)において、説明の便宜上、風防体5内の係船装置22の図は省略してある。 For example, as shown in FIGS. 2 (A) and 2 (B), a fore mast 21, a mooring device 22, and the like are arranged on the upper deck 4 in front of the cargo area 3 in the bow portion 2. .. The mooring device 22 is intended to include, for example, a mooring winch, a windlass, and the like. In FIG. 2A, for convenience of explanation, the figure of the mooring device 22 in the windshield 5 is omitted.
 風防体5は、船首部2の左舷側から右舷側に渡って配置された鋼板である。風防体5は、例えば、図2(A)に示したように、最前列のコンテナ31又は最前列のラッシングブリッジ33よりも前方で略一定の高さを有している。なお、風防体5の両端部は、上甲板4の高さまで漸減するように形成されていてもよい。漸減部は、曲線的であってもよいし、直線的であってもよい。また、風防体5の上甲板4からの高さをHwと定義する。なお、風防体5の素材は、鋼板に限定されるものではなく、他の金属板であってもよいし、樹脂合板であってもよい。 The windshield 5 is a steel plate arranged from the port side to the starboard side of the bow portion 2. As shown in FIG. 2A, for example, the windshield 5 has a substantially constant height in front of the container 31 in the front row or the lashing bridge 33 in the front row. Both ends of the windshield 5 may be formed so as to gradually decrease to the height of the upper deck 4. The tapering portion may be curved or linear. Further, the height of the windshield 5 from the upper deck 4 is defined as Hw. The material of the windshield 5 is not limited to the steel plate, and may be another metal plate or a resin plywood.
 係船装置22は、岸壁や海底に向かってワイヤロープ等の索体を送り出したり巻き取ったりする必要があることから、図1に示したように、風防体5には係船装置22の索体を挿通可能な開口部51が形成されていてもよい。なお、説明の便宜上、図2(A)では開口部51の図を省略してある。 Since the mooring device 22 needs to send out or wind a wire rope or the like toward the quay or the seabed, as shown in FIG. 1, the windshield 5 is provided with the rope of the mooring device 22. An insertable opening 51 may be formed. For convenience of explanation, the figure of the opening 51 is omitted in FIG. 2A.
 ここで、図3は、風圧抵抗の解析結果を示す分布図であり、(A)は風向0°の場合、(B)は風向30°の場合、を示している。なお、コンテナ船1の進行方向を0°と定義し、進行方向から左舷方向の角度を正(プラス)とし、進行方向から右舷方向の角度を負(マイナス)と定義している。 Here, FIG. 3 is a distribution diagram showing the analysis result of the wind pressure resistance, where (A) shows the case where the wind direction is 0 ° and (B) shows the case where the wind direction is 30 °. The traveling direction of the container ship 1 is defined as 0 °, the angle from the traveling direction to the port side is defined as positive (plus), and the angle from the traveling direction to the starboard direction is defined as negative (minus).
 なお、図3(A)及び図3(B)に示した解析結果は、風防体5なし、満載状態、風速(相対速度)10m/sの条件でシミュレーションした結果を示している。 The analysis results shown in FIGS. 3 (A) and 3 (B) show the results of simulation under the conditions of no windshield 5, full load, and wind speed (relative velocity) of 10 m / s.
 図3(A)に示したように、コンテナ船1が正面から風を受けた場合、すなわち、風向0°の場合、最前列に積載されたコンテナ31の正面の上部における風圧抵抗が高くなる傾向にある。 As shown in FIG. 3A, when the container ship 1 receives wind from the front, that is, when the wind direction is 0 °, the wind pressure resistance at the upper part of the front of the container 31 loaded in the front row tends to increase. It is in.
 一方、図3(B)に示したように、コンテナ船1が斜め方向から風を受けた場合、例えば、風向+30°の場合、最前列に積載されたコンテナ31の正面の左舷側部分における風圧抵抗が高くなる傾向にある。また、風向+30°の場合、最前列に積載されたコンテナ31の正面の上部における風圧抵抗は、風向0°の場合よりも低くなっていることが理解できる。 On the other hand, as shown in FIG. 3B, when the container ship 1 receives wind from an oblique direction, for example, when the wind direction is + 30 °, the wind pressure at the port side portion in front of the container 31 loaded in the front row. Resistance tends to be high. Further, it can be understood that when the wind direction is + 30 °, the wind pressure resistance at the upper part of the front surface of the container 31 loaded in the front row is lower than when the wind direction is 0 °.
 なお、図3(B)では、コンテナ船1が斜め方向から風を受けた場合の一例として、風向+30°の場合を図示しているが、風向±10~±60°の範囲においても同様の傾向を示すものと考えられる。 In FIG. 3B, the case where the container ship 1 receives the wind from an oblique direction is shown in the case where the wind direction is + 30 °, but the same applies in the range of the wind direction ± 10 to ± 60 °. It is considered to show a tendency.
 従来のコンテナ船における風防構造は、コンテナ船1が正面から風を受けた場合、すなわち、風向0°の場合を想定していることから、最前列に積載されたコンテナ31の正面の上部における風圧抵抗を低減させることに注力している。したがって、従来のコンテナ船では、風防構造が高く形成されたり、風を整流させるためにカウル形状に形成されたりすることが多い。かかる従来のコンテナ船では、風防構造が大型化及び重量化しやすく、コンテナ積載効率及び燃費の低下を誘引することとなる。 Since the windshield structure of the conventional container ship assumes the case where the container ship 1 receives the wind from the front, that is, the wind direction is 0 °, the wind pressure at the upper part of the front surface of the container 31 loaded in the front row. Focusing on reducing resistance. Therefore, in a conventional container ship, the windshield structure is often formed high or is formed in a cowl shape in order to rectify the wind. In such a conventional container ship, the windshield structure tends to be large and heavy, which leads to a decrease in container loading efficiency and fuel efficiency.
 しかしながら、自然風の発生確率を考慮すれば、航行中において、コンテナ船1が正面から風を受ける割合よりも、コンテナ船1が斜め方向から風を受ける割合の方が多いことが推察される。また、コンテナ船1は、航行中において、常に満載状態であるわけではなく、それに満たない積載状態(例えば、半載状態)であることも多い。してみれば、満載状態かつ風向0°を想定して風防を設計した場合には、風防構造が過剰設計になることは明らかである。 However, considering the probability of natural wind generation, it is presumed that the ratio of the container ship 1 receiving the wind from the diagonal direction is higher than the ratio of the container ship 1 receiving the wind from the front while sailing. Further, the container ship 1 is not always in a fully loaded state during navigation, and is often in a loaded state (for example, a semi-loaded state) less than that. Then, it is clear that the windshield structure is over-designed when the windshield is designed assuming a full load and a wind direction of 0 °.
 そこで、本実施形態におけるコンテナ船1では、風向を進行方向に対して±10~±60°の範囲に設定し、コンテナ船1の満載状態及び半載状態の風圧抵抗の低減率を計算し、計算された低減率を参照して風防体5の高さを設定するようにしている。 Therefore, in the container ship 1 in the present embodiment, the wind direction is set in the range of ± 10 to ± 60 ° with respect to the traveling direction, and the reduction rate of the wind pressure resistance in the fully loaded state and the half-mounted state of the container ship 1 is calculated. The height of the windshield 5 is set with reference to the calculated reduction rate.
 なお、本実施形態において、「半載状態」とは、船体中央部より前方側に積載されたコンテナ31のうち、上甲板4から計測した平均コンテナ積載高さが満載状態の平均コンテナ積載高さHcの約半分の値であり、船体中央部より前方側に積載されたコンテナ31が平均コンテナ積載高さHcに近い範囲で略均等に積載された状態を意味している。 In the present embodiment, the "half-mounted state" means the average container loading height in the fully loaded state, which is the average container loading height measured from the upper deck 4 of the containers 31 loaded on the front side from the center of the hull. It is about half the value of Hc, and means that the containers 31 loaded on the front side of the center of the hull are loaded substantially evenly within a range close to the average container loading height Hc.
 いま、風向+30°、風速(相対速度)10m/sの条件で風防体5の高さHwを変えながら満載状態及び半載状態における風圧抵抗を計算した結果を表1、図4(A)及び図4(B)に示す。ここで、図4は、風防体の高さに関する解析結果を示す図であり、(A)は風防体の高さと風圧抵抗の低減率との関係、(B)はHw/Hcと風圧抵抗の低減率との関係、を示している。 Now, the results of calculating the wind pressure resistance in the fully loaded state and the semi-mounted state while changing the height Hw of the windshield 5 under the conditions of wind direction + 30 ° and wind speed (relative velocity) 10 m / s are shown in Table 1, FIG. 4 (A) and It is shown in FIG. 4 (B). Here, FIG. 4 is a diagram showing the analysis results regarding the height of the windshield, (A) is the relationship between the height of the windshield and the reduction rate of the wind pressure resistance, and (B) is Hw / Hc and the wind pressure resistance. The relationship with the reduction rate is shown.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示した風圧抵抗の数値は、風防体5の高さが1mの場合における風圧抵抗を100とした場合の相対的な数値である。また、表1に示した風圧抵抗の低減率は、風防体5の高さHwが1mの場合の風圧抵抗を基準として風圧抵抗が低減した割合を計算したものである。また、風圧抵抗が低減した場合を負の値(マイナス値)で表現し、風圧抵抗が増加した場合を正の値(プラス値)で表現するものとする。 The numerical value of the wind pressure resistance shown in Table 1 is a relative value when the height of the windshield 5 is 1 m and the wind pressure resistance is 100. Further, the reduction rate of the wind pressure resistance shown in Table 1 is calculated by calculating the rate of reduction of the wind pressure resistance based on the wind pressure resistance when the height Hw of the windshield body 5 is 1 m. Further, the case where the wind pressure resistance is reduced is expressed by a negative value (minus value), and the case where the wind pressure resistance is increased is expressed by a positive value (plus value).
 表1に示したように、風防体5の高さHwが5mの場合における満載状態の風圧抵抗の低減率は-6%であった。また、風防体5の高さHwが10mの場合における満載状態の風圧抵抗の低減率は-11%、風防体5の高さHwが15mの場合における満載状態の風圧抵抗の低減率は-11%、風防体5の高さHwが20mの場合における満載状態の風圧抵抗の低減率は-9%、であった。 As shown in Table 1, when the height Hw of the windshield body 5 was 5 m, the reduction rate of the wind pressure resistance in the fully loaded state was -6%. Further, when the height Hw of the windshield body 5 is 10 m, the reduction rate of the wind pressure resistance in the fully loaded state is -11%, and when the height Hw of the windshield body 5 is 15 m, the reduction rate of the wind pressure resistance in the fully loaded state is -11%. %, And when the height Hw of the windshield body 5 was 20 m, the reduction rate of the wind pressure resistance in the fully loaded state was -9%.
 また、風防体5の高さHwが5mの場合における半載状態の風圧抵抗の低減率は-9%、風防体5の高さHwが10mの場合における半載状態の風圧抵抗の低減率は-10%、風防体5の高さHwが15mの場合における半載状態の風圧抵抗の低減率は-10%、風防体5の高さHwが20mの場合における半載状態の風圧抵抗の低減率は-2%、であった。 Further, when the height Hw of the windshield 5 is 5 m, the reduction rate of the wind pressure resistance in the semi-mounted state is -9%, and when the height Hw of the windshield 5 is 10 m, the reduction rate of the wind pressure resistance in the semi-mounted state is -9%. The reduction rate of the wind pressure resistance in the semi-mounted state is -10% when the height Hw of the windshield body 5 is 15 m, and the reduction rate of the wind pressure resistance in the semi-mounted state when the height Hw of the windshield body 5 is 20 m. The rate was -2%.
 この解析結果を図示したものが図4(A)であり、満載状態の解析結果を実線で図示し、半載状態の解析結果を点線で図示してある。ここで、風圧抵抗の低減率が-5%の場合を一つの指標とすれば、風防体5の高さHwは5~18mの範囲に設定することができる。また、風圧抵抗の低減率が-10%の場合を一つの指標とすれば、風防体5の高さHwは10~15mの範囲に設定することができる。 FIG. 4A illustrates the analysis result, the analysis result in the full load state is shown by a solid line, and the analysis result in the semi-mounted state is shown by a dotted line. Here, if the case where the reduction rate of the wind pressure resistance is −5% is taken as one index, the height Hw of the windshield body 5 can be set in the range of 5 to 18 m. Further, if the case where the reduction rate of the wind pressure resistance is −10% is taken as one index, the height Hw of the windshield body 5 can be set in the range of 10 to 15 m.
 また、コンテナ31の積載高さは、コンテナ船1の大きさや型式等によって異なることから、風防体5の高さHwはコンテナ31の積載高さに基づいて設定することもできる。本実施形態に係る船首構造の設計方法では、コンテナ船1の平均コンテナ積載高さHcを算出し、風防体5の高さHwを平均コンテナ積載高さHcに対する比率により設定するようにしている。 Further, since the loading height of the container 31 differs depending on the size, model, etc. of the container ship 1, the height Hw of the windshield 5 can be set based on the loading height of the container 31. In the bow structure design method according to the present embodiment, the average container loading height Hc of the container ship 1 is calculated, and the height Hw of the windshield 5 is set by the ratio to the average container loading height Hc.
 ここで、図4(B)は、風防体5の高さHwを平均コンテナ積載高さHcに対する比率(Hw/Hc)を用いて、図4(A)を書き直したものである。なお、この解析における平均コンテナ積載高さHcは27.6mである。 Here, FIG. 4B is a rewrite of FIG. 4A using the ratio (Hw / Hc) of the height Hw of the windshield body 5 to the average container loading height Hc. The average container loading height Hc in this analysis is 27.6 m.
 図4(B)において、風圧抵抗の低減率が-5%の場合を一つの指標とすれば、Hw/Hcは0.18~0.65の範囲に設定することができる。また、風圧抵抗の低減率が-10%の場合を一つの指標とすれば、Hw/Hcは0.35~0.55の範囲に設定することができる。 In FIG. 4B, if the case where the reduction rate of wind pressure resistance is −5% is taken as one index, Hw / Hc can be set in the range of 0.18 to 0.65. Further, if the case where the reduction rate of the wind pressure resistance is −10% is taken as one index, Hw / Hc can be set in the range of 0.35 to 0.55.
 上述した本実施形態に係るコンテナ船1及びその船首構造によれば、コンテナ31の積載状態及び風向を考慮して、風防体5の高さを設定したことにより、風圧抵抗を低減しつつ風防構造の小型化及び軽量化を図ることができる。 According to the container ship 1 and its bow structure according to the present embodiment described above, the height of the windshield body 5 is set in consideration of the loading state and the wind direction of the container 31, so that the windshield structure is reduced while reducing the wind pressure resistance. It is possible to reduce the size and weight of the product.
 次に、本発明の第二実施形態に係るコンテナ船1について、図5~図6(C)を参照しつつ説明する。ここで、図5は、本発明の第二実施形態に係るコンテナ船の一部を示す側面図である。図6は、図5に示したコンテナ船の船首部を示す図であり、(A)は側面図、(B)は図6(A)におけるB矢視断面図、(C)は図6(A)におけるC矢視断面図、である。なお、上述した第一実施形態と同じ構成部品については、同じ符号を付して重複した説明を省略する。 Next, the container ship 1 according to the second embodiment of the present invention will be described with reference to FIGS. 5 to 6 (C). Here, FIG. 5 is a side view showing a part of the container ship according to the second embodiment of the present invention. 6A and 6B are views showing the bow of the container ship shown in FIG. 5, where FIG. 6A is a side view, FIG. 6B is a cross-sectional view taken along the line B in FIG. 6A, and FIG. 6C is FIG. 6 (C). It is a cross-sectional view taken along the line C in A). The same components as those in the first embodiment described above are designated by the same reference numerals, and duplicated description will be omitted.
 図5~図6(C)に示した第二実施形態は、上甲板4の風防体5により囲まれた部分に追加コンテナ6を積載可能な支持部7を配置したものである。船首部2の上甲板4には係船装置22が配置されていることから、追加コンテナ6を積載するには係船装置22との干渉を回避する必要がある。 In the second embodiment shown in FIGS. 5 to 6 (C), a support portion 7 capable of loading an additional container 6 is arranged in a portion of the upper deck 4 surrounded by the windshield body 5. Since the mooring device 22 is arranged on the upper deck 4 of the bow portion 2, it is necessary to avoid interference with the mooring device 22 in order to load the additional container 6.
 そこで、第二実施形態では、支持部7として、上甲板4の風防体5により囲まれた部分に追加甲板71を配置している。追加甲板71は、例えば、風防体5の内側に溶接された鋼板である。また、追加甲板71を脚部と天板部とにより構成し、天板部の上に風防体5を溶接するようにしてもよい。この場合、風防体5の高さHwは、追加甲板71の脚部の長さを含むものとする。 Therefore, in the second embodiment, the additional deck 71 is arranged as the support portion 7 in the portion of the upper deck 4 surrounded by the windshield body 5. The additional deck 71 is, for example, a steel plate welded to the inside of the windshield 5. Further, the additional deck 71 may be composed of a leg portion and a top plate portion, and the windshield 5 may be welded on the top plate portion. In this case, the height Hw of the windshield 5 includes the length of the legs of the additional deck 71.
 図6(A)に示したように、追加甲板71の上にフォアマスト21が配置される。また、図6(B)に示したように、追加甲板71の下に係船装置22が配置される。また、図示しないが、追加甲板71上には追加コンテナ6を積載及び固縛するための装置等が配置される。 As shown in FIG. 6A, the fore mast 21 is arranged on the additional deck 71. Further, as shown in FIG. 6B, the mooring device 22 is arranged under the additional deck 71. Further, although not shown, a device or the like for loading and fixing the additional container 6 is arranged on the additional deck 71.
 上述した第二実施形態にかかるコンテナ船1によれば、追加甲板71上に追加コンテナ6を積載可能な空間を形成することができ、コンテナ船1の積載効率の向上を図ることができる。また、風防体5は、上述した第一実施形態と同じ構造であることから、風圧抵抗を低減しつつ風防構造の小型化及び軽量化を図ることもできる。 According to the container ship 1 according to the second embodiment described above, a space in which the additional container 6 can be loaded can be formed on the additional deck 71, and the loading efficiency of the container ship 1 can be improved. Further, since the windshield body 5 has the same structure as that of the first embodiment described above, it is possible to reduce the size and weight of the windshield structure while reducing the wind pressure resistance.
 また、支持部7は、例えば、図7(A)及び図7(B)に示したように、複数の支柱72により構成してもよい。ここで、図7は、図5に示したコンテナ船の変形例を示す図であり、(A)は側面図、(B)は平面図、である。 Further, the support portion 7 may be composed of a plurality of columns 72, for example, as shown in FIGS. 7 (A) and 7 (B). Here, FIG. 7 is a view showing a modified example of the container ship shown in FIG. 5, in which FIG. 7A is a side view and FIG. 7B is a plan view.
 支持部7を支柱構造にすることにより、支持部7の軽量化を図ることができる。このとき、支柱72が係船装置22と干渉しないように、係船装置22の位置をずらしたり、支柱72の形状を変形させたりする必要がある。図7(B)では、係船装置22の位置をずらした場合を図示してある。 By making the support portion 7 a strut structure, the weight of the support portion 7 can be reduced. At this time, it is necessary to shift the position of the mooring device 22 or deform the shape of the support so that the support column 72 does not interfere with the mooring device 22. FIG. 7B illustrates a case where the position of the mooring device 22 is shifted.
 ところで、本実施形態に係るコンテナ船1は、風圧抵抗を低減することを一つの目的としていることから、追加コンテナ6の積載高さ(段数)についても検討する必要がある。ここで、図8は、追加コンテナの積載高さに関する解析結果を示す図であり、(A)は追加コンテナの積載高さと風圧抵抗の低減率との関係、(B)はHx/Hbと風圧抵抗の低減率との関係、(C)はHx/Hwと風圧抵抗の低減率との関係、を示している。なお、図5に示したように、追加コンテナ6の上甲板4からの積載高さをHxと定義している。 By the way, since the container ship 1 according to the present embodiment has one purpose of reducing the wind pressure resistance, it is necessary to consider the loading height (number of stages) of the additional container 6. Here, FIG. 8 is a diagram showing the analysis result regarding the loading height of the additional container, (A) is the relationship between the loading height of the additional container and the reduction rate of the wind pressure resistance, and (B) is Hx / Hb and the wind pressure. The relationship with the reduction rate of resistance and (C) show the relationship between Hx / Hw and the reduction rate of wind pressure resistance. As shown in FIG. 5, the loading height of the additional container 6 from the upper deck 4 is defined as Hx.
 いま、風向+30°、風速(相対速度)10m/s、風防体5の高さHw10mの条件で追加コンテナ6の積載高さ(段数)を変えながら満載状態及び半載状態における風圧抵抗を計算した結果を表2、図8(A)~図8(C)に示す。なお、満載状態及び半載状態は、貨物区3に積載されたコンテナ31の積載状態を示している。 Now, the wind pressure resistance in the fully loaded state and the half-mounted state was calculated while changing the loading height (number of stages) of the additional container 6 under the conditions of the wind direction + 30 °, the wind speed (relative speed) 10 m / s, and the height Hw 10 m of the windshield body 5. The results are shown in Table 2, FIGS. 8 (A) to 8 (C). The fully loaded state and the semi-loaded state indicate the loaded state of the container 31 loaded in the cargo area 3.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示したように、追加コンテナ6の積載高さHxが0段の場合、単に10mの風防体5を設置した状態であることから、風圧抵抗及びその低減率は、表1に示した風防体5の高さHwが10mの場合における数値と同じ結果となる。なお、表2に示した風圧抵抗及び低減率の数値は、表1と同様に、風防体5の高さHwが1mの場合の風圧抵抗を基準にして算出したものである。 As shown in Table 2, when the loading height Hx of the additional container 6 is 0, the windshield 5 is simply installed at 10 m, so the wind pressure resistance and its reduction rate are shown in Table 1. The result is the same as the value when the height Hw of the windshield 5 is 10 m. The numerical values of the wind pressure resistance and the reduction rate shown in Table 2 are calculated based on the wind pressure resistance when the height Hw of the windshield body 5 is 1 m, as in Table 1.
 表2に示したHx/Hwは、追加コンテナ6の積載高さHxの風防体5の高さHw(10m)に対する相対的な数値を示したものである。したがって、Hx/Hw>1の場合は、追加コンテナ6の積載高さHxが風防体5の高さHw(10m)を超えていることを意味している。なお、追加コンテナ6の積載高さHxが0段の場合における高さは、支持部7における追加コンテナ6の載置面の上甲板4からの高さを意味している。 Hx / Hw shown in Table 2 shows the relative numerical values of the loading height Hx of the additional container 6 with respect to the height Hw (10 m) of the windshield body 5. Therefore, when Hx / Hw> 1, it means that the loading height Hx of the additional container 6 exceeds the height Hw (10 m) of the windshield body 5. The height when the loading height Hx of the additional container 6 is 0 is the height from the upper deck 4 of the mounting surface of the additional container 6 in the support portion 7.
 表2に示したHx/Hbは、追加コンテナ6の積載高さHxの最前部のコンテナ積載高さHbに対する相対的な数値を示したものである。したがって、Hx/Hb>1の場合は、追加コンテナ6の積載高さHxが最前部のコンテナ積載高さHbを超えていることを意味している。なお、ここでは、満載状態における最前部のコンテナ積載高さHbを24mとし、半載状態における最前部のコンテナ積載高さHbを16.17mとしている。 Hx / Hb shown in Table 2 shows the relative numerical values of the loading height Hx of the additional container 6 with respect to the container loading height Hb at the foremost part. Therefore, when Hx / Hb> 1, it means that the loading height Hx of the additional container 6 exceeds the container loading height Hb at the frontmost portion. Here, the frontmost container loading height Hb in the fully loaded state is 24 m, and the frontmost container loading height Hb in the semi-loaded state is 16.17 m.
 表2に示したように、追加コンテナ6の積載高さHxが2段の場合における満載状態の風圧抵抗の低減率は-10%、追加コンテナ6の積載高さHxが3段の場合における満載状態の風圧抵抗の低減率は-11%、追加コンテナ6の積載高さHxが4段の場合における満載状態の風圧抵抗の低減率は-12%、追加コンテナ6の積載高さHxが5段の場合における満載状態の風圧抵抗の低減率は-12%、追加コンテナ6の積載高さHxが6段の場合における満載状態の風圧抵抗の低減率は-10%、追加コンテナ6の積載高さHxが7段の場合における満載状態の風圧抵抗の低減率は-7%、追加コンテナ6の積載高さHxが8段の場合における満載状態の風圧抵抗の低減率は-3%、であった。 As shown in Table 2, the reduction rate of the wind pressure resistance in the fully loaded state is -10% when the loading height Hx of the additional container 6 is two stages, and the loading height Hx of the additional container 6 is three stages. The reduction rate of the wind pressure resistance in the state is -11%, the reduction rate of the wind pressure resistance in the full load state is -12% when the loading height Hx of the additional container 6 is 4 stages, and the loading height Hx of the additional container 6 is 5 stages. In the case of, the reduction rate of the wind pressure resistance in the fully loaded state is -12%, the reduction rate of the wind pressure resistance in the fully loaded state is -10% when the loading height Hx of the additional container 6 is 6 stages, and the loading height of the additional container 6 is When the Hx was 7 stages, the reduction rate of the wind pressure resistance in the fully loaded state was -7%, and when the loading height Hx of the additional container 6 was 8 stages, the reduction rate of the wind pressure resistance in the fully loaded state was -3%. ..
 また、追加コンテナ6の積載高さHxが3段の場合における半載状態の風圧抵抗の低減率は-9%、追加コンテナ6の積載高さHxが4段の場合における半載状態の風圧抵抗の低減率は-8%、追加コンテナ6の積載高さHxが5段の場合における半載状態の風圧抵抗の低減率は-1%、であり、追加コンテナ6の積載高さHxが7段の場合における半状態の風圧抵抗の低減率は+8%であった。なお、半載状態では、追加コンテナ6の積載高さHxが2段,6段及び8段の場合における風圧抵抗及びその低減率の計算を省略してある。 Further, the reduction rate of the wind pressure resistance in the semi-mounted state when the loading height Hx of the additional container 6 is 3 stages is -9%, and the wind pressure resistance in the semi-mounted state when the loading height Hx of the additional container 6 is 4 stages. The reduction rate is -8%, the reduction rate of the wind pressure resistance in the semi-mounted state is -1% when the loading height Hx of the additional container 6 is 5 stages, and the loading height Hx of the additional container 6 is 7 stages. In the case of, the reduction rate of the wind pressure resistance in the semi-state was + 8%. In the semi-mounted state, the calculation of the wind pressure resistance and its reduction rate when the loading height Hx of the additional container 6 is 2, 6, and 8 is omitted.
 この解析結果を図示したものが図8(A)及び図8(B)であり、満載状態の解析結果を実線で図示し、半載状態の解析結果を点線で図示してある。図8(A)は、追加コンテナ6の積載高さ(段数)を横軸、風圧抵抗の低減率を縦軸として表示したものである。また、図8(B)は、Hx/Hbを横軸、風圧抵抗の低減率を縦軸として図8(A)を書き直したものである。 The analysis results are shown in FIGS. 8 (A) and 8 (B). The analysis results in the fully loaded state are shown by solid lines, and the analysis results in the semi-mounted state are shown by dotted lines. FIG. 8A shows the loading height (number of stages) of the additional container 6 on the horizontal axis and the reduction rate of wind pressure resistance on the vertical axis. Further, FIG. 8B is a rewrite of FIG. 8A with Hx / Hb as the horizontal axis and the wind pressure resistance reduction rate as the vertical axis.
 図示したように、満載状態の場合も半載状態の場合も、追加コンテナ6の積載高さHxが最前部のコンテナ積載高さHbを超える(Hx/Hb>1)ことによって風圧抵抗の低減値が悪化することがわかる。ここで、風圧抵抗の低減率が-5%の場合を一つの指標とすれば、追加コンテナ6の積載高さHxは、貨物区3の最前部のコンテナ積載高さHbを超えないように設定することができる。 As shown in the figure, the reduction value of the wind pressure resistance is obtained by the load height Hx of the additional container 6 exceeding the container load height Hb at the front (Hx / Hb> 1) in both the fully loaded state and the semi-mounted state. It turns out that becomes worse. Here, if the case where the reduction rate of the wind pressure resistance is -5% is taken as one index, the loading height Hx of the additional container 6 is set so as not to exceed the container loading height Hb at the front of the cargo area 3. can do.
 また、追加コンテナ6の積載高さHxは、追加コンテナ6の大きさ、風防体5の高さHw等によって異なることから、追加コンテナ6の積載高さHx(段数)は風防体5の高さHwに基づいて設定することもできる。 Further, since the loading height Hx of the additional container 6 differs depending on the size of the additional container 6, the height Hw of the windshield 5, and the like, the loading height Hx (number of stages) of the additional container 6 is the height of the windshield 5. It can also be set based on Hw.
 ここで、図8(C)は、追加コンテナ6の積載高さHxを風防体5の高さHwに対する比率(Hx/Hw)を用いて図8(A)を書き直したものである。図8(C)において、風圧抵抗の低減率が-5%の場合を一つの指標とすれば、Hx/Hwは1.7以下に設定することができる。 Here, FIG. 8C is a rewrite of FIG. 8A using the ratio (Hx / Hw) of the loading height Hx of the additional container 6 to the height Hw of the windshield body 5. In FIG. 8C, if the reduction rate of wind pressure resistance is −5% as one index, Hx / Hw can be set to 1.7 or less.
 上述した第二実施形態において、支持部7が追加甲板71又は支柱72により構成される場合について説明したが、これらの構成に限定されるものではない。支持部7は、追加コンテナ6を積載することができ、係船装置22との干渉を回避することができるように構成されていれば、図示した構成以外の構成であってもよい。 In the second embodiment described above, the case where the support portion 7 is composed of the additional deck 71 or the support column 72 has been described, but the present invention is not limited to these configurations. The support portion 7 may have a configuration other than the one shown in the figure as long as it can be loaded with the additional container 6 and is configured to avoid interference with the mooring device 22.
 本発明は上述した実施形態に限定されず、本発明の趣旨を逸脱しない範囲で種々変更が可能であることは勿論である。 The present invention is not limited to the above-described embodiment, and it goes without saying that various modifications can be made without departing from the spirit of the present invention.
1 コンテナ船
2 船首部
3 貨物区
4 上甲板
5 風防体
6 追加コンテナ
7 支持部
21 フォアマスト
22 係船装置
31 コンテナ
32 居住区
33 ラッシングブリッジ
51 開口部
71 追加甲板
72 支柱
 
1 Container ship 2 Bow 3 Cargo zone 4 Upper deck 5 Windshield 6 Additional container 7 Support 21 Fore mast 22 Mooring device 31 Container 32 Residential zone 33 Lashing bridge 51 Opening 71 Additional deck 72 Pillars

Claims (12)

  1.  コンテナ船の船首構造であって、
     上甲板の縁部に略垂直に配置された風防体を備え、
     前記風防体の高さは、5~18mの範囲に設定されている、
    ことを特徴とするコンテナ船の船首構造。
    The bow structure of a container ship
    Equipped with a windshield placed approximately vertically on the edge of the upper deck,
    The height of the windshield is set in the range of 5 to 18 m.
    The bow structure of a container ship is characterized by that.
  2.  前記風防体の高さは、10~15mの範囲に設定されている、請求項1に記載の船首構造。 The bow structure according to claim 1, wherein the height of the windshield is set in the range of 10 to 15 m.
  3.  コンテナ船の船首構造であって、
     上甲板の縁部に略垂直に配置された風防体を備え、
     前記風防体の高さは、前記コンテナ船の平均コンテナ積載高さに対する比率が0.18~0.65の範囲に設定されている、
    ことを特徴とするコンテナ船の船首構造。
    The bow structure of a container ship
    Equipped with a windshield placed approximately vertically on the edge of the upper deck,
    The height of the windshield is set in the range of 0.18 to 0.65 as a ratio to the average container loading height of the container ship.
    The bow structure of a container ship is characterized by that.
  4.  前記風防体の高さは、前記コンテナ船の平均コンテナ積載高さに対する比率が0.35~0.55の範囲に設定されている、請求項3に記載の船首構造。 The bow structure according to claim 3, wherein the height of the windshield is set in the range of 0.35 to 0.55 as a ratio to the average container loading height of the container ship.
  5.  前記風防体は、係船装置の索体を挿通可能な開口部を備える、請求項1又は3に記載のコンテナ船の船首構造。 The bow structure of the container ship according to claim 1 or 3, wherein the windshield has an opening through which a cable of a mooring device can be inserted.
  6.  前記風防体は、左舷側から右舷側に渡って略一定の高さを有している、請求項1又は3に記載のコンテナ船の船首構造。 The bow structure of the container ship according to claim 1 or 3, wherein the windshield has a substantially constant height from the port side to the starboard side.
  7.  前記上甲板の前記風防体により囲まれた部分に追加コンテナを積載可能な支持部を備える、請求項1又は3に記載のコンテナ船の船首構造。 The bow structure of a container ship according to claim 1 or 3, wherein a support portion capable of loading an additional container is provided in a portion of the upper deck surrounded by the windshield.
  8.  前記追加コンテナの積載高さは、貨物区に配置された最前部のコンテナ積載高さを超えないように設定されている、請求項7に記載のコンテナ船の船首構造。 The bow structure of the container ship according to claim 7, wherein the loading height of the additional container is set so as not to exceed the loading height of the frontmost container arranged in the cargo area.
  9.  前記追加コンテナの積載高さは、前記風防体の高さに対する比率が1.7以下に設定されている、請求項7に記載のコンテナ船の船首構造。 The bow structure of the container ship according to claim 7, wherein the loading height of the additional container is set to 1.7 or less in a ratio to the height of the windshield.
  10.  請求項1~9の何れか一項に記載の船首構造を備えた、ことを特徴とするコンテナ船。 A container ship characterized by having the bow structure according to any one of claims 1 to 9.
  11.  コンテナ船の船首構造の設計方法であって、
     前記コンテナ船は、上甲板の縁部に略垂直に配置された風防体を備え、
     風向を進行方向に対して±10~±60°の範囲に設定し、
     前記コンテナ船の満載状態及び半載状態の風圧抵抗の低減率を計算し、
     前記低減率を参照して前記風防体の高さを設定するようにした、
    ことを特徴とするコンテナ船の船首構造の設計方法。
    It is a method of designing the bow structure of a container ship.
    The container ship is equipped with a windshield placed approximately vertically on the edge of the upper deck.
    Set the wind direction in the range of ± 10 to ± 60 ° with respect to the direction of travel.
    Calculate the reduction rate of wind pressure resistance in the fully loaded state and the half-mounted state of the container ship.
    The height of the windshield is set with reference to the reduction rate.
    A method of designing the bow structure of a container ship, which is characterized by this.
  12.  前記コンテナ船の平均コンテナ積載高さを算出し、前記風防体の高さを前記平均コンテナ積載高さに対する比率により設定するようにした、請求項11に記載のコンテナ船の船首構造の設計方法。
     
    The method for designing a bow structure of a container ship according to claim 11, wherein the average container loading height of the container ship is calculated, and the height of the windshield is set by a ratio to the average container loading height.
PCT/JP2021/020366 2020-06-01 2021-05-28 Container ship bow structure, container ship, and design method for container ship bow structure WO2021246305A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020227046006A KR20230017291A (en) 2020-06-01 2021-05-28 Bow structure of container ship, design method of container ship and bow structure of container ship
CN202180041291.7A CN115697830A (en) 2020-06-01 2021-05-28 Ship bow structure of container ship, container ship and design method of ship bow structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020095292A JP6892954B1 (en) 2020-06-01 2020-06-01 How to design the bow structure of container ships, container ships and the bow structure of container ships
JP2020-095292 2020-06-01

Publications (1)

Publication Number Publication Date
WO2021246305A1 true WO2021246305A1 (en) 2021-12-09

Family

ID=76464551

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/020366 WO2021246305A1 (en) 2020-06-01 2021-05-28 Container ship bow structure, container ship, and design method for container ship bow structure

Country Status (4)

Country Link
JP (1) JP6892954B1 (en)
KR (1) KR20230017291A (en)
CN (1) CN115697830A (en)
WO (1) WO2021246305A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114394195A (en) * 2022-01-18 2022-04-26 中山大学 Telescopic air guide sleeve for container ship and control method thereof
CN114589547A (en) * 2022-04-06 2022-06-07 广船国际有限公司 Line drawing method for container foot opening
CN115146479A (en) * 2022-07-27 2022-10-04 上海船舶研究设计院(中国船舶工业集团公司第六0四研究院) Container equivalent structure design method meeting A-60-level fireproof requirements for ships

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113799940B (en) * 2021-10-21 2023-11-03 中国船舶工业集团公司第七0八研究所 Method for calculating vertical hydrostatic shear by using concentrated force to simulate container load

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015517957A (en) * 2012-06-15 2015-06-25 サムスン ヘビー インダストリーズ カンパニー リミテッド Ship resistance reducing device, manufacturing unit for manufacturing the same, and manufacturing method
JP2015145214A (en) * 2014-02-04 2015-08-13 株式会社大内海洋コンサルタント Windshield for bow of container ship
CN210212694U (en) * 2019-07-31 2020-03-31 江苏润扬船业有限公司 Energy-saving container ship

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015517957A (en) * 2012-06-15 2015-06-25 サムスン ヘビー インダストリーズ カンパニー リミテッド Ship resistance reducing device, manufacturing unit for manufacturing the same, and manufacturing method
JP2015145214A (en) * 2014-02-04 2015-08-13 株式会社大内海洋コンサルタント Windshield for bow of container ship
CN210212694U (en) * 2019-07-31 2020-03-31 江苏润扬船业有限公司 Energy-saving container ship

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114394195A (en) * 2022-01-18 2022-04-26 中山大学 Telescopic air guide sleeve for container ship and control method thereof
CN114589547A (en) * 2022-04-06 2022-06-07 广船国际有限公司 Line drawing method for container foot opening
CN114589547B (en) * 2022-04-06 2022-11-22 广船国际有限公司 Line drawing method for container foot opening
CN115146479A (en) * 2022-07-27 2022-10-04 上海船舶研究设计院(中国船舶工业集团公司第六0四研究院) Container equivalent structure design method meeting A-60-level fireproof requirements for ships
CN115146479B (en) * 2022-07-27 2024-04-19 上海船舶研究设计院(中国船舶工业集团公司第六0四研究院) Container equivalent structure design method meeting marine A-60 level fireproof requirement

Also Published As

Publication number Publication date
JP6892954B1 (en) 2021-06-23
KR20230017291A (en) 2023-02-03
JP2021187334A (en) 2021-12-13
CN115697830A (en) 2023-02-03

Similar Documents

Publication Publication Date Title
WO2021246305A1 (en) Container ship bow structure, container ship, and design method for container ship bow structure
EP3199442A2 (en) Foreship and ship vessel therewith
AU693858B2 (en) Hull configuration
JP6118880B1 (en) Ship
KR102026546B1 (en) Ship
CN104619582A (en) Commercial cargo ship
KR101800142B1 (en) Ship hull structure comprising wave resistance increase minimizing steps
EP0134767A1 (en) Hull configuration
KR101322553B1 (en) Container vessel having a carrier structure
CN201753101U (en) Device bringing convenience to lead ships into shallow waterways
EP1545968B1 (en) Vessel provided with a foil situated below the waterline
JP2016527144A (en) Facilities to support multiple containers carried on decks of cargo ships
EP3424809B1 (en) Large displacement hull ship
WO2012174592A1 (en) A multi-hulled vessel
EP2861488A1 (en) Off-shore installation vessel, method of operating an off-shore installation vessel
KR20130090561A (en) Loading amount-increasing type type container ship
CN107585257A (en) A kind of kiloton bulk freighter ship type
JP6531294B2 (en) Landing ship and design method of ship for landing
JP5858898B2 (en) Chip ship bow shape
KR100544899B1 (en) The type of ship with airpoil-fin
CN220786051U (en) Hatch coaming corner structure of open container ship
JP7017378B2 (en) Ship
CN113677590B (en) Ship with flow-managed hydrodynamic duct with surface wave-managed horizontal wall section mounted on the bow
JP2007050814A (en) High-speed container ship
JP6169143B2 (en) Ship with bow valve

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21817777

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227046006

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21817777

Country of ref document: EP

Kind code of ref document: A1