[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2021241521A1 - Compound, molded body, and cured product - Google Patents

Compound, molded body, and cured product Download PDF

Info

Publication number
WO2021241521A1
WO2021241521A1 PCT/JP2021/019672 JP2021019672W WO2021241521A1 WO 2021241521 A1 WO2021241521 A1 WO 2021241521A1 JP 2021019672 W JP2021019672 W JP 2021019672W WO 2021241521 A1 WO2021241521 A1 WO 2021241521A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
epoxy resin
resin
metal powder
mass
Prior art date
Application number
PCT/JP2021/019672
Other languages
French (fr)
Japanese (ja)
Inventor
貴一 稲葉
翔平 山口
Original Assignee
昭和電工マテリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工マテリアルズ株式会社 filed Critical 昭和電工マテリアルズ株式会社
Priority to KR1020227044005A priority Critical patent/KR20230017228A/en
Priority to CN202180037467.1A priority patent/CN115698120A/en
Priority to JP2022526543A priority patent/JPWO2021241521A1/ja
Publication of WO2021241521A1 publication Critical patent/WO2021241521A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/02Polycondensates containing more than one epoxy group per molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/521Esters of phosphoric acids, e.g. of H3PO4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • H01F1/26Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated by macromolecular organic substances

Definitions

  • One aspect of the present invention relates to compounds, molded bodies and cured products.
  • the compound containing metal powder and thermosetting resin is used as a raw material for various industrial products such as Indaku, depending on the physical characteristics of the metal powder (see Patent Documents 1 and 2 below).
  • the compound When an industrial product is manufactured from a compound, the compound is supplied and filled into the mold through a flow path, and parts such as coils are embedded in the compound in the mold.
  • the fluidity of the compound is required in these steps. If the compound does not have sufficient fluidity, it is difficult for the compound to be uniformly filled in the mold, and voids are likely to be formed in the molded body formed from the compound.
  • the fluidity of the compound increases as the content of the metal powder in the compound decreases.
  • the content (filling rate) of the metal powder in the compound is high.
  • the magnetic property values of a compound such as relative permeability and saturation magnetic flux density increase with increasing content of metal powder in the compound.
  • the melt viscosity of the compound increases.
  • the melt viscosity of the compound increases remarkably, and the compound hardly flows.
  • the present invention has been made in view of the above problems, and an object of one aspect of the present invention is to provide a compound having excellent fluidity, a molded product containing the compound, and a cured product of the compound.
  • the compound according to one aspect of the present invention is a compound containing at least a metal powder and a resin composition, wherein the resin composition contains at least an epoxy resin and a phosphoric acid ester, and the content of the metal powder in the compound is high. , 97.0% by mass or more and 97.5% by mass or less.
  • the ratio of the phosphoric acid ester to 100 parts by mass of the metal powder may be 0.02 parts by mass or more and 0.10 parts by mass or less.
  • the melt viscosity of the compound at 140 ° C. may be 10 Pa ⁇ s or more and 1500 Pa ⁇ s or less.
  • the compound according to one aspect of the present invention may be used for at least one of transfer molding and compression molding.
  • the molded body according to one aspect of the present invention includes the above compound.
  • the cured product according to one aspect of the present invention is a cured product of the above compound.
  • a compound having excellent fluidity, a molded product containing the compound, and a cured product of the compound are provided.
  • the compound according to this embodiment contains at least a metal powder and a resin composition. That is, the compound may be a mixture of a metal powder and a resin composition.
  • the compound may be paraphrased as a magnetic encapsulant.
  • Metal powder is composed of a large number of metal particles.
  • the metal powder may contain, for example, at least one selected from the group consisting of elemental metals (pure metals), alloys, amorphous powders and metal compounds.
  • the metal powder may be paraphrased as a filler made of metal.
  • the resin composition contains at least an epoxy resin and a phosphoric acid ester.
  • the epoxy resin melts at a temperature lower than the curing temperature, which improves the fluidity of the compound.
  • the epoxy resin binds metal powders to each other by thermosetting. Further, the epoxy resin electrically insulates the metal powders from each other.
  • the phosphoric acid ester may be represented, for example, OP (OR 1 ) (OR 2 ) (OR 3).
  • R 1 , R 2 and R 3 are each hydrogen or any hydrocarbon group, and at least one of R 1 , R 2 and R 3 is a hydrocarbon group.
  • the hydrocarbon group may be, for example, an alkyl group or an aryl group.
  • Phosphite ester is a compound different from phosphite ester.
  • the phosphite ester may be represented, for example, P (OR 1 ) (OR 2 ) (OR 3).
  • the resin composition may further contain a phosphite ester in addition to the phosphoric acid ester.
  • the resin composition may further contain other dispersants (eg, coupling agents).
  • the phosphoric acid ester may be a dispersant. Since the phosphoric acid group of the phosphoric acid ester has polarity, it easily easily selectively adsorbs to the surface of the metal particles. On the other hand, since the hydrocarbon group of the phosphoric acid ester has lipophilicity, the resin composition containing the epoxy resin is likely to intervene between the metal particles to which the phosphoric acid ester is adsorbed. Therefore, due to the phosphoric acid ester, the aggregation of the metal powder is suppressed, and each metal particle is easily dispersed in the compound.
  • the action of the phosphoric acid ester on the metal powder as a dispersant improves the fluidity of the compound.
  • the inclusion of phosphate in the compound reduces the melt viscosity of the compound.
  • the fluidity of a compound containing a phosphate ester tends to be better than the fluidity of a compound containing a dispersant other than the phosphate ester.
  • the direct friction between the metal particles may be evaluated based on the torque value measured by the gel time measuring device (vulcanization tester). The more the direct friction between the metal particles is suppressed, the lower the torque value is.
  • the gel time measuring device a CURELASTOMETER manufactured by JSR Corporation may be used.
  • the content of the metal powder in the compound is 97.0% by mass or more and 97.5% by mass or less.
  • the relative permeability and the saturated magnetic flux density of the compound tend to increase.
  • Compounds with high relative permeability and high saturation magnetic flux density are suitable, for example, as encapsulants for inductors or raw materials for the core of inductors.
  • the melt viscosity of the compound increases.
  • the melt viscosity of the compound increases remarkably and the compound hardly flows.
  • the compound according to the present embodiment contains a phosphoric acid ester together with an epoxy resin, so that it has high fluidity (low melt viscosity). ) Can have.
  • the melt viscosity of the compound is high, but the compound can flow.
  • the content of the metal powder in the compound exceeds 97.5% by mass, the content of the resin composition in the compound is relatively too small, which is high due to the epoxy resin and the phosphoric acid ester in the resin composition. It is difficult to obtain fluidity, and the melt viscosity of the compound is extremely high. As a result, it becomes difficult to perform transfer molding, which requires the fluidity of the compound. Since the compound tends to have high fluidity, the content of the metal powder in the compound may be 97.0% by mass or more and 97.3% by mass or less.
  • the ratio of the phosphoric acid ester to 100 parts by mass of the metal powder may be 0.02 parts by mass or more and 0.10 parts by mass or less.
  • the ratio of the phosphoric acid ester is 0.02 parts by mass (preferably 0.04 parts by mass) or more, high fluidity (low melt viscosity) of the compound due to the phosphoric acid ester can be easily obtained.
  • Phosphoric acid ester may inhibit the curing of the epoxy resin.
  • the ratio of the phosphoric acid ester is 0.10 parts by mass or less, the inhibition of curing of the epoxy resin due to the phosphoric acid ester is likely to be suppressed.
  • the ratio of the phosphoric acid ester when the ratio of the phosphoric acid ester is 0.10 parts by mass or less, the gelation time (curing time) of the compound is shortened.
  • the ratio of the phosphoric acid ester to 100 parts by mass of the metal powder may be 0.040 parts by mass or more and 0.060 parts by mass or less.
  • the melt viscosity of the compound at 140 ° C. is 10 Pa ⁇ s or more and 1500 Pa ⁇ s or less, 573 Pa ⁇ s or more and 1489 Pa ⁇ s or less, 573 Pa ⁇ s or more and 998 Pa ⁇ s or less, 573 Pa ⁇ s or more and 826 Pa ⁇ s or less, or 573 Pa ⁇ s or more. It may be 633 Pa ⁇ s or less. Even when the content of the metal powder in the compound is 97.0% by mass or more, the compound contains an epoxy resin and a phosphoric acid ester, so that the compound has a low melt viscosity (high fluidity) as described above. Can have.
  • melt viscosity of the compound When the melt viscosity of the compound is within the above range, the melted compound is easily filled into the mold without unevenness, and defects (voids or burrs, etc.) in the molded product and the cured product formed from the compound are suppressed. Easy to do. Therefore, a compound having a low melt viscosity as described above is suitable for transfer molding.
  • the content of the epoxy resin in the compound may be 0.95% by mass or more and 1.72% by mass or less. In other words, the ratio of the epoxy resin to 100 parts by mass of the metal powder may be 0.98 parts by mass or more and 1.77 parts by mass or less.
  • the fluidity of the compound tends to improve.
  • the compound tends to have high fluidity (low melt viscosity). Even when the content of the epoxy resin in the compound is within the above range, if the compound does not contain a phosphate ester, the compound is unlikely to have high fluidity.
  • the content of the epoxy resin in the compound When the content of the epoxy resin in the compound is larger than the upper limit, it is difficult to achieve both the magnetic properties and the fluidity of the compound. Since the compound tends to have high fluidity, the content of the epoxy resin in the compound may be 1.24% by mass or more and 1.41% by mass or less. In other words, the ratio of the epoxy resin to 100 parts by mass of the metal powder may be 1.28 parts by mass or more and 1.46 parts by mass or less.
  • the resin composition is a component including an epoxy resin and a phosphoric acid ester, and may be the remaining components (nonvolatile components) other than the metal powder and the organic solvent among all the components constituting the compound. That is, the resin composition may further contain other components in addition to the epoxy resin and the phosphoric acid ester.
  • the resin composition may further contain a curing agent.
  • the resin composition may further contain a curing accelerator.
  • the resin composition may further contain a wax (release agent).
  • the resin composition may further contain additives.
  • the additive may be, for example, a coupling agent, a flame retardant, or the like.
  • the resin composition has a function as a binder of metal particles constituting the metal powder, and imparts mechanical strength to the molded body formed from the compound.
  • the resin composition contained in the compound is filled between the metal particles when the compound is molded at high pressure using a mold, and the metal particles are bound to each other.
  • the cured product of the resin composition binds the metal particles more firmly to each other, and a cured product of the compound having excellent mechanical strength can be obtained.
  • the resin composition may be attached to the surface of each metal particle constituting the metal powder.
  • the resin composition may cover a part of the surface of each metal particle, or may cover the entire surface of each metal particle.
  • the compound may include a metal powder and an uncured resin composition.
  • the compound may include a metal powder and a semi-cured product of the resin composition (eg, a B-stage resin composition).
  • the compound may contain both an uncured resin composition and a semi-cured resin composition.
  • the compound may be a powder.
  • the compound may be a tablet.
  • the compound may be a paste.
  • the content of the resin composition in the compound is 2.5% by mass or more and 3.0% by mass or less.
  • the resin composition may contain a kind of phosphoric acid ester.
  • the resin composition may contain a plurality of types of phosphoric acid esters.
  • the phosphoric acid ester contained in the resin composition may be at least one kind of phosphoric acid ester selected from the group consisting of a phosphoric acid monoester, a phosphoric acid diester and a phosphoric acid triester.
  • the phosphoric acid ester contained in the resin composition is a phosphoric acid ester salt of a copolymer containing an acid group, a compound 1 represented by the following chemical formula 1, a compound 2 represented by the following chemical formula 2, and a following chemical formula 3. It may be at least one phosphoric acid ester selected from the group consisting of the compound 3 and the compound 4 represented by the following chemical formula 4.
  • the compound tends to have high fluidity.
  • the phosphoric acid ester salt of the copolymer containing an acid group is contained in the resin composition, the compound tends to have high fluidity.
  • the phosphoric acid ester salt of the copolymer containing an acid group may be, for example, disperbyk-111 (trade name) manufactured by BYK-Chemie GmbH.
  • the acid value of the phosphate ester salt of the copolymer containing an acid group may be 129.
  • the acid value of disperbyk-111 is 129.
  • the compound 1 represented by the following chemical formula 1 may be, for example, JP-504 manufactured by Johoku Chemical Industry Co., Ltd.
  • the compound 2 represented by the following chemical formula 2 may be, for example, JP-506H manufactured by Johoku Chemical Industry Co., Ltd.
  • the compound 3 represented by the following chemical formula 3 may be, for example, JP-508 manufactured by Johoku Chemical Industry Co., Ltd.
  • the compound 4 represented by the following chemical formula 4 may be, for example, JP-513 manufactured by Johoku Chemical Industry Co., Ltd.
  • (C 4 H 9 O) n OP (OH) 3-n (1) N in the above chemical formula 1 may be 1 or 2. N in the above chemical formula 1 may be 1 or more and 3 or less.
  • (C 4 H 9 OCH 2 CH 2 O) n OP (OH) 3-n (2) N in the above chemical formula 2 may be 1 or 2. N in the above chemical formula 2 may be 1 or more and 3 or less.
  • (C 4 H 9 C 2 H 5 CHCH 2 O) n OP (OH) 3-n (3) N in the above chemical formula 3 may be 1 or 2. N in the above chemical formula 3 may be 1 or more and 3 or less.
  • (Is Cincinnati-C 13 H 27 O) n OP (OH) 3-n (4) N in the above chemical formula 4 may be 1 or 2. N in the above chemical formula 4 may be 1 or more and 3 or less.
  • the resin composition contains at least an epoxy resin as a thermosetting resin.
  • the compound contains an epoxy resin having a relatively excellent fluidity among the thermosetting resins, the fluidity, filling property, storage stability, and moldability of the compound are improved.
  • the compound may contain other resins in addition to the epoxy resin as long as the effects of the present invention are not impaired.
  • the resin composition may contain at least one of a phenol resin and a polyamide-imide resin as a thermosetting resin.
  • the resin composition may function as a curing agent for the epoxy resin.
  • the resin composition may further contain a thermoplastic resin in addition to the thermosetting resin.
  • the thermoplastic resin may be at least one selected from the group consisting of, for example, acrylic resin, polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyethylene terephthalate, and rubber (elastomer).
  • the resin composition may contain a silicone resin.
  • the epoxy resin may be, for example, a resin having two or more epoxy groups in one molecule.
  • the epoxy resin is, for example, biphenyl type epoxy resin, biphenyl aralkyl type epoxy resin, biphenylene aralkyl type epoxy resin, stilben type epoxy resin, diphenylmethane type epoxy resin, sulfur atom-containing epoxy resin, novolak type epoxy resin, dicyclopentadiene type epoxy.
  • Resin salicylaldehyde type epoxy resin, copolymerized epoxy resin of naphthols and phenols, aralkyl type phenol resin epoxide, bisphenol type epoxy resin, epoxy resin containing bisphenol skeleton, alcohols glycidyl ether type epoxy resin , Paraxylylene and / or metaxylylene-modified phenol resin glycidyl ether type epoxy resin, terpene-modified phenol resin glycidyl ether type epoxy resin, cyclopentadiene type epoxy resin, polycyclic aromatic ring-modified phenol resin glycidyl ether type epoxy resin, naphthalene ring containing Glycidyl ether type epoxy resin of phenol resin, glycidyl ester type epoxy resin, glycidyl type or methyl glycidyl type epoxy resin, alicyclic epoxy resin, halogenated phenol novolac type epoxy resin, orthocresol novolac type epoxy resin,
  • the epoxy resin includes biphenyl type epoxy resin, orthocresol novolac type epoxy resin, phenol novolac type epoxy resin, bisphenol type epoxy resin, epoxy resin having a bisphenol skeleton, salicylaldehyde novolac type epoxy resin, and the like. And at least one selected from the group consisting of naphthol novolac type epoxy resin.
  • the epoxy resin may be a crystalline epoxy resin. Although the molecular weight of the crystalline epoxy resin is relatively low, the crystalline epoxy resin has a relatively high melting point and is excellent in fluidity.
  • the crystalline epoxy resin (highly crystalline epoxy resin) may be at least one selected from the group consisting of, for example, a hydroquinone type epoxy resin, a bisphenol type epoxy resin, a thioether type epoxy resin, and a biphenyl type epoxy resin.
  • Commercially available crystalline epoxy resins include, for example, Epicron 860, Epicron 1050, Epicron 1055, Epicron 2050, Epicron 3050, Epicron 4050, Epicron 7050, Epicron HM-091, Epicron HM-101, Epicron N-730A, Epicron N.
  • YX- It may be at least one selected from the group consisting of 4000, YX-4000H, YL4121H, and YX-8800 (hereinafter, trade name manufactured by Mitsubishi Chemical Co., Ltd.).
  • the resin composition may contain an isocyanate-modified epoxy resin as the epoxy resin.
  • the commercially available product of the isocyanate-modified epoxy resin may be, for example, AER-4001 manufactured by Asahi Kasei Corporation (formerly Asahi Kasei E-Materials Co., Ltd.).
  • the resin composition may contain one of the above epoxy resins.
  • the resin composition may contain a plurality of types of epoxy resins among the above.
  • the curing agent is classified into a curing agent that cures the epoxy resin in the range of low temperature to room temperature and a heat-curing type curing agent that cures the epoxy resin with heating.
  • the curing agent that cures the epoxy resin in the range of low temperature to room temperature is, for example, aliphatic polyamines, polyaminoamides, and polymercaptans.
  • the heat-curing type curing agent is, for example, aromatic polyamine, acid anhydride, phenol novolac resin, dicyandiamide (DICY) and the like.
  • the curing agent may be preferably a heat-curing type curing agent, more preferably a phenol resin, and further preferably a phenol novolac resin.
  • a phenol novolac resin as a curing agent, it is easy to obtain a cured product of an epoxy resin having a high glass transition point. As a result, the heat resistance and mechanical strength of the molded body are likely to be improved.
  • the phenol resin is, for example, an aralkyl type phenol resin, a dicyclopentadiene type phenol resin, a salicylaldehyde type phenol resin, a novolak type phenol resin, a copolymerized phenol resin of a benzaldehyde type phenol and an aralkyl type phenol, a paraxylylene and / or a metaxylylene modification.
  • phenol resin From the group consisting of phenol resin, melamine-modified phenol resin, terpen-modified phenol resin, dicyclopentadiene-type naphthol resin, cyclopentadiene-modified phenol resin, polycyclic aromatic ring-modified phenol resin, biphenyl-type phenol resin, and triphenylmethane-type phenol resin. It may be at least one of the choices.
  • the phenol resin may be a copolymer composed of two or more of the above.
  • the phenol novolac resin may be, for example, a resin obtained by condensing or co-condensing phenols and / or naphthols and aldehydes under an acidic catalyst.
  • the phenols constituting the phenol novolak resin may be at least one selected from the group consisting of, for example, phenol, cresol, xylenol, resorcin, catechol, bisphenol A, bisphenol F, phenylphenol and aminophenol.
  • the naphthols constituting the phenol novolak resin may be at least one selected from the group consisting of, for example, ⁇ -naphthol, ⁇ -naphthol and dihydroxynaphthalene.
  • the aldehydes constituting the phenol novolac resin may be at least one selected from the group consisting of, for example, formaldehyde, acetaldehyde, propionaldehyde, benzaldehyde and salicylaldehyde.
  • the curing agent may be, for example, a compound having two phenolic hydroxyl groups in one molecule.
  • the compound having two phenolic hydroxyl groups in one molecule may be at least one selected from the group consisting of, for example, resorcin, catechol, bisphenol A, bisphenol F, and substituted or unsubstituted biphenol.
  • the resin composition may contain one of the above phenolic resins.
  • the resin composition may contain a plurality of types of phenol resins among the above.
  • the resin composition may contain one of the above-mentioned curing agents.
  • the resin composition may contain a plurality of types of curing agents among the above.
  • the ratio of the active group (phenolic OH group) in the curing agent that reacts with the epoxy group in the epoxy resin is preferably 0.5 to 1.5 equivalents with respect to 1 equivalent of the epoxy group in the epoxy resin. It may be preferably 0.6 to 1.4 equivalents, more preferably 0.8 to 1.2 equivalents.
  • the ratio of active groups in the curing agent is less than 0.5 equivalent, it is difficult to obtain a sufficient elastic modulus of the obtained cured product.
  • the ratio of the active group in the curing agent exceeds 1.5 equivalents, the mechanical strength of the molded product formed from the compound after curing tends to decrease.
  • the curing accelerator is not limited as long as it is a composition that reacts with the epoxy resin to accelerate the curing of the epoxy resin, for example.
  • the curing accelerator may be, for example, an alkyl group-substituted imidazole or an imidazole such as benzimidazole.
  • the resin composition may contain a kind of curing accelerator.
  • the resin composition may contain a plurality of types of curing accelerators. When the resin composition contains a curing accelerator, the moldability and releasability of the compound are likely to be improved.
  • the mechanical strength of the molded product (for example, an electronic component) manufactured by using the compound is improved, and the compound is used in a high temperature and / or high humidity environment.
  • the storage stability of the product is improved.
  • imidazole-based curing accelerators include, for example, 2MZ-H, C11Z, C17Z, 1,2DMZ, 2E4MZ, 2PZ-PW, 2P4MZ, 1B2MZ, 1B2PZ, 2MZ-CN, C11Z-CN, 2E4MZ-CN, 2PZ.
  • -At least one selected from the group consisting of CN, C11Z-CNS, 2P4MHZ, TPZ, and SFZ (above, trade name manufactured by Shikoku Chemicals Corporation) may be used.
  • the amount of the curing accelerator to be blended is not particularly limited as long as it can obtain the curing promoting effect.
  • the amount of the curing accelerator is preferably 0.1 part by mass or more and 30 parts by mass with respect to 100 parts by mass of the epoxy resin.
  • it may be more preferably 1 part by mass or more and 15 parts by mass or less.
  • the content of the curing accelerator is preferably 0.001 part by mass or more and 5 parts by mass or less with respect to 100 parts by mass in total of the mass of the epoxy resin and the curing agent (for example, phenol resin).
  • the blending amount of the curing accelerator is less than 0.1 parts by mass, it is difficult to obtain a sufficient curing promoting effect.
  • the blending amount of the curing accelerator exceeds 30 parts by mass, the storage stability of the compound tends to decrease.
  • the coupling agent improves the adhesion between the resin composition and the metal particles constituting the metal powder, and improves the flexibility and mechanical strength of the molded product formed from the compound.
  • the coupling agent may be, for example, at least one selected from the group consisting of a silane compound (silane coupling agent), a titanium compound, an aluminum compound (aluminum chelate), and an aluminum / zirconium compound.
  • the silane coupling agent may be at least one selected from the group consisting of, for example, epoxysilane, mercaptosilane, aminosilane, alkylsilane, ureidosilane, acid anhydride-based silane and vinylsilane.
  • the resin composition may contain one of the above-mentioned coupling agents, and may contain a plurality of of the above-mentioned coupling agents.
  • Commercially available coupling agents include, for example, vinyltrimethoxysilane (KBM-1003), vinyltriethoxysilane (KBE-1003), 2- (3,4-epylcyclohexyl) ethyltrimethoxysilane (KBM-303), 3 -Glysidoxypropylmethyldimethoxysilane (KBM-402), 3-Glysidoxypropyltrimethoxysilane (KBM-403), p-styryltrimethoxysilane (KBM-1403), 3-methacryloxypropylmethyldimethoxysilane (KBM-403) KBM-502), 3-methacryloxypropyltrimethoxysilane (KBM-503), 3-methacryloxypropylmethylmethyldimethoxysilane (KBM-503), 3-me
  • phenyltriethoxysilane KBE-103
  • n-propyltrimethoxysilane KBM-3033
  • n-propyltriethoxysilane KBE-3033
  • hexyltrimethoxysilane KBM-3063
  • hexyltriethoxysilane KBE-3063
  • Octyltriethoxysilane KBE-3083
  • decyltrimethoxysilane KBM-3103C
  • 1,6- (trimethoxysilyl) hexane KBM-3066
  • trifluoropropyltrimethoxysilane KBM-7103
  • hexamethyl It may be at least one selected from the group consisting of disilazan (SZ-31) and hydrolyzable group-containing siloxane (KPN-3504) (hereinafter, trade name manufactured by Shin-Etsu Chemical Industry Co., Ltd.).
  • the coupling agent may be a silicone alkoxy oligomer (a silicone oligomer having an alkoxy group).
  • the silicone alkoxy oligomer may have at least one of a methoxy group and an ethoxy group.
  • the silicone alkoxy oligomer may have at least one organic substituent selected from the group consisting of an epoxy group, a methyl group, a mercapto group, an acryloyl group, a methacryloyl group, a vinyl group, and a phenyl group.
  • Silicone alkoxy oligomers include, for example, KR-517, X-41-1059A, X-24-9590, KR-516, X-41-1805, X-41-1818, X-41-1810, KR-513, X. -40-9296, KR-511, KC-89S, KR-515, KR-500, X-40-9225, X-40-9246, X-40-9250, KR-41N, X-40-9227, KR It may be at least one selected from the group consisting of -510, KR-9218, and KR-213 (hereinafter, trade names manufactured by Shin-Etsu Chemical Co., Ltd.).
  • the wax enhances the fluidity of the compound in the molding of the compound (for example, transfer molding) and functions as a mold release agent.
  • the wax may be at least one of fatty acids such as higher fatty acids, fatty acid esters and fatty acid salts.
  • the wax is, for example, fatty acids such as montanic acid, stearic acid, 12-oxystearic acid, lauric acid or esters thereof; zinc stearate, calcium stearate, barium stearate, aluminum stearate, magnesium stearate, zinc laurate. , Fatty acid salts such as calcium laurate, zinc linoleate, calcium lysinolate, zinc 2-ethylhexoate; stearic acid amide, oleate amide, erucic acid amide, behenic acid amide, palmitate amide, lauric acid amide, hydroxystearic acid amide. .
  • fatty acids such as montanic acid, stearic acid, 12-oxystearic acid, lauric acid or esters thereof
  • zinc stearate calcium stearate, barium stearate, aluminum stearate, magnesium stearate, zinc laurate.
  • Fatty acid salts such as calcium laurate, zinc
  • N-stearyl erucate amide methylol stearic acid amide, methylol behenic acid amide and other fatty acid amides
  • fatty acid esters such as butyl stearate
  • alcohols such as ethylene glycol and stearyl alcohol
  • polysiloxanes such as silicone oil and silicon grease
  • fluorine compounds such as fluorine-based oil, fluorine-based grease and fluorine-containing resin powder
  • paraffin wax polyethylene wax, amido wax, etc. It may be at least one selected from the group consisting of waxes such as polypropylene wax, ester wax, carnauba and microwax;
  • the compound may contain a flame retardant.
  • the flame retardant is at least selected from the group consisting of, for example, a bromine-based flame retardant, a phosphorus-based flame retardant, a hydrated metal compound-based flame retardant, a silicone-based flame retardant, a nitrogen-containing compound, a hindered amine compound, an organic metal compound, and an aromatic empra. It may be a kind.
  • the resin composition may contain one of the above flame retardants, and may contain a plurality of of the above flame retardants.
  • the metal powder may contain, for example, at least one selected from the group consisting of elemental metals (pure metals) and alloys.
  • the metal powder may consist of, for example, at least one selected from the group consisting of elemental metals (pure metals), alloys, amorphous powders and metal compounds.
  • the alloy may contain at least one selected from the group consisting of solid solutions, eutectic and intermetallic compounds.
  • the alloy may be, for example, stainless steel (Fe—Cr based alloy, Fe—Ni—Cr based alloy, etc.).
  • the metal powder may contain one kind of metal element or a plurality of kinds of metal elements.
  • the metal element contained in the metal powder may be, for example, a base metal element, a noble metal element, a transition metal element, or a rare earth element.
  • the compound may contain one kind of metal powder and may contain a plurality of kinds of metal powder.
  • the metal elements contained in the metal powder are, for example, iron (Fe), copper (Cu), titanium (Ti), manganese (Mn), cobalt (Co), nickel (Ni), zinc (Zn), and aluminum (Al). , Tin (Sn), Chromium (Cr), Barium (Ba), Strontium (Sr), Lead (Pb), Silver (Ag), Placeozim (Pr), Neodim (Nd), Samarium (Sm) and Dysprosium (Dy) It may be at least one selected from the group consisting of.
  • the metal powder may contain an element other than the metal element.
  • the metal powder may contain oxygen ( ⁇ ), beryllium (Be), phosphorus (P), boron (B), or silicon (Si).
  • the metal powder may be a magnetic powder.
  • the metal powder may be a soft magnetic alloy or a ferromagnetic alloy.
  • the metal powder is, for example, Fe-Si alloy, Fe—Si—Al alloy (Sendust), Fe—Ni alloy (Permalloy), Fe—Cu—Ni alloy (Permalloy), Fe—Co alloy (Permalloy). Menzur), Fe-Cr-Si alloy (electromagnetic stainless steel), Nd-Fe-B alloy (rare earth magnet), Sm-Fe-N alloy (rare earth magnet), and Al-Ni-Co alloy (rare earth magnet). It may be a magnetic powder consisting of at least one selected from the group consisting of an alloy magnet).
  • the metal powder may be a copper alloy such as a Cu—Sn-based alloy, a Cu—Sn—P-based alloy, a Cu—Ni-based alloy, or a Cu—Be-based alloy.
  • the metal powder may consist of only one element or composition.
  • the metal powder may contain a plurality of elements or compositions.
  • the metal powder may be Fe alone (pure iron).
  • the metal powder may be an alloy containing iron (Fe-based alloy).
  • the Fe-based alloy may be, for example, a Fe—Si—Cr based alloy, an Nd—Fe—B based alloy, or a Sm—Fe—N based alloy.
  • the metal powder may be at least one of amorphous iron powder and carbonyl iron powder. When the metal powder contains at least one of Fe simple substance and Fe-based alloy, it is easy to produce a molded product having a high space factor and excellent magnetic properties from the compound.
  • the metal powder may be an Fe amorphous alloy.
  • Fe amorphous alloy powders include, for example, AW2-08, KUAMET-6B2 (above, trade name manufactured by Epson Atmix Co., Ltd.), DAP MS3, DAP MS7, DAP MSA10, DAP PB, DAP PC, DAP MKV49. , DAP 410L, DAP 430L, DAP HYB series (above, product name manufactured by Daido Special Steel Co., Ltd.), MH45D, MH28D, MH25D, and MH20D (above, product name manufactured by Kobe Steel Co., Ltd.). At least one may be used.
  • the average particle size of the metal powder is not particularly limited, but may be, for example, 1 ⁇ m or more and 300 ⁇ m or less.
  • the average particle size may be measured, for example, by a particle size distribution meter.
  • the shape of the individual metal particles constituting the metal powder is not limited, but may be spherical, flat, prismatic, or needle-shaped, for example.
  • the compound may contain a plurality of metal powders having different average particle sizes.
  • the compound may be used for at least one of transfer molding and compression molding.
  • Transfer molding is a kind of injection molding method for thermosetting resin. Transfer molding may be paraphrased as pumping molding. Transfer molding consists of a step of heating the compound in the heating chamber to fluidize it, a step of supplying (press-fitting) the fluidized compound from the heating chamber into the mold through a casting runner, and a compound in the mold. May include a step of heating and curing.
  • Transfer molding involves heating the compound in the heating chamber to fluidize it, supplying the fluidized compound powder from the heating chamber into the plunger, and supplying the compound from the plunger into the mold through the runner ( It may include a step of press-fitting) and a step of heating and curing the compound in the mold.
  • the pressure acting on the compound in transfer molding may be, for example, 3 MPa or more and 100 MPa or less. Since the compound according to the present embodiment exhibits excellent fluidity and filling property by heating, it easily flows in a narrow runner and is easily filled in a space (cavity) in a mold without unevenness. Therefore, by processing the compound by transfer molding, it becomes possible to produce a molded product and a cured product having few defects such as voids or burrs.
  • the compound molding method may be compression molding.
  • the molded body formed from the compound may contain at least one of an uncured resin composition and a B-stage resin composition (semi-cured product of the resin composition).
  • the molded body may consist only of the compound.
  • the cured product of the compound or the molded product may contain a C-stage resin composition (cured product of the resin composition).
  • Industrial products manufactured using the compound may be, for example, automobiles, medical equipment, electronic equipment, electrical equipment, information and communication equipment, home appliances, audio equipment, and general industrial equipment.
  • the compound when the compound contains a permanent magnet such as a Sm-Fe-N alloy or an Nd-Fe-B alloy as a metal powder, the compound may be used as a material for a bonded magnet.
  • the compound when the compound contains a soft magnetic material such as a Fe—Si—Cr based alloy as a metal powder, the compound may be utilized as a material (for example, a sealing material or a magnetic core) for an inductor (for example, an EMI filter) or a transformer.
  • a sheet-shaped molded body or a cured product formed from the compound may be used as an electromagnetic wave shield.
  • the compound is obtained by mixing the metal powder and the resin composition while heating.
  • the metal powder and the resin composition may be kneaded with a kneader, a roll, a stirrer or the like while heating.
  • the resin composition adheres to a part or the whole of the surface of each metal particle constituting the metal powder to cover each metal particle.
  • a part or all of the epoxy resin in the resin composition may become a semi-cured product.
  • metal powder, epoxy resin, phosphoric acid ester (dispersant), curing agent, curing accelerator, coupling agent and wax may be kneaded together in a tank. After mixing the metal powder with at least one of the phosphoric acid ester and the coupling agent in the tank, the metal powder, the epoxy resin, the phosphoric acid ester, the curing agent, the curing accelerator, the coupling agent and the wax are mixed in the tank. You may further knead with. After kneading the metal powder, epoxy resin, phosphoric acid ester, curing agent, coupling agent and wax in the tank, the mixture thereof and the curing accelerator may be further kneaded in the tank.
  • An epoxy resin, a phosphoric acid ester, a curing agent, a curing accelerator and a wax may be mixed in advance to prepare a resin mixed powder.
  • the metal powder and the coupling agent may be mixed in advance to prepare a metal mixed powder.
  • the metal mixed powder and the above resin mixed powder may be kneaded to obtain a compound.
  • the kneading time depends on the type of kneading machine, the volume of the kneading machine, and the amount of compound produced.
  • the kneading time is, for example, preferably 1 minute or longer, more preferably 2 minutes or longer, and even more preferably 3 minutes or longer.
  • the kneading time is preferably 20 minutes or less, more preferably 15 minutes or less, and even more preferably 10 minutes or less. If the kneading time is less than 1 minute, the kneading is insufficient, the moldability of the compound is impaired, and the degree of curing of the compound varies.
  • the resin composition for example, epoxy resin and phenol resin
  • the heating temperature is, for example, a semi-cured epoxy resin (B-stage epoxy resin) and a cured epoxy resin (C-stage epoxy resin). It suffices as long as it is a temperature at which the formation of the epoxy is suppressed.
  • the heating temperature may be lower than the activation temperature of the curing accelerator.
  • the heating temperature is, for example, preferably 50 ° C. or higher, more preferably 60 ° C.
  • the heating temperature is preferably 150 ° C. or lower, more preferably 120 ° C. or lower, and even more preferably 110 ° C. or lower.
  • the resin composition in the tank softens and easily covers the surface of the metal particles constituting the metal powder, and a semi-cured epoxy resin is easily formed. Complete curing of the resin is likely to be suppressed.
  • Epoxy resin 1 epoxy resin 2, dispersant (phosphate ester), curing agent 1, curing agent 2, curing accelerator, mold release agent 1 (wax), and mold release agent 2 (wax) are put into a plastic container (plastic). It was contained in the resin). A resin mixture was prepared by mixing the contents of the plastic container for 10 minutes. The resin mixture corresponds to all the other components of the resin composition except the coupling agent.
  • the epoxy resin 1 NC-3000 (biphenylene aralkyl type epoxy resin) manufactured by Nippon Kayaku Co., Ltd. was used.
  • As the epoxy resin 2 TECHMORE VG3101L (trifunctional epoxy resin) manufactured by Printec Co., Ltd. was used.
  • dispersant disperbyk-111 manufactured by BYK-Chemie GmbH was used.
  • curing agent 1 MEHC-7500-3S (triphenol methane type phenol resin) manufactured by Meiwa Kasei Co., Ltd. was used.
  • curing agent 2 MEHC-7851SS (biphenylene aralkyl type phenol resin) manufactured by Meiwa Kasei Co., Ltd. was used.
  • curing accelerator 2E4MZ (2-ethyl-4-methylimidazole) manufactured by Shikoku Chemicals Corporation was used.
  • release agent 1 Licowax OP manufactured by Clariant Chemicals Co., Ltd. was used. LicowaxOP is a montanic acid ester partially saponified with calcium hydroxide.
  • release agent 2 zinc stearate manufactured by NOF CORPORATION was used.
  • the iron powder 1 and the iron powder 2 were uniformly mixed for 5 minutes with a pressurized twin-screw kneader to prepare a metal powder. Both iron powder 1 and iron powder 2 were amorphous.
  • As the iron powder 1 KUAMET 9A4-II 075C03 manufactured by Epson Atmix Co., Ltd. was used. The average particle size of the iron powder 1 was 24 ⁇ m.
  • As the pressurized 2-axis kneader a pressurized 2-axis kneader manufactured by Nihon Spindle Manufacturing Co., Ltd. was used. The capacity of the pressurized twin-screw kneader was 5 L.
  • the coupling agent 1, the coupling agent 2, and the additive were added to the metal powder in the twin-screw kneader. Subsequently, the contents of the twin-screw kneader were heated to 90 ° C., and the contents of the twin-screw kneader were mixed for 10 minutes while maintaining the temperature of the contents. Subsequently, the above resin mixture was added to the contents of the twin-screw kneader. The contents were kneaded for 15 minutes while maintaining the temperature of the contents at 120 ° C.
  • the kneaded product was crushed with a hammer until the kneaded product had a predetermined particle size.
  • the coupling agent 1 KBM-5803 (methacryloxyoctyltrimethoxysilane) manufactured by Shin-Etsu Chemical Co., Ltd. was used.
  • the coupling agent 2 KBM-403 (3-glycidoxypropyltrimethoxysilane) manufactured by Shin-Etsu Chemical Co., Ltd. was used.
  • DBL-C32 caprolactone-modified dimethyl silicone manufactured by Gelest Co., Ltd. was used.
  • the compound of Example 1 was prepared by the above method.
  • the mass (unit: g) of each component constituting the compound is shown in Table 1 below.
  • the content (unit: mass%) of the metal powder in the compound is shown in Table 1 below.
  • the content (unit: mass%) of the epoxy resin in the compound is shown in Table 1 below.
  • the ratio (unit: parts by mass) of the epoxy resin to 100 parts by mass of the metal powder is shown in Table 1 below.
  • the ratio (unit: parts by mass) of the phosphoric acid ester (dispersant) to 100 parts by mass of the metal powder is shown in Table 1 below.
  • Example 2 to 5 and Comparative Examples 1 to 3 The masses of the respective components constituting the compounds of Examples 2 to 5 and Comparative Examples 1 to 3 are shown in Table 1 below.
  • Compounds of Examples 2 to 5 and Comparative Examples 1 to 3 were prepared in the same manner as in Example 1 except for the mass of each component constituting the compound.
  • the content of the metal powder in the compound was the value shown in Table 1 below.
  • the content of the epoxy resin in the compound was the value shown in Table 1 below.
  • the ratio of the epoxy resin to 100 parts by mass of the metal powder was the value shown in Table 1 below.
  • the ratio of the phosphoric acid ester (dispersant) to 100 parts by mass of the metal powder was the value shown in Table 1 below.
  • the melt viscosity and disk flow of each of the compounds of Examples 2 to 5 and Comparative Examples 1 to 3 were measured by the same method as in Example 1.
  • the melt viscosities and disk flows of the compounds of Examples 2 to 5 and Comparative Examples 1 to 3 were the values shown in Table 1 below.
  • the compound hardly flowed, and it was difficult to measure the melt viscosity. That is, in the case of Comparative Examples 2 and 3, the melt viscosity was so high that it was difficult to measure.
  • the compound according to the present invention is excellent in fluidity and filling property, it is possible to manufacture industrial products having various shapes such as inductors by molding the compound.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

This compound comprises at least a metal powder and a resin composition. The resin composition contains at least an epoxy resin and a phosphoric acid ester, and the metal powder content of the compound is 97.0 to 97.5 mass%.

Description

コンパウンド、成型体及び硬化物Compounds, moldings and cured products
 本発明の一側面は、コンパウンド、成型体及び硬化物に関する。 One aspect of the present invention relates to compounds, molded bodies and cured products.
 金属粉及び熱硬化性樹脂を含むコンパウンドは、金属粉の諸物性に応じて、例えば、インダク等の多様な工業製品の原材料として利用される(下記特許文献1及び2参照。) The compound containing metal powder and thermosetting resin is used as a raw material for various industrial products such as Indaku, depending on the physical characteristics of the metal powder (see Patent Documents 1 and 2 below).
特開2011‐211026号公報Japanese Unexamined Patent Publication No. 2011-210126 特開2017‐133071号公報Japanese Unexamined Patent Publication No. 2017-133071
 コンパウンドから工業製品が製造される場合、コンパウンドが流路を通じて型内へ供給及び充填されたり、コイル等の部品が型内のコンパウンド中に埋め込まれたりする。これらの工程ではコンパウンドの流動性が要求される。コンパウンドが十分な流動性を有していない場合、コンパウンドが型へ均一に充填され難く、コンパウンドから形成された成型体内に空隙(ボイド)が形成され易い。コンパウンドの流動性は、コンパウンド中の金属粉の含有量の減少に伴って向上する。 When an industrial product is manufactured from a compound, the compound is supplied and filled into the mold through a flow path, and parts such as coils are embedded in the compound in the mold. The fluidity of the compound is required in these steps. If the compound does not have sufficient fluidity, it is difficult for the compound to be uniformly filled in the mold, and voids are likely to be formed in the molded body formed from the compound. The fluidity of the compound increases as the content of the metal powder in the compound decreases.
 一方、インダクタ等に用いられるコンパウンドの磁気特性を向上するためには、コンパウンド中の金属粉の含有量(充填率)が高いことが望ましい。例えば、比透磁率及び飽和磁束密度等のコンパウンドの磁気特性値は、コンパウンド中の金属粉の含有量の増加に伴って増加する。しかしながら、コンパウンド中の金属粉の含有量の増加に伴って、コンパウンドの溶融粘度が増加する。特に、コンパウンド中の金属粉の含有量が97.0質量%以上である場合、コンパウンドの溶融粘度が顕著に増加し、コンパウンドは殆ど流動しなくなる。 On the other hand, in order to improve the magnetic properties of the compound used for inductors, etc., it is desirable that the content (filling rate) of the metal powder in the compound is high. For example, the magnetic property values of a compound such as relative permeability and saturation magnetic flux density increase with increasing content of metal powder in the compound. However, as the content of the metal powder in the compound increases, the melt viscosity of the compound increases. In particular, when the content of the metal powder in the compound is 97.0% by mass or more, the melt viscosity of the compound increases remarkably, and the compound hardly flows.
 本発明は、上記課題に鑑みてなされたものであり、本発明の一側面の目的は、流動性に優れたコンパウンド、コンパウンドを含む成型体、及びコンパウンドの硬化物を提供することである。 The present invention has been made in view of the above problems, and an object of one aspect of the present invention is to provide a compound having excellent fluidity, a molded product containing the compound, and a cured product of the compound.
 本発明の一側面に係るコンパウンドは、少なくとも金属粉と樹脂組成物とを含むコンパウンドであって、樹脂組成物が、少なくともエポキシ樹脂及びリン酸エステルを含み、コンパウンド中の前記金属粉の含有量が、97.0質量%以上97.5質量%以下である。 The compound according to one aspect of the present invention is a compound containing at least a metal powder and a resin composition, wherein the resin composition contains at least an epoxy resin and a phosphoric acid ester, and the content of the metal powder in the compound is high. , 97.0% by mass or more and 97.5% by mass or less.
 100質量部の金属粉に対するリン酸エステルの割合が、0.02質量部以上0.10質量部以下であってよい。 The ratio of the phosphoric acid ester to 100 parts by mass of the metal powder may be 0.02 parts by mass or more and 0.10 parts by mass or less.
 140℃におけるコンパウンドの溶融粘度が、10Pa・s以上1500Pa・s以下であってよい。 The melt viscosity of the compound at 140 ° C. may be 10 Pa · s or more and 1500 Pa · s or less.
 本発明の一側面に係るコンパウンドは、トランスファー成型及びコンプレッション成型のうち少なくとも一方に用いられてよい。 The compound according to one aspect of the present invention may be used for at least one of transfer molding and compression molding.
 本発明の一側面に係る成型体は、上記コンパウンドを含む。 The molded body according to one aspect of the present invention includes the above compound.
 本発明の一側面に係る硬化物は、上記コンパウンドの硬化物である。 The cured product according to one aspect of the present invention is a cured product of the above compound.
 本発明の一側面によれば、流動性に優れたコンパウンド、コンパウンドを含む成型体、及びコンパウンドの硬化物が提供される。 According to one aspect of the present invention, a compound having excellent fluidity, a molded product containing the compound, and a cured product of the compound are provided.
 以下、本発明の好適な実施形態が説明される。ただし、本発明は下記実施形態に何ら限定されるものではない。 Hereinafter, preferred embodiments of the present invention will be described. However, the present invention is not limited to the following embodiments.
<コンパウンドの概要>
 本実施形態に係るコンパウンドは、少なくとも金属粉と樹脂組成物とを含む。つまりコンパウンドは、金属粉及び樹脂組成物の混合物であってよい。コンパウンドは、磁性封止材と言い換えられてよい。
<Overview of compound>
The compound according to this embodiment contains at least a metal powder and a resin composition. That is, the compound may be a mixture of a metal powder and a resin composition. The compound may be paraphrased as a magnetic encapsulant.
 金属粉は、多数の金属粒子から構成される。金属粉は、例えば、金属単体(純金属)、合金、アモルファス粉及び金属化合物からなる群より選ばれる少なくとも一種を含有してよい。金属粉は、金属からなる充填材(filler)と言い換えられてよい。 Metal powder is composed of a large number of metal particles. The metal powder may contain, for example, at least one selected from the group consisting of elemental metals (pure metals), alloys, amorphous powders and metal compounds. The metal powder may be paraphrased as a filler made of metal.
 樹脂組成物は、少なくともエポキシ樹脂及びリン酸エステルを含む。 The resin composition contains at least an epoxy resin and a phosphoric acid ester.
 エポキシ樹脂が、硬化温度未満である温度において溶融することにより、コンパウンドの流動性が向上する。またエポキシ樹脂は、熱硬化によって金属粉同士を結着する。更にエポキシ樹脂は、金属粉同士を電気的に絶縁する。 The epoxy resin melts at a temperature lower than the curing temperature, which improves the fluidity of the compound. In addition, the epoxy resin binds metal powders to each other by thermosetting. Further, the epoxy resin electrically insulates the metal powders from each other.
 リン酸エステルは、例えば、OP(OR)(OR)(OR)と表されてよい。R、R及びR其々は、水素又は任意の炭化水素基であり、且つ、R、R及びRのうち少なくとも一つは、炭化水素基である。炭化水素基は、例えば、アルキル基又はアリール基であってよい。リン酸エステルは、亜リン酸エステルとは異なる化合物である。亜リン酸エステルは、例えば、P(OR)(OR)(OR)と表されてよい。樹脂組成物は、リン酸エステルに加えて、亜リン酸エステルを更に含んでもよい。ただし、リン酸エステルを含まず、亜リン酸エステルを含むコンパウンドは、本実施形態に係るコンパウンドに比べて高い流動性を有することは困難である。樹脂組成物は、リン酸エステルに加えて、他の分散剤(例えば、カップリング剤)を更に含んでよい。 The phosphoric acid ester may be represented, for example, OP (OR 1 ) (OR 2 ) (OR 3). R 1 , R 2 and R 3 are each hydrogen or any hydrocarbon group, and at least one of R 1 , R 2 and R 3 is a hydrocarbon group. The hydrocarbon group may be, for example, an alkyl group or an aryl group. Phosphite ester is a compound different from phosphite ester. The phosphite ester may be represented, for example, P (OR 1 ) (OR 2 ) (OR 3). The resin composition may further contain a phosphite ester in addition to the phosphoric acid ester. However, it is difficult for a compound containing no phosphate ester and containing a phosphite ester to have higher fluidity than the compound according to the present embodiment. In addition to the phosphoric acid ester, the resin composition may further contain other dispersants (eg, coupling agents).
 リン酸エステルは、分散剤であってよい。リン酸エステルのリン酸基は、極性を有するので、金属粒子の表面へ選択的に吸着し易い。一方、リン酸エステルの炭化水素基は、親油性を有するので、リン酸エステルが吸着した金属粒子の間には、エポキシ樹脂を含む樹脂組成物が介在し易い。したがって、リン酸エステルに因り、金属粉の凝集が抑制され、各金属粒子がコンパウンド中に分散し易い。換言すれば、リン酸エステルに因り、金属粒子同士が直接接触し難く、金属粒子間の直接的な摩擦が抑制され易く、金属粒子と樹脂組成物との間の摩擦も抑制され易い。上記のように、リン酸エステルが分散剤として金属粉に作用することにより、コンパウンドの流動性が向上する。例えば、コンパウンドがリン酸エステルを含むことにより、コンパウンドの溶融粘度が低減される。リン酸エステルを含むコンパウンドの流動性は、リン酸エステル以外の分散剤を含むコンパウンドの流動性よりも優れる傾向がある。金属粒子間の直接的な摩擦は、ゲルタイムの測定装置(加硫試験機)によって測定されるトルク値に基づいて評価されてよい。金属粒子間の直接的な摩擦が抑制されるほど、トルク値は減少する。ゲルタイムの測定装置としては、JSR株式会社製のキュラストメーター(CURELASTOMETER)が用いられてよい。 The phosphoric acid ester may be a dispersant. Since the phosphoric acid group of the phosphoric acid ester has polarity, it easily easily selectively adsorbs to the surface of the metal particles. On the other hand, since the hydrocarbon group of the phosphoric acid ester has lipophilicity, the resin composition containing the epoxy resin is likely to intervene between the metal particles to which the phosphoric acid ester is adsorbed. Therefore, due to the phosphoric acid ester, the aggregation of the metal powder is suppressed, and each metal particle is easily dispersed in the compound. In other words, due to the phosphoric acid ester, it is difficult for the metal particles to come into direct contact with each other, direct friction between the metal particles is likely to be suppressed, and friction between the metal particles and the resin composition is also likely to be suppressed. As described above, the action of the phosphoric acid ester on the metal powder as a dispersant improves the fluidity of the compound. For example, the inclusion of phosphate in the compound reduces the melt viscosity of the compound. The fluidity of a compound containing a phosphate ester tends to be better than the fluidity of a compound containing a dispersant other than the phosphate ester. The direct friction between the metal particles may be evaluated based on the torque value measured by the gel time measuring device (vulcanization tester). The more the direct friction between the metal particles is suppressed, the lower the torque value is. As the gel time measuring device, a CURELASTOMETER manufactured by JSR Corporation may be used.
 コンパウンド中の金属粉の含有量は、97.0質量%以上97.5質量%以下である。コンパウンドにおける金属粉の含有量(充填率)の増加に伴い、コンパウンドの比透磁率及び飽和磁束密度が増加し易い。高い比透磁率及び高い飽和磁束密度を有するコンパウンドは、例えば、インダクタ用の封止材又はインダクタの磁心の原料に適している。しかしながら、コンパウンドにおける金属粉の含有量の増加に伴い、コンパウンドの溶融粘度が増加する。特に、リン酸エステルを含まないコンパウンド中の金属粉の含有量が97.0質量%以上である場合、コンパウンドの溶融粘度が顕著に増加し、コンパウンドは殆ど流動しなくなる。しかし、コンパウンド中の金属粉の含有量が97.0質量%以上である場合であっても、本実施形態に係るコンパウンドは、エポキシ樹脂と共にリン酸エステルを含むため、高い流動性(低い溶融粘度)を有することができる。リン酸エステルを含まないコンパウンド中の金属粉の含有量が97.0質量%未満である場合、コンパウンドの溶融粘度は高いが、コンパウンドは流動することができる。コンパウンド中の金属粉の含有量が97.5質量%を超える場合、コンパウンド中の樹脂組成物の含有量が相対的に小さ過ぎるため、樹脂組成物中のエポキシ樹脂及びリン酸エステルに起因する高い流動性が得られ難く、コンパウンドの溶融粘度が著しく高い。その結果、コンパウンドの流動性が求められるトランスファー成型を行うことが困難になる。コンパウンドが高い流動性を有し易いことから、コンパウンド中の金属粉の含有量は、97.0質量%以上97.3質量%以下であってもよい。 The content of the metal powder in the compound is 97.0% by mass or more and 97.5% by mass or less. As the content (filling rate) of the metal powder in the compound increases, the relative permeability and the saturated magnetic flux density of the compound tend to increase. Compounds with high relative permeability and high saturation magnetic flux density are suitable, for example, as encapsulants for inductors or raw materials for the core of inductors. However, as the content of the metal powder in the compound increases, the melt viscosity of the compound increases. In particular, when the content of the metal powder in the compound containing no phosphoric acid ester is 97.0% by mass or more, the melt viscosity of the compound increases remarkably and the compound hardly flows. However, even when the content of the metal powder in the compound is 97.0% by mass or more, the compound according to the present embodiment contains a phosphoric acid ester together with an epoxy resin, so that it has high fluidity (low melt viscosity). ) Can have. When the content of the metal powder in the compound containing no phosphate ester is less than 97.0% by mass, the melt viscosity of the compound is high, but the compound can flow. When the content of the metal powder in the compound exceeds 97.5% by mass, the content of the resin composition in the compound is relatively too small, which is high due to the epoxy resin and the phosphoric acid ester in the resin composition. It is difficult to obtain fluidity, and the melt viscosity of the compound is extremely high. As a result, it becomes difficult to perform transfer molding, which requires the fluidity of the compound. Since the compound tends to have high fluidity, the content of the metal powder in the compound may be 97.0% by mass or more and 97.3% by mass or less.
 100質量部の金属粉に対するリン酸エステルの割合は、0.02質量部以上0.10質量部以下であってよい。リン酸エステルの割合が0.02質量部(好ましくは0.04質量部)以上である場合、リン酸エステルに起因するコンパウンドの高い流動性(低い溶融粘度)が得られ易い。リン酸エステルは、エポキシ樹脂の硬化を阻害することがある。しかし、リン酸エステルの割合が0.10質量部以下である場合、リン酸エステルに因るエポキシ樹脂の硬化阻害が抑制され易い。換言すれば、リン酸エステルの割合が0.10質量部以下である場合、コンパウンドのゲル化時間(硬化時間)が短縮される。同様の理由から、100質量部の金属粉に対するリン酸エステルの割合は、0.040質量部以上0.060質量部以下であってもよい。 The ratio of the phosphoric acid ester to 100 parts by mass of the metal powder may be 0.02 parts by mass or more and 0.10 parts by mass or less. When the ratio of the phosphoric acid ester is 0.02 parts by mass (preferably 0.04 parts by mass) or more, high fluidity (low melt viscosity) of the compound due to the phosphoric acid ester can be easily obtained. Phosphoric acid ester may inhibit the curing of the epoxy resin. However, when the ratio of the phosphoric acid ester is 0.10 parts by mass or less, the inhibition of curing of the epoxy resin due to the phosphoric acid ester is likely to be suppressed. In other words, when the ratio of the phosphoric acid ester is 0.10 parts by mass or less, the gelation time (curing time) of the compound is shortened. For the same reason, the ratio of the phosphoric acid ester to 100 parts by mass of the metal powder may be 0.040 parts by mass or more and 0.060 parts by mass or less.
 140℃におけるコンパウンドの溶融粘度は、10Pa・s以上1500Pa・s以下、573Pa・s以上1489Pa・s以下、573Pa・s以上998Pa・s以下、573Pa・s以上826Pa・s以下、又は573Pa・s以上633Pa・s以下であってよい。コンパウンド中の金属粉の含有量が97.0質量%以上である場合であっても、コンパウンドがエポキシ樹脂及びリン酸エステルを含むことにより、コンパウンドは上記のような低い溶融粘度(高い流動性)を有することができる。コンパウンドの溶融粘度が上記の範囲内である場合、溶融したコンパウンドが金型内へ斑なく充填され易く、コンパウンドから形成される成型体及び硬化物における欠陥(空隙又はバリ(burr)等)が抑制され易い。したがって、上記のような低い溶融粘度を有するコンパウンドは、トランスファー成型に適している。 The melt viscosity of the compound at 140 ° C. is 10 Pa · s or more and 1500 Pa · s or less, 573 Pa · s or more and 1489 Pa · s or less, 573 Pa · s or more and 998 Pa · s or less, 573 Pa · s or more and 826 Pa · s or less, or 573 Pa · s or more. It may be 633 Pa · s or less. Even when the content of the metal powder in the compound is 97.0% by mass or more, the compound contains an epoxy resin and a phosphoric acid ester, so that the compound has a low melt viscosity (high fluidity) as described above. Can have. When the melt viscosity of the compound is within the above range, the melted compound is easily filled into the mold without unevenness, and defects (voids or burrs, etc.) in the molded product and the cured product formed from the compound are suppressed. Easy to do. Therefore, a compound having a low melt viscosity as described above is suitable for transfer molding.
 コンパウンド中のエポキシ樹脂の含有量は、0.95質量%以上1.72質量%以下であってよい。換言すれば、100質量部の金属粉に対するエポキシ樹脂の割合は、0.98質量部以上1.77質量部以下であってよい。コンパウンド中のエポキシ樹脂の含有量の増加に伴い、コンパウンドの流動性が向上する傾向がある。コンパウンド中のエポキシ樹脂の含有量が上記範囲内であり、且つコンパウンドがリン酸エステルを含む場合、コンパウンドは高い流動性(低い溶融粘度)を有し易い。コンパウンド中のエポキシ樹脂の含有量が上記範囲内である場合であっても、コンパウンドがリン酸エステルを含まない場合、コンパウンドは高い流動性を有し難い。コンパウンド中のエポキシ樹脂の含有量が上限値よりも大きい場合、コンパウンドの磁気特性及び流動性が両立し難い。コンパウンドが高い流動性を有し易いことから、コンパウンド中のエポキシ樹脂の含有量は、1.24質量%以上1.41質量%以下であってよい。換言すれば、100質量部の金属粉に対するエポキシ樹脂の割合は、1.28質量部以上1.46質量部以下であってよい。 The content of the epoxy resin in the compound may be 0.95% by mass or more and 1.72% by mass or less. In other words, the ratio of the epoxy resin to 100 parts by mass of the metal powder may be 0.98 parts by mass or more and 1.77 parts by mass or less. As the content of the epoxy resin in the compound increases, the fluidity of the compound tends to improve. When the content of the epoxy resin in the compound is within the above range and the compound contains a phosphoric acid ester, the compound tends to have high fluidity (low melt viscosity). Even when the content of the epoxy resin in the compound is within the above range, if the compound does not contain a phosphate ester, the compound is unlikely to have high fluidity. When the content of the epoxy resin in the compound is larger than the upper limit, it is difficult to achieve both the magnetic properties and the fluidity of the compound. Since the compound tends to have high fluidity, the content of the epoxy resin in the compound may be 1.24% by mass or more and 1.41% by mass or less. In other words, the ratio of the epoxy resin to 100 parts by mass of the metal powder may be 1.28 parts by mass or more and 1.46 parts by mass or less.
<コンパウンドの組成の詳細>
(樹脂組成物)
 樹脂組成物は、エポキシ樹脂及びリン酸エステルを包含する成分であり、コンパウンドを構成する全成分のうち金属粉及び有機溶媒を除く残りの成分(不揮発性成分)であってよい。つまり樹脂組成物は、エポキシ樹脂及びリン酸エステルに加えて、他の成分を更に含んでよい。例えば、樹脂組成物は硬化剤を更に含んでよい。樹脂組成物は硬化促進剤を更に含んでよい。樹脂組成物はワックス(離型剤)を更に含んでよい。樹脂組成物は添加剤を更に含んでよい。添加剤は、例えば、カップリング剤、又は難燃剤等であってよい。
<Details of compound composition>
(Resin composition)
The resin composition is a component including an epoxy resin and a phosphoric acid ester, and may be the remaining components (nonvolatile components) other than the metal powder and the organic solvent among all the components constituting the compound. That is, the resin composition may further contain other components in addition to the epoxy resin and the phosphoric acid ester. For example, the resin composition may further contain a curing agent. The resin composition may further contain a curing accelerator. The resin composition may further contain a wax (release agent). The resin composition may further contain additives. The additive may be, for example, a coupling agent, a flame retardant, or the like.
 樹脂組成物は、金属粉を構成する金属粒子の結合材(バインダ)としての機能を有し、コンパウンドから形成される成型体に機械的強度を付与する。例えば、コンパウンドに含まれる樹脂組成物は、金型を用いてコンパウンドが高圧で成型される際に、金属粒子の間に充填され、各金属粒子を互いに結着する。成型体中の樹脂組成物の硬化により、樹脂組成物の硬化物が金属粒子同士を更に強固に結着して、機械的強度に優れたコンパウンドの硬化物が得られる。 The resin composition has a function as a binder of metal particles constituting the metal powder, and imparts mechanical strength to the molded body formed from the compound. For example, the resin composition contained in the compound is filled between the metal particles when the compound is molded at high pressure using a mold, and the metal particles are bound to each other. By curing the resin composition in the molded body, the cured product of the resin composition binds the metal particles more firmly to each other, and a cured product of the compound having excellent mechanical strength can be obtained.
 樹脂組成物は、金属粉を構成する各金属粒子の表面に付着していてよい。樹脂組成物は、各金属粒子の表面の一部を覆っていてもよく、各金属粒子の表面の全体を覆っていてもよい。コンパウンドは、金属粉と、未硬化の樹脂組成物と、を含んでよい。コンパウンドは、金属粉と、樹脂組成物の半硬化物(例えばBステージの樹脂組成物)と、を含んでよい。コンパウンドは、未硬化の樹脂組成物、及び樹脂組成物の半硬化物の両方を含んでもよい。コンパウンドは粉末であってよい。コンパウンドはタブレットであってもよい。コンパウンドはペーストであってもよい。 The resin composition may be attached to the surface of each metal particle constituting the metal powder. The resin composition may cover a part of the surface of each metal particle, or may cover the entire surface of each metal particle. The compound may include a metal powder and an uncured resin composition. The compound may include a metal powder and a semi-cured product of the resin composition (eg, a B-stage resin composition). The compound may contain both an uncured resin composition and a semi-cured resin composition. The compound may be a powder. The compound may be a tablet. The compound may be a paste.
 コンパウンド中の樹脂組成物の含有量は、2.5質量%以上3.0質量%以下である。 The content of the resin composition in the compound is 2.5% by mass or more and 3.0% by mass or less.
[リン酸エステル]
 樹脂組成物は、一種のリン酸エステルを含んでよい。樹脂組成物は、複数種のリン酸エステルを含んでもよい。樹脂組成物に含まれるリン酸エステルは、リン酸モノエステル、リン酸ジエステル及びリン酸トリエステルからなる群より選ばれる少なくとも一種のリン酸エステルであってよい。
[Phosphate ester]
The resin composition may contain a kind of phosphoric acid ester. The resin composition may contain a plurality of types of phosphoric acid esters. The phosphoric acid ester contained in the resin composition may be at least one kind of phosphoric acid ester selected from the group consisting of a phosphoric acid monoester, a phosphoric acid diester and a phosphoric acid triester.
 樹脂組成物に含まれるリン酸エステルは、酸基を含む共重合物のリン酸エステル塩、下記化学式1で表される化合物1、下記化学式2で表される化合物2、下記化学式3で表される化合物3、及び下記化学式4で表される化合物4からなる群より選ばれる少なくとも一種のリン酸エステルであってよい。これらのリン酸エステルのうち少なくとも一つが樹脂組成物に含まれる場合、コンパウンドは高い流動性を有し易い。特に酸基を含む共重合物のリン酸エステル塩が樹脂組成物に含まれる場合、コンパウンドは高い流動性を有し易い。
 酸基を含む共重合物のリン酸エステル塩は、例えば、BYK‐Chemie GmbH製のdisperbyk‐111(商品名)であってよい。酸基を含む共重合物のリン酸エステル塩の酸価は、129であってよい。disperbyk‐111の酸価は、129である。
 下記化学式1で表される化合物1は、例えば、城北化学工業株式会社製のJP‐504であってよい。
 下記化学式2で表される化合物2は、例えば、城北化学工業株式会社製のJP‐506Hであってよい。
 下記化学式3で表される化合物3は、例えば、城北化学工業株式会社製のJP‐508であってよい。
 下記化学式4で表される化合物4は、例えば、城北化学工業株式会社製のJP‐513であってよい。
(CO)OP(OH)3-n (1)
 上記化学式1中のnは、1又は2であってよい。上記化学式1中のnは、1以上3以下であってもよい。
(COCHCHO)OP(OH)3-n (2)
 上記化学式2中のnは、1又は2であってよい。上記化学式2中のnは、1以上3以下であってもよい。
(CCHCHO)OP(OH)3-n (3)
 上記化学式3中のnは、1又は2であってよい。上記化学式3中のnは、1以上3以下であってもよい。
(isо‐C1327O)OP(OH)3-n (4)
 上記化学式4中のnは、1又は2であってよい。上記化学式4中のnは、1以上3以下であってもよい。
The phosphoric acid ester contained in the resin composition is a phosphoric acid ester salt of a copolymer containing an acid group, a compound 1 represented by the following chemical formula 1, a compound 2 represented by the following chemical formula 2, and a following chemical formula 3. It may be at least one phosphoric acid ester selected from the group consisting of the compound 3 and the compound 4 represented by the following chemical formula 4. When at least one of these phosphate esters is included in the resin composition, the compound tends to have high fluidity. In particular, when the phosphoric acid ester salt of the copolymer containing an acid group is contained in the resin composition, the compound tends to have high fluidity.
The phosphoric acid ester salt of the copolymer containing an acid group may be, for example, disperbyk-111 (trade name) manufactured by BYK-Chemie GmbH. The acid value of the phosphate ester salt of the copolymer containing an acid group may be 129. The acid value of disperbyk-111 is 129.
The compound 1 represented by the following chemical formula 1 may be, for example, JP-504 manufactured by Johoku Chemical Industry Co., Ltd.
The compound 2 represented by the following chemical formula 2 may be, for example, JP-506H manufactured by Johoku Chemical Industry Co., Ltd.
The compound 3 represented by the following chemical formula 3 may be, for example, JP-508 manufactured by Johoku Chemical Industry Co., Ltd.
The compound 4 represented by the following chemical formula 4 may be, for example, JP-513 manufactured by Johoku Chemical Industry Co., Ltd.
(C 4 H 9 O) n OP (OH) 3-n (1)
N in the above chemical formula 1 may be 1 or 2. N in the above chemical formula 1 may be 1 or more and 3 or less.
(C 4 H 9 OCH 2 CH 2 O) n OP (OH) 3-n (2)
N in the above chemical formula 2 may be 1 or 2. N in the above chemical formula 2 may be 1 or more and 3 or less.
(C 4 H 9 C 2 H 5 CHCH 2 O) n OP (OH) 3-n (3)
N in the above chemical formula 3 may be 1 or 2. N in the above chemical formula 3 may be 1 or more and 3 or less.
(Isо-C 13 H 27 O) n OP (OH) 3-n (4)
N in the above chemical formula 4 may be 1 or 2. N in the above chemical formula 4 may be 1 or more and 3 or less.
[エポキシ樹脂]
 樹脂組成物は、熱硬化性樹脂として、少なくともエポキシ樹脂を含む。コンパウンドが、熱硬化性樹脂の中でも比較的に流動性に優れたエポキシ樹脂を含むことにより、コンパウンドの流動性、充填性、保存安定性、及び成型性が向上する。ただし、本発明の効果が阻害されない限りにおいて、コンパウンドはエポキシ樹脂に加えて他の樹脂を含んでもよい。例えば、樹脂組成物は、熱硬化性樹脂として、フェノール樹脂及びポリアミドイミド樹脂のうち少なくも一種を含んでもよい。樹脂組成物がエポキシ樹脂及びフェノール樹脂の両方を含む場合、フェノール樹脂はエポキシ樹脂の硬化剤として機能してもよい。樹脂組成物は、熱硬化性樹脂に加えて、熱可塑性樹脂を更に含んでもよい。熱可塑性樹脂は、例えば、アクリル樹脂、ポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル、ポリエチレンテレフタレート、及びゴム(エラストマー)からなる群より選ばれる少なくとも一種であってよい。樹脂組成物は、シリコーン(silicоne)樹脂を含んでもよい。
[Epoxy resin]
The resin composition contains at least an epoxy resin as a thermosetting resin. When the compound contains an epoxy resin having a relatively excellent fluidity among the thermosetting resins, the fluidity, filling property, storage stability, and moldability of the compound are improved. However, the compound may contain other resins in addition to the epoxy resin as long as the effects of the present invention are not impaired. For example, the resin composition may contain at least one of a phenol resin and a polyamide-imide resin as a thermosetting resin. When the resin composition contains both an epoxy resin and a phenol resin, the phenol resin may function as a curing agent for the epoxy resin. The resin composition may further contain a thermoplastic resin in addition to the thermosetting resin. The thermoplastic resin may be at least one selected from the group consisting of, for example, acrylic resin, polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyethylene terephthalate, and rubber (elastomer). The resin composition may contain a silicone resin.
 エポキシ樹脂は、例えば、1分子中に2個以上のエポキシ基を有する樹脂であってよい。エポキシ樹脂は、例えば、ビフェニル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、ビフェニレンアラルキル型エポキシ樹脂、スチルベン型エポキシ樹脂、ジフェニルメタン型エポキシ樹脂、硫黄原子含有型エポキシ樹脂、ノボラック型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、サリチルアルデヒド型エポキシ樹脂、ナフトール類とフェノール類との共重合型エポキシ樹脂、アラルキル型フェノール樹脂のエポキシ化物、ビスフェノール型エポキシ樹脂、ビスフェノール骨格を含有するエポキシ樹脂、アルコール類のグリシジルエーテル型エポキシ樹脂、パラキシリレン及び/又はメタキシリレン変性フェノール樹脂のグリシジルエーテル型エポキシ樹脂、テルペン変性フェノール樹脂のグリシジルエーテル型エポキシ樹脂、シクロペンタジエン型エポキシ樹脂、多環芳香環変性フェノール樹脂のグリシジルエーテル型エポキシ樹脂、ナフタレン環含有フェノール樹脂のグリシジルエーテル型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジル型又はメチルグリシジル型のエポキシ樹脂、脂環型エポキシ樹脂、ハロゲン化フェノールノボラック型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂、ハイドロキノン型エポキシ樹脂、トリメチロールプロパン型エポキシ樹脂、及びオレフィン結合を過酢酸等の過酸で酸化して得られる線状脂肪族エポキシ樹脂からなる群より選ばれる少なくとも一種であってよい。 The epoxy resin may be, for example, a resin having two or more epoxy groups in one molecule. The epoxy resin is, for example, biphenyl type epoxy resin, biphenyl aralkyl type epoxy resin, biphenylene aralkyl type epoxy resin, stilben type epoxy resin, diphenylmethane type epoxy resin, sulfur atom-containing epoxy resin, novolak type epoxy resin, dicyclopentadiene type epoxy. Resin, salicylaldehyde type epoxy resin, copolymerized epoxy resin of naphthols and phenols, aralkyl type phenol resin epoxide, bisphenol type epoxy resin, epoxy resin containing bisphenol skeleton, alcohols glycidyl ether type epoxy resin , Paraxylylene and / or metaxylylene-modified phenol resin glycidyl ether type epoxy resin, terpene-modified phenol resin glycidyl ether type epoxy resin, cyclopentadiene type epoxy resin, polycyclic aromatic ring-modified phenol resin glycidyl ether type epoxy resin, naphthalene ring containing Glycidyl ether type epoxy resin of phenol resin, glycidyl ester type epoxy resin, glycidyl type or methyl glycidyl type epoxy resin, alicyclic epoxy resin, halogenated phenol novolac type epoxy resin, orthocresol novolac type epoxy resin, hydroquinone type epoxy resin , Trimethylol propane type epoxy resin, and at least one selected from the group consisting of linear aliphatic epoxy resins obtained by oxidizing an olefin bond with a peracid such as peracetic acid.
 流動性に優れている観点において、エポキシ樹脂は、ビフェニル型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ビスフェノール型エポキシ樹脂、ビスフェノール骨格を有するエポキシ樹脂、サリチルアルデヒドノボラック型エポキシ樹脂、及びナフトールノボラック型エポキシ樹脂からなる群より選ばれる少なくとも一種であってよい。 From the viewpoint of excellent fluidity, the epoxy resin includes biphenyl type epoxy resin, orthocresol novolac type epoxy resin, phenol novolac type epoxy resin, bisphenol type epoxy resin, epoxy resin having a bisphenol skeleton, salicylaldehyde novolac type epoxy resin, and the like. And at least one selected from the group consisting of naphthol novolac type epoxy resin.
 エポキシ樹脂は、結晶性のエポキシ樹脂であってよい。結晶性のエポキシ樹脂の分子量は比較的低いにもかかわらず、結晶性のエポキシ樹脂は比較的高い融点を有し、且つ流動性に優れる。結晶性のエポキシ樹脂(結晶性の高いエポキシ樹脂)は、例えば、ハイドロキノン型エポキシ樹脂、ビスフェノール型エポキシ樹脂、チオエーテル型エポキシ樹脂、及びビフェニル型エポキシ樹脂からなる群より選ばれる少なくとも一種であってよい。結晶性のエポキシ樹脂の市販品は、例えば、エピクロン860、エピクロン1050、エピクロン1055、エピクロン2050、エピクロン3050、エピクロン4050、エピクロン7050、エピクロンHM‐091、エピクロンHM‐101、エピクロンN‐730A、エピクロンN‐740、エピクロンN‐770、エピクロンN‐775、エピクロンN‐865、エピクロンHP‐4032D、エピクロンHP‐7200L、エピクロンHP‐7200、エピクロンHP‐7200H、エピクロンHP‐7200HH、エピクロンHP‐7200HHH、エピクロンHP‐4700、エピクロンHP‐4710、エピクロンHP‐4770、エピクロンHP‐5000、エピクロンHP‐6000、N500P‐2、及びN500P‐10(以上、DIC株式会社製の商品名)、NC‐3000、NC‐3000‐L、NC‐3000‐H、NC‐3100、CER‐3000‐L、NC‐2000‐L、XD‐1000、NC‐7000‐L、NC‐7300‐L、EPPN‐501H、EPPN‐501HY、EPPN‐502H、EOCN‐1020、EOCN‐102S、EOCN‐103S、EOCN‐104S、CER‐1020、EPPN‐201、BREN‐S、BREN‐10S(以上、日本化薬株式会社製の商品名)、YX‐4000、YX‐4000H、YL4121H、及びYX‐8800(以上、三菱ケミカル株式会社製の商品名)からなる群より選ばれる少なくとも一種であってよい。 The epoxy resin may be a crystalline epoxy resin. Although the molecular weight of the crystalline epoxy resin is relatively low, the crystalline epoxy resin has a relatively high melting point and is excellent in fluidity. The crystalline epoxy resin (highly crystalline epoxy resin) may be at least one selected from the group consisting of, for example, a hydroquinone type epoxy resin, a bisphenol type epoxy resin, a thioether type epoxy resin, and a biphenyl type epoxy resin. Commercially available crystalline epoxy resins include, for example, Epicron 860, Epicron 1050, Epicron 1055, Epicron 2050, Epicron 3050, Epicron 4050, Epicron 7050, Epicron HM-091, Epicron HM-101, Epicron N-730A, Epicron N. -740, Epicron N-770, Epicron N-775, Epicron N-865, Epicron HP-4032D, Epicron HP-7200L, Epicron HP-7200, Epicron HP-7200H, Epicron HP-7200HH, Epicron HP-7200HH, Epicron HP -4700, Epicron HP-4710, Epicron HP-4770, Epicron HP-5000, Epicron HP-6000, N500P-2, and N500P-10 (above, trade name manufactured by DIC Co., Ltd.), NC-3000, NC-3000. -L, NC-3000-H, NC-3100, CER-3000-L, NC-2000-L, XD-1000, NC-7000-L, NC-7300-L, EPPN-501H, EPPN-501HY, EPPN -502H, EOCN-1020, EOCN-102S, EOCN-103S, EOCN-104S, CER-1020, EPPN-201, BREN-S, BREN-10S (above, trade name manufactured by Nippon Kayaku Co., Ltd.), YX- It may be at least one selected from the group consisting of 4000, YX-4000H, YL4121H, and YX-8800 (hereinafter, trade name manufactured by Mitsubishi Chemical Co., Ltd.).
 コンパウンドの成型収縮率が低減され易い観点から、樹脂組成物は、エポキシ樹脂として、イソシアネート変性エポキシ樹脂を含んでよい。イソシアネート変性エポキシ樹脂の市販品は、例えば、旭化成株式会社(旧旭化成イーマテリアルズ株式会社)製のAER‐4001であってよい。 From the viewpoint that the molding shrinkage of the compound is easily reduced, the resin composition may contain an isocyanate-modified epoxy resin as the epoxy resin. The commercially available product of the isocyanate-modified epoxy resin may be, for example, AER-4001 manufactured by Asahi Kasei Corporation (formerly Asahi Kasei E-Materials Co., Ltd.).
 樹脂組成物は、上記のうち一種のエポキシ樹脂を含有してよい。樹脂組成物は、上記のうち複数種のエポキシ樹脂を含有してもよい。 The resin composition may contain one of the above epoxy resins. The resin composition may contain a plurality of types of epoxy resins among the above.
[硬化剤]
 硬化剤は、低温から室温の範囲でエポキシ樹脂を硬化させる硬化剤と、加熱に伴ってエポキシ樹脂を硬化させる加熱硬化型の硬化剤と、に分類される。低温から室温の範囲でエポキシ樹脂を硬化させる硬化剤は、例えば、脂肪族ポリアミン、ポリアミノアミド、及びポリメルカプタン等である。加熱硬化型の硬化剤は、例えば、芳香族ポリアミン、酸無水物、フェノールノボラック樹脂、及びジシアンジアミド(DICY)等である。
[Curing agent]
The curing agent is classified into a curing agent that cures the epoxy resin in the range of low temperature to room temperature and a heat-curing type curing agent that cures the epoxy resin with heating. The curing agent that cures the epoxy resin in the range of low temperature to room temperature is, for example, aliphatic polyamines, polyaminoamides, and polymercaptans. The heat-curing type curing agent is, for example, aromatic polyamine, acid anhydride, phenol novolac resin, dicyandiamide (DICY) and the like.
 低温から室温の範囲でエポキシ樹脂を硬化させる硬化剤を用いた場合、エポキシ樹脂の硬化物のガラス転移点は低く、エポキシ樹脂の硬化物は軟らかい傾向がある。その結果、コンパウンドから形成された成型体も軟らかくなり易い。一方、成型体の耐熱性を向上させる観点から、硬化剤は、好ましくは加熱硬化型の硬化剤、より好ましくはフェノール樹脂、さらに好ましくはフェノールノボラック樹脂であってよい。特に硬化剤としてフェノールノボラック樹脂を用いることで、ガラス転移点が高いエポキシ樹脂の硬化物が得られ易い。その結果、成型体の耐熱性及び機械的強度が向上し易い。 When a curing agent that cures the epoxy resin in the range from low temperature to room temperature is used, the glass transition point of the cured product of the epoxy resin is low, and the cured product of the epoxy resin tends to be soft. As a result, the molded body formed from the compound also tends to be soft. On the other hand, from the viewpoint of improving the heat resistance of the molded product, the curing agent may be preferably a heat-curing type curing agent, more preferably a phenol resin, and further preferably a phenol novolac resin. In particular, by using a phenol novolac resin as a curing agent, it is easy to obtain a cured product of an epoxy resin having a high glass transition point. As a result, the heat resistance and mechanical strength of the molded body are likely to be improved.
 フェノール樹脂は、例えば、アラルキル型フェノール樹脂、ジシクロペンタジエン型フェノール樹脂、サリチルアルデヒド型フェノール樹脂、ノボラック型フェノール樹脂、ベンズアルデヒド型フェノールとアラルキル型フェノールとの共重合型フェノール樹脂、パラキシリレン及び/又はメタキシリレン変性フェノール樹脂、メラミン変性フェノール樹脂、テルペン変性フェノール樹脂、ジシクロペンタジエン型ナフトール樹脂、シクロペンタジエン変性フェノール樹脂、多環芳香環変性フェノール樹脂、ビフェニル型フェノール樹脂、及びトリフェニルメタン型フェノール樹脂からなる群より選ばれる少なくとも一種であってよい。フェノール樹脂は、上記のうちの2種以上から構成される共重合体であってもよい。 The phenol resin is, for example, an aralkyl type phenol resin, a dicyclopentadiene type phenol resin, a salicylaldehyde type phenol resin, a novolak type phenol resin, a copolymerized phenol resin of a benzaldehyde type phenol and an aralkyl type phenol, a paraxylylene and / or a metaxylylene modification. From the group consisting of phenol resin, melamine-modified phenol resin, terpen-modified phenol resin, dicyclopentadiene-type naphthol resin, cyclopentadiene-modified phenol resin, polycyclic aromatic ring-modified phenol resin, biphenyl-type phenol resin, and triphenylmethane-type phenol resin. It may be at least one of the choices. The phenol resin may be a copolymer composed of two or more of the above.
 フェノールノボラック樹脂は、例えば、フェノール類及び/又はナフトール類と、アルデヒド類と、を酸性触媒下で縮合又は共縮合させて得られる樹脂であってよい。フェノールノボラック樹脂を構成するフェノール類は、例えば、フェノール、クレゾール、キシレノール、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF、フェニルフェノール及びアミノフェノールからなる群より選ばれる少なくとも一種であってよい。フェノールノボラック樹脂を構成するナフトール類は、例えば、α‐ナフトール、β‐ナフトール及びジヒドロキシナフタレンからなる群より選ばれる少なくとも一種であってよい。フェノールノボラック樹脂を構成するアルデヒド類は、例えば、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、ベンズアルデヒド及びサリチルアルデヒドからなる群より選ばれる少なくとも一種であってよい。 The phenol novolac resin may be, for example, a resin obtained by condensing or co-condensing phenols and / or naphthols and aldehydes under an acidic catalyst. The phenols constituting the phenol novolak resin may be at least one selected from the group consisting of, for example, phenol, cresol, xylenol, resorcin, catechol, bisphenol A, bisphenol F, phenylphenol and aminophenol. The naphthols constituting the phenol novolak resin may be at least one selected from the group consisting of, for example, α-naphthol, β-naphthol and dihydroxynaphthalene. The aldehydes constituting the phenol novolac resin may be at least one selected from the group consisting of, for example, formaldehyde, acetaldehyde, propionaldehyde, benzaldehyde and salicylaldehyde.
 硬化剤は、例えば、1分子中に2個のフェノール性水酸基を有する化合物であってもよい。1分子中に2個のフェノール性水酸基を有する化合物は、例えば、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF、及び置換又は非置換のビフェノールからなる群より選ばれる少なくとも一種であってよい。 The curing agent may be, for example, a compound having two phenolic hydroxyl groups in one molecule. The compound having two phenolic hydroxyl groups in one molecule may be at least one selected from the group consisting of, for example, resorcin, catechol, bisphenol A, bisphenol F, and substituted or unsubstituted biphenol.
 樹脂組成物は、上記のうち一種のフェノール樹脂を含有してよい。樹脂組成物は、上記のうち複数種のフェノール樹脂を含有してもよい。樹脂組成物は、上記のうち一種の硬化剤を含有してよい。樹脂組成物は、上記のうち複数種の硬化剤を含有してもよい。 The resin composition may contain one of the above phenolic resins. The resin composition may contain a plurality of types of phenol resins among the above. The resin composition may contain one of the above-mentioned curing agents. The resin composition may contain a plurality of types of curing agents among the above.
 エポキシ樹脂中のエポキシ基と反応する硬化剤中の活性基(フェノール性OH基)の比率は、エポキシ樹脂中の1当量のエポキシ基に対して、好ましくは0.5~1.5当量、より好ましくは0.6~1.4当量、さらに好ましくは0.8~1.2当量であってよい。硬化剤中の活性基の比率が0.5当量未満である場合、得られる硬化物の充分な弾性率が得られ難い。一方、硬化剤中の活性基の比率が1.5当量を超える場合、コンパウンドから形成された成型体の硬化後の機械的強度が低下する傾向がある。 The ratio of the active group (phenolic OH group) in the curing agent that reacts with the epoxy group in the epoxy resin is preferably 0.5 to 1.5 equivalents with respect to 1 equivalent of the epoxy group in the epoxy resin. It may be preferably 0.6 to 1.4 equivalents, more preferably 0.8 to 1.2 equivalents. When the ratio of active groups in the curing agent is less than 0.5 equivalent, it is difficult to obtain a sufficient elastic modulus of the obtained cured product. On the other hand, when the ratio of the active group in the curing agent exceeds 1.5 equivalents, the mechanical strength of the molded product formed from the compound after curing tends to decrease.
[硬化促進剤]
 硬化促進剤は、例えば、エポキシ樹脂と反応してエポキシ樹脂の硬化を促進させる組成物であれば限定されない。硬化促進剤は、例えば、アルキル基置換イミダゾール、又はベンゾイミダゾール等のイミダゾール類であってよい。樹脂組成物は、一種の硬化促進剤を含有してよい。樹脂組成物は、複数種の硬化促進剤を含有してもよい。樹脂組成物が硬化促進剤を含有することにより、コンパウンドの成型性及び離型性が向上し易い。また、樹脂組成物が硬化促進剤を含有することにより、コンパウンドを用いて製造された成型体(例えば、電子部品)の機械的強度が向上したり、高温及び/又は高湿な環境下におけるコンパウンドの保存安定性が向上したりする。イミダゾール系硬化促進剤の市販品としては、例えば、2MZ‐H、C11Z、C17Z、1,2DMZ、2E4MZ、2PZ‐PW、2P4MZ、1B2MZ、1B2PZ、2MZ‐CN、C11Z‐CN、2E4MZ‐CN、2PZ‐CN、C11Z‐CNS、2P4MHZ、TPZ、及びSFZ(以上、四国化成工業株式会社製の商品名)からなる群より選ばれる少なくとも一種を用いてよい。
[Hardening accelerator]
The curing accelerator is not limited as long as it is a composition that reacts with the epoxy resin to accelerate the curing of the epoxy resin, for example. The curing accelerator may be, for example, an alkyl group-substituted imidazole or an imidazole such as benzimidazole. The resin composition may contain a kind of curing accelerator. The resin composition may contain a plurality of types of curing accelerators. When the resin composition contains a curing accelerator, the moldability and releasability of the compound are likely to be improved. Further, when the resin composition contains a curing accelerator, the mechanical strength of the molded product (for example, an electronic component) manufactured by using the compound is improved, and the compound is used in a high temperature and / or high humidity environment. The storage stability of the product is improved. Commercially available imidazole-based curing accelerators include, for example, 2MZ-H, C11Z, C17Z, 1,2DMZ, 2E4MZ, 2PZ-PW, 2P4MZ, 1B2MZ, 1B2PZ, 2MZ-CN, C11Z-CN, 2E4MZ-CN, 2PZ. -At least one selected from the group consisting of CN, C11Z-CNS, 2P4MHZ, TPZ, and SFZ (above, trade name manufactured by Shikoku Chemicals Corporation) may be used.
 硬化促進剤の配合量は、硬化促進効果が得られる量であればよく、特に限定されない。ただし、樹脂組成物の吸湿時の硬化性及び流動性を改善する観点からは、硬化促進剤の配合量は、100質量部のエポキシ樹脂に対して、好ましくは0.1質量部以上30質量部以下、より好ましくは1質量部以上15質量部以下であってよい。硬化促進剤の含有量は、エポキシ樹脂及び硬化剤(例えばフェノール樹脂)の質量の合計100質量部に対して0.001質量部以上5質量部以下であることが好ましい。硬化促進剤の配合量が0.1質量部未満である場合、十分な硬化促進効果が得られ難い。硬化促進剤の配合量が30質量部を超える場合、コンパウンドの保存安定性が低下し易い。 The amount of the curing accelerator to be blended is not particularly limited as long as it can obtain the curing promoting effect. However, from the viewpoint of improving the curability and fluidity of the resin composition during moisture absorption, the amount of the curing accelerator is preferably 0.1 part by mass or more and 30 parts by mass with respect to 100 parts by mass of the epoxy resin. Hereinafter, it may be more preferably 1 part by mass or more and 15 parts by mass or less. The content of the curing accelerator is preferably 0.001 part by mass or more and 5 parts by mass or less with respect to 100 parts by mass in total of the mass of the epoxy resin and the curing agent (for example, phenol resin). When the blending amount of the curing accelerator is less than 0.1 parts by mass, it is difficult to obtain a sufficient curing promoting effect. When the blending amount of the curing accelerator exceeds 30 parts by mass, the storage stability of the compound tends to decrease.
[カップリング剤]
 カップリング剤は、樹脂組成物と、金属粉を構成する金属粒子との密着性を向上させ、コンパウンドから形成される成型体の可撓性及び機械的強度を向上させる。カップリング剤は、例えば、シラン系化合物(シランカップリング剤)、チタン系化合物、アルミニウム化合物(アルミニウムキレート類)、及びアルミニウム/ジルコニウム系化合物からなる群より選ばれる少なくとも一種であってよい。シランカップリング剤は、例えば、エポキシシラン、メルカプトシラン、アミノシラン、アルキルシラン、ウレイドシラン、酸無水物系シラン及びビニルシランからなる群より選ばれる少なくとも一種であってよい。特に、アミノフェニル系のシランカップリング剤が好ましい。樹脂組成物は、上記のうち一種のカップリング剤を含有してよく、上記のうち複数種のカップリング剤を含有してもよい。市販のカップリング剤は、例えば、ビニルトリメトキシシラン(KBM-1003)、ビニルトリエトキシシラン(KBE-1003)、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン(KBM-303)、3-グリシドキシプロピルメチルジメトキシシラン(KBM-402)、3-グリシドキシプロピルトリメトキシシラン(KBM-403)、p-スチリルトリメトキシシラン(KBM-1403)、3-メタクリロキシプロピルメチルジメトキシシラン(KBM-502)、3-メタクリロキシプロピルトリメトキシシラン(KBM-503)、3-メタクリロキシプロピルメチルジエトキシシラン(KBE-502)、3-メタクリロキシプロピルトリエトキシシラン(KBE-503)、3-アクリロキシプロピルトリメトキシシラン(KBM-5103)、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン(KBM-602)、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン(KBM-603)、3-アミノプロピルトリメトキシシラン(KBM-903)、3-アミノプロピルトリエトキシシラン(KBE-903)、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン(KBE-9103)、N-フェニル-3-アミノプロピルトリメトキシシラン(KBM-573)、N-ビニルベンジル-2-アミノエチル-3-アミノプロピルトリメトキシシランの塩酸塩(KBM-575)、トリス-(トリメトキシシリルプロピル)イソシアヌレート(KBM-9659)、3-ウレイドプロピルトリアルコキシシラン(KBE-585)、3-メルカプトプロピルメチルジメトキシシラン(KBM-802)、3-メルカプトプロピルトリメトキシシラン(KBM-803)、3-イソシアネートプロピルトリエトキシシラン(KBM-9007)、オクテニルトリメトキシシラン(KBM-1083)、グリシドキシオクチルトリメトキシシラン(KBM-4803)、メタクリロキシオクチルトリメトキシシラン(KBM-5803)、メチルトリメトキシシラン(KBM-13)、メチルトリエトキシシラン(KBE-13)、ジメチルジメトキシシラン(KBM-22)、ジメチルジエトキシシラン(KBE-22)、フェニルトリメトキシシラン(KBM-103)、フェニルトリエトキシシラン(KBE-103)、n-プロピルトリメトキシシラン(KBM-3033)、n-プロピルトリエトキシシラン(KBE-3033)、ヘキシルトリメトキシシラン(KBM-3063)、ヘキシルトリエトキシシラン(KBE-3063)、オクチルトリエトキシシラン(KBE-3083)、デシルトリメトキシシラン(KBM-3103C)、1,6-(トリメトキシシリル)ヘキサン(KBM-3066)、トリフルオロプロピルトリメトキシシラン(KBM-7103)、ヘキサメチルジシラザン(SZ-31)、及び加水分解性基含有シロキサン(KPN-3504)(以上、信越化学工業株式会社製の商品名)からなる群より選ばれる少なくとも一種であってよい。カップリング剤は、シリコーンアルコキシオリゴマー(アルコキシ基を有するシリコーンオリゴマー)であってもよい。シリコーンアルコキシオリゴマーは、メトキシ基及びエトキシ基のうちの少なくとも一種のアルコキシ基を有してよい。シリコーンアルコキシオリゴマーは、エポキシ基、メチル基、メルカプト基、アクリロイル基、メタクリロイル基、ビニル基、及びフェニル基からなる群より選ばれる少なくとも一種の有機置換基を有してよい。シリコーンアルコキシオリゴマーは、例えば、KR-517、X-41-1059A、X-24-9590、KR-516、X-41-1805、X-41-1818、X-41-1810、KR-513、X-40-9296、KR-511、KC-89S、KR-515、KR-500、X-40-9225、X-40-9246、X-40-9250、KR-41N、X-40-9227、KR-510、KR-9218、及びKR-213(以上、信越化学工業株式会社製の商品名)からなる群より選ばれる少なくとも一種であってよい。
[Coupling agent]
The coupling agent improves the adhesion between the resin composition and the metal particles constituting the metal powder, and improves the flexibility and mechanical strength of the molded product formed from the compound. The coupling agent may be, for example, at least one selected from the group consisting of a silane compound (silane coupling agent), a titanium compound, an aluminum compound (aluminum chelate), and an aluminum / zirconium compound. The silane coupling agent may be at least one selected from the group consisting of, for example, epoxysilane, mercaptosilane, aminosilane, alkylsilane, ureidosilane, acid anhydride-based silane and vinylsilane. In particular, an aminophenyl-based silane coupling agent is preferable. The resin composition may contain one of the above-mentioned coupling agents, and may contain a plurality of of the above-mentioned coupling agents. Commercially available coupling agents include, for example, vinyltrimethoxysilane (KBM-1003), vinyltriethoxysilane (KBE-1003), 2- (3,4-epylcyclohexyl) ethyltrimethoxysilane (KBM-303), 3 -Glysidoxypropylmethyldimethoxysilane (KBM-402), 3-Glysidoxypropyltrimethoxysilane (KBM-403), p-styryltrimethoxysilane (KBM-1403), 3-methacryloxypropylmethyldimethoxysilane (KBM-403) KBM-502), 3-methacryloxypropyltrimethoxysilane (KBM-503), 3-methacryloxypropylmethyldiethoxysilane (KBE-502), 3-methacryloxypropyltriethoxysilane (KBE-503), 3- Acryloxypropyltrimethoxysilane (KBM-5103), N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane (KBM-602), N-2- (aminoethyl) -3-aminopropyltrimethoxysilane (KBM-603), 3-Aminopropyltrimethoxysilane (KBM-903), 3-Aminopropyltriethoxysilane (KBE-903), 3-Triethoxysilyl-N- (1,3-dimethyl-butylidene) propyl Amine (KBE-9103), N-phenyl-3-aminopropyltrimethoxysilane (KBM-573), N-vinylbenzyl-2-aminoethyl-3-aminopropyltrimethoxysilane hydrochloride (KBM-575), Tris- (trimethoxysilylpropyl) isocyanurate (KBM-9695), 3-ureidopropyltrialkoxysilane (KBE-585), 3-mercaptopropylmethyldimethoxysilane (KBM-802), 3-mercaptopropyltrimethoxysilane ( KBM-803), 3-Ixionpropyltriethoxysilane (KBM-9007), Octenyltrimethoxysilane (KBM-1083), Glycydoxyoctyltrimethoxysilane (KBM-4803), Methacyloxyoctyltrimethoxysilane (KBM) -5803), methyltrimethoxysilane (KBM-13), methyltriethoxysilane (KBE-13), dimethyldimethoxysilane (KBM-22), dimethyldiethoxysilane (KBE-22), phenyltrimethoxysilane (KBM-). 103), phenyltriethoxysilane (KBE-103), n-propyltrimethoxysilane (KBM-3033), n-propyltriethoxysilane (KBE-3033), hexyltrimethoxysilane (KBM-3063), hexyltriethoxysilane (KBE-3063), Octyltriethoxysilane (KBE-3083), decyltrimethoxysilane (KBM-3103C), 1,6- (trimethoxysilyl) hexane (KBM-3066), trifluoropropyltrimethoxysilane (KBM-7103), hexamethyl It may be at least one selected from the group consisting of disilazan (SZ-31) and hydrolyzable group-containing siloxane (KPN-3504) (hereinafter, trade name manufactured by Shin-Etsu Chemical Industry Co., Ltd.). The coupling agent may be a silicone alkoxy oligomer (a silicone oligomer having an alkoxy group). The silicone alkoxy oligomer may have at least one of a methoxy group and an ethoxy group. The silicone alkoxy oligomer may have at least one organic substituent selected from the group consisting of an epoxy group, a methyl group, a mercapto group, an acryloyl group, a methacryloyl group, a vinyl group, and a phenyl group. Silicone alkoxy oligomers include, for example, KR-517, X-41-1059A, X-24-9590, KR-516, X-41-1805, X-41-1818, X-41-1810, KR-513, X. -40-9296, KR-511, KC-89S, KR-515, KR-500, X-40-9225, X-40-9246, X-40-9250, KR-41N, X-40-9227, KR It may be at least one selected from the group consisting of -510, KR-9218, and KR-213 (hereinafter, trade names manufactured by Shin-Etsu Chemical Co., Ltd.).
[ワックス]
 ワックスは、コンパウンドの成形(例えばトランスファー成形)におけるコンパウンドの流動性を高めると共に、離型剤として機能する。ワックスは、高級脂肪酸等の脂肪酸、脂肪酸エステル及び脂肪酸塩のうち少なくともいずれか一つであってよい。
[wax]
The wax enhances the fluidity of the compound in the molding of the compound (for example, transfer molding) and functions as a mold release agent. The wax may be at least one of fatty acids such as higher fatty acids, fatty acid esters and fatty acid salts.
 ワックスは、例えば、モンタン酸、ステアリン酸、12-オキシステアリン酸、ラウリン酸等の脂肪酸類又はこれらのエステル;ステアリン酸亜鉛、ステアリン酸カルシウム、ステアリン酸バリウム、ステアリン酸アルミニウム、ステアリン酸マグネシウム、ラウリン酸亜鉛、ラウリン酸カルシウム、リノール酸亜鉛、リシノール酸カルシウム、2-エチルヘキソイン酸亜鉛等の脂肪酸塩;ステアリン酸アミド、オレイン酸アミド、エルカ酸アミド、ベヘン酸アミド、パルミチン酸アミド、ラウリン酸アミド、ヒドロキシステアリン酸アミド、メチレンビスステアリン酸アミド、エチレンビスステアリン酸アミド、エチレンビスラウリン酸アミド、ジステアリルアジピン酸アミド、エチレンビスオレイン酸アミド、ジオレイルアジピン酸アミド、N-ステアリルステアリン酸アミド、N-オレイルステアリン酸アミド、N-ステアリルエルカ酸アミド、メチロールステアリン酸アミド、メチロールベヘン酸アミド等の脂肪酸アミド;ステアリン酸ブチル等の脂肪酸エステル;エチレングリコール、ステアリルアルコール等のアルコール類;ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール及びこれらの変性物からなるポリエーテル類;シリコーンオイル及びシリコングリース等のポリシロキサン類;フッ素系オイル、フッ素系グリース及び含フッ素樹脂粉末等のフッ素化合物;並びに、パラフィンワックス、ポリエチレンワックス、アマイドワックス、ポリプロピレンワックス、エステルワックス、カルナウバ及びマイクロワックス等のワックス類;からなる群より選ばれる少なくとも一種であってよい。 The wax is, for example, fatty acids such as montanic acid, stearic acid, 12-oxystearic acid, lauric acid or esters thereof; zinc stearate, calcium stearate, barium stearate, aluminum stearate, magnesium stearate, zinc laurate. , Fatty acid salts such as calcium laurate, zinc linoleate, calcium lysinolate, zinc 2-ethylhexoate; stearic acid amide, oleate amide, erucic acid amide, behenic acid amide, palmitate amide, lauric acid amide, hydroxystearic acid amide. . , N-stearyl erucate amide, methylol stearic acid amide, methylol behenic acid amide and other fatty acid amides; fatty acid esters such as butyl stearate; alcohols such as ethylene glycol and stearyl alcohol; polyethylene glycol, polypropylene glycol, polytetramethylene glycol And polyethers composed of these modified products; polysiloxanes such as silicone oil and silicon grease; fluorine compounds such as fluorine-based oil, fluorine-based grease and fluorine-containing resin powder; and paraffin wax, polyethylene wax, amido wax, etc. It may be at least one selected from the group consisting of waxes such as polypropylene wax, ester wax, carnauba and microwax;
[樹脂組成物中のその他の成分]
 コンパウンドの環境安全性、リサイクル性、成型加工性及び低コストのために、コンパウンドは難燃剤を含んでよい。難燃剤は、例えば、臭素系難燃剤、リン系難燃剤、水和金属化合物系難燃剤、シリコーン系難燃剤、窒素含有化合物、ヒンダードアミン化合物、有機金属化合物及び芳香族エンプラからなる群より選ばれる少なくとも一種であってよい。樹脂組成物は、上記のうち一種の難燃剤を含有してよく、上記のうち複数種の難燃剤を含有してもよい。
[Other components in the resin composition]
Due to the environmental safety, recyclability, moldability and low cost of the compound, the compound may contain a flame retardant. The flame retardant is at least selected from the group consisting of, for example, a bromine-based flame retardant, a phosphorus-based flame retardant, a hydrated metal compound-based flame retardant, a silicone-based flame retardant, a nitrogen-containing compound, a hindered amine compound, an organic metal compound, and an aromatic empra. It may be a kind. The resin composition may contain one of the above flame retardants, and may contain a plurality of of the above flame retardants.
(金属粉)
 金属粉は、例えば、金属単体(純金属)、及び合金からなる群より選ばれる少なくとも一種を含有してよい。金属粉は、例えば、金属単体(純金属)、合金、アモルファス粉及び金属化合物からなる群より選ばれる少なくとも一種からなっていてよい。合金は、固溶体、共晶及び金属間化合物からなる群より選ばれる少なくとも一種を含んでよい。合金とは、例えば、ステンレス鋼(Fe‐Cr系合金、Fe‐Ni‐Cr系合金等)であってよい。金属粉は、一種の金属元素又は複数種の金属元素を含んでよい。金属粉に含まれる金属元素は、例えば、卑金属元素、貴金属元素、遷移金属元素、又は希土類元素であってよい。コンパウンドは、一種の金属粉を含んでよく、複数種の金属粉を含んでもよい。
(Metal powder)
The metal powder may contain, for example, at least one selected from the group consisting of elemental metals (pure metals) and alloys. The metal powder may consist of, for example, at least one selected from the group consisting of elemental metals (pure metals), alloys, amorphous powders and metal compounds. The alloy may contain at least one selected from the group consisting of solid solutions, eutectic and intermetallic compounds. The alloy may be, for example, stainless steel (Fe—Cr based alloy, Fe—Ni—Cr based alloy, etc.). The metal powder may contain one kind of metal element or a plurality of kinds of metal elements. The metal element contained in the metal powder may be, for example, a base metal element, a noble metal element, a transition metal element, or a rare earth element. The compound may contain one kind of metal powder and may contain a plurality of kinds of metal powder.
 金属粉に含まれる金属元素は、例えば、鉄(Fe)、銅(Cu)、チタン(Ti)、マンガン(Mn)、コバルト(Co)、ニッケル(Ni)、亜鉛(Zn)、アルミニウム(Al)、スズ(Sn)、クロム(Cr)、バリウム(Ba)、ストロンチウム(Sr)、鉛(Pb)、銀(Ag)、プラセオジム(Pr)、ネオジム(Nd)、サマリウム(Sm)及びジスプロシウム(Dy)からなる群より選ばれる少なくとも一種であってよい。金属粉は、金属元素以外の元素を含んでもよい。例えば、金属粉は、酸素(О)、ベリリウム(Be)、リン(P)、ホウ素(B)、又はケイ素(Si)を含んでもよい。金属粉は、磁性粉であってよい。金属粉は、軟磁性合金、又は強磁性合金であってよい。金属粉は、例えば、Fe‐Si系合金、Fe‐Si‐Al系合金(センダスト)、Fe‐Ni系合金(パーマロイ)、Fe‐Cu‐Ni系合金(パーマロイ)、Fe‐Co系合金(パーメンジュール)、Fe‐Cr‐Si系合金(電磁ステンレス鋼)、Nd‐Fe‐B系合金(希土類磁石)、Sm‐Fe‐N系合金(希土類磁石)、及びAl‐Ni‐Co系合金(アルニコ磁石)からなる群より選ばれる少なくとも一種からなる磁性粉であってよい。金属粉は、Cu‐Sn系合金、Cu‐Sn‐P系合金、Cu-Ni系合金、又はCu‐Be系合金等の銅合金であってもよい。金属粉は、一種類の元素又は組成物のみからなっていてよい。金属粉は、複数種の元素又は組成物を含んでもよい。 The metal elements contained in the metal powder are, for example, iron (Fe), copper (Cu), titanium (Ti), manganese (Mn), cobalt (Co), nickel (Ni), zinc (Zn), and aluminum (Al). , Tin (Sn), Chromium (Cr), Barium (Ba), Strontium (Sr), Lead (Pb), Silver (Ag), Placeozim (Pr), Neodim (Nd), Samarium (Sm) and Dysprosium (Dy) It may be at least one selected from the group consisting of. The metal powder may contain an element other than the metal element. For example, the metal powder may contain oxygen (О), beryllium (Be), phosphorus (P), boron (B), or silicon (Si). The metal powder may be a magnetic powder. The metal powder may be a soft magnetic alloy or a ferromagnetic alloy. The metal powder is, for example, Fe-Si alloy, Fe—Si—Al alloy (Sendust), Fe—Ni alloy (Permalloy), Fe—Cu—Ni alloy (Permalloy), Fe—Co alloy (Permalloy). Menzur), Fe-Cr-Si alloy (electromagnetic stainless steel), Nd-Fe-B alloy (rare earth magnet), Sm-Fe-N alloy (rare earth magnet), and Al-Ni-Co alloy (rare earth magnet). It may be a magnetic powder consisting of at least one selected from the group consisting of an alloy magnet). The metal powder may be a copper alloy such as a Cu—Sn-based alloy, a Cu—Sn—P-based alloy, a Cu—Ni-based alloy, or a Cu—Be-based alloy. The metal powder may consist of only one element or composition. The metal powder may contain a plurality of elements or compositions.
 金属粉は、Fe単体(純鉄)であってもよい。金属粉は、鉄を含む合金(Fe系合金)であってもよい。Fe系合金は、例えば、Fe‐Si‐Cr系合金、Nd‐Fe‐B系合金、又はSm-Fe-N系合金であってよい。金属粉は、アモルファス系鉄粉及びカルボニル鉄粉のうち少なくともいずれかであってもよい。金属粉がFe単体及びFe系合金のうち少なくともいずれかを含む場合、高い占積率を有し、且つ磁気特性に優れる成型体をコンパウンドから作製し易い。金属粉は、Feアモルファス合金であってもよい。Feアモルファス合金粉の市販品としては、例えば、AW2‐08、KUAMET‐6B2(以上、エプソンアトミックス株式会社製の商品名)、DAP MS3、DAP MS7、DAP MSA10、DAP PB、DAP PC、DAP MKV49、DAP 410L、DAP 430L、DAP HYBシリーズ(以上、大同特殊鋼株式会社製の商品名)、MH45D、MH28D、MH25D、及びMH20D(以上、神戸製鋼株式会社製の商品名)からなる群より選ばれる少なくとも一種が用いられてよい。 The metal powder may be Fe alone (pure iron). The metal powder may be an alloy containing iron (Fe-based alloy). The Fe-based alloy may be, for example, a Fe—Si—Cr based alloy, an Nd—Fe—B based alloy, or a Sm—Fe—N based alloy. The metal powder may be at least one of amorphous iron powder and carbonyl iron powder. When the metal powder contains at least one of Fe simple substance and Fe-based alloy, it is easy to produce a molded product having a high space factor and excellent magnetic properties from the compound. The metal powder may be an Fe amorphous alloy. Commercially available Fe amorphous alloy powders include, for example, AW2-08, KUAMET-6B2 (above, trade name manufactured by Epson Atmix Co., Ltd.), DAP MS3, DAP MS7, DAP MSA10, DAP PB, DAP PC, DAP MKV49. , DAP 410L, DAP 430L, DAP HYB series (above, product name manufactured by Daido Special Steel Co., Ltd.), MH45D, MH28D, MH25D, and MH20D (above, product name manufactured by Kobe Steel Co., Ltd.). At least one may be used.
 金属粉の平均粒子径は、特に限定されないが、例えば、1μm以上300μm以下であってよい。平均粒子径は、例えば粒度分布計によって測定されてよい。金属粉を構成する個々の金属粒子の形状は限定されないが、例えば、球状、扁平形状、角柱状又は針状であってよい。コンパウンドは、平均粒子径が異なる複数種の金属粉を含んでよい。 The average particle size of the metal powder is not particularly limited, but may be, for example, 1 μm or more and 300 μm or less. The average particle size may be measured, for example, by a particle size distribution meter. The shape of the individual metal particles constituting the metal powder is not limited, but may be spherical, flat, prismatic, or needle-shaped, for example. The compound may contain a plurality of metal powders having different average particle sizes.
<コンパウンドの用途>
 コンパウンドは、トランスファー成型(移送成型)及びコンプレッション成型のうち少なくとも一方に用いられてよい。トランスファー成型は、熱硬化性樹脂の射出成型法の一種である。トランスファー成型は、圧送成型と言い換えられてよい。トランスファー成型は、コンパウンドを加熱室内で加熱して流動化させるステップと、流動化したコンパウンドを、湯道(casting runner)を通じて加熱室から金型内へ供給(圧入)するステップと、型内のコンパウンドを加熱して硬化するステップと、を含んでよい。トランスファー成型は、コンパウンドを加熱室内で加熱して流動化させるステップと、流動化したコンパウンド粉を、加熱室からプランジャー内へ供給し、コンパウンドを、湯道を通じてプランジャーから金型内へ供給(圧入)するステップと、型内のコンパウンドを加熱して硬化するステップと、を含んでよい。トランスファー成型においてコンパウンドに作用する圧力は、例えば、3MPa以上100MPa以下であってよい。本実施形態に係るコンパウンドは、加熱によって優れた流動性及び充填性を示すため、細い湯道内を流れ易く、また金型内の空間(キャビティー)へ斑なく充填され易い。したがって、コンパウンドをトランスファー成型によって加工することにより、空隙又はバリ(burr)等の欠陥の少ない成型体及び硬化物を製造することが可能になる。コンパウンドの成型方法は、コンプレッション成型であってもよい。
<Use of compound>
The compound may be used for at least one of transfer molding and compression molding. Transfer molding is a kind of injection molding method for thermosetting resin. Transfer molding may be paraphrased as pumping molding. Transfer molding consists of a step of heating the compound in the heating chamber to fluidize it, a step of supplying (press-fitting) the fluidized compound from the heating chamber into the mold through a casting runner, and a compound in the mold. May include a step of heating and curing. Transfer molding involves heating the compound in the heating chamber to fluidize it, supplying the fluidized compound powder from the heating chamber into the plunger, and supplying the compound from the plunger into the mold through the runner ( It may include a step of press-fitting) and a step of heating and curing the compound in the mold. The pressure acting on the compound in transfer molding may be, for example, 3 MPa or more and 100 MPa or less. Since the compound according to the present embodiment exhibits excellent fluidity and filling property by heating, it easily flows in a narrow runner and is easily filled in a space (cavity) in a mold without unevenness. Therefore, by processing the compound by transfer molding, it becomes possible to produce a molded product and a cured product having few defects such as voids or burrs. The compound molding method may be compression molding.
 コンパウンドに含まれる金属粉の組成又は組合せに応じて、コンパウンドから形成される成型体及び硬化物其々の諸特性(例えば、電磁気的特性又は磁気特性)を自在に制御することができる。したがって、成型体及び硬化物を様々な工業製品又はそれらの原材料に利用することができる。コンパウンドから形成された成型体は、未硬化の樹脂組成物、及びBステージの樹脂組成物(樹脂組成物の半硬化物)のうち少なくともいずれかを含んでよい。成型体は、コンパウンドのみからなっていてよい。コンパウンド又は成型体の硬化物は、Cステージの樹脂組成物(樹脂組成物の硬化物)を含んでいてよい。 Various characteristics (for example, electromagnetic characteristics or magnetic characteristics) of the molded body and the cured product formed from the compound can be freely controlled according to the composition or combination of the metal powder contained in the compound. Therefore, the molded product and the cured product can be used for various industrial products or their raw materials. The molded body formed from the compound may contain at least one of an uncured resin composition and a B-stage resin composition (semi-cured product of the resin composition). The molded body may consist only of the compound. The cured product of the compound or the molded product may contain a C-stage resin composition (cured product of the resin composition).
 コンパウンドを用いて製造される工業製品は、例えば、自動車、医療機器、電子機器、電気機器、情報通信機器、家電製品、音響機器、及び一般産業機器であってよい。例えば、コンパウンドが金属粉としてSm‐Fe‐N系合金又はNd‐Fe‐B系合金等の永久磁石を含む場合、コンパウンドは、ボンド磁石の材料として利用されてよい。コンパウンドが金属粉としてFe‐Si‐Cr系合金等の軟磁性体を含む場合、コンパウンドは、インダクタ(例えばEMIフィルタ)又はトランスの材料(例えば封止材又は磁芯)として利用されてよい。コンパウンドから形成されたシート状の成型体又は硬化物は、電磁波シールドとして利用されてよい。 Industrial products manufactured using the compound may be, for example, automobiles, medical equipment, electronic equipment, electrical equipment, information and communication equipment, home appliances, audio equipment, and general industrial equipment. For example, when the compound contains a permanent magnet such as a Sm-Fe-N alloy or an Nd-Fe-B alloy as a metal powder, the compound may be used as a material for a bonded magnet. When the compound contains a soft magnetic material such as a Fe—Si—Cr based alloy as a metal powder, the compound may be utilized as a material (for example, a sealing material or a magnetic core) for an inductor (for example, an EMI filter) or a transformer. A sheet-shaped molded body or a cured product formed from the compound may be used as an electromagnetic wave shield.
<コンパウンドの製造方法>
 金属粉及び樹脂組成物を加熱しながら混合することにより、コンパウンドが得られる。例えば、金属粉及び樹脂組成物を、加熱しながらニーダー、ロール、攪拌機などで混練してよい。金属粉及び樹脂組成物の加熱及び混合により、樹脂組成物が金属粉を構成する各金属粒子の表面の一部又は全体に付着して、各金属粒子を被覆する。混錬により、樹脂組成物中のエポキシ樹脂の一部又は全部が半硬化物になってよい。
<Manufacturing method of compound>
The compound is obtained by mixing the metal powder and the resin composition while heating. For example, the metal powder and the resin composition may be kneaded with a kneader, a roll, a stirrer or the like while heating. By heating and mixing the metal powder and the resin composition, the resin composition adheres to a part or the whole of the surface of each metal particle constituting the metal powder to cover each metal particle. By kneading, a part or all of the epoxy resin in the resin composition may become a semi-cured product.
 例えば、金属粉、エポキシ樹脂、リン酸エステル(分散剤)、硬化剤、硬化促進剤、カップリング剤及びワックスを一括して槽内で混練してよい。金属粉と、リン酸エステル及びびカップリング剤のうち少なくとも一つを槽内で混合した後、金属粉、エポキシ樹脂、リン酸エステル、硬化剤、硬化促進剤、カップリング剤及びワックスを槽内で更に混練してもよい。金属粉、エポキシ樹脂、リン酸エステル、硬化剤、カップリング剤及びワックスを槽内で混練した後、これらの混合物及び硬化促進剤を更に槽内で混練してもよい。予め、エポキシ樹脂、リン酸エステル、硬化剤、硬化促進剤及びワックスを混合して、樹脂混合粉を作製してよい。予め、金属粉とカップリング剤とを混合して、金属混合粉を作製してよい。金属混合粉と上記の樹脂混合粉とを混練して、コンパウンドを得てよい。 For example, metal powder, epoxy resin, phosphoric acid ester (dispersant), curing agent, curing accelerator, coupling agent and wax may be kneaded together in a tank. After mixing the metal powder with at least one of the phosphoric acid ester and the coupling agent in the tank, the metal powder, the epoxy resin, the phosphoric acid ester, the curing agent, the curing accelerator, the coupling agent and the wax are mixed in the tank. You may further knead with. After kneading the metal powder, epoxy resin, phosphoric acid ester, curing agent, coupling agent and wax in the tank, the mixture thereof and the curing accelerator may be further kneaded in the tank. An epoxy resin, a phosphoric acid ester, a curing agent, a curing accelerator and a wax may be mixed in advance to prepare a resin mixed powder. The metal powder and the coupling agent may be mixed in advance to prepare a metal mixed powder. The metal mixed powder and the above resin mixed powder may be kneaded to obtain a compound.
 混練時間は、混練機械の種類、混練機械の容積、及びコンパウンドの製造量に依る。混練時間は、例えば、1分以上であることが好ましく、2分以上であることがより好ましく、3分以上であることがさらに好ましい。また混練時間は、20分以下であることが好ましく、15分以下であることがより好ましく、10分以下であることがさらに好ましい。混練時間が1分未満である場合、混練が不十分であり、コンパウンドの成型性が損なわれ、コンパウンドの硬化度にばらつきが生じる。混練時間が20分を超える場合、例えば、槽内で樹脂組成物(例えばエポキシ樹脂及びフェノール樹脂)の硬化が進み、コンパウンドの流動性、充填性及び成型性が損なわれ易い。槽内の原料を加熱しながらニーダーで混練する場合、加熱温度は、例えば、エポキシ樹脂の半硬化物(Bステージのエポキシ樹脂)が生成し、且つエポキシ樹脂の硬化物(Cステージのエポキシ樹脂)の生成が抑制される温度であればよい。加熱温度は、硬化促進剤の活性化温度よりも低い温度であってよい。加熱温度は、例えば、50℃以上であることが好ましく、60℃以上であることがより好ましく、70℃以上であることがさらに好ましい。加熱温度は、150℃以下であることが好ましく、120℃以下であることがより好ましく、110℃以下であることがさらに好ましい。加熱温度が上記の範囲内である場合、槽内の樹脂組成物が軟化して金属粉を構成する金属粒子の表面を被覆し易く、エポキシ樹脂の半硬化物が生成し易く、混練中のエポキシ樹脂の完全な硬化が抑制され易い。 The kneading time depends on the type of kneading machine, the volume of the kneading machine, and the amount of compound produced. The kneading time is, for example, preferably 1 minute or longer, more preferably 2 minutes or longer, and even more preferably 3 minutes or longer. The kneading time is preferably 20 minutes or less, more preferably 15 minutes or less, and even more preferably 10 minutes or less. If the kneading time is less than 1 minute, the kneading is insufficient, the moldability of the compound is impaired, and the degree of curing of the compound varies. When the kneading time exceeds 20 minutes, for example, the resin composition (for example, epoxy resin and phenol resin) is cured in the tank, and the fluidity, filling property and moldability of the compound are easily impaired. When the raw materials in the tank are kneaded with a kneader while heating, the heating temperature is, for example, a semi-cured epoxy resin (B-stage epoxy resin) and a cured epoxy resin (C-stage epoxy resin). It suffices as long as it is a temperature at which the formation of the epoxy is suppressed. The heating temperature may be lower than the activation temperature of the curing accelerator. The heating temperature is, for example, preferably 50 ° C. or higher, more preferably 60 ° C. or higher, and even more preferably 70 ° C. or higher. The heating temperature is preferably 150 ° C. or lower, more preferably 120 ° C. or lower, and even more preferably 110 ° C. or lower. When the heating temperature is within the above range, the resin composition in the tank softens and easily covers the surface of the metal particles constituting the metal powder, and a semi-cured epoxy resin is easily formed. Complete curing of the resin is likely to be suppressed.
 以下では実施例及び比較例により本発明がさらに詳細に説明される。本発明はこれらの例によって何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples. The present invention is not limited to these examples.
(実施例1)
[コンパウンドの作製]
 エポキシ樹脂1、エポキシ樹脂2、分散剤(リン酸エステル)、硬化剤1、硬化剤2、硬化促進剤、離型剤1(ワックス)、及び離型剤2(ワックス)を、ポリ容器(plastic cоntainer)に容れた。ポリ容器の内容物を10分間混合することにより、樹脂混合物を作製した。樹脂混合物とは、樹脂組成物のうちカップリング剤を除く他の全成分に相当する。
 エポキシ樹脂1としては、日本化薬株式会社製のNC‐3000(ビフェニレンアラルキル型エポキシ樹脂)を用いた。
 エポキシ樹脂2としては、株式会社プリンテック製のTECHMORE VG3101L(3官能エポキシ樹脂)を用いた。
 分散剤としては、BYK‐Chemie GmbH製のdisperbyk‐111を用いた。
 硬化剤1としては、明和化成株式会社製のMEHC‐7500‐3S(トリフェノールメタン型フェノール樹脂)を用いた。
 硬化剤2としては、明和化成株式会社製のMEHC‐7851SS(ビフェニレンアラルキル型フェノール樹脂)を用いた。
 硬化促進剤としては、四国化成工業株式会社製の2E4MZ(2‐エチル‐4‐メチルイミダゾール)を用いた。
 離型剤1としては、クラリアントケミカルズ株式会社製のLicowaxOPを用いた。LicowaxOPは、水酸化カルシウムによって部分的にケン化されたモンタン酸エステルである。
 離型剤2としては、日油株式会社製のステアリン酸亜鉛を用いた。
(Example 1)
[Preparation of compound]
Epoxy resin 1, epoxy resin 2, dispersant (phosphate ester), curing agent 1, curing agent 2, curing accelerator, mold release agent 1 (wax), and mold release agent 2 (wax) are put into a plastic container (plastic). It was contained in the resin). A resin mixture was prepared by mixing the contents of the plastic container for 10 minutes. The resin mixture corresponds to all the other components of the resin composition except the coupling agent.
As the epoxy resin 1, NC-3000 (biphenylene aralkyl type epoxy resin) manufactured by Nippon Kayaku Co., Ltd. was used.
As the epoxy resin 2, TECHMORE VG3101L (trifunctional epoxy resin) manufactured by Printec Co., Ltd. was used.
As the dispersant, disperbyk-111 manufactured by BYK-Chemie GmbH was used.
As the curing agent 1, MEHC-7500-3S (triphenol methane type phenol resin) manufactured by Meiwa Kasei Co., Ltd. was used.
As the curing agent 2, MEHC-7851SS (biphenylene aralkyl type phenol resin) manufactured by Meiwa Kasei Co., Ltd. was used.
As the curing accelerator, 2E4MZ (2-ethyl-4-methylimidazole) manufactured by Shikoku Chemicals Corporation was used.
As the release agent 1, Licowax OP manufactured by Clariant Chemicals Co., Ltd. was used. LicowaxOP is a montanic acid ester partially saponified with calcium hydroxide.
As the release agent 2, zinc stearate manufactured by NOF CORPORATION was used.
 鉄粉1及び鉄粉2を、加圧式2軸ニーダーで5分間均一に混合して、金属粉を調製した。鉄粉1及び鉄粉2のいずれも、アモルファスであった。
 鉄粉1としては、エプソンアトミックス株式会社製のKUAMET 9A4‐II 075C03を用いた。鉄粉1の平均粒径は、24μmであった。
 鉄粉2としては、エプソンアトミックス株式会社製のAW2‐08を用いた。鉄粉2の平均粒径は、5.3μmであった。
 加圧式2軸ニーダーとしては、日本スピンドル製造株式会社製の加圧式2軸ニーダーを用いた。加圧式2軸ニーダーの容量は、5Lであった。
The iron powder 1 and the iron powder 2 were uniformly mixed for 5 minutes with a pressurized twin-screw kneader to prepare a metal powder. Both iron powder 1 and iron powder 2 were amorphous.
As the iron powder 1, KUAMET 9A4-II 075C03 manufactured by Epson Atmix Co., Ltd. was used. The average particle size of the iron powder 1 was 24 μm.
As the iron powder 2, AW2-08 manufactured by Epson Atmix Co., Ltd. was used. The average particle size of the iron powder 2 was 5.3 μm.
As the pressurized 2-axis kneader, a pressurized 2-axis kneader manufactured by Nihon Spindle Manufacturing Co., Ltd. was used. The capacity of the pressurized twin-screw kneader was 5 L.
 カップリング剤1、カップリング剤2及び添加剤(応力緩和剤)を、2軸ニーダー内の金属粉へ添加した。続いて、2軸ニーダーの内容物を90℃になるまで加熱し、内容物の温度を保持しながら、2軸ニーダーの内容物を10分間混合した。続いて、上記の樹脂混合物を2軸ニーダーの内容物へ添加した。内容物の温度を120℃に保持しながら、内容物を15分間混練した。得られた混練物を室温まで冷却した後、混練物が所定の粒度を有するようになるまで、混練物をハンマーで粉砕した。
 カップリング剤1としては、信越化学工業株式会社製のKBM-5803(メタクリロキシオクチルトリメトキシシラン)を用いた。
 カップリング剤2としては、信越化学工業株式会社製のKBM-403(3-グリシドキシプロピルトリメトキシシラン)を用いた。
 添加剤としては、Gelest株式会社製のDBL‐C32(カプロラクトン変性ジメチルシリコーン)を用いた。
The coupling agent 1, the coupling agent 2, and the additive (stress relaxation agent) were added to the metal powder in the twin-screw kneader. Subsequently, the contents of the twin-screw kneader were heated to 90 ° C., and the contents of the twin-screw kneader were mixed for 10 minutes while maintaining the temperature of the contents. Subsequently, the above resin mixture was added to the contents of the twin-screw kneader. The contents were kneaded for 15 minutes while maintaining the temperature of the contents at 120 ° C. After cooling the obtained kneaded product to room temperature, the kneaded product was crushed with a hammer until the kneaded product had a predetermined particle size.
As the coupling agent 1, KBM-5803 (methacryloxyoctyltrimethoxysilane) manufactured by Shin-Etsu Chemical Co., Ltd. was used.
As the coupling agent 2, KBM-403 (3-glycidoxypropyltrimethoxysilane) manufactured by Shin-Etsu Chemical Co., Ltd. was used.
As an additive, DBL-C32 (caprolactone-modified dimethyl silicone) manufactured by Gelest Co., Ltd. was used.
 以上の方法により、実施例1のコンパウンドを作製した。
 コンパウンドを構成する各成分の質量(単位:g)は、下記表1に示される。
 コンパウンド中の金属粉の含有量(単位:質量%)は、下記表1に示される。
 コンパウンド中のエポキシ樹脂の含有量(単位:質量%)は、下記表1に示される。
 100質量部の金属粉に対するエポキシ樹脂の割合(単位:質量部)は、下記表1に示される。
 100質量部の金属粉に対するリン酸エステル(分散剤)の割合(単位:質量部)は、下記表1に示される。
The compound of Example 1 was prepared by the above method.
The mass (unit: g) of each component constituting the compound is shown in Table 1 below.
The content (unit: mass%) of the metal powder in the compound is shown in Table 1 below.
The content (unit: mass%) of the epoxy resin in the compound is shown in Table 1 below.
The ratio (unit: parts by mass) of the epoxy resin to 100 parts by mass of the metal powder is shown in Table 1 below.
The ratio (unit: parts by mass) of the phosphoric acid ester (dispersant) to 100 parts by mass of the metal powder is shown in Table 1 below.
[溶融粘度の測定]
 下記のように、140℃におけるコンパウンドの最低溶融粘度を測定した。測定装置としては、株式会社島津製作所製のCFT‐100(フローテスター)を用いた。測定用試料として、7gのコンパウンドから、タブレットを作製した。140℃、20秒の余熱、100kgの荷重の条件下で、コンパウンドの流動性を評価した。コンパウンドの流動が停止するまでのプランジャーの押し込み距離(単位:mm)を、フローテスターストロークとして測定した。コンパウンドの流動が停止するまでの時間を、フロータイムとして測定した。これらの測定値を流動性の指標とした。測定された実施例1の溶融粘度(単位:Pa・s)は、下記表1に示される。
[Measurement of melt viscosity]
The minimum melt viscosity of the compound at 140 ° C. was measured as described below. As a measuring device, CFT-100 (flow tester) manufactured by Shimadzu Corporation was used. As a sample for measurement, a tablet was prepared from 7 g of the compound. The fluidity of the compound was evaluated under the conditions of 140 ° C., residual heat for 20 seconds and a load of 100 kg. The pushing distance (unit: mm) of the plunger until the flow of the compound stopped was measured as a flow tester stroke. The time until the flow of the compound stopped was measured as the flow time. These measured values were used as an index of liquidity. The measured melt viscosities (unit: Pa · s) of Example 1 are shown in Table 1 below.
[円板フローの測定]
 測定用試料として、5gのコンパウンド(粉末)を用いた。コンパウンドを、下型の平坦な表面に置いた。平坦な上型をコンパウンドに押し当てて、コンパウンドを上型及び下型で挟み込んだ。8kgの荷重で360秒間、上型及び下型の間のコンパウンドを圧縮することにより、コンパウンドからなる略円板状の成型体を形成した。圧縮中のコンパウンドの温度は、140℃に維持された。円板状の成型体の最大径及び最小径を測定した。長径及び短径の平均値が、円板フローに相当する。実施例1の円板フロー(単位:mm)は、下記表1に示される。
[Measurement of disk flow]
As a sample for measurement, 5 g of a compound (powder) was used. The compound was placed on the flat surface of the lower mold. A flat upper mold was pressed against the compound and the compound was sandwiched between the upper and lower molds. By compressing the compound between the upper mold and the lower mold with a load of 8 kg for 360 seconds, a substantially disk-shaped molded body made of the compound was formed. The temperature of the compound during compression was maintained at 140 ° C. The maximum diameter and the minimum diameter of the disk-shaped molded body were measured. The average value of the major axis and the minor axis corresponds to the disk flow. The disk flow (unit: mm) of Example 1 is shown in Table 1 below.
(実施例2~5及び比較例1~3)
 実施例2~5及び比較例1~3其々のコンパウンドを構成する各成分の質量は、下記表1に示される。コンパウンドを構成する各成分の質量を除いて、実施例1と同様の方法で、実施例2~5及び比較例1~3其々のコンパウンドを作製した。
 実施例2~5及び比較例1~3の場合、コンパウンド中の金属粉の含有量は、下記表1に示される値であった。
 実施例2~5及び比較例1~3の場合、コンパウンド中のエポキシ樹脂の含有量は、下記表1に示される値であった。
 実施例2~5及び比較例1~3の場合、100質量部の金属粉に対するエポキシ樹脂の割合は、下記表1に示される値であった。
 実施例2~5及び比較例1~3の場合、100質量部の金属粉に対するリン酸エステル(分散剤)の割合は、下記表1に示される値であった。
(Examples 2 to 5 and Comparative Examples 1 to 3)
The masses of the respective components constituting the compounds of Examples 2 to 5 and Comparative Examples 1 to 3 are shown in Table 1 below. Compounds of Examples 2 to 5 and Comparative Examples 1 to 3 were prepared in the same manner as in Example 1 except for the mass of each component constituting the compound.
In the case of Examples 2 to 5 and Comparative Examples 1 to 3, the content of the metal powder in the compound was the value shown in Table 1 below.
In the case of Examples 2 to 5 and Comparative Examples 1 to 3, the content of the epoxy resin in the compound was the value shown in Table 1 below.
In the case of Examples 2 to 5 and Comparative Examples 1 to 3, the ratio of the epoxy resin to 100 parts by mass of the metal powder was the value shown in Table 1 below.
In the case of Examples 2 to 5 and Comparative Examples 1 to 3, the ratio of the phosphoric acid ester (dispersant) to 100 parts by mass of the metal powder was the value shown in Table 1 below.
 実施例1と同様の方法で、実施例2~5及び比較例1~3其々のコンパウンドの溶融粘度及び円板フローを測定した。実施例2~5及び比較例1~3其々のコンパウンドの溶融粘度及び円板フローは、下記表1に示される値であった。ただし、比較例2及び3の場合、コンパウンドは殆ど流動せず、溶融粘度を測定することは困難であった。つまり、比較例2及び3の場合、測定困難であるほど溶融粘度が高かった。 The melt viscosity and disk flow of each of the compounds of Examples 2 to 5 and Comparative Examples 1 to 3 were measured by the same method as in Example 1. The melt viscosities and disk flows of the compounds of Examples 2 to 5 and Comparative Examples 1 to 3 were the values shown in Table 1 below. However, in the cases of Comparative Examples 2 and 3, the compound hardly flowed, and it was difficult to measure the melt viscosity. That is, in the case of Comparative Examples 2 and 3, the melt viscosity was so high that it was difficult to measure.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本発明に係るコンパウンドは、流動性及び充填性に優れているため、コンパウンドの成型によりインダクタ等の多様な形状の工業製品を製造することができる。

 
Since the compound according to the present invention is excellent in fluidity and filling property, it is possible to manufacture industrial products having various shapes such as inductors by molding the compound.

Claims (6)

  1.  少なくとも金属粉と樹脂組成物とを含むコンパウンドであって、
     前記樹脂組成物が、少なくともエポキシ樹脂及びリン酸エステルを含み、
     前記コンパウンド中の前記金属粉の含有量が、97.0質量%以上97.5質量%以下である、
    コンパウンド。
    A compound containing at least a metal powder and a resin composition.
    The resin composition comprises at least an epoxy resin and a phosphate ester.
    The content of the metal powder in the compound is 97.0% by mass or more and 97.5% by mass or less.
    compound.
  2.  100質量部の前記金属粉に対する前記リン酸エステルの割合が、0.02質量部以上0.10質量部以下である、
    請求項1に記載のコンパウンド。
    The ratio of the phosphoric acid ester to 100 parts by mass of the metal powder is 0.02 parts by mass or more and 0.10 parts by mass or less.
    The compound according to claim 1.
  3.  140℃における前記コンパウンドの溶融粘度が、10Pa・s以上1500Pa・s以下である、
    請求項1又は2に記載のコンパウンド。
    The melt viscosity of the compound at 140 ° C. is 10 Pa · s or more and 1500 Pa · s or less.
    The compound according to claim 1 or 2.
  4.  トランスファー成型及びコンプレッション成型のうち少なくとも一方に用いられる、
    請求項1~3のいずれか一項に記載のコンパウンド。
    Used for at least one of transfer molding and compression molding,
    The compound according to any one of claims 1 to 3.
  5.  請求項1~4のいずれか一項に記載のコンパウンドを含む、
    成型体。
    The compound according to any one of claims 1 to 4 is included.
    Molded body.
  6.  請求項1~4のいずれか一項に記載のコンパウンドの硬化物。

     
    The cured product of the compound according to any one of claims 1 to 4.

PCT/JP2021/019672 2020-05-26 2021-05-24 Compound, molded body, and cured product WO2021241521A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020227044005A KR20230017228A (en) 2020-05-26 2021-05-24 Compounds, moldings and cured products
CN202180037467.1A CN115698120A (en) 2020-05-26 2021-05-24 Composite, molded article, and cured article
JP2022526543A JPWO2021241521A1 (en) 2020-05-26 2021-05-24

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-091371 2020-05-26
JP2020091371 2020-05-26

Publications (1)

Publication Number Publication Date
WO2021241521A1 true WO2021241521A1 (en) 2021-12-02

Family

ID=78744372

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/019672 WO2021241521A1 (en) 2020-05-26 2021-05-24 Compound, molded body, and cured product

Country Status (5)

Country Link
JP (1) JPWO2021241521A1 (en)
KR (1) KR20230017228A (en)
CN (1) CN115698120A (en)
TW (1) TW202202568A (en)
WO (1) WO2021241521A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024181005A1 (en) * 2023-02-28 2024-09-06 味の素株式会社 Cured body

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61152004A (en) * 1984-12-26 1986-07-10 Toshiba Corp Iron core
WO2013145608A1 (en) * 2012-03-29 2013-10-03 住友ベークライト株式会社 Resin composition and semiconductor device
JP2015206009A (en) * 2014-04-23 2015-11-19 キヤノン株式会社 Molding material and liquid discharge flow passage member using the same
JP2017179351A (en) * 2016-03-29 2017-10-05 積水化学工業株式会社 Cured article of resin composition, resin composition and multilayer substrate
JP2018024832A (en) * 2016-07-29 2018-02-15 住友ベークライト株式会社 Epoxy resin composition for semiconductor encapsulation and semiconductor device
WO2019069870A1 (en) * 2017-10-04 2019-04-11 日立化成株式会社 Curable resin composition, electronic component device, and production method for electronic component device
JP2019104954A (en) * 2017-12-11 2019-06-27 日立化成株式会社 Metal element-containing powder, and molded body
WO2019203048A1 (en) * 2018-04-16 2019-10-24 住友ベークライト株式会社 Method for manufacturing electronic device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011211026A (en) 2010-03-30 2011-10-20 Panasonic Corp Composite magnetic material
JP6662065B2 (en) 2016-01-28 2020-03-11 東洋インキScホールディングス株式会社 Insulated soft magnetic material, dust core containing soft magnetic material

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61152004A (en) * 1984-12-26 1986-07-10 Toshiba Corp Iron core
WO2013145608A1 (en) * 2012-03-29 2013-10-03 住友ベークライト株式会社 Resin composition and semiconductor device
JP2015206009A (en) * 2014-04-23 2015-11-19 キヤノン株式会社 Molding material and liquid discharge flow passage member using the same
JP2017179351A (en) * 2016-03-29 2017-10-05 積水化学工業株式会社 Cured article of resin composition, resin composition and multilayer substrate
JP2018024832A (en) * 2016-07-29 2018-02-15 住友ベークライト株式会社 Epoxy resin composition for semiconductor encapsulation and semiconductor device
WO2019069870A1 (en) * 2017-10-04 2019-04-11 日立化成株式会社 Curable resin composition, electronic component device, and production method for electronic component device
JP2019104954A (en) * 2017-12-11 2019-06-27 日立化成株式会社 Metal element-containing powder, and molded body
WO2019203048A1 (en) * 2018-04-16 2019-10-24 住友ベークライト株式会社 Method for manufacturing electronic device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024181005A1 (en) * 2023-02-28 2024-09-06 味の素株式会社 Cured body

Also Published As

Publication number Publication date
TW202202568A (en) 2022-01-16
JPWO2021241521A1 (en) 2021-12-02
KR20230017228A (en) 2023-02-03
CN115698120A (en) 2023-02-03

Similar Documents

Publication Publication Date Title
JP2022174132A (en) Metallic element-containing powder and molded body
JP7416124B2 (en) Compounds and tablets
JP7103413B2 (en) Compounds and moldings
JP7099515B2 (en) Compound powder
JP2022109291A (en) compound powder
JP7136121B2 (en) compound powder
WO2021241521A1 (en) Compound, molded body, and cured product
WO2021241515A1 (en) Compound, molded body and cured product
WO2021054169A1 (en) Coil sealing resin composition, electronic component device, and method for producing electronic component device
EP3960801B1 (en) Compound, molded article, and cured product
JP2021172685A (en) Compound, molding, and cured product of compound
WO2021112135A1 (en) Compound and molded object
JP7231017B2 (en) Compound manufacturing method
WO2021241513A1 (en) Compound, molded object, and cured object
WO2021153688A1 (en) Compound, molded article, and cured product of compound
JP2022042742A (en) Compound, molded body, and cured product of compound
JP2021120432A (en) Compound, molded body and cured product of compound

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21811821

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022526543

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227044005

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21811821

Country of ref document: EP

Kind code of ref document: A1