WO2021241752A1 - チタン酸化物-シリコン複合体およびその用途 - Google Patents
チタン酸化物-シリコン複合体およびその用途 Download PDFInfo
- Publication number
- WO2021241752A1 WO2021241752A1 PCT/JP2021/020501 JP2021020501W WO2021241752A1 WO 2021241752 A1 WO2021241752 A1 WO 2021241752A1 JP 2021020501 W JP2021020501 W JP 2021020501W WO 2021241752 A1 WO2021241752 A1 WO 2021241752A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- complex
- negative electrode
- oxide
- carbon
- mass
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/20—Graphite
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G23/00—Compounds of titanium
- C01G23/04—Oxides; Hydroxides
- C01G23/047—Titanium dioxide
- C01G23/053—Producing by wet processes, e.g. hydrolysing titanium salts
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a titanium oxide-silicon complex and its use.
- Amorphous Si has an isotropic expansion when it reacts with Li compared to crystalline Si, and it is considered that there is less deterioration when viewed as a structure of the entire negative electrode.
- amorphous Si is disadvantageous in terms of energy density as compared with crystalline Si because the charge / discharge curve becomes sloped when it reacts with Li.
- the slope-like charge / discharge curve is a unique characteristic of the material itself.
- Patent Document 1 a composite containing lithium titanium oxide and bronze phase titanium oxide, Si can be used as an element constituting the lithium titanium oxide, and the composite is described.
- the negative electrode active material and the like including the above have been disclosed (see, for example, Patent Document 1, [Claim 1], [Claim 2] and [Claim 18]).
- Patent Document 1 Even if the negative electrode active material disclosed in Patent Document 1 is used, it is not possible to obtain a lithium ion secondary battery having a sufficient charge / discharge capacity.
- TiO 2 (B) titanium oxide having a special crystal structure called TiO 2 (B) is known. It has been known that the TiO 2 (B) can be used as a negative electrode material for a lithium ion secondary battery because its crystal structure has a tunnel structure and Li + can easily move (for example, non-patented). See Documents 1 and 2).
- An object of the present invention is to provide a lithium ion secondary battery having a high energy density, and as a negative electrode material for a lithium ion secondary battery and the negative electrode material capable of providing such an excellent lithium ion secondary battery.
- the purpose is to provide a complex that can be used.
- the present inventors have conducted diligent studies in order to solve the above-mentioned problems. As a result, it has been found that a lithium ion secondary battery that solves the above-mentioned problems can be obtained by using a composite obtained by introducing an Si element into a specific titanium oxide as a negative electrode material for a lithium ion secondary battery. , The present invention has been completed.
- a negative electrode having a current collector and an electrode mixture layer covering the current collector, the electrode mixture layer including a binder and a negative electrode material for a lithium ion secondary battery according to [6].
- the lithium ion secondary battery having the negative electrode according to [7].
- the composite according to the embodiment of the present invention as a negative electrode material for a lithium ion secondary battery, it becomes possible to provide a lithium ion secondary battery having a high energy density and a high initial Coulomb efficiency.
- Example 1 The results of SEM-EDX analysis of the complex (A) -1 obtained in Example 1 are shown in FIG.
- the initial charge / discharge curves of Example 1 and Comparative Example 1 are shown in FIG.
- the profiles of the X-ray diffraction measurements of Examples 1 and 2 are shown in FIG.
- peak intensity means “peak height” from the baseline to the peak of the peak.
- Lithium-ion secondary battery A lithium-ion secondary battery has at least one selected from the group consisting of a non-aqueous electrolyte solution and a non-aqueous polymer electrolyte, a positive electrode, and a negative electrode, and lithium is between the positive electrode and the negative electrode. It is a secondary battery that charges and discharges when ions move.
- the full cell refers to a cell that is composed of a positive electrode and a negative electrode and is controlled by a voltage like the lithium ion secondary battery.
- the half cell has a bipolar structure in which either the positive electrode or the negative electrode of the lithium ion battery is the working electrode and the Li metal is the counter electrode, and is controlled by the potential based on the redox potential of Li. Refers to the cell in which it is.
- the Li counter electrode is an electrode paired with a working electrode for passing an electric current.
- Pulsential and “voltage” The electromotive force of the battery when the reference electrode and a certain active material-containing electrode system are combined is called the potential of the active material-containing electrode system.
- the difference in potential when the two types of active material-containing electrode systems are combined is called a voltage.
- CC mode is a constant current mode, in which the voltage (potential) of the battery is changed while always maintaining a constant current value. This is the mode in which the reaction proceeds.
- the CV mode is a constant voltage (potential) mode, which is a mode in which the reaction of the battery is advanced by changing the current value of the battery while always maintaining a constant voltage (potential).
- the CC-CV mode is a mode in which the CV mode is executed after the CC mode.
- Li + is inserted into the complex (A) in CC-CV mode, and Li + is released from the complex (A) in CC mode. This is called a charge / discharge test.
- Charge / discharge curve Electrochemical capacity [mAh / g, Ah / g, etc.] or time [seconds, minutes, hours, etc.] is set on the horizontal axis, and voltage [V] or potential [V vs. A graph with [Ref] set. Lithium-ion secondary battery-related potentials are generally based on the redox potential of lithium [V vs. The unit Li / Li + ] is used. A constant current test is performed on a lithium ion secondary battery (full cell) or a half cell when the electrode to be tested (for example, the negative electrode using the negative electrode material for the lithium ion secondary battery of the present invention) is used as the working electrode. Then, a charge / discharge curve is drawn.
- Energy density Obtained by the product of electrochemical capacity and voltage (potential). Energy density per weight and energy density per volume are commonly used.
- Ti oxide The complex (A) according to an embodiment of the present invention contains a Ti oxide.
- the Ti oxide exists, for example, as secondary particles in which primary particles are aggregated.
- the shape of the Ti oxide is not particularly limited, and examples thereof include a lump, a scale, a spherical shape, a fibrous shape, and a rod shape.
- the Ti oxide usually contains at least TiO 2 (B).
- the simple substance of Ti oxide which is a raw material, has pores into which a gas phase raw material such as monosilane, which is a raw material of a substance containing Si element, can enter.
- monosilane has a molecular size of about 3 ⁇ , it is preferable that it has pores larger than this, and TiO 2 (B) has pores of 5 to 6 ⁇ , and Ti contained in the complex (A).
- the Ti oxide preferably contains TIO 2 (B) as a main component.
- TiO 2 (B) 80 to 100% by mass of TiO 2 (B) is preferably contained in 100% by mass of Ti oxide, and 90 to 100% by mass is more preferable. It is most preferable that the Ti oxide contains substantially only TiO 2 (B), specifically, 99 to 100% by mass of TiO 2 (B) in 100% by mass of the Ti oxide.
- the Ti oxide may contain a crystal structure other than TiO 2 (B), as the crystal structure other than TiO 2 (B), TiO 2 ( anatase), TiO 2 (rutile), TiO 2 (brookite), TiO 2 (bronze type), Li 4 Ti 5 O 12 , a 2 Ti n O 2n + 1 (a is Li, Na, alkali metals such as K) can be exemplified.
- TiO 2 anatase
- TiO 2 rutile
- TiO 2 brookite
- TiO 2 bronze type
- Li 4 Ti 5 O 12 a 2 Ti n O 2n + 1 (a is Li, Na, alkali metals such as K)
- the Ti oxide has a crystal structure other than TiO 2 (B), it may have one of the structures or two or more of the structures.
- a part of the crystal lattice in the crystal structure is C, N, B, S, P, Na, Mg, Al, K, Ca, V, Cr, Mn, Fe, Co, Ni, Cu. , Zn, Mo, Ru, Rh, Pd, Pt, Be, Nb, Nd, Ce, W, Ta, Ag, Au, Cd, Ga, In, Sb, Ba, and vacancies may be substituted.
- the Ti oxide is 2 ⁇ in the powder X-ray diffraction method (CuK ⁇ ray), and (1) 12.0-18.0 deg. It has a halo pattern between the two, and (2) 24.5-26.0 deg. And (3) 28.0-30.0 deg. If any of the above has one or more peaks, the complex (A) also has a halo pattern in the range of (1) and peaks in the ranges of (2) and (3). Has.
- the Ti oxide has a ratio (I3 / I2) of the peak intensity I3 of the largest peak in (3) to the peak intensity I2 of the largest peak in (2) less than 1.2. Yes, preferably less than 1.1.
- the Ti oxide is used as a scaffold for the Si element described later, that is, as a carrier.
- the present inventors presume that the shape of the charge / discharge curve when the Si atom and Li react is not a slope shape but a plateau shape.
- the TiO 2 (B) is known in, for example, Non-Patent Document 1 and Non-Patent Document 2.
- the TiO 2 (B) is any one of ICDD # 00-035-0088, # 00-046-1237, # 00-046-1238 of the powder diffraction database of the International Center for Diffraction Data (ICDD). It means titanium oxide containing a powder X-ray diffraction profile that corresponds to the peak position of.
- the crystallite size is calculated from Scherrer's equation using the half width of the peak with the highest intensity in the powder X-ray diffraction profile of Ti oxide, it is preferably 20 nm or less. It is more preferably 10 nm or less. More preferably, it is 8 nm or less. The crystallite size is usually 2 nm or more.
- the content of Ti oxide in the composite (A) is preferably 0.10% by mass or more and 95% by mass or less, more preferably 0.95% by mass or more and 92% by mass or less, and further preferably 1% by mass or more and 90. It is less than mass%.
- Si enters in a certain proportion or more and the electrochemical capacity increases, and at the same time, TiO 2 (B) is also contained in a certain proportion or more, so that Si easily develops a high energy density. Therefore, it is preferable.
- the silicon component is eluted from the pores and the surface of the complex (A) particles, and the Ti oxide in the complex (A) particles is the same impurities as before the complex. It can be recovered in the state of concentration and pore structure.
- the complex (A) is stirred in an aqueous KOH solution at a temperature of 50 ° C. for 1 to 5 days, evacuated every other day, and then filtered, washed and dried. To do.
- the concentration of the KOH aqueous solution and the number of treatment days are adjusted each time according to the Ti oxide species. Conditions may be appropriately selected and carried out in which Si is dissolved but Ti oxide is not dissolved.
- the method for synthesizing the Ti oxide is not particularly limited, but a method using a titanium alkoxide-based sol-gel reaction and a rearrangement reaction to a Ti oxide using the positional relationship between Ti and O of a polynuclear Ti complex.
- the method using the above is preferable. From the viewpoint that the ratio of TiO 2 (B) in the Ti oxide can be increased, the latter transition reaction based on the polynuclear Ti complex is preferable.
- the above-mentioned method using a transition based on a polynuclear Ti complex is a method formed by a polynuclear Ti complex, which is heated and pressurized while maintaining the positional relationship between Ti and O to obtain Ti oxide. 2
- This is a method for obtaining a Ti oxide having a special crystal structure such as (B).
- the complex (A) according to an embodiment of the present invention contains a Si element.
- the Si element may be contained in the complex (A) as a substance containing the Si element, and is not particularly limited, but a substance containing Si as a main component, which can occlude and release Li, is usually used.
- the substance containing a Si element include a simple substance of Si, a compound containing a Si element, a mixture, a eutectic or a solid solution.
- the content of the Si element in 100% by mass of the substance containing the Si element is preferably 90% by mass or more, more preferably 95% by mass or more.
- it is preferable that a substance containing a Si element is present on the Ti oxide as a scaffold material and inside the crystal lattice of the Ti oxide.
- the substance containing the Si element a substance represented by a simple substance of Si or a substance represented by the general formula: M m Si containing an element M other than Si and Li can be mentioned.
- the substance is a compound, a mixture, a eutectic or a solid solution containing the element M in a ratio of m mol to 1 mol of Si.
- the element M which is an element other than Li
- the element M include B, C, N, O, S, P, Na, Mg, Al, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, Ru, Rh, Pd, Pt, Be, Nb, Nd, Ce, W, Ta, Ag, Au, Cd, Ga, In, Sb, Ba and the like can be mentioned.
- the element M may be one kind of element or two or more kinds of elements. When two or more kinds of elements are contained as the element M, the ratio thereof is not particularly limited, and the total amount of the elements M may be m. In the formula, m is preferably 0.01 or more and 0.3 or less, more preferably 0.02 or more and 0.2 or less, and further preferably 0.03 or more and 0.1 or less.
- substances containing Si elements include Si alone, an alloy of Si and an alkaline earth metal; an alloy of Si and a transition metal; an alloy of Si and a semi-metal; Si and Be, Ag, Al, Au. , Cd, Ga, In, Sb or Zn and solid soluble alloy or eutectic alloy; CaSi, CaSi 2 , Mg 2 Si, BaSi 2 , Cu 5 Si, FeSi, FeSi 2 , CoSi 2 , Ni 2 Si, NiSi 2 , MnSi, MnSi 2 , MoSi 2 , CrSi 2 , Cr 3 Si, TiSi 2 , Ti 5 Si 3 , NbSi 2 , NdSi 2 , CeSi 2 , WSi 2 , W 5 Si 3 , TaSi 2 , Ta 5 Si 3 , Silicide such as PtSi, V 3 Si, VSi 2 , PdSi, RuSi, RhSi; SiO 2 ,
- the content of the Si element in the complex (A) is preferably 5% by mass or more, more preferably 8% by mass or more, and further preferably 10% by mass or more.
- content of Si element is 5% by mass or more, it is preferable because the superiority in terms of volume energy density and weight energy density can be maintained.
- the content of the Si element in the complex (A) is preferably 70% by mass or less, more preferably 60% by mass or less, and further preferably 55% by mass or less. When the content of Si element is 70% by mass or less, the resistance of the composite (A) does not become too large, which is preferable.
- the content of Si element in the complex (A) can be examined by, for example, fluorescent X-ray analysis using the fundamental parameter method (FP method).
- the substance containing the Si element can be produced by any of the solid phase method, the liquid phase method, and the gas phase method, but the vapor phase method is preferable.
- a method of producing Si element by a CVD method from a vapor phase Si raw material (Si element-containing gas) such as monosilane is preferable.
- the complex (A) contains the Ti oxide and the Si element, and the Si element is contained in the Ti oxide domain.
- the Ti oxide domain means a crystal domain constituting the Ti oxide. Since the composite (A) contains a Si element in the Ti oxide domain, the energy density becomes high when it is used as a negative electrode material for a lithium ion secondary battery.
- the inclusion of the Si element in the Ti oxide domain can be confirmed, for example, by the cross-section SEM-EDX of the Ti oxide domain of the composite (A) particles.
- the lower limit of the value range of Si mass concentration / Ti mass concentration is preferably 0.05 or more, more preferably 0.10 or more, still more preferably 0.15 or more, and the upper limit is preferably 0.65 or less. It is more preferably 0.50 or less, still more preferably 0.30 or less.
- the Si element is present in the gaps in the crystal lattice of the Ti oxide and the interface of the primary particles of the Ti oxide.
- the gaps in the crystal lattice of Ti oxide are micropores, and the primary particles of Ti oxide include mesopores in addition to micropores.
- the above-mentioned micropores mean pores having a pore diameter of less than 2 nm, and mesopores mean pores having a pore diameter of 2 nm or more and less than 50 nm. Since the Si element that has entered the micropores has only about 1 to 4 atoms in the micropore radial direction, the expansion of this Si due to lithium insertion is very small.
- the charge / discharge curve of the lithium ion secondary battery exhibits plateau properties.
- the charge / discharge curve remains horizontal (or straight at an angle close to horizontal) with respect to the capacitance or time on the horizontal axis, that is, when it shows plateau properties. It means that the two-phase coexistence reaction is proceeding in the electrode (negative electrode), which is preferable.
- the complex (A) may contain carbon.
- Examples of the carbon-containing complex (A) include a complex (A) containing a complex composed of carbon and Si elements, and the surface of carbon-containing particles coated with the Ti oxide.
- the complex (A) in which the Si element is supported can be mentioned.
- As another form of the complex (A) containing carbon there is also a form in which a complex in which a Si element is supported on a titanium oxide is coated with carbon.
- the carbon may be amorphous carbon such as hard carbon or soft carbon, or crystalline carbon such as graphite, carbon fiber, graphene, or carbon nanotube. Further, the carbon may be porous. In the case of porous carbon, it can be suitably used as long as the pore volume is 0.2 cm 3 / g or more. Examples of the porous carbon include activated carbon and molecular shedding carbon.
- the 50% particle size DV50 in the volume-based cumulative particle size distribution of the complex (A) according to the embodiment of the present invention is preferably 0.1 ⁇ m or more. It is more preferably 1.0 ⁇ m or more, still more preferably 2.5 ⁇ m or more. When the DV50 is 0.1 ⁇ m or more, the specific surface area does not become excessively high, so that a side reaction with the electrolytic solution occurs only slightly, and the initial Coulomb efficiency is excellent.
- 50% particle diameter D V50 volume-based cumulative particle size distribution of the composite according to an embodiment of the present invention (A) is preferable equal to or less than 20.0 .mu.m. It is more preferably 15.0 ⁇ m or less, still more preferably 10.0 ⁇ m or less.
- the DV50 is 20 ⁇ m or less, the electron transfer distance to the inside of the complex (A) or the carbon coated by the complex (A) and the Li + diffusion distance are short, and the rate characteristics are excellent.
- the 50% particle size DV50 in the volume-based cumulative particle size distribution of the complex (A) according to the embodiment of the present invention can be measured by, for example, a laser diffraction type particle size distribution measuring device.
- the BET specific surface area (S BET ) of the complex (A) is preferably 1.0 m 2 / g or more. It is more preferably 2.0 m 2 / g or more, and further preferably 3.0 m 2 / g or more.
- the BET specific surface area (S BET ) is 1.0 m 2 / g or more, the surface of the composite (A) has a sufficient entrance for Li + to enter, and the input / output characteristics are excellent.
- the BET specific surface area (S BET ) of the complex (A) according to the embodiment of the present invention is preferably 10.0 m 2 / g or less. It is more preferably 5.0 m 2 / g or less, still more preferably 4.0 m 2 / g or less.
- the BET specific surface area (S BET ) is 10.0 m 2 / g or less, the coatability and handleability are excellent. Further, since it is not necessary to use a large amount of binder for electrode production, the electrode density can be increased, and the initial Coulomb efficiency does not decrease due to a side reaction with the electrolytic solution.
- the BET specific surface area (S BET ) of the complex (A) according to the embodiment of the present invention can be measured by, for example, a BET multipoint method using nitrogen gas as a probe.
- the complex (A) has a 2 ⁇ of (1) 12.0-18.0 deg in the powder X-ray diffraction method (CuK ⁇ ray). It has a halo pattern between the two, and (2) 24.5-26.0 deg. And (3) 28.0-30.0 deg. It has one or more peaks in any of the above, and the ratio of the peak intensity I3 of the largest peak in (3) above to the peak intensity I2 of the largest peak in (2) above (2). I3 / I2) is less than 1.2.
- halo pattern (1) means that a crystal system in which a large number of micropores are developed is formed among Ti oxides.
- having a halo pattern means that the complex (A) has a 10.0-80.0 deg. 12.0-18.0 deg.
- the above-mentioned peak (2) is a peak peculiar to Ti oxide in general.
- the peak of (2) includes a peak derived from TiO 2 (B).
- the peak of (3) described above also includes a peak of titanium oxide having micropores such as TiO 2 (B), and at the same time, a peak of Si (111) is also included.
- I3 / I2 is less than 1.2, it means that Si is Si having very weak crystallinity.
- I3 / I2 is more preferably less than 1.0. Further, I3 / I2 preferably exceeds 0.1, and more preferably more than 0.3.
- the composite (A) contains carbon
- the surface of the particles containing porous carbon is coated with the Ti oxide
- the composite (A) in which the Si element is supported on the porous carbon and the Ti oxide examples include the following manufacturing methods.
- a porous material in which a Ti oxide containing TiO 2 (B) is formed on the surface of carbon-containing particles such as porous carbon particles is prepared, and then the porous carbon and Ti oxidation are performed by a chemical vapor phase growth (CVD) method.
- the complex (A) can be obtained by precipitating the Si element in the pores of the object.
- Examples of the method for forming Ti oxide on the surface of carbon-containing particles include a physical vapor deposition (PVD) method in the vapor phase method, and a titanium oxide precursor coated on the surface of carbon-containing particles in the liquid phase method. Then, a method of heating / pressurizing and the like can be mentioned, and in the solid phase method, a method of forming a complex by mechanochemical treatment and the like can be mentioned.
- PVD physical vapor deposition
- porous carbon and Ti oxide are separately CVD-treated to precipitate Si elements, and then the porous carbon in which Si is precipitated and the Ti oxide in which Si is precipitated are subjected to mechanochemical treatment. It may be compounded with.
- the CVD method can be carried out, for example, by exposing the porous material to a Si element-containing gas, preferably a silane gas, at a high temperature.
- the manufacturing method is as follows.
- the gas phase method is a method of depositing carbon by CVD or PVD
- the liquid phase method is a method of supporting a carbon source (for example, sucrose or citric acid) and then heating
- the solid phase method is a carbon source (for example).
- Carbon nanotubes, carbon black, graphene and other conductive carbon materials and mechanochemical treatment methods.
- the negative electrode material for a lithium ion secondary battery includes the complex (A).
- the "negative electrode material for a lithium ion secondary battery” is also simply referred to as a "negative electrode material”.
- the negative electrode material refers to a negative electrode active material or a composite of a negative electrode active material and another material.
- the negative electrode material for a lithium ion secondary battery according to an embodiment of the present invention may be formed only from the composite (A), or may be formed from the composite (A) and another negative electrode material. May be good.
- a substance generally used as a negative electrode active material of a lithium ion secondary battery can be used. Specific examples include carbon-containing materials such as graphite and hard carbon , alloy-based active materials such as lithium titanate (Li 4 Ti 5 O 12 ), silicon and tin, and composite materials thereof. These negative electrode materials are usually in the form of particles.
- the other negative electrode material one type may be used or two or more types may be used. Among them, graphite (graphite particles) and hard carbon are particularly preferably used.
- the composite (A) is used per 100% by mass of the negative electrode material for the lithium ion secondary battery. It preferably contains 4 to 99% by mass, more preferably 8 to 40% by mass.
- adjusting the capacity of the negative electrode material for lithium-ion secondary batteries, etc. For the purpose of improving battery performance, adjusting the capacity of the negative electrode material for lithium-ion secondary batteries, and adjusting the density of the electrode mixture layer constituting the negative electrode, assisting conductivity, and expanding / contracting.
- a mixture of the composite (A) and another negative electrode material containing carbon may be used as the negative electrode material for a lithium ion secondary battery.
- a plurality of types of materials containing carbon to be mixed may be used.
- As the material containing carbon graphite having a high capacity is preferable.
- natural graphite or artificial graphite can be selected and used.
- a complex (A) having a relatively high capacity (700 mAh / g or more) because the cost of the negative electrode material for the lithium ion secondary battery can be reduced.
- This carbon-containing material for volume adjustment is mixed with the complex (A) in advance, and additives such as a binder, a solvent, and an optional conductive auxiliary agent are added thereto to prepare a paste for a negative electrode. May be good.
- an additive such as a complex (A), a carbon-containing material, a binder, a solvent, and an optionally used conductive auxiliary agent may be mixed at the same time to prepare a paste for a negative electrode.
- the mixing order and method may be appropriately determined in consideration of the handleability of the powder and the like.
- the paste for a negative electrode according to an embodiment of the present invention contains the negative electrode material, a binder, and a solvent, and further contains an additive such as a conductive auxiliary agent, if necessary.
- This negative electrode paste can be obtained, for example, by kneading the negative electrode material, a binder, a solvent, and if necessary, a conductive auxiliary agent or the like.
- the negative electrode paste can be formed into a sheet shape, a pellet shape, or the like.
- the material used as the binder is not particularly limited, and is, for example, carboxymethyl cellulose, polyethylene, polypropylene, ethylene propylene tarpolymer, butadiene rubber, styrene butadiene rubber, butyl rubber, acrylic rubber, polyvinylidene fluoride, polyethylene oxide, polyepicrolhydrin, polyphosphazene. , Polyacrylonitrile and the like.
- One kind of binder may be used alone, or two or more kinds of binders may be used.
- the amount of the binder is preferably 0.5 parts by mass or more and 30 parts by mass or less with respect to 100 parts by mass of the negative electrode material.
- the conductive auxiliary agent is not particularly limited as long as it has a role of imparting conductivity and electrode stability (the action of absorbing the volume change of the negative electrode material at the time of insertion / removal of Li) to the electrode.
- carbon black, carbon nanotubes, carbon nanofibers, gas phase growth method carbon fibers for example, "VGCF (registered trademark)” manufactured by Showa Denko Co., Ltd.
- conductive carbon black for example, "Denka Black (registered trademark)” electricity.
- the amount of the conductive auxiliary agent is preferably 1 to 3 parts by mass with respect to 100 parts by mass of the negative electrode material.
- the fiber length of these conductive aids is preferably 1/2 or more of DV50 of the composite (A). .. With this length, these conductive auxiliaries can be bridged between the negative electrode materials including the composite (A), and the cycle characteristics can be improved.
- Single-wall type and multi-wall type carbon nanotubes and carbon nanofibers having a fiber diameter of 15 nm or less are preferable because the number of bridges increases with the same amount of addition as compared with thicker carbon nanotubes and carbon nanofibers. It is also preferable from the viewpoint of improving the electrode density because it is more flexible.
- the solvent is not particularly limited, and N-methyl-2-pyrrolidone, dimethylformamide, isopropanol, water, etc. can be used.
- a binder that uses water as a solvent it is preferable to use a thickener in combination.
- the amount of the solvent may be adjusted so that the paste has a viscosity that makes it easy to apply to the current collector.
- the negative electrode according to an embodiment of the present invention has a current collector (for example, a sheet-shaped current collector) and an electrode mixture layer that covers the current collector, and the electrode mixture layer is a binder and the lithium ion battery. It contains a negative electrode material for a secondary battery, and if necessary, the conductive auxiliary agent and the like.
- Examples of the current collector include a sheet-like material such as nickel foil, copper foil, nickel mesh or copper mesh.
- the electrode mixture layer contains a binder and the above-mentioned negative electrode material.
- the electrode mixture layer also contains the conductive auxiliary agent.
- the electrode mixture layer can be obtained, for example, by applying the negative electrode paste on a current collector and drying it.
- the method of applying the negative electrode paste is not particularly limited.
- the thickness of the electrode mixture layer is preferably 50 to 200 ⁇ m. If the electrode mixture layer becomes too thick, it may not be possible to accommodate the negative electrode in a standardized battery container.
- the thickness of the electrode mixture layer can be adjusted by the amount of paste applied. It can also be adjusted by pressure molding after the paste is dried. Examples of the pressure forming method include forming methods such as roll pressurization and press pressurization. The pressure during press molding is preferably about 100 to 500 MPa.
- the electrode density of the negative electrode can be calculated as follows, for example. That is, the negative electrode after pressing is punched into a circular shape having a diameter of 16 mm, and its mass and thickness are measured. The mass and thickness of the collector foil (punched into a circular shape with a diameter of 16 mm) measured separately are subtracted from the mass and thickness to obtain the mass and thickness of the electrode mixture layer, and the electrode density (negative electrode) is based on that value. Density) is calculated.
- the lithium ion secondary battery according to the embodiment of the present invention has the negative electrode. Since the lithium ion secondary battery of the present invention has the negative electrode, it is excellent in energy density. Further, the lithium ion secondary battery of the present invention has a low electrode expansion rate of the negative electrode, a high initial Coulomb efficiency, and a high capacity retention rate, and therefore has a long battery life and is suitably used as a power source for various devices. Can be done.
- the lithium ion secondary battery has at least one selected from the group consisting of a non-aqueous electrolyte solution and a non-aqueous polymer electrolyte, a positive electrode, and the negative electrode.
- the positive electrode used in the present invention is not particularly limited, including those conventionally used for lithium ion secondary batteries.
- an electrode containing a positive electrode active material can be used as the positive electrode.
- the positive electrode active material include LiNiO 2 , LiCoO 2 , LiMn 2 O 4 , LiNi 0.34 Mn 0.33 Co 0.33 O 2 , LiFePO 4, and the like.
- the non-aqueous electrolyte solution and the non-aqueous polymer electrolyte used in the lithium ion secondary battery are not particularly limited.
- lithium salts such as LiClO 4 , LiPF 6 , LiAsF 6 , LiBF 4 , LiSO 3 CF 3 , CH 3 SO 3 Li can be used as ethylene carbonate, diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate, propylene carbonate, butylene carbonate, acetonitrile.
- Propionitrile, dimethoxyethane, tetrahydrofuran, ⁇ -butyrolactone and other organic electrolytes gel-like polymer electrolytes containing polyethylene oxide, polyacrylic nitrile, polyvinylidene fluoride, polymethylmethacrylate and the like.
- a solid polymer electrolyte containing a polymer having an ethylene oxide bond or the like can be mentioned.
- a small amount of additives generally used for lithium ion secondary batteries may be added to the electrolytic solution.
- the substance include vinylene carbonate (VC), biphenyl, propane sultone (PS), fluoroethylene carbonate (FEC), ethylene sultone (ES) and the like.
- the addition amount is preferably 0.01% by mass or more and 50% by mass or less.
- a separator can be provided between the positive electrode and the negative electrode in the lithium ion secondary battery.
- the separator include non-woven fabrics mainly composed of polyolefins such as polyethylene and polypropylene, cloths, micropore films, and those obtained by combining them.
- Lithium-ion secondary batteries are obtained from the power supply of electronic devices such as mobile phones, mobile personal computers, and mobile information terminals; the power supply of electric motors such as electric drills, electric vacuum cleaners, and electric vehicles; fuel cells, solar power generation, and wind power generation. It can be used for storing the generated power.
- [50% particle size DV50 ] Add 2 tablespoons of powder (complex (A)) and 2 drops of nonionic surfactant (TRITON®-X; Roche Applied Science) to 50 ml of water for more than 3 minutes. The sound was dispersed. This dispersion was put into a laser diffraction type particle size distribution measuring device (LMS-2000e, manufactured by Seishin Enterprise Co., Ltd.), and the volume-based cumulative particle size distribution was measured to obtain a 50% particle size DV50 ( ⁇ m).
- LMS-2000e laser diffraction type particle size distribution measuring device
- Carboxymethyl cellulose (CMC; manufactured by Daicel, CMC1300) and styrene butadiene rubber (SBR) were used as binders. Specifically, an aqueous solution in which 2% by mass of CMC powder was dissolved and an aqueous dispersion in which 40% by mass of SBR was dispersed were used.
- Carbon black and gas phase growth method carbon fiber (VGCF (registered trademark) -H, manufactured by Showa Denko KK) were prepared as conductive auxiliaries and mixed at a ratio of 3: 2 (mass ratio). And said.
- the complex (A) produced in Examples and Comparative Examples described later was mixed with graphite for the purpose of adjusting the initial Li desorption capacity within a certain range.
- the content of Si element in the working electrode was adjusted to 2.0 to 3.3% by mass.
- This mixture (acting electrode material) was mixed by 90 parts by mass, the mixed conductive auxiliary agent by 5 parts by mass, the CMC aqueous solution by 125 parts by mass, and the SBR aqueous dispersion by 6.25 parts by mass.
- the obtained mixture was kneaded with a rotation / revolution mixer to obtain a paste for working electrodes.
- the above-mentioned paste for working electrode was uniformly applied onto a copper foil having a thickness of 20 ⁇ m using a doctor blade so as to have a thickness of 150 ⁇ m, dried on a hot plate, and then vacuum dried to obtain a working electrode.
- the dried electrode was pressed with a uniaxial press at a pressure of 300 MPa to obtain a working electrode for battery evaluation.
- the thickness of the obtained working electrode was 62 ⁇ m including the thickness of the copper foil.
- an increase in the cell voltage is referred to as charging, and decreasing the cell voltage (decreasing the potential difference) is referred to as discharging.
- the Li metal has a lower redox potential than the above-mentioned working electrode. Therefore, when Li is inserted into the working electrode, the voltage decreases (the potential difference decreases), resulting in discharge. On the contrary, when Li is discharged from the working electrode, the voltage increases (the potential difference increases), so that charging is performed.
- a material having a redox potential higher than that of the working electrode for example, lithium cobalt oxide, lithium nickel manganese cobalt oxide, etc. is opposed to the working electrode, so that the working electrode is a negative electrode. ..
- Example 1 the initial charge / discharge curves obtained in the above test are shown in FIG.
- Table 1 shows the physical properties of artificial graphite particles [manufactured by Showa Denko KK] (graphite (1)) used as a carbon-containing material for the purpose of adjusting the capacity together with the complex (A). ..
- d 002 indicates the average plane spacing of the (002) plane by the powder X-ray diffraction method.
- Lc indicates the thickness of the crystallites of the graphite particles in the C-axis direction.
- d 002 and Lc can be measured by a known method using the powder X-ray diffraction (XRD) method (Michio Inagaki, "Carbon", 1963, No. 36, 25-3 4). Page; Iwashita et al., Carbon vol. 42 (2004), p. 701-714).
- the I 110 / I 004 the ratio of the peak intensity I 004 of the diffraction peak profile obtained by powder X-ray diffraction method and the peak intensity I 110 of the 110 plane of graphite crystal 004 side.
- the waveform obtained by the powder X-ray diffraction method was subjected to background removal, K ⁇ 2 component removal, and profile fitting.
- the peaks on each surface the one with the highest intensity in the following range was selected as each peak.
- Surface (110) 76.5 to 78.0 deg
- Example 1 After adding 0.9572 g of Ti metal powder to 80 mL of hydrogen peroxide solution, 20 mL of ammonia water was added. After the Ti metal powder was dissolved, 2.282 g of glycolic acid was added and the mixture was stirred at 80 ° C. for 3 hours. 40 mL of water and 2.6 mL of sulfuric acid were added thereto, and hydrothermal treatment was performed at 200 ° C. for 1 hour in an autoclave. The obtained solid content was washed with water to obtain TiO 2 (B).
- the TiO 2 (B) was dried under vacuum at 400 ° C. for 3 hours, and then the atmosphere was replaced with He gas. Then, silane gas was circulated for 6 hours at a silane flow rate of 0.28 g / h and a reaction temperature of 400 ° C. After the silane gas treatment, the supply of silane gas was stopped and switched to the He gas flow. The silane gas was purged while cooling to obtain complex (A) -1.
- Table 2 shows the results of X-ray diffraction measurement, fluorescent X-ray analysis, and SEM-EDX analysis of this complex (A) -1.
- the results of SEM-EDX analysis are shown in FIG. From this, it was confirmed that the Si element was contained in the Ti oxide domain.
- the profile of the X-ray diffraction measurement is shown in FIG.
- 10.0-80.0 deg. 12.0-18.0 deg. For maximum intensity peak intensity in the range. Since the ratio of the maximum peak intensity in the range (12.0-18.0 deg. Maximum peak intensity in the range / 10.0-80.0 deg. Maximum peak intensity in the range) was 0.308, there is a halo pattern. I decided. Using a mixture of 11.2 parts by mass of complex (A) -1 and 88.8 parts by mass of graphite (1), working electrodes were prepared by the above method, and the results of measuring the battery characteristics are shown in Table 3. show.
- the complex (A) -1 of 1.0 g and the complex (B) of 9.0 g were combined with a rotary cutter mill for 30 seconds to obtain a complex (A) -2.
- Table 2 shows the results of X-ray diffraction measurement, fluorescent X-ray analysis, and SEM-EDX analysis of this complex (A) -2. From this, it was confirmed that the Si element was contained in the Ti oxide domain.
- the X-ray diffraction profile is also shown in FIG. In addition, 10.0-80.0 deg. 12.0-18.0 deg. For maximum intensity peak intensity in the range. Since the ratio of the maximum peak intensity in the range (12.0-18.0 deg. Maximum peak intensity in the range / 10.0-80.0 deg. Maximum peak intensity in the range) was 0.191, there is a halo pattern. I decided.
- Table 3 shows the results of measuring the battery characteristics by preparing working electrodes using a mixture of 10.9 parts by mass of complex (A) -2 and 89.1 parts by mass of graphite (1).
- the complex (A) -c1 was obtained by the same method as in Example 1 except that the TiO 2 (B) was replaced with the porous carbon "KDPW-SP" during the silane gas treatment.
- Table 2 shows the results of X-ray diffraction measurement, fluorescent X-ray analysis, and SEM-EDX analysis of this complex (A) -c1.
- 10.0-80.0 deg. 12.0-18.0 deg. For maximum intensity peak intensity in the range. Since the ratio of the maximum peak intensity in the range (12.0-18.0 deg. Maximum peak intensity in the range / 10.0-80.0 deg. Maximum peak intensity in the range) was 0.001, there is a halo pattern. I decided not to.
- Table 3 shows the results of measuring the battery characteristics by preparing working electrodes using a mixture of 10.8 parts by mass of the complex (A) -c1 and 89.2 parts by mass of graphite (1).
- Energy density * Working poles prepared in Examples and Comparative Examples and 1500 mV vs.
- a full cell consisting of a positive electrode (a material having a redox potential higher than that of the working electrode) that expresses the same capacity as the working electrode at a constant potential of Li / Li + is set.
- the working potential is 350 mV vs.
- the value of the energy density of the part above Li / Li + (Si reaction part).
- Comparative Example 1 uses porous carbon as a scaffolding material. Therefore, it takes time for Li + to reach the entire Si filled inside the porous carbon. Therefore, it is considered that the charge / discharge curve of Comparative Example 1 is sloped and the energy density is lower than that of Example 1.
- Comparative Example 1 has a lower initial Coulomb efficiency than Example 1. It is considered that this is because the porous carbon surface is more non-uniform and unstable as an energy field than the TiO 2 (B) surface.
- Example 2 Comparing Example 1 and Example 2 with respect to the results shown in Table 3, the value of the energy density is large in Example 2. This is due to the influence of the complex (B) having a large electrochemical capacity carrying more Si. That is, by combining a complex having a large electrochemical capacity and a complex based on TiO 2 (B) having a plateau on the charge / discharge curve, a material having a high electrochemical capacity and expressing a plateau can be obtained. It is considered that the energy density was further improved.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Environmental & Geological Engineering (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
本発明の複合体(A)は、Ti酸化物とSi元素とを含む複合体(A)であって、粉体X線回折法(CuKα線)において少なくとも2θが、(1)12.0-18.0deg.の間にハローパターンを有しており、かつ(2)24.5-26.0deg.の間と、(3)28.0-30.0deg.の間のいずれにも1つ以上ピークを有しており、前記(3)の中で最も大きいピークのピーク強度I3と、前記(2)の中で最も大きいピークのピーク強度I2との比(I3/I2)が1.2未満であり、Ti酸化物ドメイン内にSi元素が含まれている。
Description
本発明はチタン酸化物-シリコン複合体およびその用途に関する。
電子部品の省電力化を上回る速さで携帯電子機器の多機能化が進み、携帯電子機器の消費電力が増加している。そのため、携帯電子機器の主電源であるリチウムイオン二次電池の高容量化および小型化が今まで以上に強く求められている。また、電気自動車の需要が伸び、それに使われるリチウムイオン二次電池にも高容量化が強く求められている。
このような要求に応えるために、近年様々な検討が行われていた。
例えば、Si、すなわちケイ素の単体を負極用材料として使用することが検討されている。しかし、Siを用いると炭素材料と比べて高容量化は可能であるが、Si、特に結晶性Siは、充放電時の体積変化が大きく、劣化が激しいことが知られていた。このようなSiの欠点を補うため、従来からSiと炭素材料とを複合化した負極用材料が提案されている。例えば、Siのナノ粒子化やSiへのコート材の適用、Siへの異種金属ドープなど種々の対応がとられている。実際これらの検討により高容量を維持しつつサイクル寿命は改善されつつある。
例えば、Si、すなわちケイ素の単体を負極用材料として使用することが検討されている。しかし、Siを用いると炭素材料と比べて高容量化は可能であるが、Si、特に結晶性Siは、充放電時の体積変化が大きく、劣化が激しいことが知られていた。このようなSiの欠点を補うため、従来からSiと炭素材料とを複合化した負極用材料が提案されている。例えば、Siのナノ粒子化やSiへのコート材の適用、Siへの異種金属ドープなど種々の対応がとられている。実際これらの検討により高容量を維持しつつサイクル寿命は改善されつつある。
非晶質なSiは結晶性Siに比べ、Liと反応した時の膨張が等方的になり、負極全体の構造体としてみた時、劣化が少ないと考えられる。しかし、非晶質SiはLiと反応する際、充放電カーブがスロープ状になるので、結晶性Siに比べ、エネルギー密度的に不利であると言われてきた。非晶質SiとLiとの反応において、充放電カーブがスロープ状であるのは、材料そのものの固有の特性である。
別の検討として、例えば、特許文献1には、リチウムチタン酸化物とブロンズ相酸化チタンとを含む複合体、前記リチウムチタン酸化物を構成する元素としてSiが使用可能であること、前記複合体を含む負極活物質等が開示されていた(例えば、特許文献1、[請求項1]、[請求項2]および[請求項18]参照)。しかしながら、特許文献1に開示された負極活物質を用いても、充分な充放電容量を有するリチウムイオン二次電池を得ることはできなかった。
また、TiO2(B)と呼ばれる、特殊な結晶構造を有する酸化チタンが知られている。前記TiO2(B)は、その結晶構造がトンネル構造を有するためLi+が移動しやすく、リチウムイオン二次電池の負極材として用いることが可能であることが知られていた(例えば、非特許文献1および2参照)。
A.Robert Armstrong,Graham Armstrong,Jesus Canales,Raquel Garcia,and Peter G.Bruce;Advanced Materials 2005,17,No.7,April 4:"Lithium-Ion Itercalation into TiO2-B Nanowires"
Hansan Liu,Zhonghe Bi,Xiao-Guang Sun,Raymond R.Unocic,M.Parans Paranthaman,Sheng Dai,and Gilbert M.Brown;Advanced Materials 2011,23,3450-3454;"Mesoporous TiO2-B Micorspheres with Superior Rate Performance for Lithium Ion Batteries"
非晶質Siをリチウムイオン電池の負極材料に使うと、充放電カーブがスロープ状になる。したがって、充放電カーブがプラトー状になる結晶性Siを用いる場合に比べてエネルギー密度の面で不利になる。この課題を解決しようとする試みは、従来行われていなかった。
本発明の課題は、エネルギー密度が高いリチウムイオン二次電池を提供すること、このような優れたリチウムイオン二次電池を提供することが可能なリチウムイオン二次電池用負極材および前記負極材として用いることが可能な複合体を提供することにある。
本発明者らは、前記課題を解決するため、鋭意検討を行った。その結果、特定のチタン酸化物にSi元素を導入して得られる複合体をリチウムイオン二次電池用負極材として用いることにより、前記課題を解決したリチウムイオン二次電池を得ることができることを見出し、本発明を完成させた。
すなわち、本発明は例えば以下の態様を包含する。
[1] Ti酸化物とSi元素とを含む複合体(A)であって、粉体X線回折法(CuKα線)において2θが、(1)12.0-18.0deg.の間にハローパターンを有しており、かつ(2)24.5-26.0deg.の間と、(3)28.0-30.0deg.の間のいずれにも1つ以上ピークを有しており、
前記(3)の中で最も大きいピークのピーク強度I3と、前記(2)の中で最も大きいピークのピーク強度I2との比(I3/I2)が1.2未満であり、Ti酸化物ドメイン内にSi元素が含まれている、複合体(A)。
[2] 炭素を含む、[1]に記載の複合体(A)。
[3] 前記炭素とSi元素からなる複合体を含む、[2]に記載の複合体(A)。
[4] 体積基準累積粒度分布における50%粒子径DV50が0.1μm以上20μm以下である、[1]~[3]のいずれかに記載の複合体(A)。
[5] Si元素の含有率が5質量%以上70質量%以下である[1]~[4]のいずれかに記載の複合体(A)。
[6] [1]~[5]のいずれかに記載の複合体(A)を含む、リチウムイオン二次電池用負極材。
[7] 集電体および集電体を被覆する電極合剤層を有し、前記電極合剤層はバインダー、および[6]に記載のリチウムイオン二次電池用負極材を含む負極。
[8] [7]に記載の負極を有するリチウムイオン二次電池。
[1] Ti酸化物とSi元素とを含む複合体(A)であって、粉体X線回折法(CuKα線)において2θが、(1)12.0-18.0deg.の間にハローパターンを有しており、かつ(2)24.5-26.0deg.の間と、(3)28.0-30.0deg.の間のいずれにも1つ以上ピークを有しており、
前記(3)の中で最も大きいピークのピーク強度I3と、前記(2)の中で最も大きいピークのピーク強度I2との比(I3/I2)が1.2未満であり、Ti酸化物ドメイン内にSi元素が含まれている、複合体(A)。
[2] 炭素を含む、[1]に記載の複合体(A)。
[3] 前記炭素とSi元素からなる複合体を含む、[2]に記載の複合体(A)。
[4] 体積基準累積粒度分布における50%粒子径DV50が0.1μm以上20μm以下である、[1]~[3]のいずれかに記載の複合体(A)。
[5] Si元素の含有率が5質量%以上70質量%以下である[1]~[4]のいずれかに記載の複合体(A)。
[6] [1]~[5]のいずれかに記載の複合体(A)を含む、リチウムイオン二次電池用負極材。
[7] 集電体および集電体を被覆する電極合剤層を有し、前記電極合剤層はバインダー、および[6]に記載のリチウムイオン二次電池用負極材を含む負極。
[8] [7]に記載の負極を有するリチウムイオン二次電池。
本発明の一実施形態に係る複合体を、リチウムイオン二次電池用負極材に用いることにより、エネルギー密度が高く、初回クーロン効率が高いリチウムイオン二次電池を提供することが可能となる。
次に本発明について具体的に説明する。なお、本発明において「ピーク強度」はベースラインからピークの頂点までの「ピークの高さ」を意味する。
(言葉の定義)
まず、本発明に関わる幾つかの用語を説明する。
まず、本発明に関わる幾つかの用語を説明する。
「リチウムイオン二次電池」:リチウムイオン二次電池とは、非水系電解液および非水系ポリマー電解質からなる群から選ばれる少なくとも一つ、正極、および負極を有し、正極と負極の間をリチウムイオンが移動することで充電や放電を行う二次電池である。
「フルセル」と「ハーフセル」: 本発明においてフルセルとは、前記リチウムイオン二次電池のように正極と負極から構成されており、電圧で制御されているセルを指す。本発明においてハーフセルとは、前記リチウムイオン電池の正極あるいは負極のどちらかを作用極とし、Li金属を対極とした二極構成となっており、Liの酸化還元電位を基準に電位で制御されているセルを指す。Li対極とは電流を流すための作用極と対になる電極である。
「電位」と「電圧」:基準電極と、ある活物質含有電極系を組み合わせた時の電池の起電力をその活物質含有電極系の電位と呼ぶ。そして、2種類の活物質含有電極系を組み合わせた時の電位の差を電圧と呼ぶ。
「CCモード」、「CVモード」、および「CC-CVモード」:CCモードとは定電流モードであり、常に一定の電流値を維持しながら、電池の電圧(電位)を変化させて電池の反応を進行させるモードである。CVモードとは定電圧(電位)モードであり、常に一定の電圧(電位)を維持しながら、電池の電流値を変化させて電池の反応を進行させるモードである。CC-CVモードとは、CCモードのあとにCVモードを実施するモードである。本明細書においては、複合体(A)に対して、CC-CVモードでLi+を挿入し、CCモードで複合体(A)からLi+を放出させる。これを充放電試験と呼ぶこととする。
「充放電カーブ」:横軸に電気化学容量[mAh/g、Ah/g等]または、時間[秒、分、時間等]をおき、縦軸に電圧[V]または電位[V vs. Ref]を設定したグラフのこと。リチウムイオン二次電池関連の電位においては一般に、リチウムの酸化還元電位を基準として[V vs. Li/Li+]という単位が用いられる。リチウムイオン二次電池(フルセル)、あるいは試験対象の電極(例えば、本発明のリチウムイオン二次電池用負極材を用いた負極)を作用極とした場合のハーフセルに対して、定電流試験を実施すると充放電カーブを描く。
「充放電カーブのプラトー性」、「充放電カーブのスロープ性」:フルセル、あるいはハーフセルに対して定電流試験での充放電を実施すると、酸化還元反応が進行する電位あるいは電圧において、当該酸化還元反応が終了するまでの間一定の電位あるいは電圧が維持されることがある。酸化還元反応が生じているときに、充放電カーブが横軸の容量あるいは時間に対して水平(あるいは水平に近い角度で直線)を保っている時を、プラトー性を有するという。一方で酸化還元反応が進行している時に充放電カーブが横軸の容量あるいは時間に対して水平ではなく、カーブを描いている時を、スロープ性を有するという。一般にプラトー性を有するときは二相共存反応が進行している。一方でスロープ性を有するときは多段階反応が進行している、または酸化還元反応の抵抗(電子抵抗、Li+拡散抵抗等)が高い反応が進行している。なお、充放電カーブがスロープ性を示している状態を、充放電カーブがスロープ状になるとも表現し、充放電カーブがプラトー性を示している状態を、充放電カーブがプラトー状になるとも表現する。
「エネルギー密度」:電気化学容量と電圧(電位)の積で求められる。重量当たりのエネルギー密度と体積当たりのエネルギー密度が一般的に用いられる。
以下、本発明の複合体(A)を構成するTi酸化物とSi元素とを説明し、次いで本発明の一実施形態である複合体(A)、リチウムイオン二次電池用負極材等を順次説明する。
(Ti酸化物)
本発明の一実施形態である複合体(A)は、Ti酸化物を含む。前記Ti酸化物は、例えば、一次粒子が凝集した二次粒子として存在している。Ti酸化物の形状としては、特に限定はないが、塊状、鱗片状、球状、繊維状、棒状などを挙げることができる。
本発明の一実施形態である複合体(A)は、Ti酸化物を含む。前記Ti酸化物は、例えば、一次粒子が凝集した二次粒子として存在している。Ti酸化物の形状としては、特に限定はないが、塊状、鱗片状、球状、繊維状、棒状などを挙げることができる。
前記Ti酸化物としては、通常は少なくともTiO2(B)を含んでいる。
本発明の一実施形態である複合体(A)を作製するにあたって、原料にあたるTi酸化物単体は、Si元素を含む物質の原料であるモノシラン等の気相原料が入り込める細孔を有していることが好ましい。モノシランは分子サイズが約3Åなので、これより大きな細孔を有していることが好ましく、TiO2(B)は5~6Åの細孔を有しており、複合体(A)に含まれるTi酸化物として好ましい。前記Ti酸化物としてはTiO2(B)を主成分とすることが好ましい。具体的には、Ti酸化物100質量%中に、TiO2(B)を80~100質量%含むことが好ましく、90~100質量%含むことがより好ましい。Ti酸化物は、実質的にTiO2(B)のみ、具体的にはTi酸化物100質量%中に、TiO2(B)を99~100質量%含むことが最も好ましい。
本発明の一実施形態である複合体(A)を作製するにあたって、原料にあたるTi酸化物単体は、Si元素を含む物質の原料であるモノシラン等の気相原料が入り込める細孔を有していることが好ましい。モノシランは分子サイズが約3Åなので、これより大きな細孔を有していることが好ましく、TiO2(B)は5~6Åの細孔を有しており、複合体(A)に含まれるTi酸化物として好ましい。前記Ti酸化物としてはTiO2(B)を主成分とすることが好ましい。具体的には、Ti酸化物100質量%中に、TiO2(B)を80~100質量%含むことが好ましく、90~100質量%含むことがより好ましい。Ti酸化物は、実質的にTiO2(B)のみ、具体的にはTi酸化物100質量%中に、TiO2(B)を99~100質量%含むことが最も好ましい。
前記Ti酸化物は、TiO2(B)以外の結晶構造を含んでいてもよく、TiO2(B)以外の結晶構造としては、TiO2(アナターゼ型)、TiO2(ルチル型)、TiO2(ブルッカイト型)、TiO2(ブロンズ型)、Li4Ti5O12、A2TinO2n+1(AはLi、Na,Kなどのアルカリ金属)が例示できる。前記Ti酸化物が、TiO2(B)以外の結晶構造を有する場合には、前記構造を1つ有していてもよく、2つ以上有していてもよい。
前記Ti酸化物は、結晶構造中の結晶格子の一部が、C,N,B,S,P,Na,Mg,Al,K,Ca,V,Cr,Mn,Fe,Co,Ni,Cu,Zn,Mo,Ru,Rh,Pd,Pt,Be,Nb,Nd,Ce,W,Ta,Ag,Au,Cd,Ga,In,Sb,Ba,空孔に置換されていてもよい。
前記Ti酸化物が粉体X線回折法(CuKα線)において2θが、(1)12.0-18.0deg.の間にハローパターンを有しており、かつ(2)24.5-26.0deg.の間と、(3)28.0-30.0deg.の間のいずれにも1つ以上ピークを有している場合、複合体(A)も前記(1)の範囲にハローパターンを有し、かつ、前記(2)および(3)の範囲にピークを有する。
前記Ti酸化物は、前記(3)の中で最も大きいピークのピーク強度I3と、前記(2)の中で最も大きいピークのピーク強度I2との比(I3/I2)が1.2未満であり、1.1未満であることが好ましい。
本発明の一実施形態である複合体(A)は、Ti酸化物が後述のSi元素の足場、すなわち、担体として用いられることが好ましい。足場として上述の特定のTi酸化物を用いることにより、Si原子とLiとが反応する際の充放電カーブの形状がスロープ状でなく、プラトー状になると本発明者らは推定している。
前記TiO2(B)は、例えば、非特許文献1、非特許文献2などで公知となっている。前記TiO2(B)は、国際回折データセンター(International Centre for Diffraction Data,ICDD)の粉末回折データベースのICDD#00-035-0088、#00-046―1237、#00-046-1238のいずれかのピーク位置に一致する粉体X線回折プロファイルを含む酸化チタンを意味している。
Ti酸化物の粉体X線回折プロファイルの内、最も強度の大きいピークの半値幅を用いて、シェラーの式から結晶子サイズを求めた時に、20nm以下であることが好ましい。より好ましくは10nm以下であることが好ましい。更に好ましくは8nm以下であることが好ましい。なお、結晶子サイズは通常は2nm以上である。
複合体(A)中のTi酸化物の含有率は、好ましくは0.10質量%以上95質量%以下、より好ましくは0.95質量%以上92質量%以下、さらに好ましくは1質量%以上90質量%以下である。Ti酸化物の含有率が前記範囲にあると、Siが一定割合以上入り込み電気化学容量が上昇すると同時に、TiO2(B)も一定割合以上含まれるのでSiが高エネルギー密度を発現しやすい構造となるため好ましい。
本発明では、適切な条件を選定することにより、シリコン成分を複合体(A)粒子の細孔内および表面から溶出させ、複合体(A)粒子内のTi酸化物を複合化前と同じ不純物濃度、および細孔構造の状態にして回収することができる。
上記適切な条件の例としては、50℃の温度で、KOH水溶液中で1~5日間、複合体(A)を攪拌し、1日おきに真空引きを実施し、その後、ろ過、洗浄、乾燥することが挙げられる。KOH水溶液の濃度や処理日数は、Ti酸化物種に合わせて、都度調整する。Siが溶解するが、Ti酸化物が溶解しない条件を適宜選択して実施すればよい。
前記Ti酸化物の合成方法は特に限定されることはないが、チタンアルコキシドをベースにしたゾルゲル反応を用いた方法、多核Ti錯体のTiとOの位置関係を利用したTi酸化物への転移反応を用いた方法が好ましい。前記Ti酸化物中に占めるTiO2(B)の割合を多くできる観点から、後者の多核Ti錯体をベースにした転移反応が好ましい。
前述の多核Ti錯体をベースにした転移を用いた方法とは、多核Ti錯体によって形成されている、TiとOの位置関係を維持しながら加熱、加圧してTi酸化物を得る手法で、TiO2(B)などの特殊な結晶構造を有するTi酸化物を得る方法である。
(Si元素)
本発明の一実施形態である複合体(A)は、Si元素を含む。Si元素は、複合体(A)中に、Si元素を含む物質として含まれていればよく、特に制限はないが、Liを吸蔵・放出可能なSiを主成分とするものが通常用いられる。Si元素を含む物質としては例えば、Si単体、Si元素を含む化合物、混合体、共融体または固溶体が挙げられる。前記Si元素を含む物質100質量%中の、Si元素の含有率は好ましくは90質量%以上であり、より好ましくは95質量%以上である。本発明の一実施形態である複合体(A)は、足場材であるTi酸化物上及びTi酸化物の結晶格子内部にSi元素を含む物質が存在することが好ましい。
本発明の一実施形態である複合体(A)は、Si元素を含む。Si元素は、複合体(A)中に、Si元素を含む物質として含まれていればよく、特に制限はないが、Liを吸蔵・放出可能なSiを主成分とするものが通常用いられる。Si元素を含む物質としては例えば、Si単体、Si元素を含む化合物、混合体、共融体または固溶体が挙げられる。前記Si元素を含む物質100質量%中の、Si元素の含有率は好ましくは90質量%以上であり、より好ましくは95質量%以上である。本発明の一実施形態である複合体(A)は、足場材であるTi酸化物上及びTi酸化物の結晶格子内部にSi元素を含む物質が存在することが好ましい。
Si元素を含む物質の例としては、Si単体、またはSiとLi以外の元素Mとを含む一般式:MmSiで表される物質を挙げることができる。該物質はSi1モルに対してmモルとなる比で元素Mを含む化合物、混合体、共融体または固溶体である。
Li以外の元素である元素Mの具体例としては、B、C、N、O、S、P、Na、Mg、Al、K、Ca、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Mo、Ru、Rh、Pd、Pt、Be、Nb、Nd、Ce、W、Ta、Ag、Au、Cd、Ga、In、Sb、Baなどを挙げることができる。元素Mとしては、一種の元素でもよく、二種以上の元素でもよい。元素Mとして二種以上の元素を含む場合には、その割合としては特に制限はなく、元素Mの合計量がmとなればよい。式中、mは好ましくは0.01以上0.3以下、より好ましくは0.02以上0.2以下、さらに好ましくは0.03以上0.1以下である。
Si元素を含む物質の具体例としては、Si単体、Siとアルカリ土類金属との合金;Siと遷移金属との合金;Siと半金属との合金;Siと、Be、Ag、Al、Au、Cd、Ga、In、SbまたはZnとの固溶性合金または共融性合金;CaSi、CaSi2、Mg2Si、BaSi2、Cu5Si、FeSi、FeSi2、CoSi2、Ni2Si、NiSi2、MnSi、MnSi2、MoSi2、CrSi2、Cr3Si、TiSi2、Ti5Si3、NbSi2、NdSi2、CeSi2、WSi2、W5Si3、TaSi2、Ta5Si3、PtSi、V3Si、VSi2、PdSi、RuSi、RhSiなどのケイ化物;SiO2、SiC、Si3N4などを挙げることができる。
複合体(A)中のSi元素の含有率は、好ましくは5質量%以上、より好ましくは8質量%以上、さらに好ましくは10質量%以上である。Si元素の含有率が5質量%以上であると、体積エネルギー密度および重量エネルギー密度の点での優位性を保てるため好ましい。
複合体(A)中のSi元素の含有率は、好ましくは70質量%以下、より好ましくは60質量%以下、さらに好ましくは55質量%以下である。Si元素の含有率が70質量%以下であると、複合体(A)の抵抗が大きくなりすぎることがないため好ましい。複合体(A)中のSi元素の含有率は、例えばファンダメンタルパラメーター法(FP法)を用いた蛍光X線分析によって調べることができる。
Si元素を含む物質は固相法、液相法、気相法のいずれでも作製可能であるが、気相法が好ましい。特にモノシランのような気相Si原料(Si元素含有ガス)からCVD法でSi元素を作製する方法などが好ましい。
(複合体(A))
本発明の一実施形態に係る複合体(A)は、前記Ti酸化物とSi元素とを含んでおり、Ti酸化物ドメイン内にSi元素が含まれている。なお、Ti酸化物ドメインとは、Ti酸化物を構成する結晶ドメインを意味する。前記複合体(A)はTi酸化物ドメイン内にSi元素が含まれているため、リチウムイオン二次電池用負極材として用いた場合に、エネルギー密度が高くなる。前記Ti酸化物ドメイン内にSi元素が含まれていることは、例えば複合体(A)粒子のTi酸化物ドメインの断面SEM-EDXにより確認することができる。Si質量濃度/Ti質量濃度の値の範囲の下限は、好ましくは0.05以上、より好ましくは0.10以上、さらに好ましくは0.15以上であり、上限は、好ましくは0.65以下、より好ましくは0.50以下、さらに好ましくは0.30以下である。
本発明の一実施形態に係る複合体(A)は、前記Ti酸化物とSi元素とを含んでおり、Ti酸化物ドメイン内にSi元素が含まれている。なお、Ti酸化物ドメインとは、Ti酸化物を構成する結晶ドメインを意味する。前記複合体(A)はTi酸化物ドメイン内にSi元素が含まれているため、リチウムイオン二次電池用負極材として用いた場合に、エネルギー密度が高くなる。前記Ti酸化物ドメイン内にSi元素が含まれていることは、例えば複合体(A)粒子のTi酸化物ドメインの断面SEM-EDXにより確認することができる。Si質量濃度/Ti質量濃度の値の範囲の下限は、好ましくは0.05以上、より好ましくは0.10以上、さらに好ましくは0.15以上であり、上限は、好ましくは0.65以下、より好ましくは0.50以下、さらに好ましくは0.30以下である。
前記複合体(A)は、具体的には、Ti酸化物の結晶格子内の隙間および、Ti酸化物一次粒子界面にSi元素が存在していることが好ましい。Ti酸化物の結晶格子内の隙間はマイクロ孔であり、Ti酸化物一次粒子間はマイクロ孔の他にメソ孔も含んでいる。前述のマイクロ孔とは細孔径が2nm未満の細孔を意味しており、メソ孔とは細孔径が2nm以上50nm未満の細孔を意味する。マイクロ孔に入り込んでいるSi元素はマイクロ孔径方向に1~4原子程度しかないので、このSiのリチウム挿入に伴う膨張は非常に小さい。
本発明の一実施形態に係る複合体(A)を、リチウムイオン二次電池用負極材として用いることにより、リチウムイオン二次電池の充放電カーブがプラトー性を示すようになる。酸化還元反応が生じているときに、充放電カーブが横軸の容量あるいは時間に対して水平(あるいは水平に近い角度で直線)を保っている時、すなわち、プラトー性を示しているときは、電極(負極)において二相共存反応が進行していることを意味し、好ましい。
前記複合体(A)は、炭素を含んでいてもよい。炭素を含む複合体(A)としては、例えば、炭素とSi元素とからなる複合体を含む複合体(A)や、炭素を含む粒子の表面が前記Ti酸化物で被覆され、前記Ti酸化物にSi元素が担持された複合体(A)が挙げられる。また、炭素を含む複合体(A)の別の形態として、チタン酸化物にSi元素を担持させた複合体をカーボンで被覆した形態なども挙げられる。
炭素としては、ハードカーボンやソフトカーボンのような非晶性炭素あるいは、例えば黒鉛、炭素繊維、グラフェン、カーボンナノチューブのような結晶性の炭素であってもよい。また、炭素は多孔質であってもよい。多孔質炭素の場合、細孔容積が0.2cm3/g以上であれば好適に用いることができる。多孔質炭素としては、活性炭やモレキュラーシービングカーボンなどが挙げられる。
本発明の一実施形態に係る複合体(A)の体積基準累積粒度分布における50%粒子径DV50は0.1μm以上であることが好ましい。より好ましくは1.0μm以上、さらに好ましくは2.5μm以上である。DV50が0.1μm以上であると、比表面積が過度に高くなることがないため、電解液との副反応がわずかにしか起こらず、初回クーロン効率に優れる。
本発明の一実施形態に係る複合体(A)の体積基準累積粒度分布における50%粒子径DV50は20.0μm以下であること好ましい。より好ましくは15.0μm以下、さらに好ましくは10.0μm以下である。DV50が20μm以下であると、複合体(A)または、複合体(A)が被覆した炭素の内部までの電子移動距離、Li+拡散距離が短くレート特性が優れる。本発明の一実施形態に係る複合体(A)の体積基準累積粒度分布における50%粒子径DV50は、例えばレーザー回折式の粒度分布測定装置によって測定することができる。
本発明の一実施形態に係る複合体(A)のBET比表面積(SBET)は1.0m2/g以上が好ましい。より好ましくは2.0m2/g以上、さらに好ましくは3.0m2/g以上である。BET比表面積(SBET)が1.0m2/g以上であると、複合体(A)の表面にはLi+が入り込める入り口が充分に存在し、入出力特性に優れる。
本発明の一実施形態に係る複合体(A)のBET比表面積(SBET)は10.0m2/g以下が好ましい。より好ましくは5.0m2/g以下、さらに好ましくは4.0m2/g以下である。BET比表面積(SBET)が10.0m2/g以下であると、塗工性およびハンドリング性に優れる。また、電極作製にバインダーを多量に用いる必要がないため、電極密度を高くすることができ、電解液との副反応により初回クーロン効率が低下することがない。本発明の一実施形態に係る複合体(A)のBET比表面積(SBET)は、例えば窒素ガスをプローブとしたBET多点法によって測定することができる。
前記複合体(A)は、粉体X線回折法(CuKα線)において2θが(1)12.0-18.0deg.の間にハローパターンを有しており、かつ(2)24.5-26.0deg.の間と、(3)28.0-30.0deg.の間のいずれにも1つ以上ピークを有しており、前記(3)の中で最も大きいピークのピーク強度I3と、前記(2)の中で最も大きいピークのピーク強度I2との比(I3/I2)が1.2未満である。
前述の(1)のハローパターンを有するとTi酸化物のなかでもマイクロ孔が多数発達した結晶系が生成していることを意味する。ここで、ハローパターンを有するとは、複合体(A)の10.0-80.0deg.の範囲における最大ピーク強度に対する、12.0-18.0deg.の範囲における最大ピーク強度の比(12.0-18.0deg.範囲の最大ピーク強度/10.0-80.0deg.範囲の最大ピーク強度)が0.05以上である場合を意味する。
前述の(2)のピークはTi酸化物全般に特有のピークである。(2)のピークにはTiO2(B)に由来するピークなどが含まれる。前述の(3)のピークにもTiO2(B)などのマイクロ孔を有するチタン酸化物のピークが含まれており、同時にSi(111)のピークも含まれている。I3/I2が1.2未満であると、Siが非常に弱い結晶性を有するSiであることを意味する。I3/I2は、1.0未満であることがより好ましい。またI3/I2は、0.1を超えることが好ましく、0.3を超えることがより好ましい。
(複合体(A)の製造方法)
本発明の一実施形態に係る複合体(A)の製造方法としては、例えば公知の方法でTiO2(B)を合成し、TiO2(B)をTi酸化物として用い、前記Ti酸化物に対してシランガス等のSi元素含有ガスで、例えば化学気相成長(CVD)法を行うことが挙げられる。これにより、Ti酸化物の結晶格子内部や一次粒子界面にSi元素を入り込ませることが可能であり、複合体(A)を製造することができる。前記CVDは、公知の方法に従って行うことができる。
本発明の一実施形態に係る複合体(A)の製造方法としては、例えば公知の方法でTiO2(B)を合成し、TiO2(B)をTi酸化物として用い、前記Ti酸化物に対してシランガス等のSi元素含有ガスで、例えば化学気相成長(CVD)法を行うことが挙げられる。これにより、Ti酸化物の結晶格子内部や一次粒子界面にSi元素を入り込ませることが可能であり、複合体(A)を製造することができる。前記CVDは、公知の方法に従って行うことができる。
複合体(A)が炭素を含む場合、例えば、多孔質炭素を含む粒子の表面が前記Ti酸化物で被覆され、前記多孔質炭素とTi酸化物にSi元素が担持された複合体(A)の製法としては、例えば、以下の製法が挙げられる。多孔質炭素粒子等の炭素を含む粒子の表面にTiO2(B)を含むTi酸化物を形成した多孔質材料を準備し、その後化学気相成長(CVD)法によって、多孔質炭素とTi酸化物の細孔内にSi元素を析出させることにより、前記複合体(A)を得ることができる。炭素を含む粒子の表面にTi酸化物を形成する方法としては、気相法では物理気相成長(PVD)法等が挙げられ、液相法ではチタン酸化物前駆体を炭素含有粒子表面に被覆した後に加熱/加圧を行う方法等が挙げられ、固相法ではメカノケミカル処理により複合体を形成する方法等が挙げられる。
他の手法としては例えば、多孔質炭素とTi酸化物を別々にCVD処理してSi元素を析出させた後、Siが析出した多孔質炭素と、Siが析出したTi酸化物とをメカノケミカル処理で複合化してもよい。前記CVD法は、例えば、高温で前記多孔質材料をSi元素含有ガス、好ましくはシランガスに曝露することにより行うことができる。
また、炭素を含む複合体(A)の別の形態である、チタン酸化物にSi元素を担持させた複合体をカーボンで被覆した形態、具体的にはSi元素を担持させたチタン酸化物の製造方法は次の通りである。気相法としてはCVDやPVDなどで炭素析出させる方法、液相法としては炭素源(例えばスクロースやクエン酸等)を担持させたのちに加熱する方法、また固相法としては炭素源(例えば、カーボンナノチューブやカーボンブラックやグラフェンなのどの導電性炭素材)とメカノケミカル処理する方法などが挙げられる。
(リチウムイオン二次電池用負極材)
本発明の一実施形態に係るリチウムイオン二次電池用負極材は、前記複合体(A)を含む。本発明において「リチウムイオン二次電池用負極材」を、単に「負極材」とも記す。なお、本発明において負極材とは、負極活物質あるいは、負極活物質とその他の材料との複合化物を指す。
本発明の一実施形態に係るリチウムイオン二次電池用負極材は、前記複合体(A)を含む。本発明において「リチウムイオン二次電池用負極材」を、単に「負極材」とも記す。なお、本発明において負極材とは、負極活物質あるいは、負極活物質とその他の材料との複合化物を指す。
本発明の一実施形態に係るリチウムイオン二次電池用負極材は、前記複合体(A)のみから形成されていてもよく、複合体(A)と、他の負極材とから形成されていてもよい。
前記他の負極材としては、リチウムイオン二次電池の負極活物質として一般的に用いられる物質を用いることができる。具体例としては、黒鉛、ハードカーボンなどの炭素を含む材料、チタン酸リチウム(Li4Ti5O12)、シリコン、スズなどの合金系活物質およびその複合材料等が挙げられる。これらの負極材は通常粒子状のものが用いられる。前記他の負極材としては、一種を用いても、二種以上を用いてもよい。その中でも特に黒鉛(黒鉛粒子)やハードカーボンが好ましく用いられる。
前記他の負極材としては、リチウムイオン二次電池の負極活物質として一般的に用いられる物質を用いることができる。具体例としては、黒鉛、ハードカーボンなどの炭素を含む材料、チタン酸リチウム(Li4Ti5O12)、シリコン、スズなどの合金系活物質およびその複合材料等が挙げられる。これらの負極材は通常粒子状のものが用いられる。前記他の負極材としては、一種を用いても、二種以上を用いてもよい。その中でも特に黒鉛(黒鉛粒子)やハードカーボンが好ましく用いられる。
リチウムイオン二次電池用負極材が、複合体(A)と、他の負極材とから形成されている場合には、リチウムイオン二次電池用負極材100質量%あたり、複合体(A)を好ましくは4~99質量%、より好ましくは8~40質量%含む。
(リチウムイオン二次電池用負極材の容量の調整等)
電池性能を向上する目的、リチウムイオン二次電池用負極材の容量を調節する目的、ならびに、負極を構成する電極合剤層に関し、密度を調整する、導電性を補助する、および膨張・収縮を緩和する目的で、複合体(A)と、他の負極材である炭素を含む材料とを混合したものを、リチウムイオン二次電池用負極材として用いてもよい。混合する炭素を含む材料は複数種類用いてもよい。炭素を含む材料としては容量の高い黒鉛が好ましい。黒鉛としては天然黒鉛、人造黒鉛から選択して用いることができる。この際、複合体(A)としては比較的高容量(700mAh/g以上)のものを用いた方が、リチウムイオン二次電池用負極材のコストが低減できるため好ましい。この容量調整用の炭素を含む材料は、予め複合体(A)と混合しておき、これにバインダー、溶剤、任意に用いられる導電助剤等の添加剤を加えて負極用ペーストを作製してもよい。また、複合体(A)、炭素を含む材料、バインダー、溶剤、任意に用いられる導電助剤等の添加剤を同時に混合して負極用ペーストを作製してもよい。混合の順序や方法は粉体のハンドリング性等を考慮して適宜決めればよい。
電池性能を向上する目的、リチウムイオン二次電池用負極材の容量を調節する目的、ならびに、負極を構成する電極合剤層に関し、密度を調整する、導電性を補助する、および膨張・収縮を緩和する目的で、複合体(A)と、他の負極材である炭素を含む材料とを混合したものを、リチウムイオン二次電池用負極材として用いてもよい。混合する炭素を含む材料は複数種類用いてもよい。炭素を含む材料としては容量の高い黒鉛が好ましい。黒鉛としては天然黒鉛、人造黒鉛から選択して用いることができる。この際、複合体(A)としては比較的高容量(700mAh/g以上)のものを用いた方が、リチウムイオン二次電池用負極材のコストが低減できるため好ましい。この容量調整用の炭素を含む材料は、予め複合体(A)と混合しておき、これにバインダー、溶剤、任意に用いられる導電助剤等の添加剤を加えて負極用ペーストを作製してもよい。また、複合体(A)、炭素を含む材料、バインダー、溶剤、任意に用いられる導電助剤等の添加剤を同時に混合して負極用ペーストを作製してもよい。混合の順序や方法は粉体のハンドリング性等を考慮して適宜決めればよい。
(負極用ペースト)
本発明の一実施形態に係る負極用ペーストは、前記負極材とバインダーと溶媒とを含み、必要に応じて導電助剤などの添加剤をさらに含む。この負極用ペーストは、例えば、前記負極材とバインダーと溶媒と必要に応じて導電助剤などとを混練することによって得られる。負極用ペーストは、シート状、ペレット状などの形状に成形することができる。
本発明の一実施形態に係る負極用ペーストは、前記負極材とバインダーと溶媒とを含み、必要に応じて導電助剤などの添加剤をさらに含む。この負極用ペーストは、例えば、前記負極材とバインダーと溶媒と必要に応じて導電助剤などとを混練することによって得られる。負極用ペーストは、シート状、ペレット状などの形状に成形することができる。
バインダーとして用いられる材料は特に制限は無く、例えば、カルボキシメチルセルロース、ポリエチレン、ポリプロピレン、エチレンプロピレンターポリマー、ブタジエンゴム、スチレンブタジエンゴム、ブチルゴム、アクリルゴム、ポリフッ化ビニリデン、ポリエチレンオキサイド、ポリエピクロルヒドリン、ポリフォスファゼン、ポリアクリロニトリルなどが挙げられる。バインダーは一種を単独で用いても、二種以上を用いてもよい。バインダーの量は、負極材100質量部に対して、好ましくは0.5質量部以上30質量部以下である。
導電助剤は電極に対し導電性や電極安定性(Liの挿入・脱離時における負極材の体積変化を吸収する作用)を付与する役目を果たすものであれば特に限定されない。例えば、カーボンブラック、カーボンナノチューブ、カーボンナノファイバー、気相成長法炭素繊維(例えば、「VGCF(登録商標)」昭和電工社製)、導電性カーボンブラック(例えば、「デンカブラック(登録商標)」電気化学工業社製、「SUPER C65」イメリス・グラファイト&カーボン社製、「SUPER C45」イメリス・グラファイト&カーボン社製)、導電性黒鉛(例えば、「KS6L」イメリス・グラファイト&カーボン社製、「SFG6L」イメリス・グラファイト&カーボン社製)などが挙げられる。また、前記導電助剤を2種類以上用いることもできる。導電助剤の量は、負極材100質量部に対して、好ましくは1~3質量部である。
本実施形態では、カーボンナノチューブ、カーボンナノファイバー、気相法炭素繊維を含むことが好ましく、これらの導電助剤の繊維長は複合体(A)のDV50の1/2以上であることが好ましい。この長さであると、複合体(A)を含む負極材間にこれらの導電助剤が橋掛けし、サイクル特性を向上することができる。繊維径が15nm以下のシングルウォールタイプやマルチウォールタイプのカーボンナノチューブやカーボンナノファイバーは、それよりも太いカーボンナノチューブやカーボンナノファイバーに比べて、同じ添加量でより橋掛けの数が増えるため好ましい。また、より柔軟であるため電極密度を向上する観点からも好ましい。
溶媒は、特に制限はなく、N-メチル-2-ピロリドン、ジメチルホルムアミド、イソプロパノール、水などが使用できる。溶媒として水を使用するバインダーの場合は、増粘剤を併用することが好ましい。溶媒の量はペーストが集電体に塗布しやすいような粘度となるように調整すればよい。
(負極)
本発明の一実施形態に係る負極は、集電体(例えばシート状集電体)および集電体を被覆する電極合剤層を有し、前記電極合剤層は、バインダー、前記リチウムイオン二次電池用負極材、および必要に応じて前記導電助剤などを含む。
本発明の一実施形態に係る負極は、集電体(例えばシート状集電体)および集電体を被覆する電極合剤層を有し、前記電極合剤層は、バインダー、前記リチウムイオン二次電池用負極材、および必要に応じて前記導電助剤などを含む。
集電体としては、例えば、ニッケル箔、銅箔、ニッケルメッシュまたは銅メッシュなどシート状のものが挙げられる。
電極合剤層は、バインダーと前記の負極材とを含有するものである。また、前記負極用ペーストが、導電助剤を含む場合には、電極合剤層も導電助剤を含む。電極合剤層は、例えば、前記負極用ペーストを集電体上に塗布し乾燥させることによって得ることができる。負極用ペーストの塗布方法は特に制限されない。電極合剤層の厚さは、好ましくは50~200μmである。電極合剤層が厚くなりすぎると、規格化された電池容器に負極を収容できなくなることがある。電極合剤層の厚さは、ペーストの塗布量によって調整できる。また、ペーストを乾燥させた後、加圧成形することによっても調整することができる。加圧成形法としては、ロール加圧、プレス加圧などの成形法が挙げられる。プレス成形するときの圧力は、好ましくは100~500MPa程度である。
負極の電極密度(負極密度)は例えば次のようにして計算することができる。すなわち、プレス後の負極を直径16mmの円形状に打ち抜き、その質量と厚みを測定する。そこから別途測定しておいた集電体箔(直径16mmの円形状に打ち抜いたもの)の質量と厚みを差し引いて電極合剤層の質量と厚みを求め、その値を元に電極密度(負極密度)を計算する。
(リチウムイオン二次電池)
本発明の一実施形態に係るリチウムイオン二次電池は、前記負極を有する。本発明のリチウムイオン二次電池は、前記負極を有するため、エネルギー密度に優れる。また、本発明のリチウムイオン二次電池は、負極の電極膨張率が低く、初回クーロン効率が高く、かつ高い容量維持率を有するため、電池寿命が長く、様々な機器の電源として好適に用いることができる。
本発明の一実施形態に係るリチウムイオン二次電池は、前記負極を有する。本発明のリチウムイオン二次電池は、前記負極を有するため、エネルギー密度に優れる。また、本発明のリチウムイオン二次電池は、負極の電極膨張率が低く、初回クーロン効率が高く、かつ高い容量維持率を有するため、電池寿命が長く、様々な機器の電源として好適に用いることができる。
前記リチウムイオン二次電池は、非水系電解液および非水系ポリマー電解質からなる群から選ばれる少なくとも一つ、正極、および前記負極を有するものである。
本発明に用いられる正極には、リチウムイオン二次電池に従来から使われていたものを始め、特に制限はない。正極としては、具体的には正極活物質を含んでなる電極を用いることができる。正極活物質としては、LiNiO2、LiCoO2、LiMn2O4、LiNi0.34Mn0.33Co0.33O2、LiFePO4などが挙げられる。
本発明に用いられる正極には、リチウムイオン二次電池に従来から使われていたものを始め、特に制限はない。正極としては、具体的には正極活物質を含んでなる電極を用いることができる。正極活物質としては、LiNiO2、LiCoO2、LiMn2O4、LiNi0.34Mn0.33Co0.33O2、LiFePO4などが挙げられる。
リチウムイオン二次電池に用いられる非水系電解液および非水系ポリマー電解質は特に制限されない。例えば、LiClO4、LiPF6、LiAsF6、LiBF4、LiSO3CF3、CH3SO3Liなどのリチウム塩を、エチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート、プロピレンカーボネート、ブチレンカーボネート、アセトニトリル、プロピオニトリル、ジメトキシエタン、テトラヒドロフラン、γ-ブチロラクトンなどの非水系溶媒に溶かしてなる有機電解液;ポリエチレンオキシド、ポリアクリルニトリル、ポリフッ化ビニリデン、およびポリメチルメタクリレートなどを含有するゲル状のポリマー電解質;エチレンオキシド結合を有するポリマーなどを含有する固体状のポリマー電解質が挙げられる。
また、電解液には、リチウムイオン二次電池に一般的に使用される添加剤を少量添加してもよい。該物質としては、例えば、ビニレンカーボネート(VC)、ビフェニール、プロパンスルトン(PS)、フルオロエチレンカーボネート(FEC)、エチレンスルトン(ES)などが挙げられる。添加量としては0.01質量%以上50質量%以下が好ましい。
リチウムイオン二次電池には正極と負極との間にセパレータを設けることができる。セパレータとしては、例えば、ポリエチレン、ポリプロピレンなどのポリオレフィンを主成分とした不織布、クロス、微孔フィルム又はそれらを組み合わせたものなどが挙げられる。
リチウムイオン二次電池は、携帯電話、携帯パソコン、携帯情報端末などの電子機器の電源;電動ドリル、電気掃除機、電動自動車などの電動機の電源;燃料電池、太陽光発電、風力発電などによって得られた電力の貯蔵などに用いることができる。
以下に本発明について実施例および比較例を示し、さらに具体的に説明する。なお、これらは説明のための単なる例示であって、本発明はこれらに何等制限されるものではない。
また、各物性の測定および電池性能の評価は下記のように行った。
また、各物性の測定および電池性能の評価は下記のように行った。
[50%粒子径DV50]
粉体(複合体(A))を極小型スパーテル2杯分、および非イオン性界面活性剤(TRITON(登録商標)-X;Roche Applied Science製)2滴を水50mlに添加し、3分間超音波分散させた。この分散液をレーザー回折式粒度分布測定器(LMS-2000e、セイシン企業社製)に投入し、体積基準累積粒度分布を測定して50%粒子径DV50(μm)を求めた。
粉体(複合体(A))を極小型スパーテル2杯分、および非イオン性界面活性剤(TRITON(登録商標)-X;Roche Applied Science製)2滴を水50mlに添加し、3分間超音波分散させた。この分散液をレーザー回折式粒度分布測定器(LMS-2000e、セイシン企業社製)に投入し、体積基準累積粒度分布を測定して50%粒子径DV50(μm)を求めた。
[BET比表面積]
比表面積/細孔分布測定装置(カンタクローム・インスツルメンツ社製、NOVA 4200e(登録商標))により、窒素ガスをプローブとして相対圧0.1、0.2、及び0.3のBET多点法によりBET比表面積SBET(m2/g)を測定した。
比表面積/細孔分布測定装置(カンタクローム・インスツルメンツ社製、NOVA 4200e(登録商標))により、窒素ガスをプローブとして相対圧0.1、0.2、及び0.3のBET多点法によりBET比表面積SBET(m2/g)を測定した。
[全細孔容積]
炭素材料約5gをガラス製セルに秤量し、1kPa以下の減圧下300℃で約3時間乾燥して、水分等の吸着成分を除去した後、炭素材料の質量を測定した。その後、液体窒素冷却下における乾燥後の炭素材料の窒素ガスの吸着等温線をカンタクローム(Quantachro me)社製Autosorb(登録商標)-1で測定した。得られた吸着等温線のP/P0=0.992~ 0.995での測定点における窒素吸着量と乾燥後の炭素材料の質量から全細孔容積(μL/g)を求めた。
炭素材料約5gをガラス製セルに秤量し、1kPa以下の減圧下300℃で約3時間乾燥して、水分等の吸着成分を除去した後、炭素材料の質量を測定した。その後、液体窒素冷却下における乾燥後の炭素材料の窒素ガスの吸着等温線をカンタクローム(Quantachro me)社製Autosorb(登録商標)-1で測定した。得られた吸着等温線のP/P0=0.992~ 0.995での測定点における窒素吸着量と乾燥後の炭素材料の質量から全細孔容積(μL/g)を求めた。
[粉体X線回折法による複合体(A)のプロファイル]
複合体(A)を無反射Si板(試料板窓5mmφ、深さ0.2mm)に充填し、以下の条件で測定を行った。
X線回折装置:リガク製SmartLab(登録商標)
X線種:CuKα線
Kβ線除去方法:Niフィルター
X線出力:45kV、200mA
測定範囲:5.0~80.0deg
複合体(A)を無反射Si板(試料板窓5mmφ、深さ0.2mm)に充填し、以下の条件で測定を行った。
X線回折装置:リガク製SmartLab(登録商標)
X線種:CuKα線
Kβ線除去方法:Niフィルター
X線出力:45kV、200mA
測定範囲:5.0~80.0deg
スキャンスピード:10.0deg/min。
得られた波形に対し、バックグラウンドの除去、Kα2成分の除去を行い、プロファイルフィッティングを行った。その結果を基に、ピーク強度を算出した。2θ=28.0-30.0deg.にある最大のピークのピーク強度(I3)と、2θ=24.5-26.0deg.にある最大のピークのピーク強度(I2)の比I3/I2を算出した。
得られた波形に対し、バックグラウンドの除去、Kα2成分の除去を行い、プロファイルフィッティングを行った。その結果を基に、ピーク強度を算出した。2θ=28.0-30.0deg.にある最大のピークのピーク強度(I3)と、2θ=24.5-26.0deg.にある最大のピークのピーク強度(I2)の比I3/I2を算出した。
[蛍光X線分析による複合体(A)中のSi元素の含有率(質量%)]
以下の条件で測定を行った。
蛍光X線装置:Rigaku製 NEX CG
管電圧:50kV
管電流:1.00mA
サンプルカップ:Φ32、12mL、CH1530
サンプル(複合体(A))重量:3g
サンプル高さ:11mm
サンプルカップに粉体を導入し、FP法を用いてSi元素の含有率を質量%にて算出した。
以下の条件で測定を行った。
蛍光X線装置:Rigaku製 NEX CG
管電圧:50kV
管電流:1.00mA
サンプルカップ:Φ32、12mL、CH1530
サンプル(複合体(A))重量:3g
サンプル高さ:11mm
サンプルカップに粉体を導入し、FP法を用いてSi元素の含有率を質量%にて算出した。
[走査型電子顕微鏡(SEM)観察およびエネルギー分散型X線分析(EDX)による複合体(A)中のSi位置]
Siウエハにカーボン両面テープを貼り付け、複合体(A)の粉末をカーボンテープ上に担持した。カーボンテープ端面に担持した複合体(A)の粉末をクロスセッションポリッシャー(登録商標;日本電子株式会社製)にて研磨して、粒子の断面を生成させた。この研磨した面を、走査型電子顕微鏡(SEM)(Regulus(登録商標)8220;日立ハイテク製)にて50,000倍で観察した。当該倍率にてエネルギー分散型X線分析(EDX)を実施した(SEM-EDX分析)。
Siウエハにカーボン両面テープを貼り付け、複合体(A)の粉末をカーボンテープ上に担持した。カーボンテープ端面に担持した複合体(A)の粉末をクロスセッションポリッシャー(登録商標;日本電子株式会社製)にて研磨して、粒子の断面を生成させた。この研磨した面を、走査型電子顕微鏡(SEM)(Regulus(登録商標)8220;日立ハイテク製)にて50,000倍で観察した。当該倍率にてエネルギー分散型X線分析(EDX)を実施した(SEM-EDX分析)。
SEM-EDX分析は、前記複合体(A)のTi酸化物ドメイン全体をマッピングできる視野で行った。測定対象元素は、Ti、C、O、Siの4元素とした。Ti酸化物ドメイン中心部をポイントEDX分析したときの、(Si質量濃度)/(Ti質量濃度)を算出した。
[作用極の製造]
バインダーとしてカルボキシメチルセルロース(CMC;ダイセル製、CMC1300)とスチレンブタジエンゴム(SBR)を用いた。具体的には、2質量%のCMC粉末を溶解した水溶液と、40質量%のSBRを分散した水分散液を用いた。
バインダーとしてカルボキシメチルセルロース(CMC;ダイセル製、CMC1300)とスチレンブタジエンゴム(SBR)を用いた。具体的には、2質量%のCMC粉末を溶解した水溶液と、40質量%のSBRを分散した水分散液を用いた。
導電助剤としてカーボンブラック、および気相成長法炭素繊維(VGCF(登録商標)-H,昭和電工株式会社製)を用意し、それぞれ3:2(質量比)で混合したものを混合導電助剤とした。
後述の実施例および比較例で製造した複合体(A)と、初回Li脱離容量を一定の範囲内に調節する目的で黒鉛を混合した。これにより作用極材中のSi元素の含有率を2.0~3.3質量%に調整した。この混合物(作用極材)を90質量部、混合導電助剤を5質量部、上記CMC水溶液を125質量部、上記SBR水分散液を6.25質量部混合した。得られた混合物を自転・公転ミキサーにて混練して、作用極用ペーストを得た。
前記の作用極用ペーストを厚み20μmの銅箔上にドクターブレードを用いて厚さ150μmとなるよう均一に塗布し、ホットプレートにて乾燥後、真空乾燥させて作用極を得た。乾燥した電極は300MPaの圧力にて一軸プレス機によりプレスして電池評価用の作用極を得た。得られた作用極の厚みは、銅箔の厚みを含めて62μmであった。
[評価用電池の作製]
露点-80℃~-60℃のドライルーム内で下記の操作を実施した。
露点-80℃~-60℃のドライルーム内で下記の操作を実施した。
[コイン型ハーフセルの作製]
コインセル(内径約18mm)内において、上記作用極と16mmφに打ち抜いた金属リチウム箔をセパレータ(ポリプロピレン製マイクロポーラスフィルム(セルガード2400))で挟み込んで積層し、電解液を加えてコイン型ハーフセルとした。前記作業はドライルーム内で行った。
コインセル(内径約18mm)内において、上記作用極と16mmφに打ち抜いた金属リチウム箔をセパレータ(ポリプロピレン製マイクロポーラスフィルム(セルガード2400))で挟み込んで積層し、電解液を加えてコイン型ハーフセルとした。前記作業はドライルーム内で行った。
[充電、放電の定義]
本実施例、比較例においては、セルの電圧が増大する(電位差が増える)ことを充電、セル電圧が減少する(電位差が減る)ことを放電と呼ぶ。Li金属を対極としたコイン型ハーフセルの場合、Li金属は上記作用極よりも低い酸化還元電位を有する。そのため、作用極にLiが挿入される際には、電圧が減少する(電位差が減る)ので放電となる。逆に、作用極からLiが放出される際には、電圧が増大する(電位差が増える)ので充電となる。なお、実際のリチウムイオン二次電池においては、上記作用極よりも高い酸化還元電位を有する材料(たとえば、コバルト酸リチウムやニッケルマンガンコバルト酸リチウム等)を対向させるため、上記作用極は負極となる。
本実施例、比較例においては、セルの電圧が増大する(電位差が増える)ことを充電、セル電圧が減少する(電位差が減る)ことを放電と呼ぶ。Li金属を対極としたコイン型ハーフセルの場合、Li金属は上記作用極よりも低い酸化還元電位を有する。そのため、作用極にLiが挿入される際には、電圧が減少する(電位差が減る)ので放電となる。逆に、作用極からLiが放出される際には、電圧が増大する(電位差が増える)ので充電となる。なお、実際のリチウムイオン二次電池においては、上記作用極よりも高い酸化還元電位を有する材料(たとえば、コバルト酸リチウムやニッケルマンガンコバルト酸リチウム等)を対向させるため、上記作用極は負極となる。
[初回Li挿入容量、初回クーロン効率の測定試験]
上記コイン型ハーフセルを用いて試験を行った。OCP(Open Circuit Potential)から0.005V vs.Li/Li+まで電流値0.1CでCCモードの放電を行った。次に0.005V vs.Li/Li+でCVモードの放電に切り替え、カットオフ電流値0.005Cで放電を行った。このときの容量を初回Li挿入容量とする。上限電位1.5V vs.Li/Li+として0.1CでCCモードの充電を行った。このときの容量を初回Li脱離容量とする。
上記コイン型ハーフセルを用いて試験を行った。OCP(Open Circuit Potential)から0.005V vs.Li/Li+まで電流値0.1CでCCモードの放電を行った。次に0.005V vs.Li/Li+でCVモードの放電に切り替え、カットオフ電流値0.005Cで放電を行った。このときの容量を初回Li挿入容量とする。上限電位1.5V vs.Li/Li+として0.1CでCCモードの充電を行った。このときの容量を初回Li脱離容量とする。
試験は25℃に設定した恒温槽内で行った。また、初回Li脱離容量/初回Li挿入容量を百分率で表した値を初回クーロン効率とした。
実施例1および比較例1について、上記試験で得られた初回充放電カーブを図2に示す。
実施例1および比較例1について、上記試験で得られた初回充放電カーブを図2に示す。
下記の実施例および比較例で使用した材料は以下の通りである。
(TiO2(B)合成用原料)
・Ti金属粉末(CAS No.7440-32-6;粉末、平均粒径45μm、99.9%、富士フィルム和光純薬株式会社)
・アンモニア水(CAS No.1336-21-6;関東化学株式会社)
・過酸化水素水(CAS No.7722-84-1;関東化学株式会社)
・グリコール酸(CAS No.79-14-1;関東化学株式会社)
・硫酸(CAS No.7664-93-9;関東化学株式会社)
(多孔質炭素)
・KDPW-SP(株式会社ユー・イー・エス、DV50=5.6μm)
(黒鉛粒子)
下記の例で、複合体(A)と共に、容量を調節する等の目的の炭素を含む材料として使用した人造黒鉛粒子[昭和電工株式会社製](黒鉛(1))の物性を表1に示す。
(TiO2(B)合成用原料)
・Ti金属粉末(CAS No.7440-32-6;粉末、平均粒径45μm、99.9%、富士フィルム和光純薬株式会社)
・アンモニア水(CAS No.1336-21-6;関東化学株式会社)
・過酸化水素水(CAS No.7722-84-1;関東化学株式会社)
・グリコール酸(CAS No.79-14-1;関東化学株式会社)
・硫酸(CAS No.7664-93-9;関東化学株式会社)
(多孔質炭素)
・KDPW-SP(株式会社ユー・イー・エス、DV50=5.6μm)
(黒鉛粒子)
下記の例で、複合体(A)と共に、容量を調節する等の目的の炭素を含む材料として使用した人造黒鉛粒子[昭和電工株式会社製](黒鉛(1))の物性を表1に示す。
I110/I004とは、粉体X線回折法により得られる回折ピークプロファイルにおいて黒鉛結晶の110面のピーク強度I110と004面のピーク強度I004の比である。具体的には、粉体X線回折法により得られた波形に対し、バックグラウンドの除去、Kα2成分の除去を行い、プロファイルフィッティングを行った。その結果得られた004面のピーク強度I004と110面のピーク強度I110から配向性の指標となる強度比I110/I004を算出した。なお、各面のピークは以下の範囲のうち最大の強度のものをそれぞれのピークとして選択した。
(004)面:54.0~55.0deg
(110)面:76.5~78.0deg
(004)面:54.0~55.0deg
(110)面:76.5~78.0deg
(実施例1)
Ti金属粉末0.9572gを過酸化水素水80mL中に投入した後、アンモニア水20mLを投入した。Ti金属粉末が溶解した後、グリコール酸2.282gを加えて80℃で3時間撹拌した。これに水を40mLと硫酸2.6mLを投入してオートクレーブにて200℃1時間の水熱処理を行った。得られた固形分を水で洗浄し、TiO2(B)を得た。
Ti金属粉末0.9572gを過酸化水素水80mL中に投入した後、アンモニア水20mLを投入した。Ti金属粉末が溶解した後、グリコール酸2.282gを加えて80℃で3時間撹拌した。これに水を40mLと硫酸2.6mLを投入してオートクレーブにて200℃1時間の水熱処理を行った。得られた固形分を水で洗浄し、TiO2(B)を得た。
前記TiO2(B)を、真空下、400℃で3時間乾燥させたのち、雰囲気をHeガスで置換した。その後、シラン流量0.28g/h、反応温度400℃でシランガスを6時間流通させた。シランガス処理後、シランガスの供給を停止してHeガス流に切り替えた。冷却しながらシランガスをパージして、複合体(A)-1を得た。
この複合体(A)-1についてX線回折測定、蛍光X線分析、SEM-EDX分析した結果を、表2に示す。SEM-EDX分析した結果を図1に示す。これより、Ti酸化物ドメイン内にSi元素が含まれていることが確認できた。X線回折測定のプロファイルを図3に示す。なお、10.0-80.0deg.範囲における最大強度ピーク強度に対する、12.0-18.0deg.範囲における最大ピーク強度の比(12.0-18.0deg.範囲の最大ピーク強度/10.0-80.0deg.範囲の最大ピーク強度)は0.308であったことから、ハローパターンを有すると判断した。
複合体(A)-1を11.2質量部、黒鉛(1)を88.8質量部の混合物を用いて、上述の方法で作用極を作製し、電池特性を測定した結果を表3に示す。
複合体(A)-1を11.2質量部、黒鉛(1)を88.8質量部の混合物を用いて、上述の方法で作用極を作製し、電池特性を測定した結果を表3に示す。
(実施例2)
フェノール樹脂を水蒸気賦活(900℃)することにより得られる、DV50=6.6μm、BET比表面積=2361m2/gである活性炭に対し、実施例1と同じ手法でシランガス処理を行い、複合体(B)を得た。1.0gの複合体(A)-1と、9.0gの複合体(B)とをロータリーカッターミルにて30秒間複合化処理することにより、複合体(A)-2を得た。
フェノール樹脂を水蒸気賦活(900℃)することにより得られる、DV50=6.6μm、BET比表面積=2361m2/gである活性炭に対し、実施例1と同じ手法でシランガス処理を行い、複合体(B)を得た。1.0gの複合体(A)-1と、9.0gの複合体(B)とをロータリーカッターミルにて30秒間複合化処理することにより、複合体(A)-2を得た。
この複合体(A)-2についてX線回折測定、蛍光X線分析、SEM-EDX分析した結果を、表2に示す。これより、Ti酸化物ドメイン内にSi元素が含まれていることが確認できた。また、X線回折プロファイルを図3に示す。なお、10.0-80.0deg.範囲における最大強度ピーク強度に対する、12.0-18.0deg.範囲における最大ピーク強度の比(12.0-18.0deg.範囲の最大ピーク強度/10.0-80.0deg.範囲の最大ピーク強度)は0.191であったことから、ハローパターンを有すると判断した。
複合体(A)-2を10.9質量部、黒鉛(1)を89.1質量部の混合物を用いて、作用極を作製し、電池特性を測定した結果を表3に示す。
複合体(A)-2を10.9質量部、黒鉛(1)を89.1質量部の混合物を用いて、作用極を作製し、電池特性を測定した結果を表3に示す。
(比較例1)
シランガス処理をする際にTiO2(B)を多孔質炭素「KDPW-SP」に置き換えた以外は、実施例1と同じ方法で複合体(A)-c1を得た。この複合体(A)-c1についてX線回折測定、蛍光X線分析、SEM-EDX分析した結果を、表2に示す。なお、10.0-80.0deg.範囲における最大強度ピーク強度に対する、12.0-18.0deg.範囲における最大ピーク強度の比(12.0-18.0deg.範囲の最大ピーク強度/10.0-80.0deg.範囲の最大ピーク強度)は0.001であったことから、ハローパターンを有しないと判断した。
複合体(A)-c1を10.8質量部、黒鉛(1)を89.2質量部の混合物を用いて、作用極を作製し、電池特性を測定した結果を表3に示す。
シランガス処理をする際にTiO2(B)を多孔質炭素「KDPW-SP」に置き換えた以外は、実施例1と同じ方法で複合体(A)-c1を得た。この複合体(A)-c1についてX線回折測定、蛍光X線分析、SEM-EDX分析した結果を、表2に示す。なお、10.0-80.0deg.範囲における最大強度ピーク強度に対する、12.0-18.0deg.範囲における最大ピーク強度の比(12.0-18.0deg.範囲の最大ピーク強度/10.0-80.0deg.範囲の最大ピーク強度)は0.001であったことから、ハローパターンを有しないと判断した。
複合体(A)-c1を10.8質量部、黒鉛(1)を89.2質量部の混合物を用いて、作用極を作製し、電池特性を測定した結果を表3に示す。
(比較例2)
実施例1と同じ方法にてTiO2(B)を得た後、TiO2(B)82質量部とSi粒子(BET比表面積52m2/g、密度2.3g/cm3)18質量部をロータリーカッターミルに投入し、窒素ガスを流通させて不活性雰囲気を保ちつつ2500rpmで高速撹拌し混合させて複合体(A)-c2を得た。この複合体(A)-c2についてX線回折測定、蛍光X線分析、SEM-EDX分析した結果を、表2に示す。
複合体(A)-c2を11.2質量部、黒鉛(1)を88.8質量部の混合物を用いて、作用極を作製し、電池特性を測定した結果を表3に示す。
実施例1と同じ方法にてTiO2(B)を得た後、TiO2(B)82質量部とSi粒子(BET比表面積52m2/g、密度2.3g/cm3)18質量部をロータリーカッターミルに投入し、窒素ガスを流通させて不活性雰囲気を保ちつつ2500rpmで高速撹拌し混合させて複合体(A)-c2を得た。この複合体(A)-c2についてX線回折測定、蛍光X線分析、SEM-EDX分析した結果を、表2に示す。
複合体(A)-c2を11.2質量部、黒鉛(1)を88.8質量部の混合物を用いて、作用極を作製し、電池特性を測定した結果を表3に示す。
エネルギー密度※:実施例、比較例で作製した作用極と、1500mV vs. Li/Li+の一定電位で作用極と同一の容量を発現する正極(作用極よりも高い酸化還元電位を有する材料)からなるフルセルを設定。前記フルセルの放電時において、作用極電位が350mV vs. Li/Li+以上の部分(Si反応部分)のエネルギー密度の値。
表3に示す結果について、実施例1と比較例1を比べると、比較例1は足場材として多孔質炭素を用いている。このため多孔質炭素内部に充填されているSi全体にLi+が到達するのに時間を要する。このため、比較例1では充放電カーブがスロープ状になり、エネルギー密度が実施例1に比べて低くなったと考えられる。
この点から、足場材としては多孔質炭素と比べTiO2(B)が優れていることがわかる。また比較例1は実施例1に比べて、初回クーロン効率が低い。これはTiO2(B)表面に比べ、多孔質炭素表面の方がエネルギー場として不均一であり不安定であるためと考えられる。
表2に示す結果について、実施例1と比較例2を比べると、比較例2ではI3/I2の値が非常に大きい。これはSi(111)の粉体X線回折のピーク強度が非常に高いことを意味しており、Siの結晶性が高い。結晶性の高いSiを用いると、Siの膨張が異方的になり、電極構造を破壊してしまうと考えられる。実際、電気化学評価を実施すると、表3で示したように初回Li挿入容量は実施例1と同等の値を示しているのに対し、初回Li脱離容量は実施例1に比べて著しく低くなっている。これは、比較例2では実施例1に比べSiの膨張が異方的になっているため、初回のLi挿入で電極構造が大きく破壊され、Li脱離の際、電子伝導経路が減少してしまったためと考えられる。
表3に示す結果について、実施例1と実施例2を比べると、実施例2ではエネルギー密度の値が大きい。これは、より多くのSiを担持させた電気化学容量の大きい複合体(B)の影響を受けていることによる。つまり、電気化学容量が大きな複合体と、充放電カーブにプラトーを有するTiO2(B)をベースにした複合体とを組み合わせることにより、電気化学容量が高く、プラトーが発現する材料を得られることになり、エネルギー密度の更なる向上を発現したと考えられる。
Claims (8)
- Ti酸化物とSi元素とを含む複合体(A)であって、粉体X線回折法(CuKα線)において2θが、(1)12.0-18.0deg.の間にハローパターンを有しており、かつ(2)24.5-26.0deg.の間と、(3)28.0-30.0deg.の間のいずれにも1つ以上ピークを有しており、
前記(3)の中で最も大きいピークのピーク強度I3と、前記(2)の中で最も大きいピークのピーク強度I2との比(I3/I2)が1.2未満であり、Ti酸化物ドメイン内にSi元素が含まれている、複合体(A)。 - 炭素を含む、請求項1に記載の複合体(A)。
- 前記炭素とSi元素からなる複合体を含む、請求項2に記載の複合体(A)。
- 体積基準累積粒度分布における50%粒子径DV50が0.1μm以上20μm以下である、請求項1~3のいずれか一項に記載の複合体(A)。
- Si元素の含有率が5質量%以上70質量%以下である請求項1~4のいずれか一項に記載の複合体(A)。
- 請求項1~5のいずれか一項に記載の複合体(A)を含む、リチウムイオン二次電池用負極材。
- 集電体および集電体を被覆する電極合剤層を有し、前記電極合剤層はバインダー、および請求項6に記載のリチウムイオン二次電池用負極材を含む負極。
- 請求項7に記載の負極を有するリチウムイオン二次電池。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-094074 | 2020-05-29 | ||
JP2020094074 | 2020-05-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021241752A1 true WO2021241752A1 (ja) | 2021-12-02 |
Family
ID=78744797
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/020501 WO2021241752A1 (ja) | 2020-05-29 | 2021-05-28 | チタン酸化物-シリコン複合体およびその用途 |
PCT/JP2021/020502 WO2021241753A1 (ja) | 2020-05-29 | 2021-05-28 | 複合体およびその用途 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/020502 WO2021241753A1 (ja) | 2020-05-29 | 2021-05-28 | 複合体およびその用途 |
Country Status (1)
Country | Link |
---|---|
WO (2) | WO2021241752A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015099746A (ja) * | 2013-11-20 | 2015-05-28 | 株式会社東芝 | 電池用活物質、非水電解質電池及び電池パック |
WO2016147404A1 (ja) * | 2015-03-19 | 2016-09-22 | 株式会社 東芝 | 負極活物質、非水電解質電池及び電池パック |
WO2017042956A1 (ja) * | 2015-09-11 | 2017-03-16 | 株式会社東芝 | 負極活物質及びその製造方法、非水電解質電池並びに電池パック |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20130056668A (ko) * | 2011-11-22 | 2013-05-30 | 삼성전자주식회사 | 복합 음극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지 |
WO2018165610A1 (en) * | 2017-03-09 | 2018-09-13 | Group 14 Technologies, Inc. | Decomposition of silicon-containing precursors on porous scaffold materials |
-
2021
- 2021-05-28 WO PCT/JP2021/020501 patent/WO2021241752A1/ja active Application Filing
- 2021-05-28 WO PCT/JP2021/020502 patent/WO2021241753A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015099746A (ja) * | 2013-11-20 | 2015-05-28 | 株式会社東芝 | 電池用活物質、非水電解質電池及び電池パック |
WO2016147404A1 (ja) * | 2015-03-19 | 2016-09-22 | 株式会社 東芝 | 負極活物質、非水電解質電池及び電池パック |
WO2017042956A1 (ja) * | 2015-09-11 | 2017-03-16 | 株式会社東芝 | 負極活物質及びその製造方法、非水電解質電池並びに電池パック |
Also Published As
Publication number | Publication date |
---|---|
WO2021241753A1 (ja) | 2021-12-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20220209219A1 (en) | Electrodes and lithium ion cells with high capacity anode materials | |
Tang et al. | Novel MnO/carbon composite anode material with multi-modal pore structure for high performance lithium-ion batteries | |
TWI705606B (zh) | 負極活性物質、混合負極活性物質材料、非水電解質二次電池用負極、鋰離子二次電池、負極活性物質的製造方法、以及鋰離子二次電池的製造方法 | |
KR102723357B1 (ko) | 복합체 입자, 부극 활물질 및 리튬 이온 이차 전지 | |
JP7185669B2 (ja) | 二次電池 | |
EP4160727A1 (en) | Composite carbon particles and use thereof | |
TWI705605B (zh) | 負極活性物質、混合負極活性物質材料、非水電解質二次電池用負極、鋰離子二次電池、負極活性物質的製造方法、以及鋰離子二次電池的製造方法 | |
KR102178542B1 (ko) | 금속 주석-탄소 복합체, 그 제조 방법, 그것으로 얻어진 비수계 리튬 이차전지용 음극 활물질, 이것을 포함하는 비수계 리튬 이차전지용 음극 및 비수계 리튬 이차전지 | |
TWI717479B (zh) | 負極活性物質、混合負極活性物質材料、負極活性物質的製造方法 | |
Zhao et al. | MnCO3-RGO composite anode materials: In-situ solvothermal synthesis and electrochemical performances | |
WO2021241749A1 (ja) | 炭素-シリコン複合体 | |
TW201931648A (zh) | 鋰離子二次電池用負極材料 | |
US20230234852A1 (en) | Composite particles, method for producing the same, and uses thereof | |
Kim et al. | Electrochemical investigation on high-rate properties of graphene nanoplatelet-carbon nanotube hybrids for Li-ion capacitors | |
WO2022270539A1 (ja) | 複合炭素粒子およびその用途 | |
US20240250242A1 (en) | Composite particles, negative electrode mixture layer and lithium-ion secondary battery | |
WO2021241752A1 (ja) | チタン酸化物-シリコン複合体およびその用途 | |
Zhang et al. | Nano/micro structured porous Li 4 Ti 5 O 12 synthesized by a polyethylene glycol assisted hydrothermal method for high rate lithium-ion batteries | |
US12148919B2 (en) | Composite carbon particles and use thereof | |
WO2022249476A1 (ja) | 複合体粒子、負極活物質およびリチウムイオン二次電池 | |
TW202103360A (zh) | 電化學裝置用接合劑、電極合劑、電極、電化學裝置及二次電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21813991 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21813991 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |